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Abstract. Many of the currently best actively secure Multi-Party Computation (MPC) protocols
like SPDZ (Damgård et al., CRYPTO 2012) and improvements thereof use correlated randomness
to speed up the time-critical online phase. Although many of these protocols still rely on classical
Beaver triples, recent results show that more complex correlations like matrix or convolution triples
lead to more efficient evaluations of the corresponding operations, i.e. matrix multiplications or
tensor convolutions. In this paper, we address the evaluation of multivariate polynomials with a
new form of randomness: polytuples. We use the polytuples to construct a new family of randomized
encodings which then allow us to evaluate the given multivariate polynomial. Our approach can be
fine-tuned in various ways to the constraints of applications at hand, in terms of round complexity,
bandwidth, and tuple size. We show that for many real-world setups, a polytuples-based online
phase outperforms state-of-the-art protocols based on Beaver triples.
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This report is a major extension of our previous eprint [Rei+22].

1 Introduction

Multi-Party Computation (MPC) enables multiple parties to perform computations on private inputs
without revealing any information about the inputs apart from what can be deduced from the result. State-
of-the-art actively secure MPC protocols, like SPDZ [DKL+13,DPSZ12] and related protocols [BCS20,
KOS16,KPR18], follow a two-phase approach, where correlated randomness is precomputed in an offline
phase, and later consumed in an online phase to efficiently evaluate a function on private inputs. In
this setup, a less efficient offline phase is normally considered acceptable since the offline phase can
start well before the input data becomes available. Efficiency in two-phase protocols (and generally in
MPC protocols) depends on the number of communication rounds needed and the bandwidth, i.e. the
amount of data that has to be transmitted between the parties. Local computations, which can be
performed without interaction, are usually considered less problematic as long as hardware requirements,
e.g. memory requirements, remain manageable.

In MPC protocols based on additive secret sharing like SPDZ, addition and multiplication with public
values are local operations and therefore fast, while the multiplication of secret values requires interaction
and correlated randomness. The most common and widely used form of correlated randomness is classical
Beaver triples [Bea92]. The standard approach is to represent a function, e.g. a matrix multiplication, as
a series of additions and multiplications and then to use a Beaver triple for each multiplication and to add
locally. However, this approach is often not the most efficient choice and for several common operations
like matrix multiplication [MZ17,Rei+23] or tensor convolutions [CKR+20,RRHK23] there are by now
more efficient actively secure MPC solutions that rely on different forms of correlated randomness like
matrix or convolution triples.

Many of these operations like simple field multiplication (Beaver triples), matrix multiplication (matrix
triples) and tensor convolution (convolution triples) have in common that they are at most quadratic
in the secret inputs. Using this property the protocols achieve a low online communication complexity.
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Additionally, the quadratic nature can be used in the offline phase, e.g. by using the linear homomorphic
structure of lattice-based encryption schemes like BGV [BGV12] to generate the correlated randomness
efficiently.

For higher-order operations, like the evaluation of (high-degree) multivariate polynomials, the situa-
tion is more difficult, and comparable constructions do not exist. We want to address this problem and
present a new actively secure MPC protocol and a suitable new form of correlated randomness called
polytuples, which speeds up the online evaluation of multivariate polynomials compared to the Beaver
triples based approach and still has a reasonably fast offline phase.

We want to briefly describe the high-level idea of our approach. A SPDZ-like online phase has the
following characteristics: at the beginning n parties P1, . . . , Pn possess (among others) additive shares of
the input variables x0, . . . , xm−1, they perform local computations and communicate until each party Pi
has a share [y]i of the result y = f(x0, . . . , xm−1) (cf. Section 3.2 for the definition of additive shares [ · ]).
To open the result, the parties exchange the [y]i and locally reconstruct the result Rec([y]1 , . . . , [y]n) :=∑n
i=1 [y]i = y. 3

This scheme is, however, by no means the only possible construction. In fact, it is enough for the
parties to construct any randomized encoding [IK00, AIK06] of f . A randomized encoding is a set of
terms y0, . . . , yk−1 that depend on the inputs (and some randomness) and a reconstruction algorithm Rec
such that Rec(y0, . . . , yk−1) = f(x0, . . . , xm−1). Additionally, y0, . . . , yk−1 and Rec are chosen in a way to
not leak more information than the actual output f(x0, . . . , xm−1) (cf. the formal Definition 1). Note that
randomized encodings contain the classical SPDZ-setup as the special case yi = [y]i for 0 ≤ i < k = n
where the parties do almost all of the computation in the interactive phase and only a simple sum
in the final reconstruction phase. In particular, the evaluation of a degree d multivariate polynomial
then requires around log2(d) rounds of communication, which might be too much, especially in networks
with high latency. It is then advantageous to reduce the round complexity by shifting more of the overall
computation into a then more complex reconstruction Rec, since this reconstruction is done locally by each
party and therefore nevertheless cheap. Naturally, certain limitations apply to this shift of computation.
For example, the size k of the encoding should still remain within practical range for two reasons: (i) For
a very large k (e.g. exponential) the local evaluation of Rec might still slow down the overall multi-party
computation and (ii) all the encodings y0, . . . , yk−1 have to be created either by the offline phase or
through communication with the other parties and hence a large k increases the bandwidth or the offline
runtime.

One of the main contributions of this paper is the construction of a new family of efficient randomized
encodings of arbitrary multivariate polynomials f which satisfies these constraints and allows an efficient
MPC protocol with only one round of communication. To this end, we follow an iterative approach,
where we first construct an encoding y0, . . . , yk−1 such that each yl is of degree at most d1 < deg(f) in
the inputs. We next construct a randomized encoding (yll′) for each yl of even smaller degree d2 < d1.
The idea is that if the parties have a degree d2 randomized encoding of each yl, then they can locally
reconstruct all yl and if they have all yl then they can reconstruct the result f(x0, . . . , xm−1). Hence the
collection of all yll′ is a degree d2 randomized encoding of f itself.

While the composition (cf. Lemma 2) of randomized encodings is a well-known result [AIK06], we
add a twist. Namely, we construct the encodings yll′ in a way that they can be used in the reconstruction
of multiple yl, e.g. yll′ occurs in the randomized encoding of yl and yℓ for some l, ℓ. We prove that the
multiple use of such an encoding does not affect the security of the resulting overall randomized encoding
of f of degree d2. Thus we need less encodings (of degree d2) to construct all yl and hence f(x0, . . . , xm−1).

In the next iteration step, we replace the degree d2 encoding yl of f by an encoding yll′l′′ of even
smaller degree d3 < d2. Again we can find yll′l′′ which can be used in the reconstruction of multiple yll′
and we only need to construct a small number of these yll′ by the previous step. Hence iterating further
the advantage of our multipurpose encodings becomes more significant and allows us to e.g. construct a
degree 3 encoding of f(x0, . . . , xm−1) = x0 · · ·xm−1 with output size in O(m log(m)). Previous results
like [CFIK03] reached O(m2).

3 In order to get actively secure protocols, the opening protocols additionally include a MAC check (see our full
version Protocol 5 or [DPSZ12]).
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Table 1: Comparison for the computation of [x
d/m
1 · · ·xd/mm−1] of degree d with d/m ∈ N, for Beaver triples,

binomial tuples, and polytuples.

Approach Rounds Bandwidth Tuple Size

Beaver Triples ⌈log d⌉ 2(m−1)⌈log d
m
⌉ 3(m−1)⌈log d/m⌉

e.g. for d = m = 16 4 30 45

Binomial Tuples4 [CWB18] 1 m ( d
m

+ 1)m − 1
e.g. for d = m = 16 1 16 65535

Example Intermediate Polytuple 1 O(m log(m)) O(d(logm)2)
e.g. for d = m = 16 1 41 149
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Fig. 1: Multi-round example to evaluate a product of m factors with polytuples with optimal tuple size.

In order to use the new randomized encodings to locally reconstruct the results, the parties first need
to construct the components yl in an interactive protocol. We therefore build a new MPC online protocol
based on a new form of correlated randomness, i.e. our polytuples. Polytuples are specially crafted to
allow the computation of the shares [yl] in only one round of online communication. These shares are
then (partly) opened and each party can locally reconstruct the output f(x0, . . . , xm−1) (or a share
thereof).

Our new family of randomized encodings contains a large number of randomized encodings for each
single polynomial f . While all these randomized encodings use the aforementioned optimization with
multipurpose encodings, they differ in the number of iteration steps and the degree of the final overall
encoding. Moreover, we can use encodings of different degrees for different components, e.g. a degree 4
encoding for y1 and a degree 3 encoding for y2.

The choice of a randomized encoding for a given polynomial f and the resulting number and shape
of the encodings yl and of the polytuples, strongly influence various aspects of the online and offline
phase for the parties. For example, a low number of iteration steps and/or overall encodings of high
degree reduce the output size k. Since all encodings have to be opened this decreases the bandwidth.
The tradeoff is a larger tuple size and hence a more complex offline phase (see Section 4 for the explicit
formulas for tuple size and bandwidth).

Table 1 shows one specific kind of randomized encoding and polytuple. This tuple lies between the
linear size for Beaver multiplication and the exponential size of the more straightforward one-round
approach from [CWB18,Cou19].4 It has minimal round complexity and a higher bandwidth cost than the
other approaches. Almost all other trade-offs are however possible. The exact relation will be explained
in Section 4.

Moreover, our protocol is also composable, i.e. we can write a multivariate polynomial
f(x0, . . . , xm−1) = g(g1(x0, . . . xm−1), . . . , gj(x0, . . . xm−1)) for multivariate polynomials g, gl (1 ≤ l ≤ j)
and then compute [gl(x0, . . . xm−1)] in the first round with our one-round protocol applied to all gl
and then compute f(x0, . . . , xm−1) in the second round with the protocol applied to g for inputs

4 To the best of our knowledge no name has been fixed for the [CWB18] underlying correlated randomness—we
therefore chose binomial tuples to refer to this type of randomness within our paper (cf. also Section 3.4 for a
definition).
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[gl(x0, . . . xm−1)]. This feature adds additional flexibility since it allows us to trade round complexity
and bandwidth/tuple size; Figure 1 illustrates that adding just one round can already make a big differ-
ence.

Altogether, we can fine-tune our randomized encodings and polytuples for optimal performance in the
concrete setting where the protocol is deployed w.r.t. bandwidth, tuple size, and/or round complexity.
For example, if network latency is (moderately) high, we should try to minimize round complexity.
Similarly, bandwidth/data rate restrictions imply that one should use polytuples with lower bandwidth.
If the runtime of the offline phase, local memory or local computation time are important, striving for
small tuple sizes is recommended. Our first experiments show that strategic deployment of polytuples
can significantly speedup the performance of the online phase.

Our Contributions. In summary, our contributions are as follows:

– We introduce a new family of randomized encodings for the evaluation of multivariate polynomials as
well as suitable correlated randomness, i.e. polytuples, to integrate the randomized encodings into a
dishonest majority actively secure MPC protocol. Our randomized encodings have the smallest known
output size for arbitrary monomials. Our approach evaluates a multivariate polynomial in just one
round of online communication plus one opening round.

– We compute the tuple size and bandwidth needed in the online phase for all new randomized encod-
ings and corresponding polytuples. Our tuple size is significantly lower than for existing single-round
approaches and also multi-round computations yield improvements (e.g. lower bandwidth and round
complexity than Beaver multiplication).

– We evaluate the performance of our approach for sample applications (evaluation of polynomials,
comparisons of secret-shared values, simple machine learning algorithms) in Section 5 which shows
that polytuples speed-up these computations compared to Beaver multiplication.

2 Related Work

We see our work as an improvement over the common online phase of SPDZ [DPSZ12] and related
protocols [KOS16,KPR18,BCS20]. We therefore concentrate our discussion on recent progress applicable
to SPDZ-like papers, rather than classical theoretical results like e.g. [CD01], or other MPC approaches
like garbled circuits.

A first small optimization of the Beaver triple-based online phase in SPDZ already appeared in
[DKL+13] where square pairs are used to improve the squaring of secret shared values. This idea has been
picked up by Morten Dahl who describes in [Dah17] power tuples for the computation of a monomial xd for
a secret-shared value x, which are binomial tuples (cf. Section 3.4) for a single variable. Dahl [Dah17] also
presents matrix triples and convolution triples which have also been discussed in [MZ17] in the passively
secure domain, too. Matrix (and convolution) triples have since then seen further attention and are by now
available as part of an actively secure protocol [CKR+20,RRHK23,HRRK24]. The multivariate version
of binomial tuples appears in the passively secure protocol of [CWB18] with additional trust assumptions
on the dealer, whereas the authenticated binomial tuples in this paper provide active security. Ohata and
Nuida [ON20] as well as Couteau [Cou19] use a slight variation of a binomial tuple in the passively secure
setup.

Another classical approach to the secure evaluation of a polynomial is included in [BB89] and again
in [DFK+06]. The more recent extension presented in [LYKM22] uses multiplicative masking. Their
combined passively-secure protocols need 4 + 1+ 2 rounds of (online) communication (cf. [CdH10]). The
general idea of using a multiplicative structure in the underlying primitives, e.g. a multiplicative secret
sharing as in [BD19,GPS12], is quite tempting. However, these multiplicative sharings generally cannot
compute additions in a cheap way, and conversion techniques back to an additive sharing as it is used in
SPDZ-like protocols are costly. While these protocols have a constant round complexity and small tuple
size, making them actively secure (if possible) usually comes with considerable overhead. Furthermore,
there are many papers optimizing the use of maskings/tuples. For example, Boura et al. [BCG+18] reuse
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their masks for certain input variables for different multiplication gates. Moreover, function-dependent
preprocessing can be used to decrease the required tuple size and bandwidth in the online phase [BENO19,
PSSY21]. Also note that with a pseudo-random generator, as in [BCG+19], structured randomness can
be produced without further communication. Special solutions also exist for more complex structured
random data like the matrix triples mentioned before.

Randomized Encodings. Results on randomized encodings reach far back to the works of Ishai and
Kushilevitz [IK00] who proved that every polynomial has a degree-3 randomized encoding. The complexity
results of [IK00] have since been improved by [CFIK03] for general branching programs, e.g. for products
of m variables they achieve randomized encodings of output size O(m2). In comparison, our randomized
encoding reduces the output complexity to O(m log(m)). Other papers like [Kol05] focus on the binary
case (which is less related to our arithmetic setup) or relax the correctness or privacy requirements
like [AIK06] to achieve better efficiency. We refer to [Ish13] for further classical references on randomized
encodings. At the same time [IKM+13] presents new actively secure protocols with linear bandwidth and
constant round complexity, but with exponential tuple size. Moreover, [Cou19] considers a multi-round
approach which improves the bandwidth from linear in the classical Beaver triple-based approach to
O(m/

√
log(m)). More recently, a new multi-party adapted version of randomized encodings (MPRE)

evolved in [ABT18], where preprocessing and the first communication round are more flexible than in
our SPDZ-like setup—the latter is (almost completely) restricted to exchange masked inputs xj − aj
in the first communication round. The MPRE approach has led to new passively secure and actively
secure MPC protocols [ABT18,ABT19,LLW20,LL22]. The currently best actively secure protocol [LL22]
uses Oblivious Linear Evaluation (OLE) correlated randomness, needs two rounds of communication but
bandwidth at least cubic in the number of parties n and in O(m1.5) in the online phase. In comparison,
our protocols are linear in n and require only O(m log(m)) communication in the same number of rounds
in the online phase.

3 Preliminaries

For our theoretical considerations in Sections 4.2 to 4.5 we are working on a commutative base ring R.
For all other parts, we choose R a finite field as in [DPSZ12]. We call a computation local if the parties
can perform it without interaction.

3.1 Performance Measures

When we analyze the theoretical performance of our protocols, bandwidth is measured in the number
of ring elements sent. Analogously, the size of the structured randomness needed for one polynomial
evaluation in the online phase, i.e. the tuple size, is the number of ring elements contained in the tuple.
The round complexity of a protocol is the number of communication rounds. One communication round
consists of all information that can be sent in parallel. In particular, if in a protocol party P1 has to
wait for a message from P2 before P1 can send her message, the protocol has round complexity 2. The
opening phase in actively secure SPDZ-like protocols comes with an additional invocation of a MAC check
subroutine (cf. Section 3.2 and Protocol 7)—to account for the different structures of an opening round
we will count opening rounds separately, usually indicated by a “+1” in the round/bandwidth count.
It is quite common to ignore the opening round completely for composable protocols since to compute
the composition of two or more functions the parties need only one global opening round. E.g. if parties
can compute a function f in kf + 1 rounds and function g in kg + 1 rounds, they can compute g ◦ f in
kf + kg + 1 rounds. To simplify notation, we sometimes drop the “+1”.

3.2 Secret-Sharing and SPDZ-MACs

As we focus on MPC in the dishonest majority setting, we use classical additive secret-sharing, denoted
by [ · ]. A secret x is shared among n parties such that x =

∑n
i=1 [x]i where [x]i is the share of party Pi.
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All shares are needed to reconstruct a secret and n− 1 or less shares do not reveal any information. This
secret sharing scheme is linear, i.e., we can set [x+ y]i := [x]i+[y]i, [cx]i := c · [x]i, [x+ c]i := [x]i+ c · δi1
for shared values x, y and a publicly known constant c, where δij is the Kronecker delta. To open (or
reconstruct) a secret-shared value, parties simply broadcast their shares and compute the sum of all
shares. Our techniques are independent of the secret-sharing scheme.

In SPDZ and related protocols, shares are additionally authenticated to verify the outputs of the
protocol using a MAC key [DKL+13,DPSZ12]. The MAC key α ∈ R is shared in the preprocessing phase.
Secret shared values (including inputs and structured randomness like Beaver triples or polytuples) are
authenticated in the offline phase—we use JxK := ([x] , [αx]) to denote authenticated shares of x and
JXK = (Jx1K, . . . , JxkK) for a tuple X = (x1, . . . , xk). Linear operations on authenticated shares are a
trivial extension of linear operations on shares with the exception of Jx+ cKi := ([x+ c]i , [αx]i + c · [α]i).
A MAC check enables parties to verify the integrity of previously opened shares (cf. Protocol 7 or
[DKL+13, DPSZ12]). The soundness of the MAC check is proportional to 1

|R| if R is a field, can be
aggregated over many opened values, and does not reveal the MAC key [DKL+13].

3.3 Randomized Encodings and Randomizing Polynomials

In our protocols we use randomized encodings [IK00] to reduce the communication rounds, bandwidth,
and tuple size.

Definition 1. Let X,Y, Ŷ , A be finite sets and let f : X → Y . A function f̂ : X × A → Ŷ is called
randomized encoding of f if the following holds:

– Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that Rec ◦ f̂ = f ◦pr1 where
pr1 : X ×A→ X, (x, a) 7→ x is the projection.

– Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are identically distributed for
all x ∈ X if a is sampled uniformly from A.

If Ŷ = Rk, we call the component functions of a randomized encoding, simply encodings or randomizing
polynomials. An encoding y0 of f̂ = (yl)0≤l<k which is only added by the reconstruction algorithm, i.e.
Rec(0, y1, . . . , yk−1) + y0 = Rec(y0, y1, . . . , yk−1), is called additive.

In this paper, we usually have X = Rm, Y = R, Ŷ = Rk. The randomness space A is generally more
complicated since it is a subvariety of some Rt defined by the structure of our randomness, e.g. for Beaver
triples we would choose A = {(a, b, c) ∈ R3 : ab = c} ⊂ R3. We remark that for our MPC application,
we also include components that are completely deterministic in the other components, e.g. c = ab in
the Beaver triple case, since we have to construct this randomness in the offline phase. For possible other
applications of our randomized encodings, these deterministic components of A can be omitted.

Moreover, in our arithmetic setup we only need to consider randomized encodings where the entries
yl of f̂ are randomizing polynomials in m + t variables, i.e. yl : X × A → R, ((xj)0≤j<m, (aj)0≤j<t) 7→
yl(x0, . . . , xm−1, a0, . . . , at−1) is a polynomial in x0, . . . , xm−1, a0, . . . , at−1. To simplify the notation we
usually drop the explicit dependency of the yl on xj and aj .

A randomized encoding f̂ is said to be of (total) degree-d, if the entries yl of f̂ are of total degree
at most d—both the xj and the aj count towards the total degree, e.g. 2x0a20 has total degree 3. We
write f̂ is of x-degree d if it is of degree d in the variables xj and of a-degree d if it is of degree d in the
randomness aj , i.e. 2x0a20 is of x-degree 1 and a-degree 2.

The output size of a randomized encoding is the R-rank of Ŷ , i.e. in this paper the size k. In our
protocols, the output size usually coincides (up to an addition by m) with the bandwidth of the corre-
sponding MPC protocol. The randomness size t on the other hand corresponds to the tuple size of the
employed polytuple.

For later use we recall some fundamental properties for the concatenation and composition of ran-
domized encodings [AIK06]:
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Lemma 1. Let f̂i(x, ai) be randomized encodings for fi(x) with reconstruction algorithm Reci and 0 ≤
i < k, then f̂(x, (ai)0≤i<k) = (f̂i(x, ai))0≤i<k is a randomized encoding of f(x) = (fi(x))0≤i<k with
reconstruction Rec = (Reci)0≤i<k.

Lemma 2. Let (f̂(x, a),Rec) be a randomized encoding of f(x) and (f̂ ′((x, a), a′),Rec′) a randomized en-
coding of f̂(x, a) (as a deterministic function of (x, a)). Then f̃(x, (a, a′)) = f̂ ′((x, a), a′) is a randomized
encoding of f(x) with reconstruction Rec ◦ Rec′.

3.4 Binomial Tuples

As mentioned before, our new MPC protocols5 for the evaluation of a multivariate polynomial f rely
on suitable randomized encodings (y0, . . . , yk−1) of f . Here, the single encodings yl are built by an
interactive one-round protocol that uses structured randomness. Since the yl might have a degree larger
than 2, Beaver triples are not enough and we need a type of structured randomness that allows us to
build higher degree terms yl in one round. The solution is what we call binomial tuples (for yl) since
their construction is (just like Beaver triples) based on binomial expansion. We want to briefly present
binomial tuples and the corresponding MPC online protocol. A passively secure version of this protocol
was used in [CWB18,Cou19].

The goal of the binomial tuple approach is to compute a polynomial f in m variables x0, . . . , xm−1 ∈ R
of total degree d =

∑m−1
j=0 dj with one round of communication plus one opening round.

Let x = (x0, . . . , xm−1) and denote by fa(x) = fa0,...,am−1
(x) = f(x0 + a0, . . . , xm−1 + am−1) a

randomization. As a multi-variate polynomial fa has the general form
∑
e∈E bex

e for xe :=
∏m−1
j=0 x

ej
j

and multi-index e = (e0, . . . , em−1) ∈×m−1

j=0
{0, . . . , dj} =: E and some coefficients be ∈ R (which depend

on the aj). Now each party Pi receives (from the offline phase) a share JbeKi for all e ∈ E. We call the
(be)e∈E (or the sharing JbeKe∈E) a binomial tuple.

Additionally, assume that the parties already hold shares JxjK, JajK of the input variables xj and
masks aj . In the first round of (online) communication the parties exchange [xj ] − [aj ] = [xj − aj ] for
0 ≤ j < m and reconstruct x− a = (x0 − a0, . . . , xm−1 − am−1). Subsequently, each party Pi can locally
compute a share

Jf(x)Ki = Jfa(x− a)Ki =
∑
e∈E

JbeKi(x− a)e (1)

i.e. the parties can reconstruct f(x) in the opening round.

Remark 1. If f(x) = x(d0,...,dm−1) is a monomial, then

fa(x) = (x+ a)(d0,...,dm−1) =
∑
e∈E

(m−1∏
j=0

(
dj
ej

))
a(d0,...,dm−1)−exe.

Hence, we have be =
(∏m−1

j=0

(
dj
ej

))
a(d0,...,dm−1)−e. Thus, each party needs to receive a share of be from

the preprocessing, i.e. the tuple size is
∏m−1
j=0 (dj + 1)− 1, where the dj + 1 comes from running through

the powers 0 to dj and the final −1 corresponds to the case e = (d0, . . . , dm−1) where be = 1 is constant
and does not have to be shared explicitly. We see that the structured randomness (be)e∈E has a small
size if m = 1, but becomes exponential for monomials of many different factors, e.g. for dj = 1 for all
0 ≤ j < m one has size 2m − 1 = 2d − 1.

Although binomial tuples come with a minimal round complexity of 1+1 rounds and small bandwidth,
e.g. m+1 ring elements for the polynomial

∏m−1
j=0 xj , the often large tuple size makes binomial tuples too

inefficient for most higher degree multivariate polynomial evaluations. Our polytuples (cf. Definition 2)
will therefore not contain binomial tuples for high-degree polynomials, but rather combine and correlate
low-degree binomial tuples to retain a small tuple size and bandwidth while keeping the round complexity
minimal.
5 The protocol will be presented later in Protocol 5.
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4 Our MPC Protocols for the Evaluation of Multivariate Polynomials

We now present our main technical results on randomized encodings and polytuples. In Section 4.1 we
explain first what kind of randomized encodings are compatible with our MPC protocol and how they can
be used in an online phase. Sections 4.2 to 4.5 construct our new family of suitable randomized encodings.
It also analyzes the complexity of the randomized encodings and connects it to the bandwidth and tuple
size of our MPC protocols. Finally, Section 4.6 contains our MPC protocols and the main theorems. We
refer to Section 4.7 and Appendix C for a discussion on the polytuple generation in the offline phase.

4.1 MPC With Randomized Encodings

Our MPC online protocols (just like SPDZ) consider n parties P1, . . . , Pn that receive shares of the input
variables x = (x0, . . . , xm−1) as well as shares of (structured) random data in the form of a structured
random tuple â = (a0, . . . , at−1) with t ≥ m from an offline phase. The parties can locally add the shares,
but they need to interact to compute the product of two secrets like x0x1 or x0a0. In order to compute
these products the parties have to exchange their shares, obviously not in plain, but in some masked
form. Therefore, as in SPDZ (and for the binomial tuples in Section 3.4) we assume that the parties open
xj − aj , 0 ≤ j < m, in an initial round of communication. Thus after the initial communication round,
all parties know the public values xj − aj , 0 ≤ j < m, in addition to the shares already provided by the
offline and input phase.

The parties can use this information to construct new shares [yl]i between the initial communication
round and the final opening round. They can locally multiply and add the public values xj − aj , but
they cannot locally multiply the shares (in a meaningful way). Hence the [yl]i can be polynomials in
the xj − aj with coefficients that have at most total degree 1 in [x0]i , . . . , [xm−1]i , [a0]i , . . . , [at−1]i. E.g.
[a2]i (x1 − a1)2 can be computed locally by party Pi after the initial round of communication. However,
[a1]i · [a2]i (x1 − a1)

2 ̸=
[
a1a2(x1 − a1)2

]
i
, i.e. the degree 2 coefficient [a1]i · [a2]i is not sufficient to

compute a share of the product locally. Instead, we need to include structure randomness a3 = a1a2 in
the tuple. Then Pi easily computes [a3]i (x1 − a1)2 = [a1a2]i (x1 − a1)2 =

[
a1a2(x1 − a1)2

]
i
, which now

has a coefficient [a3]i of degree 1.
After the local computation, the parties open the [yl]i and each party gets yl =

∑n
i=1 [yl]i. Note

that the degree condition ensures that yl turns into a polynomial in the xj and aj since the shares
dissolve, e.g.

∑n
i=1 [a2]i (x1 − a1)2 = a2(x1 − a1)2. In order to compute f(x0, . . . , xm−1) privately the yl

(together with the xj−aj) must be a randomized encoding for a suitable reconstruction algorithm Rec, i.e.
f̂(x0, . . . , xm−1, a0, . . . , at−1) = (x0− a0, . . . , xm−1− am−1, y0, . . . , yk−1) in the notation of Definition 1.6
In particular, the parties can then locally apply Rec to xj − aj and the now public yl, to compute
f(x0, . . . , xm−1). Hence for a randomized encoding f̂ = (yl)0≤l<k of f with

(I) yl is a polynomial
∑
e(l)∈E(l) be(l)(x, â) · (x−a)e(l) where E(l) ⊂ Nm some finite set of multi-indices

and a = (a0, . . . , am−1) the input masks, and
(II) all coefficients be(l)(x, â) have total degree at most 1 in R[x0, . . . , xm−1, a0, . . . , at−1],

the parties P1, . . . , Pn can compute f(x0, . . . , xm−1) with Protocol 1 and option continuation = open.
To later use our randomized encodings in multi-round online protocols (cf. Protocol 1 and Protocol 5)
we furthermore require that

(III) y0 is an additive component in the sense of Definition 1.

This allows the options continuation = share in Protocol 1 below to output a share Jf(x0, . . . , xm−1)Ki
of the result to each party Pi or to output a masked result f(x0, . . . , xm−1) − b if continuation is a
shared random value JbK. We discuss the multi-round use in more detail in Section 4.6. The protocol
Πpolynomial for polynomial evaluations is the core part of our online phase. All other parts, e.g. the input
protocol, are identical to their counterparts in SPDZ. We have included the full online protocol Πonline
in Protocol 5.
6 In our encodings f̂ we usually do not include the xj − aj explicitly, since we can directly include polynomials

in the xj − aj in the yl.
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Πpolynomial

Let f̂ = (yl)0≤l<k be a randomized encoding of f that satisfies (I), (II), (III) with randomness space A. Each
party has a share of x = (x0, . . . , xm−1) and of some â = (a0, . . . , at−1) ∈ A. On input (f̂ , JxK, JâK, continuation)
each party Pi does:

1. Pi locally computes and then opens JxjKi − JajKi for all 0 ≤ j < m. After receiving all shares, Pi locally
computes xj − aj .

2. Pi locally computes JylKi =
∑

e(l)∈E(l) be(l)(JxKi, JâKi)(x − a)e(l) for all 0 ≤ l < k, a = (a0, . . . , am−1). If
continuation = JbK then set Jy0Ki ← Jy0Ki − JbKi.

3. Pi opens JylKi for all i > 0 and locally computes yl =
∑n

i=1 [yl]i by summing up the received shares.
a. If continuation = share, Pi locally constructs Jf(x0, . . . , xm−1)Ki = Jy0 + Rec(0, y1, . . . , yk−1)Ki =

Jy0Ki + Rec(0, y1, . . . , yk−1)δ1i.
b. If continuation ̸= share, Pi opens and computes y0 =

∑n
i=1 [y0]i and locally reconstructs

f(x0, . . . , xm−1) = Rec(y0, . . . , yk−1).

Protocol 1: 1(+1) round interactive evaluation of a polynomial f .

Remark 2. As usual for SPDZ-like protocols, we get a passively secure version if we replace J·K with a
simple [·]. We note that all constructions in this paper still work in the passive setup with this modification.

4.2 Our Randomized Encodings

We now want to construct suitable randomized encodings of arbitrary multivariate polynomials com-
patible with our MPC online phase, i.e. randomized encodings that satisfy (I)–(III) above. We already
know from Section 3.4 that every multivariate polynomial can be computed with binomial tuples and also
that these binomial tuples become too large for high-degree polynomials. Hence we will first construct
low-degree randomized encodings and then use the binomial tuples from Section 3.4 to construct these
low-degree terms as in (1) and Protocol 1, respectively.

We will start with homogeneous monomials x0,...,m−1 := x0 · · ·xm−1, then lift our construction to
arbitrary monomials, i.e. xd00 · · ·x

dm−1

m−1 , and finally to arbitrary polynomials.

Idea of Our Construction. To construct a randomized encoding for f(x0, . . . , xm−1) = x0,...,m−1 =∏m−1
j=0 xj , we follow an iterative approach, where we first construct a degree d1 encoding f̂ (1) of f for

some d1 < m, i.e. the components y(1)l of f̂ (1) are polynomials of degree ≤ d1. We next construct a lower
degree encoding f̂ (2) of degree d2 < d1, of f̂ (1) and use the composition Lemma 2 to get a new degree-d2
encoding of f . Iteratively, we can reduce the degree of the encoding to a target degree, e.g. a degree-3
encoding.

The straightforward approach to construct a randomized encoding of f̂ (1) is to construct encodings
for each of the component functions y(1)l of f̂ (1) and then to concatenate the encodings with Lemma 1 to
a randomized encoding of the whole f̂ (1). As mentioned before, in this paper we follow a more efficient
approach, where we construct encodings y(2)l that can be used in the reconstruction of multiple y(1)l .

We want to illustrate our approach with the special case m = 2n. We use 3 types of encodings each
linear in some monic monomial xu,...,r−1 := xu · · ·xr−1 with u < r:

(i) with constant prefactor 1, i.e. of the form fau,...,r−1
(xu, . . . , xr−1) = xu,...,r−1 − au,...,r−1 and an

au,...,r−1 ∈ A;
(ii) with one randomized prefactor a ∈ A, i.e. of the form gabu,...,r−1

(xu, . . . , xr−1) = axu,...,r−1−bu,...,r−1

and a bu,...,r−1 ∈ A;
(iii) with two randomized prefactors a, b ∈ A, i.e. of the form ha,bcu,...,r−1

(xu, . . . , xr−1) = abxu,...,r−1 −
cu,...,r−1 and a cu,...,r−1 ∈ A.
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We now want to construct randomized encodings for each of these three types of encodings which again
consist of terms of type (i), (ii), or (iii), but of lower degree, i.e. with smaller r − u. Since our monomial
f(x0, . . . , xm−1) is of type (i) with u = 0, r = m, this will allow us to construct a degree d1 encoding
f̂ (1) = (y

(1)
l ) where all y(1)l are of type (i), (ii) or (iii) with x-degree < r. Then we can iterate.

To simplify notation we use a helper function

φ(x, y, a, b, c) := (x− a, y − b, bx+ ay − ab− c)

on R5. Moreover, we choose a reconstruction Rec(y0, y1, y2) := y0y1 + y2 for output size 3 randomized
encodings. Please note that y2 is then an additive component in the sense of Definition 1. We get

Rec ◦ φ(x, y, a, b, c)=φ0φ1+φ2=(x− a)(y − b)+bx+ay−ab−c=xy−c. (∗)

Hence, we find for v = (u+ r)/2 randomized encodings of f∗, ga∗ , h
a,b
∗ :

(1) f̂au,...,r−1
(xu, . . . , xr−1, a0, a1) = φ(xu,...,v−1, xv,...,r−1, a0, a1, au,...,r−1)

7,
(2-1) ĝabu,...,r−1

(xu, . . . , xr−1, b0, b1) = φ(axu,...,v−1, xv,...,r−1, b0, b1, bu,...,r−1),
(2-2) ĝbbu,...,r−1

(xu, . . . , xr−1, b0, b1) = φ(xu,...,v−1, bxv,...,r−1, b0, b1, bu,...,r−1),
(3) ĥa,bcu,...,r−1

(xu, . . . , xr−1, c0, c1) = φ(axu,...,v−1, bxv,...,r−1, c0, c1, cu,...,r−1),

where a0, a1, b0, b1, c0, c1 ∈ A are random numbers (not necessarily different). Note that for g we have
two different cases depending on whether a randomized prefactor comes from the first component or the
second.

While correctness follows in all four cases directly from (∗), we omit the security proof for now and
refer to the general cases discussed in Section 4.3.

Please note that in all of these randomized encodings the components (given by some φ0, φ1, φ2) are
in fact linear combinations of terms of types (i), (ii) or (iii) and of x-degree (r− u)/2 = 2n−1. Hence, we
can iteratively apply the four randomized encodings again to get to an even smaller x-degree.

The first two components of (1), (2-1), (2-2), (3) (which come from some φ0, φ1) are simple terms
of types (i)–(iii). For these we can iterate immediately, i.e. apply (1), (2-1), (2-2), (3) with either u ←
u, r ← v, v ← (u + r)/2 or u ← v, r ← r, v ← (u + r)/2 to get encodings of the components of x-degree
(r−u)/2 = 2n−1 and output size 3. In the third components (corresponding to φ2) we have sums of type
(i)–(iii) terms. Here, we construct a randomized encoding for each summand (using suitable instances
of (1), (2-1), (2-2), (3)) and then combine them to a randomized encoding of the sum.8 Overall, this
leads to four randomized encodings of output size 3 (as above) and x-degree 2n−1: two for the first two
components and two for the two summands of the third component. If we follow this path and reduce
the x-degree iteratively by a factor 2 in each round, then we quickly see that we get (using concatenation
Lemma 1 and composition Lemma 2) an overall randomized encoding of x-degree 1 (and a-degree ≤ 2)
of output size in O(4n) = O(m2) similar to the results in [CFIK03].

However, if we investigate our randomized encodings above a bit closer, then we see that we produce
a significant amount of identical encodings multiple times. For example, if we set a1 = b1 then the second
component of both f̂∗(xu, . . . , xr−1, a0, a1) and ĝa∗(xu, . . . , xr−1, b0, a1) is xv,...,r−1 − a1. Analogously, we
get a joined component for (1) and (2-2) if a0 = b0. Similarly, we see that for b0 = c0 the first compo-
nents of both (2-1) ĝa∗(xu, . . . , xr−1, b0, b1) and (3) ĥa,b∗ (xu, . . . , xr−1, b0, c1) are identical: axu,...,v−1 − b0.
Analogously, for (2-2) and (3) for b1 = c1. See also Fig. 2. Thus, if we choose the randomness suitably,
it is enough to produce some of the encodings in (1), (2-1), (2-2), (3) only once and then use them in
multiple reconstructions. E.g. this allows us to save 4 components when constructing a randomized en-
coding of (f∗(xu, . . . , xr−1), g

a
∗(xu, . . . , xr−1), g

b
∗(xu, . . . , xr−1), h

a,b
∗ (xu, . . . , xr−1)). Please note that while

in general one cannot use the same encoding in different reconstructions without losing privacy, our con-
struction allows the multiple use of encodings—we refer to Corollary 1 for the formal result. We can now
conclude that we need for a randomized encoding of
7 To simplify the notation we often write ∗ for the additive constant index if the index is clear from context.
8 We omit details for this combination, which is treated in general in Corollary 1.
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f∗(xu, . . . , xr−1) ga∗(xu, . . . , xr−1) gb∗(xu, . . . , xr−1) ha,b
∗ (xu, . . . , xr−1)

f∗(xu, . . . , xv−1) ga∗(xu, . . . , xv−1) f∗(xu, . . . , xv−1) ga∗(xu, . . . , xv−1)

f∗(xv, . . . , xr−1) f∗(xv, . . . , xr−1) gb∗(xv, . . . , xr−1) gb∗(xv, . . . , xr−1)

ga1
∗ (xu, . . . , xv−1) ha,a1

∗ (xu, . . . , xv−1) gb1∗ (xu, . . . , xv−1) ha,b1
∗ (xu, . . . , xv−1)

ga0
∗ (xv, . . . , xr−1) gb0∗ (xv, . . . , xr−1) hb,a0

∗ (xv, . . . , xr−1) hb,b0
∗ (xv, . . . , xr−1)

Fig. 2: Components in the encodings (1) [left], (2-a) [left-middle], (2-b) [right-middle], (3) [right]. Identical colors
(apart from black) mark identical encodings, black/dashed boxed components are duplicates and therefore not
produced again.

(a) f∗(xu, . . . , xr−1): 2 type (i) terms (1st, 2nd component of f̂) and 2 type (ii) terms (summands in
the 3rd component of f̂),

(b) each ga∗(xu, . . . , xr−1), gb∗(xu, . . . , xr−1) : 2 additional type (ii) terms (1st (2-1) or 2nd (2-2) com-
ponent of ĝ + one summand in the 3rd component) plus 1 type (iii) term (summand in the 3rd

component).
(c) ha,b∗ (xu, . . . , xr−1): 2 additional type (iii) terms (summands in the 3rd component of ĥ).

Please note that (b) assumes that (a) has been already produced; (c) assumes that both (a) and
(b) have been produced. Fortunately, this is the only case that occurs in our iterative construction, i.e.
whenever we need to construct a term ha,b∗ we also need to construct the corresponding ga∗ , gb∗, f∗ linear
in the same monomial. Analogous, whenever we need to construct a ga∗ or gb∗ we also need to construct
an f linear in the same monomial.

We want to briefly look at two successive iteration steps to explain why this is the case.
We start with our monomial f(x0, . . . , xm−1) = x0,...,m−1. Then the randomized encoding
f̂∗(x0, . . . , xm−1, a0,...,2v−1, a2v,...,m−1) for v = 2n−2, r = m = 2n, u = 0 from (1) leads to

- 2 terms f∗(x0, . . . , x2v−1), f∗(x2v, . . . , xm−1) and 2 terms g
a2v,...,m−1
∗ (x0, . . . , x2v−1),

g
a0,...,2v−1
∗ (x2v, . . . , xm−1) in the 3rd component of f̂ (see also left column in Fig. 2).

If we go one iteration further, i.e. apply (1), (2-1), (2-2), (3) to these four terms,
f̂∗(x0, . . . , x2v−1, a0,...,v−1, av,...,2v−1) leads again to 2 terms f∗(x0, . . . , xv−1), f∗(xv, . . . , x2v−1)
and 2 terms g

av,...,2v−1
∗ (x0, . . . , xv−1), g

a0,...,v−1
∗ (xv, . . . , x2v−1). But now we also get from

ĝ
a2v,...,m−1
∗ (x0, . . . , x2v−1, b0,...,v−1, av,...,2v−1) in the case (2-1):9

- 2 additional terms g
a2v,...,m−1
∗ (x0, . . . , xv−1), g

b0,...,v−1
∗ (xv, . . . , x2v−1), and one term

h
av,...,2v−1,a2v,...,m−1
∗ (x0, . . . , xv−1) (see Fig. 2, right-middle column).

We see that we get in fact the 4 terms f∗, g
av,...,2v−1
∗ , g

a2v,...,m−1
∗ , h

av,...,2v−1,a2v,...,m−1
∗ all linear in x0,...,v−1.

Furthermore, observe that each type (ii) term only occurs with a corresponding type (i) term lin-
ear in the same monomial and that each ha,b∗ only occurs with corresponding ga∗ , g

b
∗ and f∗ terms

all linear in the same monomial. Finally note that a type (iii) term ha,b∗ (xu, . . . , xr−1) again leads to
two type (iii) terms ha,b1∗ (xu, . . . , xv−1), h

b,b0
∗ (xv, . . . , xr−1) (Fig. 2, right). As we have seen, we also

have ga∗(xu, . . . , xr−1), g
b
∗(xu, . . . , xr−1). Then we have to apply (2-1) to ga∗(xu, . . . , xr−1) and (2-2) to

gb∗(xu, . . . , xr−1) (or vice versa) to ensure that ga∗(xu, . . . , xv−1) and gb∗(xv, . . . , xr−1) (or gb∗(xu, . . . , xv−1)

and ga∗(xv, . . . , xr−1)) are already available for the reconstruction of ha,b∗ (xu, . . . , xr−1). The two different
cases are (dashed) underlined in Fig. 2.
9 Analogously for (2-2).
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Overall we see that the number of needed encodings as described by (a), (b), (c) hold generally in our
construction. Hence we can deduce the output complexity of our iterative approach, namely:

f 1
·2 //
·2

""

2
·2 //
·2

""

4
·2 //
·2
""

8
·2 //
·2
##

16
·2 //
·2
$$

32
·2 //
·2
$$

64
·2 //
·2

$$

· · ·

g − 2
·2 //
·1

""

8
·2 //
·1
##

24
·2 //
·1
##

64
·2 //
·1
$$

160
·2 //
·1
%%

384
·2 //
·1

$$

· · ·

h − − 2
·2 // 12

·2 // 48
·2 // 160

·2 // 480
·2 // · · ·

We easily see that the number of type (i) terms f is in O(2n) = O(m), of type (ii) terms g is in
O(2nn) = O(m log(m)) and type (iii) terms h is in O(2nn2) = O(m(log(m))2). Hence we get overall
complexity O(m(log(m))2) since we have to construct all of these terms. This is already a significant
improvement over the currently best-known result O(m2) [CFIK03].

However, the result is not ideal yet. We can further improve it by combining additive components:
Consider Rec′(y0, y1, y2, y3, y4) = y0y1 + y2y3 + y4 and

φ′(x, y, a, b, x′, y′, a′, b′, c)

:= (x− a, y − b, x′ − a′, y′ − b′, bx+ ay + b′x′ + a′y′ − ab− a′b′ − c)

Then Rec′ ◦ φ′ = xy + x′y′ − c. Thus for v = r/4:

f̂add(x0, . . . , xr−1, a0,...,v−1, av,...,2v−1, a2v,...,3v−1, a3v,...,r−1)

= φ′(x0,...,v−1, a2v,...,r−1xv,...,2v−1, a0,...,v−1, bv,...,2v−1, x2v,...,3v−1,

a0,...,v−1x3v,...,r−1, a2v,...,3v−1, b3v,...,r−1, a0,...,2v−1a2v,...,r−1)

is a randomized encoding of the additive 3rd component of f̂∗ (from (1)), i.e. of a2v,...,r−1x0,...,2v−1 +

a0,...,2v−1x2v,...,r−1 − a0,...,2v−1a2v...,r−1. Note that f̂add only has 5 components compared to 6 that are
needed if we construct each summand separately. Analogous results hold for the additive components of
ĝa∗ , ĝ

b
∗, ĥ

a,b
∗ . Overall this reduces the output complexity down to O(m log(m)).

4.3 Technical Lemmas and Formal Results

We now want to present a generalization of the previous construction. The proofs to all statements in
this section are available in Appendix A. We also refer to Appendix A for additional examples, e.g.
Examples 1, 2, 4 and 5.

We start with the main technical Lemmas 3 to 5. The three lemmas discuss the three cases (i)–(iii)
already presented above, i.e. no (Lemma 3), one (Lemma 4) or two randomized prefactors (Lemma 5).
While in the previous special case the randomized encoding of x0,...,m−1 consisted of terms either linear
in x0,...,t−1 or in xt,...,m−1, the more general lemmas instead allow to construct a randomized encoding
linear in any number 1 ≤ r1 ≤ m of monomials xS1,j

:=
∏
k∈S1,j

xk for {0, . . . ,m− 1} =
⋃̇
j∈Zr1

S1,j any
disjoint union.10 E.g. we can split x0,...,8 into terms linear in the three monomials x0,...,2, x3,...,5 or x6,...,8.

We will first state the lemmas and then explain how they can be combined into a low-degree encoding
of any product x0 · · ·xm−1. Since we later apply the lemmas several times in different degrees, they are
stated in a generic degree r instead of m to avoid confusion. Furthermore, we use the following notation:
For ∅ ≠ J = {j0, . . . , js} ⊂ Zr with representatives 0 ≤ j0 < · · · < js < r, js+1 := j0 and a set
of functions {fij , (i, j) ∈ Z2

r}, define the product fJ :=
∏s
v=0 fjv,jv+1−1. E.g. the set J = Z5 leads to

fJ = f0,0f1,1 · · · f4,4 and J = {2, 4, 5} ⊂ Z6 to fJ = f2,3f4,4f5,1.

10 We use indices in Zr because they wrap around nicely. To be more formal, we will sometimes use i for the
unique representative of i ∈ Zr in {0, . . . , r − 1}.
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Lemma 3. Let f(x0, . . . , xr−1) = x0,...,r−1 − c for some consant c ∈ R. There is a randomized encoding
f̂ with randomness and output size both r(r − 1) + 1. The randomized components of f̂ have the form
fii = xi−ai, and fij = xiai+1,...,j−ai,...,j, and fadd =

∑
i∈Zr xiai+1,...,i−1−aadd for randomness ai, ai+1,...,j

for i ̸= j ̸= i− 1 and i, j ∈ Zr, and aadd = c+
∑
J⊂Zr,|J|>1(−1)|J|aJ where aJ :=

∏s
v=0 ajv,...,jv+1−1.The

reconstruction function has the form Rec(fij , fadd) := fadd +
∑
J⊂Zr,|J|>1 fJ .

Proof. We first note that there are exactly r2 − r different factors in products fJ associated with sets J
with |J | > 1, since a factor is defined by its start jt and end index jt+1, i.e. 2 ordered samples from Zr
drawn without replacement. We show first that

∏
j∈Zr xj − c = fadd +

∑
J⊂Zr,|J|>1 fJ := Rec(fij , fadd)

for a suitable structured randomness aadd (constant in the xj).11 Note that apart from
∏
j∈Zr xj each

non-constant summand in the expression on the right is of the form xjaj+1,...,k−1g for some specific term
g and some j, k.12 Each of these terms (for a fixed g, j and k) occurs exactly once with a positive sign for
a J which contains jl = j, jl+1 = k ̸= j + 1 for some l, i.e. as a summand in fjl,k−1g = (xjlajl+1,...,k−1 −
ajl,...,k−1)g or fadd if k = j.13 It occurs exactly once with a negative sign for a J ′ = J ∪ {j + 1}, i.e.
as a summand in fjl,jlfjl+1,k−1g = (xjl − ajl)(xjl+1ajl+2,...,k−1 − ajl+1,...,k−1)g. Thus these terms cancel
out. It remains only

∏
j∈Zr xj and constant random terms (in the xj) which add up to −c for a suitably

chosen (structured) randomness aadd. Namely, aadd = c+
∑
J⊂Zr,|J|>1 fJ(0, . . . , 0) if we consider fJ as a

function of the xi. This shows the correctness of the randomized encoding.
For privacy, we first choose uniformly random (and in particular mutually independent) ai,...,j ∈ R

for i ̸= j + 1 and only aadd structured, i.e. a (deterministic) polynomial in the ai,...,j . Now the simulator
samples its first r(r − 1) components f̃ij (corresponding to the fij) uniformly from R. Since each fij
contains an additive random mask (and all masks are independent), the fij are also distributed uniformly
if the ai,...,j are sampled uniformly (cf. Definition 1). For the last component f̃add (corresponding to fadd),
the simulator computes f̃add = −Rec(f̃ij , 0) + f(x0, . . . , xm−1). By construction fadd = −Rec(fij , 0) +
f(x0, . . . , xm−1) and f̃add are equally distributed, which shows privacy.

Remark 3. Observe that r of the encodings have constant leading coefficient 1 as a polynomial in
x0, . . . , xr−1, i.e. the fii. Moreover, there are r(r − 2) + 1 encodings where the leading coefficient is
one random element, i.e. the fij for i ̸= j ̸= i− 1 and fadd.

Lemma 4. Let ga(x0, . . . , xr−1) = ax0,...,r−1−c for some a, c ∈ R. Let µ ∈ Zr be a fixed index and define
Tµ := {(i, j) ∈ Z2

r : j − µ ≤ i− µ− 1} and Sµ = Z2
r \ Tµ. Let fij , aij ,Rec be as in Lemma 3. Then there

is a randomized encoding ĝa,µ of ga with randomness and output size both r(r − 1) + 1. The randomized
components of ĝa,µ have the form

(i) ga,µij = fij for (i, j) ∈ Sµ.
(ii) ga,µµµ = axµ − ba,µµ , ga,µµj = axµaµ+1,...,j − ba,µµ,...,j for j ̸= µ, µ− 1.
(iii) ga,µij = xib

a,µ
i+1,...,j − b

a,µ
i,...,j for (i, j) ∈ Tµ \ ({µ} × Zr) and j ̸= i− 1.

(iv) ga,µadd = axµaµ+1,...,µ−1 +
∑
i∈Zr\{µ} xib

a,µ
i+1,...,i−1 − b

a,µ
add.

for randomness ba,µi,...,j for (i, j) ∈ Tµ and j ̸= i − 1, and ba,µadd = c +
∑
J⊂Zr,|J|>1(−1)|J|b

a,µ
J where

ba,µi,...,j := ai,...,j for (i, j) ∈ Sµ.

Proof. We can simply copy the proof of Lemma 3 for the variables (axµ, xj , j ̸= µ) and coefficients ba,µ∗
instead of a∗. Please note that again we have to choose the ba,µi,...,j uniformly random from R and only
ba,µadd is structured.

Remark 4. First note that we use the additional index µ to determine to which encoding the prefactor
a is assigned. Moreover, observe that r − 1 of the new terms have as leading coefficient a product of
two random elements, i.e. the axµaµ+1,...,j in ga,µµj , g

a,µ
add for j ̸= µ. The other new encodings all have one

random prefactor: |Tµ| − r encodings from (ii), (iii) as well as r − 1 summands in ga,µadd .
11 We remark that the sum is exponential in r. We will however usually use r small enough that this local

computation does not affect the overall runtime significantly.
12 Take j := min{i : xiai+1,...,k a factor of the summand for some k ̸= i+ 1}.
13 The other elements of J are uniquely determined by g.
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Lemma 5. Let ha,b(x0, . . . , xr−1) = abx0,...,r−1−c for some a, b, c ∈ R. Let µ, ν ∈ Zr be two fixed indices
with µ ̸= ν. Let fij, g

a,µ
ij , gb,νij , ba,µij , bb,νij , Sµ, Sν , Tµ, Tν , Rec be as in Lemmas 3 and 4. Then there is

a randomized encoding ĥa,b of ha,b with randomness and output size both r(r − 1) + 1. The randomized
components of ĥa,b have the form:

(i) hij = fij for (i, j) ∈ Sµ ∩ Sν
(ii) hij = ga,µij for (i, j) ∈ Tµ \ Tν , hij = gb,νij for (i, j) ∈ Tν \ Tµ
(iii) hµj = axµb

a,µ
µ+1,...,j − cµ,...,j for (µ, j) ∈ Tν , j ̸= µ, µ − 1; hνj = bxνb

b,ν
ν+1,...,j − cν,...,j for (ν, j) ∈

Tµ, j ̸= ν, ν − 1;
(iv) hij = xici+1,...,j − ci,...,j for µ ̸= i ̸= ν and (i, j) ∈ Tµ ∩ Tν and j ̸= i, i− 1

(v) hadd = axµb
a,µ
µ+1,...,µ−1 + bxνb

b,ν
ν+1,...,ν−1 +

∑
i∈Zr\{µ,ν} xici+1,...,i−1 − cadd

for randomness ci,...,j for (i, j) ∈ Tµ ∩ Tν ∧ (j ̸= i − 1) and cadd = c +
∑
J⊂Zr,|J|>1(−1)|J|cJ where

ci,...,j := ai,...,j for (i, j) ∈ Sµ ∩ Sν , ci,...,j := ba,µi,...,j for (i, j) ∈ Tµ \ Tν , ci,...,j := bb,νi,...,j for (i, j) ∈ Tν \ Tµ.

Proof. Note that we can in fact consistently set ci,...,j = ai,...,j for (i, j) ∈ Sµ ∩ Sν , since then (i+ 1, j) ∈
Sµ ∩ Sν if i ̸= j. Set ci,...,j = ba,µi,...,j for (i, j) ∈ Tµ \ Tν , since then (i + 1, j) ∈ Tµ \ Tν apart from i ̸= µ.
Analogously ci,...,j = bb,νi,...,j for (i, j) ∈ Tν \ Tµ. Furthermore, (i, j) ∈ Tµ ∩ Tν ⇒ (i + 1, j) ∈ Tµ ∩ Tν
for µ ̸= i ̸= ν. In particular, (i, i − 1) ∈ Tµ ∩ Tν . The claim now follows as in Lemma 3 with variables
(axµ, bxν , xj : µ ̸= j ̸= ν) and randomness c∗ instead of a∗.

Remark 5. Observe that the two indices µ and ν are again used to assign the two prefactors a and b to
the encodings linear in xµ and in xν . Moreover, note that the number of new terms with two randomized
prefactors is r, i.e. the terms hµj for j − ν ≤ µ− ν − 1 and hνj for j − µ ≤ ν − µ− 1. All other new
encodings and summands thereof have one variable prefactor.

Remark 6. Please also note that in the previous lemmas, we always get one (unstructured) random
number for each new component apart from the additive component. For the additive component, we get
one structured random number.

The previous technical lemmas are combined as in the special case in Section 4.1. Namely, we partition
our variables x0, . . . , xm−1 into r1 ≤ m sets, i.e. we choose a partition {0, . . . ,m−1} =: S0,0 =

⋃̇
i∈Zr1

S1,i

and consider monomials xS1,i
=
∏
j∈S1,i

xj . Obviously we have f(x0, . . . , xm−1) = x0 · · ·xm−1 =∏
j∈Zr1

xS1,i . Hence we can apply Lemma 3 with r ← r1, xi ← xS1,i . We receive encodings (f
(1)
ij , f

(1)
add)

which are linear in the xS1,i . Some of these encodings have no randomized leading coefficient (e.g. the
f
(1)
ii ). For these terms, we can apply Lemma 3 again by partitioning S1,i into smaller sets. For terms

with one randomized leading coefficient like the f (1)ij (i ̸= j ̸= i− 1) we analogously apply Lemma 4. By
repeatedly applying the Lemmas 3 to 5 we then get encodings linear in some target elementary monomials
xSℓ,i .

Formally, this approach corresponds to a series of refinements S0,0 =
⋃̇
i∈Zrk

Sk,i of disjoint unions of
non-empty sets for 1 = r0 < r1 < · · · < rℓ ≤ m, i.e. ∀0 < k ≤ ℓ ∀i ∈ Zrk ∃i0 ∈ Zrk−1

: Sk,i ⊆ Sk−1,i0 .
We get a tree structure visualized in Figure 3 where Ik,i := {j ∈ Zrk+1

: Sk+1,j ⊆ Sk,i} is the number of
children of Sk,i. To later map the indices of these refinements to the generic indices in the lemmas, we
fix a bijective map ψki : Z|Ik,i| → Ik,i for all 0 ≤ k ≤ ℓ and 0 ≤ i < rk.

In terms of these general refinements, our construction (so far) defines for each monomial xSk,i that
occurs in the construction, a randomized encoding linear in the xSk+1,j

for j ∈ Ik,i. Now in order to
combine these single randomized encodings into a randomized encoding of the whole f(x0, . . . , xm−1) =
x0 · · ·xm−1 we need to use concatenation and composition as described before. However, the classical
concatenation Lemma 1 assumes independent randomized encodings to be concatenated. In constrast,
our constructions in Lemmas 3 to 5 use the same encodings, e.g. the fij in Lemma 3 and in Lemma 4
(i), for different components. Fortunately, for the encodings that occur in Lemmas 3 to 5 this still
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S1,0 ∪̇ S2,0 Sℓ−1,0 ∪̇ Sℓ,0

S0,0 ∪̇ S1,1 S2,0 Sℓ,1

S1,2 Sℓ,2

Fig. 3: Tree-like structure of a series of refinements of partitions.

leads to a secure concatenation, e.g. ((fij)i−1̸=j , fadd, (g
µ,a
ij )(i,j)/∈Sµ , g

µ,a
add ) is a randomized encoding of the

concatenation (f, ga) = (x0 · · ·xr−1, ax0 · · ·xr−1).14 Formally, this property is described by:

Corollary 1. Let f, g be two functions. Let f̂ be a randomized encoding of f with additive component
f̂0 and simulator Simf . Furthermore, let ĝ be a randomized encoding of g with additive component ĝ0
and simulator Simg. Assume that for all i, j > 0 (Simf )i and (Simg)j are independent uniformly random
numbers. Let J = {j > 0|∃i > 0 : f̂i = ĝj}. Then ((f̂i)0≤i, (ĝj)j /∈J) is a randomized encoding of (f̂ , ĝ) with
output size k+k′−|J |. Moreover, if f̂0, ĝ0 map to the same (additive) group then ((f̂i)0<i, (ĝj)j /∈J∪{0}, f̂0+

ĝ0) is a randomized encoding of f + g with output size k + k′ − |J | − 1 and additive component f̂0 + ĝ0.

Remark 7. We can repeatedly apply Corollary 1 to find a randomized encoding of the concatenation of
many functions. E.g. if we use the randomized encoding of our monomial x0 · · ·xm−1 we get from Lemma 3
(beyond others) the components f ′ = (xS1,i

− ai, (xS1,i
ai+1,...,j − ai,...,j)j∈Zr1 :j ̸=i,i−1). If we now apply

Lemma 3 to the first component and Lemma 4 (with some fixed µ ∈ Z|I1,i|) to all other components, then
Corollary 1 (applied (r1 − 2) times) leads to a randomized encoding of the concatenation f ′ of output
size |I1,i|2 − |I1,i| + 1 + (r1 − 2)(|Tµ| − |I1,i| + 1). Please also note that exactly as in the special case,
we see that the terms (i) in Lemma 4 are always already constructed by the corresponding Lemma 3
randomized encoding linear in the same terms; analogously for Lemma 5.

Remark 8. We can also use Corollary 1 to find a randomized encoding for additive terms like fadd. For
example, if we take a randomized encoding of our monomial x0 · · ·xm−1 using Lemma 3 we get the
additive component fadd =

∑
i∈Zr1

xS1,i
ai+1,...,i−1 − aadd. We assume that Lemma 3 has already been

applied to the xS1,i
, e.g. as part of the randomized encoding of fii and we are only interested, how

many new outputs are needed to also construct fadd. Thus, if we apply Lemma 4 to each summand
xS1,iai+1,...,i−1 (where we consider once xS1,0a1,...,−1 − aadd to account for the final constant), then we
only need to construct the terms from (ii),(iii),(iv), since we assumed that (i) is already accounted for.
Overall these are r1(|Tµ| − r1) + 1 (additional) terms, where r1(|Tµ| − r1) comes from using Lemma 4
(ii), (iii) for each summand and the +1 comes from the sum of the r1 additive (iv) terms that can be
combined by Corollary 1 into one additive component.

Remark 9. Please also note that the previous Corollary 1 also applies to the randomness used in the
additive components. Namely, if aadd is a summand of the additive component f̂0 and badd is summand of
the additive component ĝ0, then (aadd + badd) is obviously a summand of f̂0 + ĝ0, although slightly more
structured. In particular, even after applying the Corollary, we still have exactly one structured random
number for each additive component and one unstructured random number for each other component of
the overall randomized encoding.

In summary, we generate with our Lemma 3 a randomized encoding f̂ (1) of f linear in the xS1,j
.

We then generate for each component f̂ (1)j of f̂ (1) a randomized encoding f̂ (2)j linear in the xS2,i
using

14 Using encodings in different reconstructions is in general not secure (at least not for the straightforward com-
bination of the simulators)—see Example 3.
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Lemmas 3 to 5 (and in the case of an additive term also Corollary 1). Corollary 1 allows us to concatenate
the f̂ (2)j into a randomized encoding f̂ (2) of f̂ (1). Finally the two encodings f̂ (1) and f̂ (2) can be composed
with Lemma 2 to a randomized encoding of f linear in the xS1,i . We iterate over the previous steps until
we arrive at a randomized encoding of f linear in the xSℓ,j . An algorithmic version of our construction
is included in Protocol 2, where the output set contains the encodings of f linear in xSℓ,j . Please also
consider Figure 8 which illustrates how the different encodings are combined under concatenation and
composition.

4.4 Recursive Formula for Output Size

We next want to compute the output and randomness for each of our randomized encodings of xS0,0
, i.e.

for each choice of a series of refinements of partitions of S0,0 or equivalently for each tree structure as in
Figure 3. Since our randomized encodings were constructed iteratively, we will also develop an iterative
formula first. To this end, let N0

Sk,j
be the number of level ℓ encodings linear in xSℓ,i , 0 ≤ i < rℓ, needed

to compute xSk,j − c for some c ∈ R. Furthermore, let N1
Sk,j

be the number of additional encodings
needed to also construct axSk,j − c′ for some a, c′ ∈ R. Finally, let N2

Sk,j
be the number of yet additional

encodings needed to construct abxSk,j − c′′ for some a, b, c′′ ∈ R. Recall that these are just the cases (a),
(b), (c) discussed in the special case above. From Lemma 3 we then get

N0
Sk,j

=
∑
i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 2)
∑
i∈Ik,j

N1
Sk−1,i

+
∑
i∈Ik,j

(N1
Sk+1,i

− 1) + 1

=
∑
i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 1)
∑
i∈Ik,j

N1
Sk+1,i

− |Ik,j |+ 1 (2)

where the first sum corresponds to the f (k+1)
ii . The factor (|Ik,j | − 2) comes from choices of j ̸= i, i − 1

for each i in the f (k+1)
ij . The third sum accounts for the additive term as in Corollary 1 and Remark 8,

i.e.
∑
i∈Ik,j (N

1
Sk+1,i

− 1) for (ii),(iii) in Lemma 4 plus one additional additive term. We further get

N1
Sk,j

=
∑

i∈Ik,j\{µ}

N1
Sk+1,i

|T ′
µ ∩Mi|+(|Ik,j | − 1)N2

Sk+1,µ
+N1

Sk+1,µ
−|Ik,j |+1 (3)

where Mι = {ι} × Ik,j and the T ′
µ := ψkj(Tψ−1

kj (µ)), T
′
ν := ψkj(Tψ−1

kj (ν)) are defined as in Lemma 4
using the natural identifications ψkj : Z|Ik,j | → Ik,j .15 We receive this term again from Lemmas 3
to 5, where the additive term contributes N2

Sk+1,µ
+
∑
i∈Ik,j\{µ}N

1
Sk+1,i

−|Ik,j | + 1. The intersection
|T ′
µ ∩Mi ∩ {(i, j) : j ̸= i − 1}| = |T ′

µ ∩Mi| − 1 together with the sum over i ̸= µ accounts for the cases
(iii) in Lemma 4, the single N1

Sk+1,µ
for g(k+1),a,µ

µµ . We also have the additional (|Ik,j − 2|)N2
Sk+1,µ

for the

g
(k+1),a,µ
µj for j ̸= µ, µ− 1 in (ii) of Lemma 4. Altogether we get Equation (3). Furthermore, we have

N2
Sk,j

=
∑
i∈Ik,j

N
1+|{i}∩{µ,ν}|
Sk+1,i

|Mi ∩ T ′
µ ∩ T ′

ν | − |Ik,j |+ 1 (4)

The additive term is again constructed as before, where the −|Ik,j |+ 1 results from using a sum over all
(v) components as in Corollary 1. The summands of the additive term are combined as before with the
cases j ̸= i−1 of (iii) and (iv) of Lemma 5. Similarly, the h(k+1)

µµ , h
(k+1)
νν terms complement the exclusions

j ̸= µ in the other cases. Using Mµ ∩ T ′
µ =Mµ and Mν ∩ T ′

ν =Mν one can quickly deduce Equation (4).

15 While N1
S1,i

and N2
Sk,j

below depend on µ and ν, these indices can be chosen freely, i.e. we can choose to which
components we want to assign the prefactors. For this reason, we decided to not mark the two numbers with
another µ or ν index.
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4.5 Application in MPC Protocols and Asymptotic Behavior

From Protocol 1 we already know how to use the new randomized encodings f̂ = (yl)0≤l<k of
f(x0, . . . , xm−1) = xS0,0

in an MPC protocol. Following the discussion above, we know that the yl

consist of terms linear in xSk,ℓ for j ∈ Zrℓ and are of the form f
(l)
∗ , g

(l),∗
∗ , h

(l)
∗ . Hence if we set Nγ

Sℓ,j
= 1

for all γ = 0, 1, 2 (one for each yl) Equations (2) to (4) allows us to compute the output size k. In our
MPC Protocol 1 we have to send the resulting k = N0

S0,0
encodings plus the initial |S0,0| = m masked

values xj − aj , i.e. we get bandwidth N0
S0,0

+m.
We have seen in Sections 4.2 and 4.3 that the yl are multivariate polynomials in the input variables

x0, . . . , xm−1. They do not necessarily satisfy (I)–(III) in Section 4.1 yet. However, recall that we can
rewrite multivariate polynomials like yl in terms of the masked values xj − aj as in (1) and then (I)–
(III) are satisfied. The coefficients be of this expansion in the xj − aj are binomial tuples, which are
polynomials in the aj and the randomized prefactors of yl. In addition to the (structured) randomness
in these binomial tuples, our construction also needs the randomness from the aij , bij , cij , aadd, badd, cadd
that result from Lemmas 3 to 5 and Corollary 1.16 Hence we can define a polytuple as follows:

Definition 2. Let f be a multivariate polynomial in x0, . . . , xm−1 and f̂(x0, . . . , xm−1, ã0, . . . , ãt′) =
(yl)0≤l<k a randomized encoding of f constructed with our iterative approach, i.e. the ãj are the
ai,...,j , bi,...,j , ci,...,j , aadd, badd, cadd which result from Lemmas 3 to 5 and Corollary 1. Then a polytuple
JâK to f̂ consists of a shared structured random number JãjK for each ãj , 0 ≤ j ≤ t′, and one binomial
tuple for each yl, 0 ≤ l < k.

Remark 10. Recall from Section 3.4 that a term xS − aS can be computed with a 2|S|− 1 binomial tuple
for any finite set S; a term axS − bS , as well as a term abxS + cS for randomness a, b, bS , cS ∈ R, each
need a binomial tuple of size 2|S| compensating for the additional prefactor(s), i.e. in the notation of
Section 3.4 a tuple (abe)e∈E or (abbe)e∈E .

Since we know from Lemmas 3 to 5 and the subsequent remarks that for each encoding we get exactly
one new (possibly structured) random variable, we can also use the iterative formulas in Equations (2)
to (4) to compute the polytuple size. Namely, if we replace Nγ

Sk,j
, γ = 0, 1, 2, in Equations (2) to (4) by

the corresponding tuple sizes T γSk,j and set T 0
Sℓ,j

+ 1 = T 1
Sℓ,j

= T 2
Sℓ,j

= 2|Sℓ,j |, then T γS0,0
will be the tuple

size needed to compute xS0,0
= x0 · · ·xm−1.

Please note that the size of a polytuple, as well as the output size of the randomized encoding
strongly depend on the chosen tree structure (cf. Figure 3), i.e. partitions. To better understand how the
tree structure affects the asymptotic behavior of the bandwidth and tuple size, we consider trees with
a fixed number b = |Ik,j | ≥ 1 of factors multiplied in each node. Hence we can compute x0,...,m−1 for
m = λbn iteratively with Sn−k,j = {λbk · j + i : 0 ≤ i < λbk}, 0 ≤ j < bn−k, 0 ≤ k ≤ n, i.e. each degree
bk term splits into b encodings of degree bk−1 until we reach a level of elementary randomized encodings
of degree λ ≥ 1. For an explicit calculation in the special case b = 2, n = 3, λ = 2 we refer to Example 5.
Now we can state the main result on the asymptotic behavior, which we prove in Appendix A.

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared inputs can be constructed

with a polytuple of size O
(
2λ
(
b2+1
2

)n)
with bandwidth O

((
b2+1
2

)n)
. In the special case b = 2, one only

needs a tuple of size 2n−2((2λ−1)n2+(2λ+2−2λ+1)n+4(2λ−2))+1. For b = 2, the bandwidth becomes
2nn+ 1 +m.

Remark 11. If we fix λ small, e.g. λ ≤ 3, the case b = 2 leads to a bandwidth in O(m log(m)) and a tuple
size in O(m log(m)2) while in all cases b > 2 both values are not even in O(m2) (cf. Proof Theorem 1 and
Lemma 6 in Appendix A). Furthermore, we remark that for a mixed number of factors going into a node
the complexity will be dominated by the largest degree that occurs in a significant fraction of encodings.
Finally, note that the complexity analysis also covers the case of a binomial tuple for b = 1.
16 Recall from Section 3 that we also include terms deterministic in random variables in our randomness space.
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Polynomials in Several Variables. Up to this point, we mainly discussed the computation of products
x0 · · ·xm−1. However, the previous results directly transfer to general monomials xd = xd00 · · ·x

dm−1

m−1 ,d =

(d0, . . . , dm−1) simply by replacing the variables xi in the randomized encoding by xdii . A component of
the randomized encoding will then be linear in

∏
s∈Sℓ,j x

ds
s and can still be constructed using a binomial

tuple. From Section 3.4 we know that T 0
Sℓ,j

= T 1
Sℓ,j
− 1 = T 2

Sℓ,j
− 1 =

∏
s∈Sℓ,j (ds + 1)− 1. For the special

case where |Sℓ,j | = 1, e.g. Sℓ,j = {j}, we have T 0
{j} = dj +1, i.e. Jxdjj −a′j,dj K = −Ja′j,dj K+

∑dj
i=0Ja

i
jK(xj −

aj)
dj−i for a new mask a′j,dj . Then the tuple size needed to compute xd00 · · ·x

dm
m−1 follows recursively

from Equations (2) to (4). If dj = d/m ∈ N the tuple size to compute xd00 · · ·x
dm−1

m−1 for m = 2n becomes
2n−2(( dm )n2 + (3 dm + 4)n + 4 dm − 4) + 1. For details we refer to the proof of Theorem 1 in Appendix A
which contains the formulas (and proof thereof) whenever T 1

Sℓ,j
= T 2

Sℓ,j
. The result shows that in the total

degree d =
∑m−1
j=0 dj we can get down to complexity O(d log(m)2) in the tuple size. The same bound on

the complexity also holds for all other cases with d =
∑m−1
j=0 dj since we can choose µ, ν in Equations (3)

and (4) always such that the encodings with randomized coefficients are linear in those xSℓ,j for which
T 1
Sℓ,j

= T 2
Sℓ,j

is minimal, i.e. from the cases with dj ≤ d/m. Please recall that xd00 · · ·x
dm−1

m−1 was already
discussed in the introduction in Table 1.

Finally, we can combine the randomized encodings (and corresponding polytuples) for different mono-
mials in a general polynomial f with Corollary 1. Namely, if we have two randomized encodings f, g (as
constructed before), we need to generate common components only once and we can add the components
corresponding to f̂0 and ĝ0 in Corollary 1. Observe that all our encodings have the specific form expected
by Corollary 1, i.e. have an additive component. Overall we find for any multivariate polynomial f a
randomized encoding and a corresponding polytuple.

4.6 Composability and Security

From Section 4.2 we know how to evaluate a polynomial f(x0, . . . , xm−1) in a single round using poly-
tuples. With our MPC protocol Πpolynomial presented in Section 4.1 (cf. also Protocol 5), we are able to
do this in three different ways: (i) compute f(x0, . . . , xm−1) publicly (i.e. the result is an output of the
function to be evaluated with MPC), (ii) compute Jf(x0, . . . , xm−1)K (this can be used in other subpro-
tocols that require their inputs as shares), and (iii) compute f(x0, . . . , xm−1) − b where b is part of the
tuple for another polynomial g; this allows our protocol to be used in a multi-round fashion. While (i)
and (ii) are straightforward applications of the results from the previous subsections, we want to take a
closer look at the multi-round use, which allows a different form of tradeoff. Namely, we allow a (slightly)
larger number of communication rounds but can therefore further reduce the tuple size and bandwidth.

Multi-Round Evaluation. Assume the parties have agreed on a series of polynomials fj , 0 ≤ j < m
with input tuples Xj (not-necessarily disjoint) and a polynomial f in m variables. They want to compute
f(f0(X0), . . . , fm−1(Xm−1)). Thus, they agree on one of our randomized encodings for each fj and f . The
parties construct the corresponding polytuples JAjK, 0 ≤ j < m (for each fj) and JAK (for f) in the pre-
processing phase and receive inputs JXjK in the input phase. They run Πpolynomial(Xj , fj , continuation :=
(f, j)) in parallel to receive (xι − aι), 0 ≤ ι < |Xj |, 0 ≤ j < m in a single broadcast round. Then the
parties locally compute the shares of the elementary encodings and adjust an additive component by JajK
such that after the next broadcast every party can locally compute the public values zj := fj(Xj)− aj .
Finally, they call Πpolynomial((z1, . . . , zm), f, continuation := open). Observe that in this call, the first step
of Πpolynomial does not require any opening of elements as all zj are already public masked values.

Remark 12. Our protocol is also compatible with techniques used in Turbospeedz [BENO19] and
ABY2.0 [PSSY21] that use function-dependent preprocessing. This allows to reduce the online band-
width even more. As an extreme case, one would only have to open the randomized encoding without
the xj − aj which are then already accounted for. Using only Beaver multiplication (or binomial tuples),
this would exactly correspond to the complexity of ABY2.0 or Turbospeedz.
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In Sections 4.2 to 4.5 we have seen that by suitably choosing the randomized encodings and cor-
responding polytuples, we can trade-off bandwidth and tuple size while keeping the round complexity
minimal. The multi-round feature adds additional flexibility to our online phase. In particular, it allows
us to increase the round complexity slightly to prevent possible performance bottlenecks in bandwidth
and tuple size. Figure 1 illustrates this tradeoff between round complexity, bandwidth, and tuple size.
Please also see Example 1 in Appendix A for an explicit example. We remark that once the polynomial
to be evaluated and the network setup are known, a compiler can use the exact calculations of tuple
size and bandwidth from Equation (2) to determine the best performing polytuple solution before the
actual computation starts. Furthermore, ideal solutions for classical and regularly used setups can be
hard-coded.

Security. Our protocol Πpolynomial and the resulting full online protocol17 Πonline (cf. Protocol 5) are
secure and composable in the sense of universal composability (UC) [Can01], i.e. they can be combined
with other MPC protocols, while still giving the same guarantees as an idealized protocol (a so-called
functionality). The corresponding ideal functionalities are included in Appendix B.

Let JXK be a tuple of authenticated inputs to a polynomial f and JAK the respective tuple. Intu-
itively, the security of our approach can be argued as follows: All opened values apart from one additive
component of the randomized encoding are masked with a new random element from JAK, i.e. they are
encrypted with a one-time pad and hence are information-theoretically secure. The final additive encod-
ing contains the result minus a public constant (constructed from the other (pseudo)random components
of the randomized encoding). In particular, it contains no more information than the result itself.

All values that are opened are authenticated and thus their integrity can be checked with the usual
aggregated MAC check (cf. Protocol 7; recall that we now consider R to be a finite field). In particular,
our MAC check ΠCheckMAC is chosen identical to the classical MAC-check in [DKL+13]. Formally, we
then have the following security result for the online protocol18Πonline in Protocol 5:

Theorem 2. The protocol Πonline realizes Fonline in the (FJ·K,Frandom,Fcommit)-hybrid model with sta-
tistical security against any active adversary corrupting up to n− 1 parties.

Proof. The proof of this theorem is mostly the same as the security proofs for the corresponding on-
line protocols in [DKL+13,DPSZ12]. Both construct a suitable simulator, e.g. [DKL+13, Fig. 22]. The
only difference for a simulator in our protocol is in polynomial operations that are opened (i.e. calls to
Πpolynomial with continuation = open). Recall that the simulator works on random inputs (instead of
the real inputs for honest (input) parties) and simulates the protocol run with these inputs. It will then
receive an output z of the simulation that is most likely wrong. However, the ideal functionality Fonline
provides the simulator with the real output y. The simulator adjusts the share of the additive encoding19

y0 of one (simulated) honest party Pi by ∆ = y− z, i.e. [y0]i → [y0]i+∆. Since the simulator also knows
the MAC key α, it can change [αy0]i → [αy0]i + α∆. Thus the MAC check for the result will pass (if
corrupted parties did not misbehave) and the result will be the same in the real and ideal world.

4.7 The Generation of Polytuples

In the previous paragraphs, we have seen how to build an actively secure MPC online Protocol 5 which
consumes polytuples. Of course, the polytuples have to be generated first in an offline phase, which can
run well before the actual input data (the xj) becomes available. Since polytuples are entry-wise just
multivariate polynomials in random numbers, the parties can invoke any MPC protocol that can provide
(authenticated) shares of such terms. For example, for an actively secure offline phase we can plug in
any of the protocols [DPSZ12, KOS16, KPR18, Rei+23] to first generate a sufficient number of Beaver
triples. The parties can then use these Beaver triples to multiply shared random numbers, e.g. they run

17 Recall that apart from the Πpolynomial subprotocol, our online protocol Πonline coincides with the online proto-
cols from other SPDZ-like protocols like [DKL+13,KPR18].

19 Recall that our construction always comes with an additive encoding.
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Fig. 4: The left diagram shows the bandwidth overhead of the polytuple plugin offline phase compared to classical
SPDZ-like protocols for the computation of x0 · · ·xm−1. The right diagram shows the corresponding runtime
overhead. For the blue line we used the LowGear offline protocol [KPR18], for the red dotted line the MASCOT
protocol [KOS16].

the standard online protocol within the offline phase on the random numbers (instead of actual inputs).
Hence they can construct each entry of the polytuple.

The number of Beaver triples needed for this approach can again be computed by an iterative formula.
The result are the Eqs. (2) to (4) each shifted +|Ik,j |. Recall from Corollary 1 that we did combine all
additive terms into one constant and hence reduced the output and tuple size by −|Ik,j |. At the same
time, the new additive term became more complex, namely a sum of the original monomials in the
separate additive components. Even after combining the additive terms, we still need to build each of
these monomials with Beaver triples. Thus the reduction of output and tuple size does not carry over to
this generic offline approach and we have to add |Ik,j | in the iterative formulas.

Exactly as in the proof of Theorem 1 we can then deduce that the number of Beaver triples needed
(in the case b = 2 of binary trees) is still in O(m log(d)2) but with slightly larger constant. For example,
in the case b = 2 we then need 2n−2(( dm + 1)n2 + (3 dm − 1)n + 4 dm ) − 1 Beaver triples if we use di − 1
Beaver triples to compute

[
ad1
]

from [a]—of course, this is a rough estimate given that we often can
compute the power with around log(d1) Beaver triples (cf. also Remark 14 in Appendix A).

To simply plugin established offline protocols comes with certain advantages, e.g. that implementations
already exist and that we can profit from their future optimizations. However, this approach is not
optimized for the use with polytuples. In Appendices C and D we therefore present different new solutions
for an actively secure tuple generation (e.g. an extended sacrificing Protocol 10).

Finally, please recall that our approach is not restricted to the case of binary trees or 1(+1) round
protocols. In particular, if the generation of O(m log(d)2) Beaver triples is too slow, the parties can use a
different number of rounds and different randomized encodings to get an ideal performance for their use
case.

5 Implementation and Evaluation

To illustrate the practicality of our approach, we implemented the online phase in the MP-SPDZ frame-
work [Kel20] and ran several benchmarks. Furthermore, we implemented the plugin offline phase from
Section 4.7 which uses Beaver triples to generate the polytuples. Our implementations are available
at [Code]. These first benchmarks show that we can outperform the standard Beaver triple-based ap-
proach in the online phase for all tested applications. Our benchmarks include (i) evaluation of multivari-
ate polynomials, (ii) establishing a ranking of inputs (e.g. for auctions or e-voting), and (iii) evaluating
neural networks. We ran the experiments on a single machine (laptop with an i7-8565U CPU, 1.80GHz)
where each party runs on a single core/thread. We simulated different network settings for n = 2 parties
with standard Linux tools (see Appendix G for details). All tested latency settings are rather conserva-
tive and roughly correspond to parties located in the same country or continent. The tested latencies
are significantly lower than the 40ms assumed in the WAN setting (e.g. in [ON20]). The trends in all
benchmarks show that our approach will perform even better in such a setting.

With our implementation, we added elementary operations for powers and products to MP-SPDZ.
We use polytuples of minimal tuple size as in Theorem 1 for b = 2. Furthermore, we implemented
the case b = m, i.e. the case where polytuples become binomial tuples. For both variants, we also
implemented a prefix variant (along Appendix E) used for comparison in our benchmarks below. Moreover,
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Fig. 5: Benchmarks for Gaussian with 32 variables with 2ms (left), 5ms (middle), 10ms (right) delay; (blue:
default MP-SPDZ implementation, orange/dashed: ours).

our implementation supports MP-SPDZ’s parallelism model: arbitrarily many operations of the same type
can be combined and executed in one step (reducing the number of communication rounds).

Next, we describe our test applications and discuss the results of our benchmarks. We always compare
our implementation for b = 2 against the state-of-the-art implementation from MP-SPDZ. We do not
compare to the binomial tuples case since first benchmarks showed that the local computation times for
the tuple production are beyond practical (as expected by the large tuple size).

Polynomial Evaluation. As an example of a polynomial evaluation, we chose the power series expansion
of a multivariate Gauss functions exp(−⟨x, x⟩/2) up to degree d in each variable. This polynomial is then
simply evaluated by computing all needed (prefix) powers of all variables and multiplying them with our
polytuples. We compare this to the same computation with standard (Beaver triple-based) tools included
in MP-SPDZ. Figure 5 and Figure 9 show the results for this benchmark. Our approach has a clear
advantage in runtime—even for very small network delays of only 2ms. Note that also the bandwidth
is lower with our approach. For the Beaver-based implementation, we can clearly see the effect of a
logarithmic number of rounds on the runtime, while our approach has an almost constant runtime (in
the degree of the polynomial).

Rankings. For auctions (or e-voting), one often needs to compute a ranking of the bids (or votes) and
reveal the top k results (e.g. with k = 1 only the highest bid or the candidate with the most votes). There
are several established methods to compute these rankings. For our evaluation, we chose two approaches,
one purely based on inequality tests and one which uses equality and inequality tests. In order to use our
new protocols to speed up the comparison we use bit-wise comparisons as in [DFK+06] which allow us to
employ polytuples. For details, we refer to Appendices E and F. We benchmarked both approaches with
our polytuples-based protocol and compare them to the respective default implementation in MP-SPDZ
(based on the protocols with logarithmic complexity in [CdH10]; with and without edabits [EGK+20] to
speed up the comparison). We compute rankings of m = 40 items (bids or candidates). The benchmark
results in Fig. 6 show that our new approach is faster than the others.

Remark 13. SPDZ is a protocol originally designed for an arithmetic circuit evaluation and not for com-
parisons. In particular, there other MPC approaches better suited for some types of comparisons. How-
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Fig. 6: Benchmarks for rankings (blue: default MP-SPDZ implementation, orange/dashed: ours, green/dotted:
MP-SPDZ with edabits [EGK+20]).
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(a) ArgMax Layer, unlimited rate. (b) Network A [MZ17].

Fig. 7: Benchmarks for an ArgMax layer and the evaluation of a sample neural network included in MP-
SPDZ [Kel20] as network A (cf. [RWT+18]; blue: default MP-SPDZ, orange: ours) both without bandwidth
restriction. For further benchmarks see Fig. 10.

ever, our goal is to extend SPDZ and hence in particular to avoid expensive conversations to some other
scheme. We therefore decided to compare our evaluation for comparisons also to SPDZ, although there
are other competitive MPC protocols.

Neural Networks. Among others, MP-SPDZ [Kel20] contains examples of deep neural networks. For
our benchmarks, we ran the networks labeled A [MZ17], B [LJLA17], C [LBBH98], and D [RWT+18] (as
in [KS21,WGC19]). Each of these networks has a final ArgMax layer (see Appendix F for the specific
layers). Replacing only this single layer with a polytuple-based comparison (see Appendix F for details)
can already have a noticeable impact on the overall runtime of the network, as can be seen in Fig. 7.
We also remark that a bandwidth rate restriction does not affect the performance and hence the theo-
retical bandwidth overhead of the polytuples approach is negligible in our example (see e.g. Fig. 10 in
Appendix G).

Tuple Generation. Finally, we also benchmarked the offline phase for the plugin approach described
in Section 4.7. Our first results in Fig. 4 confirm our theoretical results of Section 4, i.e. we get a log-
linear overhead over SPDZ independent of the employed offline protocol (Overdrive LowGear [KPR18]
and MASCOT [KOS16]). As our focus is on applications where the offline phase is not time-critical, we
leave further benchmarking of the offline phase and possibly improving the polytuple generation (e.g. as
in Appendix C) to future work.

Overall, our evaluation shows that our approach has a clear performance advantage over SPDZ in the
online phase for classical sample applications like the evaluation of multivariate polynomials or compar-
isons.
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A Technical Proofs for Theoretical Bandwidth and Tuple Size Computations

In this appendix we present the proofs to results from Section 4. We will also include tuple-size-optimized
polytuples for the product of m ≤ 2 elements in Table 2. We will first recall the statements of Section 4
and then prove them.

Corollary 1. Let f, g be two functions. Let f̂ be a randomized encoding of f with additive component
f̂0 and simulator Simf . Furthermore, let ĝ be a randomized encoding of g with additive component ĝ0
and simulator Simg. Assume that for all i, j > 0 (Simf )i and (Simg)j are independent uniformly random
numbers. Let J = {j > 0|∃i > 0 : f̂i = ĝj}. Then ((f̂i)0≤i, (ĝj)j /∈J) is a randomized encoding of (f̂ , ĝ) with
output size k+k′−|J |. Moreover, if f̂0, ĝ0 map to the same (additive) group then ((f̂i)0<i, (ĝj)j /∈J∪{0}, f̂0+

ĝ0) is a randomized encoding of f + g with output size k + k′ − |J | − 1 and additive component f̂0 + ĝ0.

Proof. Correctness follows trivially since one can still construct both f̂ and ĝ. For privacy simulate all
component apart from f̂0 and ĝ0 by independent uniformly random numbers ri, r′j , i.e. ri = (Simf )i, r

′
j =

(Simg)j for i > 0 and j /∈ J ∪ {0}. For simplicity set r′j := ri whenever fi = gj , i.e. j ∈ J . Then
simulate f0 by f − Recf (0, (ri)1≤i) and g0 by g − Recg(0, (r

′
j)1≤j) where Recf is the reconstruction of f̂

and Recg is the reconstruction of ĝ. For the sum we proceed analogously but set the final component to
f + g − Recf (0, (ri)1≤i)− Recg(0, (r

′
j)1≤j).

We will next prove our main theorem Theorem 1 from Section 4:

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared inputs can be constructed

with a polytuple of size O
(
2λ
(
b2+1
2

)n)
with bandwidth O

((
b2+1
2

)n)
. In the special case b = 2, one only

needs a tuple of size 2n−2((2λ−1)n2+(2λ+2−2λ+1)n+4(2λ−2))+1. For b = 2, the bandwidth becomes
2nn+ 1 +m.

Proof. We will only need the case N1
Sn

= N2
Sn

= 2N
1/2
Sn

to treat bandwidth and tuples size simultaneously.
Hence, we slightly restrict our setup to this case from now on. In fact using binomial tuples we can
construct the base encodings with tuple sizes T 0

Sn,j
= 2λ − 1, T 1

Sn,j
= T 2

Sn,j
= 2λ. For the output size

we trivially have N0
Sn,j

= N1
Sn,j

= N2
Sn,j

= 1. Now choose µ = bj + b − 1 to get Tµ = {(ι, κ) ∈
{bj, . . . , bj + b − 1}2 : κ ≤ ι} and ν = bj + ⌊ b−1

2 ⌋ to get Tµ ∩ Tν = {(ι, κ) ∈ {bj, . . . , bj + b − 1}2 : (κ ≤
ι ≤ ν) ∨ (ν + 1 ≤ ι, κ ≤ ι− ν − 1)}. In particular, |Tµ ∩Mbj+i| = i+ 1 and |Tµ ∩ Tν ∩Mbj+i| = i+ 1 for
0 ≤ i ≤ ν − bj, |Tµ ∩ Tν ∩Mi+ν+1| = i+ 1 for 0 ≤ i < µ− ν. Hence we have

N0
Sk

= bN0
Sk+1

+ (b− 1)(bN1
Sk+1

− 1) (5)

N1
Sk

=
(b− 1)b+ 2

2
N1
Sk+1

+ (b− 1)(N2
Sk+1

− 1) (6)

N2
Sk

= uN1
Sk+1

+ b(N2
Sk+1

− 1) + 1 (7)

with u = (b−1)2−1
4 for b even and u = (b−1)2

4 for b odd. Note that the we could remove unnecessary indices
due to the symmetry of the Sk := Sk,j . In order to get the required upper bound it will be enough to
consider the odd case, which obviously leads to higher numbers. For the case u = (b−1)2

4 we have

b(N2
Sn−k

− 1) = ((b+ 1)N
1/2
Sn
− 1)

(
b2 + 1

2

)k
+

(b2 − 1)(N
1/2
Sn
− 1)

2

(
b+ 1

2

)k−1

(8)

bN1
Sn−k

= 2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)k
− 2(N

1/2
Sn
− 1)

(
b+ 1

2

)k
(9)

(b− 1)(N0
Sk
− 1) = 4b(N2

Sk
− 1) + ((b− 1)(N0

Sn − 1)− 4b(2N
1/2
Sn
− 1))bn−k (10)
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Note that it is enough to proof these formulas for N0
Sn

= T 0
Sn

= 2λ− 1, N1
Sn

= T 1
Sn

= N2
Sn

= T 2
Sn

= 2λ to
get the estimates on the tuple size, and for N0

Sn
= N1

Sn
= N2

Sn
= 1 for the bandwidth estimate. Recall that

the bandwidth is just N0
S0

+m, which accounts for the outputs of the randomized encoding as well as the
bandwidth of the first round of interaction, i.e. the m terms xi − ai. This does not affect the asymptotic
behavior, but the special formula in the case b = 2 discussed below. We will prove the explicit formula (8),
(9), (10) by induction on k → k− 1 with start k = n:20 b(N2

Sn
− 1) = (b+1)N

1/2
Sn
− 1+ (b− 1)(N

1/2
Sn
− 1),

bN1
Sn

= 2((b+1)N
1/2
Sn
−1)−2(N1/2

Sn
−1) and (b−1)(N0

Sn
) = 4b(N2

Sn
−1)+(b−1)(N0

Sn
−1)−4b(2N1/2

Sn
−1).

Hence, we get

b(N2
Sk−1

− 1)

= u · 2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)n−k
− u · 2(N1/2

Sn
− 1)

(
b+ 1

2

)n−k
+ b

(
((b+ 1)N

1/2
Sn
− 1)

(
b2 + 1

2

)n−k
+

(b2 − 1)(N
1/2
Sn
− 1)

2

(
b+ 1

2

)n−k−1
)

= ((b+ 1)N
1/2
Sn
− 1)

(
b2 + 1

2

)n−k+1

+
(b2 − 1)(N

1/2
Sn
− 1)

2

(
b+ 1

2

)n−k
where we used 2u+ b = b2−2b+1+2b

2 = b2+1
2 and b(b2 − 1)N

1/2
Sn
− 1)− 2(N

1/2
Sn
− 1)u(b+ 1) = b+1

2 (N
1/2
Sn
−

1)(2b(b− 1)− (b− 1)2) = (b2 − 1)(N
1/2
Sn
− 1) b+1

2 . Analogously

b(N1
Sk−1

)

=
(b− 1)b+ 2

2

(
2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)n−k
− 2(N

1/2
Sn
− 1)

(
b+ 1

2

)n−k)

+
b− 1

2

(
2((b+ 1)N

1/2
Sn
− 1)

(
b2 + 1

2

)n−k
+ (b2 − 1)(N

1/2
Sn
− 1)

(
b+ 1

2

)n−k−1
)

where we used (b− 1)b+ b+ 1 = b2 + 1 and (b− 1)b+ 2− 2(b−1)(b2−1)
2(b+1) = b(b− 1)− (b− 1)2 + 2 = b+ 1.

Finally,

(b− 1)(N0
Sk−1

− 1)

= b(b− 1)(N0
Sk
− 1) + b(b− 1)2N1

Sk

= 4b2(N2
Sk
− 1) + 4ubN1

Sk
+ ((b− 1)(N0

Sn − 1)− 4b(2N
1/2
Sn
− 1))bn−k+1

= 4b(N2
Sk−1

− 1) + ((b− 1)(N0
Sn − 1)− 4b(2N

1/2
Sn
− 1))bk+1

where we used the explicit formula for N2
Sk

which was already proved before. This completes the proof
of the first part of the statement.
The second part concerns the case b = 2. In particular, we have u = 0 in (7) and N1

Sk
and N1

Sk
decouple

partly. Thus we get N2
Sk

= (2N
1/2
Sn
−1) ·2n−k+1. Next, N1

Sk−1
= 2n−k((2N

1/2
Sn
−1)(n−k+1)+4N

1/2
Sn

) =

2 ·2n−k−1((2N
1/2
Sn
−1)(n−k)+4N

1/2
Sn

)+((2N
1/2
Sn
−1) ·2n−k+1)−1 = 2N1

Sk
+N2

Sk
−1 follows inductively

from induction start N1
Sn

= 2−1((2N
1/2
Sn
− 1)(−1+1)+4N

1/2
Sn

) = 2N
1/2
Sn

. Altogether we get the tuple size

N0
Sk−1

= 2n−k−1((2N
1/2
Sn
− 1)(n− k + 1)2 + (6N

1/2
Sn

+ 1)(n− k + 1)

+ 4(N0
Sn − 1)) + 1

= 2n−k−1((2N
1/2
Sn
− 1)((n− k)2 + 2(n− k)) + (6N

1/2
Sn

+ 1)(n− k)
20 We will keep the N∗

∗ notation for the rest of the proof. For the tuple size substitute the corresponding T ∗
∗ .

27



+ 8N
1/2
Sn

+ 4(N0
Sn − 1)) + 1

= 2 · (2n−k−2((2N
1/2
Sn
− 1)(n− k)2 + (6N

1/2
Sn

+ 1)(n− k)

+ 4(N0
Sn − 1)) + 1) + 2 · 2n−k−1((2N

1/2
Sn
− 1)(n− k) + 4N

1/2
Sn

)− 1

= 2N0
Sk

+ 2N1
Sk
− 1

where we started our induction with N0
Sn

= 1
4 · 4(N

0
Sn
− 1) + 1.

Remark 14. If we add |Ij,k| to Eqs. (2) to (4), e.g. to compute the number of Beaver triples needed in
the offline phase, the formulas change slightly. We then get for b = 2: N0

k−1 = 2N0
k + 2N1

k + 1, N1
k−1 =

2N1
k + N1

k + 1, N2
k−1 = 2N2

k + 1. One easily sees that then N2
Sk

= (2N
1/2
Sn

+ 1) · 2n−k − 1, N1
Sk−1

=

2n−k((2N
1/2
Sn

+ 1)(n− k + 1) + 4N
1/2
Sn

). For N0
Sk−1

we get

N0
Sk−1

= 2n−k−1((2N
1/2
Sn

+ 1)(n− k + 1)2 + (6N
1/2
Sn
− 1)(n− k + 1)

+ 4(N0
Sn + 1))− 1

= 2n−k−1((2N
1/2
Sn

+ 1)((n− k)2 + 2(n− k)) + (6N
1/2
Sn
− 1)(n− k)

+ 8N
1/2
Sn

+ 4(N0
Sn + 1))− 1

= 2 · (2n−k−2((2N
1/2
Sn

+ 1)(n− k)2 + (6N
1/2
Sn
− 1)(n− k)

+ 4(N0
Sn + 1))− 1) + 2 · 2n−k−1((2N

1/2
Sn

+ 1)(n− k) + 4N
1/2
Sn

) + 1

= 2N0
Sk

+ 2N1
Sk

+ 1

where we started our induction this time with N0
Sn

= 1
4 · 4(N

0
Sn

+ 1)− 1.

We see that the case b = 2 leads to a tuple size in O(m(logm)2) while in all other cases b > 2 the tuple
size is not even in O(n2). We did not show this last fact in the previous proof for even b > 2 explicitly.
It follows however from the next lemma—again we use N∗

∗ for both the output and the tuple size:

Lemma 6. Let b > 2 be even. Define

Ñ2
Sk

=
1

2

(
b2

2

)n−k
+ 1, Ñ1

Sk
=

(
b2

2

)n−k
, Ñ0

Sk
=

(
b2

2

)n−k
Then Ñ l

Sk
≤ N l

Sk
for l = 0, 1, 2 and all k ≥ 0.

Proof. For the even case we have u = (b−1)2−1
2 . Also note, that the cases k = 0 are trivial. The statement

is by definition correct for k = n. Inductively we get

Ñ2
Sk−1

=
1

2

(
b2

2

)n−k+1

+ 1 =
b(b− 2) + 2b

4

(
b2

2

)n−k
+ 1 = u

(
b2

2

)n−k
+
b

2

(
b2

2

)n−k
+ 1

= uÑ1
Sk

+ b(Ñ2
Sk
− 1) + 1 ≤ uN1

Sk
+ b(N2

Sk
− 1) + 1 = N2

Sk−1

For Ñ1
Sk−1

we proceed similarly:

Ñ1
Sk−1

=

(
b2

2

)n−k+1

≤ (b− 1)b+ 2

2

(
b2

2

)n−k
+
b− 1

2

(
b2

2

)n−k
=

(b− 1)b+ 2

2
Ñ1
Sk

+ (b− 1)(Ñ2
Sk
− 1)

≤ (b− 1)b+ 2

2
N1
Sk

+ (b− 1)(N2
Sk
− 1) = bN1

Sk−1
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Finally,

Ñ0
Sk−1

=

(
b2

2

)n−k+1

≤ b
(
b2

2

)n−k
+ (b2 − b)

(
b2

2

)n−k
− b+ 1

≤ bÑ0
Sk

+ (b− 1)(bÑ1
Sk
− 1) ≤ bN0

Sk
+ (b− 1)(bN1

Sk
− 1) = N0

Sk−1

since b− 1 ≤
(
b2

2

)k+1

for k ≥ 0, b ≥ 4.

Example 1. This example discusses different trade-off of round complexity, bandwidth and tuple size in
the special case of a product of m = 12 variables. There if we impose no restrictions on the offline phase,
e.g. if a trusted third party provides the offline data for the online phase, then we can choose a binomial
tuple (i.e. ℓ = 0 in our randomized encodings) which has the small bandwidth of 13 ring elements and
round complexity 1(+1), but a tuple size of 4095. For time-critical offline phases the classical Beaver
multiplication approach needs a comparably small tuple size of 3(m− 1) = 33 but needs ⌈logm⌉(+1) =
4(+1) rounds of communication and a bandwidth of 2m − 1 = 23 ring elements. Polytuples with only
2-factor multiplication gates (cf. Table 2) provide an intermediate solution of tuple size 95, bandwidth
29 and 1(+1) round of communication.21 If we accept slightly more communication rounds, say 2, then
a combination of 4 binomial tuples for degree 3 and one polytuple for degree 4 in the second round will
only need bandwidth 4 · 4+3 = 19 and tuple size 4 · 7+13 = 41. If we replace the second round with two
rounds of classical Beaver multiplication we still have bandwidth 4 ·4+3 = 19 but tuple size 4 ·7+9 = 37.

Example 2. In this example we visualize Example 1 by diagrams. We will use double frames for base
encodings. To account for the sums in the additive parts fadd we will only mark one summand of this
encoding with the double frame and the other parts with a dashed frame to make counting easier.

Take S0,0 = {0, . . . , 11}, S1,0 = {0, . . . , 5}, S1,1 = {6, . . . , 11} and set x(1)0 = xS1,0
, x

(1)
1 = xS1,1

x{0,...,11}

× // f (1)00 f
(1)
11

// +

OO

a
(1)
0,1 + a

(1)
1,0 − a

(1)
0 a

(1)
1

oo

f
(1)
00 = x

(1)
0 − a

(1)
0

OO

f
(1)
11 = x

(1)
1 − a

(1)
1

hh

f01 = x
(1)
0 a

(1)
1 − a

(2)
0,1

OO

f10 = x
(1)
1 a

(1)
0 − a

(1)
1,0

ii

21 Please see Example 2 for a visualization of the polytuple construction for m = 12.
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Next set S2,0 = {0, . . . , 3}, S2,1 = {4, 5}, S2,2 = {6, . . . , 9}, S2,3 = {10, 11}. Consider first x(2)0 =

xS2,0 , x
(2)
1 = xS2,1 and

f
(1)
00

× // f (2)00 f
(2)
11

// +

OO

a
(2)
0,1 + a

(2)
1,0 − a

(2)
0 a

(2)
1 − a

(1)
0

oo

f
(2)
00 = x

(2)
0 − a

(2)
0

OO

f
(2)
11 = x

(2)
1 − a

(2)
1

ii

��

f
(2)
01 = x

(2)
0 a

(2)
1 − a

(2)
0,1

OO

x
(2)
1 a

(2)
0 − a

(2)
1,0

kk

g
(2),a

(1)
1 ,0

00 = a
(1)
1 x

(2)
0 − b

(2),0
0

))

g
(2),a

(1)
1 ,0

0,1 = a
(1)
1 x0a

(2)
1 − b

(2),0
0,1

��

= x1b
(2),0
0 − b(2),00,1

tt× // +

��

b
(2),0
0,1 + b

(2),0
1,0 − a

(2)
1 b

(2),0
0 − a(1)0,1

oo

f
(1)
01

Of course we get the analogous decomposition for f (1)11 and f (1)10 if we set x(2)0 = xS2,2
, x

(2)
1 = xS2,3

. Finally
consider S3,0 = {0, 1}, S3,1 = {2, 3}, S3,2 = {4, 5} = S2,1, S3,3 = {6, 7}, S3,4 = {8, 9}, S3,5 = {10, 11} =
S2,3. One first notes we do not further decompose f (2)11 , f

(2)
10 , g

(2),∗,0
1,0 for both choices S3,2 = S2,1, S3,5 =

S2,3. Again by symmetry it will be enough to consider x(3)0 = xS3,0
, x

(3)
1 = xS3,1

.

h
(3)
ij ∋ h

(3)
ı̃ȷ̃

5

ww

h
(4)
ij ∋ h

(4)
ı̃ȷ̃5oo

5

zz

h
(ℓ)
ij5oo

5
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g
(2),∗
ij ∋ g

(2),∗
ı̃ȷ̃

4

xx

g
(3),∗
ij ∋ g

(3),∗
ı̃ȷ̃4oo

4yy

g
(4),∗
ij ∋ g

(4),∗
ı̃ȷ̃4oo

4zz

5

gg

g
(ℓ),∗
ij4oo

4
}}

5

ee

xS0,0 f
(1)
ij ∋ f (1)

ı̃ȷ̃3oo f
(2)
ij ∋ f

(2)
ı̃ȷ̃3oo f

(3)
ij ∋ f

(3)
ı̃ȷ̃3oo

4

gg

f
(4)
ij ∋ f

(4)

ı̃ȷ̃′3oo

4

gg

5

]]

f
(ℓ)
ij3oo

4

ee
5

[[

Fig. 8: The diagram illustrates which types of lower-degree randomized polynomials are used to build higher degree
terms. E.g. g(k),∗ij denotes a type (ii) term linear term in xSk,i which arose after k iterations—a ∗ substitutes for
different choice of prefactor and µ, ν. Boxes, e.g. around f (k)

ij , denote sets over i, j ∈ Ik+1,ı̃ with ı̃ the specific index
one level higher, e.g. the index of f (k+1)

ı̃ȷ̃ ; round framings denote single elements. The labels of the arrows refer to
the numbers of the Lemmas 3 to 5. Note that in some special cases, e.g. f (k)

ii , not all arrows are necessary, e.g.
only Lemma 3. Furthermore, the g(k),∗ij already contain some f (k)

ij which will not be constructed multiple times.
Analogously for h(k)

ij . We omitted additive terms for clarity.
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Let F̂ (k)
κ = F̂

(k)
add = ∅ be sets of functions for all 0 ≤ k ≤ l, 0 ≤ κ < 3. Set F̂ (0)

0 ← F̂
(0)
0 ∪ {(x0,...,m−1, 0)}.

for 0 ≤ k < l do
for 0 ≤ κ < 3 do

for (f, j) ∈ F (k)
κ do

if f has κ random prefactors as a polynomial in xSk,j then
Apply Lemma κ+ 2 with r ← Ik,j , xi ← xSk+1,ψkj(i)

for i ∈ Zr

Receive f̂ = (f̂iχ, f̂add) for i− 1 ̸= χ with terms linear in xSk+1,ψkj(i)
.

for 0 ≤ κ′ < 3 do
if f̂ij has κ′ random prefactors as a polynomial in xSk+1,ψkj(i)

then

F
(k+1)

κ′ ← F
(k+1)

κ′ ∪ {(f̂ij , ψkj(i))}
F

(k+1)
add ← F

(k+1)
add ∪ {(f̂add, k, j)}

for (fadd, k
′, j) ∈ F (k)

add , fadd =
∑

i:Sk,i⊂Sk′,j
gi + c with gi monomial in xSk,i do

for i such that Sk,i ⊂ Sk′,j do
for 0 ≤ κ < 3 do

if gi has κ random prefactors as a monomial in xSk,i then
Apply Lemma κ+ 2 with r ← Ik,i, xχ ← xSk+1,ψki(χ)

for χ ∈ Zr

Receive ĝi = (ĝi,χξ, ĝi,add) for χ− 1 ̸= ξ with terms linear in xSk+1,ψki(χ)
.

for 0 ≤ κ′ < 3 do
if ĝi,χξ has κ′ random prefactors as a monomial in xSk+1,ψki(χ)

then
F

(k+1)

κ′ ← F
(k+1)

κ′ ∪ {(ĝi,χξ, ψki(χ))}
F

(k+1)
add ← F

(k+1)
add ∪ {(

∑
i:Sk,i⊂Sk′,j

ĝi,add + c, k′, j)}
return F

(l)
add ∪ F

(l)

Protocol 2: Algorithm to construct our randomized encoding.
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Observe that we got 1+2 ·2+2 ·6 base encodings and hence with the initial 12 masked inputs xi−ai
we get as expected bandwidth 29. We leave it to the reader to check the tuple size 95. See also Table 2
below.

The following example shows that using one encoding to construct different terms generally does not
lead to a secure randomized encoding of the concatenation.

Example 3. Take f(x1, x2) = x1 + x2, g(x1, x3) = x1 + x3. Let f̂ = (x1 − a1, x2 − a2, a1 + a2) and
Recf (y0, y1, y2) = y0+y1+y2 = x1+x2 be a randomized encoding of f . Let ĝ = (x1−a1, x3−a3, a1+a3)
and Recg = Recf be a randomized encoding of g. We have the following simulators Simf = (a, b, f(x1, x2)−
a − b) and Simg = (g(x1, x3) − a′ − b′, a′, b′) for randomness a, b, a′, b′ chosen by the simulator. Now
(Simf,1,Simf,2,Simg,2,Simf,3,Simg,3) = (a, b, a′, f(x1, x2)−a−b, b′) is not a simulator for (f̂1, f̂2, ĝ2, f̂3, ĝ3)
of (f, g) since it contains no information on the actual result g(x1, x3) but f̂1 + ĝ2 + ĝ3 = g(x1, x3).

The following example describe our MPC protocol in the special case m = 4:

Example 4. Consider f(x0, x1, x2, x3) = x0 · x1 · x2 · x3. Here, each party receives a structured polytuple
of size 13:

JaK := (Ja0K,Ja1K,Ja2K,Ja3K,Ja0a1K,Ja01K,Ja01a2K,Ja01a3K,Ja2a3K,
Ja23K,Ja23a0K,Ja23a1K,Ja01a2a3 + a23a0a1 − a01a23K) (11)

from the offline phase. The parties then proceed accorong to Section 4.1. In this special case this reduces
to Protocol 3. The randomized encoding is then f̂(x0, x1, x2, x3, a) = (y0, y1, y2) and the reconstruction

1. Pi computes and opens JxjKi − JajKi for all 0 ≤ j < 4.
2. Pi computes locally and opens

(i) Jy1Ki = Jx0x1 − a01Ki = (x0 − a0)Jx1Ki + Ja0Ki(x1 − a1) + Ja0a1Ki − Ja01Ki
(ii) Jy2Ki = Jx2x3 − a23Ki = (x2 − a2)Jx3Ki + Ja2Ki(x3 − a3) + Ja2a3Ki − Ja23Ki
(iii) Jy0Ki = Ja23x0x1+a01x2x3−a01a23Ki = (x0−a0)(x1−a1)Ja23Ki+(x0−a0)Ja1a23Ki+ Ja0a23Ki(x1−a1)+

Ja01Ki(x2 − a2)(x3 − a3) + (x2 − a2)Ja3a01Ki + Ja2a01Ki(x3 − a3) + Ja0a1a23 + a01a2a3 − a01a23Ki.
3. Pi computes the result x0x1x2x3 = y01y23 + y0123.

Protocol 3: Protocol to compute the product x0 · · ·x3.

algorithm is Rec(y0, y1, y2) = y1y2 + y0. This example corresponds to the classical arithmetic circuit for
the multiplication of four variables, i.e. we first compute (in parallel) x0x1 and x2x3 and in the second
step the product of all four variables. To stay secure however, we cannot open x0x1 or x2x3, so we mask
these products with fresh randomness a01 and a23, respectively. This leads to the unwanted mixed term
a23x0x1 + a01x2x3 − a01a23 in the second level multiplication. We remove this mixed term with the final
encoding y0. The privacy of the randomized encoding follows from the general results in Section 4.

The following example compute the bandwidth and polytuple size for a different number of commu-
nication rounds:

Example 5. As an example we want to compute the product of x0, . . . , x15 using the partitions by S3−k,j =
{2k+1 · j + i : 0 ≤ i < 2k+1} and 0 ≤ j < 23−k. In particular, we will get elementary encodings linear
in x{2j,2j+1}, 0 ≤ j < 8. For the cases y{2j,2j+1} we need a 22 − 1 = 3-tuple, for the one prefactor case
ax{2j,2j+1}− b{2j,2j+1} a 4-tuple. Thus we can construct the degree 4 terms xS2,j

−aS2,j
by a tuple of size

T 0
S2,j

= 3+3+(2−1)(4+4)−2+1 = 13. Moreover, for µ = 2j+1 we have Tµ = {(ι, κ) ∈ {2j, 2j+1}2 : κ ≤ ι}
and T 1

S2,j
= 4·1+1·4+4−2+1 = 11. Thus T 0

S1,j
= 13+13+(2−1)·22−2+1 = 47. Next, we compute again
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Table 2: Polytuples to compute x0 · · ·xm−1 optimized for tuple size. Numbers indicate the degree of the polyno-
mial encodings (soley in xj), brackets are evaluated from the inside, e.g. ((2, 2), 3) first generates a degree 4 term
an then a degree 7 term.

m Tuple Size Bandwidth Circuit

1 1 1 (1)
2 3 3 (1,1)
3 7 4 (1,1,1)
4 13 7 (2,2)
5 21 8 (3,2)
6 29 9 (3,3)
7 38 13 ((2,2),3)
8 47 17 ((2,2),(2,2))
9 59 18 ((3,2),(2,2))
10 71 19 ((3,2),(3,2))
11 83 24 (((2,2),2),(3,2))
12 95 29 (((2,2),2),((2,2),2))
13 108 34 (((2,2),2),((2,2),(2,1)))
14 121 39 (((2,2),(2,1)),((2,2),(2,1)))
15 135 40 (((2,2),(2,2)),((2,2),(2,1)))
16 149 41 (((2,2),(2,2)),((2,2),(2,2)))
17 165 42 (((3,2),(2,2)),((2,2),(2,2)))
18 180 48 ((((2,2),2),(2,2)),((2,2),(2,2)))
19 196 49 ((((2,2),2),(2,2)),((3,2),(2,2)))
20 211 55 ((((2,2),2),(2,2)),(((2,2)),2),(2,2)))

the mixed terms with µ = 2j+1, ν = 2j and hence Tµ∩Tν = {(µ, µ), (ν, ν)}: T 2
S2,j

= T 2
S3,j

+T 2
S3,j
−2+1 = 7

and T 1
S1,j

= 11 · 1+ (2− 1) · 7+ 11− 2+ 1 = 28. Thus, T 0
S0,0

= 47+ 47+ (2− 1) · 56− 2+ 1 = 149, i.e. we
can construct a x{0,...,15} in one masking round and one opening round with a 149-tuple. In comparision,
a binomial tuple for the computation of x{0,...,15} has size 216 − 1.

B Functionalities

In this section we present the ideal functionalities and security proofs. We assume that the parties have
access to a functionality Frandom to produce random elements from R and a commitment functionality
Fcommit—possible realization can be found e.g. in [DKL+13].

Fonline

Initialize. On input (Initialize, p) from all parties, the functionality stores p.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, the functionality stores (idx, x).
idx has to be a new identifier.

Polynomial. On input (Polynomial, (idxk )0≤k<m, f, idz) for a polynomial f (with m inputs) from all parties
with idz new, the functionality retrieves (idxk , xk)1≤k<m and stores (idz, f(x0, . . . , xm−1)).

Output. On input (Output, idx) for idx defined, from all honest parties, the functionality retrieves (idx, x) and
outputs it to the adversary. If the adversary replies by ok, then x is output to all players, otherwise output ⊥ to
all players.

Protocol 4: Ideal functionality for the online phase.
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Remark 15. To describe Fonline, we used a modification of the functionality FAMPC from [DPSZ12]. One
can also use FOnline from [DKL+13] or similar functionalities.

Πonline

Initialize. The parties agree on a multivariate polynomial f to be evaluated and a randomized encodings f̂ of
f . The parties call FJ·K to get a sufficient number of (shared) random data (including (poly)tuples, MAC key
shares).
Input. On input a tuple Xi of inputs of party Pi, the parties invoke FJ·K. Input. They receive JXiK. Denote x the
tuple of all inputs (from all parties).
Polynomial. The parties invoke Protocol 1 with (f̂ , JxK, JâK, continuation).
Check. Call ΠCheckMAC for all values opened up until now.

Protocol 5: Online Protocol.

FJ·K

Initialize. On input (Initialize, p) from all parties, store p and compute [α]i for honest Pi and receive [α]j for
corrupted Pj ; then set α :=

∑n
i=1 [α]i.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, sample [x]i for honest Pi under
the constraint x =

∑n
i=1 [x]i (for [x]j received by Adv for corrupted Pj) and authenticate the shares. Send JxKi

to the respective Pi.

Tuple. On input (Tuple, f) by all parties for a polynomial f : Rm → R. Sample random masks (a1, . . . , am)
and compute the tuple (a1, . . . , ak) for the respective randomized encoding.a Authenticate the tuple and send
J(a1, . . . , ak)Ki to the respective Pi.

Abort. On input ⊥ from Adv, send ⊥ to all parties.

a m ≤ k to mask at least all inputs. To construct the randomized encoding one usually needs more entries k > m.

Protocol 6: Preprocessing functionality.

Remark 16. The functionality FJ·K can be realized as in [KPR18, Fig. 4].

Lemma 7. The protocol CheckMAC is correct and sound. It rejects with probability 1 − 2
|R| if at least

one value is not computed correctly.

Proof. Identical to the corresponding proof in [DPSZ12].

C Tuple Production

There are various established methods for generating correlated randomness in the offline phase. The most
prominent ones are the following: somewhat homomorphic encryption (SHE; SPDZ [DKL+13,DPSZ12]
utilizes BGV [BGV12]), oblivious transfer (as used in MASCOT [KOS16]), or linear homomorphic en-
cryption (LHE; as used in Overdrive [KPR18,Rei+23]). These mostly focus on generating Beaver triples.
We present two ways to generate polytuples based on these following methods: one directly uses the gen-
erated Beaver triples for tuple production and the other generalizes the underlying techniques to generate
higher order randomness. We focus on a LHE-based offline phase based on Overdrive for the latter and
present a leveled homomorphic polytuple generation in Appendix D.3.
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ΠCheckMAC

Every party Pi has JyjKi = ([yj ]i , [αyj ]i [α]i), 1 ≤ j ≤ m. y = (y1, . . . , ym) ∈ Rm is public and has to be checked.a

1. The parties sample a random r ∈ Rm.
2. Every party computes [σ]i = rt([αy]i − [α]i y) for rt the transpose of r.
3. Call Fcommit with (Commit, [σ]i) and receive handle τi.
4. After each party has committed, call Fcommit with (Open, τi) to open [σ]i.
5. If

∑n
i=1 [σ]i ̸= 0 then abort.

a [αy]i = ([αy1]i , . . . , [αym]i).

Protocol 7: CheckMAC

C.1 Plugin Approach

We can use the structured randomness, i.e. Beaver triples, generated by existing protocols to construct
polytuples in an actively secure offline phase. Each entry of a polytuple is a sharing of some polynomial in
random variables, i.e. the additive masks for the single encoding components. These polynomials can be
computed with the SPDZ online phase. This means, we produce in our offline phase a sufficient number
of Beaver triples to run the SPDZ online phase (still within our offline phase) to compute the tuple
entries. This straightforward generation corresponds nicely with the idea to shift as much computation
from the online phase into the offline phase. The advantage of using already existing offline phases is that
efficient implementations like [Kel20] available and that further improvements of these offline phases will
be directly available to the production of polytuples as well.

Remark 17. Please also note that a polytuple does not have to contain complex correlated randomness
of high degree. In fact, as we have seen in Section 4, we often only need randomized encodings with up
to two random prefactors linear in a monomial of some low degree d. E.g. for d = 2 to compute abx1x2
a polytuple contains Ja1K, Ja2K, JabK, Jaba1K, Jaba2K, Jaba1a2K.

C.2 Linear Homomorphic Encryption

We now propose a new multi-round offline protocol for generating polytuples based on linear homomorphic
encryption. We construct a protocol similar to Overdrive’s multiplication protocol [KPR18] but which
extends it to multiple rounds (to compute higher order randomness). In contrast to Appendix C.1, where
Overdrive is one method to produce Beaver triples, one can also run several rounds of Overdrive to produce
higher order randomness. E.g. after one round of Overdrive, which needs two rounds of communication,
the parties have shares [ab], [cd] and after a second round of Overdrive they get shares of [abcd] and so on.
To produce a degree m term we then need ⌈log(m)⌉ rounds of Overdrive resulting in 2⌈log(m)⌉ rounds
of communication—in each Overdrive round a party Pj first sends a ciphertext Encpkj ([a]j) to Pi and
then receives back a term Encpkj ([a]j) [b]i + Enc′pkj (rji) which they decrypt to [aj ] [b]i + rji. Here, Enc′

has larger noise than Enc (cf. [KPR18] for further details).
Our adaption removes the second step. Instead of returning Encpkj ([a]j [b]i+rij) to Pj , this ciphertext

is sent on to all parties that multiply their secrets onto the ciphertext. By the linear property of the
encryption scheme, the new factors again move into the ciphertext. When the ciphertext of the product
arrives back at the initial party, they can decrypt the product. Thus far, this description mostly resembles
the original Overdrive multiplication protocol. In our multi-round version, we additionally make the
parties prove (in zero-knowledge) that the resulting ciphertext Encpkj ([a]j [b]i+rij) is still “fresh enough”
(i.e. contains a low amount of noise) to be used in another round. An example of this approach is shown
in Protocol 8, where the parties have to prove correct multiplication (and adding of “small” additional
noise) which implies that the total noise in the ciphertext is small as well. Correctness and privacy of
our construction follows similarly to Overdrive [KPR18]. The additional ZKP of correct multiplication
(using FZK-mul) guarantees privacy by giving parties provable upper-bounds on the noise contained in
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ciphertexts. Then, they can choose the randomness in Enc′ large enough to hide any information about
their own shares. Observe that after one round of ΠLHE-rd every party Pi has their share [c]i of the
product c and encryptions of all shares Encpkj ([c]j) for each 1 ≤ j ≤ n, i.e. we can iterate protocol
ΠLHE-rd, as seen in Protocol 9. In particular, each product of m shares can be computed in ⌈log(m)⌉
rounds.

ΠLHE-rd

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n with FZK-mul.
3. Decrypt d̂ij to dij for all 1 ≤ j ≤ n.

Set [c]i =
∑n

j=1 dij and Encpkj ([c]j) =
∑n

k=1 d̂jk for all 1 ≤ j ≤ n.

Protocol 8: Multiplication using an LHE scheme.

We have included several variations of our technique in Appendix D.2 that achieve provable upper
bounds on the ciphertext noise but are based on ZKPs for different relations (e.g. ZKPs for verifiable
decryption). With this, we can benefit from future improvements of various types of zero-knowledge proofs
which are then also transferable to our approach. The tradeoff of our construction is a larger ciphertext
size: Since noise adds up every round and is not canceled out by intermediate decryptions, the ciphertext
size will grow more and more. However, as mentioned in Remark 17, we generally do not need to compute
randomness of very high degree. Additionally, if the noise reaches a level that is too high to continue
the computation on ciphertexts, the secret-key holder can decrypt and provide a new ciphertext with
fresh small randomness at cost of one intermediate communication round. Also note that the reduction
in round complexity, which was the main motivation for our adaption to Overdrive, suggests that our
approach is best employed in settings with (moderately) high network latency and sufficient bandwidth
to handle the larger ciphertexts.

ΠLHE

Let f be a degree d polynomial in m variables x0, · · · , xm−1. Each party Pi holds [xj ]i for each 0 ≤ j < m and
computes [f(x0, . . . , xm−1)]i with the following protocol:

1. Broadcast Encpki([xj ]i) for 0 ≤ j < m and proof that it is well-formed with the zero-knowledge proof FS
ZKPoP

from [KPR18].
2. Compute [f(x0, . . . , xm−1)]i in ⌈log d⌉ rounds of ΠLHE-rd.

Protocol 9: Triple production with multi-round LHE.

Once the shares of the tuples are created, they are authenticated using FJ·K. The parties then use
the new extended sacrificing technique to check that the tuples are well formed. Details can be found in
Appendix D.1.

Remark 18. Our MP-SPDZ implementation [Code] currently only covers the online phase. Based on the
log-linear overhead in tuple size, the overhead in runtime for the offline phase will be in the same range
(e.g. based on Beaver triples as discussed in Appendix C). As our focus in on applications where the offline
phase is not time-critical, we leave benchmarking (and optimizing) the offline phase to future work.
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D Further Results on the Offline Phase

This section contains results that can be used in our offline phase. It starts with a subsection on sacrificing
for binomial and polytuples which can be applied to most of the currently implemented actively secure
offline phases like the once in [DPSZ12] or [KPR18]. In Appendix D.2 we offer options on how to realize
the ZKP functionality used in Appendix C.2. Finally we shortly discuss polytuple production with leveled
homomorphic encryption.

D.1 Extended Sacrificing Technique

This appendix contains a new sacrificing technique for binomial and polytuples which can also be applied
to most of the currently implemented actively secure offline phases like the once in [DPSZ12] or [KPR18].

To make sure that the binomial tuples are indeed in the right form, we need to extend the well-know
sacrificing technique from [DPSZ12] in Protocol 10.22

Πsacrificing

Let (re) and (r′e) be two binomial tuples for e = (e0, . . . , em−1), 0 ≤ ej ≤ dj , 0 ≤ j < m.

1. The parties use Frand to get random s0, . . . , sm−1.
2. The parties compute and open tj = sj

[
r′j
]
i
− [rj ]i for 0 ≤ j < m.

3. The parties compute

[sac]i =
∑

0≤j<m
0≤ej≤dj

se · [re′]i − ∑
0≤j<m
0≤fj≤ej

[
rf

]
i

m−1∏
k=0

t
ek−fk
k


with se =

∏m
j=1 s

ej
j . The parties commit to and open [sac]i with Fcommit.

4. If
∑n

i=1 [sac]i = 0 return (r′e), otherwise abort.

Protocol 10: Verification for binomial tuples by sacrificing.

Inspecting Protocol 10, we see that it is obviously correct. We use the simple identity

∑
0≤j<m
0≤fj≤ej

[
rf
]
i

m−1∏
k=0

tek−fkk =

m−1∏
j=0

(sjr
′
j)
ej =

n∑
i=1

se · [re′]i

where the first equality holds if (re) is correct and the second one if (re′) is a correct binomial tuple. Then
we get

∑n
i=1 [sac]i = 0. On the other hand, if

∑n
i=1 [sac]i = 0, s is a zero of a polynomial in m variables.

If at least one party is honest, the coefficients of the polynomial are random (by the guarantees of Frand).
The Schwartz-Zippel Lemma for finite fields [Ore22] guarantees that the probability that a random s is
a zero of a total degree d ≥ 0 polynomial f is smaller than d

p : Pr(f(s0, . . . , sm−1) = 0 | rs ∈ Fp) ≤ d
p for

f ̸= 0 and d =
∑m−1
j=0 dj . For a sufficiently large field size, this probability is negligible, which shows the

security of our sacrificing protocol.

Remark 19. Recall from Section 4 that elementary encodings in our protocol are constructed using bi-
nomial tuples — respectively tuples of the form (a, aae) or (ab, abae) for additional random tuple entries
a, b plus some random additive terms. For all these binomial tuple within two polytuple of the same type
for the same function, we can simply apply the sacrificing step for two binomial tuples from Protocol 10.
22 We will use the index notation from Section 3.4.
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D.2 Further Results For A Linear Homomorphic Offline Phase

In this section, we present three approaches to efficiently construct a linear homomorphic offline phase.
All these approaches require the parties to prove certain parts of their computation in zero-knowledge in
each round.23 Protocols 11, 13 and 15 depict the (exposition-only) functionalities used in Protocols 8, 12
and 14, respectively. The main reason for the ZKPs is that the parties need to know that the ciphertexts
Encpkj ([c]j) can be used in the next round. For this, an upper bound on the noise contained in these
ciphertexts has to be known. This enables maskings with rij in the next round to be chosen large enough
so d̃ji does not leak information about [b]i to Pj .

The first approach (Protocol 12) requires parties to prove correct decryption in zero-knowledge. This
protocol leaves the responsibility for proving that Encpkj ([c]j) has small noise with Pj . Verifiable decryp-
tion can be achieved efficiently with recent protocols [GHM+21,LNS21,Sil21].

FZK-dec

On input Encpki(a) by party Pi:
Send (Encpki(a), Pi, ok) to all parties Pj if the noise in the ciphertext is small wrt. the bound Bdec (also send a
to Pi). Otherwise, send (Encpki(a), Pi, fail).

Protocol 11: Ideal functionality for verifiable decryption.

ΠLHE-rd-dec

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.
3. Set Encpkj ([c]j) =

∑n
k=1 d̂jk for all 1 ≤ j ≤ n.

Decrypt Encpki([c]i) to [c]i with FZK-dec (and broadcast the proof).

Protocol 12: Multiplication using an LHE scheme with ZKP of decryption.

The second approach (Protocol 14) requires parties to prove correct decryption in zero-knowledge
but it is done differently to the approach taken in Protocol 12. Instead of proving that they can decrypt
Encpkj ([c]j) with small noise, Pj could instead prove knowledge of a small witness (plaintext and ran-
domness) that encrypts to Encpkj ([c]j). For this, we would need a decryption algorithm that also recovers
(some) randomness that matches the ciphertext. This is modelled in Protocol 13.

FZK-dec

On input Encpki(a) by party Pi:
Send (a, ã) to Pi with Encpki(a, ã) = Encpki(a).

Protocol 13: Ideal functionality for decryption with extraction.

23 Results that are not used as the input to subsequent rounds do not require proofs. As Overdrive is a one-round
protocol, it only needs ZKPs for the initial ciphertexts.
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ΠLHE-rd-ext

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.
3. Set Encpkj ([c]j) =

∑n
k=1 d̂jk for all 1 ≤ j ≤ n.

Decrypt Encpki([c]i) to ([c]i , ρ) with Fdec-ext.
Use FZK to prove Encpki([c]i) = Enc([c]i , ρ) (and broadcast the proof).

Protocol 14: Multiplication using an LHE scheme with randomness extraction.

The third and maybe most straighforward approach (used in Protocol 8) requires parties to prove
correct multiplication in zero-knowledge. Examples for protocols that provide verifiable multiplication
can, for example, be found in the BDOZ [BDOZ11] and below.

FZK-mul

On input (Encpk(a),Encpk(c), b, r, r̃) by party Pi:
Send (Encpk(a),Encpk(c), Pi, ok) to all parties Pj if Encpk(c) = Encpk(a) ·b−Encpk(r, r̃) and b, r, r̃ are short w.r.t.
the respective bounds Bplain, B

′
plain, B

′
rand. Otherwise, send (Encpk(a),Encpk(c), Pi, fail).

Protocol 15: Ideal functionality for verifiable multiplication.

A Modified Zero-Knowledge Proof. In order for the protocolΠLHE to be secure we have to realize the
functionality FZK-mul used in Protocol 9. This can be done by slightly adapting existing zero-knowledge
proofs, e.g. from [DPSZ12], [DKL+13], [KPR18] or [BCS20]. As an example we present suitable modifi-
cations to [DPSZ12], Fig. 9 with slight simplifications to the bounds similar to [KPR18], Fig. 10. Note
that this interactive proof can be transformed into a non-interactive proof in the usually way using the
Fiat-Shamir heuristic—we refer to [DPSZ12] for non-interactive variants.

Let Bτplain and Bρrand be the ZKP bounds introduced in [DPSZ12], i.e. Bτplain = 2secρ and Bρrand = 2secρ.
Let V = 2 sec−1,Me ∈ {0, 1}V×sec the matrix associated to a challenge e ∈ {0, 1}sec with (Me)ij = ei−j+1

for 1 ≤ i−j+1 ≤ sec and zero otherwise. Let U,X ∈ Rsec be a plaintext vector, R ∈ Rsec×3 the encryption
randomness. Encpk(X,R) = (Encpk(Xi, Ri))1≤i≤sec denotes a vector where each row is a ciphertext. The
ciphertext Encpk(b) with ∥b∥∞ ≤ Bτplain is public and has been verified as in [KPR18] or with some
previous instance of this proof—note that Encpk(b) is one-dimensional in the ciphertext space. We want
to give a zero-knowledge proof of plaintext-knowledge for the following relation

Relξ,χρ = {(E,w) : E = (pk, C), w = (X,U,R) ∈ Rsec ×Rsec ×Rsec×3 s.t.

C ← Encpk(B)U + Encpk(X,R), ∥U∥∞ ≤ Bξplain,
∥X∥∞ ≤ Bχplain, ∥R∥∞ ≤ B

ρ
rand}

Completeness and zero-knowledge are only guaranteed for ∥U∥∞ ≤ ξ, ∥X∥∞ ≤ χ and ∥R∥∞ ≤ ρ. τ, ξ, χ, ρ
are negligible w.r.t sec compared to Bτplain, B

ξ
plain, B

χ
plain, B

ρ
rand.

Proof. Completeness follows as in [DPSZ12], Theorem 5:

D = Encpk(b)Q+ Encpk(Z, T )

= Encpk(b)(W +MeU) + Encpk(Y +MeX,S +MeR)
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ΠZKP

1. The prover samples W,Y ∈ RV and randomness S ∈ RV ×3 such that ∥Wi∥∞ ≤ Bξ
plain, ∥Yi∥∞ ≤ Bχ

plain and
∥Si∥∞ ≤ Bρ

rand for all 1 ≤ i ≤ V . The prover sends A = Encpk(b)W + Encpk(Y, S) to the verifier.
2. The verifier selects e ∈ {0, 1}sec and sends it to the prover.
3. The prover sets Z = Y +MeX, T = S +MeR, Q =W +MeU and sends it to the verifier.
4. The verifier setsD = Encpk(b)Q+Encpk(Z, T ) and accepts if Q,Z represent valid plaintexts andD = A+MeC

and ∥Qi∥∞ ≤ Bξ
plain, ∥Zi∥∞ ≤ Bχ

plain, ∥Ti∥∞ ≤ Bρ
rand.

Protocol 16: The Zero-Knowledge Protocol.

= Encpk(b)W + Encpk(Y, S) +Me(Encpk(b)U + Encpk(X,R))

= A+MeC

Also Q,Z, T are in the correct range with overwhelming probability. Given two transcripts one can find
suitable X,R as in [DPSZ12]. To account for the additional U , we note that (Me−Me′)U = Q obviously
has a solution. Hence we get soundness. Finally, honest verifier zero knowledge follows since W and
W +MeU are indistinguishable.

Please note that the increase in noise will result in a larger ciphertext modulus and hence will inrease
bandwidth.

Remark 20. Please note that Enc(b) is the same in all components. In particular, the aggregated proof
technique only uses its full potential if the parties need bUi +Xi for a high number of different Ui and
Xi. This is e.g. the case for high degree polynomials.

At the end of this section we want to point to less oblivious techniques that work under certain
circumstances, e.g. in an honest majority setup. For example, approaches like [CB17] and [BBC+19] use
single-prover-multi-verifier proof systems where the statement is t-secret-shared between the verifiers and
thus no group of t−1 verifiers knows anything about the statement. This suggests an approach where we
would make all the intermediate results part of the statement in which case the verifying circuit would
be quite straightforward and short. One party, Pj , could be the prover and all the others would be the
verifiers. However, since we are interested in the case where n− 1 out of n parties might be malicious, we
run into a problem. Namely, [BBC+19] gives a negative result stating that it is unlikely that we obtain
a protocol where both the prover and all-but-one of the verifiers are malicious.

Yet another alternative approach is to use multi-prover-single-verifier proof systems. The paper
[CZC+21] suggests a proof system where for a publicly known statement x, the witness is split into
several parts w1, . . . , wk where every prover knows just one of the witness parts. The provers prove that
for a verifying circuit C, C(x,w1, . . . , wk) = 1. This seems again naturally applicable to our case, as here
Pi knows ai and the randomness used to encrypt ai, Pj knows bj , ri,j and the randomness used to en-
crypt ri,j and so on. However, it is based on the MPC-in-the-head approach which suggests a considerable
overhead as the protocol must be rerun a significant amount of times for privacy amplification.

Remark 21. To reduce the overhead introduced by noise flooding is an ongoing research task. There are
however promising results as the ones announced in [Vai21] that might be applied in our setup, too.

D.3 Leveled Homomorphic Enryption

Given an encryption scheme Enc that is homomorphic with respect to at least m − 1 multiplications, a
binomial tuple can be produced by Protocol 17:24

24 We use the index notation from Section 3.4.
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ΠSHE

1. Each player Pi generates [aj ]i ∈ R for 0 ≤ j < m and [fe]i ∈ R for e = (e0, . . . , em−1) and 0 ≤ ej ≤ dj .
2. Pi computes and broadcasts Enc([aj ]i) and Enc([fe]i) for all j and e as above.
3. Pi invokes a zero-knowledge functionality of plaintext knowledge FZK as a prover for the created ciphertexts

(cf. [DPSZ12]).
4. Compute locally Enc(aj)←

∑n
i=1 Enc([aj ]i), Enc(f

e)←
∑n

i=1 Enc([f
e]i).

5. Compute locally Enc(ae) =
∏m−1

j=0 Enc([aj ])
ej and Enc(ae + fe) = Enc(ae) + Enc(fe).

6. Decrypt Enc(ae + fe) to get ae + fe.
7. Set [ae]1 ← ae + fe − [fe]1 and [ae]i ← − [fe]i for 2 ≤ i ≤ n.

Protocol 17: Protocol for generation of [a]e for all 0 ≤ ej ≤ dj using leveled homomorphic encryption.

Once the shares of the tuples are created, they are authenticated using FJ·K. The parties then use
the new extended sacrificing technique to check that the tuples are well formed. Details can be found in
Appendix D.1.

As in Remark 17 we remark that for our construction it is often enough to consider low degree
polynomials that contain products with at most 5 factors. In these cases a homomorphic encryption
scheme that supports 4 homomorphic multiplications is enough. The lowest degree polytuples that can be
used to evaluate an arbitrary multivariate polynomial have entries which need at most 2 multiplications.

We remark that this approach profits from future improvements of the encryption scheme. Already
existing optimizations like packing methods (e.g. [NLV11]) or using the natural action of the Galois group
in case R is a underlying cyclotomic field extension (cf. [GHS12]), can be used to improve the performance
of the offline phase.

E Prefix Products with Polytuples

Here, we describe how one can add on the approach presented in Section 4 to additionally get all the
prefix products. For simplicity, we assume that we have to compute prefix products for m factors where
m is a power of two. This is usually the case for comparisons where m is the number of bits used to
represent values (e.g. when working with 32 bit or 64 bit numbers) and the construction presented next
applies (with small modifications) to m of any shape.

First, note that the polytuples approach gives us x0−a0, x0x1−a01, . . . , x0 · · ·xm′−1−a0,...,m′−1 for all
m′ < m that are again powers of two. x0−a0 is an initial masked value and the other terms are randomized
endodings or are publicly computed from them. We get similarly structured terms (again as masked value,
randomized encoding, or publicly computed) with shifted indices, e.g. x2x3− a23, x4x5− a45, x4x5x6x7−
a4567. The following construction either converts these terms directly to shares, or uses them with binomial
tuples to compute the remaining terms. Note that all these terms are already masked and we can compute
products with binomial tuples without an additional computation round. For example, we compute
Jx0x1K = x0x1 − a01 + Ja01K and Jx0x1x3K by multiplying x0x1 − a01 and x3 − a3 (by treating these
values as the ones opened for normal multiplication with binomial tuples).

With the following (recursive) construction, we can compute all the prefix products: Assume we can
get shares of the prefix products pl,h,i of xl, . . . , xh with pl,h,i =

∏i
j=l xj , l ≤ i ≤ h and have masked

values as described above (computed with the polytuples approach of Section 4). Then, we can compute
the shared prefix products of x0, . . . , x2m−1 as follows:

1. Compute shares of the prefix products for x0, . . . , xm−1 and xm, . . . , x2m−1.
2. Compute Jp0,2m−1,m+iK = Jp1,m−1,m−1K · Jpm,2m−1,m+iK, 0 ≤ i < m− 1.
3. The final Jp0,2m−1,2m−1K can be computed from an opened value as above.

Instead of computing these products in step 2 directly, we simply add one factor to the binomial tuple
(or add a new degree-2 binomial tuple if pm,2m−1,i − a (for some mask a) was directly computed by our
approach of Section 4).
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By construction, we know that we need binomial tuples of a logarithmic degree. Additionally, we see
that if the degree of the tuple for p0,m−1,i is smaller than the one for p0,m−1,i+1, it is already covered
by the latter one, decreasing the number of tuples we need to add. For powers of two (m = 2n), we
observe that we need 2n−1 − 1 additional binomial tuples of degree at most n. We prove the latter (the
number of additional tuples; the degree is fixed by construction) by induction: The number of tuples for
the case 2n+1 is what we need for p0,2n−1,i (2n−1 − 1) and for p2n,2n+1−1,i. For the latter, we need 2n−1

tuples. This has the following reason. Of the 2n − 1 remaining prefixes to cover, 2n−1 − 1 already have a
tuple candidate assigned to them. Of the remaining 2n−1 prefixes, 2n−1 − 1 are covered when expanding
the previously mentioned tuples by one factor (p0,2n−1,2n−1; this factor is also the only factor required
for terms that did not have a tuple assigned to them before). In total, we have to add 2n−1 tuples for
p2n,2n+1−1,i and get 2n − 1 tuples to compute prefixes p0,2n+1−1,i.

F Applications

Our polytuple approach is clearly relevant for applications where polynomials, arithmetic circuits, or
products (of many factors) need to be computed. But it can also be used in applications which might
seem less obvious.

Here, we present some example scenarios where polytuples can be used and in Section 5 we sketch
our implementation and first benchmarks. These show improvements due to our approach for all tested
applications.

As mentioned, the most natural application is to use our tuples as primitives in MPC protocols (e.g.
SPDZ [DPSZ12] and similar protocols) to compute polynomials in Fp. Most applications that perform
operations on integer-valued data can benefit from polytuples directly. In certain real-world applications,
e.g. to compute the soft-max function in privacy-preserving machine learning, polynomials are also eval-
uated on fixed-point representations of real numbers R. Since fixed-point numbers often require rescaling
intermediate results (truncation) after a few multiplications to avoid overflow in the underlying finite
field representation. Polytuples of small polynomial degree as discussed in Theorem 1 and Remark 17
could be a good fit for these applications. A detailed discussion on polynomial evaluations over R with
polytuples is, however, left to future work. As we demonstrate next, there are applications where our
polytuples approach can be applied to both integer-valued and fixed-point data immediately.

Comparisons. Our approach can also be used to speed-up comparisons, i.e. equality tests (x = y) and
inequality tests (x < y, x ≤ y, etc.). Comparisons are an ubiquitous operation in MPC, for example,
in secure online auctions, linear programming, secure clustering, secure floating-point addition, private
decision tree schemes, private sorting, and electronic voting, to name just a few. Also in machine learning
applications, we find comparisons, e.g. in ReLU, MaxPool, or ArgMax layers of deep neural networks.

Classical approaches for comparisons are built on evaluating k-ary symmetric boolean functions (e.g.,
AND and OR; cf. [CdH10,CS10,NO07]). They often use (not maliciously secure) techniques as in [BB89,
DFK+06,LYKM22] to get constant-round protocols. Instead, we can express these boolean operations as
multiplications (Jx∧yK = Jx ·yK, Jx∨yK = J1− (1−x) · (1−y)K) and evaluate them with our tuples. Some
also need prefix operations, e.g. prefix-ORs, which we can simply represent as prefix products. Details on
how to use our polytuples to compute prefix products can be found in Appendix E.

To give a concrete example, we briefly look at a standard approach for equality and less-than tests
[CdH10, NO07], where comparing two secret-shared values is reduced to two basic operations: bit-wise
equality tests and bit-wise less-than tests with one shared and one public input (see Protocols 18 and 19).

Checking equality of JxKi and JyKi is a straightforward zero test of Jx−yKi, which in turn is an equality
test of a public value c = x − y + r and a (bit-wise) shared value r (cf. Protocol 18). We see that this
protocol involves two operations with communication: (i) a masked opening (not pictured in Protocol 18)
and (ii) a multiplication of k shares. The latter is a native operation with our tuple-based approach. All
other operations are local operations on shares.

Inequality tests of JxKi and JyKi (to compute Jx ≤ yKi) can be done as in [CdH10]. This also involves
a masked opening and a bit-wise comparison. We only depict the core of the inequality protocol, the bit-
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ΠEQ

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JejKi = (cj = JrjKi) = 1− JrjKi − cj + 2cjJrjKi for 0 ≤ j < k.
3. Let JeKi =

∧k−1
j=0 JejKi =

∏k−1
j=0 JejKi.

4. Return JeKi.

Protocol 18: Bit-wise equality test protocol [NO07].

ΠLT

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JdjKi = cj ⊕ JrjKi = cj + JrjKi − 2cjJrjKi for 0 ≤ j < k.
3. Let Jfk−1Ki, . . . , Jf0Ki = PrefixOR(Jdk−1Ki, . . . , Jd0Ki).
4. Let Jgk−1Ki = Jfk−1Ki and JgjKi = JfjKi − Jfj+1Ki for 0 ≤ j < k − 1.
5. Let JhjKi = cjJgjKi for 0 ≤ j < k.
6. Let JhKi =

∑k−1
j=0 JhjKi.

7. Return JhKi.

Protocol 19: Bit-wise less-than protocol [DFK+06].

wise less-than protocol (Protocol 19). The version shown here is based on the classical less-than protocol
in [DFK+06] and turns out to be more efficient than the ones of [CdH10,Rei09] (as we can avoid one round
of communication that is needed to work with information-leaking (passively secure) constant-round
multiplication protocols). Only the single prefix-OR in Protocol 19, which can be expressed as a single
prefix multiplication with inverted inputs and outputs, requires communication—the other operations are
linear, and thus, can be done locally on shares. A prefix-OR is again a native operation with our tuples.

Evaluating comparisons with our tuples is more efficient standard techniques in SPDZ-like protocols
as we can now use constant-round techniques based on our constant-round (prefix) multiplication. Please
note that there are MPC protocols specically crafted to optimize comparisions. However, to use these
protocols together with SPDZ expensive conversations are needed and separate benchmarks for compar-
ision can hence not be easily compared. We therefore decided to restrict our comparision to two efficient
protocols for comparision included in MP-SPDZ.

Rankings. For auctions (or e-voting), one often needs to compute a ranking of the bids (or votes)
and reveal the top k results (e.g. with k = 1 only the highest bid or the candidate with the most votes).
Obviously, one can also compute arbitrary functions in MPC of this result before revealing it (e.g. for tally-
hiding e-voting [KLM+20]). Note that e-voting (or auctions) might require additional security properties
(e.g. public verifiability or identifiable abort) that are not directly provided by our protocol. However,
this can be achieved with extension to SPDZ that have these properties [BDO14,BOS16,CFY17]. Our
approach is fully compatible with these SPDZ-based protocols.

There are several ways to compute a ranking. Computing a comparison matrix (containing x ≤ y for
all pairs x, y) is most versatile as one can compute many functions from it [KLM+20]. Two straightforward
ways of computing the matrix include computing the matrix directly and computing it from two triangular
matrices (xi ≤ xj)0<i<j and (xi = xj)0<i<j . Hence we can use the construction above compute the
(in)equality test with polytuples. We tested both approaches and compare them to the respective default
implementation in MP-SPDZ (based on the protocols with logarithmic complexity in [CdH10]; with and
without edabits [EGK+20] to speed up the comparison). The benchmark results were included in Fig. 6.

Neural Networks. We also provide benchmarks for ML Applications. Namely, we use 4 benchmark pro-
grams available in MP-SPDZ. These programs combine different ML layers to reflect different architecture
common in dense and convolutional network:
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- Benchmark Net A contains the following layers in this order: Dense, Square, Dense, Square, Dense,
ArgMax.

- Benchmark Net B contains the following layers in this order: 2d Convolution, MaxPool, ReLU, 2d
Convolution, MaxPool, ReLU, Dense, ReLU, Dense, ArgMax.

- Benchmark Net C has layers as B but with different dimensions.
- Benchmark Net D contains the following layers in this order: 2d Convolution, ReLU, Dense, ReLU,

Dense, ArgMax.

For further specifics on the layers, e.g. number of inputs, we refer to the corresponding programs in MP-
SPDZ [Kel20]. Please note that each program comes with an ArgMax layer and hence uses comparisons.
With the previous construction we can therefore use polytuples to speed of these computations. The
benchmarks were/are included in Fig. 7 and Fig. 10.

G Further Specifics of the Implementation and Evaluation

The results of Figs. 5 to 7 were obtained by averaging 32 program runs for each parameter setting (e.g.
fixed delay, number of variables and, degree). In all our experiments we introduced an artificial network
delay/latency using the tc(8) Linux tool. This gives us control to simulate various network settings. Our
first benchmark (evaluation of multivariate polynomials) was tested with 2ms, 5ms and 10ms delay to
also show the effect parameters besides the delay (the number of variables and the maximum degree in
each variable).
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Fig. 9: Further Benchmarks for polynomial evaluation (blue: default MP-SPDZ implementation, orange: ours).

The other benchmarks (rankings and neural networks) were run with delays from 0ms to 20ms (in
steps of 1ms below 10ms and 2ms steps above 10ms delay). For the ranking benchmark, we chose to
compare our implementation to MP-SPDZ with edabits [EGK+20] as it is MP-SPDZ’s recommendation
for our test program. We can see that this is indeed an improvement over the standard implementation,25
however our new tuple-based approach clearly beats both existing approaches.

For the Machine Learning benchmark, we chose to not vary any parameters of the models. Instead,
networks A and D correspond to smaller/simpler models, while networks B and C are larger/more complex
(approximately ordered by size/complexity: A < D < B < C).

Finally, our implementation lacks certain features that would (when implemented correctly) only
speed-up any application. This includes finding optimal partitions for products; currently, polytuples
are created naively by simply splitting products in half recursively instead of finding tree structures
(cf. Figure 3) with optimal size and/or better bandwidth. Bandwidth and/or size optimal partitions
could be implemented on top of our results from Section 4 instead. Another optimization opportunity
is the one shown in Protocol 5 (combining the evaluation of a polynomial with the masking step of the
next polynomial evaluation). This would allow us to combine the opening round of one computation with

25 Note that edabits are an improvement in Fig. 6b only for very low latency.
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polytuples and the input round of another computation. Currently, every operation based on polytuples26
takes two rounds as we always create a share of the result; the sequential composition of two such
operations takes four rounds and so on.

Effect of Bandwidth Rate Restrictions. To better understand the effect of our approach on neural
networks we also give the benchmarks for the ArgMax Layer seperately. Additionally this evalution
was done with different bandwidth restrictions imposed—50 Mbit/s, 1 GB/s, unlimited. The results in
Figures 7 and 10 show that there is no significant impact of the bandwidth overhead in this example.
Similar results hold for all our evaluations.

Benchmarks for Different Numbers of Parties Please recall from Section 3 that we assume (similar
to [DPSZ12]) that parties broadcast their shares to all other parties (to open a value). Hence our bench-
marks are expected to scale linearly in the number of parties n. Note, that the final MAC check is not
linear in n, but it has to be done only once and is circuit-independent. However, just like in MP-SPDZ
the MAC checks in our implementation are done more regularly to simplify the code. In particular, the
non-linear contribution of the MAC check then becomes circuit-dependent. We illustrate the behavior for
different numbers of parties in Fig. 11. We remark that the slight circuit-dependence of the MAC check
is usually considered acceptable.

H Further Related Literature

In this appendix we extend our exposition of related work in Section 2.
Since polynomial evaluation is one of the most fundamental arithmetic tasks, several solutions outside

of SPDZ-like protocols or even MPC have been suggested over the last 30 years. To mention only a few
different ideas: [MF06] uses shared polynomials, [FM10,DMRY11] use homomorphic encryption in the
online phase, [GMRW13] also uses homomorphic encryption but in a single centralized server setup. Of
course any fully homomorphic encryption scheme like the original protocol by Gentry [Gen09] can also be
used to evaluate a polynomial. Another idea is to use oblivious transfer-based techniques like in [NP99]
or [GM09,TJB13] where one party holds the polynomial f and the other party holds the input variables
x0, . . . , xm−1. Yet another recent idea is to compute multivariate polynomials of time-series data utilizing
private stream aggregation (PSA) and trusted execution environments (TEEs) as in [KTM+21].

In [BDG+17] or [SA19], public verifiability of a polynomial evaluation is studied. We remark that our
protocols can be extended to support (public) verifiability or (publicly) identifiable abort similarly to
known extensions of [DPSZ12], e.g. [BDO14,BOS16,CFY17].

Since our paper aims at minimizing communication, we also want to shortly point to a more detailed
discussion on the importance of communication rounds in MPC, e.g. in [AKP20,BNTW12] or [FM19].

Finally, there is also the recent research direction of non-interactive MPC (cf. [EOYN21, HHPV21,
HIJ+17,HIJ+16,KBTJ19]) where parties send data online once and reconstruct the result locally without
an opening round. However, these protocols are either vulnerable to residual function attacks or use
trusted hardware (e.g., TEEs).

26 Except operations with binomial tuples; these are implemented in one round.
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(a) Network B [LJLA17]. (b) Network C [LBBH98].

(c) Network D [RWT+18]. (d) ArgMax Layer, 50 Mbit/s rate restriction.

(e) ArgMax, 1 Gbit/s rate restriction. (f) Combination of ArgMax.

Fig. 10: Figures (a), (b), (c) contain the benchmarks for the evaluation of the neural networks B, C, D included
in MP-SPDZ [Kel20] (cf. [RWT+18]; blue: default MP-SPDZ implementation, orange: ours). (d), (e) contain
benchmarks for the ArgMax layer with bandwidth restrictions. (f) places (d), (e) and the ArgMax layer in Fig. 10
in one diagram to show that the bandwidth restriction has no visible effect on the runtime.
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Fig. 11: Online bandwidth for the computation of x0 · · ·xd−1 for a different number of parties.
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