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Abstract

Sigma protocols are elegant cryptographic proofs that have become a cornerstone of modern cryptography.
A notable example is Schnorr’s protocol, a zero-knowledge proof-of-knowledge of a discrete logarithm.
Despite extensive research, the security of Schnorr’s protocol in the standard model is not fully understood.

In this paper we study Kilian’s protocol, an influential public-coin interactive protocol that, while not a
sigma protocol, shares striking similarities with sigma protocols. The first example of a succinct argument,
Kilian’s protocol is proved secure via rewinding, the same idea used to prove sigma protocols secure. In this
paper we show how, similar to Schnorr’s protocol, a precise understanding of the security of Kilian’s protocol
remains elusive. We contribute new insights via upper bounds and lower bounds.

• Upper bounds. We establish the tightest known bounds on the security of Kilian’s protocol in the standard
model, via strict-time reductions and via expected-time reductions. Prior analyses are strict-time reductions
that incur large overheads or assume restrictive properties of the PCP underlying Kilian’s protocol.

• Lower bounds. We prove that significantly improving on the bounds that we establish for Kilian’s protocol
would imply improving the security analysis of Schnorr’s protocol beyond the current state-of-the-art (an
open problem). This partly explains the difficulties in obtaining tight bounds for Kilian’s protocol.

Keywords: succinct interactive arguments; vector commitment schemes

*This paper extends a subset of the material presented in https://ia.cr/2023/1737; for that material, this paper should be
used as the most up-to-date reference.
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1 Introduction

Sigma protocols are a fundamental class of cryptographic proofs with notable applications in cryptography (see
[KO21] and references therein). A sigma protocol is a public-coin interactive protocol that satisfies strong zero
knowledge and soundness properties, and enjoys a simple structure. The prover sends a commitment, then the
verifier responds with a random challenge, and finally, the prover sends an opening; the verifier computes a
decision bit based on the instance and the interaction transcript. Perhaps the most prominent example of a sigma
protocol is Schnorr’s protocol [Sch89; Sch91], which proves, in zero knowledge, the knowledge of the discrete
logarithm of a given group element (for a given cyclic group and base group element). Numerous works study
in detail Schnorr’s protocol (and its derivates), establishing upper and lower bounds on its security in different
settings [Sho97; PS00; BP02; FPS20; BD20; RS21; SSY23]. Remarkably, gaps remain in our understanding of
the security of Schnorr’s protocol, and closing these gaps remains a challenging open problem.

In this paper we study Kilian’s protocol [Kil92], a public-coin interactive protocol that, while not a sigma
protocol, shares striking similarities with sigma protocols. This protocol is historically significant as the first
example of a succinct argument, a computationally-sound interactive proof for nondeterministic relations where
the communication complexity is much smaller than the size of the relation’s witness. Kilian’s protocol is also
the simplest example of a succinct interactive argument obtained via the VC-based approach, a fundamental
paradigm for constructing succinct arguments from a probabilistic proof and a vector commitment (VC) scheme.

The shared structure with a sigma protocol is evident. The argument prover commits to a probabilistically
checkable proof (PCP) string via a VC scheme (Kilian’s presentation uses a Merkle commitment scheme, a VC
scheme obtained from collision-resistant hash functions), and sends the resulting commitment to the argument
verifier; the argument verifier sends PCP verifier randomness to the argument prover; and finally the argument
prover reveals the values of the queried locations of the PCP string and accompanies these values with opening
information. The argument verifier accepts if the opening information is valid and the PCP verifier accepts.

Succinct arguments are a rare example of an “advanced” cryptographic primitive that can be achieved
from simple cryptography. Indeed, it is remarkable that, based solely on the existence of a collision resistant
hash function (even given as a black box), one can achieve cryptographic proof systems with such remarkable
efficiency. On the other hand, the security reduction of a succinct argument is tasked with a challenging goal:
find a “long” witness when given a malicious argument prover that only outputs “short” messages in any given
interaction. This naturally leads to rewinding, a fundamental method of analysis in cryptography.

While Kilian [Kil92] gives only an informal analysis, the security of Kilian’s protocol via rewinding is
studied in later works. Barak and Goldreich [BG08] give a detailed analysis, but with limitations: their analysis
incurs overheads and applies only to PCPs that satisfy restrictive properties. Other works [IMSX15; LM19;
CMSZ21; LMS22] provide brief analyses in the setting of negligible errors, without quantifying security bounds
in terms of the underlying ingredients. We further elaborate on prior work in Section 1.3.

Motivated by the surge of interest in succinct arguments (e.g., in the context of blockchains [SSV19; SSV21]),
we revisit the security of Kilian’s protocol. As we discuss shortly, we expose a fine structure and open problems,
much alike to the state of affairs for arguably simpler protocols such as Schnorr’s protocol. This challenges the
commonly-held belief that Kilian’s protocol is “understood”. We now turn to discuss our results.

1.1 Our results

Kilian’s protocol [Kil92] combines a PCP system PCP and a vector commitment scheme VC to obtain a succinct
(public-coin) interactive argument. Throughout this section, we fix these ingredients (unless otherwise specified).
• PCP is a PCP system for a relation R with proof length ℓ, query complexity q, and soundness error ϵPCP.

(These may depend on the given instance x.)
• VC is a vector commitment scheme VC and we denote by ϵVC its position binding error, which bounds the

probability that an adversary outputs valid openings for the same commitment that disagree in at least one
position. In general, ϵVC is a function of the security parameter λ, length ℓ of the committed vector, number s
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of opened entries of the vector, and bound tVC on the adversary running time.
Soundness. We provide the tightest known bounds for the soundness error of Kilian’s protocol.

Theorem 1 (informal). The soundness error ϵARG of Kilian[PCP,VC] satisfies the following for every security
parameter λ, instance x /∈ L(R), adversary time bound tARG, and error tolerance ϵ > 0:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) + ϵVC
(
λ, ℓ, q, tVC

)
+ ϵ, where tVC = O

(
ℓ

ϵ
· tARG

)
.

The above bound for Kilian’s protocol has an intuitive explanation. An adversary that commits to the PCP
string Π̃ with maximal acceptance probability (and opens accordingly) convinces the argument verifier with
probability at least ϵPCP. Moreover, an adversary that then tries to find a collision when Π̃ is rejected achieves
(under some mild conditions) a convincing probability of ϵPCP + (1− ϵPCP) · ϵVC. The ℓ

ϵ multiplicative loss in tVC
compared to tARG expresses the price of rewinding: to reconstruct an almost full PCP string from small fragments
revealed in each (valid) opening, we rewind the malicious argument prover sufficiently many times. Improving
this multiplicative factor remains an open problem. Nevertheless, we show an exponential improvement when
VC satisfies expected-time position binding, via an expected-time reduction that we discuss next.
Expected-time adversaries. We use ϵ⋆VC to denote the expected-time position binding error of VC, in which case
we use t⋆VC to denote a bound on the expected running time of the adversary. Namely, ϵ⋆VC is the error probability
given an adversary that runs in expected-time t⋆VC.

We provide the first soundness analysis of Kilian’s protocol against adversaries with bounded expected
running time. Since the (strict-time) soundness error of Kilian’s protocol is upper-bounded by its expected-time
soundness error, the following theorem gives an alternative upper bound on the (strict-time) soundness error in
terms of the expected-time position binding error ϵ⋆VC of VC.

Theorem 2 (informal). If PCP has a non-adaptive verifier with running time tV, the expected-time soundness
error ϵ⋆ARG of Kilian[PCP,VC] satisfies the following for every security parameter λ, instance x /∈ L(R),
adversary expected time bound t⋆ARG, and error tolerance ϵ > 0:

ϵ⋆ARG(λ,x, t
⋆
ARG) ≤ ϵPCP(x) + q · ϵ⋆VC

(
λ, ℓ, q, t⋆VC

)
+ ϵ, where t⋆VC = O

(
log

q

ϵ
· (t⋆ARG + ℓ · tV)

)
.

This is an exponential improvement in the dependency of ϵ compared to the strict-time setting (Theorem 1).
Note that Theorem 2 assumes that the PCP underlying Kilian’s protocol has a non-adaptive verifier (its queries
are determined by the instance x and the PCP verifier randomness). For PCPs with an adaptive verifier, we prove
an alternative statement that achieves the same bound except with t⋆VC = O

(
log q

ϵ · ℓ · t
⋆
ARG

)
.

Lower bounds on soundness. Kilian’s protocol shares certain structural resemblances to a sigma protocol: both
start with a prover’s commitment, followed by a verifier’s challenge, and end with an opening to the commitment.
However, sigma protocols are special sound while Kilian’s protocol is not (see Section 1.3). Hence, it is unclear
whether there is any formal connection between Kilian’s protocol and sigma protocols.

We obtain the first lower bound on the soundness error of Kilian’s protocol by showing that bounding the
soundness of Kilian’s protocol is as hard as that of the Schnorr identification scheme, a sigma protocol obtained
from Schorr’s protocol whose security, despite significant research efforts, remains only partially understood.

Theorem 3 (informal). There exists PCP for a relation R and VC such that, for every security parameter λ,
instance x /∈ L(R), Schnorr adversary time bound tID ∈ N, and Schnorr adversary expected time bound t⋆ID ∈ N,

ϵSchnorr(λ, tID) ≤ ϵARG(λ,x, tARG) , and

ϵ⋆Schnorr(λ, t
⋆
ID) ≤ ϵ⋆ARG(λ,x, t⋆ARG) .

Above, ϵARG and ϵ⋆ARG are the soundness error and the expected-time soundness error of ARG := Kilian[PCP,VC],
respectively; ϵSchnorr and ϵ⋆Schnorr are the security against passive impersonation attacks of the Schnorr identification
scheme and its expected-time analogue, respectively. Moreover, tARG = O(tID), and t⋆ARG = O(t⋆ID).
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In Section 1.2 we discuss how Theorem 3 tells us that in the strict-time setting there is a polynomial gap
between upper and lower bounds, whereas in the expected-time setting there is essentially no gap.

Knowledge soundness. The above discussion focuses only on the soundness error of Kilian’s protocol. Recall
that the soundness error is an upper bound on the probability that a time-bounded adversary convinces the
argument verifier to accept an instance not in the language. Another important security notion is the knowledge
soundness error, which bounds the probability that a time-bounded adversary convinces the verifier but a
corresponding extractor, given that adversary, fails to find a valid witness for the instance. The knowledge
soundness error is an upper bound on the soundness error because any extractor cannot find a valid witness for
an instance not in the language (there are no valid witnesses).

We construct an extractor for Kilian’s protocol that runs in time O
(
ℓ
ϵ · tARG

)
, and similarly to Theorem 1,

prove that its knowledge soundness error satisfies

κARG(λ,x, tARG) ≤ κPCP(x) + ϵVC
(
λ, ℓ, q, tVC

)
+ ϵ, where tVC = O

(
ℓ

ϵ
· tARG

)
.

We prove this bound by making explicit, in the proof of Theorem 1, a subroutine with running time O
(
ℓ
ϵ · tARG

)
that outputs a “good” PCP (after which we rely on the PCP knowledge extractor to obtain a witness).

What can we say about the setting of expected-time adversaries?
A similar bound as the above can straightforwardly be proved, but this would not take advantage of an

expected-time reduction to achieve a smaller upper bound. Ideally, we would convert the bound on soundness
error in Theorem 2 into a similar bound on knowledge soundness error; however, this does not work. Indeed,
while the proofs behind Theorems 1 and 2 both use rewinding arguments, they are qualitatively different (more
details in Sections 2.2 and 2.3). Obtaining a knowledge soundness bound from the proof of Theorem 1 is
straightforward because the extractor for the PCP and the collision finder for the VC are similar algorithms.
However, the proof of Theorem 2 leverages extra efficiency by breaking this symmetry: only the VC collision
finder is efficient, while the extractor that constructs a PCP is not. Hence, obtaining better bounds for the
expected-time knowledge soundness of Kilian’s protocol remains open.

We conclude by noting that similar considerations apply for proving the security of Kilian’s protocol when
based on a probabilistically checkable argument (PCA) [KR09; BR22; Ben24] rather than a probabilistically
checkable proof. Since a PCA is computationally sound, the running time to generate the PCA string is essential.
Hence, our work yields a strict-time reduction that is compatible with PCAs, while our expected-time reduction
is not compatible with PCAs.

Remark 1 (adaptive choice of x). The results of Theorems 1 to 3 are stated, for simplicity, in the plain model
(no trusted setups), where the argument verifier is responsible for sampling and sending public parameters pp
for VC to the argument prover. However, we actually prove these results in the (adaptive) common reference
string model, wherein public parameters pp for VC are sampled by a trusted party and a malicious argument
prover may adaptively choose the instance x after learning pp. Since in these stronger theorems there is no
pre-set instance x, the analogous statements (for corresponding security properties) in the common reference
model replace x with a size bound n (and hold for all instances such that |x| ≤ n). The plain model variants are
straightforwardly implied (see Section 2.6 and Remark 3.7).

1.2 Discussion

How tight are the soundness bounds? We discuss the tightness of the soundness upper bounds in Theorems 1
and 2. The takeaway is that, for the setting in Theorem 3: (i) there is a polynomial gap between Theorem 1 and
the best strict-time analysis of the security of the Schnorr identification scheme; and (ii) there is essentially no
gap between Theorem 2 and the best expected-time analysis of the security of the Schnorr identification scheme.
This mirrors the state of the affairs for the Schnorr identification scheme, as we now elaborate.
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The security of the Schnorr identification scheme relies on the hardness of the discrete logarithm problem.
In the strict-time setting, the best analysis shows (roughly) a square-root loss in the error:

ϵSchnorr(λ, tID) ≤
√
ϵDLOG(λ,O(tID)) ,

On the other hand, in the expected-time setting, it is straightforward to show that there is essentially no loss:

ϵ⋆Schnorr(λ, t
⋆
ID) ≤ ϵ⋆DLOG(λ,O(t⋆ID)) .

Above ϵDLOG = ϵDLOG(λ, tDLOG) and ϵ⋆DLOG = ϵ⋆DLOG(λ, t
⋆
DLOG) are the discrete logarithm error and the expected-time

discrete logarithm error, respectively for a given group. That is, for every tDLOG ∈ N and tDLOG-time adversary,
given random y, the probability of finding x such that y = gx is bounded by ϵDLOG(λ, tDLOG). Similarly, the
success probability of any adversary that has expected running time t⋆DLOG is bounded by ϵ⋆DLOG(λ, t

⋆
DLOG).

Below we only state the bounds, the detailed calculation can be found in Sections 8.3 and 8.4.

• Tightness of Theorem 1: Consider the PCP and VC from Theorem 3. Let ARG := Kilian[PCP,VC]. Theorem 1
implies that

ϵARG(λ,x, tARG) ≤ 2−λ + ϵDLOG

(
λ,
ℓ

ϵ
· tARG

)
+ ϵ .

For a natural setting of parameters, we can instantiate the bounds of ϵSchnorr and ϵARG as follows:

ϵSchnorr(λ, tID) ≤ O

(√
t2ID
2λ

)
, and

ϵARG(λ,x, tARG) ≤ 2−λ + ℓ2/3 ·Θ

(
3

√
t2ARG
2λ

)
.

This shows a polynomial gap between the best analysis of the Schnorr identification scheme and our analysis
of Kilian’s protocol. Closing this gap remains an open problem.

• Tightness of Theorem 2: From Theorem 2, ARG := Kilian[PCP,VC] has expected-time soundness error ϵ⋆ARG
where

ϵ⋆ARG(λ,x, t
⋆
ARG) ≤ 2−λ + ϵ⋆DLOG

(
λ,O

(
log

q

ϵ
· t⋆ARG

))
+ ϵ .

This upper bound almost matches with the best known expected-time upper bound for the security of the
Schnorr identification scheme, except for a polylogarithmic loss in the adversary running time.

Why not use a random oracle? One method of analyzing Kilian’s protocol is relying on idealized models
such as the random oracle model. Here, the need to rewind the adversary is obviated as the PCP can be extracted
directly by observing the queries performed by the adversary to the random oracle. This approach yields an
analysis with tight bounds (see e.g., [CY24]) but is not applicable in the standard model.

In applications, practitioners replace the random oracle with a specific hash function, choosing parameters
based on the idealized model’s analysis. However, this limits the choice of hash functions to those presumed
to sufficiently mimic a random oracle, excluding hash functions that offer notable benefits but cannot replace
a random oracle. This includes, for example, hash functions with an algebraic structure (e.g., Pedersen hash),
which can be fast to compute or friendly for recursive composition. Understanding the trade-offs in security
bounds when using a rewinding-based analysis instead of the random oracle model is meaningful and valuable.
On the price of rewinding. We compare the soundness of Kilian’s protocol when analyzed via: (i) a rewinding
extractor when VC is based on a collision resistant hash function; or (ii) a straightline extractor when VC is
based on an ideal hash function (a random oracle). This highlights the “price of rewinding”: the cost of a more
expensive security reduction that works under weaker assumptions on the underlying cryptography.
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(i) Rewinding extractor. Suppose that the vector commitment scheme VC is a Merkle commitment scheme
obtained from a collision-resistant hash function with security ϵCRH(λ, tCRH). By Remark 2,

ϵVC(λ, ℓ, s, tVC) ≤ ϵCRH
(
λ, tCRH = tVC +O(thλ

· q · log ℓ)
)
.

Suppose that ϵCRH(λ, tCRH) ≤ t2CRH/2λ, which is what would be achieved by an ideal hash function. In this
case, Theorem 1 gives the following upper bound on the soundness error for Kilian[PCP,VC]:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) +O

(
1

2λ
·
(
ℓ

ϵ
· tARG + thλ

· q · log ℓ
)2
)

+ ϵ .

Setting ϵ = Θ((ℓ · tARG)2/3 · 2−λ/3) minimizes the right-hand side at ϵPCP(x) + Θ(ℓ2/3 · (t2ARG · 2−λ)1/3).1

(ii) Straightline extractor. Suppose that we model the collision-resistant hash function as an ideal hash function,
and analyze Kilian[PCP,VC] in the random oracle model. Then [CY24] shows that:

ϵARG(λ,x, tARG) ≤ ϵPCP(x) + Θ(t2ARG · 2−λ) .

This smaller upper bound is achieved thanks to a straightline (i.e., non-rewinding) extractor for the vector
commitment scheme, which is a Merkle commitment scheme in the random oracle model.

Remark 2 (security of underlying components). We derive security bounds for argument systems as a function
of the security bounds of the underlying components. In short, we take ϵVC, ϵPCP, κPCP as given. While statistical
soundness bounds on PCPs can be calculated (they are information-theoretic components), the position binding
errors for VC must be derived from some (concrete) computational assumption.

For example, if VC is a Merkle commitment scheme obtained from a collision-resistant hash function
hλ : {0, 1}2λ → {0, 1}λ computable in time thλ

whose collision probability against tCRH-size adversaries is
bounded by ϵCRH(λ, tCRH) then VC has binding error ϵVC(λ, ℓ, s, tVC) ≤ ϵCRH(λ, tCRH) where tCRH = tVC +O(thλ

·
q · log ℓ) for a small hidden constant that can be derived from the security reduction. (The reduction transforms
a tVC-size adversary AVC against the Merkle commitment scheme into a tCRH-size adversary ACRH against the
collision-resistant hash function. Briefly, ACRH runs AVC and then looks for a collision among the authentication
paths output by AVC, resulting in the additive increase of O(thλ

· q · log ℓ) in size.)

1.3 Related work

The literature on succinct arguments presents a vast landscape of constructions exhibiting complex tradeoffs
between efficiency, expressiveness, and security. The goal of this work is to study the security of Kilian’s
protocol, which is a succinct interactive argument. Below we summarize only the most relevant prior work.

Succinct arguments from collision-resistant functions. The first construction of a succinct argument is due to
Kilian [Kil92], and follows the VC-based approach (the underlying vector commitment is a Merkle commitment
scheme based on a collision-resistant hash function). The security reduction in [Kil92] is informal, and does not
provide any asymptotic (nor explicit) security bounds.

Barak and Goldreich [BG08] provide a formal analysis of a variant of Kilian’s construction, towards their
goal of constructing zero-knowledge arguments with a non-black-box simulator. Due to their setting, they restrict
their result to the case where the PCP is non-adaptive and reverse-samplable. While the former restriction is mild
(many known PCP constructions are non-adaptive, with few exceptions such as [KPT97]), the latter restriction is
a non-standard strong property of the PCP query algorithm, which has not been shown to hold for a number
of PCP constructions of interest (e.g., the short PCPs in [BS06; BKKMS13]). Under these conditions, they

1Ignoring the lower-order term thλ · q · log ℓ.
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establish that Kilian’s protocol achieves non-adaptive knowledge soundness, with a constant multiplicative factor
loss in soundness versus the PCP soundness. In contrast, our work applies to all PCPs (including adaptive PCPs)
and establishes the tightest known bound for adaptive knowledge soundness.2

Ishai, Mahmoody, Sahai, and Xiao [IMSX15] provide a soundness analysis for Kilian’s protocol instantiated
with a PCP with negligible soundness error and a Merkle commitment scheme with negligible position binding
error; they do not quantify the security of the succinct argument in terms of the security of the underlying
cryptography. Lai and Malavolta [LM19, Appendix C] prove secure a variant of Kilian’s protocol, realized with
any linear PCP and linear map commitment; this generality can lead to shorter proofs.

Chiesa, Ma, Spooner, and Zhandry [CMSZ21] prove post-quantum security of Kilian’s protocol. As part of
their analysis, they give a proof of security for Kilian that also applies to the classical setting. Their analysis
differs significantly from ours due to challenges unique to the quantum setting, and incurs a multiplicative
soundness loss. In this work we consider soundness against classical adversaries only.

Succinct arguments from ideal hash functions. A line of work studies security reductions for succinct
non-interactive arguments in the random oracle model (ROM) [Mic00; Val08; BCS16; CMS19; CY21a; CY21b;
BGTZ23; CY24]. They take advantage of the ROM in two key ways. First, they use the observability of oracle
queries to construct a vector commitment scheme with a straightline (i.e., non-rewinding) extractor: a Merkle
commitment scheme in the ROM. As noted in Section 1.2, this leads to tighter security bounds. In fact, since
these constructions are unconditionally secure in the ROM, it is often possible to compute their exact soundness.
Second, these constructions use the Fiat–Shamir transformation to convert an underlying interactive argument
into a non-interactive one; the general security of this transformation has been shown only in the ROM.

Special-sound protocols. Interactive protocols with special soundness are an important and well-studied
family of public-coin protocols. In the sigma protocol setting (three-message public-coin protocols), k-special
soundness means that a witness can be efficiently extracted from any k accepting protocol transcripts with
distinct verifier challenges. A line of works extends this notion to multiple rounds [AC20; ACK22; AF22]. The
concrete security of general special sound protocols is relatively well-understood.

As noted in [CMSZ21], for reasonable choices of PCP, Kilian’s protocol is not k-special sound for any
polynomial k (for example, one can find a set of transcripts that includes only queries to a small fraction of the
PCP).3 We are therefore not able to apply results about special soundness directly.

2Formally, our result is incomparable with the one of Barak and Goldreich. In more detail, they use the reverse samplability property
of the PCP to obtain a collision-finder whose running time does not depend on the PCP length. This is necessary in their setting, as
there the size of an extracted PCP is not a priori bounded by any polynomial. It is open whether such a reduction is possible for (even
polynomial-size) PCPs that are not reverse samplable.

3Towards a tighter security proof for Kilian in the post-quantum setting, Lombardi, Ma, and Spooner [LMS22] introduce the notion
of probabilistic special soundness (PSS), a relaxation of special soundness, and show that Kilian’s protocol is PSS. We do not follow this
approach, as we do not expect it to yield tight security bounds in the classical setting.
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2 Techniques

We overview the main ideas underlying our results. In Section 2.1 we review Kilian’s protocol. In Section 2.2
we sketch our proof of Theorem 1. In Section 2.3 we sketch our proof of Theorem 2. In Section 2.4 we sketch
our proof of Theorem 3. In Section 2.5 we explain how to show the strict-time knowledge soundness of Kilian’s
protocol. In Section 2.6 we discuss adaptive security.

Vector commitment schemes. We fix a vector commitment scheme VC throughout this technical overview,
whose interface and properties are sketched below; see Section 3.2 for formal definitions. Here we omit the
algorithm that samples public parameters (and suppress these parameters in the interfaces of VC).4

• VC.Commit: On input a message m, VC.Commit outputs a commitment cm and auxiliary state aux.
• VC.Open: On input the auxiliary state aux and a query set Q, VC.Open outputs an opening proof pf.
• VC.Check: On input a commitment cm, query setQ, answers ans, and opening proof pf, VC.Check determines

if pf is valid for ans being the restriction to Q of the message committed in cm.
The property of perfect completeness ensures that VC.Check always accepts if pf is output by VC.Open given
the auxiliary information produced by VC.Commit. The security property of VC is position binding: VC has
position binding error ϵVC(λ, ℓ, s, tVC) if, when VC is instantiated with security parameter λ for messages of
length ℓ, every tVC-time adversary that outputs (cm, ans, ans′,Q,Q′, pf, pf ′) with |Q| = |Q′| = s satisfies the
following predicate with probability at most ϵVC(λ, ℓ, s, tVC) (over VC’s public parameters):

∃ i ∈ Q ∩Q′ : ans[i] ̸= ans′[i]
∧ VC.Check(cm,Q, ans, pf) = 1
∧ VC.Check(cm,Q′, ans′, pf ′) = 1

.

In other words, position binding makes it hard to produce two incompatible openings to the same commitment.
Moreover, we also consider expected-time position binding: the expected-time position binding error ϵ⋆VC =
ϵ⋆VC(λ, ℓ, s, t

⋆
VC) is the position binding property against adversaries whose expected running time is at most t⋆VC.

Stateful algorithms. Throughout this section, the interactive algorithms that participate in protocols are stateful.
When it is important to distinguish different computation phases of a stateful algorithm, we make explicit the
state passed from one phase to the next.

2.1 Kilian’s protocol

We review Kilian’s protocol that compiles a PCP and a VC scheme to a succinct interactive argument.
Kilian’s protocol [Kil92] obtains a succinct interactive argument by combining two ingredients: a proba-

bilistically checkable proof (PCP) and a vector commitment scheme VC (fixed above). Let PCP = (P,V) be
a PCP system for a relation R with alphabet Σ, proof length ℓ, query complexity q, and verifier randomness
complexity r. Kilian[PCP,VC] is an interactive argument ARG = (P,V) in which the argument prover P
receives an instance x and a witness w, and the argument verifier V receives the instance x. Then P and V
interact, exchanging 3 messages, as follows.

1. P computes the PCP string Π ← P(x,w), computes the commitment (cm, aux) ← VC.Commit(Π), and
sends cm to V .

2. V samples PCP verifier randomness ρ← {0, 1}r and sends it to P .
3. P deduces the set Q of queries that V(x; ρ) makes to Π, sets the query answers ans := Π[Q], generates an

opening proof pf ← VC.Open(aux,Q), and sends the tuple (Q, ans, pf) to V .
4. V performs the following checks.

(a) VC.Check(pp, cm,Q, ans, pf) = 1 (i.e., ans are valid answers for positions Q relative to cm);

4For example, if VC is based on a Merkle commitment scheme, the public parameters are the (randomly sampled) collision-resistant
function to be used for hashing the given message down to the Merkle root.
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(b) V[Q,ans](x; ρ) = 1 (i.e., the PCP verifier V(x; ρ) accepts the answers ans on Q).

Above, the notation V[Q,ans](x; ρ) refers to the decision bit of the PCP verifier V, given instance x and PCP
randomness ρ, when each query j ∈ Q is answered with ans[j] ∈ Σ. (If V queries outside the set Q then
V[Q,ans](x; ρ) = 0.)

2.2 Soundness analysis of Kilian’s protocol

We discuss the proof idea for Theorem 1.

2.2.1 Security reduction

Intuitively, the soundness error of Kilian[PCP,VC] should be at most the (statistical) soundness error of PCP
plus the position binding error of VC. The key lemma below formalizes this intuition.

Consider a malicious argument prover P̃ whose first message is the commitment cm. Intuitively, by the
position binding property of VC, P̃ is “bound” to open locations of at most a single underlying PCP string Π̃. By
rewinding P̃ sufficiently many times to recover the underlying PCP string Π̃, we can relate the probability of P̃
convincing the argument verifier V to the probability of Π̃ convincing the PCP verifier V.

Lemma 1 (informal). There exists a probabilistic algorithmR (the reductor) that, for every instance x, error
parameter ϵ > 0, adversary time bound tARG ∈ N, and tARG-size adversary P̃ , satisfies

Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣
cm← P̃
(Q̃, Π̃)← RP̃(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 ≤ ϵVC(λ, ℓ, q, tVC) + ϵ ,

where tVC = O
(
ℓ
ϵ · tARG

)
.

The reductorR handles the aforementioned rewinding process: R constructs a proof string Π̃ ∈ Σℓ whose
convincing probability is approximately the same as that of the argument prover P̃ (up to the position binding
error of VC and an arbitrary error term ϵ). Note thatR requires only black-box access to P̃ .

In the lemma above, the PCP verifier and the argument verifier are “coupled” in that they receive the same
randomness ρ. The lemma states that it is unlikely, for a randomly-chosen ρ, that the argument verifier V accepts
the answers provided by P̃ but the PCP verifier V rejects Π̃ under the same randomness. Intuitively, this allows
us to approximately equate the probability that P̃ convinces the argument verifier V to the probability that Π̃
convinces the PCP verifier V.

First we discuss how to use Lemma 1 to establish soundness error of Kilian[PCP,VC] in Section 2.2.2. Then
in Section 2.2.3 we sketch the proof of Lemma 1. For simplicity, all probability statements in this section are
with respect to the experiment in Lemma 1 unless otherwise specified.

2.2.2 Soundness analysis

We wish to upper bound the soundness error of Kilian[PCP,VC]. As claimed in Theorem 1, we argue that for
every instance x /∈ L(R), time bound tARG ∈ N, and tARG-size adversary P̃ ,

Pr
[〈
P̃,V(x)

〉
= 1
]
≤ ϵPCP(x) + ϵVC(λ, ℓ, q, tVC) + ϵ .

The above probability can be bounded with the following by the law of total probability:

Pr

 V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

+ Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 .
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The term on the right is bounded from above by ϵVC(λ, ℓ, q, tVC) + ϵ, due to Lemma 1.
The term on the left is bounded by ϵPCP(x) (the soundness error of PCP). Indeed, we can view the first

message of P̃ (cm in the experiment above) and the reductorR as a malicious PCP prover P̃ that outputs a PCP
string Π̃. Since x /∈ L(R), by the definition of soundness error of PCP,

Pr

 V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 ≤ Pr
[
VΠ̃(x) = 1

]
≤ ϵPCP(x) .

2.2.3 Proof sketch of Lemma 1

We are left to sketch the proof of Lemma 1. To do so, we present a reductor algorithmR.
The goal of R is to piece together a PCP string Π̃ obtained from the argument prover P̃ . Intuitively, Π̃ is

“fixed” after P̃ outputs a commitment cm, andR attempts to obtain information about Π̃ by rewinding the second
phase of P̃ , when given freshly sampled choices of PCP randomness ρ. Each such execution (if it outputs a valid
opening) reveals a fragment of Π̃. By repeating this process sufficiently many times,R obtains enough locations
of the string Π̃. Below we denote by N = N(ϵ) the number of samples (set later).

RP̃(aux,·)(cm, ϵ):
1. Initialize a proof string: Π̃ := (σ)ℓ, where σ is an arbitrary element in Σ.
2. Initialize an empty set Q̃ to track which locations of Π̃ are filled in.
3. Repeat the following N times:

(a) Sample PCP verifier randomness ρ← {0, 1}r.
(b) Ask P̃ for answers to this randomness: (Q, ans, pf)← P̃(aux, ρ).
(c) If VC.Check(pp, cm,Q, ans, pf) = 1, set Π̃[Q] := ans and update Q̃ := Q̃ ∪ Q.

4. Output (Q̃, Π̃).

We make explicit the two computation phases of the (stateful) malicious argument prover P̃:

(cm, aux)← P̃ and (Q, ans, pf)← P̃(aux, ρ) ,

where aux is the auxiliary state passed across the two computation phases of P̃ . The reductorR needs to rerun
only the second phase of P̃ , so the oracle forR is P̃(aux, ·).

As stated in Lemma 1, with the above notation we wish to bound the following probability:

Pr

 V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 .

If VC.Check(cm,Q, ans, pf) = 1 then VΠ̃(x; ρ) ̸= 1∧V[Q,ans](x; ρ) = 1 implies either: (i) Π̃ and ans disagree
at a position q ∈ Q ∩ Q̃; or (ii) there is query q in Q but not in Q̃. We analyze the two events separately, which
bounds the probability above by a union bound. We suppress the probability experiment in the derivations below.

(i) Valid openings with disagreeing answers. We informally argue that

Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(cm,Q, ans, pf) = 1

]
≤ ϵVC(λ, ℓ, q, tVC) .

The reductorR checks the validity of the opening for each position it fills into Π̃. Hence the event above implies
that there are valid openings to two different values at the same query position; equivalently, one can construct
an adversary AVC that runs the reductorR and executes ⟨P̃,V(x, ρ)⟩ for some verifier randomness ρ that breaks
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VC’s position binding. Since AVC has running time tVC = O(N · tARG) (its running time is dominated by the
running time ofR), the target probability is at most ϵVC(λ, ℓ, q, tVC) by the position binding property of the VC.

(ii) Missing position in Π̃. We show that

Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ℓ

N
.

To upper bound the probability of a query q ∈ Q not having been filled in byR, we use the probability that
a given position q ∈ [ℓ] is queried. The weight δ(q) of a query q ∈ [ℓ] is the probability that it is queried by the
argument verifier with uniformly sampled randomness. We can write:

Pr
[
Q \ Q̃ ≠ ∅

]
= Pr

[
∃ q ∈ [ℓ] : q ∈ Q ∧ q /∈ Q̃

]
≤
∑
q∈[ℓ]

δ(q) · (1− δ(q))N ,

where the inequality follows from the fact that Q and all query sets used to generate Q̃ correspond to indepen-
dently sampled verifier randomness. Note that, for every δ ∈ [0, 1], δ · (1 − δ)N ≤ 1/N.5 Hence, the target
probability is upper bounded by ℓ

N .
In fact, the proof for this case is more delicate than sketched above. If a position q ∈ [ℓ] has weight δ(q), we

cannot conclude that q /∈ Q̃ with probability at most (1− δ(q))N, because P̃ may often output invalid openings
for q whileR only includes valid openings. To fix this issue, we use a refined notion: δ(q) is the probability that
during the execution of the interactive argument, the verifier V samples randomness that corresponds to a query
set containing q and the prover P outputs a valid VC opening for the query set.

Setting parameters. By an union bound, the desired probability can be upper bounded by ϵVC(λ, ℓ, q, tVC) + ℓ
N .

Setting N := ℓ
ϵ , we get tVC = O(N · tARG) = O

(
ℓ
ϵ · tARG

)
and ℓ

N = ϵ, yielding the bound stated in Lemma 1.

Remark 3. Superficially one might hope for an improved analysis showing that one only needs ℓ
q·ϵ rewindings

rather than ℓ
ϵ . Indeed, each rewinding that leads to an accepting transcript yields a freshly sampled fragment

of the PCP containing q locations. However such a bound is unrealistic because, in general, a PCP may have
dummy queries. For example, consider a PCP where only O(1) of the q queries are “real”, while all others
are dummy queries to fixed locations of the PCP string. That said, there may be other metrics through which
the factor ℓ

ϵ can be improved, for example, our Theorem 2 considers VC schemes with expected-time position
binding and avoids this multiplicative factor.

2.3 Expected-time soundness analysis of Kilian’s protocol

We provide an alternative analysis for the expected-time soundness of Kilian’s protocol (Theorem 2) to avoid the
blowup of ℓ

ϵ in the VC adversary running time.
Recall that in the previous analysis, we “coupled” the reductor R and the VC adversary AVC: they are

essentially the same algorithm. However, notice the running time of AVC affects the soundness error, while the
running time ofR does not. This leads us to the following new security reduction lemma, which “decouples” the
two algorithms:

Lemma 2 (informal). There exists a probabilistic algorithm R (the reductor) and algorithms A(i)
VC (the VC

adversaries) for each i ∈ [q] that, for every instance x, error tolerance ϵ > 0, adversary time bound tARG ∈ N,

5A simple derivation of the inequality is the following: with f(x) = x · (1 − x)N, we have d
dx

f(δ) = 0 ⇐⇒ δ = 1
N+1

. As
f(0) = f(1) = 0 and δ is the only critical point in [0, 1], it achieves the maximum: maxx∈[0,1] {f(x)} = f(δ) ≤ 1/N.
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and tARG-time adversary P̃ , satisfies

Pr


VΠ̃⋆

(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

∣∣∣∣∣∣∣∣∣∣∣∣∣

cm← P̃
Π̃⋆ ← RP̃(cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
For i ∈ [q] :

(cm,Q, ans, pf,Q(i), ans(i), pf(i))← A
(i)
VC (ρ)


≤ ϵ ,

where the expected running time of A(i)
VC is t⋆VC = O

(
log q

ϵ · (tARG + ℓ · tV)
)

for every i ∈ [q].

For simplicity, all probability statements in the rest of this section are with respect to the experiment in
Lemma 2 unless otherwise specified.

Construction of the reductor. Similar to the reductor in Section 2.2.3, our new reductorR rewinds to extract
the PCP string committed by the adversary P̃ . In fact,R rewinds over all possible verifier randomness to extract
the “best” PCP string.

RP̃(cm):
1. Initialize a proof string: Π̃⋆ := (⊥)ℓ.
2. For every PCP verifier randomness ρ ∈ {0, 1}r:

(a) Run (Q, ans, pf)← P̃(ρ).
(b) If VC.Check(cm,Q, ans, pf) = 0, skip to next iteration.
(c) Record the answer for each location for later.

3. For every location i ∈ [ℓ], set Π̃⋆[i] to be the most frequently appeared answer in the loop (break ties with
the lexicographic order).

4. Output Π̃⋆.

Constructions of the VC adversaries. Let C be some constant to be specified later. For every q ∈ [ℓ], we
define Sq to be the following set:

Sq := {ρ ∈ {0, 1}r : q ∈ Q where Q is the set of queries make by V(x; ρ)} .

We first introduce a subroutine of the VC adversaries, the reverse sampler Samp. On input a query q ∈ [ℓ], Samp
outputs a randomness ρ sampled uniformly from Sq. We can implement Samp as follows.

Samp(q):
1. Repeat the following:

(a) Sample ρ← {0, 1}r.
(b) Compute the query set Q corresponding to ρ by running the PCP verifier V(x; ρ).
(c) If q ∈ Q, output ρ.

For every i ∈ [q], we construct the VC adversary A(i)
VC . In particular, given a randomness ρ with corresponding

query set is Q, A(i)
VC tries to find inconsistent answers for the i-th query in Q.

A
(i)
VC (ρ):

1. Run cm← P̃(x) and (Q, ans, pf)← P̃(ρ).
2. Check that VC.Check(cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,Q, pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

(a) Run ρ′ ← Samp(q).
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(b) Run (Q′, ans′, pf ′)← P̃(ρ′).
(c) If VC.Check(cm,Q′, ans′, pf ′) = 1:

i. If ans[q] ̸= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
ii. If ans[q] = ans′[q], set j := j + 1. Further, if j = C, output (cm, ans, ans,Q,Q, pf, pf).

We compute the expected running time of A(i)
VC . For every q ∈ [ℓ], let pi,q be the probability that the i-th query is

q for a uniformly sampled randomness:

pi,q := Pr

Q(i) = q

∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 .

Let X be the running time of the reverse sampler Samp. Then,

E [X] ≤
∑
q∈[ℓ]

pi,q ·
1

pi,q
· tV = ℓ · tV .

For every q ∈ [ℓ], let ξq be the probability that P̃ gives a valid opening to a query set given that the i-th query is
q:

ξq := Pr

 VC.Check(cm,Q, ans, pf) = 1
conditioned on
Q(i) = q

∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 .

Let I be the random variable that equals to 1 if the check in Step 2 passes and equals to 0 otherwise. Let Y be the
random variable for the running time of Step 4. The expected running time of A(i)

VC can be computed as follows:

t⋆VC = t⋆ARG + E [Y ]

= t⋆ARG + 0 · E [Y | I = 0] · Pr [I = 0] + E [Y | I = 1] · Pr [I = 1]

≤ t⋆ARG + C · E [X] +
∑
q∈[ℓ]

C · pi,q ·
1

ξq
· t⋆ARG · ξq

= t⋆ARG + C · (t⋆ARG + ℓ · tV) .

Proof sketch of security reduction lemma. We wish to bound the following probability:

Pr


VΠ̃⋆

(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

 .

Similar to Section 2.2.3, if VC.Check(cm,Q, ans, pf) = 1, then VΠ̃⋆
(x; ρ) ̸= 1 and V[Q,ans](x; ρ) = 1 implies

that Π̃⋆ and ans disagree at a position q ∈ Q. Unlike before, here there is no case of missing queries, because
the reductorR, by construction, exhausts all verifier randomness. On the other hand, we have a new condition,
∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]], which means that none of the VC adversaries successfully find inconsistent
openings to the same location. Hence, we focus on the following event:

∃i ∈ [q], ans[Q[i]] = ans(i)[Q[i]] ̸= Π̃⋆[Q[i]] .

For every q ∈ [ℓ], Π̃⋆[q] consists of the symbol that P̃ opens to with highest probability. In other words, let
p(q, σ) be defined as follows:

p(q, σ) := Pr

 q ∈ Q
∧ ans[q] = σ
∧VC.Check(cm,Q, ans, pf) = 1

∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)

 .
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Then, by construction ofR,
Π̃⋆[q] = argmax

σ∈Σ
{p(q, σ)} ,

with ties broken lexicographically.
Therefore, let q ∈ Q be the location such that Π̃⋆[q] ̸= ans[q], and p(q, ans[q]) ≤ 1

2 , as otherwise,
p(q, Π̃⋆[q]) ≥ p(q, ans[q]) > 1

2 , which implies that p(q, Π̃⋆[q]) + p(q, ans[q]) > 1, a contradiction.

Since A(i)
VC samples C randomness ρ′ such that for (Q′, ans′, pf ′) ← P̃(ρ′) (i) Q[i] ∈ Q′, (ii) ans[Q[i]] =

ans′[Q[i]], and (iii) VC.Check(cm,Q′, ans′, pf ′) = 1 , we can conclude that for every i ∈ [q],

Pr
[
ans[Q[i]] = ans(i)[Q[i]] ̸= Π̃⋆[Q[i]]

]
≤ 2−C .

Hence,
Pr
[
∃i ∈ [q], ans[Q[i]] = ans(i)[Q[i]] ̸= Π̃⋆[Q[i]]

]
≤ q · 2−C .

Setting C = log q
ϵ gives us the desired bound.

Soundness analysis from Lemma 2. Similar to Section 2.2.2, we wish to upper bound the soundness error of
Kilian[PCP,VC]. As claimed in Theorem 2, we argue that for every instance x /∈ L(R), time bound tARG ∈ N,
and tARG-size adversary P̃ ,

Pr
[〈
P̃,V(x)

〉
= 1
]
≤ ϵPCP(x) + ϵ⋆VC(λ, ℓ, q, t

⋆
VC) + ϵ .

Using the law of total probability, the above probability can be bounded by

Pr

 VΠ̃⋆
(x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

+ Pr

 VΠ̃⋆
(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

 .

The term on the left is bounded by ϵPCP(x) (the soundness error of PCP) using similar reasoning as in
Section 2.2.2.

The term on the right can be bounded by Lemma 2 and the expected-time position binding error of the VC.
Another application of the law of total probability gives

Pr

 VΠ̃⋆
(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1



= Pr


VΠ̃⋆

(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

+ Pr


VΠ̃⋆

(x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(cm,Q, ans, pf) = 1

∧∃ i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]


≤ ϵ+

∑
i∈[q]

Pr
[
ans[Q[i]] ̸= ans(i)[Q[i]]

]
.

The term on the right can be bounded by q · ϵ⋆VC(λ, ℓ, q, t⋆VC = O(log q
ϵ · (t

⋆
ARG + ℓ · tV))) from the expected-time

position binding property of the VC.

Extension to PCPs with adaptive verifiers. The above A(i)
VC construction only works for PCPs with non-

adaptive verifiers because we cannot compute the query set as in Item 4a for adaptive PCP verifiers. However,
we can adapt the construction of A(i)

VC to work for adaptive PCP verifiers as follows.

A
(i)
VC (ρ):
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1. Run cm← P̃(x) and (Q, ans, pf)← P̃(ρ).
2. Check that VC.Check(cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,Q, pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

(a) Repeatedly sample ρ′ ← {0, 1}r and run (Q′, ans′, pf ′)← P̃(ρ′) until the following holds:
i. q ∈ Q′, and

ii. VC.Check(cm,Q′, ans′, pf ′) = 1.
(b) Run (Q′, ans′, pf ′)← P̃(ρ′).
(c) If ans[q] ̸= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
(d) If ans[q] = ans′[q], set j := j + 1. Further, if j = C, output (cm, ans, ans,Q,Q, pf, pf).

By a similar analysis (details in Section 6.1), we can conclude that, for the above A(i)
VC ,

t⋆VC = C · ℓ · t⋆ARG .

The rest of the analysis can be directly applied to the new construction of A(i)
VC .

Remark 4. When the underlying PCP has an adaptive verifier, the expected running time of A(i)
VC cannot be

better than C · ℓ · t⋆ARG. Consider a PCP with proof length ℓ and query complexity q. Assume that the PCP verifier
is adaptive and the query distribution is almost uniform. Then, in order to sample a randomness that queries a fix
location q as in Item 4a, the expected number of iterations is roughly ℓ. Since each iteration runs the argument
adversary P̃ , A(i)

VC has expected running time C · ℓ · t⋆ARG for this PCP.

Remark 5 (Comparison with [BG08]). [BG08] gives a formal analysis of a variant of Kilian’s protocol based
on a non-adaptive and reverse-samplable PCP and a collision-resistance hash function. Their analysis shares
similarities with our analysis in this section; both analyses construct the adversaries to the vector commitment
scheme and to the PCP separately, contrary to the approach in Section 2.2. Nevertheless, our analysis in this
section deviates from the analysis in [BG08] (and other previous analyses) due to the differences below.

• Our analysis considers VC adversaries that run in expected running time while [BG08] considers strict running
time. As a result, [BG08] crucially relies on the PCP’s non-adaptivity and reverse sampler, as they cannot
construct an efficient strict-time collision finder without these. Instead, our analysis works for all PCPs.

• The rewinding algorithm in [BG08] uses the PCP reverse sampler. For every location q ∈ [ℓ], they reverse
sample several PCP randomness strings that query q and record an answer only if P̃ opens to it sufficiently
often. This construction has a tradeoff between the running time and error probability similar to our reductor
in Section 2.2 (the 1

ϵ blowup in the VC adversary time versus the additive error ϵ). In contrast, our reductor in
this section searches over all PCP randomness strings to find the “best” PCP string according to P̃’s answers.
This difference allows us to significantly mediate this tradeoff: to achieve an additive error of ϵ, the expected
running time of our VC adversary only has a blowup of log 1

ϵ . Unfortunately, while [BG08]’s analysis gives
knowledge soundness guarantee, ours in this section does not. We discuss in Section 2.5 how to extend our
strict-time soundness analysis in Section 2.2 to prove knowledge soundness.

2.4 Lower bounds from the Schnorr identification scheme

We discuss how to prove Theorem 3, and the connection to Schnorr’s protocol

2.4.1 Review: the Schnorr identification scheme

Let GroupGen be a group generation algorithm that, given a security parameter λ, samples a tuple (G, p, g)
where G is a group of prime order p ≥ 2λ and g is a generator of the group. The Schnorr identification scheme
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[Sch89; Sch91] is of a tuple of algorithms IDSchnorr = (P,V) where, for a random w in Zp, the prover P receives
the instance x = ((G, p, g), h = gw ∈ G) and witness w, and the verifier V receives the instance x. Then P and
V interact as follows.

1. P samples a random element r ← Zp, computes its first message α := gr ∈ G, and sends α to V.
2. V samples a random challenge β ← Zp and sends it to P.
3. P computes its second message γ := w · β + r mod p and sends it to V.
4. V checks that gγ = α · hβ .

We say that IDSchnorr has error ϵSchnorr if for every time bound tID ∈ N and tID-time adversary P̃,

Pr

⟨P̃(x),V(x)⟩ = 1

∣∣∣∣∣∣∣∣
(G, p, g)← GroupGen(1λ)
w← Zp

h := gw

x := ((G, p, g), h)

 ≤ ϵSchnorr(λ, tID) .
The security of the Schnorr identification scheme is based on the hardness of the discrete logarithm problem

(it is hard for any time-bounded adversary, given a random y ∈ G, to find x ∈ Zp such that y = gx). The
protocol has special soundness meaning that one can efficiently compute the discrete logarithm when given two
valid interaction transcripts. Thus, given a transcript of the protocol, the security reduction rewinds the adversary
in order to obtain an additional accepting transcript and then extracts a witness. The analysis uses the forking
lemma [PS00] to bound the success probability of the second invocation of the adversary (conditioned on a
successful first invocation).

2.4.2 VC scheme from the Schnorr identification scheme

While Kilian’s protocol shares a similar structure with sigma protocols like the Schnorr identification scheme
(prover’s commitment, verifier’s challenge, and prover’s opening), Kilian’s protocol is not a sigma protocol.
Nevertheless, we show how to construct a VC scheme whose security is based on that of the Schnorr identification
scheme, and later we will see how to connect this to the security of Kilian’s protocol.

Recall that the position binding property ensures that the probability for any time-bounded adversary to
find two inconsistent openings for the same location is bounded. On the other hand, the security of the Schnorr
identification scheme relies on the fact that the it is hard for any time-bounded adversary to find two accepting
transcripts of the protocol.

Therefore, the VC scheme we construct reduces finding inconsistent answers to finding accepting Schnorr
transcripts, which ensures position binding from the hardness of discrete logarithm.

We construct VC = (VC.Commit,VC.Open,VC.Check) as follows. (Our VC only supports messages of
length 1.) Recall that in this section, we omit the algorithm for VC that samples the public parameters. For this
construction, the public parameter consists of a description (G, p, g) of a group generated by GroupGen given
the security parameter λ, and a random group element h ∈ G.

• VC.Commit(m):

1. Sample r ← Zp.
2. Set cm := gr.
3. Set aux := (r,m).
4. Output (cm, aux).

• VC.Open(aux = (r,m), {1}): Output pf := r +m.

• VC.Check(cm, {1}, ans, pf): Check that gpf = cm · hans.

Consider a VC adversary AVC that outputs (cm,Q = {1},Q′ = {1}, ans, ans′, pf, pf ′) such that
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• ans ̸= ans′,
• gpf = cm · hans, and
• gpf

′
= cm · hans′ .

Then, one can recover x ∈ Zp such that h = gx:

x := (pf ′ − pf) · (ans′ − ans)−1 .

We can conclude that VC has position binding error ϵVC such that

ϵVC(λ, 1, 1, tVC) ≤ ϵDLOG(λ,O(tVC)) .

2.4.3 Security reduction from Kilian to Schnorr

We explain how to connect the security of Kilian’s protocol to the security of the Schnorr identification scheme.
The VC scheme that we consider is described above. We are left to fix a PCP.

Since the VC scheme works for messages of length 1, the PCP we consider has proof length 1. Moreover, we
ensure that the PCP has very small soundness error, so that the dominant term will come from the VC scheme.
In more detail, we consider a PCP system PCP for the empty relation R = ∅ with alphabet Σ = {0, 1}λ, proof
length ℓ = 1, query complexity q = 1, and verifier randomness complexity r = λ. For every instance x, given a
PCP proof Π̃ ∈ Σ, the PCP verifier V works as follows:

VΠ̃(x):
1. Sample randomness ρ← {0, 1}λ.
2. Check that Π̃ = ρ.

The soundness error of PCP is ϵPCP = 2−λ.
Let ARG := Kilian[PCP,VC]. Consider the optimal adversary P̃ for the Schnorr identification scheme.

We construct an argument adversary P̃ against the argument verifier for Kilian’s protocol. Note that the
argument adversary P̃ has access to the public parameter for the VC scheme in Section 2.4.2, which consists of
((G, p, g), h) where (G, p, g) is sampled by GroupGen and h ∈ G is a random group element.

P̃:
1. P̃’s commitment:

(a) Set the instance xSchnorr := ((G, p, g), h) (using the public parameter of VC).
(b) Run (α,aux)← P̃(xSchnorr).
(c) Output (cm, aux) := (α,aux).

2. P̃’s opening given verifier challenge ρ:
(a) Run γ ← P̃(aux, ρ).
(b) Output (Q := {1}, ans := ρ, pf = γ).

The running time of P̃ is O(tID), where tID is the running time of P̃. Moreover, ⟨P̃,V(x)⟩ = 1 if and only if
⟨P̃(xSchnorr),V(xSchnorr)⟩ = 1. Hence, we conclude that for every instance x /∈ L(R) the following holds:

ϵSchnorr(λ, tID) ≤ ϵARG(λ,x, O(tID)) .

Similarly, in the expected-time setting, we can show that

ϵ⋆Schnorr(λ, t
⋆
ID) ≤ ϵ⋆ARG(λ,x, O(t⋆ID)) .
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2.5 Knowledge soundness analysis of Kilian’s protocol

We wish to upper bound the knowledge soundness error of Kilian[PCP,VC]. As claimed in Section 1.1, we
argue that, for every ϵ > 0, there exists a probabilistic extractor E that runs in time O

(
ℓ
ϵ · tARG

)
such that, for

every instance x, time bound tARG ∈ N, and tARG-size adversary P̃ ,

Pr

[
b = 1
∧ (x,w) /∈ R

∣∣∣∣∣ b←
〈
P̃,V(x)

〉
w← E P̃(x)

]
≤ κPCP(x) + ϵVC(λ, ℓ, q, tVC) + ϵ .

By construction of the argument verifier V , the above probability is equivalent to the following:

Pr


V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
w← E P̃(x)

 .

We construct E using the PCP prover P̃ described in Section 2.2.2 and the PCP extractor E (which is given
by the underlying PCP system):

E P̃(x):
1. Run Π̃← P̃.
2. Output w← E(x, Π̃).

Using the law of total probability,

Pr


V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣∣∣∣
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
w← E P̃(x)



= Pr


V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

+ Pr


V[Q̃,Π̃](x; ρ) ̸= 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

 ,

where the last two probabilities are with respect to the experiment
cm← P̃
ρ← {0, 1}r

(Q, ans, pf)← P̃(ρ)
Π̃← P̃

w← E(x, Π̃)

 .

The term on the right is bounded by ϵVC(λ, ℓ, q, tVC) + ϵ due to Lemma 1.
The term on the left is bounded by κPCP(x) (the knowledge soundness error of PCP) as shown below:

Pr


V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1
∧ (x,w) /∈ R

 ≤ Pr

 VΠ̃(x; ρ) = 1
∧ (x,w) /∈ R

∣∣∣∣∣∣
ρ← {0, 1}r

Π̃← P̃

w← E(x, Π̃)

 ≤ κPCP(x) .
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2.6 Succinct interactive arguments with adaptive security

For simplicity, we described our security analyses in the plain model, where there are no public parameters
available to all parties; in particular, the argument verifier is responsible for sampling and sending VC’s public
parameters to the argument prover. However, in the technical sections (Sections 5 to 7) we prove stronger
versions of Theorems 1 and 2 that hold with adaptive security in the common reference string (CRS) model.

An interactive argument in the CRS model includes an additional algorithm: a trusted generator algorithm
that samples public parameters pp for the argument prover and argument verifier (which can be used any number
of times across different interactions). After that, based on pp, a malicious argument prover can choose the
instance on which to interact with the argument verifier. This setting necessitates appropriate definitions of
adaptive soundness and knowledge soundness (see Section 3.1), which require error bounds to hold for any
instance x chosen by the malicious argument prover up to an instance size bound n.6 In particular, the (soundness
and knowledge soundness) error bounds depend on n rather than x.

We achieve adaptive security in the CRS model by following the structure sketched in the sections above,
with only syntactic modifications due to the different target definitions. (E.g., modifying experiments to replace
a fixed instance x with an instance size bound n, and letting the malicious argument prover choose the instance.)

Overall, the (formal) statements provided in the technical sections (Sections 5 to 7) are stronger than the
(informal) statements in Theorems 1 and 2 because we achieve adaptive security in the CRS model.7

For consistency, the formal statement of Theorem 3 (our lower bounds for Kilian’s protocol) in the technical
section (Section 8) is also proved in the setting of adaptive security in the CRS model. Nevertheless, as noted in
Remark 8.12, the results hold even for non-adaptive security, which is an even stronger statement.

6For convenience, we use soundness and knowledge notions for the PCPs in which the malicious prover chooses the instance (see
Section 3.3). In to the information-theoretic setting, these definitions are equivalent to the standard ones with fixed instances.

7Adaptive security in the CRS model directly implies security in the plain model. Since no CRS is allowed, the argument verifier
can begin the interaction by running itself the generator algorithm and sending the public parameters for the argument system to the
argument prover. See Remark 3.7.
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3 Preliminaries

Definition 3.1. A relation R is a set of pairs (x,w) where x is an instance andw a witness. The corresponding
language L(R) is the set of instances x for which there exists a witness w such that (x,w) ∈ R.

3.1 Interactive arguments

An interactive argument (in the common reference string model) for a relation R is a tuple of polynomial-time
algorithms ARG = (G,P,V) that satisfies the following properties.

Definition 3.2 (Perfect completeness). ARG = (G,P,V) for a relation R has perfect completeness if for every
security parameter λ ∈ N, instance size bound n ∈ N, public parameter pp ∈ G(1λ, n), and instance-witness
pair (x,w) ∈ R with |x| ≤ n,

Pr
[〈
P(pp,x,w),V(pp,x)

〉
= 1
]
= 1 .

Definition 3.3 (Adaptive soundness). ARG = (G,P,V) for a relation R has (adaptive strict-time) soundness
error ϵARG if for every security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D,
adversary time bound tARG ∈ N, and tARG-time algorithm P̃ ,

Pr

 |x| ≤ n∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b←

〈
P̃(aux),V(pp,x)

〉
 ≤ ϵARG(λ, n, tARG) .

Definition 3.4 (Adaptive expected-time soundness). ARG = (G,P,V) for a relationR has (adaptive) expected-
time soundness error ϵARG if for every security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input
distribution D, adversary time bound tARG ∈ N, and algorithm P̃ with expected running time t⋆ARG,

Pr

 |x| ≤ n∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b←

〈
P̃(aux),V(pp,x)

〉
 ≤ ϵ⋆ARG(λ, n, t⋆ARG) .

Definition 3.5 (Adaptive knowledge soundness). ARG = (G,P,V) for a relation R has (adaptive) knowledge
soundness error κARG with extraction time tE if there exists a probabilistic algorithm E such that for every
security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, adversary time bound
tARG ∈ N, and tARG-time algorithm P̃ ,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)

 ≤ κARG(λ, n, tARG) ;

moreover, E runs in time tE(λ, n, tARG).

Above, b tr←− ⟨P̃(aux),V(pp,x)⟩ denotes the fact that tr is the transcript of the interaction (i.e., public
parameters and messages exchanged between P̃ and V). Moreover, E P̃ means that E has black-box access to
(each next-message function of) P̃; in particular E can send verifier messages to P̃ in order to obtain the next
message of P̃ (for a partial interaction where V sent those messages).

Moreover, we can assume, without loss of generality, that P̃ is deterministic relative to auxiliary input η (as
the internal coin flips of a probabilistic P̃ can be incorporated into the auxiliary input distribution D).
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Remark 3.6. The argument generator G receives two inputs: the security parameter λ and an instance size
bound n. This means that the public parameter sampled by G may work only for instances of size at most n.
However, one could consider the stronger notion where the sampled public parameter works for all instance
sizes; in this case G receives only λ as input. Our analysis works for both cases; see Remark 4.2.

Remark 3.7 (plain model variant). The above definitions consider interactive arguments in the common reference
string model, where a generator samples a public parameter used by the argument prover and the argument
verifier. One could also consider interactive arguments in the plain model, where there is no generator. This
latter notion is implied, at the cost of an additional verifier message, as we now explain.

Suppose that (G,P,V) is an interactive argument in the common reference string model. We describe an
interactive argument (P ′,V ′) in the plain model with an additional verifier message. The argument prover P ′

receives as input an instance x and witness w, and the argument verifier V ′ receives as input the instance x; both
also receive as input the security parameter λ (in unary). They interact as follows:
• V ′ samples a public parameter pp← G(1λ, |x|) and sends pp to P ′;
• P ′ and V ′ simulate an interaction of P(pp,x,w) and V(pp,x).
It is straightforward to see that (P ′,V ′) satisfies the standard definitions of completeness, soundness, and
knowledge soundness for interactive arguments in the plain model.8 In fact, it would suffice for (G,P,V) to
satisfy the non-adaptive relaxations of soundness and knowledge soundness.

3.2 Vector commitments

A (static) vector commitment scheme [CF13] over alphabet Σ is a tuple of algorithms

VC = (Gen,Commit,Open,Check)

with the following syntax.

• VC.Gen(1λ, ℓ)→ pp: On input a security parameter λ ∈ N and message size bound ℓ ∈ N, VC.Gen samples
public parameter pp.

• VC.Commit(pp,m) → (cm, aux): On input a public parameter pp and a message m ∈ Σℓ, VC.Commit
produces a commitment cm and the corresponding auxiliary state aux.

• VC.Open(pp, aux,Q)→ pf: On input a public parameter pp, an auxiliary state aux, and a query set Q ⊆ [ℓ],
VC.Open outputs an opening proof string pf attesting that m[Q] is a restriction of m to Q.

• VC.Check(pp, cm,Q, ans, pf) → {0, 1}: On input a public parameter pp, a commitment cm, a query set
Q ⊆ [ℓ], an answer string ans ∈ ΣQ, and an opening proof string pf, VC.Check determines if pf is a valid
proof for ans ∈ ΣQ being a restriction of the message committed in cm to Q.

The vector commitment scheme VC must satisfy perfect completeness and position binding.

Definition 3.8 (Completeness). VC = (Gen,Commit,Open,Check) has perfect completeness if for every
security parameter λ ∈ N, message length ℓ ∈ N, message m ∈ Σℓ, and query set Q ⊆ [ℓ],

Pr

VC.Check(pp, cm,Q,m[Q], pf) = 1

∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
(cm, aux)← VC.Commit(pp,m)
pf ← VC.Open(pp, aux,Q)

 = 1 .

Definition 3.9 (Position binding). VC = (Gen,Commit,Open,Check) has (strict-time) position binding error
ϵVC if for every security parameter λ ∈ N, message length ℓ ∈ N, query set size s ∈ N with s ≤ ℓ, auxiliary input
distribution D, adversary time bound tVC ∈ N, and tVC-time algorithm AVC,

Pr


|Q| = |Q′| = s
∧ ∃ i ∈ Q ∩Q′ : ans[i] ̸= ans′[i]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
η ← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp, η)

 ≤ ϵVC(λ, ℓ, s, tVC) .
8These standard definitions can be derived from Definitions 3.2, 3.3 and 3.5 by setting pp to be empty.
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Definition 3.10 (Expected-time position binding). VC = (Gen,Commit,Open,Check) has expected-time
position binding error ϵ⋆VC if for every security parameter λ ∈ N, message length ℓ ∈ N, query set size s ∈ N
with s ≤ ℓ, auxiliary input distribution D, adversary time bound t⋆VC ∈ N, and an algorithm AVC with expected
running time t⋆VC,

Pr


|Q| = |Q′| = s
∧ ∃ i ∈ Q ∩Q′ : ans[i] ̸= ans′[i]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
η ← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp, η)

 ≤ ϵ⋆VC(λ, ℓ, s, t⋆VC) .
Remark 3.11 (Monotonicity of ϵVC). We assume hereafter that the position binding error ϵVC is monotone in
each coordinate in the natural direction:

• ϵVC(·, ℓ, s, tVC) is non-increasing (larger security parameters decrease an adversary’s success);
• ϵVC(λ, ·, s, tVC) is non-decreasing (opening some set in a string is easier than opening in a substring);
• ϵVC(λ, ℓ, ·, tVC) is non-decreasing (finding a collision in a set is easier than finding one in a subset); and
• ϵVC(λ, ℓ, s, ·) is non-decreasing (the success of an adversary increases with its computational power).

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment scheme.
The remaining two are natural (and satisfied in the case of Merkle commitment schemes); in any case, otherwise
one may replace, in our computations, expressions of the type ϵVC(λ, ℓmax, smax, tVC), when ℓmax = maxi {ℓi}
and smax = maxj {sj}, with

max
i,j
{ϵVC(λ, ℓi, sj , tVC)} .

Analogously, we assume the expected-time position binding error ϵ⋆VC has monotonicity as well.

3.3 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) is an information-theoretic proof system where a probabilistic verifier
has oracle access to a proof string.

Definition 3.12 (Completeness). PCP = (P,V) for a relation R has perfect completeness if, for every
instance-witness pair (x,w) ∈ R,

Pr

[
VΠ(x; ρ) = 1

∣∣∣∣ Π← P(x,w)
ρ← {0, 1}r

]
= 1 .

Definition 3.13 (Soundness). PCP = (P,V) for a relationR has soundness error ϵPCP if, for every (unbounded)
circuit P̃ and auxiliary input distribution D,

Pr

 |x| ≤ n∧x ̸∈ L(R)
∧VΠ̃(x; ρ) = 1

∣∣∣∣∣∣
ai← D

(x, Π̃)← P̃(ai)
ρ← {0, 1}r

 ≤ ϵPCP(n) .
Definition 3.14 (Knowledge soundness). PCP = (P,V) for a relation R has knowledge soundness error
κPCP with extraction time tE if there exists a probabilistic algorithm E such that, for every adversary P̃ and
auxiliary input distribution D,

Pr

 |x| ≤ n∧ (x,w) ̸∈ R
∧VΠ̃(x; ρ) = 1

∣∣∣∣∣∣∣∣
ai← D

(x, Π̃)← P̃(ai)
ρ← {0, 1}r

w← E(x, Π̃)

 ≤ κPCP(n) ;

moreover, E runs in time tE(n).
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We consider several efficiency measures for a PCP:

• the proof alphabet Σ is the alphabet over which a PCP string is written;
• the proof length ℓ is the number of alphabet symbols in the PCP string;
• the query complexity q ∈ [ℓ] is the number of queries that the PCP verifier makes to the PCP string (each query

is an index in [ℓ] and is answered by the corresponding symbol in Σ in the PCP string);
• the randomness complexity r is the number of random bits used by the PCP verifier.

An efficiency measure may be a function of the instance x (e.g., of its size |x|).

22



4 Kilian’s protocol

The construction of (G,P,V) := Kilian[PCP,VC] is specified below.

Construction 4.1. The argument generator G receives as input a security parameter λ ∈ N and an instance size
bound n ∈ N, and works as follows.

G(λ, n):
1. Sample public parameter for the VC scheme: ppVC ← VC.Gen(1λ, ℓ(n)).
2. Set public parameter for the interactive argument: pp := ppVC.
3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x and a witness w, and the
argument verifier V receives as input the public parameter pp and the instance x. Then P and V interact as
follows.

1. P’s commitment.
(a) Compute a PCP string: Π← P(x,w).
(b) Compute a vector commitment to the PCP string: (cm, aux)← VC.Commit(pp,Π).
(c) Send cm to V .

2. V’s challenge.
(a) Sample PCP verifier randomness: ρ← {0, 1}r.
(b) Send ρ to P .

3. P’s response.
(a) Run the PCP verifier VΠ(x; ρ) to deduce its query set Q ⊆ [ℓ].
(b) Compute a VC opening proof: pf ← VC.Open(pp, aux,Q).
(c) Set ans := Π[Q].
(d) Send (Q, ans, pf) to V .

4. V’s decision: check that V[Q,ans](x; ρ) = 1 and VC.Check(pp, cm,Q, ans, pf) = 1.

The interactive argument consists of three messages: a prover message; a verifier message; and a prover
message. The interactive argument is public-coin since the verifier’s (only) message is a uniform random string.
The efficiency measures of interactive arguments are as follows:

• the generator outputs public parameter of size |ppVC| bits;
• the prover-to-verifier communication consists of |cm|+ q · (log ℓ+ log|Σ|) + |pf| bits;
• the verifier-to-prover communication consists of r bits;
• the time complexity of the argument generator is tVC.Gen.
• the time complexity of the argument prover is tP + tVC.Commit + tV + tVC.Open;
• the time complexity of the argument verifier is tV + tVC.Check.

Remark 4.2. There are vector commitments for which VC.Gen needs only the security parameter λ as input
(i.e., VC.Gen works for every message size); for example, Merkle commitment schemes are vector commitment
schemes with this property, because the public parameter consists of (the description of) a hash function, which
suffices for every message size. In this case, the argument generator G in Construction 4.1 requires only λ as
input and works for every instance size. This leads the notion of an interactive argument discussed in Remark 3.6.

Remark 4.3. In the plain-model variant of Construction 4.1 (see Remark 3.7), the public parameters pp := ppVC

are sampled and sent by the argument verifier (resulting in a four-message protocol). Hence the plain-model
variant is public-coin if (and only if) VC.Gen is a public-coin algorithm (its output includes all of its randomness).
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5 Strict-time security analysis

Theorem 5.1. Consider these two ingredients:

• PCP = (P,V), a PCP system for a relation R with alphabet Σ, proof length ℓ, and query complexity q; and
• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Then ARG = (G,P,V) := Kilian[PCP,VC] (Construction 4.1) is a three-message public-coin interactive
argument system for R, whose soundness error ϵARG and knowledge soundness error κARG satisfy the following
for every ϵ > 0 and tARG ≥ tV + tVC.Check + log|Σ|+ log ℓ:

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + ϵVC(λ, ℓ, q, tVC) + ϵ and

κARG(λ, n, tARG) ≤ κPCP(n) + ϵVC(λ, ℓ, q, tVC) + ϵ .

Above, ϵPCP and κPCP are the soundness and knowledge soundness errors of PCP, and tVC = O
(
ℓ
ϵ · tARG

)
.

Moreover, the knowledge extractor runs in time tE = O(tE + tVC).

Corollary 5.2. Let ARG be as in Theorem 5.1. Assume that for any n ∈ N, ϵVC(·, ·, ·, tVC) = negl(n) if
tVC = poly(n). Then, given that tARG = poly(n), we have

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) and

κARG(λ, n, tARG) ≤ κPCP(n) + negl(n) .

Proof. Let p(n) be an arbitrary polynomial. We set ϵ to be 1
2p(n) > 0. Hence, tVC = O

(
ℓ
ϵ · tARG

)
= poly(n),

which implies that ϵVC(λ, ℓ, q, tVC) = negl(n). Therefore,

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) +
1

2p(n)
< ϵPCP(n) + negl(n) +

1

p(n)
.

Since p is an arbitrary polynomial, we conclude that

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + negl(n) .

An analogous argument holds for κARG.

5.1 Security reduction

To analyze the soundness and knowledge soundness for the argument system of Construction 4.1, it is important
to understand how the argument system is related to the PCP system. The core of the security analysis is the
construction of a PCP prover P̃ from an argument prover P̃ (which may or may not be malicious). More
precisely, given a convincing argument prover P̃ , we want to obtain a convincing PCP prover P̃, which we
achieve via the reductor algorithmR in Construction 5.5.

Recall that if V accepts if and only if both V and VC.Check accept. Hence, Lemma 5.3 shows that PCP
strings generated by the reductorR are, up to small errors, as convincing to the PCP verifier V as the argument
prover P is to the argument verifier V; in other words,R transforms an argument prover P̃ into a PCP prover
P̃.9 We later use this lemma to prove (adaptive) soundness and knowledge soundness of ARG in Sections 5.2
and 5.3, respectively.

9Moreover, R preserves uniformity: if P̃ is a uniform algorithm, then so is P̃.
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Lemma 5.3. There exists a probabilistic algorithm R which, for every ϵ > 0, auxiliary input distribution D,
time bound tARG ≥ tVC.Check + 2q · (log|Σ|+ log ℓ), and tARG-size circuit P̃ , satisfies

Pr


V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


≤ ϵVC (λ, ℓ, q, tVC) + ϵ ,

where tVC = O
(
ℓ
ϵ · tARG

)
. Moreover,R makes ℓ/ϵ queries to P̃ and runs in O(tVC) time.

We stress that in the experiment above the reductor R is independent of ρ, since it does not receive the
verifier randomness as input. (Otherwise, the lemma would be satisfied trivially with Q̃ := Q and Π̃[Q̃] := ans.)

We now constructR, which will be convenient to separate into two parts: a sampling subroutine S followed
by a post-processing layerRpost that deterministically pieces together a PCP string Π̃ from the samples obtained
by S (and outputs the set Q̃ of “filled-in” coordinates along with Π̃).

Construction 5.4. We construct the sampler S as follows.

SP̃(aux,·)(pp, cm,N):
1. Initialize K := ∅.
2. Repeat the following N times:

(a) Sample PCP verifier randomness: ρ′ ← {0, 1}r.
(b) Obtain (Q′, ans′, pf ′)← P̃(aux, ρ′).
(c) If VC.Check(pp, cm,Q′, ans′, pf ′) = 1, add (Q′, ans′, pf ′) to K.

3. Output K.

The algorithm S makes N queries to P̃ , and runs in time10

tS ≤ N · (tARG + tVC.Check) ≤ 2N · tARG .

Construction 5.5. The reductor R is defined as follows. (Below, σ is an arbitrary symbol in the alphabet Σ.)

RP̃(aux,·)(pp, cm, ϵ):11

1. Set N := ℓ
ϵ and run K ← SP̃(aux,·)(pp, cm,N).

2. Run (Q̃, Π̃)← Rpost(K, ℓ).
3. Output (Q̃, Π̃).

The reductor’s second step is an execution of the following (deterministic) post-processing algorithm.

Rpost(K, ℓ):
1. Initialize Π̃ := σℓ and Q̃ := ∅.
2. For every (Q′, ans′, pf ′) ∈ K:

(a) Set Q̃ := Q̃ ∪ Q′.
(b) For every q ∈ Q′, set Π̃[q] := ans′[q].

10Note that the 2q(log|Σ|+ log ℓ) overhead incurred by copying (Q′, ans′, pf′) into K is accounted for in the difference between
tARG and the other terms.

11We also denote by RP̃(aux,·)(pp, cm, ϵ;ρ
)
, where ρ = (ρ(ℓ))ℓ∈[N] (and similarly for S) the deterministic algorithm that uses ρ(ℓ) as

the randomness for S’s ℓ-th sample. This allows the PCP prover of Construction 6.6 to be deterministic.
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3. Output (Q̃, Π̃).

Note thatR makes N = ℓ/ϵ queries to P̃ by construction, whose total N · tARG time dominates that ofR.

Proof. Throughout this proof, probabilistic expressions are with respect to the following experiment unless
explicitly denoted otherwise:

pp← G(1λ, n)
η ← D
(x, aux0)← P̃(pp, η)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)


=



pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃
(
aux, ρ

)


. (1)

Our goal is to upper bound the probability of the following expression: V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 . (2)

Observe that Eq. 2 implies that either (i) Π̃ and ans disagree at a position q ∈ Q ∩ Q̃; or (ii) there is a query q in
Q \ Q̃. We analyze the two cases separately.
Valid openings with disagreeing answers. Our goal is to prove the following bound:

Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵVC(λ, ℓ, q, tVC) ,

where tVC ≤ 3N · tARG.
Consider the following adversary AVC against the vector commitment scheme, which follows Experiment 1

(without executingRpost) and attempts to find a collision using the output K of the sampler S.

AVC(pp, η):
1. Run

(
x, (cm, aux)

)
← P̃

(
pp, η

)
.

2. Sample ρ← {0, 1}r.
3. Run (Q, ans, pf)← P̃(aux, ρ).
4. Run K ← SP̃(aux,·)(pp, cm,N), with N = ℓ

ϵ (as in Construction 5.5).
5. If there are (Q′, ans′, pf ′) ∈ K and q ∈ Q′ ∩Q with ans′[q] ̸= ans[q], output (cm, ans, ans′,Q,Q′, pf, pf ′).
6. Otherwise, output (the “dummy” tuple) (cm, ans, ans,Q,Q, pf, pf).

The time complexity of the sampler S is at most 2N · tARG and the collision-finding check (Step 5) runs in
time N · 2q(log|Σ|+ log ℓ) ≤ N · tARG,12 so the time complexity of AVC is tVC ≤ 3N · tARG.

Therefore, according to Definition 3.9,

Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]

= Pr


|Q| = |Q′| = q
∧ ∃ q ∈ Q ∩Q′ : ans[q] ̸= ans′[q]
∧ VC.Check(pp, cm,Q, ans, pf) = 1
∧ VC.Check(pp, cm,Q′, ans′, pf ′) = 1

∣∣∣∣∣∣∣∣
pp← VC.Gen(1λ, ℓ)
η ← D(
cm, ans, ans′,
Q,Q′, pf, pf ′

)
← AVC(pp, η)


12Searching for an intersection between Q′ and Q takes 2q log ℓ time, while each check for a symbol mismatch takes 2 log|Σ|. We

omit the time required to produce the output (which can be accounted for in the running time of S).
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≤ ϵVC(λ, ℓ, q, tVC) .

Missing positions in Π̃. We now upper bound the probability that there is a missing position in Π̃; we claim
that

Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵ .

Fix a public parameter-auxiliary input pair (pp, η) (recall that these are obtained in the first steps of
Experiment 1), and define the weight of a coordinate q ∈ [ℓ] with respect to (pp, η) as

δpp,η(q) := Pr

 q ∈ Q
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣
(x, cm, aux)← P̃(pp, η)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

Then, by a union bound over q ∈ [ℓ],

Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
= Pr

[
∃ q ∈ [ℓ] : q ∈ Q ∧ q /∈ Q̃
∧VC.Check(pp, cm,Q, ans, pf) = 1

]

≤ max
(pp,η)

Pr

 ∃ q ∈ [ℓ] : q ∈ Q ∧ q /∈ Q̃
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣
(x, cm, aux)← P̃(pp, η)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


= max

(pp,η)

∑
q∈[ℓ]

δpp,η(q) ·
(
1− δpp,η(q)

)N
≤ ℓ

N
,

where the last inequality follows from δ · (1 − δ)N ≤ 1/N for any δ ∈ [0, 1].13 Finally, plugging in N = ℓ
ϵ

bounds Eq. 2 as desired, concluding the proof:

Pr

 V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


≤ Pr

[
∃ q ∈ Q ∩ Q̃ : ans[q] ̸= Π̃[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
+ Pr

[
Q \ Q̃ ≠ ∅
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ ϵVC(λ, ℓ, q, tVC) + ϵ .

5.2 Adaptive soundness

Lemma 5.6. For every ϵ > 0, security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution
D, adversary time bound tARG ≥ tVC.Check + 2q · (log|Σ|+ log ℓ) and tARG-size circuit P̃ , the soundness error of
the argument system in Construction 4.1 satisfies

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + ϵVC(λ, ℓ, q, tVC) + ϵ ,

where tVC = O
(
ℓ
ϵ · tARG

)
.

13A simple derivation of the inequality is the following: with f(x) = x · (1 − x)N, we have d
dx

f(δ) = 0 ⇐⇒ δ = 1
N+1

. As
f(0) = f(1) = 0 and δ is the only critical point in [0, 1], it achieves the maximum f(δ) ≤ 1/N.
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Proof. Recall, from Definition 3.3 and Construction 4.1, that our goal is to upper bound

Pr

 |x| ≤ n∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b←

〈
P̃(aux),V(pp,x)

〉


= Pr


|x| ≤ n
∧x /∈ L(R)
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

(Since P̃ sends cm as the first message in Construction 4.1, the former experiment is equivalent to the latter,
where we omit the auxiliary state of the choice of instance and aux denotes that of the first message.)

As in Lemma 5.3, we consider the following experiment (a restatement of Experiment 1), which augments
the above by executingR, and thus leaves the probability unchanged.

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


.

By total probability,

Pr


|x| ≤ n
∧x ̸∈ L(R)
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1



= Pr


|x| ≤ n
∧x ̸∈ L(R)
∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

+ Pr


|x| ≤ n
∧x ̸∈ L(R)
∧V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 .

We first bound the probability of the leftmost term by the PCP system’s soundness error (i.e., Definition 3.13
with respect to PCP).

Construction 5.7. We define the auxiliary input distribution D of the PCP prover P̃ as follows:

D:
1. Sample pp← G(1λ, n) followed by η ← D and ρ := (ρ(ℓ))ℓ∈[N] ← ({0, 1}r)N.
2. Output ai :=

(
pp, η,ρ

)
.

The PCP prover is then given by the following next message functions.

P̃(ai):

1. Parse ai as
(
pp, η,ρ

)
.

2. Run (x, aux)← P̃(pp, η).
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3. Set aux :=
(
pp, aux0,ρ

)
.

4. Output (x,aux).

P̃(aux):

1. Parse aux as
(
pp, aux0,ρ

)
.

2. Run (cm, aux1)← P̃(aux0).
3. Run (Q̃, Π̃)← RP̃(aux1,·)

(
pp, cm, ϵ;ρ

)
.

4. Output Π̃.

Using Definition 3.13,14

Pr


|x| ≤ n
∧x ̸∈ L(R)
∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 |x| ≤ n∧x ̸∈ L(R)
∧V[Q̃,Π̃](x; ρ) = 1



≤ Pr

 |x| ≤ n∧x ̸∈ L(R)
∧VΠ̃(x) = 1

∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

Π̃← P̃(aux)


≤ ϵPCP(n) .

Lastly, an application of Lemma 5.3 yields

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


≤ ϵVC(λ, ℓ, q, tVC) + ϵ ,

where tVC ≤ 3ℓ
ϵ · tARG, which concludes the proof.

5.3 Adaptive knowledge soundness

Lemma 5.8. For every ϵ > 0, security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution
D, adversary time bound tARG ≥ tVC.Check +2q · (log|Σ|+ log ℓ) and tARG-size circuit P̃ , the knowledge soundness
error of the argument system obtained by Construction 4.1 satisfies

κARG(λ, n, tARG) ≤ κPCP(n) + ϵVC(λ, ℓ, q, tVC) + ϵ ,

where tVC = O
(
ℓ
ϵ · tARG

)
. If the PCP extractor’s running time is tE, the argument system’s extractor is

tE = tE +O(tVC).

Construction 5.9. Let E be the extractor for PCP. We use P̃ (Construction 6.6) and E to construct the
knowledge extractor E for ARG as follows.

E P̃(aux)(pp,x, tr):
1. Sample ρ← ({0, 1}r)N.

14Note that the prover in Definition 3.13 corresponds to the sequential execution of both steps in Construction 6.6.

29



2. Set aux :=
(
pp, aux,ρ

)
and run Π̃← P̃(aux).15

3. Run w← E(x, Π̃).
4. Output w.

Note that E executes E once and P̃ for ℓ/ϵ times (as P̃ runs the reductorR, which in turn sets N = ℓ/ϵ and
repeats N executions of P̃). Therefore, tE = tE +O(tVC).

Proof. From Definition 3.5 and Construction 4.1, our goal is to upper bound

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)



= Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D
(x, aux0)← P̃(pp, η)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)
w← E P̃(aux1)(pp,x, tr)


.

Now, note that by Constructions 5.9 and 6.6, the experiment above is equivalent to the following.



pp← G(1λ, n)
η ← D
(x, aux0)← P̃(pp, η)
(cm, aux1)← P̃(aux0)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux1, ρ)
ρ← ({0, 1}r)N
aux :=

(
pp, aux1,ρ

)
Π̃← P̃(aux)

w← E(x, Π̃)


=



pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
(Q̃, Π̃)← RP̃(aux,·)(pp, cm, ϵ)

w← E(x, Π̃)


.

We thus consider the above experiment, which augments that of Lemma 5.3 by appending an execution of
E, for the rest of the proof. Note that, as in Lemma 5.6, the experiment consisting of (x, aux0) ← P̃(pp, η)
followed by (cm, aux1) ← P̃(aux0) can be replaced by

(
x, (cm, aux)

)
← P̃

(
pp, η

)
: since R only uses the

second auxiliary state (which is obtained deterministically from the first), the former can be omitted. Note,
moreover, that the explicit randomness for P̃ on the left-hand side is replaced with sampling by R on the
right-hand side.

By total probability,

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


15Note that, by Construction 6.6, P̃ only executes P̃(aux) (calls to P̃(aux′, ρ) are continuations of executions of P̃(aux)). Therefore,

an equivalent construction gives P̃ oracle access to P̃(aux) (rather than to P̃), excluding aux from aux.
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= Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

+ Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 .

With the PCP prover P̃ in Construction 6.6 and using Definition 3.14, we have

Pr


|x| ≤ n
∧ (x,w) ̸∈ R
∧V[Q̃,Π̃](x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 |x| ≤ n∧ (x,w) ̸∈ R
∧VΠ̃(x; ρ) = 1

∣∣∣∣∣∣∣∣
ai← D

(x, Π̃)← P̃
ρ← {0, 1}r

w← E(x, Π̃)

 ≤ κPCP(n) .

Finally, Lemma 5.3 implies

Pr


|x| ≤ n
∧V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 V[Q̃,Π̃](x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1


≤ ϵVC(λ, ℓ, q, tVC) + ϵ ,

where tVC ≤ 3ℓ
ϵ · tARG, which concludes the proof.
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6 Expected-time soundness analysis

Theorem 6.1. Consider these two ingredients:

• PCP = (P,V), a PCP system for a relation R with alphabet Σ, proof length ℓ, and query complexity q; and
• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Then ARG = (G,P,V) := Kilian[PCP,VC] is a three-message public-coin interactive argument system for R,
whose soundness error ϵARG and expected-time soundness error ϵ⋆ARG satisfies the following for every ϵ > 0 and
tARG ≥ tVC.Check + log|Σ|+ log ℓ

ϵ⋆ARG(λ, n, t
⋆
ARG) ≤ ϵPCP(n) + q · ϵ⋆VC(λ, ℓ, q, t⋆VC) + ϵ ,

where ϵPCP is the soundness error of PCP and t⋆VC = O
(
ℓ · log q

ϵ · t
⋆
ARG

)
.

It is clear that ϵARG(λ, n, tARG) ≤ ϵ⋆ARG(λ, n, tARG), so Theorem 6.1 gives an alternative bound of soundness
error of ARG as well.

6.1 Security reduction

Similar to Section 5, we prove a slightly different security reduction lemma. We first introduce a few new
definitions.

Definition 6.2. For every argument prover P̃ , public parameter pp, auxiliary input η ∈ D, coordinate q ∈ [ℓ]
and σ ∈ Σ, we define ppp,η(q, σ) as follows:

ppp,η(q, σ) := Pr

 q ∈ Q
∧ ans[q] = σ
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣
(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

We also define the optimal PCP string Π̃⋆
pp,η (with respect to pp, η ∈ D and P̃) by

Π̃⋆
pp,η[q] := argmax

σ∈Σ
{ppp,η(q, σ)} ,

with ties broken lexicographically.

Lemma 6.3 (Alternative security reduction lemma). There exist probabilistic algorithms A(i)
VC for each i ∈ [q]

such that, for every C ∈ N, adversary time bound t⋆ARG ≥ tVC.Check + log|Σ| + log ℓ and expected t⋆ARG-time
adversary P̃ , satisfies

Pr



VΠ̃⋆
pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
For i ∈ [q] :(

cm,Q, ans, pf,
Q(i), ans(i), pf(i)

)
← A

(i)
VC (pp, η, ρ)


≤ ϵ .

Moreover, A(i)
VC runs in expected time t⋆VC = O

(
ℓ · log q

ϵ · t
⋆
ARG

)
for all i.

We construct A(i)
VC below.
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Construction 6.4. Given an argument prover P̃ , we construct each adversary A(i)
VC as follows.

A
(i)
VC (pp, η, ρ):

1. Run (x, cm, aux)← P̃(pp, η) and (Q, ans, pf)← P̃(aux, ρ).
2. Check that VC.Check(pp, cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,Q, pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

(a) Sample ρ′ ← {0, 1}r and run (Q′, ans′, pf ′)← P̃(aux, ρ′).
(b) If q ∈ Q′ and VC.Check(pp, cm,Q′, ans′, pf ′) = 1:

i. If ans[q] ̸= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
ii. If ans[q] = ans′[q], set j := j + 1. Further, if j = log q

ϵ , output (cm, ans, ans,Q,Q, pf, pf).

We first analyze the expected running time of A(i)
VC . For every (pp, η) and q ∈ [ℓ], we define ξ(i)pp,η(q) as

follows:

ξ
(i)
pp,η(q) := Pr

 Q(i) = q
∧VC.Check(pp,Q, ans, pf) = 1

∣∣∣∣∣∣
(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

Define, also, ξpp,η(q) :=
∑

i∈[q] ξ
(i)
pp,η(q); note that this is the probability of the event

[q ∈ Q ∧ VC.Check(pp,Q, ans, pf) = 1]

(under the same experiment). Finally, denote by T andMpp,η the distributions of running time of P̃ and the
number of iterations of Step 4 in an execution ofAVC(pp, η, ρ), respectively. Note that the conditional expectation
of M ←Mpp,η on the above event is O

(
log q

ϵ /ξpp,η(q)
)
.

Then the running time of A(i)
VC is O

(
M · tVC.Check +

∑
k∈[M ] Tk

)
, where Tk ← T for all k ∈ [M ]. Therefore,

E

E
M · tVC.Check + ∑

k∈[M ]

Tk

∣∣∣∣∣∣
M ←Mpp,η

For k ∈ [M ] :
Tk ← T


∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)



= E

E
M · tVC.Check + ∑

k∈[M ]

E [Tk | Tk ← T ]

∣∣∣∣∣∣M ←Mpp,η


∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)



= E

E [M · (tVC.Check + t⋆ARG) |M ←Mpp,η]

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


=
∑
q∈[ℓ]

(tVC.Check + t⋆ARG) · E
[
ξ
(i)
pp,η(q) ·

log q
ϵ

ξpp,η(q)

∣∣∣∣ pp← G(1λ, n)
η ← D

]
= O

(
ℓ log

q

ϵ
· t⋆ARG

)
.
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Proof of Lemma 6.3. We consider the following experiment throughout the proof unless otherwise specified:

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
For i ∈ [q] :

(cm,Q, ans, pf,Q(i), ans(i), pf(i))← A
(i)
VC (pp, η, ρ)


.

Then, we can deduce that

Pr


VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q(i)] = ans(i)[Q(i)]


≤ Pr

 ∃i ∈ [q], ans[Q(i)] ̸= Π̃⋆
pp,η[Q(i)]

∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q(i)] = ans(i)[Q(i)]


≤ Pr

[
∃i ∈ [q], ans[Q(i)] = ans(i)[Q(i)] ̸= Π̃⋆

pp,η[Q(i)]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤
∑
i∈[q]

Pr

[
ans[Q(i)] = ans(i)[Q(i)] ̸= Π̃⋆

pp,η[Q(i)]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ q · 2− log q

ϵ = ϵ ,

where the last inequality follows because A(i)
VC outputs ans(i) = ans and ans[Q[i]] ̸= Π̃⋆

pp,η[Q(i)], so that log q
ϵ

uniformly random valid openings matched ans in Q[i]; since Π̃⋆
pp,η[Q(i)] is the most frequent answer, ans[Q(i)]

appears with probability at most 1/2 (otherwise the sum of both probabilities would exceed 1).

6.2 Adaptive soundness

Lemma 6.5. For every ϵ > 0, security parameter λ ∈ N, instance size bound n ∈ N, auxiliary input distribution
D, adversary time bound tARG ≥ tVC.Check + 2q · (log|Σ|+ log ℓ) and tARG-size circuit P̃ , the soundness error of
the argument system in Construction 4.1 satisfies

ϵARG(λ, n, tARG) ≤ ϵPCP(n) + q · ϵ⋆VC(λ, ℓ, q, t⋆VC) + ϵ ,

where t⋆VC = O
(
ℓ log q

ϵ · tARG
)
.

Proof. Recall, from Definition 3.3 and Construction 4.1, that our goal is to upper bound

Pr

 |x| ≤ n∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
η ← D
(x, aux)← P̃(pp, η)
b←

〈
P̃(aux),V(pp,x)

〉


= Pr


|x| ≤ n
∧x /∈ L(R)
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .
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(Since P̃ sends cm as the first message in Construction 4.1, the former experiment is equivalent to the latter,
where we omit the auxiliary state of the choice of instance and aux denotes that of the first message.)

We consider the following experiment, which augments the above by executingR and A(i)
VC , and thus leaves

the probability unchanged.

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
For i ∈ [q] :

(cm,Q, ans, pf,Q(i), ans(i), pf(i))← A
(i)
VC (pp, η, ρ)


.

By total probability,

Pr


|x| ≤ n
∧x ̸∈ L(R)
∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1



= Pr


|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

+ Pr


|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 .

We first bound the probability of the leftmost term by the PCP system’s soundness error (i.e., Definition 3.13
with respect to PCP).

Construction 6.6. We define the auxiliary input distribution D of the PCP prover P̃ as follows:

D:
1. Sample pp← G(1λ, n) and η ← D.
2. Output ai := (pp, η).

The PCP prover is then given by the following next message functions.

P̃(ai):

1. Parse ai as (pp, η).
2. Run (x, aux0)← P̃(pp, η).
3. Set aux := (pp, η, aux0).
4. Output (x,aux).

P̃(aux):

1. Parse aux as (pp, η, aux0).
2. Run (cm, aux1)← P̃(aux0).
3. Run (Qρ, ansρ, pfρ)← P̃(aux1, ρ) for all ρ← {0, 1}r.
4. Construct and output Π̃⋆

pp,η.16

16Recall that, by Definition 6.2, Π̃⋆
pp,η[q] = argmaxσ∈Σ {ppp,η(,pp, η)(q, σ)}, where

ppp,η(q, σ) = 2−r · |
{
ρ ∈ {0, 1}r : q ∈ Qρ ∧ ansρ[q] = σ ∧ VC.Check(pp, cm,Qρ, ansρ, pfρ) = 1

}
|.
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Using Definition 3.13,17

Pr


|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 1

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

 ≤ Pr

 |x| ≤ n∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 1



= Pr

 |x| ≤ n∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x) = 1

∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

Π̃← P̃(aux)


≤ ϵPCP(n) .

Then we bound the remaining term. By total probability,

Pr


|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1



≤ Pr



|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]


+ Pr



|x| ≤ n
∧x ̸∈ L(R)
∧VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∃i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]


≤ q · ϵ+ Pr

[
VC.Check(pp, cm,Q, ans, pf) = 1

∧∃i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]

]
,

where the last inequality follows from Lemma 6.3. The last remaining term can be upper bounded by q ·
ϵ⋆VC(λ, ℓ, q, t

⋆
VC), as we explain below.

According to Definition 3.10, and by the fact that VC.Check(cm,Q(i), ans(i), pf(i)) = 1 for all i (by
construction of A(i)

VC ),

Pr

[
VC.Check(pp, cm,Q, ans, pf) = 1

∧∃i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]

]

= Pr

 VC.Check(pp, cm,Q, ans, pf) = 1

∧VC.Check(pp, cm,Q(i), ans(i), pf(i)) = 1

∧∃i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]


≤
∑
i∈[q]

Pr

 VC.Check(pp, cm,Q, ans, pf) = 1

∧VC.Check(pp, cm,Q(i), ans(i), pf(i)) = 1

∧∃i ∈ [q], ans[Q[i]] ̸= ans(i)[Q[i]]



≤
∑
i∈[q]

Pr


|Q| = |Q(i)| = q

∧∃q ∈ Q ∩Q(i) : ans[q] ̸= ans(i)[q]
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧VC.Check(cm,Q(i), ans(i), pf(i)) = 1

∣∣∣∣∣∣∣∣∣∣

pp← VC.Gen(1λ, ℓ)
η ← D
ρ← {0, 1}r(
cm, ans, ans(i),

Q,Q(i), pf, pf(i)

)
← A

(i)
VC (pp, η, ρ)


17Note that the prover in Definition 3.13 corresponds to the sequential execution of both steps in Construction 6.6.
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≤
∑
i∈[q]

ϵ⋆VC(λ, ℓ, q, t
⋆
VC)

= q · ϵ⋆VC(λ, ℓ, q, t⋆VC) ,

where t⋆VC = O
(
ℓtARG log

q
ϵ

)
is the expected runtime of the adversary that samples ρ then runs A(i)

VC (pp, η, ρ).
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7 Expected-time soundness analysis for PCPs with non-adaptive verifiers

Theorem 7.1. Consider these two ingredients:

• PCP = (P,V), a PCP system with non-adaptive verifier for a relation R with alphabet Σ, proof length ℓ, and
query complexity q; and

• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Then ARG = (G,P,V) := Kilian[PCP,VC] is a three-message public-coin interactive argument system for R,
expected-time soundness error ϵ⋆ARG satisfies the following for every ϵ > 0 and t⋆ARG ≥ tVC.Check + log|Σ|+ log ℓ:

ϵ⋆ARG(λ, n, t
⋆
ARG) ≤ ϵPCP(n) + q · ϵ⋆VC(λ, ℓ, q, t⋆VC) + ϵ ,

where ϵPCP is the soundness error of PCP and t⋆VC = O
(
log q

ϵ · (t
⋆
ARG + ℓ · tV)

)
.

7.1 Security reduction

We prove the same security reduction lemma as in Section 6, but an improved bound on the expected running
time of the VC adversaries. The corresponding improvement on ϵARG then follows by the same argument as in
Section 6.

Lemma 7.2 (Alternative security reduction lemma). There exist probabilistic algorithms A(i)
VC for each i ∈ [q]

such that, for every C ∈ N, adversary time bound t⋆ARG ≥ tVC.Check + log|Σ| + log ℓ and expected t⋆ARG-time
adversary P̃ , satisfies

Pr



VΠ̃⋆
pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q[i]] = ans(i)[Q[i]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
For i ∈ [q] :(

cm,Q, ans, pf,
Q(i), ans(i), pf(i)

)
← A

(i)
VC (pp, η, ρ)


≤ ϵ .

Moreover, A(i)
VC runs in expected time t⋆VC = O

(
log q

ϵ · (t
⋆
ARG + ℓ · tV)

)
for all i.

We construct A(i)
VC below.

Construction 7.3. Given an argument prover P̃ , we construct each adversary A(i)
VC as follows.

A
(i)
VC (pp, η, ρ):

1. Run (x, cm, aux)← P̃(pp, η) and (Q, ans, pf)← P̃(aux, ρ).
2. Check that VC.Check(pp, cm,Q, ans, pf) = 1. If not, output (cm, ans, ans,Q,Q, pf, pf).
3. Define q := Q(i) and set j := 0.
4. Repeat the following:

(a) Repeat the following:
i. Sample ρ′ ← {0, 1}r.

ii. Run the PCP verifier V to obtain the query set Q′(ρ′) corresponding to ρ′.
iii. If Q′(i) = q, exit this loop.

(b) Run (Q′, ans′, pf ′)← P̃(aux, ρ′).
(c) If VC.Check(pp, cm,Q′, ans′, pf ′) = 1:

i. If ans[q] ̸= ans′[q], output (cm,Q, ans, pf,Q′, ans′, pf ′).
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ii. If ans[q] = ans′[q], set j := j + 1. Further, if j = log q
ϵ , output (cm, ans, ans,Q,Q, pf, pf).

We first analyze the expected running time of A(i)
VC . For every (pp, η) and q ∈ [ℓ], we define p(i)pp,η(q) be the

probability that verifier’s i-th query is q for a uniformly sampled randomness:

p
(i)
pp,η(q) := Pr

Q(i) = q

∣∣∣∣∣∣
(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

For every (pp, η) and q ∈ [ℓ], we define ψ(i)
pp,η(q) as follows:

ψ
(i)
pp,η(q) := Pr

 VC.Check(pp,Q, ans, pf) = 1
conditioned on
Q(i) = q

∣∣∣∣∣∣
(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)

 .

Finally, denote by X , T andMpp,η the distribution of the running time of Item 4a, distributions of the running
time of P̃ and the number of iterations of Step 4 in an execution of AVC(pp, η, ρ), respectively. Then the running
time of A(i)

VC is

O

M · tVC.Check + ∑
k∈[M ]

Xk +
∑

k∈[M ]

Tk

 ,

where Xk ← X and Tk ← T for all k ∈ [M ]. Therefore,

E

E
M · tVC.Check + ∑

k∈[M ]

Xk +
∑

k∈[M ]

Tk

∣∣∣∣∣∣∣∣
M ←Mpp,η

For k ∈ [M ] :
Xk ← X
Tk ← T


∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)



= E

E
M · (tVC.Check + t⋆ARG) +

∑
k∈[M ]

E [Xk | Xk ← X ]

∣∣∣∣∣∣M ←Mpp,η


∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)


= E

∑
q∈[ℓ]

p
(i)
pp,η(q) · ψ(i)

pp,η(q) ·

(
tVC.Check + t⋆ARG +

tV

p
(i)
pp,η(q)

)
· E [M |M ←Mpp,η]

∣∣∣∣∣∣ pp← G(1λ, n)
η ← D


≤ E

∑
q∈[ℓ]

p
(i)
pp,η(q) · ψ(i)

pp,η(q) ·

(
tVC.Check + t⋆ARG +

tV

p
(i)
pp,η(q)

)
·

log q
ϵ

ψ
(i)
pp,η(q)

∣∣∣∣∣∣ pp← G(1λ, n)
η ← D


= O

(
log

q

ϵ
· (t⋆ARG + ℓ · tV)

)
.

Proof of Lemma 6.3. We consider the following experiment throughout the proof unless otherwise specified:

pp← G(1λ, n)
η ← D(
x, (cm, aux)

)
← P̃

(
pp, η

)
ρ← {0, 1}r

(Q, ans, pf)← P̃(aux, ρ)
For i ∈ [q] :

(cm,Q, ans, pf,Q(i), ans(i), pf(i))← A
(i)
VC (pp, η, ρ)


.
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Then, we can deduce that

Pr


VΠ̃⋆

pp,η(x; ρ) = 0

∧V[Q,ans](x; ρ) = 1
∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q(i)] = ans(i)[Q(i)]


≤ Pr

 ∃i ∈ [q], ans[Q(i)] ̸= Π̃⋆
pp,η[Q(i)]

∧VC.Check(pp, cm,Q, ans, pf) = 1

∧∀i ∈ [q], ans[Q(i)] = ans(i)[Q(i)]


≤ Pr

[
∃i ∈ [q], ans[Q(i)] = ans(i)[Q(i)] ̸= Π̃⋆

pp,η[Q(i)]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤
∑
i∈[q]

Pr

[
ans[Q(i)] = ans(i)[Q(i)] ̸= Π̃⋆

pp,η[Q(i)]
∧VC.Check(pp, cm,Q, ans, pf) = 1

]
≤ q · 2− log q

ϵ = ϵ ,

where the last inequality follows because A(i)
VC outputs ans(i) = ans and ans[Q[i]] ̸= Π̃⋆

pp,η[Q(i)], so that log q
ϵ

uniformly random valid openings matched ans in Q[i]; since Π̃⋆
pp,η[Q(i)] is the most frequent answer, ans[Q(i)]

appears with probability at most 1/2 (otherwise the sum of both probabilities would exceed 1).
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8 Lower bounds from Schnorr identification scheme

In this section, we show that a generic bound (i.e., for arbitrary PCP and VC) for the security of Kilian’s argument
system implies the same bound for the security of the Schnorr identification scheme [Sch89; Sch91].

8.1 Schnorr identification scheme

An identification scheme (ID scheme) for a relation R consists of a tuple ID = (G,P,V,C) that works as
follows:

G(1λ): Sample an instance-witness pair (x,w)← G(1λ) in the relation R.

The prover P and verifier V interact as follows:
1. P’s first message: (α,aux)← P(x,w), then P sends α to V.
2. V’s challenge: sample β ← C and send β to P.
3. P’s second message: γ ← P(aux, β) and send γ to V.
4. V’s decision: output V(x, α, β, γ).

Definition 8.1 (Impersonation security). ID = (G,P,V,C) for a relation R has (strict-time) impersonation
error ϵID if for every security parameter λ ∈ N, adversary time bound tID, and tID-time adversary P̃,

Pr

V(x, α, β, γ) = 1

∣∣∣∣∣∣∣∣
(x,w)← G(1λ)

(α,aux)← P̃(1λ,x)
β ← C

γ ← P̃(aux, β)

 ≤ ϵID(λ, tID) .
In prior literature, security against passive impersonation attacks assume adversaries that have access to an

oracle that produces honestly-generated transcripts for the instance x. However, in this work we only consider
identification schemes that are simulatable: there exists an efficient algorithm that samples a transcript from the
distribution of honest executions of the protocol on input (x,w). Hence, it is equivalent to define the adversaries
without the oracle access because they can simulate the oracle themselves.

Definition 8.2 (Expected-time impersonation security). ID = (G,P,V,C) for a relation R has (expected-time)
impersonation error ϵ⋆ID if for every security parameter λ ∈ N, adversary time bound t⋆ID ∈ N, and adversary P̃
with expected running time t⋆ID,

Pr

V(x, α, β, γ) = 1

∣∣∣∣∣∣∣∣
(x,w)← G(1λ)

(α,aux)← P̃(1λ,x)
β ← C

γ ← P̃(aux, β)

 ≤ ϵ⋆ID(λ, t⋆ID) .
Now we recall the construction of the Schnorr identification scheme. We rely on a group generation algorithm

GroupGen that takes as input the security parameter 1λ and outputs a description (G, p, g) of a cyclic group G
of prime order p and the generator g of G. In particular, the security parameter λ determines a lower bound on
the group order: p ≥ 2λ.

Construction 8.3 (Schnorr identification scheme). IDSchnorr = (G,P,V,C) works as follows:

• G(1λ):

1. (G, p, g)← GroupGen(1λ).
2. Sample w← Zp.
3. Set x := ((G, p, g), gw).
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4. Output (x,w).

• P(x,w):

1. Parse x as ((G, p, g), h).
2. Sample r ← Zp.
3. Compute the first message α := gr.
4. Set aux := (w, r).
5. Output (α,aux).

• P(aux, β):

1. Parse aux as (w, r).
2. Output γ := w · β + r mod p.

• V(x, α, β, γ):

1. Parse x as ((G, p, g), h).
2. Check that gγ = α · hβ .

The challenge space C is Zp.

The security of the Schnorr identification scheme comes from the hardness of discrete logarithm problem.

Definition 8.4 (Discrete logarithm assumption). The discrete logarithm assumption holds with error ϵDLOG if for
every security parameter λ, adversary time bound tDLOG ∈ N and tDLOG-size adversary ADLOG,

Pr

x = gy

∣∣∣∣∣∣
(G, p, g)← GroupGen(1λ)
x← Z×

p

y ← ADLOG((G, p, g), x)

 ≤ ϵDLOG(λ, tDLOG) .

Definition 8.5 (expected-time discrete logarithm assumption). The expected-time discrete logarithm assumption
holds with error ϵ⋆DLOG if for every security parameter λ, adversary time bound t⋆DLOG ∈ N and adversary ADLOG

with expected running time t⋆DLOG,

Pr

x = gy

∣∣∣∣∣∣
(G, p, g)← GroupGen(1λ)
x← Z×

p

y ← ADLOG((G, p, g), x)

 ≤ ϵ⋆DLOG(λ, t
⋆
DLOG) .

8.2 From Kilian to Schnorr

We show that the security of the Schnorr identification scheme is bounded by the soundness error of an argument
system constructed by Kilian’s construction (Construction 4.1).

Theorem 8.6. There exists PCP and VC such that for every n ∈ N,

ϵSchnorr(λ, tID) ≤ ϵARG(λ, n, tARG) ,

where ϵSchnorr is the impersonation security of the Schnorr identification scheme, ϵARG is the soundness error of
ARG := Kilian[PCP,VC] and tARG = O(tID).

Theorem 8.7. There exists PCP and VC such that for every n ∈ N,

ϵ⋆Schnorr(λ, t
⋆
ID) ≤ ϵ⋆ARG(λ, n, t⋆ARG) ,

where ϵ⋆Schnorr is the expected-time impersonation security of the Schnorr identification scheme, ϵ⋆ARG is the
expected-time soundness error of ARG := Kilian[PCP,VC] and tARG = O(tID).
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We construct the PCP and VC in Theorems 8.6 and 8.7 below.

Construction 8.8. Consider the empty relation R = ∅. Fix r ∈ N. We construct PCP = (P,V) for R as
follows:

• P(x,w): Output 0r.

• VΠ(x):

1. Sample randomness ρ← {0, 1}r.
2. Check that Π[1] = ρ.

Observe that PCP has alphabet Σ = {0, 1}r, proof length ℓ = 1 and query complexity q = 1. Moreover, it’s
easy to show that the soundness error of PCP is ϵPCP(n) = 2−r.

Construction 8.9 (VC scheme from Schnorr). We construct a VC scheme as follows:

• VC.Gen(1λ):

1. Run (G, p, g)← GroupGen(1λ).
2. Sample w← Zp.
3. Output pp := ((G, p, g), gw).

• VC.Commit(pp,m):

1. Parse pp as ((G, p, g), h).
2. Sample r ← Zp.
3. Set cm := gr.
4. Set aux := (r,m).
5. Output (cm, aux).

• VC.Open(pp, aux, {1}):
1. Parse aux as (r,m).
2. Output pf := r +m.

• VC.Check(pp, cm,Q, ans, pf):
1. Parse pp as ((G, p, g), h).
2. Check that gpf = cm · hans.

Lemma 8.10 (Position binding of Construction 8.9). Assume that the discrete logarithm assumption (Defini-
tion 8.4) holds with error ϵDLOG = ϵDLOG(λ, tDLOG). Let VC be constructed as in Construction 8.9. Then VC has
binding error ϵVC such that

ϵVC(λ, ℓ = 1, s = 1, tVC) ≤ ϵDLOG(λ, tVC) .

Proof. Let AVC be an adversary for VC. We construct an adversary ADLOG for discrete log.

ADLOG((G, p, g), h):
1. Set pp := ((G, p, g), h).
2. Run (cm, {1}, {1}, ans, ans′, pf, pf ′)← AVC(pp).
3. Set y := (pf ′ − pf) · (ans′ − ans)−1.
4. Output y.

If AVC succeeds, then ans ̸= ans′, gpf = cm ·hans and gpf
′
= cm ·hans′ . Therefore, y is well-defined and gy = h,

so ADLOG succeeds as gβ = gy·c = hc = α · hc.
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Lemma 8.11 (expected-time position binding of Construction 8.9). Assume that the expected-time discrete
logarithm assumption (Definition 8.5) holds with error ϵ⋆DLOG = ϵ⋆DLOG(λ, t

⋆
DLOG). Let VC be constructed as in

Construction 8.9. Then VC has expected-time position binding error ϵ⋆VC such that

ϵ⋆VC(λ, ℓ = 1, s = 1, t⋆VC) ≤ ϵ⋆DLOG(λ, t
⋆
VC) .

The proof of Lemma 8.11 is the same as the proof of Lemma 8.10.

Proof of Theorem 8.6. Let PCP be constructed as in Construction 8.8 and VC be constructed as in Construc-
tion 8.9. Let ARG := Kilian[PCP,VC].

Let P̃ be an adversary for the Schnorr identification scheme with running time tID and success probability
ϵSchnorr(λ, tID). We construct an argument adversary P̃ as follows:

P̃(pp):
1. P̃’s commitment:

(a) Parse pp as ((G, p, g), h).
(b) Run (α,aux)← P̃((G, p, g), h).
(c) Output (x, cm, aux) := (⊥, α,aux).

2. P̃’s response given verifier randomness ρ:
(a) Run γ ← P̃(aux, ρ).
(b) Output (Q := {1}, ans := ρ, pf := β).

Note that the running time of P̃ is tARG = O(tID). It follows that

ϵARG(λ, n, tARG) ≥ Pr


|x| ≤ n
∧x /∈ L(R)
∧V(pp,x,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D
(x, cm, aux)← P̃(pp, η)
ρ← {0, 1}r

(Q, ans, pf)← P̃(P, ρ)



= Pr

V(pp,x,Q, ans, pf) = 1

∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
η ← D
(⊥, cm, aux)← P̃(pp, η)
ρ← {0, 1}r

(Q, ans, pf)← P̃(P, ρ)



= Pr


ans = ρ
∧ gpf = cm · hans

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
((G, p, g), h) := pp
η ← D
(⊥, cm, aux)← P̃(pp, η)
ρ← {0, 1}r

(Q, ans, pf)← P̃(P, ρ)



= Pr

V(x, α, β, γ) = 1

∣∣∣∣∣∣∣∣
(x,w)← G(1λ)

(α,aux)← P̃(1λ,x)
β ← {0, 1}r

γ ← P̃(aux, β)


= ϵSchnorr(λ, tID) .

Theorem 8.7 can be proved in the same way as Theorem 8.6.

Remark 8.12. Note that the choice of the instance x does not matter in the above proof. Hence, it is straightfor-
ward to extend the proofs in this section to hold in the setting of a non-adaptively chosen instance x.
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8.3 Lower bound from discrete logarithm assumption

We explain how to obtain barriers for security of Kilian’s construction using known bounds for the Schnorr
identification scheme.

Lemma 8.13 (Schnorr security from discrete log [PS00; BN06; KMP16]). Assume the discrete logarithm
assumption holds with error ϵDLOG = ϵDLOG(λ, tDLOG). For every security parameter λ ∈ N, adversary time bound
tID ∈ N, and tID-time Schnorr impersonation adversary P̃, let ϵSchnorr be the impersonation error of the Schnorr
identification scheme, the following holds:

ϵSchnorr(λ, tID) ≤
√
ϵDLOG(λ,O(tID)) .

Theorem 8.6 implies the following corollary.

Corollary 8.14 (Lower bound from position binding). Consider these two ingredients:

• PCP = (P,V), a PCP system for a relation R with alphabet Σ, proof length ℓ, and query complexity q; and
• VC = (Gen,Commit,Open,Check), a vector commitment scheme over alphabet Σ.

Let ARG := Kilian[PCP,VC] and let ϵARG be the soundness error of ϵARG. If we have a security analysis such
that for every t ∈ N,

ϵARG(λ, n, tARG) < ϵPCP(n) + o
(√

ϵVC(λ, ℓ, q, O(tARG))
)
,

then
ϵSchnorr(λ, tID) < o

(√
ϵDLOG(λ,O(tID))

)
+ 2−λ ,

where tID = Ω(tARG).

For any cyclic group of order 2λ, where the hardness of discrete logarithm is believed to hold [Sho97],

ϵDLOG(λ, tDLOG) ≤
t2DLOG

2λ
.

Hence,

ϵVC(λ, 1, 1, tVC) ≤ ϵDLOG(λ,O(tVC)) ≤ O
(
t2VC
2λ

)
.

According to Theorem 1, we have the following bound on the soundness error of ARG := Kilian[PCP,VC]:

ϵARG(λ,x, tARG) ≤ ϵPCP(n) + ϵVC(λ, ℓ, q, tVC) + ϵ

≤ 2−λ + ϵVC(λ, 1, 1, tVC) + ϵ

≤ 2−λ +O

(
t2VC
2λ

)
+ ϵ .

Setting ϵ := Θ((ℓ · tARG)2/3 · 2−λ/3) minimizes the right-hand side at

2−λ + ℓ2/3 ·Θ

(
3

√
t2ARG
2λ

)
. (3)

Hence,

ϵSchnorr(λ, tID) ≤ O

(√
t2ID
2λ

)
, and

ϵARG(λ,x, tARG) ≤ 2−λ + ℓ2/3 ·Θ

(
3

√
t2ARG
2λ

)
,

showing a polynomial gap between the best analysis of the Schnorr identification scheme and our analysis of
Kilian’s protocol.
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8.4 Lower bound from expected-time discrete logarithm assumption

Lemma 8.15 (Expected-time security of the Schnorr identification scheme). Assume the expected-time discrete
logarithm assumption holds with error ϵ⋆DLOG = ϵ⋆DLOG(λ, t

⋆
DLOG). For every security parameter λ ∈ N, adversary

time bound t⋆DLOG ∈ N, and Schnorr adversary P̃ with expected running time t⋆DLOG, let ϵ⋆Schnorr be the expected-time
impersonation error of the Schnorr identification scheme, the following holds:

ϵ⋆Schnorr(λ, t
⋆
ID) ≤ ϵ⋆DLOG(λ,O(t⋆ID)) .

From Theorem 6.1,

ϵ⋆ARG(λ,x, t
⋆
ARG) ≤ ϵPCP(x) + q · ϵ⋆VC(λ, ℓ, q, t⋆VC) + ϵ

≤ 2−λ + q · ϵ⋆DLOG(λ,O(log
q

ϵ
· t⋆ARG)) + ϵ .
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