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Abstract

With the increasing spread of fake videos for misinformation, proving the
provenance of an edited video (without revealing the original one) becomes critical.
To this end, we introduce Eva, the first cryptographic protocol for authenticating
lossy-encoded videos. Compared to previous cryptographic methods for image
authentication, Eva supports significantly larger amounts of data that undergo
complex transformations during encoding. We achieve this by decomposing
repetitive and manageable components from video codecs, which can then be
handled using Incrementally Verifiable Computation (IVC). By providing a formal
definition and security model for proofs of video authenticity, we demonstrate
the security of Eva under well-established cryptographic assumptions.

To make Eva efficient, we construct an IVC based on folding schemes that
incorporate lookup arguments, resulting in a linear-time prover whose proofs
can be compressed to a constant size. We further improve the performance of
Eva through various optimizations, including tailored circuit design and GPU
acceleration. The evaluation of our implementation shows that Eva is practical:
for a 1-minute HD (1280× 720) video encoded in H.264 at 30 frames per second,
Eva generates a proof in about 2.5 hours on consumer-grade hardware at a
speed of 5.5 µs per pixel, surpassing previous cryptographic image authentication
schemes that support arbitrary editing operations by more than an order of
magnitude.

1 Introduction

Disinformation campaigns frequently target visual multimedia content, like images
and videos, due to their popularity and ease of distribution on social media
platforms [1,2]. This trend has been further exacerbated recently by the rapid
evolution of (generative) AI tools [3–5] that enable the manipulation, generation,
and dissemination of (fake) multimedia content with a few clicks, presenting a
significant challenge to content moderation and fact-checking systems.

To combat maliciously generated multimedia content, the two primary de-
fenses include 1) the detection of fake content, by humans [6–8] or automated
methods [9–11], and 2) the authentication of genuine content in which a prover
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tries to convince a verifier of the content’s provenance by providing some au-
thentication information [12–15]. Among authentication-based approaches, the
Coalition for Content Provenance and Authenticity (C2PA) standard [13] is
an industry-wide effort to authenticate multimedia content based on digital
signatures.

The issue with these existing approaches is that they either lack flexibility or
raise security and privacy concerns. In practice, raw multimedia content often
needs to be edited and encoded before publishing, but authentication-based
methods [14–17] typically allow only a limited set of predefined transformations.
While C2PA permits arbitrary edits, it requires trusted editing software to
sign the editing operations, introducing trust assumptions that are difficult to
meet, as an adversary may be able to extract the signing key from the software
and generate legitimate signatures for arbitrary content. In addition, C2PA’s
metadata may expose sensitive information that is not intended for disclosure,
such as the thumbnail of the original footage. Furthermore, many methods based
on detection [6–11] and authentication [14–17] are prone to false positives or
false negatives with a non-negligible probability, an issue which may be even
worse in the presence of active attackers, who can bypass these mechanisms by
exploiting their vulnerabilities [18–21]. Researchers have proposed cryptographic
solutions for image authentication [22–26] tackling some of these challenges.
Still, the problem of video authentication remains largely unaddressed, as it is a
significantly harder task mainly due to the following two challenges:

• First, while lossless image encoding is common in practice, video encoding
is usually lossy. Hence, a video authentication prover has to support lossy
encoding which involves significant complexities. In particular, given a lossy-
encoded video, the verifier cannot recover the edited video that exactly
matches the prover’s claim because of the information loss caused by
encoding. In contrast, with lossless encoding, the prover’s claim can be
reconstructed accurately by the verifier.

• Second, videos extend images by adding a time dimension, increasing data
sizes significantly. However, authenticating large amounts of (edited) data,
which is usually achieved through advanced zero-knowledge proofs, imposes
heavy computational and memory costs on the prover.

In this work, we introduce Eva, the first efficient cryptographic protocol for
authentication of lossy-encoded videos that supports arbitrary editing operations.
The core protocol works as follows: 1) After recording a video footage V , the
recorder signs its hash H(V ) and produces signature σ. 2) After the prover
edits V and encodes the edited video V ′ to obtain ζ, a proof π is generated,
demonstrating that σ is a valid signature on H(V ) and that V has been honestly
transformed into ζ. 3) When the verifier receives ζ and π, it can verify the
authenticity of ζ even without access to V .

To address the first challenge, a naive solution is to prove that the edited video
V ′ and the video Ṽ reconstructed from the encoded bitstream ζ are “similar”,
but it is difficult to define a metric to quantify such similarity without introducing
false positives or false negatives. Proving the correctness of video encoding is
thus inevitable to achieve non-negligible error rates. However, converting the
highly complex encoding process into a circuit is intricate and computationally
expensive. Our key insight is that, despite the video being encoded in a lossy
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format, the verifier can still accurately recover some of the encoder’s intermediate
data from the encoded video. By treating the data as public inputs, we can
bypass the proof of the most complicated parts of the encoding process and
instead focus on manageable components, thereby significantly reducing the
difficulty of circuit construction.

To address the second challenge, we exploit the highly repetitive structure of
videos and video processing algorithms: they are usually based on macroblocks,
i.e., small and fixed-size blocks of pixels that can be processed independently. This
allows us to leverage Incrementally Verifiable Computation (IVC) [27] constructed
from folding schemes [28–32] to reduce the circuit size and memory requirements.
In each IVC step, the prover only needs to 1) generate an incoming proof of
the honest editing and encoding for a few macroblocks, and then 2) accumulate
it into the running proof. Finally, we also leverage lookup arguments [33–36] to
avoid expensive bit operations in the arithmetic circuits for video processing.

1.1 Contribution

As the core contributions of our work, we formalize the notion of proofs of
video authenticity along with its security model, and we propose Eva, the first
cryptographic protocol to ensure multimedia authenticity for videos with lossy
encoding.

By introducing Eva, we not only show that it is feasible to construct crypto-
graphic protocols for video authentication, but further demonstrate that they
can be efficient and secure.
Feasibility. Due to the complexity of video encoders and the large size of videos,
it is unrealistic to naively prove video authenticity in arithmetic circuits. Eva
makes it feasible by leveraging the shared data between encoders and decoders
and the repetitive structure of videos, which allows us to incrementally process
videos with manageable costs per step using IVC. Eva is not only capable of
handling arbitrarily large video files with a constant memory footprint, but also
allows for arbitrary editing operations. We showcase Eva’s compatibility with
H.264 [37], and it can be extended to support other macroblock-based video and
(lossy) image codecs.
Efficiency. Eva is efficient and practical for real-world applications.For a 1-minute
HD (1280× 720) video encoded by H.264 with 30 frames per second, a proof can
be generated in ∼ 2.5 hours on a consumer-grade desktop. During IVC proof
generation, the memory cost is kept at a constant ∼ 10 GB, and compressing
the IVC proof requires 50 ∼ 60 GB of RAM. The final proofs are succinct: they
have a constant size of 448 bytes and can be verified by resource-constrained
devices like mobile phones or blockchain validators. Our efforts to enhance the
efficiency and succinctness of Eva are twofold:

• As a theoretical contribution that might be of independent interest, we
propose an IVC scheme that incorporates lookup arguments [33–36], which
lies at the core of Eva. Our scheme is built upon Nova [28] and its im-
plementation in the sonobe library [38]. Given that our circuits for video
encoding and editing require extensive bitwise operations, we integrate
LogUp [39], an efficient lookup argument, into our variant of Nova, thereby
significantly reducing the number of constraints. Additionally, we improve
sonobe by lowering the folding prover’s complexity from O(n log(n)) to
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Table 1: Comparison between Eva and cryptographic protocols for image authentication.a

Format Compression Editing Operations Prover time Prover RAM Proof size Max dimensionsb

O(P 3 logP ) O(1) 128× 128

(< 18676 µs/pxc) (2.67 KB) <∞
O(P logP ) O(1) 3840× 2160

(∼ 16 µs/px) (223 B) <∞
O(P logP ) O(logP ) 1280× 720

(> 355 µs/pxc) (∼10 KB) <∞
O(P ) O(log2N) 3840× 2160

(∼ 167 µs/px) (∼10 KB) <∞
O(P logP ) O(log2 P ) 6632× 4976

(∼ 95 µs/px) (∼100 KB) <∞
Eva O(P ) O(1) 1280× 720× 1800

(this work) (∼ 5.5 µs/px) (448 B) ∞

PhotoProof [22] Image Lossless Arbitrary O(P )

VIR [23] Image Lossless Masking O(P )

ZK-IMG [24] Image Lossless Arbitrary O(P )

VIMz [25] Image Lossless Arbitrary O(N)

VerITAS [26] Image Lossless Arbitrary O(P )

Video Lossy (H.264) Arbitrary O(1)

a Asymptotic complexity is measured w.r.t. the number of pixels P = MNL, where M is the height, N is the width, and L is the time.
Concrete results are reported inside the parentheses.

b Each cell displays the empirical (upper value) and theoretical (lower value) maximum dimensions. ∞ refers to unlimited dimensions, while
<∞ means that unlimited dimensions are unsupported (due to bounded RAM).

c Reported by original authors due to source code unavailability. > and < indicate the estimated performance on our machine.

O(n) and by optimizing the proof compression (known as decider) circuit
via commit-and-prove SNARKs (CP-SNARKs) [40], while maintaining the
ability of sonobe’s decider to generate zero-knowledge and constant sized
proofs for recursive computations.

• In terms of practical improvements, we provide a concrete implementation
of Eva equipped with hand-crafted circuits and various optimizations. To
minimize circuit size, we utilize both general techniques, such as lookup
arguments and non-deterministic advice, and tailored approaches, including
dedicated non-native operations and efficient handling of branches based
on dynamic conditions. In our implementation, we also exploit GPU accel-
eration, amortization via batching, among other optimizations, to further
boost the prover’s performance.

Security. Eva is proven secure in our model under well-established cryptographic
assumptions, providing soundness against attackers and zero-knowledge of the
original video except with negligible probability. By incorporating Eva into the
C2PA standard, we can not only improve the security of C2PA by eliminating the
trust assumptions on editing software but also provide better privacy guarantees
by hiding the original footage from the verifier.

1.2 Related Work

By regarding videos as a generalization of images, we summarize the compar-
ison of Eva to cryptographic protocols for image authentication in Table 1.
PhotoProof [22] is a pioneering work in this direction that uses Proof-Carrying
Data (PCD) [41] to offer authenticity of edited images. Due to the high com-
putational cost of proof generation, it only supports tiny images. In [23], Ko
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et al. propose VIR, which utilizes CP-SNARKs [40] to generate constant-sized
proofs of redaction on images (masking secret parts with black tiles). VIR signifi-
cantly reduces the prover time while supporting much larger images. Built upon
halo2 [42], a more efficient proof system, ZK-IMG [24] also has faster prover than
PhotoProof while maintaining support for arbitrary editing operations.

Concurrent with our work, Dziembowski et al. introduce VIMz [25], and Datta
et al. propose VerITAS [26], which share several common ideas with Eva. For
instance, VIMz also employs folding schemes to reduce prover RAM costs, and
VerITAS, like Eva, utilizes lookup argument to improve prover time. However,
alongside these general techniques, Eva incorporates customized IVC, tailored
circuit design, and dedicated optimizations to minimize prover time, achieving
optimal time complexity (O(P )) and the fastest prover time (∼ 5 µs/px) among
all the protocols.

For comparison of the concrete performance, we refer the reader to Section 7,
and an extended review of related work can be found in Appendix A.

2 Preliminaries

2.1 Notations

In this paper, y := F (x) denotes the output of a deterministic algorithm F on
input x. For a randomized algorithm F , we write y ← F (x), or y := F (x; r) when
it is supplied with external randomness r. With security parameter λ (or in the
unary representation 1λ), a negligible function in λ is denoted by ε(λ).

Vectors and matrices are denoted by boldface italic lowercase (e.g., x = (x0,

x1, . . . )) and uppercase letters (e.g., X =

[
x0,0 · · ·
...

. . .

]
), respectively. x[i, j] is

the subvector of x from index i to j, and X[i, j; k, l] is the submatrix of X from
row i to j and column k to l, inclusive. When it is clear from the context, we
write x = (y, z) to indicate that x is the concatenation of y and z.

We consider a half-pairing cycle of elliptic curve groups (𝔾, �̂�,𝔾T ),ℍ, where
𝔾 and ℍ form a 2-cycle. In this cycle, 𝔽q, the base field (i.e., the field over which
the curve is defined) of 𝔾, is also the scalar field (i.e., the prime field modulo
the order of the curve) of ℍ; and 𝔽p, the scalar field of 𝔾, is also the base field

of ℍ. Further, (𝔾, �̂�,𝔾T ) is a pairing-friendly group, i.e., there is a bilinear map

e : 𝔾× �̂�→ 𝔾T .
Algorithms are written in pseudocode, and we distinguish between the opera-

tions inside and outside an arithmetic circuit by using “Circuit” and “Algorithm”
prefixes, respectively. Also, “Gadget” refers to a small circuit that performs
a specific operation, which is often used as a building block in larger circuits.
“cond ? x : y” is a conditional expression that evaluates to x if the condition cond
is true, and y otherwise. The notation “assert cond” represents an operation
that returns 0 if cond is not satisfied and does nothing otherwise. Its in-circuit
equivalent, “enforce x = y”, adds a constraint to the constraint system to en-
force equality between x and y. Additionally, hints refer to the non-deterministic
advice [43] provided by the prover to the circuit.
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2.2 Cryptographic Primitives

We rely on two collision-resistant hash functions H and ρ, an existentially un-
forgeable signature scheme Sig = (Sig.K,Sig.S,Sig.V) under chosen-message
attack, and a commitment scheme CM = (CM.K,CM.C,CM.V) that is binding
and hiding, which we assume the reader is familiar with.

Here, we consider ρ as a random oracle in the random oracle model. The
signing key and verification key in Sig are denoted by sk and vk, respectively. The
commitment key in CM is denoted by ck. For simplicity, we treat the randomness
in CM.C and CM.V as implicit and omit it from the notation.

2.3 SNARKs, CP-SNARKs, and Lookup Arguments

Consider a relation R with an associated NP-language LR. For a statement
x ∈ LR and a witness w, we have R(x,w) = 1 if x and w satisfy R, and
R(x,w) = 0 otherwise.

An argument system Π for R is a protocol between a prover P and a verifier
V, where P convinces V that R(x,w) = 1. We say Π is interactive if it involves
interaction between P and V, while Π is non-interactive if P sends a single
message to V.

A SNARK [44] is a non-interactive argument system that produces short
proofs, as defined below.

Definition 1 (SNARK). A succinct non-interactive argument of knowledge
(SNARK) for relation R consists of a tuple of algorithms Π = (K,P,V):

• K(1λ, R)→ srs

On input security parameter 1λ and relation R, the key generation algorithm
outputs the structured reference string srs = (pk, vk), which includes a
proving key pk and a verification key vk. We also require the key generation
algorithm to output the secret trapdoor td, which is usually omitted from
the notation for simplicity.

• P(pk,x,w)→ π

On input proving key pk, statement x, and witness w, the proof generation
algorithm outputs a proof π.

• V(vk,x, π) =: b
On input verification key vk, statement x, and proof π, the verification
algorithm outputs a bit b, indicating whether the proof is valid.

A SNARK Π should be succinct, complete, knowledge-sound, and optionally,
zero-knowledge.
Succinctness. Succinctness holds if the size of any proof π satisfies

|π| = poly(λ) polylog(|x|+ |w|)

Completeness. Completeness holds if for every pair of (x,w) such that R(x,
w) = 1,

Pr
[
srs← K(1λ, R), π ← P(pk,x,w) : V(vk,x, π) = 1

]
= 1
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Knowledge Soundness. Knowledge soundness holds if for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

Pr


(srs, td)← K(1λ, R)
(x, π) := A(srs; r)
w := Ext(srs, td; r)
V(vk,x, π) = 1

: R(x,w) = 0

 ≤ ε(λ)
Zero-knowledge. Intuitively, Π is zero-knowledge (i.e., Π is a zkSNARK) if,
even without knowing the witness w, it is still possible to simulate a proof that
is indistinguishable from honestly generated ones.

Formally, statistical (or computational) zero-knowledge holds if there exists a
simulator Sim such that for every unbounded (or polynomial-time) distinguisher
A,

Pr

 (srs, td)← K(1λ, R)
(x,w)← A(srs)
π ← P(pk,x,w)

: A(π) = 1

 ≈ Pr

 (srs, td)← K(1λ, R)
(x,w)← A(srs)
π ← Sim(pk, td,x)

: A(π) = 1


Below we introduce two types of SNARKs that are going to be used in our

construction, namely, CP-SNARKs and lookup arguments.
It is desirable if a SNARK for R can be augmented in the following way: when

proving R (x,w) = 1, we can additionally demonstrate that the commitment to
some portion of w is c. CP-SNARKs [40, 45] are proposed to achieve this goal.

Generally, CP-SNARKs consider w = ({υi}ℓ−1
i=0 ,ω) = (υ0, . . . ,υℓ−1,ω), and

c = (c0, . . . , cℓ−1), where the i-th ci is claimed to be the commitment to the i-th
vector υi. Now, the original relation we are interested in becomes R(x, ({υi}ℓ−1

i=0 ,
ω)), and the augmented relation that we aim to prove is Rcp

(
(x, c), ({υi}ℓ−1

i=0 ,ω)
)
,

which returns 1 if
(
x, ({υi}ℓ−1

i=0 ,ω)
)
satisfies R and ci is indeed the commitment

to υi. Formally, Rcp
(
(x, c), ({υi}ℓ−1

i=0 ,ω)
)
= 1 if and only if

R
(
x, ({υi}ℓ−1

i=0 ,ω)
)
= 1 ∧

∧
i∈[0,ℓ−1]

CM.V(ck, ci,υi) = 1

Definition 2 (CP-SNARK). For a commitment scheme CM, a commitment key
ck← CM.K(1λ), and a relation R for statement x and witness w = ({υi}ℓ−1

i=0 ,ω),
a commit-and-prove SNARK (CP-SNARK) for R is a SNARK for relation Rcp

(as defined above). A CP-SNARK consists of a tuple of algorithms CP = (K,P,
V):

• K(1λ, ck, R)→ (pk, vk)

On input the security parameter λ, a commitment key ck, and a relation
R, the key generation algorithm outputs a pair of proving and verification
key srs = (pk, vk).

• P(pk,x, c, {υi}ℓ−1
i=0 ,ω)→ π

On input the proving key pk, the statement x, the commitments c = (ci)
ℓ−1
i=0 ,

and the witness {υi}ℓ−1
i=0 ,ω, the proof generation algorithm outputs a proof

π.
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• V(vk,x, c, π) =: b
On input the verification key vk, the statement x, the commitments c, and
a proof π, the verification algorithm outputs a bit b, indicating whether the
proof is valid.

If a CP-SNARK for R further satisfies zero-knowledge (i.e., if it is a zkSNARK
for Rcp), then we denote it by ZKCP = (K,P,V).

We are also interested in lookup arguments [33–36], which prove that all
elements in α = {αi}µ−1

i=0 , a set of queries, are in a lookup table τ = {τj}ν−1
j=0 .

Formally, we consider a lookup relation Rlookup(τ ,α), which returns 1 if and only
if

α ⊆ τ

Definition 3 (Lookup Arguments). A lookup argument is a SNARK for relation
Rlookup (as defined above).

2.4 Folding Schemes

Intuitively, a non-interactive folding scheme [28] for relation R folds two instances
into a single instance such that the correctness of the folded instance implies
that of the original ones.

Definition 4 (NIFS). A non-interactive folding scheme (NIFS) consists of a
tuple of algorithms NIFS = (G,K,P,V):

• G(1λ)→ pp

On input security parameter 1λ, the setup algorithm outputs public param-
eters pp.

• K(pp, R) =: (pk, vk)
On input public parameters pp and a relation R, the key generation algo-
rithm outputs a pair of proving key pk and verification key vk.

• P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))→ (𝕌,𝕎, T )

On input the proving key pk and two instance-witness pairs (𝕌1,𝕎1) and
(𝕌2,𝕎2), the proof generation algorithm outputs a folded instance-witness
pair (𝕌,𝕎) and a folding proof T .

• V(vk,𝕌1,𝕌2, T ) =: 𝕌
On input of the verification key vk, two instances 𝕌1 and 𝕌2, and the folding
proof T , the verification algorithm outputs a folded instance 𝕌.

A folding scheme NIFS satisfies the following properties.
Perfect Completeness. Completeness holds if for every PPT adversary A,
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pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1, R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
(𝕌P ,𝕎, T )← P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))
𝕌V := V(vk,𝕌1,𝕌2, T ) :

𝕌P = 𝕌V ∧R(𝕌P ,𝕎) = 1


= 1
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Knowledge Soundness. Knowledge soundness holds if, for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

Pr



pp← G(1λ)
(R,𝕌1,𝕌2,𝕎, T ) := A(pp; r)
(pk, vk) := K(pp, R)
𝕌 := V(vk,𝕌1,𝕌2, T )
R(𝕌,𝕎) = 1
(𝕎1,𝕎2) := Ext(pp; r) :

R(𝕌1,𝕎1) = 0 ∨R(𝕌2,𝕎2) = 0


≤ ε(λ)

Zero-knowledge. Statistical (or computational) zero-knowledge holds if there
exists a simulator Sim such that for every unbounded (or polynomial-time)
distinguisher A,

Pr


pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1 ∧R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
(·, ·, T )← P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)) :

A(T ) = 1



≈Pr


pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1 ∧R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
T ← Sim(pk, vk,𝕌1,𝕌2) :

A(T ) = 1


2.5 Incrementally Verifiable Computation

Incrementally verifiable computation [27] allows one to verify the repeated
execution of a function F , dubbed step function. Specifically, the prover can
generate a proof πi demonstrating that the current state zi is the result of i
invocations of F starting from an initial state z0, given the proof πi−1 attesting
to zi−1. This notion is formalized as below.

Definition 5 (IVC). An incrementally verifiable computation (IVC) scheme is
composed of four algorithms IVC = (G,K,P,V):

• G(1λ)→ pp

On input security parameter 1λ, the setup algorithm G outputs the public
parameters pp.

• K(pp,F) =: (pk, vk)
On input public parameters pp and a polynomial-time computable function
F , the key generation algorithm K outputs a pair of proving key pk and
verification key vk.

• P(pk, (i, z0, zi), auxi, πi)→ πi+1
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On input the proving key pk, an index i, an initial input z0, the claimed
output zi in the i-th iteration, the non-deterministic advice auxi, and a
proof πi attesting to zi, the proof generation algorithm P outputs a new
proof πi+1 that attests to zi+1 = F(zi; auxi).

• V(vk, (i, z0, zi), πi) =: b

On input the verification key vk, an index i, an initial input z0, the claimed
output zi in the i-th iteration, and a proof πi attesting to zi, the verification
algorithm V outputs a bit b, indicating whether the proof is valid.

An IVC scheme IVC satisfies the following properties.
Perfect Completeness. Completeness holds if for any PPT adversary A,

Pr



pp← G(λ),
(F , i,z0, zi, auxi, πi)← A(pp)
(pk, vk) := K(pp,F)
zi+1 := F(zi; auxi)
V(vk, (i, z0, zi), πi) = 1
πi+1 ← P(pk, (i, z0, zi), auxi, πi) :
V(vk, (i+ 1, z0, zi+1), πi+1) = 1


= 1

Knowledge Soundness1. Knowledge soundness holds if, for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

Pr



pp← G(λ),
(F , (i ≥ 1, z0, zi), πi) := A(pp; r)
(pk, vk) := K(pp,F)
V(vk, (i, z0, zi), πi) = 1
(zi−1, auxi−1, πi−1) := Ext(pp; r) :

zi = F(zi−1; auxi−1)
∧V(vk, (i− 1, z0, zi−1), πi−1) = 1


≥ 1− ε(λ)

Succinctness. Succinctness holds if the size of πi and the run time of P and V
are independent of the number of iterations.

Note that, unlike the definition of succinctness in SNARKs, a succinct IVC
may have proof size and verifier time that are linear in the size of F . In addition,
an IVC is not necessarily zero-knowledge.

To achieve a fully succinct and zero-knowledge IVC, one can include an
additional zkSNARK that compresses the proof while hiding the witnesses [28,31].
This concept is formalized as decider.

In the decider, we are interested in a relation RDecider that encodes the IVC’s
verification algorithm. Formally, given statement x = (k,z0, zk) and witness
w = (πk), R

Decider(x,w) = 1 if and only if IVC.V(vkΦ, (k, z0, zk), πk) = 1, where
vkΦ is the IVC verification key. With this relation, we can define a decider as
follows, who has the same syntax and security properties as a zkSNARK.

Definition 6 (Decider). For an IVC scheme IVC whose verification algorithm
IVC.V is expressed as a relation RDecider (as defined above), a step function F ,

1We adopt [46]’s definition of knowledge soundness, which implies the notions in [28, 30, 31]
that require Ext to extract all previous auxiliary values.
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and a pair of proving and verification key (pkΦ, vkΦ)← IVC.K(pp,F), a decider
Decider = (K,P,V) is a zkSNARK for RDecider.

Note that in our definition, the decider requires circuit-specific setup, which
suffices for our application. That is, every structured reference string srs generated
by Decider.K is only for a specific F and vkΦ.

3 Proofs of Video Authenticity

In this section, we formalize proofs of video authenticity, a category of video
authentication protocols that are provably secure. We begin by describing the
data types and operations involved, followed by the algorithm definition as well
as the security properties.

3.1 Data Types and Operations

We first consider two forms of video data: the raw video V and the video stream
ζ.
Raw Video. A raw video is usually for being displayed on a screen or edited by
video processing software. It is composed of a series of frames ordered by time.
Each frame is a still image described as a two dimensional matrix of pixels.

A pixel consists of several components that carry the properties of the pixel’s
color or luminance. For instance, three color components R, G, and B that
respectively indicate the relative proportions of red, green, and blue make up
the RGB color space. It is more common to use the YCbCr color space in video
processing, where a pixel is represented by a luma component Y, a blue chroma
component Cb, and a red chroma component Cr, each of which is an 8-bit2

integer.
The chroma components are usually subsampled in practice to reduce the

data size, and we assume a 4 : 2 : 0 subsampling ratio, where both the horizontal
and vertical resolutions of Cb and Cr are halved. Hence, in a frame with M rows
and N columns, there are M ×N Y components, M/2×N/2 Cb components,
and M/2×N/2 Cr components.

The resolution of a frame with M rows and N columns of pixels is defined
as N ×M3, where N and M are also called the width and the height of the
frame. The frequency at which the frames in a video are displayed is dubbed the
frame rate, which is typically measured in frames per second (FPS). High image
resolution and frame rate typically appear as higher quality video.

Moreover, in video processing, a frame is usually partitioned into macroblocks
of size 16×16, which contains 16×16 bytes for Y and 8×8 bytes for both Cb and Cr,
due to subsampling. Formally, we define a macroblock as X := (XY,XCb,XCr) ∈
B, where B is the set of all possible macroblocks, i.e., B := ℤ16×16

28 ×ℤ8×8
28 ×ℤ

8×8
28 .

In consequence, for a video with L frames, each of which has M rows and N

columns, we write V := {Xi}M/16×N/16×L−1
i=0 ∈ BM/16×N/16×L.

Video Stream. Due to the large size, a raw video is compressed into a video
stream when being transmitted over the network or stored in a file to reduce

2It is possible to have a higher bit depth (e.g., 10-bit) in video codecs, but we only discuss
8-bit color components for clarity.

3Note that while the frame resolution N ×M is column-first, the frame matrix is still
written in row-major order.
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Figure 1: Block diagram of a macroblock-based video codec. Blue lines: data flow during encoding. Red lines:
data flow during decoding. Solid lines: forward paths. Dashed lines: feedback paths for updating the reference
information. Arrows with a vertical bar at the start: the data is extracted from the source. Arrows with a vertical
bar at the end: the data is appended to the destination.

communication and storage costs. As a more compact form, a video stream is
interpreted as a sequence of bits encapsulated in a multimedia container such
as MP4, which may additionally include audio and subtitles. For simplicity, we
focus solely on the visual part in this work.
Encoding and Decoding. In video codecs, a raw video V is converted to a
video stream ζ by the encoder, whereas the decoder reconstructs a video Ṽ from
a video stream ζ. The codec is lossless if the decoder can reconstruct the original
video exactly, and lossy if some information is discarded, resulting in a lower
quality video in exchange for a smaller video stream.

Now we briefly review the general workflow of macroblock-based video codecs,
e.g., H.264/AVC [37], H.265/HEVC [47], and AOMedia Video 1 (AV1) [48], as
illustrated in Figure 1.

The encoder aims to reduce the file size by removing redundant and non-
essential information from V while maintaining as much visual quality as possible.
To this end, the encoder employs four stages for every macroblock X in V :
prediction, transform, quantization, and entropy coding, where only quantization
may introduce loss of information, while the other stages are lossless.

1. During prediction Pred, the encoder generates a prediction macroblock P
for X, so that the difference between the original macroblock and the
prediction macroblock is minimized. There are two types of prediction:
intra-frame prediction that removes spatial redundancy within a frame
(e.g., background areas with uniform colors or patterns), and inter-frame
prediction that avoids temporal redundancy among multiple frames (e.g.,
stationary areas with no motion or moving objects with simple patterns) by
leveraging motion estimation and motion compensation. Both prediction
modes rely on some reference information ref, which we will discuss later.

With all possible prediction results, we decide the final prediction mode by
selecting the best result P whose difference between X is minimal. The
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final difference X − P is output as the residue macroblock R, and the
prediction parameters paramPred = (mode, · · · ) are also returned, where
mode is the selected prediction mode (“inter” or “intra”).

2. During transform Trans, the encoder further reduces the spatial redun-
dancy by transforming the pixel data in the residue macroblock R to the
frequency domain. In this way, we can obtain the low-frequency compo-
nents representing essential features and the high-frequency components
containing non-essential details.

This process usually involves Discrete Cosine Transform (DCT) and
Hadamard Transform, after which the transformed coefficients Y are for-
warded to the next stage.

3. During quantization Quant, the precision of transformed coefficients Y is
reduced, in order to discard non-essential information (e.g., perceptually
hard-to-notice details) in the coefficients.

Quantization is done by scaling and rounding the coefficients, obtaining the
quantized coefficients Z, where rounding is the main reason of information
loss.

4. Finally, entropy coding Entr minimizes statistical redundancy in quantized
coefficients Z by assigning shorter codes to more frequent elements, whereas
less frequent data is mapped to longer codes. The encoding parameters
paramE are also compressed by Entr, which contains parameters used in
the encoding process such as the prediction parameters paramPred.

Examples of entropy coding include Huffman coding and arithmetic coding.
The output of entropy coding is appended to the bitstream ζ.

Note that the reference information ref used for predicting subsequent mar-
coblocks needs to be computed by reconstructing from already encoded data.
This is generally done by reversing the encoding algorithm. Given the quantized
coefficients Z encoded from X and its prediction P , Z is first dequantized via
Quant−1, which returns the dequantized coefficients Ỹ . Due to the loss of infor-
mation during quantization, they are close but may not be equal to the original
transformed coefficients, i.e., Ỹ ≈ Y . Ỹ is then inverse transformed via Trans−1

to obtain the residual macroblock R̃ ≈ R. Next, we compute the sum of R̃ and
the prediction macroblock P , which is fed to an optional deblocking filter to get

the reconstructed macroblock X̃ ≈X.
Reconstruction is also the core subroutine of the decoding process. Before

reconstruction, the decoder extracts a subsequence from the bitstream ζ and
applies entropy decoding on the subsequence to get the quantized coefficients Z.
The decoder then reconstructs the macroblock X̃ in the same way as encoder,
where the prediction macroblock P used for reconstruction is generated by
performing the prediction operation Pred on input the previously reconstructed
reference information ref. Since the prediction mode mode is encoded in the
bitstream ζ, it is unnecesary to have X when choosing the prediction mode in
Pred.

Formally, we define a block-wise encoding operation E : B×{0, 1}∗×{0, 1}∗ →
B×{0, 1}∗, which takes a macroblockX, some reference information ref ∈ {0, 1}∗,
and some encoding parameters paramE as input, encodes X under paramE with

13



the help of ref, and outputs the reconstructed macroblock X ′ and the encoded
bitstream y ∈ {0, 1}∗. The encoding parameters paramE control the quality
and performance of the encoding process. In addition to prediction parameters
paramPred, we also include other configurations in paramE . For instance, in H.264,
paramE contains the quantization parameter qp, which determines the precision
of quantized coefficients.

Conversely, the block-wise decoding operation D : {0, 1}∗ × {0, 1}∗ × {0,
1}∗ → B takes the encoded bitstream y, the reference information ref, and the
encoding parameters paramE as input, decodes y under paramE with the help of
ref, and outputs the reconstructed macroblock X ′.

Abusing the notation slightly, we allow applying E to the entire video V to
obtain the encoded video stream ζ := E(V , paramE), and D to the encoded video
stream ζ to obtain the decoded video V ′ := D(ζ, paramE). Further, we assume
that one can extract intermediate data from E and D, such as the prediction
macroblock P and quantized coefficients Z.
Metadata. Metadata meta is a set of information associated with the video,
such as the author name, the recording device ID, the location and time of
recording. We assume that meta is immutable.
Editing. A block-wise editing operation ∆ is defined as ∆ : B × {0, 1}∗ → B,
which takes a macroblock X and some editing parameters param∆ ∈ {0, 1}∗
as input, edits X, and outputs the edited macroblock X ′. param∆ contains
configurations specific to the editing operation, such as the brightness level, the
position of an overlay mask, etc.

While one may also edit the metadata meta of a video in practice, we assume
that meta is immutable in our definition. This assumption does not invalidate
editing operations such as cropping and cutting, since the resolution and frame
rate are regarded as part of the encoded video stream ζ.

3.2 Algorithm and Security Definitions

A proof of video authenticity involves four parties: the trusted party, the recorder,
the prover, and the verifier.

• The trusted party (e.g., a manufacturer) runs the key generation algorithms
KΣ and KΠ, where KΣ generates signing keys for the recorders, and KΠ

produces necessary parameters for proof generation and verification. The
signing keys are then securely provisioned to the recorders and are safely
protected using mechanisms such as secure enclaves.

• The recorder (e.g., a camcorder) records the original video, generates the
metadata, and runs the recording algorithm R, which signs the video and
the metadata under the signing key.

• The prover (e.g., a content creator) edits and encodes the original video,
publishes the processed video, and generates a proof of authenticity using
the proof generation algorithm P.

• The verifier (e.g., a website visitor) checks if the proof is valid w.r.t. the
video by executing the verification algorithm V.

Now we formally define the algorithms discussed above in a proof of video
authenticity.

14



Definition 7 (Proof of Video Authenticity). A proof of video authenticity is
defined as VA = (KΣ,KΠ,R,P,V):

• KΣ(1
λ)→ (skΣ, vkΣ)

KΠ(1
λ)→ (pkΠ, vkΠ)

Both key generation algorithms KΣ and KΠ take as input security param-
eter 1λ. KΣ outputs a pair of secret signing key skΣ and public signature
verification key vkΣ, and KΠ outputs a pair of public proving key pkΠ and
public proof verification key vkΠ. KΠ also returns the secret trapdoor td,
which is omitted from the notation for simplicity but is used in security
definitions.

• R(skΣ,V ,meta)→ σ

The recording algorithm R takes as input signing key skΣ, video V and its
metadata meta, and outputs a signature σ on V and meta.

• P(pkΠ, vkΣ,V ,meta, param, σ)→ (ζ, π)

The proof generation algorithm P takes as input proving key pkΠ, signa-
ture verification key vkΣ, video V , metadata meta, editing and encoding
parameters param = (param∆, paramE), and signature σ. It outputs a video
stream ζ and a proof π that attests to 1) the honesty of the editing and
encoding process from V to ζ under param, and 2) the validity of σ on
(V ,meta) under vkΣ.

• V(vkΠ, vkΣ, ζ,meta, param, π) =: b

The verification algorithm V takes as input proof verification key vkΠ,
signature verification key vkΣ, processed video stream ζ and its metadata
meta′, editing and encoding parameters param, and proof π, and outputs a
bit b indicating if the proof is valid for ζ,meta and vkΣ.

Now we formalize the security of VA. Consider the relation RVA(x,w) for
the authenticity of a video, where x = (ζ,meta, param, vkΣ),w = (σ,V ). For a
signature scheme Sig, an editing operation ∆, and an encoder E , RVA (x,w) = 1
if and only if

Sig.V(vkΣ, σ, (V ,meta)) = 1 ∧ ζ = E(∆(V , param∆), paramE)

The security of VA is defined below, which can be regarded as the security of
zkSNARKs for RVA.
Completeness. Completeness holds if for every video V , metadata meta, and
editing and encoding parameters param,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ)← KΠ(1

λ)
σ ← R(skΣ,V ,meta)
(ζ, π)← P(pkΠ, vkΣ,V ,meta, param, σ)
RVA((ζ,meta, param, vkΣ), (σ,V )) = 1 :

V(vkΠ, vkΣ, ζ,meta, param, π) = 1

 = 1

Knowledge Soundness. Knowledge soundness holds if for every polynomial-
time adversary A, there is a polynomial-time extractor Ext such that for all input
randomness r,
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Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
(ζ,meta, param, π) := A(pkΠ, vkΠ, vkΣ; r)
(σ,V ) := Ext(pkΠ, vkΠ, vkΣ, td; r)
V(vkΠ, vkΣ, ζ,meta, param, π) = 1 :

RVA((ζ,meta, param, vkΣ), (σ,V )) = 0

 ≤ ε(λ)

Zero-Knowledge. Optionally, VA may satisfy the zero-knowledge property,
which holds if there exists a simulator Sim such that for every polynomial-time
distinguisher A,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V ))← A(vkΣ, pkΠ, vkΠ)
(·, π)← P(pkΠ, vkΣ,V ,meta, param, σ) :

A(π) = 1



≈ Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V ))← A(vkΣ, pkΠ, vkΠ)
π ← Sim(td, pkΠ, vkΣ,meta, param, ζ) :

A(π) = 1


Succinctness. Optionally, VA may produce succinct proofs, if for every video V
of dimensionM×N×L, the proof π for V is of size |π| = poly(λ) polylog(MNL).

4 Nova-Based IVC with Lookup Argument

What lies at the heart of Eva is an IVC scheme based on folding that supports
efficient lookup. Our IVC scheme is heavily inspired by the implementation of
Nova [28] based IVC in the sonobe library [38]. However, we extend it with
LogUp [39], an efficient lookup argument, and equip it with CP-SNARKs to
achieve linear time prover while maintaining the constant proof size and verifier
time in sonobe’s IVC.

In this section, we briefly review the approaches in Nova and sonobe while
highlighting our techniques for integrating LogUp and CP-SNARKs into our IVC
scheme. The security proofs are deferred to Appendix B.

The high-level idea behind our IVC scheme is to 1) split off q, the queries
to the lookup table, from the witnesses w, 2) fold their commitments Q and
W separately, and 3) check the folded instances as well as the lookup relation
against the same Q in IVC’s augmented step circuit, thereby linking the folding
scheme with the lookup argument.

4.1 NIFS

To elaborate on the intuition above, we first describe our folding scheme modified
from Nova.

Recall that in Nova, we consider committed relaxed R1CS, which is a variant of
the Rank-1 Constraint System (R1CS) [49]. Similar to R1CS, a committed relaxed
R1CS over 𝔽 with n constraints and m variables (among which 1 variable is
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constant and l variables are public inputs) is defined by three matrices CS = (A,
B,C) ∈ (𝔽n×m,𝔽n×m,𝔽n×m). A witness 𝕎 to CS not only consists of the
witness w ∈ 𝔽m−l−1 to the original R1CS relation, but also includes an error
term e ∈ 𝔽n. The instance 𝕌 corresponding to 𝕎 is a tuple (u,x,W ,E), where
u ∈ 𝔽 is a scalar for absorbing constant terms, x ∈ 𝔽l is the public input, and
W,E are the commitments to w, e respectively. We say (𝕌,𝕎) satisfies CS if
CM.V(ck,w,W ) = 1, CM.V(ck, e, E) = 1, and Av ◦ Bv = u · Cv + e, where
v = (u,x,w).

In our modification, we consider τ = {τj}ν−1
j=0 , a read-only lookup table with ν

entries. We assume among the witnesses in CS, there are µ queries α = {αi}µ−1
i=0

to the lookup table. Further, for the j-th table entry τj , we count oj , the number of
τj ’s occurrences in the query vector α. The witness 𝕎 is now defined as 𝕎 = (q,

w, e), where q = {αi}µ−1
i=0 ∪ {oj}

ν−1
j=0 ∈ 𝔽µ+ν , w ∈ 𝔽m−µ−ν−l−1, and e ∈ 𝔽n.

Consequently, the instance 𝕌 = (u,x, Q,W,E) also contains an additional term
Q, i.e., the commitment to q, and the list of variables in the constraint system
becomes v = (u,x, q,w). For notational convenience, we write the part of field
elements in 𝕌 as 𝕌𝔽 = (u,x), and the part of group elements (commitments) as
𝕌𝔾 = (Q,W,E).

We adapt Nova’s construction accordingly. In the interactive setting, to
fold (𝕌1,𝕎1) and (𝕌2,𝕎2), P first computes the cross term t and sends the
commitment T to V, who samples and sends back a challenge r. Then, both
parties output the folded instance 𝕌 by computing the random linear combination
of 𝕌1 and 𝕌2 component-wise. P further output the folded witness 𝕎, which is
also a random linear combination of 𝕎1 and 𝕎2. One can apply the Fiat-Shamir
transform [50] to obtain the non-interactive construction, as given in Algorithm 1.

4.2 IVC

The next step is to design an IVC scheme utilizing our variant of Nova and
integrate it with lookup arguments.

To this end, we first recap how a folding scheme is converted to an IVC
in [28,51]. Given a step circuit F , we construct an augmented step circuit Faug,
which is associated with two types of instance-witness pairs (𝕌,𝕎) and (𝕦,𝕨),
where (𝕌,𝕎) is a running instance-witness pair, and (𝕦,𝕨) is an incoming
instance-witness pair.

In the i-th step of IVC, (𝕦i,𝕨i) that represents the execution of Faug in the
(i− i)-th step is folded into (𝕌i,𝕎i), producing an updated running instance-
witness pair (𝕌i+1,𝕎i+1) that represents all previous invocations of Faug. Then,
Faug is invoked again, which not only includes the original step circuit F , but
also enforces the correct folding of 𝕌i,𝕦i by running NIFS.V.

Recall that NIFS.V computes the random linear combination of two commit-
ments, i.e., X := X1 + rX2. However, in our setting, X’s coordinates are over
the base field of 𝔾, while the circuit is defined over the scalar field of 𝔾, meaning
that expensive non-native operations are necessary to compute X in-circuit. A
common solution [46] is to deploy two augmented step circuits Faug

1 ,Faug
2 on a

cycle of curves (𝔾,ℍ), where the circuit on one curve is responsible for folding
instances from the other curve. Nevertheless, this approach is suboptimal, as
it requires additional costs for encoding NIFS.V, a necessary component in the
augmented step circuit, on the secondary curve ℍ.
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Algorithm 1: NIFS

1 Fn NIFS.G(1λ):
2 ck← CM.K(1λ)
3 return pp := ck

4 Fn NIFS.K(pp,CS):
5 Parse ck := pp
6 return pk := (ck,CS), vk := ⊥
7 Fn NIFS.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)):
8 Parse (ck, (A,B,C)) := pk
9 for i ∈ {1, 2} do

10 Parse (ui,xi, Qi,W i, Ei) := 𝕌i, (qi,wi, ei) := 𝕎i

11 vi := (ui,xi, qi,wi)

12 t := Av1 ◦Bv2 +Av2 ◦Bv1 − u1 ·Cv2 − u2 ·Cv1

13 T ← CM.C(ck, t)
14 r := ρ(𝕌1,𝕌2, T ) ▷ Compute challenge
15 Fold instances:

u := u1 + ru2,x := x1 + rx2

Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2

16 Fold witnesses:
q := q1 + rq2,w := w1 + rw2, e := e1 + rt+ r2e2

17 return 𝕌 := (u,x, Q,W,E),𝕎 := (q,w, e), T

18 Fn NIFS.V(vk,𝕌1,𝕌2, T ):
19 for i ∈ {1, 2} do
20 Parse (ui,xi, Qi,W i, Ei) := 𝕌i

21 r := ρ(𝕌1,𝕌2, T ) ▷ Compute challenge
22 Fold instances:

u := u1 + ru2,x := x1 + rx2

Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2

23 return 𝕌 := (u,x, Q,W,E)

CycleFold [51] aims to minimize the costs on ℍ, which is adopted by sonobe [38].
In this paradigm, we offload the heavy lifting of non-native operations on the
primary curve 𝔾 to a lightweight circuit on ℍ, which can handle them natively,
thereby avoiding the need for duplicating the entire NIFS.V.

It starts by splitting NIFS.V into two parts:

• NIFS.V𝔽 folds field elements in 𝕌𝔽
1 and 𝕌𝔽

2.

On input vk, 𝕌𝔽
1 = (u1,x1), 𝕌𝔽

2 = (u2,x2) and r, it computes u := u1+ru2,
x := x1 + rx2 and returns 𝕌𝔽 := (u,x).

• NIFS.V𝔾 folds group elements in 𝕌𝔾
1 and 𝕌𝔾

2 .

On input vk, 𝕌𝔾
1 = (Q1,W 1, E1), 𝕌𝔾

2 = (Q2,W 2, E2), r and T , it computes
Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2 and returns
𝕌𝔾 := (Q,W,E).

Then, we construct a CycleFold circuit F cf on ℍ (see Circuit 2) that performs
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the check NIFS.V𝔾 natively, which requires only ∼ 4500 constraints4. Denote (𝕌cf ,
𝕎cf) and (𝕦cf ,𝕨cf) respectively as the running and incoming instance-witness
pairs for F cf .

Circuit 2: F cf

Statement: r,𝕌𝔾
i , 𝕦𝔾i ,𝕌𝔾

i+1, T
1 enforce 𝕌𝔾

i+1 = NIFS.V𝔾(vk,𝕌𝔾
i , 𝕦𝔾i , r, T )

With the help of F cf , the augmented circuit Faug only needs to fold the field
parts of primary instances. As a trade-off, Faug becomes responsible for enforcing
the correct folding of CycleFold instances 𝕌cf

i ,𝕦cfi using NIFS.V . Since 𝕌cf
i ,𝕦cfi are

over ℍ, the group operations in NIFS.V can be handled natively by Faug over 𝔾.
Although the field elements in 𝕌cf

i ,𝕦cfi become non-native, emulating non-native
field operations is much cheaper than non-native group operations, thanks to
the techniques in [52].

To summarize, with zi as the state of IVC in the i-th step, the Faug circuit
computes zi+1 := F(zi), folds 𝕦𝔽i into 𝕌𝔽

i by running NIFS.V𝔽(vk,𝕌𝔽
i ,𝕦𝔽i , r), and

folds 𝕦cfi into 𝕌cf
i by running NIFS.V(vkcf ,𝕌cf

i ,𝕦cfi , T
cf
).

Furthermore, to ensure the consistency of instances between two steps, Faug

computes H(𝕌i+1, i+ 1, z0, zi+1) and H(𝕌cf
i+1, i+ 1) in the i-th step, treats the

digests as outputs, and checks them in the i+1-th step by running H in a similar
way.

Then we add support for LogUp [39] to Faug. Inspired by gnark [53], which
incorporates LogUp into Groth16 [54] and Plonk [55], our Faug additionally checks
the set inclusion identity [39, Lemma 5] in-circuit.

Suppose F , during its execution, makes queries α = {αi}µ−1
i=0 to a lookup

table with entries τ = {τj}ν−1
j=0 . As per LogUp, {αi}µ−1

i=0 ⊆ {τj}
ν−1
j=0 holds if and

only if there is a set of multiplicities o = {oj}ν−1
j=0 such that the below identity

for set inclusion holds:

µ−1∑
i=0

1

X − αi
=

ν−1∑
j=0

oj
X − τj

.

By Schwartz-Zippel Lemma, we can check this polynomial identity by evaluating
it at a random point X = c. Here, c can be the random message from V after
receiving the commitment Q to q = {αi}µ−1

i=0 ∪ {oj}
ν−1
j=0 from P. Thanks to

Fiat-Shamir transform, we can eliminate the interaction and compute c := ρ(Q)
instead. To do the final check in-circuit, P needs to feed {oj}ν−1

j=0 and c as hints

to Faug, and Faug can then enforce
∑µ−1

i=0
1

c−αi
=

∑ν−1
j=0

oj
c−τj

.

Note that to ensure c is honestly chosen, Faug needs to check if c = ρ(Q).
However, Q is a part of 𝕦i+1, which is unknown to Faug in the i-th step. Thus,
while c is a hint dynamically computed by P in the i-th step, we still mark it as
a public input, which is going to be included in 𝕦i+1.x. With 𝕦i+1.Q and 𝕦i+1.x,
Faug in the (i+ 1)-th step can now check the honesty of c in the i-th step.

4In sonobe, Fcf is split into three parts, each with ∼ 1500 constraints, and this is also the
case for our variant. We omit this detail for clarify.
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We provide the construction of the augmented step circuit Faug in Circuit 3.
Note that because F cf makes no queries to the lookup table τ , we have 𝕨cf .q = ∅,
𝕦cf .Q = 0.

Circuit 3: Faug

Witness: i,zi,𝕌i, 𝕦i,𝕌𝔾
i+1, T ,𝕌cf

i , 𝕦cfi , T
cf
, auxi

Statement: h1, h2, c
Constant: {τj}ν−1

j=0

1 zi+1 := F(zi; auxi) ▷ Let {αi}µ−1
i=0 be queries made by F

2 Check 𝕦i:
enforce 𝕦i.u = 1

enforce 𝕦i.x = (H(𝕌i, i,z0,zi),H(𝕌cf
i , i), ρ(𝕦i.Q))

enforce 𝕦i.E = 0

3 r := ρ(𝕌i, 𝕦i, T )
4 𝕌𝔽

i+1 := NIFS.V𝔽(vk,𝕌𝔽
i , 𝕦𝔽i , r)

5 Check 𝕦cfi :
enforce 𝕦cfi .u = 1

enforce 𝕦cfi .x = (r,𝕌𝔾i , 𝕦
𝔾
i ,𝕌

𝔾
i+1, T )

enforce 𝕦cfi .E = 0

6 𝕌cf
i+1 := NIFS.V(vkcf ,𝕌cf

i , 𝕦cfi , T
cf
)

7 Check lookup queries:
{oj}ν−1

j=0 ← Hint({αi}µ−1
i=0 )

c← Hint({αi}µ−1
i=0 ∪ {oj}

ν−1
j=0 )

enforce
∑µ−1

i=0
1

c−αi
=

∑ν−1
j=0

oj
c−τj

8 Check public inputs:
enforce h1 = H((i = 0) ? 𝕌⊥ : 𝕌i+1, i+ 1,z0,zi+1)

enforce h2 = H((i = 0) ? 𝕌cf
⊥ : 𝕌cf

i+1, i+ 1)

Now we are ready to present the full construction of IVC, which is illustrated
in Algorithm 4. In the setup algorithm IVC.G, two commitment keys ck and ckcf

are generated, one for primary instances, and the other for CycleFold instances.
The key generation algorithm IVC.K takes a step function F as input, creates the
augmented function Faug for F , and converts Faug and F cf to committed relaxed
R1CS instances CSaug and CScf , respectively. Then, IVC.K invokes NIFS.K for
each R1CS instance to obtain the proving and verification keys for them.

Before the proof generation IVC.P starts, P first prepares two empty running
instance-witness pairs (𝕌0 := 𝕌⊥,𝕎0 := 𝕎⊥) and (𝕌cf

0 := 𝕌cf
⊥,𝕎cf

0 := 𝕎cf
⊥).

Moreover, the incoming instance-witness pair in the 0-th step is also (𝕦0 := 𝕌⊥,
𝕨0 := 𝕎⊥). P then proceeds to the incremental proof generation.

In the i-th iteration, P first folds the incoming (𝕦i,𝕨i) into (𝕌i,𝕎i) and
obtains (𝕌i+1,𝕎i+1), during which the challenge r is computed. As an edge case,
for i = 0, 𝕌i+1 and 𝕎i+1 are respectively set to 𝕌⊥,𝕎⊥. Then the CycleFold
circuit F cf is executed for statement r,𝕌𝔾

i ,𝕦𝔾i ,𝕌𝔾
i+1, T , whose execution trace

F cf is also collected to construct the incoming CycleFold instance-witness pair
(𝕦cfi ,𝕨cf

i ). Later, (𝕦cfi ,𝕨cf
i ) is folded into (𝕌cf

i ,𝕎cf
i ) and results in (𝕌cf

i+1,𝕎cf
i+1).

Note that, for i = 0, we instead set 𝕌cf
i+1 = 𝕌cf

⊥,𝕎cf
i+1 = 𝕎cf

⊥. Now, P invokes the

augmented step circuit Faug. When asked for hints {oj}ν−1
j=0 w.r.t. {αi}µ−1

i=0 , P sets

oj as the number of occurrences of τj in {αi}µ−1
i=0 for all j ∈ [0, ν−1]. When asked
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for hint c w.r.t. q = {αi}µ−1
i=0 ∪ {oj}

ν−1
j=0 , P computes 𝕦i+1.Q← CM.C(ck, q) and

c := ρ(𝕦i+1.Q), and dynamically marks c as a statement. Finally, P constructs the
incoming primary instance-witness pair (𝕦i+1,𝕨i+1) from the in-circuit variables
in Faug. The counter i := i+ 1 and the state zi+1 := F(zi; auxi) are updated as
well for the next iteration.

The verification of an IVC proof πi = ((𝕌i,𝕎i), (𝕦i,𝕨i), (𝕌cf
i ,𝕎cf

i )) is straight-
forward. V simply verifies the digests and challenges in 𝕦i and checks if𝕨i,𝕎i,𝕎cf

i

satisfy 𝕦i,𝕌i,𝕌cf
i , respectively.

4.3 Decider

Finally, we introduce a decider Decider that compresses the final IVC proof πk
into a succinct zero-knowledge proof ϖ via a zkSNARK for the relation RIVC.
Given statement x = (k,z0, zk) and witness w = πk, R

IVC(x,w) = 1 if and only
if IVC.V(vk, (k,z0, zk), πk) = 1.

Before diving into the details, we first review two different methods for
constructing Decider for Nova-based IVC.

In Nova [28], the authors construct a dedicated Polynomial IOP [56] for relaxed
R1CS and compile it into a zkSNARK for RIVC using a polynomial commitment
scheme (PCS). Two choices of the PCS are presented: a Pedersen-based PCS
with Bulletproofs [57] as the IPA, and a two-tiered PCS (e.g., Dory-PC [58])
with Dory-IPA [58]. For an augmented step circuit Faug with n constraints, the
former achieves O(log n) proof size and O(n) verification time, while the latter
makes both proof size and verification time logarithmic in n.

sonobe [38] instead expresses RIVC as an arithmetic circuit, whose satisfi-
ability is proven with Groth16 [54], yielding constant proof size and verifier
time. Nevertheless, sonobe’s decider only supports compressing proofs that use
KZG commitment [59], where IVC.P needs to interpolate the polynomial from
the input vector. This results in an O(n log n) prover due to number-theoretic
transforms (NTT).

Our goal is to design a decider that improves both approaches. Specifically,
it should produce constant-sized proofs that can be verified in constant time
w.r.t. n, while keeping the prover time linear in n in each step of IVC.P. To
this end, we follow sonobe’s approach and prove the satisfiability of the decider
circuit FDecider, which encodes RIVC over the primary curve 𝔾. However, instead
of using the plain Groth16, we leverage LegoGro16 [40], a ZKCP that establishes
a bridge between Groth16 and Pedersen commitment [60], allowing us to choose
Pedersen commitment as CM. As a result, the prover time in each iteration of
incremental proof generation is linear, and both the final compressed proof size
and the verifier time are constant. It is worth noting that, due to Groth16, the
prover time in Decider is O(n′ log n′), where n′ is the number of constraints in
FDecider and is linear in n. But we stress that Decider.P is a one-time cost at the
end of multiple steps of IVC.P, and it thus can be relatively cheap in practice.

Instead of constructing a decider circuit FDecider for the entire IVC.V algorithm,
we utilize various techniques and design a more efficient FDecider.

First, as in [28], we require Decider.P to run NIFS.P once more to absorb
(𝕦k,𝕨k) into (𝕌k,𝕎k), and FDecider only needs to check the output (𝕌k+1,𝕎k+1)
instead of both inputs.

Furthermore, we get rid of verifying the 𝕌𝔾
k+1 part (i.e., the commitments
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Algorithm 4: IVC

1 Fn IVC.G(1λ):
2 return (ck← NIFS.G(1λ), ckcf ← NIFS.G(1λ))
3 Fn IVC.K((ck, ckcf),F):
4 (pk, vk) := NIFS.K(ck,CSaug)

5 (pkcf , vkcf) := NIFS.K(ckcf ,CScf)

6 return (pk, pkcf), (vk, vkcf)

7 Fn IVC.P((pk, pkcf), (i,z0,zi), auxi, πi):

8 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i), (𝕌cf
i ,𝕎cf

i )) := πi

9 (𝕌i+1,𝕎i+1, T ) := (i = 0) ? (𝕌⊥,𝕎⊥, 0) : NIFS.P(pk, (𝕌i,𝕎i), (𝕦i,𝕨i))

10 Run F cf and extract the in-circuit variables vcf :
r := ρ(𝕌i, 𝕦i, T )

Fcf(r,𝕌𝔾i , 𝕦
𝔾
i ,𝕌

𝔾
i+1, T )

11 Construct 𝕦cfi ,𝕨cf
i :

Parse (u,x,∅,w) := vcf ▷ u = 1,x = (r,𝕌𝔾i , 𝕦
𝔾
i ,𝕌

𝔾
i+1)

𝕨cf
i := (∅,w,∅), 𝕦cfi ← (u,x, 0,CM.C(ckcf ,w), 0)

12 (𝕌cf
i+1,𝕎cf

i+1, T
cf
) := (i = 0) ? (𝕌cf

⊥,𝕎cf
⊥, 0) : NIFS.P(pkcf , (𝕌cf

i ,𝕎cf
i ), (𝕦cfi ,𝕨cf

i ))
13 Run Faug and extract the in-circuit variables v:

h1 := H(𝕌i+1, i+ 1,z0,zi+1), h2 := H(𝕌cf
i+1, i+ 1)

Faug((i,zi,𝕌i, 𝕦i,𝕌𝔾i+1, T ,𝕌cf
i , 𝕦cfi , T

cf
), (h1, h2,⊥); auxi)

14 Construct 𝕦i+1,𝕨i+1:
Parse (u,x, q,w) := v ▷ u = 1,x = (h1, h2, c)

𝕨i+1 := (q,w,∅), 𝕦i+1 ← (u,x,CM.C(ck, q),CM.C(ck,w), 0)

15 return πi+1 := ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1), (𝕌cf
i+1,𝕎cf

i+1))

16 Fn IVC.V((vk, vkcf), (i,z0,zi), πi):

17 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i), (𝕌cf
i ,𝕎cf

i )) := πi

18 Check 𝕦i:
assert 𝕦i.u = 1 ∧ 𝕦i.E = 0

assert 𝕦i.x = (H(𝕌i, i,z0,zi),H(𝕌cf
i , i), ρ(𝕦i.Q))

19 Check 𝕨i against 𝕦i:
Parse (u,x, Q,W,E) := 𝕦i, (q,w, e) := 𝕨i

v := (u,x, q,w)
assert Av ◦Bv = Cv

assert CM.V(ck, q, Q) ∧ CM.V(ck,w,W ) ∧ CM.V(ck, e, E)

20 Check 𝕎i against 𝕌i:
Parse (u,x, Q,W,E) := 𝕌i, (q,w, e) := 𝕎i

v := (u,x, q,w)
assert Av ◦Bv = u ·Cv + e

assert CM.V(ck, q, Q) ∧ CM.V(ck,w,W ) ∧ CM.V(ck, e, E)

21 Check 𝕎cf
i against 𝕌cf

i :
Parse (u,x, Q,W,E) := 𝕌cf

i , (q,w, e) := 𝕎cf
i

v := (u,x, q,w)

assert Acfv ◦Bcfv = u ·Ccfv + e

assert q = ∅ ∧Q = 0 ∧ CM.V(ckcf ,w,W ) ∧ CM.V(ckcf , e, E)

22 return 1

𝕌k+1.Q,𝕌k+1.W ,𝕌k+1.E) in-circuit, since the commitment verification involves
non-native group operations that are prohibitively expensive (a single scalar
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multiplication costs ∼ 105 constraints as per [61]). In Sigmabus [61] and its
follow-up work [62], the authors observe that it is possible to trade non-native
group operations for computing circuit-friendly hash functions by leveraging a
sigma protocol. However, this approach is still suboptimal, as the hash preimage,
containing the values to be committed, can be long for a complex step circuit
F . Thanks to CP-SNARKs [40], we can completely eliminate the constraints
for commitment verification, because they are able to prove the commitment
to a subset of witnesses without running CM.V or adding any other trade-off
in-circuit.

Finally, FDecider checks the satisfiability of (𝕌cf
k ,𝕎cf

k ) against CS
cf , where the

commitment verification becomes native operations, while the checkAcfv◦Bcfv ≡
u · Ccfv + e (mod q) requires non-native field operations. Although one can
perform the check natively by employing a SNARK (e.g., Spartan [63]) solely for
this equation on the non-pairing curve ℍ, the final proof size in this case is no
longer constant. We observe that it is feasible to compute this equation in-circuit,
because 1) non-native field operations are relatively cheap in comparison to non-
native group operations, and 2) the size of F cf (and thus CScf) is constant and
small. However, we further apply several optimizations to improve the efficiency
of this check, whose details are presented in Section 6.

We summarize the construction of the decider circuit FDecider in Circuit 5.

Circuit 5: FDecider

Witness: 𝕎k+1,𝕎cf
k

Statement: 𝕌𝔽
k+1,𝕌cf

k

Constant: CSaug = (A,B,C),CScf = (Acf ,Bcf ,Ccf), ckcf

1 Check 𝕎k+1 against 𝕌𝔽
k+1:

Parse (u,x) := 𝕌𝔽k+1, (q,w, e) := 𝕎k+1

v := (u,x, q,w)
enforce Av ◦Bv = u ·Cv + e

2 Check 𝕎cf
k against 𝕌cf

k :
Parse (u,x, Q,W,E) := 𝕌cf

k , (q,w, e) := 𝕎cf
k

v := (u,x, q,w)

enforce Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q)

enforce q = ∅ ∧Q = 0

enforce CM.V(ckcf ,w,W )

enforce CM.V(ckcf , e, E)

We present the decider algorithm Decider in Algorithm 6, which shares the
design of decider in Nova and sonobe but replaces the underlying SNARK with
LegoGro16. As discussed above, Decider.P first runs NIFS.P to fold (𝕦k,𝕨k) into
(𝕌k,𝕎k), and then generates a proof ϖ with ZKCP.P, attesting that FDecider is
satisfiable, and that the commitments Q,W,E in 𝕌𝔾

k+1 open to q,w, e in 𝕎k+1.
Correspondingly, the verifier Decider.V folds 𝕦k into 𝕌k as well, ensures 𝕦k is a
(strict) R1CS instance, and then verifies the proof ϖ and the commitments in
𝕌k+1 using ZKCP.V.
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Algorithm 6: Decider

1 Fn Decider.K(1λ, (ck,CSDecider)):

2 (pk, vk)← ZKCP.K(1λ, ck,CSDecider)
3 return (pk, vk)

4 Fn Decider.P((pk, pkΦ), (k, z0,zk), πk):

5 Parse ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k )) := πk

6 (𝕌k+1,𝕎k+1, T ) := NIFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))

7 x := (𝕌𝔽
k+1,𝕌cf

k ), c := (𝕌𝔾
k+1)

8 υ := (𝕎k+1),ω := (𝕎cf
k )

9 ϖ ← ZKCP.P(pk,x, c,υ,ω)

10 return (ϖ,𝕌k, 𝕦k,𝕌cf
k , T )

11 Fn Decider.V((vk, vkΦ), (k, z0,zk), (ϖ,𝕌k, 𝕦k,𝕌cf
k , T )):

12 𝕌k+1 := NIFS.V(vkΦ,𝕌k, 𝕦k, T )
13 Check 𝕦k:

assert 𝕦k.u = 1, 𝕦k.E = 0

assert 𝕦k.x = (H(𝕌k, k,z0,zk),H(𝕌cf
k , k), ρ(𝕦k.Q))

14 x := (𝕌𝔽
k+1,𝕌cf

k ), c := (𝕌𝔾
k+1)

15 assert ZKCP.V(vk,x, c, ϖ)
16 return 1

5 The Eva Protocol

In this section, we introduce the construction of Eva, our proof of video authen-
ticity based on IVC.

Recall that in a proof of video authenticity, P aims to convince V that the
processed video stream ζ is honestly edited and encoded from some original
video V whose signature σ is valid with respect to the public key vkΣ. Due to
the nature of video processing algorithms, we can view the editing and encoding
operation as a sequence of sub-procedures on each macroblock of the video.
Thus, we only need to construct the gadgets for encoding and editing a single
macroblock, which can be naturally extended to handle the entire video V by
utilizing our folding-based IVC.

In Section 5.1, we elaborate on FE , the gadget for video encoding, as well
as its building blocks. Next, we present several instantiations of F∆ for several
video editing operations in Section 5.2. With FE and F∆ as two key compo-
nents, Section 5.3 provides the construction of our IVC step circuit FEva, which
incorporates the checks for the validity of signature σ. Finally, we build upon
FEva the full construction of Eva and discuss its security in Section 5.4.

5.1 Gadgets for Video Encoding

First, we construct FE , a gadget for encoding a single macroblock in a video.
Specifically, we focus on supporting H.264/AVC [37], but our methodology can
be extended to other block-based video codecs such as H.265/HEVC, AV1, etc.

Naively, one may translate the entire encoder to the FE gadget. However,
due to the reasons below, this would require a prohibitive number of constraints,
which is infeasible in practice.
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• The encoding process involves complex operations, such as motion estima-
tion, entropy coding, etc.

• The encoding of a macroblock may depend on other macroblocks in the
current frame (when the prediction mode is mode = “intra”) or even in
the neighboring frames (when mode = “inter”).

To address these challenges, we make extensive use of verifier’s knowledge.
Note that although video codecs are generally lossy, the decoder can still accu-
rately extract from ζ some information that appears in the encoding process
as well. In fact, the prediction macroblock P decoded by D is identical to the
original prediction macroblock computed by E , which is also the case for the
quantized coefficients Z.

Thus, we save the prover’s cost by treating P and Z as public inputs, which
can be recovered by V . Now, to prove the honest encoding of a macroblockX with
encoding parameters paramE , FE no longer includes the entire E . Instead, FE

only has to enforce the honest execution of differing, transform, and quantization,
as depicted in Figure 2, while it becomes unnecessary to prove prediction and
entropy coding.

X FTransFDiff FQuant

+

P

Z

−

Figure 2: Overview of in-circuit operations for video encoding

As summarized in Gadget 7, the encoding gadget FE takes as input the
current macroblock X, the current prediction macroblock P , and additionally
the encoding parameters paramE , and returns the quantized coefficients Z by
running the gadgets FDiff ,FTrans, and FQuant. Here, FDiff for residual macroblock
computation simply returns R := X − P , while the constructions of FTrans and
FQuant are elaborated in the following sections.

Gadget 7: FE(X,P , paramE)

1 R := FDiff(X,P ) ▷ Compute residual macroblock R

2 Y := FTrans(R) ▷ Compute transformed coefficients Y

3 Z ← FQuant(Y , paramE) ▷ Compute quantized coefficients Z
4 return Z

5.1.1 Transform

The transform operation in H.264 is based on 4 × 4 DCT (Discrete Cosine
Transform). For efficiency, this process is slightly different from the original
DCT: it only involves integer operations, while the fractional part of the DCT
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coefficients is deferred to the quantization step. More specifically, with the core

transform matrix C4 :=

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
, the transform on a 4 × 4 block Λ is

computed as Γ := C4ΛC⊺
4 . Hence, the construction of the corresponding gadget

FTrans is straightforward: for a residual macroblock R with color components
RY,RCb,RCr, we divide them into blocks of 4 × 4 and apply the transform
operation on each block. Since every entry ri,j in R is in [−255, 255], the matrix
multiplication can be natively performed in 𝔽p without overflow.

After the core transform, the DC (i.e., the first) coefficients of all blocks
from every color component are collected into a 4 × 4 matrix BY and two
2 × 2 matrices BCb,BCr, while the AC (i.e., the remaining) coefficients are
unchanged. These matrices are transformed again using the Hadamard matrices

H4 :=

[
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

]
and H2 :=

[
1 1
1 −1

]
, respectively. Finally, the transformed

DC coefficients DY,DCb,DCr as well as the AC coefficients {AY
i }15i=0, {A

Cb
i }4i=0,

{ACr
i }4i=0 are returned. The entire in-circuit transform process is depicted in

Gadget 8.

Gadget 8: FTrans(R)

1 C4 :=

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
,H4 :=

[
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

]
,H2 :=

[
1 1
1 −1

]
2 for k ∈ [0, 16) do
3 i := ⌊k/4⌋, j := k mod 4

4 AY
k := C4R

Y[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

5 bYi,j := aYk,0,0

6 for k ∈ [0, 4) do
7 i := ⌊k/2⌋, j := k mod 2

8 ACb
k := C4R

Cb[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

9 ACr
k := C4R

Cr[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

10 bCbi,j := aCbk,0,0
11 bCri,j := aCrk,0,0

12 DY := H4B
YH⊺

4

13 DCb := H2B
CbH⊺

2

14 DCr := H2B
CrH⊺

2

15 Y := ({AY
i }15i=0, {ACb

i }4i=0, {ACr
i }4i=0,D

Y,DCb,DCr)
16 return Y

5.1.2 Quantization

The quantization step maps a coefficient v from the transform step to a quan-
tized value u. This process is lossy, and how much information is preserved is
controlled by the quantization parameter qp in H.264. A large qp leads to a
higher compression ratio but also more distortion, while a small qp results in
larger file sizes but better quality.

In general, the quantized coefficient is computed by u := ⌊v × ψ/2δ⌉, i.e., we
first scale the transformed coefficient v by ψ/2δ and then round the result to
the nearest integer. Here, ψ is the multiplication factor that takes the fractional
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part of the DCT coefficients into account. The shift δ is 15 + ⌊qp/6⌋ for AC
coefficients and 16 + ⌊qp/6⌋ for DC coefficients.

In H.264, floating-point operations such as rounding are further replaced with
approximate integer operations, as the latter are more efficient in hardware. This
is also beneficial for reducing the circuit size: even with the state-of-the-art tech-
niques [64], the in-circuit floating-point operations are still expensive, e.g., a single
FP32 division would cost ∼ 76 constraints. Now, the absolute value and the sign

of the quantized coefficient u is computed as

{
abs(u) := (abs(v)× ψ + ϕ)>> δ

sign(u) := sign(v)
,

where v’s absolute value is scaled by the multiplication factor ψ, added with an
offset ϕ, and then right shifted by δ bits. The offset ϕ equals f for AC coefficients,

and is 2f for DC coefficients, where f := 24+⌊qp/6⌋ ×

{
682, mode = “intra”

342, mode = “inter”
.

The values 682 and 342 are taken from the H.264 JM reference software [65],
which are the approximate values of 211/3 and 211/6 respectively.

When dealing with scaling and rounding in-circuit, we leverage the efficient
gadgets FSignAbs and F>> in [64] for computing absolute values and shifting
operations. Both gadgets make queries to a lookup table, which can be efficiently
checked by our IVC with lookup arguments integrated. The constructions of these
gadgets are given in Appendix C. With these gadgets, we give the construction
of the FScaleRound gadget for scaling and rounding an input coefficient v in-place
in Gadget 9.

Gadget 9: FScaleRound(v, ψ, ϕ, δ)

1 (s, u)← FSignAbs(v)
2 t := F>>(u× ψ + ϕ, δ)
3 v := s ? t :−t

Now we are finally ready to present the quantization gadget FQuant. As per

JM, the matrix of multiplication factors is defined as Ψ :=

 13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

. For
an AC coefficient ai,j , the multiplication factor is in the (qp mod 6)-th row and

the pi,j-th column of Ψ, where pi,j =


0, (i, j) ∈ {(0, 0), (0, 2), (2, 0), (2, 2)}
1, (i, j) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}
2, otherwise

.

We use a matrix P to represent the mapping from (i, j) to pi,j . On the other
hand, the multiplication factor for DC coefficients are always ψ0,0. Then, for all
AC and DC blocks, we apply the FScaleRound gadget to quantize their coefficients
with the corresponding parameters, except that the DC coefficients for luma are
right shifted by 1 bit before quantization.

The entire quantization process is summarized in Gadget 10, with qp and
mode included in paramE .

5.2 Gadgets for Video Editing

We showcase various gadgets for video editing, including color manipulations
(e.g., conversion to grayscale, brightness adjustment, color inversion), spatial
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Gadget 10: FQuant(Y , paramE)

1 Parse ({AY
i }15i=0, {ACb

i }4i=0, {ACr
i }4i=0,D

Y,DCb,DCr) := Y

2 Parse (qp,mode, ·) := paramE

3 q := ⌊qp/6⌋, r := qp mod 6
4 f := ((mode = “intra”) ? 682 : 342)× 24+q

5 Ψ :=

 13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

,P :=

[
0 2 0 2
2 1 2 1
0 2 0 2
2 1 2 1

]
6 for A ∈ {AY

i }15i=0 ∪ {ACb
i }4i=0 ∪ {ACr

i }4i=0 do
7 for i ∈ [0, 4), j ∈ [0, 4) do

8 FScaleRound(ai,j , ψr,pi,j , f, 15 + q)

9 for i ∈ [0, 4), j ∈ [0, 4) do

10 FScaleRound(F>>(dYi,j , 1), ψ0,0, 2f, 16 + q)

11 for D ∈ {DCb,DCr} do
12 for i ∈ [0, 2), j ∈ [0, 2) do

13 FScaleRound(di,j , ψ0,0, 2f, 16 + q)

14 Z := ({AY
i }15i=0, {ACb

i }4i=0, {ACr
i }4i=0,D

Y,DCb,DCr)
15 return Z

operations (e.g., masking, cropping), and temporal operations (e.g., cutting).
Additionally, we explain how to perform complex editing operations that involve
multiple macroblocks in-circuit.

5.2.1 Color Manipulations

Thanks to the use of the YCbCr color space, it is straightforward to perform
common color manipulations for videos encoded in H.264 or in many other video
codecs. In contrast, color operations on RGB often involve the conversion between
color spaces, demanding for in-circuit fixed-point or floating-point computation.

For instance, converting pixels in RGB to grayscale requires computing the
luminance from the RGB components, which is given by 0.299× R+ 0.587× G+
0.114 × B. In YCbCr, the luma component already represents the luminance,
and thus we can simply keep the luma component unchanged while setting the
chroma components to 128.

We depict the grayscale conversion gadget for a macroblock X in Gadget 11.

Gadget 11: F∆gray(X)

1 Parse (XY, ·) := X

2 return X ′ := (XY,128,128)

When adjusting the brightness, we only need to focus on the luma component,
which is scaled by a factor parambright and clamped to [0, 255], as shown in
Gadget 12. We support 65536 levels of brightness adjustment, with parambright ∈
{ 0
256 ,

1
256 , . . . ,

65535
256 }. Given a luma component xY and a parameter parambright =

β
256 , we handle the in-circuit scaling operation by first computing β × xY and
then right shifting the product by 8 bits. Next, in order to clamp the product to
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[0, 255], we again shift the result to the right by 8 bits. If the remaining bits are
all 0, then the original result is returned as it is smaller than 256. Otherwise, we
return 255.

Gadget 12: F∆bright(X, parambright = β
256 )

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do

3 u := F>>(xYi,j × β, 8)
4 v := F>>(u, 8)

5 xYi,j := (v = 0) ? u : 255

6 return X ′ := (XY,XCb,XCr)

Gadget 13 illustrates the gadget for color inversion, where we subtract all
components in each pixel value from 255.

Gadget 13: F∆inv(X)

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do

3 xYi,j := 255− xYi,j
4 for i ∈ [0, 8), j ∈ [0, 8) do

5 xCbi,j := 255− xCbi,j
6 xCri,j := 255− xCri,j
7 return X ′ := (XY,XCb,XCr)

5.2.2 Spatial and Temporal Operations

Now we present the gadgets for spatial and temporal operations.
To mask a macroblock X with a layer L, we additionally require a binary

matrix B, where each bit bi,j indicates whether we should replace the pixel in
X with the corresponding pixel in L. More specifically, if bi,j is true, then xi,j
is updated to li,j , while xi,j remains unchanged otherwise. With (B,L) as the
masking parameter parammask, the masking gadget F∆mask is given in Gadget 14.
Note that different macroblocks may have different parammask, which allows for
arbitrary overlays with dynamic content and position (e.g., subtitles) without
incurring additional costs.

Cropping and cutting both work similarly to each other, where the former
removes data in the horizontal and vertical directions, while the latter removes
data in the temporal direction. We unify both cases via the removal parameter
paramremove, which consists of a boolean value b that indicates if the macroblocks
needs to be removed. By specifying b according to the operation type, we can
support both operations with the same gadget F∆remove . For instance, cropping
requires b = 1 for macroblocks outside the cropped region, while for cutting, all
macroblocks in removed frames have b = 1. The construction of F∆remove is shown
in Gadget 15, where ⊥ is a dummy macroblock. Although the process seems
straightforward, we omit an important detail in the description: how to handle
⊥ is in fact non-trivial, and we defer the discussion to Section 5.3.
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Gadget 14: F∆mask(X, parammask = (B,L))

1 Parse (XY,XCb,XCr) := X

2 Parse (BY,BCb,BCr) := B

3 Parse (LY,LCb,LCr) := L
4 for i ∈ [0, 16), j ∈ [0, 16) do

5 xYi,j := bYi,j ? l
Y
i,j : x

Y
i,j

6 for i ∈ [0, 8), j ∈ [0, 8) do

7 xCbi,j := bCbi,j ? l
Cb
i,j : x

Cb
i,j

8 xCri,j := bCri,j ? l
Cr
i,j : x

Cr
i,j

9 return X ′ := (XY,XCb,XCr)

Gadget 15: F∆remove(X, paramremove = b)

1 Parse (XY,XCb,XCr) := X

2 return X ′ := b ? (⊥,⊥,⊥) : (XY,XCb,XCr)

We also want to point out that while we require each macroblock to have its
own paramremove, we can avoid linear communication complexity when transmit-
ting the parameters from the prover P to the verifier V. In fact, P can simply
send the dimensions of the original video and the offset of the cropped or cut
video with respect to the original one, and V can recover the parameters from
these values.

5.2.3 More Complicated Operations

We discuss how to build gadgets for more complex editing operations that involve
multiple macroblocks, such as rotation. While F∆ handles macroblocks one-by-
one in our design, it still allows such advanced functionalities. To this end, we
can leverage vector commitment schemes [66] such as Merkle trees, where one
can commit to the entire vector of messages and later open the commitment to
the message at a specific position.

Now, F∆ additionally takes as input the vector commitment to the original
video V . For an editing operation that reads both the current macroblock Xi

and another macroblock Xj , the prover can feed Xj to F∆ as a hint, and F∆

enforces thatXj is indeed the j-th macroblock in the video by checking the vector
commitment against Xj and j. Similarly, we can also support operations that
update macroblocks in different positions by including the vector commitment to
the edited video V ′ as input. In this way, F∆ is able to access other macroblocks
in the video. without affecting its macroblock-wise design.

5.3 Building the Step Circuit

With the gadgets for video encoding and editing in place, we are now ready
to construct the step circuit FEva. We discuss how FEva achieves the proof of
correct editing and encoding and the proof of valid signature separately.
Proof of Editing and Encoding. For the correctness of editing and encoding,
FEva can utilize the F∆ and FE gadgets. Since both gadgets extensively use
bitwise operations, we fill the lookup table τ with 28 entries in ℤ28 to maximize

30



the efficiency. Then, for a macroblockX,FEva runs F∆ on X to obtain the edited
macroblock X ′, and then invokes FE on X ′ to get the quantized coefficients Z.

We further extend FEva to handle b macroblocks {Xj}b−1
j=0 in a batch, where

each Xj is associated with public inputs P j and Zj . As we will see in Section 6
and Section 7, with a reasonably large b, we can amortize the constraints for
NIFS.V in the augmented circuit Faug, thereby enabling a more efficient IVC
prover.

Nevertheless, the naive combination of F∆ and FE is suboptimal. Recall
that in IVC, the circuit Faug computes H(𝕌i, ·) and H(𝕌i+1, ·), where 𝕌i.x and
𝕌i+1.x contain all the public inputs to the step circuit, which are {P j}b−1

j=0 and

{Zj}b−1
j=0 in our case. Thus, the circuit needs to hash these data twice, which

becomes expensive when b is large.
We tackle this problem by finding the balance point between the advantage of

utilizing verifier’s knowledge and the drawback of handling public inputs in IVC.
In fact, it’s possible to avoid treating {P j}b−1

j=0 and {Zj}b−1
j=0 as public inputs

while enjoying the shared information between the encoder and the decoder.
Instead, we only treat them as witnesses, and the public input is now their
digest ℏ. More specifically, in the i-th step of IVC, we absorb {P bi+j}b−1

j=0 and

{Zbi+j}b−1
j=0 into ℏi via H, thereby obtaining the next state ℏi+1. In this way, P

and Z are no longer involved the digest computation H(𝕌i, ·) and H(𝕌i+1, ·) in
Faug. Instead, the prover only needs to compute their digest once per step in
IVC, which occurs in FEva.

The soundness is unaffected: the verifier can derive ℏi+1 from ℏi,P ,Z as
well and check the proof against ℏi+1, but the collision resistance of H prevents
a malicious prover from providing incorrect P ′ and Z ′ that lead to the same
ℏi+1.
Proof of Valid Signature. Now, we discuss how to prove the validity of σ. Due
to the hash-and-sign paradigm, the signature σ is actually for the digest of V
and meta. By regarding the digest computation of V as an iterative invocation of
H on each macroblock in the video, we can extend FEva by hashing the original
macroblock X as well. On the other hand, the hash of meta and the execution
of Sig.V are deferred to the end of IVC, as we will see in Section 5.4.

Now, the i-th state of IVC zi not only contains the digest ℏi of prediction
macroblocks and quantized coefficients, but it also records hi, the hash of mac-
roblocks in the original video. In each step, FEva additionally updates the digest
hi+1 by absorbing the incoming macroblocks {Xbi+j}b−1

j=0 into hi.
Furthermore, to increase parallelism, we compute the digests hi+1 and ℏi+1

in two steps: 1) calculate the partial digests h′bi+j := H(Xbi+j) and ℏ′bi+j :=
H(P bi+j ,Zbi+j , parambi+j) for all j ∈ [0, b − 1], and 2) derive the final digests

hi+1 and ℏi+1 by hashing the partial digests {h′bi+j}
b−1
j=0 and {ℏ′bi+j}

b−1
j=0.

The final construction of FEva is given in Circuit 16.
In addition to the points discussed above, we take extra care to handle

the possible removal of macroblocks due to the cropping or cutting operations
(F∆remove in Section 5.2). For a removed macroblock X ′, FE and subsequent
operations should not be performed, since X ′ is no longer encoded by E .

Such a design introduces different control flows depending on a dynamic
parameter paramremove, resulting in a non-uniform circuit that is not directly
supported by our IVC. A common technique to avoid this non-uniformity is to
run all possible control flows, and then select among the results based on the
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Circuit 16: FEva

Witness: zi, {Xbi+j}b−1
j=0, {parambi+j}

b−1
j=0

1 (hi, ℏi) := zi

2 for j ∈ [0, b− 1] do
3 X ′

bi+j ← F∆(Xbi+j , param
∆
bi+j)

4 P bi+j ← Hint(X ′
bi+j)

5 Zbi+j ← FE(X ′
bi+j ,P bi+j , param

E
bi+j)

6 h′
bi+j := H(Xbi+j)

7 ℏ′bi+j := H(P bi+j ,Zbi+j , parambi+j)

8 if ∆ = ∆remove then
9 ℏ′bi+j := paramremove

bi+j ? paramremove
bi+j : ℏ′bi+j

10 hi+1 := H(hi, {h′
bi+j}b−1

j=0)

11 ℏi+1 := H(ℏi, {ℏ′bi+j}b−1
j=0)

12 if ∆ = ∆remove then
13 ℏi+1 := (

∧
j∈[0,b−1] param

remove
bi+j ) ? ℏi : ℏi+1

14 return zi+1 := (hi+1, ℏi+1)

dynamic branching condition: 1) Perform FE and H to derive ℏ′, as if X ′ is not
removed. We can use dummy values for X ′, P , Z, and paramE if they do not
exist. 2) Compute ℏ′ without P , Z, and paramE , i.e.,, ℏ′ := H(paramremove). We
further get rid of the hash and set ℏ′ := paramremove, as the parameter only has a
single bit. Later, we select between 1) and 2) based on the branching condition
paramremove.

Nevertheless, this approach is still deficient. Recall that ℏ is a public input
computed by both P and V. Thus, for a very large original footage V , even
the cropped (or cut) video ζ is very small, V still needs to compute the hash of
dummy values for the non-existent P and Z. In fact, V’s costs are the same as
if nothing is removed.

To save verification cost, one may consider running all control flows in-circuit

when computing ℏi+1, i.e., computing H(ℏi, S) for all S ∈ 2{ℏ
′
bi+j}

b−1
j=0 , where

2{ℏ
′
bi+j}

b−1
j=0 is the power set of {ℏ′bi+j}

b−1
j=0, and then the correct result can be

selected. It is straightforward to see the downside of this approach: it significantly
increases the prover’s complexity.

We take a hybrid approach by reducing the number of branches to 2, depending
on whether all macroblocks in a batch of size b are discarded. If this is the case,
the circuit selects the previous digest ℏi as the next digest ℏi+1. Otherwise, the
circuit selects H(ℏi, {ℏ′bi+j}

b−1
j=0) as ℏi+1. As a result, P only needs to additionally

handle 3 constraints while making it unnecessary for V to hash all dummy values.
In fact, what V computes now is the hash of P and Z for a cropped (or cut)
video whose size is padded to a multiple of the batch size b, which is pretty close
to the actual size of ζ.

5.4 Final Protocol

Having built an IVC scheme based on our variant of Nova with support for
lookup arguments in Section 4 and the IVC step circuit in Section 5.3, we now
present Eva, a succinct, efficient, and secure proof of video authenticity.
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In KΠ, the trusted party instantiates (pkΠ, vkΠ) with the proving and ver-
ification keys for the IVC scheme and the corresponding decider, and in KΣ,
(skΣ, vkΣ) is obtained by invoking Sig.K, where Sig is instantiated with Schnorr
signature [67]. Then, given the signing key skΣ, the recorder R computes the sig-
nature σ on the video V and its metadata meta as σ ← Sig.S(skΣ,H(V ,meta)).

Next, we dive into the details of our prover P and verifier V. P aims to
convince V the satisfiability of FEva. To this end, P first instantiates the lookup
table τ with 28 entries {0, . . . , 255}. Then P prepares the inputs to FEva by
transforming V into V ′ via ∆, and using E to encode V ′, during which the
quantized coefficients {Zi} and prediction macroblocks {P i} are extracted. Next,
P incrementally proves the satisfiability of FEva using our Nova-based IVC.After
k = (M/16 × N/16 × L)/b steps, the final IVC state becomes zk = (hk, ℏk),
where hk is the digest of {Xi}bk−1

i=0 , and ℏk is the digest of {P i}bk−1
i=0 , {Zi}bk−1

i=0 ,
and {parami}bk−1

i=0 . Finally, P compresses the IVC proof with a decider based
on ZKCP and returns the compressed zero-knowledge proof as well as the video
stream ζ. These data are sent to V , together with the metadata meta and editing
and encoding parameters param.

As mentioned in Section 5.3, it is still left to compute H(hk,meta) and run
Sig.V on the digest. Since Decider.V takes the final state as public inputs, we
can give V the hash hk and ask V to handle the rest of verification. However,
this approach is suboptimal because of the weak security guarantee: hk leaks
information about the original video V , leading to compromise of the zero-
knowledge property.

To achieve full zero-knowledge, we exploit the flexibility of the decider circuit
FDecider and hide hk from V. More specifically, we 1) verify σ on H(hk,meta)
under vkΣ in FDecider, and 2) move the computations related to 𝕦k.x in Decider.V
to FDecider, as the first component of 𝕦k.x, i.e., H(𝕌k, k, z0, zk), also leaks hk.

In our adapted decider circuit FDeciderEva , the statement 𝕌′
k and 𝕦′k now no

longer include x. Instead, the prover provides hk and xk as witnesses, and the
circuit reconstructs 𝕌k by merging 𝕌′

k with xk, and 𝕦k by merging 𝕦′k with (H(𝕌k,
k, z0, (hk, ℏk)),H(𝕌cf

k , k), ρ(𝕦k.Q)). Then, the circuit computes 𝕌𝔽
k+1 using the

field-only operation NIFS.V𝔽, and finally, checks 𝕎k+1 against 𝕌𝔽
k+1. The final

construction of FDeciderEva is given in Circuit 17.
To verify the proof, V checks if the metadata meta and parameters param

are acceptable. Similar to P, V runs the decoding algorithm D on ζ to ob-
tain {P i}bk−1

i=0 and {Zi}bk−1
i=0 . After that, V computes ℏk by hashing {P i}bk−1

i=0 ,
{Zi}bk−1

i=0 , and {parami}bk−1
i=0 . It is also V’s task to check the commitments in

𝕌𝔾
k ,𝕦𝔾k and 𝕌𝔾

k+1, which are not included in the decider circuit FDeciderEva due to
the complexity of non-native group operations. With the randomness r and the
cross term commitment T , V derives 𝕌𝔾

k+1 by calling NIFS.V𝔾 on 𝕌𝔾
k ,𝕦𝔾k . The

commitments Q,W,E in 𝕌𝔾
k+1 are linked to the in-circuit witnesses q,w, e in

𝕎k+1 via ZKCP. Note that V cannot learn hk from r := ρ(𝕌k,𝕦k, T ), since 𝕌k.x,
the random linear combination of all previous public inputs, is also kept secret.
Finally, by running ZKCP.V , the verifier can check the authenticity of the video.

We summarize the complete Eva protocol in Algorithm 18.
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Circuit 17: FDeciderEva

Witness: hk, σ,xk,𝕎k+1,𝕌cf
k ,𝕎cf

k

Statement: vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′
k, T

Constant: CSaug = (A,B,C),CScf = (Acf ,Bcf ,Ccf), ckcf

1 enforce Sig.V(vkΣ, σ,H(hk,meta)) ▷ Verify σ
2 Reconstruct 𝕌k and 𝕦k:

𝕌k := 𝕌′
k

𝕌k.x := xk

𝕦k := 𝕦′k
𝕦k.x := (H(𝕌k, k,z0, (hk, ℏk)),H(𝕌cf

k , k), ρ(𝕦k.Q))

3 enforce r = ρ(𝕌k, 𝕦k, T ) ▷ Check r

4 𝕌𝔽
k+1 := NIFS.V𝔽(vk,𝕌𝔽

k, 𝕦𝔽k, r) ▷ Compute 𝕌𝔽
k+1

5 Check 𝕎k+1 against 𝕌𝔽
k+1:

Parse (u,x) := 𝕌𝔽k+1, (q,w, e) := 𝕎k+1

v := (u,x, q,w)
enforce Av ◦Bv = u ·Cv + e

6 Check 𝕎cf
k against 𝕌cf

k :
Parse (u,x, Q,W,E) := 𝕌cf

k , (q,w, e) := 𝕎cf
k

v := (u,x, q,w)

enforce Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q)

enforce q = ∅ ∧Q = 0

enforce CM.V(ckcf ,w,W )

enforce CM.V(ckcf , e, E)

5.5 Security

We formally capture the security properties of Eva in Theorem 1, whose proof is
deferred to Appendix D.

Theorem 1. Eva is a succinct and zero-knowledge proof of video authenticity.

6 Implementation and Optimization

We rely on the H.264 reference implementation JM [65] to encode and decode
videos with the H.264 Main profile. We modify its source code and hook the
encoding and decoding processes to extract the prediction macroblocks {P i}
and the quantized coefficients {Zi}, which are necessary for proof generation
and verification.

Then we develop Eva in Rust over the BN254/Grumpkin half-pairing cycle
of curves. The architecture of our implementation is illustrated in Figure 3,
where we highlight the efforts of our own and the improvements to existing work
with solid and dashed shapes. In the implementation, we make heavy use of the
arkworks library [68] for algebraic operations and circuit constructions. Our
variant of Nova is built upon the folding schemes implemented in sonobe [38],
but we add support for LogUp and introduce various improvements that we
will discuss soon. We also provide an alternative implementation of LegoGro16.
Unlike the original implementation [69], ours is more flexible and performant: it
allows for shared witnesses {v}ℓ−1

i=0 with arbitrary length and supports increased
parallelism.
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Algorithm 18: Eva

1 Fn Eva.KΣ(1
λ):

2 return (skΣ, vkΣ)← Sig.K(1λ)
3 Fn Eva.KΠ(1

λ):

4 pp← IVC.G(1λ) ▷ pp contains ck

5 (pkΦ, vkΦ) := IVC.K(pp,FEva)

6 (pk, vk)← ZKCP.K(1λ, ck,F
DeciderEva

)
7 return (pkΠ := (pk, pkΦ), vkΠ := (vk, vkΦ))

8 Fn Eva.R(skΣ,V ,meta):
9 return σ ← Sig.S(skΣ,H(V ,meta))

10 Fn Eva.P(pkΠ, vkΣ,V ,meta, param, σ):

11 V ′ := ∆(V , {param∆
i }

bk−1
i=0 )

12 Encode V ′ and extract {P i}bk−1
i=0 , {Zi}bk−1

i=0 :
ζ := E(V ′, {paramE

i }
bk−1
i=0 )

13 z0 := (0, 0), π0 := ((𝕌⊥,𝕎⊥), (𝕌⊥,𝕎⊥), (𝕌cf
⊥,𝕎cf

⊥))
14 for j ∈ [0, k) do

15 auxj := ({(Xi,P i,Zi, parami)}
bj+b−1
i=bj )

16 πj+1 ← IVC.P(pkΦ, (j, z0,zj), auxj , πj)
17 zj+1 := F(zj ; auxj)

18 Parse (hk, ℏk) := zk, ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k )) := πk

19 (𝕌k+1,𝕎k+1, T ) := NIFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))

20 r := ρ(𝕌k, 𝕦k, T )
21 x := (vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′

k, T ), c := (𝕌𝔾
k+1)

22 υ := (𝕎k+1),ω := (hk, σ,𝕌k.x,𝕌cf
k ,𝕎cf

k )
23 ϖ ← ZKCP.P(pk,x, c,υ,ω)

24 return ζ, π := (ϖ,𝕌′
k, 𝕦′k, T , r)

25 Fn Eva.V(vkΠ, vkΣ, ζ,meta, param, π):
26 Parse (ϖ,𝕌′

k, 𝕦′k, T , r) := π

27 Decode ζ and extract {P i}bk−1
i=0 , {Zi}bk−1

i=0 :
Ṽ := D(ζ, {paramE

i }
bk−1
i=0 )

28 ℏ0 := 0
29 for j ∈ [0, k) do

30 ℏj+1 := H(ℏj , {H(P i,Zi, parami)}
bj+b−1
i=bj )

31 𝕌𝔾
k+1 := NIFS.V𝔾(vkΦ,𝕌𝔾

k , 𝕦𝔾k , r, T )
32 assert 𝕦′k.u = 1, 𝕦′k.E = 0 ▷ Check 𝕦′k
33 x := (vkΣ,meta, k, (0, 0), ℏk, r, 𝕦′k,𝕌′

k, T ), c := (𝕌𝔾
k+1)

34 return ZKCP.V(vk,x, c, ϖ)

In addition, as elaborated below, a bunch of optimizations are applied to
maximize the efficiency of the prover.
GPU Acceleration. The prover’s cost in our construction is dominated by
the computation of commitments Q, W , and E, which involves a multi-scalar
multiplication (MSM) operation on 𝔾 in Pedersen commitment. Due to the
parallelizable nature of MSM, many existing works have investigated the acceler-
ation of MSM on hardware that supports a high degree of parallelism, such as
GPUs [70,71], FPGAs [72], and ASICs [73].
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Figure 3: Architecture of Eva’s implementation. A box represents a building block, a straight line from X to Y stands for
“Y is built upon X”, and a waved line from X to Y denotes “Y supports X”. Solid shapes are implemented by ourselves
from scratch, dashed shapes are our forks of third-party implementations but with significant modifications, and dotted
shapes are provided by existing libraries.

We integrate icicle [74]’s GPU implementation of MSM with precompu-
tation into our prover, which provides a 6-7x speedup over the original CPU
implementation. While this optimization necessitates extra hardware, GPUs are
more accessible and cost-effective than FPGAs and ASICs, especially in our
setting where the prover already relies on powerful GPUs for video editing tasks.

We also note that the computation of cross term t := Av1 ◦Bv2 +Av2 ◦
Bv1−u1 ·Cv2−u2 ·Cv1 is another important factor in prover time. Observing
that the right hand side essentially requires matrix and vector operations, we
can further optimize the prover by leveraging GPU-accelerated linear algebra.
Since the R1CS matrices A,B,C are sparse, we implement sparse matrix-vector
multiplication (SpMVM) over prime fields in CUDA. With A,B,C represented
in the compressed sparse row (CSR) format, we improve the prover’s time for
computing t by 2x compared to the CPU implementation.
Choice of Hash Function. It is common to use circuit-friendly hash func-
tions [75–78] in SNARKs, among which Poseidon [75] is a popular choice. However,
as we need to hash a large amount of data in our circuits for verifying the signa-
ture and avoiding complex prediction operations, selecting a more efficient one
in our context would greatly reduce the circuit size. We choose Griffin [77] as H
and ρ, which is the most efficient hash function to our knowledge in terms of the
R1CS circuit size, thereby saving up to 50% of constraints compared to Poseidon.
Concretely, we instantiate Griffin with degree d = 5, state size t = 24, and the
number of rounds R = 9. Note that a large state size is necessary for improving
the plain (i.e., bare-metal) performance of Griffin. Otherwise, computing Griffin
hashes outside the circuit would be slower than Poseidon due to the high degree
exponentiation x1/d.
Amortizing Constraints for Folding Verification. Compared with recursive
SNARKs [79], folding-based IVC reduces the prover’s overhead by avoiding the
in-circuit verification of a SNARK proof. However, in addition to the evaluation
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of F , the prover still needs to prove the folding verification algorithm NIFS.V
in each step circuit Faug. Existing techniques, such as cycle of curves [46] and
CycleFold [51], makes the folding verification circuit practically small (less than
105 constraints), but this additional cost would become prohibitive for a small
F . In fact, when handling one macroblock per step, our FEva circuit has ∼ 3500
constraints, while proving NIFS.V requires ∼ 67000 constraints, which is a 19x
increase in the prover’s cost.

To minimize such overhead, we amortize the constraints for NIFS.V by pro-
cessing b macroblocks in batch in each step, so that the prover only needs to
prove NIFS.V once for every b macroblocks. The larger b is, the more the prover
can save on the cost of NIFS.V. On the downside, a large b would increase the
circuit size of FEva, imposing a higher memory requirement on the prover. As
a trade-off between time and space, we set the batch size to b = 256 in our
implementation, thereby reducing the cost of NIFS.V to ∼ 260 constraints per
macroblock, while FEva has a reasonable size (∼ 760000 constraints).
Parallel Circuit Synthesis. Another efficiency bottleneck in our implementa-
tion is the synthesis (i.e., creation) of the step circuit. As discussed above, the
prover now needs to process b = 256 macroblocks per step. Hence, the FEva circuit
essentially consists of b copies of the logic for processing a single macroblock,
which are sequentially converted into constraints when synthesizing the circuit in
arkworks. It is natural to ask whether we can parallelize the processing of these
b macroblocks, which would significantly reduce the time for circuit generation.
Unfortunately, arkworks does not support such parallelism, since a constraint
in general may depend on previously computed variables, although in our case,
the constraints for each macroblock are independent of each other.

As a workaround, we 1) synthesize a dummy circuit for a dummy macroblock,
2) create b partial circuits, each of which handles one macroblock in the video, and
then 3) merge the the partial circuits into the final circuit by concatenating the
variables and constraints. The indices of variables and constraints in each partial
circuit are offset by the number of variables and constraints in the dummy circuit,
in order to avoid overlapping variables and constraints in the final circuit. In this
way, we can parallelize 2), the most time-consuming step, without breaking the
internal sequential dependencies of variables and constraints in partial circuits.
Efficient Non-Native Field Operations. Recall that in FDecider, we need to
check Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q) in a non-native field 𝔽q. To this end,
we can apply the in-circuit big integer arithmetic proposed in [52], which allows
for efficient operations with arbitrary precision. The high-level idea behind [52]
is to represent a big integer as a vector of limbs in the native field, and then
perform limb-wise arithmetic operations. Note that since the native field cannot
contain arbitrarily large limbs, we need to align the bitwidth of each limb after
a certain number of operations, which is done by performing the expensive bit
decomposition operation. Thus, when checking the equality of two big integers
that are not necessarily aligned, the circuit size would become very large if we
naively decompose and align the limbs before the actual comparison. While [52]
decreases the number of bit decompositions in equality checks, they are still the
most costly operation in the circuit.

Utilizing [52], a straightforward approach to emulation of field operations
in 𝔽q is to perform every operation modulo q. For instance, to multiply two
non-native field elements a, b, we need to compute c mod q after performing the
big integer multiplication c := a · b, so that the resulting big integer c is in 𝔽q.
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The in-circuit modulo operation can be implemented by asking the prover to
provide the quotient s and the remainder r as hints, whose validity is checked
by enforcing c = sq + r, 0 ≤ s < c, and 0 ≤ r < q. Nevertheless, due to the
complexity of the equality check, the final circuit relying on modulo operations
would have ∼ 4× 107 constraints5 and require more than 200 GB of memory.

To further improve the efficiency, we defer the modulo operation to the
end of the circuit. That is, we avoid performing modulo operations during the
computation of LHS := Acfv ◦Bcfv and RHS := u ·Ccfv+ e. All intermediate
results are treated as big integers, and LHS and RHS are converted to elements
in 𝔽q only before the final equality check.

In addition, we observe that it is unnecessary to compute both LHS mod q
and RHS mod q when checking LHS ≡ RHS (mod q). Instead, we can compute
LHS−RHS as a big integer, and then check whether LHS−RHS is a multiple
of q.

Now, we successfully get rid of all modulo operations in the circuit. Although
the intermediate values during the computation of LHS and RHS contain
more limbs, resulting in more expensive multiplication operations, the overall
cost is still much lower than the naive approach thanks to the elimination of
modulo operations. In fact, the number of constraints for checking Acfv ◦Bcfv ≡
u ·Ccfv+ e (mod q) is reduced to ∼ 2.5× 106, which is a 16x improvement over
the naive approach.

7 Evaluation

To evaluate our implementation of Eva, we compile it with multi-threading and
AVX2 enabled, and run it on a consumer-grade PC equipped with an Intel Core
i9-12900K CPU (16 cores, 24 threads) with 64 GB of RAM and an NVIDIA
GeForce RTX 3080 GPU with 12 GB of VRAM.

For testing purposes, we utilize two raw video files that are widely used
for video codec benchmarking, as shown in Figure 4: the first, “foreman.yuv,”
contains 256 frames with a resolution of 352×288, while the second, “bunny.yuv,”
consists of 1800 frames (equivalent to 1 minute at 30 FPS) with a resolution of
1280× 720.

(a) foreman.yuv
352× 288, 256 frames

(b) bunny.yuv
1280× 720, 1800 frames

Figure 4: Preview of original videos in the test dataset

The former video is used to demonstrate Eva’s capability to handle a variety
of editing operations. On the other hand, the latter is for showcasing that Eva is

5See https://hackmd.io/x82lTH5oTcKE3uPHniuefw.
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(a) ∆gray (b) ∆bright

parambright = 416/256

(c) ∆inv (d) ∆mask

Mask of size 176× 144

(e) ∆remove (cropping)
352× 288→ 160× 128

(f) ∆remove (cutting)
256 frames → 128 frames

Figure 5: Preview of edited videos in the test dataset

able to process very large videos, and we do not perform any edit operations on
it. We apply several editing operations to “foreman.yuv”, including grayscale
conversion, brightness adjustment, color inversion, masking, cropping, and cutting,
and we give the preview of the edited videos in Figure 5.
Circuit efficiency. An important metric for evaluating the performance of a
protocol based on general-purpose SNARKs is the efficiency of the arithmetic cir-
cuits. We measure the circuit efficiency of Eva by the number of R1CS constraints
in our augmented step circuit Faug and decider circuit FDeciderEva .

We first report the number of constraints in Faug in Table 2, where ∆id is an
identity function (i.e., no edits are performed). We can observe that the sizes
of FEva with all editing operations is between 600K and 1M constraints. When
augmenting the circuit for the use of IVC, the additional cost is dominated by
the check of lookup identity (500K to 860K constraints), as our FEva makes
heavy use of lookup tables for efficient in-circuit editing and encoding. In fact, if
we replace the lookup arguments with bit decompositions, the constraints for
the lookup identity check would increase by approximately eightfold (since our τ
contains 8-bit entries) in FEva, resulting in nearly an order of magnitude increase
in the overall circuit size.

Next, we also list the number of constraints in our decider circuit FDeciderEva ,
as shown in Table 3. The size of FDeciderEva also depends on the editing operation,
because we need to check the satisfiability of 𝕎k and 𝕌𝔽

k against CSaug, which
has different dimensions for different ∆. The dominant parts of the circuit are
the checks of relaxed R1CS satisfiability and commitment verification, each of
which introduces ∼ 3M constraints, resulting in a total of ∼ 10M constraints for
FDeciderEva .
Microbenchmarks. We conduct microbenchmarks to evaluate the performance
of the prover in Eva.

First, we study the impact of GPU acceleration on the prover’s performance
by measuring the time for computing the cross term t := Av1 ◦Bv2 +Av2 ◦
Bv1 − u1 ·Cv2 − u2 ·Cv1 on CPU and GPU. Here, R1CS matrices A,B,C
are generated from the augmented step circuit Faug for FEva, with batch size b
ranging from 20 to 29. The results are shown in Figure 6, from which we can
observe that the GPU outperforms the CPU by a factor of 1.8 ∼ 2.4. Because
our SpMVM implementation is for general sparse matrices, we expect further
improvements by exploiting the specific sparsity pattern of A,B,C.

Second, we evaluate the running time of IVC.P with respect to the batch size
b. As we can see in Figure 7, when the batch size b is small, doubling b nearly
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Table 2: Breakdown of the number of R1CS constraints in Faug with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

42 42 42 42 426 43

0 0 1024 0 384 384

Y

U 320 0 320 320 320 320

V 320 0 320 320 320 320

612 612 612 612 918 613

5508 5508 5508 5508 5508 5511

760584 596744 1022728 760584 1035528 859403

594177 430337 790785 594177 692481 594177

668628 504788 865236 668628 766932 668628

1429212 1101532 1887964 1429212 1802460 1528031

F
E
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P
ro
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ss
b
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2
5
6
b
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Create variables

×256

F∆

FE

FDiff 0

FTrans 0

FQuant
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H(X) 306

H(P ,Z, param)

H(hi, · · · ) 5508

H(ℏi, · · · )
Subtotal

A
u
g
m
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ti
o
n Create variables 6865

Fold 𝕦𝔽i into 𝕌𝔽
i 13361

Fold 𝕦cfi into 𝕌cf
i 45108

Check lookup identity

Check public inputs 9117

Subtotal

Total

Subroutine Editing Op.









Table 3: Breakdown of the number of R1CS constraints in FDeciderEva with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

Create variables

Verify signature

Reconstruct instances

Check r

Fold 𝕦𝔽k into 𝕌𝔽
k

Check CSaug satisfiability 2705351 2082759 3557319 2705351 3353543 2902732

Check CScf satisfiability

Verify commitments in 𝕌cf
k

Total 9539233 8916641 10391201 9539233 10187425 9736614

695968

4590

8173

5186

3

2575044

3544918

Subroutine Editing Op.

halves the average running time of IVC.P for each macroblock. This is because
for a small b, the dominant part of the augmented step circuit is still the in-circuit
folding verification, thereby demonstrating the effectiveness of amortizing the
constraints for NIFS.V through batching.

Finally, we fix b = 256 and study how the editing operation ∆ affects the
prover. We report the running time and RAM usage of IVC.P and Decider.P
in Table 4, which also includes the sizes of Faug and FDeciderEva summarized
in Table 2 and Table 3, in order to illustrate how the number of constraints
affects prover time and RAM usage. Across different operations, the running
time of IVC.P ranges from 290 to 420 ms, and the peak RAM usage varies from
7 to 11 GB. Decider.P takes much more time (80 ∼ 100 s) and RAM (40 ∼ 50
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Figure 6: Running time of cross term computation on CPU and GPU w.r.t. the
batch size b.
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Figure 7: Running time of IVC.P w.r.t. the batch size b, where the editing
operation is fixed to ∆ = ∆id.

GB) to generate a proof, but it only happens once at the end of Eva.P.
End-to-end performance. The end-to-end performance of Eva is evaluated
based on the running time of each algorithm. We test Eva with b = 256 on both
videos in the dataset, with different editing operations applied to “foreman.yuv”.
The results are presented in Table 5.

In Eva.P, generating the final IVC proof for “foreman.yuv” needs 2 to 3
minutes. For the 1-minute HD video “bunny.yuv”, it takes ∼ 2.5 hours to prove
all IVC steps. An additional 80 to 100 seconds is needed to make the proof
fully succinct and zero-knowledge by running ZKCP.P in our decider, which
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Table 4: Benchmarking results of IVC.P and Decider.P for different editing operation ∆ with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

|Faug| 1429212 1101532 1887964 1429212 1802460 1528031

Time (ms) 350.408 289.478 426.646 352.887 413.162 359.715

Peak RAM (GB) 8.493 6.845 9.644 8.566 11.084 8.694

|FDeciderEva | 9539233 8916641 10391201 9539233 10187425 9736614

Time (s) 80.747 74.283 87.669 80.286 98.973 94.637

Peak RAM (GB) 44.226 39.560 48.601 45.705 52.766 43.797

IVC.P

Decider.P

Table 5: End-to-end performance of Eva with b = 256.

H Sig.S IVC.P (all steps) ZKCP.P H ZKCP.V
(µs) (s) (s) (µs) (s) (s) (s) (ms)

∆id 63.709 116.996 1.271 92.204 138.098 80.747 1.803 4.870

∆gray 63.325 101.187 1.276 92.137 113.767 74.283 1.784 4.652

∆bright 63.402 127.364 1.283 92.921 164.931 87.669 1.794 4.561

∆inv 63.223 115.292 1.274 92.932 138.243 80.286 1.802 4.483

∆mask 63.481 136.183 1.308 92.538 160.298 98.973 2.347 4.870

∆remove 63.089 119.093 1.280 92.726 138.919 94.637
0.990 (crop)

0.883 (cut)
4.496

bunny ∆id 63.250 128.515 81.713 92.488 9113.536 104.997 114.301 7.288

KΣ KΠ
R P V

foreman

produces a constant-sized proof of 448 bytes. The entire proof generation process
is completed within 60 GB of RAM, which is primarily due to the additional
ZKCP.P step.

The prover time for other editing operations on “bunny.yuv”, as well as for
other videos with different resolutions and frame rates, can be estimated by scaling
the time of IVC.P in Table 4 according to the number of steps required. This is
confirmed by the results for both “foreman.yuv” with ∆id and “bunny.yuv”: for
the former, the estimated total time is 350.408

1000 ×
352×288×256

256×256 = 138.761 s, and
the actual time is 138.098 s; similarly, for the latter, the estimated total time is
350.408
1000 ×

1280×720×1800
256×256 = 8869.702 s, with a relative error of 2.675% compared

to the actual time of 9113.536 s. We observe that the error is majorly due to
page faults and context switches when proving “bunny.yuv”.

Another conclusion from the results is that, while the time required for
ZKCP.P constitutes a significant portion of the prover time for smaller videos,
it is constant with respect to the number of IVC steps and becomes relatively
insignificant for larger videos. In spite of the theoretical performance of ZKCP.P ,
the actual time for “bunny.yuv” is slower, again due to the costs of memory
management and process scheduling.

The recorder R’s running time is dominated by the computation of Griffin
hash, whose complexity is linear in the size of the original video V . Similarly, H
is also the bottleneck of V , but it depends on the size of prediction macroblocks
P and quantized coefficients Z of the edited video V ′. Thus, with ∆remove, the
verifier takes less time for computing H than other editing operations. In addition,
V needs to validate the ZKCP proof by running ZKCP.V, which takes 4 ∼ 7 ms.
Comparison with related work. Finally, we compare the performance of
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Eva with related work on image authentication based on zkSNARKs [23–26],
focusing specifically on the prover time. PhotoProof [22] is not included in the
comparison, as it only supports tiny images of size up to 128 × 128. Due to
differences in image and video encoding formats, a common dataset cannot be
used across all protocols. Consequently, the prover time is evaluated based on
the number of pixels in the image or video.
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(a) Grayscale conversion (b) Cropping (c) Masking

Figure 8: Comparison of prover time (y-axis, in seconds) across different protocols w.r.t. the number of pixels
(x-axis).

For protocols that support arbitrary editing operations [24–26], we select
two representative operations for comparison: grayscale conversion, representing
color manipulations, and cropping, representing spatial modifications. The target
resolution for the cropping operation is set to 640× 480. Since the source code of
ZK-IMG is not available, we rely on existing results for comparison. Specifically,
we adopt the prover time for operations “RGB2YCbCr” and “Crop (HD →
SD)” on HD (1280× 720) images reported in [24, Table 4]. Note that ZK-IMG
was evaluated on a powerful server with 64 CPU cores and 512 GB of RAM,
suggesting that the prover time would likely be slower on our machine. All
remaining protocols are evaluated on the same machine as Eva.

The results of prover time are given in Figure 8a and Figure 8b, respectively.
The total prover time of VIMz,VerITAS, and Eva for both ∆gray and ∆crop increases
nearly linearly with the number of pixels. Because our figures have a logarithmic
scale on both axes, the prover time for Eva, which includes the ZKCP.P time,
does not appear as a straight line when the number of pixels is small.

We observe that Eva is generally faster than ZK-IMG, VIMz, and VerITAS,
except at SD resolution (640× 480), where VerITAS outperforms Eva due to our
relatively long ZKCP.P time. However, as the number of pixels increases, the
ZKCP-based decider is no longer the dominant factor in our prover, allowing
the advantages of our efficient IVC.P to become apparent. In particular, for 4K
resolution (3840×2160), Eva is 5.7 ∼ 41 times faster than VIMz and VerITAS. We
estimate that if we apply VIMz and VerITAS to “bunny.yuv” (1280× 720× 1800
pixels) even without considering memory constraints and lossy encoding, the
proof generation would be respectively 17 ∼ 33 and 37 ∼ 126 times longer than
Eva.
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For VIR [23], their redaction operation is equivalent to our masking operation
with black tiles as the mask. Thus, we compare Eva with VIR in terms of ∆mask

and present the results in Figure 8c. To ensure a fair comparison, we set the
granularity of redaction (i.e., the minimum size of black tiles) in VIR to 1× 1,
matching the granularity of our masking operation. For relatively small number
of pixels, our prover takes longer than VIR due to the one-time cost of the decider.
However, when the data size increases, the prover time of VIR increases more
rapidly than ours, and Eva begin to outperform VIR for 5K (5120× 2880) and
larger resolution. We also estimate that, even with unlimited RAM, VIR is 2.570x
slower than Eva when proving the masking operation for “bunny.yuv”.

8 Discussion

We further explore practical considerations for deploying Eva in real-world
scenarios.
On-chain verification. It is possible to deploy Eva on blockchains to provide
on-chain verification of video authenticity. More specifically, given ℏk computed
by the user, the smart contract can check if the proof π is valid. This is practical
because π is on the BN254 curve, which is natively supported by Ethereum and its
Layer 2 solutions. Also, thanks to our design of decider based on LegoGroth16 [40],
π is very small and only require 2 pairings for verification. We estimate that
verifying π on EVM would require ∼ 362000 gas, or equivalently ∼ 16 USD as
of August 2024.

In comparison, although Dziembowski et al. claim that VIMz [25] supports on-
chain verification, the concrete costs of their smart contracts are not provided in
their paper, which turn out to be prohibitively high. In fact, they choose Spartan
as the zkSNARK for decider and rely on the solidity-verifier library [80]
for verifying Spartan proofs on EVM, requiring ∼ 200M gas6 or ∼ 9000 USD.
Implementation of the recorder. Note that in Eva, both R and P take the
raw footage V as input. This imply that R should send to P the recorded video
V as is, in an uncompressed or losslessly encoded manner.

However, R is usually resource-constrained and only allows lossily encoded
videos in practice. In this case, P needs to decode Ṽ from the encoded video
stream ζ before editing and proving. But due to information loss, Ṽ is not
exactly the same as the original video V that R signs, leading to a mismatch
between the signed video and the video to be proven.

To address this mismatch, an intuitive solution is to require R to sign ζ.
Then, P needs to prove 1) Sig.V(vkΣ, ζ, σ), 2) honest editing and encoding on Ṽ ,

and additionally 3) Ṽ = D(ζ) to connect 1) with 2). Nevertheless, this approach
is impractical due to the complex decoding algorithm D.

We adopt a more strategic approach, where R takes an additional step of
decoding ζ and signs the decoded Ṽ instead of ζ. This ensures that the video that
R signs is exactly the one proven by P , thereby eliminating the need for proving
correct decoding. Here, R does not need to store the decoded Ṽ for signature
generation, since R can hash Ṽ on-the-fly: R maintains a short digest as the
accumulated hash, and once a new macroblock is populated by the decoder, R
absorbs it into the accumulated digest, which can then be discarded.

6For details, see https://github.com/lurk-lab/solidity-verifier/issues/29.
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Appendix A Additional Related Work

In the following, we provide an overview of related work. First, we examine cryp-
tographic protocols for image authentication since they have a close relationship
to video authentication and rely heavily on cryptographic proofs as well. Second,
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we discuss non-cryptographic methods for authenticating genuine videos and
detecting fake videos.
Image authentication based on cryptographic proofs. The advance of
succinct proof systems like zkSNARKs has made it possible to prove statements
previously deemed infeasible, enabling the development of cryptographic protocols
for image authentication. The pioneering work in this direction, PhotoProof [22],
uses Proof-Carrying Data (PCD) [41] to prove the authenticity of edited images.
Specifically, the proof demonstrates that the edited image m′ is derived from the
original image m, and the signature on the hash of m is valid. Due to the high
computational cost of the proof generation, the authors only evaluate PhotoProof
on images with a maximum resolution of 128 × 128 pixel. In [23], Ko et al.
propose VIR, a verifiable image redacting protocol based on CP-SNARKs [40].
By focusing solely on the operation of redacting images (masking secret parts
with black tiles), VIR significantly reduces prover time (∼ 300x smaller) and
supports much larger images, up to 3840× 2160 resolution. Built upon a more
efficient proof system halo2 [42], ZK-IMG [24] also has ∼ 100x faster prover than
PhotoProof, while maintaining support for arbitrary editing operations.

Concurrent with our work, Dziembowski et al. introduce VIMz [25], and Datta
et al. propose VerITAS [26] which share several common ideas with Eva. For
instance, VIMz also employs folding schemes to reduce prover RAM costs, and
VerITAS, like Eva, utilizes lookup argument to improve prover time. However,
alongside these general techniques, Eva incorporates a range of tailored opti-
mizations to minimize prover time, resulting in better performance than both
protocols. In terms of image size, both schemes support high-resolution images.
VerITAS even showcases proof generation for an image of resolution 6632× 4976,
which is made practical due to its custom proof system for proving pre-image of
lattice-based hash functions.

Considering that videos can be seen as a generalization of images, we provide
a comparison between Eva and cryptographic image authentication protocols
in Table 1, in terms of supported format and compression modes, allowed editing
operations, prover time and RAM usage, proof size, and maximum dimensions of
the input data. We compare the prover time complexity for the number of pixels
of the image or video P and the per-pixel prover time for an editing operation
with average complexity. If source code is available, we ran experiments ourselves
and provide the concrete prover time on our machine. Otherwise, we refer to
the authors’ evaluation. For more details, we refer the reader to Section 7. Eva
is not only the first cryptographic protocol for providing authenticity of lossily
encoded video but also has additional advantages over related work.

As discussed above, the prover performance in PhotoProof is suboptimal. With
a time complexity of O(P 3 logP ), PhotoProof takes ∼ 18676 µs/px based on the
authors’ evaluation on a lower-spec machine compared to ours. In contrast, VIR
demonstrates significant improvement in prover time due to its use of dedicated
proof systems for specific editing operations, resulting in a per-pixel prover
time of ∼ 16 µs and O(P logP ) time complexity. While ZK-IMG also achieves
performance gain over PhotoProof, the proof generation still takes a considerable
amount of time, especially when proof of hash is involved (> 355 µs, where > is
used because this was evaluated on a very high-performance server). Compared to
ZK-IMG, VIMz further reduces prover time by 2 ∼ 3x, averaging around 167 µs/px
with a linear complexity. Similarly, VerITAS offers fast prover performance at
about 95 µs/px by optimizing the time for proof of hash, although its complexity
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is still O(P logP ) due to polynomial interpolation. Eva, due to the combination
of customized folding scheme, tailored circuit design, and various optimizations
in our implementation, achieves optimal time complexity (O(P )) and the fastest
prover time (∼ 5 µs/px) among all the protocols.

Thanks to the macroblock-based structure of video encoding, Eva only needs to
handle a fixed number of macroblocks in each incremental step of IVC, controlled
by a constant batch size b. In comparison, all prior works [22–24, 26] require
RAM proportional to the image size. This is because they either load the entire
image into the arithmetic circuit or, in the case of VIR, use a structured reference
string srs containing commitment keys for the entire image. While VIMz achieves
lower memory costs through folding schemes, its memory usage remains linear
in the image width N , because of its row-by-row proof generation process.

Regarding proof size, both [22,23] generate proofs of constant size (2.67 KB
and 223 B, respectively). This is also the case for Eva, which produces proofs of
size 448 B. In contrast, the proofs in ZK-IMG [24] have a size of O(logP ). This is
due to ZK-IMG utilizing Halo2 [42], which is based on the inner-product argument
from [81] that generates proofs of size O(log n) in the number of constraints
n. Here, n is linear in the number of pixels P , according to the circuit design
described in [24, Section 7]. Meanwhile, both VIMz and VerITAS produce proofs
of size O(log2 n), because the former leverages Spartan [63] as the decider, and
the latter is powered by Plonky2 [82] with FRI [83] as the commitment scheme.
For VIMz, n is linear in the image width N , while for VerITAS, n is proportional
to P . Concretely, the proofs from ZK-IMG, VIMz, and VerITAS are at least 20
times larger than those of Eva.

Furthermore, due to its constant RAM consumption, Eva supports videos with
unlimited resolution and frame count, while the other protocols cannot achieve
infinite resolution, because their RAM usage scales with image dimensions, but
the prover only has bounded RAM in practice.
Prior video authentication protocols. In video authentication, the prover
generates authentication information for a claimed video, which can later be
verified either publicly or privately. Existing work regarding video authentication
follows two technique routes. The first is based on robust hash [14,15] (sometimes
referred to as perceptual hash [15,84]), a digest extraction algorithm whose output
is robust against benign transformations (e.g., resizing, (re-)encoding, cropping)
but fragile to malicious manipulations (e.g., object replacement). After the robust
hash is extracted, the prover generates authentication information by feeding
the resulting hash value to, e.g., signing and watermarking.

However, it is challenging to define transformations that achieve the balance
between robustness and fragility. Consider a toy example: if fragility is deter-
mined by the number of altered pixels, then minor but malicious edits (e.g.,
changing a number on a banknote) might pass as acceptable, while significant but
benign edits (e.g., cropping to remove a person) might be rejected. In fact, these
protocols experience non-negligible false positive or false negative rates [14–17]
and active attackers can bypass some of these mechanisms [20, 21]. Additionally,
having predefined legal transformations may not be practical, because whether a
transformation is benign or malicious can be subjective and context-dependent.

The second is adopted by Coalition for Content Provenance and Authenticity
(C2PA) [13], an industry standard for multimedia authentication based on digital
signatures. C2PA requires that recording devices, such as mobile phones or
cameras, have built-in signing keys certified by the device manufacturer. When
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multimedia content is recorded, the device generates a signature for both the
content and its metadata, which may include thumbnails, capture date, location,
etc. The multimedia content can later be edited by trusted editing software,
which also has signing keys embedded. Analogously, the editing software signs
the processed content, the metadata, and the editing operations performed. Upon
publishing the processed content along with these signatures, the verifier (e.g., a
news consumer) can check the provenance and authenticity of the content by
verifying the associated signatures.

The trust model of C2PA assumes that both recording devices and edit-
ing software are trustworthy. However, the trust assumption regarding editing
software is problematic in practice: while recording devices may utilize trusted
execution environments (TEEs) or hardware security module (HSMs) to protect
the signing keys, these mechanisms are not available for editing software. Conse-
quently, attackers could potentially extract signing keys via reverse engineering,
enabling them to generate valid signatures for malicious content.

Furthermore, C2PA may inadvertently leak sensitive information. For instance,
during the editing process, the thumbnail of the original content might be signed
by the editing software and published along with the processed content for
verification. This may expose data that was not intended for disclosure, such
as the faces of individuals that were blurred in the processed content, thereby
raising privacy concerns.
Detection of fake videos. Another direction to fight misinformation is detecting
fake videos. Human eyes are not always reliable in distinguishing real videos from
fake ones, especially with the rise of deepfake technology [6–8]. Focusing on the
detection of AI-generated videos,machine learning models have been developed [9–
11], achieving promising results. However, the inherent characteristics of human
eyes and neural networks inevitably produce false positives and false negatives
with non-negligible probability. This is especially evident when active attackers
manipulate videos to exploit some vulnerabilities in a specific detection method.
For instance, it is demonstrated in [18,19] that several existing deepfake detectors
can be bypassed by adversarial examples.

Appendix B Security of Our Nova-Based IVC

B.1 Security of NIFS

We provide the intuition to prove the security of ourNIFS in terms of completeness,
knowledge soundness, and zero-knowledge.

Essentially, our NIFS modifies Nova by splitting the vector of witnesses into
q and w. Thus, the core step in our proof is the conversion from the instance-
witness pair 𝕌,𝕎 in our NIFS to the one 𝕌′,𝕎′ in Nova, where 𝕌′ := (𝕌.u,𝕌.x,
𝕌.Q+ 𝕌.W ,𝕌.E), 𝕎′ := (𝕎.q ∪𝕎.w,𝕎.e).

Proof of completeness. Given an adversary A who breaks the completeness of
NIFS, we can construct an adversary A′ who breaks the completeness of Nova.
Whenever A outputs R, (𝕌1,𝕎1), (𝕌2,𝕎2), A′ constructs the corresponding
instances and witnesses (𝕌′

1,𝕎′
1), (𝕌′

2,𝕎′
2) for Nova. Then, A′ outputs R, (𝕌′

1,
𝕎′

1), (𝕌′
2,𝕎′

2), thereby breaking the completeness of Nova.

Proof of knowledge soundness. With Nova’s extractor Ext, we build an extractor
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Ext′ for NIFS. Provided R,𝕌1,𝕌2,𝕎, T , which are the output of A, Ext′ converts
𝕌1,𝕌2,𝕎 to Nova’s instances and witness 𝕌′

1,𝕌′
2,𝕎′, feeds R,𝕌′

1,𝕌′
2,𝕎′, T to

Ext, converts the returned 𝕎′
1,𝕎′

2 back to 𝕎1,𝕎2, and outputs 𝕎1,𝕎2.

Proof of zero-knowledge. Intuitively, NIFS is zero-knowledge because the com-
mitment T in the transcript is hiding. Formally, the simulator Sim uniformly
samples a random value rt and computes T ← CM.C(ck, rt). T is indistinguish-
able from honestly generated commitments, because CM is a hiding commitment
scheme.

B.2 Security of IVC

Below we provide proofs of the security of IVC.

Proof of succinctness. Our IVC is succinct, because πi only consists of two run-
ning instance-witness pairs and one incoming instance-witness pair, whose sizes
are independent of the number of steps.

Proof of completeness. To prove the completeness of IVC, we rely on the com-
pleteness of NIFS. We focus on the non-base case where i > 0, with the output
of A consisting of F , i,z0, zi, auxi, πi.

Given that V(vk, (i, z0, zi), πi) = 1, the following conditions hold: 1) 𝕦i is
a valid incoming instance with 𝕦i.x = (H(𝕌i, i,z0, zi),H(𝕌cf

i , i), ρ(𝕦i.Q)), 2) 𝕨i

and 𝕦i satisfy CSaug, 3) 𝕎i and 𝕌i satisfy CSaug, and 4) 𝕎cf
i and 𝕌cf

i satisfy CScf .
Our goal is to show that V(vk, (i+ 1, z0, zi+1), πi+1) = 1. According to the

construction of IVC.P , 𝕌i+1 and 𝕎i+1 are obtained by folding 𝕦i,𝕨i into 𝕌i,𝕎i.
Since NIFS is complete, 𝕌i+1 and 𝕎i+1 also satisfy CSaug.

Moreover, when running F cf in IVC.P, the check in Circuit 2 passes due to
the completeness of NIFS. Therefore, 𝕦cfi and 𝕨cf

i , constructed from the variables
in F cf , satisfy CScf . As a result, both (𝕦cfi ,𝕨cf

i ) and (𝕌cf
i ,𝕎cf

i ) satisfy CScf . Again,
by the completeness of NIFS, 𝕌cf

i+1 and 𝕎cf
i+1 also satisfy CScf .

To complete the proof, we demonstrate that 𝕦i+1 and 𝕨i+1 satisfy CSaug as
well, where 𝕦i+1 is a valid incoming instance. Consider the checks in Circuit 3.
First, Line 2 passes because 𝕦i is known to be valid. In addition, according to
the construction of 𝕦cfi , Line 6 is also satisfied. Line 7 checks the equation for
set inclusion, which holds since the queries α are supposed to be a subset of the
lookup table τ . Moreover, Line 8 ensures that the statements h1 and h2 match
the in-circuit variables calculated via NIFS.V and H, which is guaranteed by the
completeness of NIFS. Consequently, the vector of variables z is valid for Faug,
implying that 𝕦i+1 and 𝕨i+1 satisfy CSaug. Since c is computed as c := ρ(𝕦i+1.Q),
it follows that 𝕦i+1.x = (h1, h2, c) is well-formed.

Proof of knowledge soundness. Now we prove the knowledge soundness of IVC
by only considering the non-base case i > 1.

Similarly, for A’s output F , i,z0, zi, auxi, πi, we have V(vk, (i, z0, zi), πi) = 1,
which again indicates 1) 𝕦i is a valid incoming instance with 𝕦i.x = (H(𝕌i, i,z0,
zi),H(𝕌cf

i , i), ρ(𝕦i.Q)), 2) 𝕨i and 𝕦i satisfy CSaug, 3) 𝕎i and 𝕌i satisfy CSaug,
and 4) 𝕎cf

i and 𝕌cf
i satisfy CScf .

With these conditions, Ext works as below:
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1. Reconstruct v from 𝕨i and 𝕦i by computing v := (𝕦i.u,𝕦i.x,𝕨i.q,𝕨i.w).
Because 𝕨i and 𝕦i satisfy CSaug, v is also a satisfying vector of variables
for Faug.

2. Obtain the witnesses j,zj ,𝕌j ,𝕦j ,𝕌𝔾
j+1, T j ,𝕌cf

j ,𝕦cfj , T
cf
j from v.

3. By the checks in Line 8 of Circuit 3, we have h1 = H(𝕌j+1, j +1, z0, zj+1),
and h2 = H(𝕌cf

j+1, j +1). Also, since h1, h2 are parts of 𝕦i.x = (H(𝕌i, i,z0,

zi),H(𝕌cf
i , i), ρ(𝕦i.Q)) and H is collision-resistant, we can deduce that the

two preimages are equal, i.e.,

• j + 1 = i.

• 𝕌cf
j+1 = 𝕌cf

i , where 𝕌cf
j+1 := NIFS.V(vkcf ,𝕌cf

j ,𝕦cfj , T
cf
j ). Consequently,

except with negligible probability, Ext can invoke the extractor of

NIFS on input CScf ,𝕌cf
j ,𝕦cfj ,𝕎cf

i , T
cf
j and obtain 𝕎cf

j and 𝕨cf
j such

that (𝕌cf
j ,𝕎cf

j ) and (𝕦cfj ,𝕨cf
j ) satisfy CScf .

Now, we reconstruct vcf from 𝕨cf
j and 𝕦cfj analogously, such that vcf

satisfies F cf . Due to the checks in Line 5 of Circuit 3, the statements in
vcf are 𝕦cfj .x = (rj ,𝕌𝔾

j ,𝕦𝔾j ,𝕌𝔾
j+1, T j). Combining this with the check

in Circuit 2, we know that 𝕌𝔾
j+1 = NIFS.V𝔾(vk,𝕌𝔾

j ,𝕦𝔾j , rj , T j).

• 𝕌j+1 = 𝕌i. Note that 𝕌𝔽
j+1 = NIFS.V𝔽(vk,𝕌𝔽

j ,𝕦𝔽j , rj), and 𝕌𝔾
j+1 =

NIFS.V𝔾(vk,𝕌𝔾
j ,𝕦𝔾j , rj , T j). Hence, 𝕌i = NIFS.V(vk,𝕌j ,𝕦j , T j). Con-

sequently, except with negligible probability, Ext can invoke the ex-
tractor of NIFS on input CSaug,𝕌j ,𝕦j ,𝕎i, T j and obtain 𝕎j and 𝕨j

such that (𝕌j ,𝕎j) and (𝕦j ,𝕨j) satisfy CSaug.

• zj+1 = zi. This implies that F(zj , auxj) = zi.

4. By the checks in Line 2 of Circuit 3, we know that 𝕦j is an incoming
instance, and that 𝕦j .x = (H(𝕌j , j, z0, zj),H(𝕌cf

j , j), ρ(𝕦j .Q)).

5. By the checks in Line 7 of Circuit 3, LogUp’s identity for set inclusion
holds, given a uniform challenge c := ρ(𝕦i.Q). Therefore, the queries are in
the lookup table, i.e., α ⊆ τ .

6. Finally, Ext computes πj := ((𝕌j ,𝕎j), (𝕦j ,𝕨j), (𝕌cf
j ,𝕎cf

j )) and outputs
zj , auxj , πj as well as α.

We can observe from the analysis above that the outputs of Ext satisfy the
checks in IVC’s knowledge soundness definition and the lookup relation Rlookup,
thereby concluding the proof.

B.3 Security of Decider

Due to the similar design behind our and Nova’s deciders, we refer the reader
to [28, Appendix D] for the proof that Decider is a zkSNARK for RIVC, which
satisfies completeness, knowledge soundness, zero-knowledge and succinctness. In
a nutshell, the security of Decider is powered by the the corresponding properties
of ZKCP and NIFS. Plus, Decider is succinct because both the LegoGro16 proof
ϖ and the Pedersen commitments in committed instances are of constant size.
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Appendix C Gadgets for Integer Operations

We review the gadgets in [64] for the computation of sign and absolute value as
well as the right shifting operation.
Sign and absolute value.We cannot directly compute the sign and the absolute
value of a variable x in an arithmetic circuit over 𝔽p. Intuitively, a number is
positive if it is greater than 0, and is negative otherwise. However, as the field 𝔽p

is not ordered, we cannot compare between its elements. Therefore, we manually
define elements in the set {1, 2, . . . , (p− 1)/2} as positive, and those in the set
{(p+ 1)/2, . . . , p− 2, p− 1} as negative.

Before explaining the computation of sign and absolute value under this
definition, we introduce FEnforceBitLen, a gadget for ensuring the bit length of a
variable x is at most W , i.e., x ∈ [0, 2W − 1]. Powered by lookup arguments,
FEnforceBitLen is the key to efficiency of the in-circuit operations in quantization.
As depicted in Gadget 19, on input a variable x and a constant W , the gadget

first asks the prover to provide {xi}W/ log ν−1
i=0 , the limbs of x in base-ν (recall

that ν is the size of the lookup table). Here, we assume ν is a power of 2. Then,
the gadget enforces x indeed decomposes into these limbs by comparing their

concatenation, expressed as
∑W/ log ν−1

i=0 2i log νxi, with x. Finally, the limbs of x
are appended to α, the list of queries, to make sure every limb is in base-ν. We
reemphasize that lookup argument is critical to the performance of FEnforceBitLen:
without the lookup table, circuits in R1CS can only handle the range check
bit-by-bit (instead of limb-by-limb), which is done by enforcing xi(1−xi) = 0 for
each claimed bit xi. Consequently, FEnforceBitLen would cost W + 1 constraints,
which is much more expensive than the W/ log ν + 1 constraints with the lookup
table.

Gadget 19: FEnforceBitLen(x,W )

1 {xi}W/ log ν−1
i=0 ← Hint(x)

2 enforce
∑W/ log ν−1

i=0 2i log νxi = x

3 α := α ∪ {xi}W/ log ν−1
i=0

Now, as long as the upper bound of x’s absolute value satisfies x < 2W <
(p − 1)/2, we can extract the sign and the absolute value of x using FSignAbs,
as depicted in Gadget 20. The gadget first asks the prover to determine if x is
positive. The prover checks which set x belongs to, and provides s as a hint. The
gadget enforces that s is boolean, and computes x’s absolute value y := s ?x :−x.
Finally, the gadget enforces that y has at mostW bits by invoking FEnforceBitLen(y,
W ) and returns s and y. Soundness holds because if an adversary feeds the
incorrect s to the gadget, then y’s value belongs to the negative set and is hence
greater than (p− 1)/2, but FEnforceBitLen guarantees that 0 ≤ y < 2W < (p− 1)/2.
Right shift. It is also non-trivial to implement the gadget F>>(x, δ) for shifting
x to the right by δ bits. Here, we assume that x ∈ [0, 2W − 1], δ ∈ [U, V ], and
2W+V−U < p. Intuitively, we could treat the right shift operation as integer
division, i.e., x>>δ = x/2δ. The prover computes the quotient q and the remainder
r such that x = q · 2δ + r, and feeds q, r as hints to the gadget. Then the gadget
enforces x = q · 2δ + r. In addition, it is also required to check that q ∈ [0,
2W−U − 1], r ∈ [0, 2δ− 1] to ensure q and r are well-formed. Here, since δ is not a
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Gadget 20: FSignAbs(x ∈ [−2W + 1, 2W − 1])

1 s← Hint(x)
2 y := s ? x :−x
3 enforce s(1− s) = 0

4 FEnforceBitLen(y,W )
5 return s, y

constant, it requires two FEnforceBitLen calls to enforce r’s range, one for checking
r ∈ [0, 2V − 1] and another for checking 2δ − 1 − r ∈ [0, 2V − 1], introducing
2V/ log ν queries to the lookup table. We are convinced that r ∈ [0, 2δ − 1] only
when both conditions are satisfied.

However, it is possible to eliminate one FEnforceBitLen call. As presented in
Gadget 21, F>> first computes x′ := x << (V − δ) = x · 2V−δ. Since δ ∈ [U, V ],
we have V − δ ∈ [0, V − U ], and thus x · 2V−δ < 2W+V−U < (p− 1)/2 does not
overflow. Then we handle x′>>V analogously: the prover provides the quotient q
and the remainder r for x′/2V as hints, and the gadget checks if q ∈ [0, 2W−U−1],
r ∈ [0, 2V − 1], and x′ = q · 2V + r. This optimized approach only adds V/ log ν
queries to the lookup table for checking r, thereby saving V/ log ν constraints
compared to the naive construction.

Gadget 21: F>>(x ∈ [0, 2W − 1], δ ∈ [U, V ])

1 x′ := x · 2V −δ

2 q, r ← Hint(x′)

3 enforce x′ = q · 2V + r

4 FEnforceBitLen(q,W − U)

5 FEnforceBitLen(r, V )

Appendix D Security of Eva

Below we prove Theorem 1 by showing that Eva satisfies succinctness, complete-
ness, knowledge soundness, and zero-knowledge.

Proof of succinctness. Eva satisfy succinctness because its proofs are of constant
size. Specifically, the LegoGro16 proof ϖ has 4 𝔾 elements and 1 �̂� element,
the partial running instance 𝕌′

k has 3 𝔾 elements and 1 𝔽p element, the partial
incoming instance 𝕦′k has 2 𝔾 elements, T is in 𝔾, and r is in 𝔽p. In total, the

proof π consists of 10 𝔾 elements, 1 �̂� element, and 2 𝔽p elements.

Proof of completeness. We omit the proof of completeness for Eva, as it is straight-
forward to see from the design of our circuits and the completeness of IVC, NIFS,
and ZKCP.

Proof of knowledge soundness. We prove the knowledge soundness of Eva by
constructing an efficient extractor Ext. Given public parameters pkΠ, vkΠ, vkΣ,
the trapdoor td, and A’s output (ζ,meta, param, π), we have V(vkΠ, vkΣ, ζ,meta,
param, π) = 1 by condition. Hence, ZKCP.V(vk,x, c, ϖ) = 1, for x := (vkΣ,meta,
k, z0, ℏk, r,𝕦′k,𝕌′

k, T ), c := (𝕌𝔾
k+1). With this condition, Ext works as below:
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1. Invoke the extractor of ZKCP on input x, c, ϖ. Except with negligible
probability, Ext can obtain υ := (𝕎k+1),ω := (hk, σ,𝕌k.x,𝕌cf

k ,𝕎cf
k ), such

that (x, c) and (υ,ω) satisfy FDeciderEva , and υ = 𝕎k+1 opens c = 𝕌𝔾
k+1.

2. Reconstruct 𝕌k from 𝕌′
k and 𝕌k.x.

3. Reconstruct 𝕦k from 𝕦′k and 𝕦k.x := (H(𝕌k, k, z0, (hk, ℏk)),H(𝕌cf
k , k),

ρ(𝕦k.Q)).

4. Line 4 of Circuit 17 enforces that 𝕌𝔽
k+1 := NIFS.V𝔽(vk,𝕌𝔽

k,𝕦𝔽k, r). Also, we

have 𝕌𝔾
k+1 := NIFS.V𝔾(vkΦ,𝕌𝔾

k ,𝕦𝔾k , r, T ). Thus, 𝕌k+1 := NIFS.V(vkΦ,𝕌k,

𝕦k, T ).
Moreover, Line 5 of Circuit 17 and the commit-and-prove relation w.r.t.
υ = 𝕎k+1 and c = 𝕌𝔾

k+1 imply that 𝕎k+1 and 𝕌k+1 satisfy CSaug.

Consequently, except with negligible probability, Ext can invoke the extrac-
tor of NIFS on input 𝕌k,𝕦k,𝕎k+1, T and obtain𝕎k,𝕨k such that (𝕌k,𝕎k)
and (𝕦k,𝕨k) satisfy CSaug.

5. By the checks in Line 6 of Circuit 17, we can deduce that 𝕌cf
k and𝕎cf

k satisfy

CScf . At this point, Ext can recover πk := ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k ))
such that all checks in IVC.V(vk, (k,z0, zk), πk) = 1 pass.

Consequently, except with negligible probability, Ext can invoke the extrac-
tor of IVC on input Faug, k, z0, zk, πk and obtain the state and proof at
k − 1-th step.

6. Repeatedly invoke the extractor of IVC on the last state and proof, and
obtain the previous state and proof, until reaching the initial step.

7. Parse the original video V from all the auxiliary states {auxi} and return
σ,V .

By the satisfiability of Faug, we can conclude that, with param, {Zi} is the
correct encoding of an video V ′ edited from the original video V whose digest
is hk. Also, by construction of ZKCP.V, ζ is the entropy coded bitstream of
{Zi}. Furthermore, by Line 1 of Circuit 17, σ is a valid signature on H(hk,meta).
Thus, Ext successfully extracts V and σ such that RVA((ζ,meta, param, vkΣ), (σ,
V )) = 1, except with negligible probability, thereby completing the proof.

Proof of zero-knowledge. For zero-knowledge, we leverage the technique in [28,
Appendix D] for constructing a simulator Sim who can produce 𝕌k,𝕦k that are
indistinguishable from the outputs of the honest prover, if H and CM are hiding.

First, Sim uniformly samples several random values r1, r2, rq, rw, and initiates
𝕌1,𝕦1, where 𝕌1 = 𝕌⊥, 𝕦1.u = 1, 𝕦1.Q = CM.C(ck, rq), 𝕦1.W = CM.C(ck, rw),
𝕦1.E = 0, 𝕦1.x = (H(r1),H(r2), ρ(𝕦1.Q)). Here, 𝕌1, 𝕦1.u, and 𝕦1.E are equal to
real ones. Also, since we assume H and CM are hiding, 𝕦1.Q, 𝕦i.W , and 𝕦1.x are
indistinguishable from real ones.

Then, we show that for every i, Sim can generate 𝕌i+1 and 𝕦i+1 that are
indistinguishable from real ones, given that 𝕌i and 𝕦i are indistinguishable.
To this end, Sim uniformly samples randomness r1, r2, rq, rw, rt and computes
T := CM.C(ck, rt), which is indistinguishable from real commitments due to the
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hiding property of CM. With T , 𝕌i+1 is computed by 𝕌i+1 := NIFS.V(vkΦ,𝕌i,
𝕦i, T ). Further, 𝕦i+1 is computed in the same way as the base case. In this way,
both 𝕌i+1 and 𝕦i+1 are indistinguishable from real instances.

After k steps, 𝕌k,𝕦k are indistinguishable from the honestly generated ones.
Again, Sim computes T := CM.C(ck, rt) for a random rt and r := ρ(𝕌k,𝕦k, T ),
which are indistinguishable from real ones.

Next, Sim computes ℏk by hashing the prediction macroblocks and quantized
coefficients decoded from ζ, and derives 𝕌𝔾

k+1 by running 𝕌𝔾
k+1 := NIFS.V𝔾(vkΦ,

𝕌𝔾
k ,𝕦𝔾k , r, T ).
Finally, Sim invokes the ZKCP simulator on input x and c, where x :=

(vkΣ,meta, k, z0, ℏk, r,𝕦′k,𝕌′
k, T ), c := (𝕌𝔾

k+1). The ZKCP simulator returns a
simulated proof ϖ that is indistinguishable from the honestly generated ones, and
the proof π := (ϖ,𝕌′

k,𝕦′k, T , r) that Sim returns is therefore also indistinguishable
from the honest proofs.

Discussion on security. For a raw video V signed by the recorder and an
encoded video stream ζ, our current security model guarantees that ζ = E(∆(V ),
paramE), where ∆ is the editing operation, and paramE is the encoding parameters.
Below we discuss two potential issues with our current security model and possible
solutions.

First, our model does not ensure paramPred to be the best prediction parame-
ters for encoding V ′ := ∆(V ). Recall that, in order to reduce the circuit size,
the prediction process is removed from our FE , and thus the choice of prediction
parameters paramPred is not enforced.

Consequently, for an original macroblock X ∈ V and two editing operations
∆ and ∆̂, a malicious prover A may produce P and Z by encoding X ′ := ∆(X),

but later prove that Z is encoded from X̂
′
:= ∆̂(X). This is possible if A can

find some prediction parameters p̂aram
Pred

such that the prediction macroblock

for X̂
′
becomes P̂ = X̂

′
−X ′ + P . By feeding P̂ to the circuit, the residual

macroblock is now computed as X̂
′
− P̂ = X ′ − P = R, and the final output

becomes Z. In this way, A’s claimed editing operation is ∆̃ = ∆̂, and the claimed

encoding parameters are p̃aram
Pred

= p̂aram
Pred

, but Z is actually the encoding
of ∆(X) under paramPred.

Our model allows for such an “attack”, because both ∆, paramPred and ∆̂,

p̂aram
Pred

are valid configurations for encoding X as Z. A stronger security
model might require the claimed editing operation ∆̃ to closely resemble the
actual one ∆ (as we will discuss soon, it is impossible to guarantee exactly

equality between ∆̃ and ∆).
To achieve security under this enhanced model, we propose the following

approaches:

• If the video codec generates similar predictions for different prediction
parameters, or if we can restrict the prover to use prediction parameters
with similar effects, then A can no longer find a prediction macroblock
that balances the large difference between the claimed ∆̃ and the actual
∆. This would ensure that ∆̃ ≈ ∆.

• If the above conditions are not met, it is still possible to mitigate this issue.
Observe that while lossy encoding reduces the video quality, the encoded
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video ζ is still similar to the original V ′. Thus, with the correct prediction

parameters p̃aram
Pred

= paramPred for V ′, encoding ζ under paramPred again
will produce a video that resembles ζ. On the other hand, with cheating

prediction parameters p̃aram
Pred ̸≈ paramPred, the re-encoded video will

significantly differ from ζ.

Therefore, to detect if A is cheating, the verifier can re-encode ζ with the
claimed prediction parameters and inspect if the re-encoded video is close to
the encoded video. By rejecting significantly different videos, V can ensure

that the claimed prediction parameters satisfy p̃aram
Pred ≈ paramPred,

thereby guaranteeing ∆̃ ≈ ∆.

• The most robust solution is to extend Eva and generate proofs of best
encoding. Intuitively, one can achieve this by incorporating the prediction
process into the circuit. However, designing a more efficient approach
remains an open problem.

The second issue is that the quantization parameter qp may enable a malicious
prover A to find two editing operations ∆ and ∆̃ that produce the same video
stream ζ after quantization.

We regard the design of a stronger security model that guarantees the strict
equality between ∆ and ∆̃ as out of scope. The reason is that, due to the inherent
loss of information in lossy encoding, it is always possible for A to find two
modifications on the original video that have the same encoded stream, even qp
is fixed to some small values. In some scenarios such as the detection of fake news,
the verifier can simply reject low-quality videos with large qp (e.g., qp ≥ 50), as
we expect videos published by news agencies to have more reasonable qp values
(e.g., qp ≈ 30).
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