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Abstract

The notion of collaborative zk-SNARK is introduced by Ozdemir and Boneh (USENIX 2022), which allows
multiple parties to jointly create a zk-SNARK proof over distributed secrets (also known as the witness). This
approach ensures the privacy of the witness, as no corrupted servers involved in the proof generation can learn
anything about the honest servers’ witness. Later, Garg et al. continued the study, focusing on how to achieve
faster proof generation (USENIX 2023). However, their approach requires a powerful server that is responsible
for the most resource-intensive computations and communications during the proof generation. This requirement
results in a scalability bottleneck, making their protocols unable to handle large-scale circuits.

In this work, we address this issue by lifting a zk-SNARK called Libra (Crypto 2019) to a collaborative zk-
SNARK and achieve a fully distributed proof generation, where all servers take roughly the same portion of the
total workload. Further, our protocol can be adapted to be secure against a malicious adversary by incorporating
some verification mechanisms. With 128 consumer machines and a 4Gbps network, we successfully generate
a proof for a data-parallel circuit containing 223 gates in merely 2.5 seconds and take only 0.5 GB memory for
each server. This represents a 19× speed-up, compared to a local Libra prover. Our benchmark further indicates
an impressive 877× improvement in running time and a 992× enhancement in communication compared to the
implementation in previous work. Furthermore, our protocol is capable of handling larger circuits, making it
scalable in practice.

*The co-first authors.
†The corresponding author: Xiaohu Yang, email: yangxh@zju.edu.cn.
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1 Introduction

The cryptographic primitive, known as Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARK),
allows a prover to produce short proofs that convince a verifier of the knowledge of a witness attesting the valid-
ity of an NP relation, without revealing any extra information about the underlying witness. This technique has
broad applications in various scenarios, such as blockchain [XZC+22, But21, But22] and verifiable machine learn-
ing [ZFZS20, LXZ21]. However, a significant limitation of existing zk-SNARKs is that the entire computational
burden of proof generation falls on a single prover. This procedure can be notably time-consuming and demands
significant memory, especially in the case of large-scale circuits.

A natural solution to this problem involves distributing the proof generation process across multiple servers,
where each server is responsible for only a portion of the total computation. This method has been explored
in various studies [WZC+18, XZC+22, LXZ+23]. However, these works assume that the servers are “harmless”,
allowing for the direct disclosure of the witness to them. This assumption may not always be adopted, especially
in situations where the witness is sensitive and should be kept from the servers.

To protect privacy of the witness, Ozdemir and Boneh [OB22] introduced an innovative framework known as
collaborative zk-SNARK. This framework enables multiple servers, each holding parts of the witness, to collabo-
ratively generate a proof without revealing the witness to others. This concept was further developed by Garg
et al. [GGJ+23], who proposed a framework called zk-SNARK-as-a-Service (zkSaaS), primarily focusing on the
outsourcing scenario, where a client wishes to outsource the proof generation task to a group of servers without
revealing the witness. Notice that, in both [OB22] and [GGJ+23], the authors employ secret sharing techniques
to prevent the corrupted servers from knowing anything about the honest servers’ private input. Central to their
works is a secure Multi-Party Computation (MPC) protocol, letting the servers collaboratively compute the proof.
Both [OB22] and [GGJ+23] lay a solid foundation for collaborative zk-SNARK; however, there is an important
issue being unsolved, and we list it in the following.
Lack of fully distributed proof generation. In [OB22], multiple servers are necessitated to execute a generic MPC
protocol [DPSZ12,GSZ20], each of them undertakes slightly larger workload than the single prover in the original
zk-SNARK. The efficiency is improved by Garg et al. [GGJ+23], as they claimed that using 128 servers to collabo-
ratively generate a proof can achieve a better efficiency than a local prover, for zk-SNARKs called Groth16 [Gro16]
and Plonk [GWC19]. However, the proof generation in [GGJ+23] is only partially distributed, as there is a king
server that undertakes larger computationally intensive tasks and requires much larger memory resources than
other normal servers. Jumping ahead, our benchmark indicates that this requirement becomes a critical bottleneck
when scaling to large-scale circuits. How to eliminate the need for such a powerful king server is left as an open
question in [GGJ+23].

We find the concept of fully distributed proof generation to be of great importance, which means each server
incurs equal computation and space complexities, proportional to the total overhead. This property is particularly
vital for achieving scalability, as it ensures an even distribution of the workload across all servers and enables the
cluster to handle larger circuits. Since the prior works cannot achieve this property, we here ask our main research
question:

Can we achieve fully distributed proof generation for a collaborative zk-SNARK, where the total workload is
evenly distributed among all servers?

In addition to the above question, we also care about the security model. The work by Garg et al. [GGJ+23]
is proven to be secure against a semi-honest adversary, where all the servers are assumed to follow the protocol
instructions, even if they are corrupted. In contrast, the work by Ozdemir and Boneh [OB22] is secure against a
malicious adversary, who can let the corrupted servers deviate from the protocol instructions. There is no doubt
that assuming the presence of a malicious adversary is more realistic in practice. In this work, we consider both
semi-honest security and malicious security, and we focus on the honest majority setting as in [GGJ+23], where a
minority of the servers can be corrupted.

1.1 Our contributions

We summarize the contributions as follows:

1. Two fully distributed primitives. We first design two primitives against a semi-honest adversary: (i) a fully
distributed sumcheck protocol, (ii) and a fully distributed polynomial commitment scheme. These are key
building blocks for the zk-SNARK we will focus on. For both primitives, we can achieve O( n

N ) computation
and space complexities, where n is the input size and N is the number of servers.
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2. Fully distributed proof generation for Libra. We provide a positive answer to the aforementioned question
by adapting a zk-SNARK called Libra [XZZ+19] to a collaborative zk-SNARK. We achieve this by making
use of our newly designed primitives. For data-parallel circuits (circuits that contain multiple identical sub-
copies) with |C| gates, we can achieve fully distributed proof generation against a semi-honest adversary,
where each server has the same computation and space complexities O( |C|N ).

3. Achieving malicious security. We provide some lightweight verification protocols to detect malicious be-
haviors during the proof generation process. As a result, for data-parallel circuits, the computation complex-
ity of each server in our malicious secure distributed proof generation is Õ( |C|N ) 1 while the space complexity
is the same as the semi-honest protocol.

4. Implementation and evaluation. We have conducted a proof-of-concept implementation for our semi-
honest protocols to validate our results. Performance evaluations indicate that our protocols are both ef-
ficient and scalable:

• More efficient than local prover [XZZ+19]. Our protocol achieves a 19× speed-up than a local Libra
prover [XZZ+19], when generating a proof for a circuit with 223 gates, utilizing 128 servers.

• More efficient than [GGJ+23]. Our protocol makes an improvement of roughly 877× in running time and
992 × in communication over the distributed Plonk [GGJ+23], when generating a proof for a circuit
with 223 gates over a 4Gbps network, utilizing 128 servers for both cases.

• Less cost than [GGJ+23]. When there are 128 servers collaboratively generating proof for a circuit with
219 gates running over a 4Gbps network, our financial cost is only 7% of that of [GGJ+23].

• Handling larger scale circuits than [GGJ+23]. When provided with a powerful server with 96 GB memory
and 127 servers with 4 GB memory, the distributed Plonk [GGJ+23] can only handle up to a circuit with
224 gates. In contrast, when provided with 128 servers with only 4 GB memory, our protocol can handle
a larger circuit with 227 gates.

1.2 Applications

Here, we explore some potential applications for our collaborative zk-SNARK and we list them in the following.
Distributed proof generation of cross-chain bridges. Cross-chain bridges are crucial in blockchain, enabling asset
transfers across different chains. Xie et al. in [XZC+22] introduced zkBridge, a system allowing smart contracts on
various blockchains to transfer states securely. Their method involves distributed proof generation for efficiently
validating transactions in batches, using data-parallel circuits. However, this process is often centralized, exe-
cuted by a single entity (with multiple servers); therefore, the transactions are disclosed to the single entity. Our
protocols differ by distributing proof generation across multiple entities, enhancing security by reducing single-
entity dependence. It matches the efficiency of [XZC+22]’s method while preserving the transactions’ privacy.
Additionally, it is adaptable to other applications prioritizing decentralization and privacy, like zkRollup [But21]
and zkEVM [But22].
Verifiable machine learning. A user can commit to a Machine Learning (ML) model and provide a proof of
inference, which is used to verify the accuracy of this model. Several works address various ML models like
decision trees [ZFZS20], neural networks [ZCL+21], and convolutional neural networks [LXZ21]. As suggested
in [GGJ+23], collaborative zk-SNARK can be a solution to this task, since the circuits for ML inference can be quite
large as the ML models grow in size, which may become impractical for a local zk-SNARK prover to prove. Since
our protocol has better scalability than [GGJ+23], our protocol can handle larger ML models.
Collaborative auditing for efficient MPC. Our framework also finds an application in Publicly-Auditable MPC
(PA-MPC) [BDO14], as highlighted in [OB22]. PA-MPC allows public verification of MPC protocol outcomes.
Recent works [BGJK21, EGPS22, GPS22, EGP+23] demonstrates the practicality of multiple parties collectively
computing a circuit using efficient MPC protocols. They offer greater online efficiency than traditional protocols
like [DPSZ12]. As shown in [OB22], PA-MPC can be obtained by letting the parties run an MPC protocol for
computation and invoke the collaborative zk-SNARK for generating proofs that shows the correctness of the
computation. Our result provides a compiler for these efficient MPC protocols to achieve PA-MPC.

1The Õ notation ignores logarithmic factors.
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1.3 Related works

GKR-based interactive proofs. There are many existing zero-knowledge proof systems, or zk-SNARKs [PHGR13,
Gro16, AHIV17, GWC19, MBKM19, XZZ+19, Set20, ZXZS20, WYX+21, XZS22]. Among them, a noticeable line of
works are based on the initial work by Goldwasser, Kalai, and Rothblum [GKR08] (here after, GKR), which intro-
duced a doubly-efficient interactive proof system for layered arithmetic circuits. Subsequent developments, such
as those in [CMT12,Tha13,WJB+17,ZGK+18], have optimized the prover time for circuits with specific structures.
Thaler, in [Tha13], introduced a linear-time sumcheck protocol particularly effective for matrix multiplication
tasks. Zhang et al. in [ZGK+17a] extended the GKR protocol into an argument system by integrating it with a
polynomial commitment scheme. The work of Xie et al. in [XZZ+19] presented Libra, a zk-SNARK, achieving
O(|C|) prover time for arbitrary layered arithmetic circuits, where |C| denotes the size of the arithmetic circuit. This
framework has been the foundation for subsequent research efforts such as [ZXZS20, ZLW+21, LXZ21, XZC+22],
which either enhanced the efficiency of the protocol or developed efficient zero-knowledge argument systems for
a range of applications.

In this work, we continue the study of GKR-based zk-SNARK but focus on a different setting: we aim to
securely distribute the proof generation phase of zk-SNARK to a set of servers, and try to design an MPC protocol
that can be invoked by the servers to jointly generate proof. We require this protocol (i) to be fully distributed,
meaning each server bears the same computation complexity and space complexity, proportional to the overall
overhead, (ii) and to be secure against a malicious adversary who can only corrupt a minority of the servers,
meaning the adversary can not obtain any additional information about the witness if only a minority of the
servers are corrupted.

Distributed proof generation. There are a beautiful line of works in the literature (e.g. [SVdV16, WZC+18,
XZC+22, DPP+22, OB22, GGJ+23, CLMZ23, LXZ+23]) focus on how to let a group of servers to jointly generate
a zk-SNARK proof. We observe that these works can be divided into two types: (i) they assume the servers are all
honest and lets the servers know the witness directly; (ii) they assume the adversary can corrupt some servers and
let the servers obtain the secret shares of the witness, so the servers know nothing about the witness. We present
more details about these works in the following.
Type I: the servers know the witness. Since generating zk-SNARK proofs for large-scale circuits is quite time-consuming,
a lot of works [WZC+18, XZC+22, LXZ+23] have contemplated making the proof generation process distributed,
involving multiple servers working in tandem to generate the proof, thereby speeding up the proof generation
and reducing the overhead for each server. Their work is orthogonal to ours. They employ certain techniques to
universally improve the efficiency of proof generation by assuming all the servers are honest, and thus the witness
can be disclosed to the servers directly.

A closely related work is the work by Zhang et al. [XZC+22]. They designed distributed proof generation
process based on a GKR-based zk-SNARK called Virgo [ZXZS20]. Their algorithm can generate proofs for mul-
tiple identical circuits simultaneously, thus significantly improves efficiency by N times, where N is the number
of servers. However, their protocol allows the servers to know the entire witness. Therefore, their application
scenario is limited and the security of their protocol would be compromised if an adversary corrupts a portion of
servers. In this work, we aim to achieve the similar efficiency improvements while keeping the witness hidden
from the servers.
Type II: the servers do not know the witness. Recent years there is a series of works [SVdV16,CLMZ23,DPP+22,OB22,
GGJ+23] have discussed the topic that let several servers generate the proof collaboratively, without disclosing the
whole witness to the servers.

Both [OB22] and [GGJ+23] are representative works in this area. In both works, the process can be divided
into two steps: Firstly, each server obtains secret-shared witness, rather than the entire witness. Subsequently, the
servers execute some MPC protocols to complete the various modules (e.g., FFT and MSM) in the proof generation
process, ultimately obtaining the proof.

The main difference between these two works lies in the motivations. Collaborative zk-SNARK, by Ozdemir
and Boneh [OB22], considered the case where each server obtains a different witness, for instance, the i-th server
obtains wi, and the servers wants to jointly compute a proof that satisfies an NP relation R(x,w1, · · · , wN ) = 1
where x is the statement and N is the number of servers. They implemented their protocols using the generic
MPC protocols in the honest majority setting [GSZ20] or in the dishonest majority setting [DPSZ12]. However,
this generic approach cannot improve the efficiency of the proof generation phase.

On the other hand, the work by Garg et al. [GGJ+23] focused on the case where a client wishes to out-
source the proof generation process to multiple servers, and they formalized a framework called zkSaaS. They
designed some tailored-made MPC protocols for three zk-SNARKs: Groth16 [Gro16], Marlin [CHM+20] and
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Plonk [GWC19], and they employed the packed Shamir’s secret sharing scheme [FY92] to improve the efficiency.
However, their protocols are only proven secure in the semi-honest model. Furthermore, in their protocols, there is
special server that requires much more computation and space sources than other servers, since they let this spe-
cial server perform some hard computation tasks. Thus, their protocol cannot be fully distributed, and they leaved
an open question about how to design a fully distributed protocol for the distributed proof generation. In this
work, we aim to (i) provide an efficient solution to the aforementioned open question they leaved in [GGJ+23]; (ii)
and make our solution malicious-secure.

We note that, there are some works in the literature [CLMZ23, DPP+22] try to distribute the proof generation
in a different setting: they assume that there is a special party (in [CLMZ23], they called it delegator; while
in [DPP+22], they called it aggregator) who is always semi-honest, while the rest of the servers can be corrupted
by a malicious adversary. The main difference between their works and the zkSaaS [GGJ+23] is that: in zkSaaS,
the semi-honest client only sends messages to the servers in the first round, then the client is no longer required to
stay online, since the rest of the computation is conducted among the servers; in contrast, in [CLMZ23, DPP+22],
their semi-honest special party has to stay online and interact with the servers during the entire computation.
In our work, we do not need to assume a special server to be always semi-honest during the proof generation
process as in [CLMZ23, DPP+22]. In our malicious secure protocol, any server can be corrupted by the malicious
adversary.

1.4 Paper organization

Section 2 introduces the preliminaries. Section 3 provides a technique overview of this work. Section 4 provides
formal definitions of collaborative zk-SNARKs and the security model upon which our work is based. The fully
distributed sumcheck protocol is detailed in Section 5. In Section 6, we integrate the aforementioned protocol
with a fully distributed polynomial commitment to establish a collaborative proof generation process. Section 7
expands these protocols to accommodate the malicious security setting. Finally, Section 8 explores the specifics of
our implementation and evaluates the results of our experiments.

2 Preliminaries

We put more preliminaries including zero-knowledge arguments, zk-SNARK, and MPC in Appendix A.

2.1 Notation

In this paper, we use λ to denote the security parameter, and negl(λ) to denote a negligible function in λ. ”PPT”
stands for probabilistic polynomial time. We use bold letters, e.g., x, to denote vectors. For a positive integer
n > 1, we use [n] to denote the set {1, . . . , n}. For positive integers a, b such that a < b, we use [a, b] to denote the
set {a, . . . , b}. We use [[x]]d to denote a degree-d packed secret sharing of x and may omit the subscript d if the
context is clear. Similarly, we use ⟨x⟩ to denote a Shamir’s secret sharing. Let F be a large finite field with a prime
order such that |F|−1 = negl(λ).
Bilinear Groups. Let e : G×G→ GT denote an efficiently computable and non-degenerate bilinear pairing, such
that e(hα

1 , h
β
2 ) = e(h1, h2)

αβ , for all α, β ∈ Fq , and all h1, h2 ∈ G.

2.2 Polynomial commitment scheme

A polynomial commitment (PC) scheme is a cryptographic primitive that allows a prover to commit to a polyno-
mial f and later open the commitment to a point x and prove that the commitment is indeed a valid evaluation of
f at x.

Definition 1. A PC scheme for ℓ-variates polynomials F is a tuple of PPT algorithms (PC.Setup, PC.Commit, PC.Open,
PC.Verify):

• PC.Setup(1λ,F)→ pp: It takes as input a security parameter λ, and outputs a public parameter pp.

• PC.Commit(f, pp) → comf : It takes as input the ℓ-variates polynomial f(x) where x = (x1, ..., xℓ), and outputs a
commitment comf .
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• PC.Open(f,x, pp) → (z, π): It evaluates f at a point x and outputs an evaluation z := f(x) and a corresponding
proof π.

• PC.Verify(comf ,x, z, π, pp)→ {0, 1}: It verifies the proof π using pp, comf , z and outputs 1 if the proof is verified.

The PC scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ F and any point x ∈ Fℓ, if PC.Setup(1λ,F) → pp,PC.Commit(f, pp) →
comf ,
PC.Open(f,x, pp) = (z, π), then the following probability is 1.

Pr [PC.Verify(comf ,x, z, π, pp) = 1]

• Knowledge soundness. For any PPT adversary P∗, there exists a PPT extractor E with access to P∗’s messages during
the protocol. If PC.Setup(1λ,F) → pp, (z∗,x∗, com∗

f , π
∗) ← P∗(1λ, pp), f∗ ← EP∗

(1λ, pp), then the following
probability is negl(λ).

Pr

PC.Verify(com
∗
f ,x

∗, z∗, π∗, pp) = 1∧
com∗ = PC.Commit(f∗, pp)∧
f∗(x∗) ̸= z∗


Informally, a polynomial commitment scheme is zero-knowledge, if the commitment and the openings reveal no information
about the polynomial f . This property can be achieved by adding randomness [ZGK+17b].

KZG commitment and its variants. In this work, we mainly focus on a variant of the well-known KZG PC
scheme [KZG10, PST13] for multilinear polynomials, which are multivariate polynomials whose degree in each
variable is at most one (Hereafter, we call it mKZG scheme). Given an ℓ-variate multilinear polynomial f ∈ F , the
multilinear KZG (mKZG) scheme is defined by four algorithms:

• mKZG.Setup(1λ,F)→ pp: Sample s
$← Fℓ and output pp = {{g

∏
i∈W si}W∈Wℓ

}, whereWℓ is the collection of
all subset of {1, ..., ℓ}. Note that, s is the trapdoor.

• mKZG.Commit(f, pp)→ comf : Output comf = gf(s).

• mKZG.Open(f,u, pp) → (z, π): Evaluate f at u as z = f(u). Compute polynomials {Qi}i∈[ℓ] that satisfy
f(x) =

∑ℓ
i=1(xi − ui) ·Qi(xi+1, ..., xℓ) + z. Finally, output π = {πi}i∈[ℓ], where πi = gQi(si+1,...,sℓ).

• mKZG.Verify(comf ,u, z, π, pp) → {0, 1}: Check e(
comf

gz , g) =
∏ℓ

i=1 e(πi, g
si−ui), and output 1 if and only if

the check passes.

Note that the evaluations of a polynomial on the power can be computed efficiently using pp, and {Qi}i∈[ℓ]

can be computed using polynomial divisions for ℓ times. We kindly refer the readers to [PST13] for the security
analysis of the above scheme.

2.3 The GKR protocol

In [GKR08], Goldwasser, Kalai, and Rothblum proposed a protocol, hereafter denoted as the GKR protocol, which
enables a prover to convince a verifier that the output of a layered arithmetic circuit is correct. The protocol
is founded upon the sumcheck protocol [LFKN90]. In this subsection, we give a brief introduction to the GKR
protocol and its applications to zk-SNARKs. Before that, we present an important notion that will be used in the
GKR protocol in the following.

2.3.1 Multilinear extension

In the GKR-based protocol, we typically engage the multilinear extension of the witness in the computation. In this
paper, we define the multilinear extension of a vector V : {0, 1}ℓ → F as Ṽ : Fℓ → F such that Ṽ (x) = V (x) for
any x ∈ {0, 1}ℓ. More concretely, Ṽ can be expressed as:

Ṽ (x) =
∑

b∈{0,1}ℓ

(

ℓ∏
i=1

βbi(xi)) · V (b) , (1)

where βbi(xi) = (1− xi)(1− bi) + xibi and bi is i-th bit of b. Note that Ṽ is a multilinear polynomial.
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2.3.2 The sumcheck protocol

Given a multivariate polynomial f : Fℓ → F, the sumcheck protocol [LFKN90] enables the prover to convince
the verifier that H =

∑
b1,b2,...,bℓ∈{0,1} f(b1, b2, ..., bℓ) is correct. In [LFKN90], the authors proposed a protocol that

requires ℓ rounds of communication. This protocol is presented in Figure 1. The communication cost and the veri-
fication time are both of O(d · ℓ), where d represents the degree of the polynomial f . In [Tha13], Thaler introduced
an algorithm designed to execute the prover algorithm in O(2ℓ) time. As our work builds upon this algorithm, we
have provided a concise overview of it in Section 5.1. A zero-knowledge sumcheck can be constructed by adding
masking polynomials, which is described in [CFS17, ZGK+17b, XZZ+19].

The protocol is an interactive protocol between P and V proceeding in ℓ rounds.

• In the first round, P sends a univariate polynomial f1(x1)
def
=

∑
b2,...,bℓ∈{0,1} f(x1, b2, ..., bℓ). Then V checks

H
?
= f1(0) + f1(1). V then sends a random value r1 ∈ F to P.

• In the i-th round (2 ≤ i ≤ ℓ− 1), P sends a univariate polynomial

fi(xi)
def
=

∑
bi+1,...,bℓ∈{0,1} f(r1, ..., ri−1, xi, bi+1, ..., bℓ). Then V checks fi−1(ri−1)

?
= fi(0) + fi(1). V then sends a

random value ri ∈ F to P.

• In the ℓ-round, P sends a univariate polynomial fℓ(xℓ)
def
= f(r1, ..., rℓ−1, xℓ). Then V checks

fℓ−1(rℓ−1)
?
= fℓ(0) + fℓ(1). If the check passes, V generates a random challenge rℓ ∈ F and check that

fℓ(rℓ)
?
= f(r1, r2, ..., rℓ). V gets the evaluation of f on random vector r = {r1, r2, ..., rℓ} from an oracle. V

accepts the proof if and only if all the checks pass.

Protocol Πsumcheck

Figure 1: The Sumcheck Protocol Πsumcheck

2.3.3 GKR protocol

Using the sumcheck protocol as a building block, the GKR protocol enables a prover to efficiently convince a
verifier that the output of a layered arithmetic circuit is correct. Let C be an arithmetic circuit with depth d over
a finite field F. Without loss of generality, we suppose there are S gates in each layer i and let S = 2m for some
integer m, where each gate takes inputs from two gates in the (i + 1)-layer and outputs a value. Layer-0 is the
output layer while layer-d is the input layer. We then define a function Vi : {0, 1}m → F that takes input a
gate label b ∈ {0, 1}m and returns the value which is the output of the specific gate. With this definition, V0

corresponds to the output of the circuit and Vd represents the input. We then define the multilinear extension of
Vi as Ṽi : Fm → F such that Ṽi(x) = Vi(x) for all x ∈ {0, 1}m. We define two additional functions addi,multi :
{0, 1}3m → {0, 1}, referred to as wiring predicates in the literature. addi(multi) takes one gate label g ∈ {0, 1}m in
layer i− 1 and two gate labels x,y ∈ {0, 1}m in layer i, and outputs 1 if and only if the gate corresponding to b is
an addition(multiplication) gate that takes the output of gate x,y as input.

With the above definitions, we can express the evaluations of Ṽi as a summation of evaluations of Ṽi+1:

αiṼi(u
(i)) + βiṼi(v

(i)) =
∑

x,y∈{0,1}m
fi(Ṽi+1(x), Ṽi+1(y)) =

∑
x,y∈{0,1}m

(αi
˜addi+1(u

(i),x,y) + βi
˜addi+1(v

(i),x,y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi
˜multi+1(u

(i),x,y) + βi
˜multi+1(v

(i),x,y))Ṽi+1(x)Ṽi+1(y) ,

(2)

where u(i),v(i) ∈ Fm are random vectors and αi, βi ∈ F are random values. Note here fi depends on αi, βi,u
(i),v(i),

and we omit the subscripts for easy interpretation.
Then we let P and V execute the sumcheck protocol on Equation 2. At the end of the sumcheck protocol, V

receives two claims from P: Ṽi+1(u
(i+1)) and Ṽi+1(v

(i+1)). For checking the correctness of these two claims, V then
computes the random linear combination like on the left side of Equation 2 and proceeds to the subsequent layer
recursively until the input layer. We give a detailed description of the GKR protocol in Protocol 2.
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Extending the GKR protocol to a zk-SNARK. The GKR protocol in Figure 2 has no zero-knowledge properties
and is not even an argument system. There is a line of work [ZGK+17a, ZGK+17b, XZZ+19, ZXZS20] in the
literature that shows how to address these issues. Here we provide a quick recap.

To extend the GKR protocol to an argument system, Zhang et al. [ZGK+17a] proposed an idea that combines
a PC scheme with the GKR protocol. More precisely, the prover P initially commits to the multilinear extension
of variables in the input layer (denoted as Ṽd) to V using PC.Commit. At the end of the protocol, the verifier V can
ask the prover P to open the committed polynomial at randomly selected points by leveraging PC.Open. After
checking the validity of the prover’s opening messages using PC.Verify, the verifier V can finish the entire GKR
protocol using the opened evaluations. To obtain the zero-knowledge property, [XZZ+19] demonstrates that the
zero-knowledge property can be achieved by integrating some masking (random) polynomials into the original
GKR protocol. Furthermore, [XZZ+19] shows that their approaches can result in a very efficient zk-SNARK called
Libra. We refer interested readers to see more details about the GKR-based zk-SNARKs in [XZZ+19, ZXZS20].

Notice that, in this work, we focus on a GKR-based zk-SNARK called Libra [XZZ+19], whose prover time is
O(|C|), where |C| is the circuit size.

Let F be a finite field. Let C : FS → FS be a d-depth layered arithmetic circuit. P wants to convince that C is satis-
fied by its input and output.

1. V choose a random vector g ∈ Fm and sends in to P.

2. P and V run a sumcheck protocol on

Ṽ0(g) =
∑

x,y∈{0,1}m

˜add1(g,x,y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g,x,y)Ṽ1(x)Ṽ1(y)

At the end of the protocol, V needs to check the correctness of two claims Ṽ1(u
(1)) and Ṽ1(v

(1)) from P. V
proceeds using a random linear combination like in Step 3.

3. In each layer i = 1, ..., d− 1:

• V randomly select αi, βi ∈ F and sends them to P.

• P and V run a sumcheck protocol on Equation 2:

αiṼi(u
(i)) + βiṼi(v

(i)) =
∑

x,y∈{0,1}m
fi(Ṽi+1(x), Ṽi+1(y))

• At the end of the sumcheck protocol, V needs to check the correctness of two claims Ṽi+1(u
(i+1)) and

Ṽi+1(v
(i+1)) from P. To validate these claims, V conducts a recursive check on the subsequent layer.

4. At the input layer-d, V has two claims Ṽd(u
(d)) and Ṽd(v

(d)) from P. To check the claims, V uses the
multilinear extension of the inputs and evaluates on u(d),v(d). V outputs 1 if and only if the claims are
correct.

Protocol ΠGKR

Figure 2: The Protocol ΠGKR

2.4 Packed secret sharing

In this work, we focus on the Packed Secret Sharing (PSS) scheme [FY92], which allows a dealer to pack several
secrets at one time and distribute them among multiple parties, using the well-known Shamir’s secret sharing
scheme [Sha79].

Suppose x = {x1, ..., xk} is a vector of k secrets to be shared. The dealer can pick a degree-d (d ≥ k − 1)
polynomial f (d ≥ k − 1) such that f(−i+ 1) = xi for i ∈ [k]. Each share is then calculated as f(i) and sent to the
i-th party for i ∈ [N ]. Any d+ 1 parties can reconstruct x by Lagrange interpolation.

In this work, we use [[x]]d to denote a degree-d packed secret sharing of x and may omit the subscript d if the
context is clear. We use ⟨x⟩ to denote a regular threshold sharing (i.e., Shamir’s secret sharing). We recall two
properties of PSS in the following. More concretely, for any x, y ∈ Fk:

• Linear homomorphism: [[x + y]]d = [[x]]d + [[y]]d.
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• Multiplication: [[x ∗ y]]2d = [[x]]d · [[y]]d, where ∗ represents a coordinate-wise multiplication.

The first property implies that, for all scalar c ∈ F, all parties can locally compute [[c ∗ x]]d = c · [[x]]d, where
c := (c, c, . . . , c) ∈ Fk. We also note that, if we denote by t the number of corrupted parties, then t = d− k + 1; in
other words, the PSS scheme above is secure against d− k + 1 corrupted parties.

3 Technical Overview

The primary goal of this work is to eliminate the requirement of a powerful server in the proof generation process,
thereby ensuring an even distribution of workload across all servers. This enables the proof generation to scale
effectively to larger circuits.
SIMD-friendly zk-SNARKs. Similar to [GGJ+23], our main idea is to utilize the Single Instruction, Multiple Data
(SIMD) structure in the computation of zk-SNARK proofs, and employ the PSS technique [FY92] to enhance the
efficiency. We note that the primary reason for the partially distributed proof generation in [GGJ+23], stems
from a primitive called Fast Fourier Transform (FFT), which is a key component of some zk-SNARKs such as
Groth16 [Gro16] and Plonk [GWC19]. In [GGJ+23], the authors find it is very hard to evenly distribute the com-
putation task of FFT; therefore, they design a protocol for partially distributing FFT, in which there is a powerful
server that requires much more computation and memory resources than others.

In contrast, in this work, we focus on distributing a particular category of zk-SNARKs which avoids the use of
FFT, i.e., GKR-based zk-SNARKs. Our key observation is that: the sumcheck protocol [LFKN90], which is a fun-
damental building block of GKR-based zk-SNARKs [WJB+17, WTs+18, ZGK+18, XZZ+19, ZXZS20], is somewhat
“SIMD-friendly”.
Fully distributed sumcheck protocol. As described in Section 2.3.2, the sumcheck protocol allows a prover to
convince a verifier of a claim H =

∑
b∈{0,1}ℓ f(b) is correct, with f : Fℓ → F being an ℓ-variate polynomial.

Furthermore, in this work, we require f to be a multilinear polynomial.
The bookkeeping table in sumcheck protocol. In [Tha13], Thaler proposed an algorithm for the sumcheck protocol with
linear prover time. The core of this algorithm is letting the prover compute a bookkeeping table, consisting of ℓ rows
with 2ℓ−i+1 entries in the i-th row. More precisely, the prover begins by initializing the first 2ℓ entries of the
bookkeeping table with f ’s evaluations on a hypercube {0, 1}ℓ. The protocol consists of ℓ rounds interaction
between the prover and the verifier. During the i-th round of the protocol, the prover utilizes the entries in i-th
row to deduce a univariate polynomial fi(xi) and send it to the verifier. The verifier then checks fi−1(ri−1) =
fi(0) + fi(1) holds; if so, the verifier returns a random challenge ri ∈ F. Subsequently, the prover computes the
2ℓ−i entries for the next row by performing linear combinations on the current 2ℓ−i+1 entries as follows:

f(r1, ..., ri−1, ri, b
(i)) = (1− ri) · f(r1, ..., ri−1, 0, b

(i))

+ ri · f(r1, ..., ri−1, 1, b
(i)) ,

(3)

for all b(i) ∈ {0, 1}ℓ−i. This process continues for ℓ rounds and finally, the bookkeeping table is filled. We give an
example in part (a) of Figure 3 and a detailed description in Section 5.1.
Distributing the bookkeeping table. We note it is possible to distribute the computational workload required for the
bookkeeping table evenly among multiple servers. We observe that running Equation 3 for 2ℓ−i times can be
efficiently executed in a SIMD fashion, with the assistance of PSS. For instance, assuming there are n = 2ℓ entries,
denoted x = (x1, ..., xn). These entries can be segmented into n

k vectors x1, ...,xn
k

, where k is the packing factor.
Assuming each server are provided with the packed shares {[[xj ]]}j∈[nk ], then Equation 3 can be rewritten as:

∀j ∈ [1,
n

2k
] : [[yj ]] = (1− ri) · [[xj ]] + ri · [[xj+ n

2k
]] ,

where {[[yj ]]}j∈[ n
2k ] are the packed shares of entries in the next row. This process, which can be repeated for

multiple rounds, enhances the efficiency of computing the bookkeeping table by a factor of k = O(N).
However, a challenge arises when k > 2; in such cases, by a certain round (i.e., the log2

n
k -th round), each server

holds only a single share [[x]], which impedes further computation. To overcome this, for each remaining round,
we suggest that servers first perform a carefully designed permutation on the single share [[x]]. This enables each
server to obtain an additional share [[x̂]], where entries in the same position within x and x̂ are aligned according
to the linear combination. Then each server can locally compute [[y]] = (1 − ri) · [[x]] + ri · [[x̂]], where [[y]] is the
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packed shares of entries in the next row. To facilitate the permutation, we introduce a sub-protocol known as the
PSS permutation, adapted from [GPS21a]. Combining these two phases, the task of computing the bookkeeping
table can be distributed among the servers evenly. As a result, we achieve a fully distributed sumcheck protocol,
where each server has the same computation and space complexities O( n

N ), where n is the input size and N is the
number of servers.
Fully distributed PC scheme. In the GKR-based zk-SNARKs, the prover uses the PC scheme to commit to the
witness, which can be transformed into the form of a multilinear polynomial. In this work, we try to distribute the
mKZG PC scheme, which is described in Section 2.2 and is used in a GKR-based zk-SNARK called Libra [XZZ+19].
Distributing the commitment generation. Recall that, in mKZG PC scheme, for an ℓ-variate multilinear polynomial f ,
the prover will generate a commitment as comf = gf(s), utilizing the public parameter pp.

In order to distribute the above commitment generation among a group of servers, we leverage the property
of multilinear polynomials. Let x represent the evaluations of f on the hypercube {0, 1}ℓ. Assuming that each
server is provided with the packed shares {[[xj ]]}j∈[nk ], we observe that: gf(s) =

∏
b∈{0,1}ℓ g

∏ℓ
i=1 βbi

(si)·f(b) , where
βbi(si) = (1 − si)(1 − bi) + sibi, and each f(b) corresponds to an element in x. The above equation can be
computed in a distributed manner using a procedure called distributed Multi-Scalar Multiplication (dMSM), as
described in [GGJ+23]. More concretely, dMSM enables the servers to compute

∏n
i=1 A

bi
i , given the packed shares

of a set of elliptic curve points A1, ..., An and a set of scalars b1, ..., bn. Each server is required to perform only
O( n

N ) group exponentiations. It is easy to see that, if the public parameter can be generated in an appropriate
form of packed shares, then the commitment above can be efficiently computed by the servers collectively.
Distributing the opening proof generation. Given an evaluation point u ∈ Fℓ and the evaluation result y ∈ F, the
prover can generate an opening proof showing y = f(u) indeed valid. In mKZG scheme, this process typically
involves using FFT to perform multiple polynomial divisions by (xi − ui), resulting in a series of quotient poly-
nomials Qi(x)i∈[ℓ], and generate proofs as πi = gQi(si+1,...,sℓ), for i ∈ [ℓ]. However, as previously mentioned, it is
not clear how to distribute the workload of FFT evenly among the servers. Therefore, we propose an alternative
method to compute the opening proof, which avoids the need for FFT.

Consider the division of a multilinear polynomial f(xi, ..., xℓ) by (xi − ui) to obtain the quotient polyno-
mial Q(xi+1, ..., xℓ) and the remainder polynomial R(xi+1, ..., xℓ), we observe that the evaluations of Q and R
on b ∈ {0, 1}ℓ−i can be expressed as: Q(b) = f(1, b) − f(0, b) and R(b) = (1 − ui) · f(0, b) + ui · f(1, b). This re-
lationship, similar to Equation 3, also exhibits a SIMD structure. Assuming the servers possess the packed shares
of the evaluations of f , they can also utilize the SIMD structure to locally compute the packed shares for each Qi,
proceeding round-by-round in a manner akin to the sumcheck protocol. Finally, in order to generate the opening
proofs, the servers can employ the dMSM protocol again, which is similar to the distributed commitment genera-
tion. As a result, we achieve a fully distributed PC scheme for multilinear polynomials, where each server has the
same computation and space complexities O( n

N ), where n is the input size and N is the number of servers.
Fully distributed proof generation for Libra [XZZ+19]. We show how to transform an existing GKR-based zk-
SNARK called Libra [XZZ+19], to a collaborative zk-SNARK. To accomplish this, we integrated the distributed
sumcheck protocol and the distributed polynomial commitment scheme. We notice that, for data-parallel circuits,
we can achieve the fully distributed proof generation for Libra, each server has the same computation and space
complexities O( |C|N ), where |C| is the circuit size and N is the number of servers.

Notice that, up to now, all the protocols mentioned above are secure against a semi-honest adversary. In order
to achieve malicious security, our approach is to add some lightweight verification protocols to detect the potential
malicious behaviors caused by the adversary. As a result, for data-parallel circuits, the computation complexity of
each server in our malicious secure distributed proof generation is Õ( |C|

N ) while the space complexity is the same
as the semi-honest protocol. The details are put in Section 7.

4 Collaborative zk-SNARK

In this section, we revisit the notion of collaborative zk-SNARK [OB22], which enables multiple servers to collab-
oratively generate a proof for a given NP relation. At the heart of this process is an MPC protocol Π, allowing
several servers to efficiently collaborate on executing the prover algorithm of an existing zk-SNARK. In the fol-
lowing, we present the formal definition of collaborative zk-SNARK, adapted from [OB22].

Definition 2. Let N represent the number of servers, and S1, . . . ,SN be the servers. Let (Setup,Prove,Verify) be a zk-
SNARK for some NP relation R. Let x be the public input and w be the witness. For each server Si, where i ∈ [N ], wi
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is the packed shares of w received by Si. A collaborative zk-SNARK for an NP relation R consists of a tuple of algorithms
(Setup,Π,Verify), where:

• Setup(1λ,R)→ pp: This is the same as the setup algorithm Setup of the underlying zk-SNARK. It takes the security
parameter λ and the NP relationR as inputs and outputs the public parameter pp.

• Π(pp, x,w1, ...,wN ) → π: This is an MPC protocol among N servers, and it computes the prover algorithm Prove
of the underlying zk-SNARK. Given the public parameters pp, the public statement x and the servers’ received packed
secret shares w1, ...,wN , the servers engage in Π and collaboratively generate a proof π.

• Verify(pp, x, π) → {0, 1}: This is the same as the verification algorithm Verify of the underlying zk-SNARK. It takes
the public parameter pp, the statement x, and the proof π as inputs and outputs a bit b indicating acceptance (b = 1)
or rejection (b = 0).

This framework is secure if it satisfies the following properties:

• Completeness: For all (x,w) ∈ R, the following relation holds:

Pr

[
Verify(pp, x, π) = 1 :

pp← Setup(1λ,R),
π ← Π(pp, x,w1, ...,wN )

]
= 1 .

• Knowledge Soundness: For all x, and all sets of PPT algorithms S⃗ = {S∗1, ...,S∗N}, there exists a PPT extractor E
such that,

Pr

Verify(pp, x, π∗) = 1 :

pp← Setup(1λ,R),

w∗ ← E S⃗(pp, x),

π∗ ← S⃗(pp, x),

(x,w∗) /∈ R

 ≤ negl(λ) .

• t-zero-knowledge: For all PPT adversaryA controlling at most t servers denoted as Corr, pp← Setup(1λ,R), there
exists a simulator S such that for all x,w (where b← R(x,w) ∈ {0, 1}), the following relation holds:

ViewA
Π(x,w) ≈ S(pp, x, b, {wi}i s.t. Si∈Corr) .

Here ViewA
Π(x,w) denotes the view of A from the real-world execution of Π and S(pp, x, b, {wi}i∈Corr) is the view

generated by S given x and inputs from corrupted parties. We use ≈ to denote the two distributions are computation-
ally indistinguishable.

• Succinctness: The proof size and verification time are both of poly(λ, |x|, log |w|).

Prior work [OB22] has proved that, for any given zk-SNARK scheme (Setup,Prove,Verify), if there exists an
MPC protocol Π that can compute the prover algorithm Prove of the underlying zk-SNARK against up to t cor-
ruptions, then there exists a collaborative zk-SNARK (Setup,Π,Verify). We kindly refer interested readers to see
more details in [OB22]. Due to this result, in this work, our primary focus is to design such an MPC protocol Π.
Fully distributed proof generation. Here we introduce a crucial property called fully distributed proof generation
to describe the MPC protocol Π. Recall that, we wish to evenly distribute the workload of the zk-SNARK prover
algorithm among the servers, and we formalize this by the following definition.

Definition 3. Let (Setup,Prove,Verify) be a zk-SNARK for some NP relation R, TP and SP be the computation and space
complexity of Prove, respectively. Let (Setup,Π,Verify) be the corresponding collaborative zk-SNARK. We say the proof
generation of the collaborative zk-SNARK is fully distributed, if all servers in Π have the same computation complexity
O(TP

N ) and space complexity O(SP

N ), where N is the number of servers.
When the protocol Π is designed in the preprocessing model2, we only require all servers in the online phase of Π have

the same computation complexity O(TP

N ) and space complexity O(SP

N ).

2The protocol in the preprocessing model is divided into two phases: (i) preprocessing phase, where the inputs are unknown and some
correlated randomness is generated; (ii) online phase, where the inputs are known and the correlated randomness is consumed to complete
the computation task.
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Not that, we make a reasonable relaxation when the protocol Π is designed in the preprocessing model. How-
ever, even if there is such a relaxation, the previous work [GGJ+23], which designed their protocols in the prepro-
cessing model, cannot make their MPC protocol to be fully distributed.

We will also use the term “fully distributed” to describe some components of the proof generation, such as
the sumcheck protocol and the PC scheme, if the workload of the proving algorithms of these components can be
evenly distributed across the servers.
Distributing the witness. In the collaborative zk-SNARK framework, the starting point is to let each server receive
the secret shares of witness w. Prior works [OB22, GGJ+23] has explored various approaches for distributing the
witness, typically under two scenarios:

• Multiple-provers scenario: in [OB22], the authors consider a scenario where multiple provers, each of them
holds a different witness, want to collaboratively generate a proof using jointly computed witness (a.k.a.,
extended witness). To achieve this, the servers first employ an MPC protocol to compute the extended
witness, such as calculating the extended witness as the sum of their witnesses; in the end, each server
receives a share of the extended witness.

• Outsourcing scenario: in [GGJ+23], the authors consider a scenario where a client who holds the witness
wishes to outsource the proof generation to a group of servers. In order to do so, the client first performs
some local computations to compute the (extended) witness, and then shares it among the servers.

As noted in [OB22, GGJ+23], distributing the witness is not a central concern in collaborative zk-SNARKs.
This is primarily because computing and sharing the witness are less resource-intensive compared to the proof
generation process. Hence, in this work, we assume the servers already obtained shares of the extended witness
and put our main effort into the proof generation phase.
Threat model. Now, let us delve into the threat model of this work. We adopt an honest-majority setting. We
set the packing factor of PSS as k := N

4 , where N is the number of servers, and our protocols are secure against
t < N

4 corrupted servers, which aligns with [GGJ+23]. Both semi-honest adversaries and malicious adversaries
are considered in this work. More precisely, in Section 5 and 6, we discuss the collaborative proof generation
against a semi-honest adversary. Our malicious secure protocols are put in Section 7.
zk-SNARKs for arithmetic circuits. Contrasting with zk-SNARKs [Gro16, GWC19, CHM+19], which are tailored
for Rank-1 Constraint Systems (R1CS) as considered in prior works [OB22, GGJ+23], our focus is the GKR-based
zk-SNARKs which are designed for arithmetic circuits. Specifically, we will delve more into data-parallel arith-
metic circuits, where inputs are split into multiple batches, with identical computations conducted on each batch.
This structure is valuable in practical applications, such as (i) machine learning, where a series of similar matrix
multiplications are performed on various inputs; (ii) cross-chain bridges, where batches of transactions require
verification.

5 Fully Distributed Sumcheck Protocol via Packed Secret Sharing

In our endeavor to enable highly efficient collaborative proof generation, we choose a class of doubly-efficient
GKR-based zk-SNARKs, as our foundation. The term ”doubly-efficient” means that the computational overhead
for both the prover and the verifier are optimized. Given the fact that the GKR protocol fundamentally relies
on the sumcheck protocol as its core component, our primary focus is to develop a highly efficient, tailor-made
Multi-Party Computation (MPC) protocol for the sumcheck protocol [LFKN90].

5.1 Linear-time sumcheck for multilinear functions

In [Tha13], Thaler proposed a linear prover time algorithm for the sumcheck protocol. Specifically, for a poly-
nomial f summed over an ℓ-variable hypercube, the running time of the prover is O(2ℓ). This running time is
considered linear because we can conceptualize f as a multilinear extension of a vector x with n = 2ℓ elements,
translating to a prover time complexity of O(n). We first provide a quick review of its mechanism.

The protocol contains ℓ rounds. During the i-th round of the sumcheck protocol, the verifier V needs to check
whether fi−1(ri−1) = fi(0)+ fi(1) holds, where ri−1 is the challenge sent by V in the previous round and fi(xi) =∑

bi+1,...,bℓ∈{0,1} f(r1, ..., ri−1, xi, bi+1, ..., bℓ). Given that fi(xi) is a multilinear polynomial, it is sufficient for the
prover P to simply claim fi(0) and fi(1) in each round.

11



Figure 3: The comparison between the linear-time sumcheck protocol presented in [Tha13] and our proposed
scheme, in the case of ℓ = 4. In (a), a single prover P fills the bookkeeping table round-by-round according
to Equation 3. Under our setting, the servers use PSS to accelerate this procedure according to Protocol 4. The
computation of each server during the procedure is depicted in (b). In this case we pick k = 4, packing n = 2ℓ = 16
elements into n

k = 4 vectors. Each server initially holds n
k = 4 shares, where different colors represent different

packed shares in the figure.

To expedite the computation of fi(0), fi(1), P maintains a bookkeeping table. In the i-th round, there are 2ℓ−i+1

entries stored in this table. In the first round, the table is initialized by 2ℓ entries according to the evaluations of
f on the hypercube. An important observation to note is the existence of a relationship for entries in successive
rows of the bookkeeping table, as shown in Equation 3. Note that in this relation, both f(r1, ..., ri−1, 0, b

(i)),
f(r1, ..., ri−1, 1, b

(i)) were computed in the previous round. Then in i-th round (i ∈ [ℓ]), utilizing Equation 3,
given challenge ri, P computes 2ℓ−i entries of the values f(r1, ..., ri, bi+1, ..., bℓ) for all bi+1, ..., bℓ ∈ {0, 1}l−i. These
computed entries are stored in the bookkeeping table for the next round. To obtain the evaluations of fi(0) and
fi(1) in each round, P sums up the first and second halves of the entries in the table, respectively. For a more
intuitive understanding of this idea, consider the simple example illustrated in part (a) of Figure 3.

Efficiency. It can be concluded that P runs in
∑ℓ

i=1 2
ℓ−i = O(2ℓ) = O(n). Maintaining the bookkeeping table, the

space complexity is also O(n). The round complexity of this protocol is ℓ = O(log n).

5.2 Fully distributed sumcheck for multilinear functions

To design a fully distributed sumcheck protocol, the key step is to let the servers collaboratively compute the
bookkeeping table. We start by letting each server Si receive only packed (secret) shares of the witness, which is
represented by the evaluations of f on the hypercube {0, 1}ℓ.

Naively performing packed secret sharing of all n elements in a batch is not a good choice. Firstly, it does
not help with subsequent computations, since each round of computation in the sumcheck protocol requires op-
erations to be performed between corresponding elements at specific positions. Secondly, directly packing of all
elements in a batch means the packing factor should be as large as the input size; however, the packing factor
cannot be set arbitrarily since it influences the corruption threshold.
Local computation via PSS. Our idea is to use the PSS technique to facilitate the computations. More precisely,
we can divide the ni = 2ℓ−i+1 entries in round i, denoted as x(i)

1 , . . . , x
(i)
ni (we use superscript to denote the round

number), into multiple vectors {x(i)
j }j∈[

ni
k ]. Each vector is represented as packed shares. With shares at hand,

Equation 3 can be performed in a SIMD fashion across corresponding share-pairs x(i)
j and x

(i)

j+
ni
2k

(j ∈ [ni

2k ]) locally

by each server. The results {x(i+1)
j }j∈[

ni+1
k ] are still in the form of packed shares, allowing the local computation

to be repeated round by round. It is easy to see that, these local computations will be stuck in the (log2
n
k + 1)-th

round, since at that round, each server possesses only one share, unfeasible for further computations. For better
understanding, we list the first log2

n
k -round computation among the servers in the following:

• During the initialization phase, for n1 = n = 2ℓ inputs, each server receives n1

k packed shares {[[x(1)
j ]]}j∈[

n1
k ],

where x
(1)
j is a k-sized vector that x(1)

j = {x(1)
k(j−1)+1, ..., x

(1)
kj }.
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• Subsequently, in i-th round (i ∈ [log2
n
k ]), the servers first compute claims needed in this round. In each

round, two shares are summed as follows: [[a(i)
1 ]] =

∑ni
2k
j=1[[x

(i)
j ]], [[a

(i)
2 ]] =

∑ni
k

j=
ni
2k+1

[[x
(i)
j ]], where [[a

(i)
1 ]] and

[[a
(i)
2 ]] are two shares, each packing k elements. After this, each server sends his two shares to the verifier,

who, upon collecting sufficient shares, reconstructs a
(i)
1 and a

(i)
2 and sums the elements within each vector

to obtain fi(0) and fi(1) for completing the verification process. After checking the validity of these two
claims, the verifier returns a random challenge ri to the servers, and each server can locally compute shares
of entries needed in the next round. More precisely, for j ∈ [ni+1

k ],

[[x
(i+1)
j ]] = (1− ri) · [[x(i)

j ]] + ri · [[x(i)

j+
ni
2k

]] . (4)

See Phase 1 in part (b) of Figure 3 for an illustration of this process.
Further computation via PSS permutation. For better expression, without loss of generality, we assume that
k = 2s and n = 2ℓ. After the (ℓ − s)-th round, each server is left with only one element [[x(ℓ−s+1)]]. To address
the above challenge, our approach, particularly in each i-th round (i ∈ [ℓ − s + 1, ℓ)), involves having the servers
initially acquire an additional element [[x̂(i)]]. This element represents a packed secret sharing of the vector x̂(i),
which in turn is a permutation of the original entries.

To ensure that the linear combination in Equation 4 can be effectively carried out between the two shares,
careful design of this permutation is necessary. Generally, in i-th round (i ∈ [ℓ−s+1, ℓ)), let pi(·) be a permutation
function, which is defined as follows:

pi(j) =


j + ni

2 , j ∈ (0, ni

2 ]

j − ni

2 , j ∈ (ni

2 , ni]

j, j ∈ (ni, k]

(5)

For notion convenience, we use x̂ = pi(x) to denote the event that we perform the permutation pi(·) over the
vector x and obtain x̂ as a result, where x = {x1, ..., xni

}, x̂ = {xpi(1), ..., xpi(ni)}. After the servers obtaining
[[x(i)]] and [[x̂(i)]], the servers can perform the linear combination locally:

[[x(i+1)]] = (1− ri) · [[x(i)]] + ri · [[x̂(i)]] (6)

to obtain the share of entries needed in the next round. For an illustration of this process, refer to Phase 2 in part
(b) of Figure 3.

Now the only thing left is how to let the servers obtain the permuted shares. To address this, we adopt
a technique called PSS permutation, which is also used in [DIK10, GPS21a]. More precisely, PSS permutation
allows the servers to take the packed share of the original vector as input and output the packed share of the
permuted vector. We provide the functionality FPSSPermute-Semi and the protocol ΠPSSPermute-Semi in Appendix B.4.
We stress that the protocol ΠPSSPermute-Semi does not compromise the “fully distributed” nature of our protocol. This
is because the king server S1 in the protocol does not have high computational complexity or substantial space
complexity. Furthermore, in each round, S1 can be selected as any one of the servers, following a round-robin
approach.

Remark 1. Let ΠdFFT be the distributed FFT protocol proposed in [GGJ+23]. As discussed in [GGJ+23], the authors also
tried to apply the PSS permutation technique to ΠdFFT. However, it turns out that it would lead to a new problem: in each of
the final log k rounds of ΠdFFT, an interactive PSS multiplication protocol must be executed after each permutation, leading
to substantial computational overhead and making their protocol become impractical. In contrast, our approach requires the
servers to additionally execute a PSS permutation protocol and some local linear combinations, which only increase some
slight cost. This difference stems from the differing natures of the FFT and sumcheck protocols.

Put everything together. Based on the discussion above, it can be concluded that the proving work of the sum-
check protocol can be executed collaboratively by multiple servers in a fully distributed manner. Notice that, the
sumcheck protocol can be transformed into non-interactive using Fiat-Shamir transform [FS87] under the random
oracle model. In our setting, this involves letting the servers reconstruct the transcript and use it to query the
random oracle, so that each server can receive the same random element. Putting everything together, we present
our protocol ΠdSumcheck in Figure 4.

Formally, we denote by (NISumcheck.Prove,NISumcheck.Verify) the non-interactive version of the original sum-
check protocol for a given ℓ-variate multilinear polynomial f(x). The security of our protocol ΠdSumcheck is proven
through Theorem 1.
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We assume k = 2s ≥ 2 for some positive integer s and ni = 2ℓ−i+1 for i ∈ [ℓ]. Let f : Fℓ → F be a multilinear
polynomial, and x ∈ Fn is the evaluations of f on the hypercube {0, 1}ℓ. Suppose there are N servers S1, ..., SN .
Each server holds packed shares of vectors xj = x

(1)
j = {x(j−1)k+i}i∈[k], for each j ∈ [n1

k
]. The following procedure

runs under the random oracle model, where we use H to denote a random oracle. When we say each server makes
a random query to H, it means that the servers reconstruct the current transcript T and use it to query the random
oracle to receive the same random challenge r = H(T ).

1. Phase 1. In the i-th round, where 1 ≤ i ≤ ℓ− s,

(a) Each server locally computes [[a
(i)
1 ]] =

∑ni
2k
j=1[[x

(i)
j ]], [[a

(i)
2 ]] =

∑ni
k

j=
ni
2k

+1
[[x

(i)
j ]].

(b) The servers make a random query to H and receive a random ri ∈ F, then locally compute
{[[x(i+1)

j ]]}
j∈[

ni+1
k

]
by Equation 4.

2. Phase 2. In the i-th round, where ℓ− s+ 1 ≤ i < ℓ,

(a) The servers take [[x(i)]] as input and invoke FPSSPermute-Semi to obtain [[x̂(i)]], using the permutation in
Equation 5.

(b) The servers make a random query to H and receive a random ri ∈ F, then locally compute [[x(i+1)]] by
Equation 6.

3. The servers output {[[a(i)
1 ]], [[a

(i)
2 ]]}i∈[1,ℓ−s] and {[[x(i)]]}i∈[ℓ−s+1,ℓ].

Protocol ΠdSumcheck

Figure 4: The fully distributed sumcheck protocol ΠdSumcheck in the {FPSSPermute-Semi,H}-hybrid world.

Theorem 1. The protocol ΠdSumcheck depicted in Figure 4 is a secure MPC protocol that computes NISumcheck.Prove in the
{FPSSPermute-Semi,H}-hybrid world against a semi-honest adversary who corrupts at most t servers. This protocol ΠdSumcheck

is fully distributed.

Proof. In i-th round (i ∈ [1, l − s]), the sums of elements inside a
(i)
1 ,a

(i)
2 are actually fi(0), fi(1), respectively. In

i-th round, (i ∈ [l − s + 1, l]), fi(0) =
∑ni

2
1 x

(i)
j and fi(1) =

∑ni
ni
2 +1

x
(i)
j holds. Therefore, the correctness of the

protocol is straightforward.
Security. As the protocol ΠdSumcheck only makes oracle access to the ideal functionality of FPSSPermute-Semi and H,
besides performing local operations on the shares of the inputs, the security of this protocol follows the security
of the functionality invoked.
Efficiency. Here we only discuss the online phase efficiency, and let n = 2ℓ. In Phase 1, each server individually
performs O(nk ) = O( n

N ) field operations. In Phase 2, each server individually does O(log k) = O(logN) field
operations. The computation complexity of log k calls to FPSSPermute-Semi is negligible to the overall cost, as N ≪ n.
Therefore, the total proving work of N servers is O(n), and the computational overhead for each server Si is
O( n

N ). The space complexity of each server is consistently O( n
N ). Since the computation complexity and the space

complexity of each server are equally O( n
N ), the protocol is fully distributed.

Remark 2. So far we obtain a fully distributed sumcheck protocol where N servers collaborate together with k times im-
provement of proving time. The total proving work is O(n) while each server’s overhead is equally of O( n

N ). In total, this
approach is as efficient as the original protocol described in Section 5.1. When compared with the distributed sumcheck pro-
tocol proposed in [XZC+22], our method achieves similar efficiency in terms of asymptotic complexity, with respect to the
average overhead on each server. Importantly, our scheme ensure privacy that no single server can gain any information
about the inputs; while the protocol proposed in [XZC+22] does not.

Extending to the product of two multilinear polynomials. The linear-time sumcheck described in Section 5.1 can
be extended for a product of two multilinear polynomials f, g:∑

b1,b2,...,bℓ∈{0,1}

f(b1, b2, ..., bℓ) · g(b1, b2, ..., bℓ) . (7)

The approach involves initially computing the bookkeeping tables for f, g separately, each within O(n) time. Then,
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in each round, the computation is:∑
bi+1,...,bℓ∈{0,1}

f(r1, ..., ri−1, xi, bi+1, ..., bℓ) · g(r1, ..., ri−1, xi, bi+1, ..., bℓ)

This is achieved by multiplying the corresponding entries in the bookkeeping tables of f, g, and performing a
summation. The overall time complexity remains O(n).

We note that the distributed sumcheck described in Figure 4 can be generalized to a product of two multilinear
polynomials as well. In a manner akin to the extension above, the servers first use ΠdSumcheck to collaboratively
compute the bookkeeping tables for each polynomial. Subsequently, the entry-wise multiplications of these two
bookkeeping tables are replaced by the servers utilizing a procedure called PSS multiplication. PSS multiplication
means that, given two packed shares [[a]], [[b]], the goal is to compute [[c]] such that c = a ∗ b. We model it as an
ideal functionalityFPSSMult-Semi and outline it in Appendix B.3. The total computational complexity for each server
remains O( n

N ).

6 Fully Distributed Proof Generation

In this section, we first describe how to distribute the mKZG PC scheme described in Section 2.2. Following this,
we demonstrate the method to achieve fully distributed proof generation for Libra.

6.1 Fully distributed KZG for multilinear polynomials

In the last step of the original GKR protocol [GKR08], the prover P claims two value Ṽd(u
(d)) and Ṽd(v

(d)) to
the verifier V, where u(d),v(d) ∈ Fm are two random vectors selected by V and Ṽd is the multilinear extension
of Vd, which is the witness on the input layer of the circuit. To eliminate the necessity for V to access the entire
witness, [ZGK+17a] proposed to firstly commit to the witness on the input layer and then verify the claims using
a polynomial commitment (PC) scheme. Since then, many GKR-based zk-SNARKs [ZGK+18, XZZ+19, ZXZS20]
adopt a PC scheme as their main building block. In this work, we also require a PC scheme and we will show how
to distribute it evenly.

Generalizing mKZG for multiple servers. In [GGJ+23], Garg et al. introduced a distributed KZG scheme for
univariate polynomials, utilizing packed secret sharing. However, adapting their approach to our context is a
non-trivial task. In their configuration, each server holds a share of the polynomial’s coefficients. In contrast, in
our situation, each server holds a share of the witness, which actually represents the evaluations of the polyno-
mial on a hypercube. Moreover, their scheme incorporates the use of sub-protocols like distributed Multi-Scalar
Multiplication (dMSM) and distributed Fast-Fourier Transform (dFFT). The latter, is only “partially” distributed
since it relies heavily on a single powerful, larger server for most computations. This reliance results in increased
communication costs and a potential memory bottleneck, which is contrary to our goal of establishing a fully dis-
tributed collaborative zk-SNARK where computation and space complexity are equally shared among all servers.
Additionally, a recent work by Liu et al. [LXZ+23] introduced a distributed bivariate KZG protocol. However, this
method is also not ideally suited to our setting, since it allows the servers to obtain the entire witness. In contrast,
in our setting, we let the servers obtain only packed shares of the witness.

Recall that, in GKR-based zk-SNARKs, the PC scheme is used to commit the multilinear extension of the
witness in the input layer. In our setting, each server only holds packed secret shares of the witness. For ease of
presentation, let x denote a vector of n elements, corresponding to witness on the input layer. x can be effectively
represented by a function V : {0, 1}ℓ → F, where ℓ = log2 n. Let f be the multilinear extension of V . With PSS,
initially, each server holds n

k packed shares, represented as {[[xj ]]}j∈[nk ]. Here, each xj is a vector of size k, where
xj = {xk(j−1)+1, ..., xkj} and k is the packing factor we choose. The primary challenge is two-fold: (i) generate
commitment for f , and (ii) generate proof for evaluations.
Generating the commitment. The main problem for generating commitment for f in a distributed way is that each
server possesses only the packed shares of f ’s evaluations on the hypercube, rather than its direct coefficients. To
tackle this, we propose to leverage Equation 1. More precisely, we observe that the commitment can be computed
as comf = gf(s) =

∏
b∈{0,1}ℓ g

∏ℓ
i=1 βbi

(si)·V (b) , where βbi(si) = (1 − si)(1 − bi) + sibi, each V (b) ∈ F is a scalar in

x and g
∏ℓ

i=1 βbi
(si) ∈ G is a group element. This commitment can then be computed running an MSM on inputs

x1, ..., xn ∈ F and the corresponding group elements in G.
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To facilitate this process, we initially prepare packed shares of g
∏ℓ

i=1 βbi
(si) for all possible b ∈ {0, 1}ℓ, for

the servers. With these public parameters and the packed shares of x, the servers can employ the technique
of distributed MSM (dMSM), as introduced in [GGJ+23], to collaboratively compute comf . In this sub-protocol
dMSM, each server only equally bears an overhead of performing O(nk ) group exponentiations and a space cost
of O(nk ). For clarity and completeness, we borrow the ideal functionality FdMSM-Semi and protocol ΠdMSM-Semi

from [GGJ+23] and put them in Appendix B.5 with minor modifications.

Let F denote a finite field and assume k = 2s ≥ 2 for some positive integer s and ni = 2ℓ−i for i ∈ [0, ℓ]. We
assume n = n0 = 2ℓ. Suppose f : Fℓ → F is a multilinear polynomial, and x ∈ Fn is the evaluations of f on
the hypercube {0, 1}ℓ. Suppose there are N servers S1, ..., SN . Each server holds packed secret shares of vectors
x

(0)
j = {x(j−1)k+i}i∈[k], for each j ∈ [n0

k
].

Procedure dMKZG.Setup: This procedure is executed by a trusted setup, aiming to provide public parameters pp for
servers.

1. Sample s
$← Fℓ as the trapdoor.

2. Prepare packed shares of group elements needed for dMKZG.Commit and each round in dMKZG.Open. For
i ∈ [0, ℓ], do the following:

(a) Compute the evaluations of pi(bi+1, . . . , bℓ) = g
∏ℓ

j=i+1 βbj
(sj) on the hypercube {0, 1}ℓ−i, where

βbj (sj) = (1− sj)(1− bj) + sjbj . In i-th round, there will be ni group elements.

(b) Pack the ni group elements from the Step 2a into k-size vectors P
(i)
1 , ...,P

(i)
ni
k

. If the elements cannot

fully populate one vector (i.e., ni < k), it will be supplemented with zero elements of the group until
there are k elements.

(c) Each server receives {[[P (i)
j ]]}j∈[

ni
k

] as ppi.

Procedure dMKZG.Commit: This procedure is executed by the servers to collaboratively compute the commitment of
a given multilinear polynomial f : Fℓ → F. Note that, the servers do not know the entire f , but they hold the PSS
of x

(0)
j = {x(j−1)k+i}i∈[k], for each j ∈ [n0

k
], where x ∈ Fn0 is the evaluations of f on the hypercube {0, 1}ℓ.

1. Each server parse pp0 as {[[P (0)
j ]]}j∈[

n0
k

].

2. The servers send (MULT, n0
k
, {[[x(0)

j ]]}j∈[
n0
k

], {[[P
(0)
j ]]}j∈[

n0
k

]) to FdMSM-Semi, which returns ⟨comf ⟩ to the servers.

Procedure dMKZG.Open: Given the evaluation point u and the evaluation y, this procedure is executed by the
servers to collaboratively compute proof π that proves y = f(u) indeed holds. Note that, the servers takes the PSS
of x

(0)
j = {x(j−1)k+i}i∈[k], for each j ∈ [n0

k
] as input, as the above procedure. The servers also hold the evaluation

point u. The procedure proceeds in ℓ rounds.

1. In the i-th round, where 1 ≤ i ≤ ℓ− s,

(a) Each server locally computes [[q
(i)
j ]] = [[x

(i−1)

j+
ni
k

]]− [[x
(i−1)
j ]] and [[x

(i)
j ]] = (1− ui) · [[x(i−1)

j ]] + ui · [[x(i−1)

j+
ni
k

]],

for j ∈ [ni
k
].

(b) Each server parse ppi as {[[P (i)
j ]]}j∈[

ni
k

].

(c) The servers send (MULT, ni
k
, {[[q(i)

j ]]}j∈[
ni
k

], {[[P
(i)
j ]]}j∈[

ni
k

]) to FdMSM-Semi, which returns ⟨πi⟩ to the
servers.

2. In the i-th round, where ℓ− s < i ≤ ℓ,

(a) The servers invoke FPSSPermute-Semi to obtain [[x̂(i−1)]], following the permutation described in Equation 5.

(b) Each server locally computes [[q(i)]] = [[x̂(i−1)]]− [[x(i−1)]] and [[x(i)]] = (1− ui) · [[x(i−1)]] + ui · [[x̂(i−1)]].

(c) Each server parse ppi as {[[P (i)]]}.
(d) The servers send (MULT, 1, [[q(i)]], [[P (i)]]) to FdMSM-Semi, which returns ⟨πi⟩ to the servers.

3. The servers output ⟨π⟩ = (⟨π1⟩, ..., ⟨πℓ⟩).

Protocol ΠdMKZG

Figure 5: The fully distributed PC for multilinear polynomials in the {FdMSM-Semi,FPSSPermute-Semi}-hybrid world.
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Generating the opening proof. During the process of mKZG.Open, in order to generate a proof for the claim
z = f(u), where f is evaluated at a random point u, the servers take the following two steps:

• Firstly, the servers undertake a sequence of polynomial divisions. This procedure involves consecutively
running ℓ times divisions for multilinear polynomials, resulting in a set of quotient polynomials {Qi(xi+1, ..., xℓ)}i∈[ℓ]

and remainder polynomials {Ri(xi+1, ..., xℓ)}i∈[ℓ]. Let R0 denote the original polynomial f , then in i-th di-
vision, the operation is performed on the remainder polynomials of the last round Ri−1 with respect to the
divisor (xi − ui), executed in a recursive manner. Formally, for i ∈ [ℓ],

Ri−1(xi, xi+1, ..., xℓ) = Qi(xi+1, ..., xℓ)(xi − ui) +Ri(xi+1, ..., xℓ) (8)

• Upon obtaining these polynomials, the servers then compute the proof, represented as {gQi(s)}i∈[ℓ]. Obvi-
ously, if the evaluations of Qi on the hypercubes are on hand, then this computation can be carried out in a
manner akin to the commitment generation process we described earlier.

In [GGJ+23], conducting polynomial divisions involves using a sub-protocol called dFFT. A significant draw-
back of employing this protocol is its reliance on a powerful server. Additionally, the necessity for servers to
execute dFFT multiple times also results in substantial computational and communication overheads.

To tackle the issue, we propose a new approach that leverages the algebraic property of multilinear poly-
nomials. Note that, in Equation 8, both the quotient polynomials Qi and remainder polynomials Ri are also
multilinear. Let (xi+1, ..., xℓ) takes b ∈ {0, 1}ℓ−i, and xi takes 0 and 1 separately, we can derive that Ri−1(0, b) =
−ui · Qi(b) + Ri(b) and Ri−1(1, b) = (1 − ui) · Qi(b) + Ri(b). Consequently, the evaluations of Ri and Qi on
b ∈ {0, 1}ℓ−i can be derived as per Equation 9:

Qi(b) = Ri−1(1, b)−Ri−1(0, b) ,

Ri(b) = (1− ui) ·Ri−1(0, b) + ui ·Ri−1(1, b)
(9)

Similar to Equation 3, the above formula also has a SIMD structure to leverage. Initially, each server holds
{[[xj ]]}j∈[nk ]. Upon receiving a specific point u ∈ Fℓ, each server begins to compute the shares of evaluations
on the hypercube {0, 1}ℓ−1 for the first quotient polynomial Q1. This step involves the subtraction of the first half
of the shares {[[xj ]]}j∈[nk ] from the second half. The shares of evaluations for the first remainder polynomial R1 are
determined through linear combinations of the packed shares within {[[xj ]]}j∈[nk ], analogous to Equation 4. This
computation is then recursively applied for each of the quotient polynomials, up to Qℓ, in a manner akin to the
process of computing the bookkeeping table in Section 5.

In the second step, after acquiring packed shares of the evaluations of Qi on the hypercube {0, 1}ℓ−i, the servers
collaborate to compute gQi(si+1,...,sℓ). This computation is conducted by servers invoking the ΠdMSM-Semi protocol,
similar to the previously described procedure of computing gf(s).
Put everything together. Combining the above discussions, we develop a fully distributed PC protocol ΠdMKZG,
specifically designed for multilinear polynomials. Notice that, to facilitate this protocol, we make some minor
adjustments to mKZG.Setup and design dMKZG.Setup as the setup procedure. Formally, the ΠdMKZG protocol is
detailed in Figure 5. The security of this protocol is proven in Theorem 2.

Theorem 2. The protocol ΠdMKZG depicted in Figure 5 is an MPC protocol whose procedures dMKZG.Commit and dMKZG.Open
can compute mKZG.Commit and mKZG.Open respectively, in the
{FdMSM-Semi,FPSSPermute-Semi}-hybrid world against a semi-honest adversary who corrupts at most t servers. The protocol
ΠdMKZG is fully distributed.

Proof. The correctness is straightforward.
Security. As the protocol ΠdMKZG only makes oracle access to FPSSPermute-Semi and FdMSM-Semi, besides performing
local operations to the shares of the inputs, the proof is straightforward by applying the security of FPSSPermute-Semi

and FdMSM-Semi.
Efficiency. Here we only discuss the online phase efficiency of the protocol, and let n = 2ℓ. During dMKZG.Commit,
the servers engage in ΠdMSM-Semi to collaboratively compute the commitment. Each server performs O( n

N ) group
exponentiations, has a space complexity of O( n

N ), and communicates O(N) group elements in total. In dMKZG.Open,
the total proving work of servers is O(n) and each server Si incurs a computational overhead of O( n

N ). The space
complexity for each server remains O( n

N ). The overall communication cost among servers is O(N log n) group el-
ements. Since the computation complexity and the space complexity of each server are equally O( n

N ), the protocol
is fully distributed.
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6.2 Fully distributed, collaborative proof generation

Combining the two fully distributed primitives above, we can achieve a collaborative zk-SNARK for data-parallel
circuits. A data-parallel circuit is a circuit composed of several identical sub-circuits, each operating independently
without interconnections.

The critical step involves organizing the values at the corresponding positions across different sub-copy of the
circuit into the same vectors. These vectors are then distributed among the servers using PSS. Utilizing the SIMD
structure of the data-parallel circuit, after this distribution, the distributed sumcheck protocol can be extended
for GKR relations, as detailed in Appendix C.1. The final step involves employing the distributed PC scheme to
generate proofs for claims at the input layer. By synthesizing these components, the collaborative proof genera-
tion is achieved by replacing the sumcheck in Libra with ΠdSumcheck, and the PC scheme with ΠdMKZG. Notice that,
we also require a procedure called PSS multiplication, which is modeled as a functionality FPSSMult-Semi (cf. Ap-
pendix B.3). This procedure is required when our fully distributed sumcheck protocol is extended for a product
of two multilinear polynomials. Formally, we have the following theorem.

Theorem 3. Let C be a data-parallel circuit. Let (Setup,Prove,Verify) be a zk-SNARK described in [XZZ+19] for C.
There exists a collaborative zk-SNARK (Setup,Π,Verify) for C, where Π is a secure MPC protocol that computes Prove in
the {FPSSPermute-Semi,FdMSM-Semi,FPSSMult-Semi,H}-hybrid world, against a semi-honest adversary who corrupts at most t
servers. Here H denotes a random oracle. This collaborative zk-SNARK is fully distributed.

Proof sketch. We give a detailed construction of Π in Appendix C.2. The correctness follows the construction di-
rectly.
Security. The protocol Π comprises sub-protocols ΠdSumcheck and ΠdMKZG. Computing these sub-protocols only
makes oracle access to the random oracle H, the ideal functionalities FPSSPermute-Semi, FdMSM-Semi, and FPSSMult-Semi,
besides each server performing local operations on the shares of inputs. The security of this protocol follows the
security of the functionalities invoked.
Efficiency. Given a data-parallel arithmetic circuit C, the total proving work of N servers is O(|C|), and the com-
putational overhead for each server Si is O( |C|N ). The space complexity of each server is consistently O( |C|N ). Thus,
the protocol is fully distributed.

Extending to general circuits. When C signifies a general circuit with an arbitrary structure, as opposed to a data-
parallel circuit consisting of identical sub-copies, the complexity escalates significantly. While the distributed PC
can be employed as before, the distributed sumcheck protocol for GKR relations encounters obstacles due to the
circuit’s irregularity. Under such circumstances, the most effective currently known approach is sub-optimal: both
the computation and space complexities for each server are O(|C|). Addressing this inefficiency and achieving a
significant efficiency improvement by a factor of O(N) for circuits with arbitrary form remains a challenging and
open question for future research.

7 Achieving Malicious Security

Recall that, when we consider semi-honest security, our collaborative zk-SNARK is built in the {FPSSPermute-Semi,FdMSM-Semi,
FPSSMult-Semi,H}-hybrid world, where H is a random oracle. In order to achieve malicious security, in this section,
we first try to design new protocols to make our two main building blocks (i) PSS permutation and (ii) dMSM to
be malicious-secure. Then we talk about how to handle PSS multiplication against a malicious adversary. Finally,
we put things together and show how to achieve malicious-secure collaborative zk-SNARK.

7.1 Malicious-secure packed secret sharing permutation

In Section 5.2, we have described a protocol for PSS permutation (i.e., ΠPSSPermute-Semi depicted in Protocol 31)
against a semi-honest adversary. It is easy to see that when malicious security is taken into consideration, there is
no guarantee that the honest parties can receive the correct packed secret shares.

To achieve the malicious security of the whole protocol, we employ the standard approaches that are used in
the MPC area (e.g., [GPS21a]): we first let the servers invoke the semi-honest protocol, where the malicious servers
may behave dishonestly; at the end of the whole protocol, we let the servers invoke a verification protocol that
used to detect the previous malicious behaviors.

In the following, we will first present a malicious-secure version of functionality for PSS permutation, which
is denoted by FPSSPermute-Mal. In FPSSPermute-Mal, the adversary is allowed to add errors into the honest parties’
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received shares. Then we will provide a new protocol ΠPSSPermute-Mal that securely-realizes FPSSPermute-Mal. Next,
we will present a functionality for verifying the PSS permutation, which is denoted by FVerify-PSSPermute, and then
we will present a protocol ΠVerify-PSSPermute that securely realizes FVerify-PSSPermute.
PSS permutation against a malicious adversary. We put the malicious-secure version of functionalityFPSSPermute-Mal

for PSS permutation in Figure 6, which is adapted from [GPS21a]. Then we make some minor modifications to
our semi-honest protocol ΠPSSPermute-Semi and turn it into a malicious protocol ΠPSSPermute-Mal, which is depicted in
Figure 7.

Notice that, in the preprocessing phase of ΠPSSPermute-Mal, we let the servers invoke a functionalityFRand-PSSPermute-Mal

to generate a pair of random shares [[r]]d and [[r̂]]d, where r̂ = p(r) if all the servers behave honestly; we put the
detailed description of FRand-PSSPermute-Mal in Appendix B.2. We also note that, in the preprocessing phase, we let
the servers invoke FRand to generate a degree-2d PSS [[0]]2d of 0; the full descriptions about this procedure can be
found in [GPS21b, Appendix B.3]. The security of the protocol ΠPSSPermute-Mal is proven through Theorem 4.

The functionality FPSSPermute-Mal interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of
corrupted servers. Let H be the set of honest servers.

Upon receiving (PERMUTE, [[x]], p(·)) from S1, . . . , SN , where [[x]] is a degree-d packed secret sharing of x and p(·) is
a permutation, it does:

1. Reconstruct the correct secret x using the shares from the honest servers and compute the permuted secret
x̂ := p(x).

2. Compute a new PSS [[x]]H of the secret x, such that for each honest server, its share of [[x]] is equal to its
share of [[x]]H. Send the corrupted servers’ shares of [[x]]H and ∆x := [[x]]− [[x]]H ∈ FN to the adversary S,
where ∆x describes the inconsistency of [[x]].

3. Receive a vector d ∈ Fk from the adversary S and set x̂ := x̂+ d.

4. Receive a set of shares {si}i s.t. Si∈Corr from the adversary S. Sample a random degree-d packed secret
sharing [[x̂]]H of x̂ such that for all Si ∈ Corr, the i-th share of [[x̂]]H is si.

5. Receive a vector ∆x̂ ∈ FN from the adversary S and compute [[x̂]] := [[x̂]]H +∆x̂.

6. For each honest server h ∈ H, upon receiving an input from the adversary S,

• If it is (CONTINUE, h), send its corresponding share of [[x̂]] to h.

• If it is (ABORT, h), send ABORT to h.

Functionality FPSSPermute-Mal

Figure 6: The functionality FPSSPermute-Mal

Let [[x]]d be the input degree-d PSS of a vector x that is to be permuted and let p(·) be the permutation function
that is to be used.

Preprocessing phase:

1. The servers invoke FRand-PSSPermute-Mal to prepare a pair random shares [[r]]d and [[r̂]]d, where r̂ = p(r) if all the
servers behave honestly.

2. The servers invoke FRand to prepare a degree-2d PSS [[0]]2d of 0.

Online phase:

1. Each server Si computes [[m]]2d := [[x]]d + [[r]]d + [[0]]2d and send [[m]]2d to S1.

2. S1 reconstructs to get the vector m and performs the permutation on m to get m̂ := p(m). Then S1

computes [[m̂]]d and distributes the shares to other servers.

3. Each server Si locally computes [[x̂]]d := [[m̂]]d − [[r̂]]d.

Protocol ΠPSSPermute-Mal

Figure 7: The ΠPSSPermute-Mal protocol

Theorem 4. The protocol ΠPSSPermute-Mal depicted in Figure 31 securely realizes FPSSPermute-Mal depicted in Figure 6 in the
FRand-PSSPermute-Mal-hybrid world against a malicious adversary corrupting up to t servers.
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Proof. We refer interested readers to see the proof in [GPS21a].

Verifying PSS permutation. In the work by Goyal et al. [GPS21a], they propose a technique called network routing,
which is used to check whether a tuple ([[a]], [[b]], i, j) is formed correctly, i.e., whether ai = bj holds. In this work,
we adapt the network routing technique into our setting and make some modifications; more precisely, our goal
is to check whether a tuple ([[a]], [[b]], p) is formed correctly, i.e., whether b = p(a).

Formally, we put the functionality FVerify-PSSPermute for verifying the PSS permutation in Figure 8 and present
our protocol ΠVerify-PSSPermute for verifying the PSS permutation in Figure 9. The security of our protocol ΠVerify-PSSPermute

through Theorem 5. Notice that, our protocol requires two functionalities FCoin and FRand, which can be found
in Appendix B.1 and Appendix B.2, respectively. We also note that, in the preprocessing phase of our protocol,
the servers need to invoke FRand prepare k tuples {([[s(i)]], [[t(i)]], i, p(i))}i∈[k] such that for i ∈ [k], s(i) and t(i) are
random and unknown to any server, and the i-th component of s(i) is equal to the p(i)-th component of t(i); we
refer interested readers to see the details of this procedure in [Appendix B.5] [GPS21b].

The functionality FVerify-PSSPermute interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set
of the corrupted servers. Let H be the set of the honest servers.

Upon receiving (VERPERMUTE,m, {[[x(i)]], [[x̂(i)]]}i∈[m], p(·)) from S1, . . . , SN , where m is the number of PSS pairs
that all servers want to verify, {[[x(i)]], [[x̂(i)]]}i∈[m] are the corresponding PSS pairs and p(·) is a permutation, it
does:

1. For i ∈ [m]:

• Reconstruct x(i) and x̂(i) using the shares from the honest servers.

• Compute the new PSS [[x(i)]]H and [[x̂(i)]]H of the secrets x(i) and x̂(i), such that for each honest server,
its share of [[x(i)]] (resp. [[x̂(i)]]) is equal to its share of [[x(i)]]H (resp. [[x̂(i)]]H). Send the corrupted
servers’ shares of [[x(i)]]H, [[x̂(i)]]H and ∆

x(i) := [[x(i)]]− [[x(i)]]H ∈ FN ,∆
x̂(i) := [[x̂(i)]]− [[x̂(i)]]H ∈ FN to

the adversary S, where ∆
x(i) (resp. ∆

x̂(i) ) describes the inconsistency of [[x(i)]] (resp. [[x̂(i)]]).

• Compute d(i) := p(x(i))− x̂(i) and send d(i) to the adversary S.

2. If there exists i ∈ [m] such that d(i) ̸= 0N , set b := 0; otherwise, set b := 1.

3. Send b to the adversary S. For each honest server h ∈ H, upon receiving an input from the adversary S,

• If it is (CONTINUE, h), send b to h.

• If it is (ABORT, h), send ABORT to h.

Functionality FVerify-PSSPermute

Figure 8: The functionality FVerify-PSSPermute.

Theorem 5. The protocol ΠVerify-PSSPermute depicted in Figure 9 securely realizes the functionality FVerify-PSSPermute depicted
in Figure 8 in the {FRand,FCoin}-hybrid world against a malicious adversary corrupting up to t servers.

Proof. We denote by A the adversary. Here we will first provide the workflow of an ideal adversary (a.k.a., the
simulator) S that simulates the behaviors of the honest parties. Then we will prove that the adversary A cannot
distinguish whether it is interacting with the simulator S or the real servers.
Simulation strategy. We describe the simulation strategy of the simulator S as follows:

1. For i ∈ [m], the simulator S receives the corrupted servers’ shares of [[x(i)]]H, [[x̂(i)]]H, ∆x̂(i) ,∆x(i) and d(i)

from FVerify-PSSPermute.

2. In the preprocessing phase, the simulator S emulatesFRand; therefore, S knows the entire secrets {s(i), t(i)}i∈[k]

and all servers’ corresponding shares.

3. In the online phase, for i ∈ [k]:

(a) The simulator S emulates FCoin and faithfully samples r ∈ F.

(b) The simulator S computes ∆a :=
∑m

j=1 r
j ·∆x(i) , ∆b :=

∑m
j=1 r

j ·∆x̂(i) and d :=
∑m

j=1 r
j · d(j). The

simulator S computes the corrupted servers’ shares of [[a]], [[b]] using the received corrupted servers’
shares of {[[x(j)]]H, [[x̂(j)]]H}j∈[m] and {[[s(j)]], [[t(j)]]}j∈[k].
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Let {[[x(i)]], [[x̂(i)]]}i∈[m] be the sets of PSS that the servers want to verify. Let p(·) be the permutation function.

Preprocessing phase:

1. The servers invoke FRand to prepare k tuples {([[s(i)]], [[t(i)]], i, p(i))}i∈[k] such that for i ∈ [k], s(i) and t(i) are
random and unknown to any server, and the i-th component of s(i) is equal to the p(i)-th component of t(i).

Online phase:

1. For i ∈ [k], the servers perform the following checks:

• All servers send (FLIP, 1) to FCoin, which returns a uniformly random r ∈ F to them.

• All servers locally compute [[a]] := [[s(i)]] +
∑m

j=1 r
j · [[x(j)]] and [[b]] := [[t(i)]] +

∑m
j=1 r

j · [[x̂(j)]].

• All servers reconstruct a and b. If the reconstruction procedure fails, the servers simply abort; otherwise,
the servers check if ai = bp(i) holds.

2. If all the checks above pass, the servers accept the fact that x̂(i) = p(x(i)) holds for all i ∈ [m]; otherwise, the
servers reject.

Protocol ΠVerify-PSSPermute

Figure 9: The protocol ΠVerify-PSSPermute.

(c) The simulator S samples a random a ∈ Fk as the secret. Basing on a, the corrupted servers’ shares of
[[a]], and the inconsistency error ∆a, the simulator S can reconstruct all servers’ shares of [[a]].

(d) As for [[b]], the simulator S samples a random b ∈ Fk such that bp(i) = ai + di while the other k − 1
positions of b are all random. Basing on b, the corrupted servers’ shares of [[b]], and the inconsistency
error ∆b, the simulator S can reconstruct all servers’ shares of [[b]].

4. S completes the checks acting as the honest servers. S sets b′ := 1 if all the checks pass; otherwise, S sets
b′ := 0.

5. S receives b from FVerify-PSSPermute. If b ̸= b′, S aborts.

6. If an honest server aborts, S sends ABORT toFVerify-PSSPermute; otherwise, S sends CONTINUE toFVerify-PSSPermute.

Indistinguishability proof. We prove the indistinguishability through the following hybrids.

• Hybrid Hybr0: This is the real-world execution.

• Hybrid Hybr1: Same as hybrid Hybr0, except that S executes Step 1-3 of the above simulation strategy.

Lemma 1. Hybrid Hybr1 is perfectly indistinguishable from Hybr0.

Proof. Here we show that the simulated [[a]], [[b]] are perfectly indistinguishable from the real [[a]], [[b]] for each
i ∈ [k] in Step 3. Since these k repetitions are the same, we only consider the case in the i-th repetition.
Due to Step 1-2, S can compute the corrupted servers’ shares of [[a]], [[b]]. Furthermore, S can compute
di = bp(i)−ai, which is the additive error. To determine the whole sharings of [[a]], [[b]], S only needs to know
the distribution of a, b. In Hybr0 (the real-world), a, b are masked by s(i), t(i) which are random subject to
s
(i)
i = t

(i)
p(i). Therefore, we conclude that a is a uniformly random vector while b is a vector whose p(i)-th

component is bp(i) = ai + di and all other components are uniformly random. On the other hand, in hybrid
Hybr1, S randomly samples a and {bj}j ̸=p(i) and sets bp(i) := ai + di, which has the same distribution as that
in Hybr0. In conclusion, Hybr1 is perfectly indistinguishable from Hybr0.

• Hybrid Hybr2: Same as hybrid Hybr1, except that S executes Step 4-6 of the above simulation strategy.

Lemma 2. Let F be a large prime field such that |F|−1 = negl(λ). Hybrid Hybr2 is statistically indistinguishable from
Hybr1.
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Proof. We observe that the adversary A can distinguish these two hybrids if and only if the simulator S
aborts, which would happen when there exists a i ∈ [m] such that p(x(i)) ̸= x̂(i) but aj = bp(j) holds for all
j ∈ [k]. It is easy to see that it is sufficient to show that if there exists a i ∈ [m] such that d(i) ̸= 0N , then with
overwhelming probability we have d ̸= 0N .

Since d(i) ̸= 0N , there must exist a j ∈ [N ] such that d(i)j ̸= 0. Then let us consider a polynomial hj(r) =∑m
t=1 r

t · d(t)j . Since d
(i)
j ̸= 0, hj(r) is a non-zero polynomial. By Schwartz-Zippel lemma [Sch80, Zip79],

we conclude Pr[hj(r) = 0] ≤ m
|F| which is negligible. It is easy to see that, hj(r) corresponds to the j-

th component of d; thus, we show that d ̸= 0N with overwhelming probability. In conclusion, Hybr2 is
statistically indistinguishable from Hybr1.

Hybrid Hybr2 is the ideal-world execution. Therefore, we prove that the real-world execution is statistically indis-
tinguishable from the ideal-world execution, which completes the proof.

7.2 Malicious-secure distributed multi-scalar multiplication

Similar to Section 7.1, in this subsection, we will first present a malicious-secure version of functionality for dis-
tributed Multi-Scalar Multiplication (dMSM), which is denoted by FdMSM-Mal. In FdMSM-Mal, the adversary is al-
lowed to add errors into the honest parties’ received shares. Then we will provide a malicious-secure protocol
ΠdMSM-Mal that securely-realizes FdMSM-Mal. To detect the corrupted servers’ behaviors, we will present function-
ality for verifying the dMSM, which is denoted by FVerify-dMSM, and we will present a protocol ΠVerify-dMSM that
securely realizes FVerify-dMSM.
Distributed multi-scalar multiplication against a malicious adversary. We put the malicious-secure version of
functionality FdMSM-Mal for dMSM in Figure 10. Then we make some minor modifications to our semi-honest
protocol ΠdMSM-Semi and turn it into a malicious protocol ΠdMSM-Mal, which is depicted in Figure 11. Notice that,
in the preprocessing phase of the protocol, we let the servers invoke a functionality FDouble-Rand to generate a pair
of random shares [[r]]d, [[r]]2d and a functionality FPSSToss-Mal to transform a packed secret sharing [[r]]d to a normal
Shamir secret sharing ⟨r1⟩, ..., ⟨rk⟩. The security of our protocol ΠdMSM-Mal is proven secure through Theorem 6.

The functionality FdMSM-Mal interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of cor-
rupted servers. Let H be the set of honest servers.

Upon receiving (MULT,m, [[A1]], . . . , [[Am]], [[b1]], . . . , [[bm]]) from the servers, where m is the number of pairs, do:

1. For each i ∈ [m]:

• Reconstruct the correct (A(i−1)k+1, ..., Aik) and (b(i−1)k+1, ..., bik) from the honest servers’ shares of [[Ai]]
and [[bi]], respectively.

• Compute the new PSS [[Ai]]H and [[bi]]H of the secrets (A(i−1)k+1, ..., Aik) and (b(i−1)k+1, ..., bik), such
that for each honest server, its share of [[Ai]] (resp. [[bi]]) is equal to its share of [[Ai]]H (resp. [[bi]]H).
Send the corrupted servers’ shares of [[Ai]]H, [[bi]]H and
∆Ai := [[Ai]]− [[Ai]]H ∈ FN ,∆bi := [[bi]]− [[bi]]H ∈ FN to the adversary S, where ∆Ai (resp. ∆bi )
describes the inconsistency of [[Ai]] (resp. [[bi]]).

2. Receive the additive error h ∈ F from the adversary S, and compute out :=
∏

i∈[m] A
bi
i + h.

3. Receive a set of shares {ui}i∈Corr from the adversary. Sample a random sharing ⟨out⟩H of out, such that the
shares of the corrupted parties are identical to those received from the adversary, i.e., {ui}i∈Corr .

4. Receive a vector ∆out ∈ FN from the adversary S and compute ⟨out⟩ := ⟨out⟩H +∆out.

5. For each honest server h ∈ H, upon receiving an input from the adversary S,

• If it is (CONTINUE, h), send its corresponding share of ⟨out⟩ to h.

• If it is (ABORT, h), send ABORT to h.

Functionality FdMSM-Mal

Figure 10: The functionality FdMSM-Mal.
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Let A1, ..., An be n group elements in G and b1, ..., bn be n field elements in F. The protocol allows N servers
to collaboratively compute

∏n
i=1 A

bi
i in a distributed manner. Without loss of generality, we assume k|n, where

k is the packing factor, and we set m := n/k. Each server holds packed secret shares [[Aj ]] of vectors Aj =
{A(j−1)k+i}i∈[k] and [[bj ]] of vectors bj = {b(j−1)k+i}i∈[k], for each j ∈ [m], respectively.

Preprocessing phase:

1. The servers invoke FDouble-Rand to prepare a pair of random shares [[r]]d, [[r]]2d, where r ∈ Fk is a random vector
unknown to any server Si.

2. The servers send [[r]]d to FPSSToss-Mal, which returns ⟨r1⟩, ..., ⟨rk⟩ to the servers.

Online phase:

1. Each server Si computes [[C]]2d =
∏

j∈[m][[Aj ]]
[[bj ]]d
d .

2. Each server Si computes [[D]]2d = [[C]]2d · g[[r]]2d and send it to S1.

3. S1 receives enough shares and reconstructs D = (D1, ..., Dk).

4. S1 computes E =
∏

j∈[k] Dj and send it to each server.

5. Each server computes ⟨out⟩ = E∏
j∈[k] g

⟨rj⟩
as the output.

Protocol ΠdMSM-Mal

Figure 11: The ΠdMSM-Mal Protocol .

Theorem 6. The protocol ΠdMSM-Mal depicted in Figure 11 securely realizesFdMSM-Mal depicted in Figure 10 in the {FDouble-Rand,
FPSSToss-Mal}-hybrid world against a malicious adversary corrupting up to t servers.

Proof. We denote by A the adversary. Here we will first provide the workflow of an ideal adversary (a.k.a., the
simulator) S that simulates the behaviors of the honest parties. Then we will prove that the adversary A cannot
distinguish whether it is interacting with the simulator S or the real servers.
Simulation strategy. We describe the simulation strategy of the simulator S as follows:

1. The simulator S emulates FDouble-Rand and FPSSToss-Mal honestly for the servers; therefore, the servers knows
the whole sharings of [[r]]d, [[r]]2d, ⟨r1⟩, ..., ⟨rk⟩. In addition, during the emulation of FPSSToss-Mal, S receives
the additive error d to r and the additive error ∆j to ⟨xj⟩H for each j ∈ [k].

2. For each i ∈ [m]: The simulator S receives the corrupted servers’ shares of [[Ai]] and [[bi]] and ∆Ai :=
[[Ai]]− [[Ai]]H ∈ FN ,∆bi := [[bi]]− [[bi]]H ∈ FN from FdMSM-Mal.

3. For each honest server, the simulator S samples a random element in G as its share of [[D]]2d.

4. The simulator S computes the shares of [[D]]2d that the corrupted servers should hold by [[D]]2d =
∏

j∈[nk ][[Aj ]]
[[bj ]]d
d ·

g[[r]]2d . Let [[D̂]]2d =
∏

j∈[nk ][[Aj ]]
[[bj ]]H
H · g[[r]]2d . Then [[D̂]]2d =

∏
j∈[nk ]([[Aj ]]−∆Aj )

([[bj ]]−∆bj
) · g[[r]]2d . Therefore,

S can determine the whole sharings of [[D̂]]2d and reconstruct D̂.

5. The simulator S honestly follows the protocol and learns E. Then S computes Ê :=
∏

j∈[k] D̂j and h := E−Ê
gr .

The simulator S sends h to FdMSM-Mal.

6. The simulator S computes the whole sharings of ⟨out⟩ and sends the corrupted servers’ share of ⟨out⟩ to
FdMSM-Mal.

7. The simulator S computes ∆out using the whole sharings of ⟨out⟩ and the additive errors received from the
adversary when emulating FPSSToss-Mal, then sends ∆out to FdMSM-Mal.

8. If an honest server aborts, S sends ABORT to FdMSM-Mal; otherwise, S sends CONTINUE to FdMSM-Mal.

Indistinguishability proof. We prove the indistinguishability through the following hybrids.

• Hybrid Hybr0: This is the real-world execution.

23



• Hybrid Hybr1: Same as hybrid Hybr0, except that S executes Step 1-3 of the above simulation strategy.

Lemma 3. Hybrid Hybr1 is perfectly indistinguishable from hybrid Hybr0.

Proof. Here, we prove that the simulated honest servers’ shares of [[D]]2d are perfectly indistinguishable
from the real honest servers’ shares. In hybrid Hybr1, for each honest server, the simulator S samples a
random group element in G as its simulated share of [[D]]2d. Note that, [[D]]2d = [[C]]2d · g[[r]]2d . As proven
in [GPS21b, Lemma 3], given the corrupted parties’ shares of [[r]]d, [[r]]2d, the honest parties’ shares of [[r]]2d
are uniformly random. Therefore, it is easy to conclude that the honest servers’ shares of [[D]]2d are also
uniformly random. Thus, in hybrid Hybr0 (real-world), the real honest servers’ shares of [[D]]2d are uniformly
random. In conclusion, the simulated honest servers’ shares of [[D]]2d are perfectly indistinguishable from
the real honest servers’ shares; thus, hybrid Hybr1 is perfectly indistinguishable from hybrid Hybr0.

• Hybrid Hybr2: Same as hybrid Hybr1, except that S executes Step 4-8 of the above simulation strategy. Perfect
indistinguishability is trivial since S can determine the corrupted servers’ shares.

Hybrid Hybr2 is the ideal-world execution. Therefore, we prove that the real-world execution is perfectly indistin-
guishable from the ideal-world execution, which completes the proof.

Verifying distributed multi-scalar multiplication. Here we adapt the previous technique for verifying the PSS
permutation into verifying the dMSM. Formally, we present the ideal functionality FVerify-dMSM for verifying
dMSM in Figure 12, and we put our protocol ΠVerify-dMSM in Figure 13. Notice that, in the preprocessing phase
of our protocol, we let the servers invoke a functionality FRand-dMSM to prepare a random tuple ([[X]]d, [[y]]d, ⟨z⟩d)
such that z =

∏
i∈[k] X

yi

i ; the full descriptions of FRand-dMSM can be found in Appendix B.2. The security of our
protocol ΠVerify-dMSM is proven through Theorem 7.

The functionality FVerify-dMSM interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of
the corrupted servers. Let H be the set of the honest servers.

Upon receiving (VERMSM,m1,m2, {{[[A(j)
i ]], [[b

(j)
i ]]}i∈[m1], ⟨out

(j)⟩}j∈[m2]) from S1, . . . , SN , where m1,m2 denote the
number of inputs, it does:

1. For j ∈ [m2]:

• For i ∈ [m1]: Reconstruct A
(j)
i and b

(j)
i using the shares from the honest servers, where

A
(j)
i = (A

(j)

(i−1)k+1, . . . , A
(j)
ik ) and b

(j)
i = (b

(j)

(i−1)k+1, . . . , b
(j)
ik ).

• For i ∈ [m1]: Compute the new PSS [[A
(j)
i ]]H and [[b

(j)
i ]]H of the secrets A

(j)
i and b

(j)
i , such that for each

honest server, its share of [[A
(j)
i ]] (resp. [[b

(j)
i ]]) is equal to its share of [[A

(j)
i ]]H (resp. [[b

(j)
i ]]H). Send the

corrupted servers’ shares of [[A
(j)
i ]]H, [[b

(j)
i ]]H and ∆

A
(j)
i

:= [[A
(j)
i ]]− [[A

(j)
i ]]H ∈ FN ,

∆
b
(j)
i

:= [[b
(j)
i ]]− [[b

(j)
i ]]H ∈ FN to the adversary S, where ∆

A
(j)
i

(resp. ∆
b
(j)
i

) describes the inconsistency

of [[A
(j)
i ]] (resp. [[b

(j)
i ]]).

• Reconstruct out(j) using the shares from the honest servers. Compute the new share ⟨out(j)⟩H of the
secret out(j) such that for each honest server, its share of ⟨out(j)⟩ is equal to its share of ⟨out(j)⟩. Send
the corrupted servers’ shares of ⟨out(j)⟩H and ∆out(j) := ⟨out(j)⟩ − ⟨out(j)⟩H ∈ FN to the adversary S.

• Send d(j) := out(j) −
∏

i∈[m1·k](A
(j)
i )(b

(j)
i ) to the adversary S.

2. If there exists j ∈ [m2] such that d(j) ̸= 0, set b := 0; otherwise, set b := 1.

3. Send b to the adversary S. For each honest server h ∈ H, upon receiving an input from the adversary S,

• If it is (CONTINUE, h), send b to h.

• If it is (ABORT, h), send ABORT to h.

Functionality FVerify-dMSM

Figure 12: The functionality FVerify-dMSM.

Theorem 7. The protocol ΠVerify-dMSM depicted in Figure 13 securely realizesFVerify-dMSM in the {FRand-dMSM,FCoin}-hybrid
world against a malicious adversary corrupting up to t servers.
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For j ∈ [m2], let A
(j)
1 , ..., A

(j)
n , out(j) be n + 1 group elements in G and b

(j)
1 , ..., b

(j)
n be n field elements in F. With-

out loss of generality, we assume k|n, where k is the packing factor, and we set m1 := n/k. The servers hold
{{[[A(j)

i ]]d, [[b
(j)
i ]]d}i∈[m1], ⟨out

(j)⟩d}j∈[m2], where A
(j)
i = (A

(j)

(i−1)k+1, . . . , A
(j)
ik ) and b

(j)
i = (b

(j)

(i−1)k+1, . . . , b
(j)
ik ). The

servers want to verify if out(j) =
∏

i∈[n](A
(j)
i )b

(j)
i holds for all j ∈ [m2].

Preprocessing phase:

1. The servers send RANDMULT to FRand-dMSM, which returns random [[X]]d, [[y]]d, ⟨z⟩d to the servers, where
X = (X1, . . . , Xk) and y = (y1, . . . , yk) for j ∈ [m1] and z =

∏
i∈[k] X

yi
i holds.

Online phase:

1. For j ∈ [m2]: All servers locally compute [[C(j)]]2d =
∏

i∈[m1]
[[A

(j)
i ]]

[[b
(j)
i

]]d
d .

2. All servers send (FLIP, 1) to FCoin, which returns a uniformly random r ∈ F to them.

3. All servers locally compute [[Ĉ]]2d := [[X]]
[[y]]d
d ·

∏
j∈[m2]

([[C(j)]]2d)
rj and ⟨ ˆout⟩d := ⟨z⟩d ·

∏
j∈[m2]

(⟨out(j)⟩d)r
j

.

4. All servers reconstruct Ĉ and ˆout. If the reconstruction procedure fails, the servers simply abort; otherwise,
the servers check if ˆout =

∏
i∈[k] Ĉi holds. If the check passes, the servers accept the fact that

out(j) =
∏

i∈[n](A
(j)
i )b

(j)
i holds for all j ∈ [m2]; otherwise, the servers reject.

Protocol ΠVerify-dMSM

Figure 13: The protocol ΠVerify-dMSM.

Proof. The proof is similar to the proof of Theorem 5. We denote byA the adversary. Here we will first provide the
workflow of an ideal adversary (a.k.a., the simulator) S that simulates the behaviors of the honest parties. Then
we will prove that the adversary A cannot distinguish whether it is interacting with the simulator S or the real
servers.
Simulation strategy. We describe the simulation strategy of the simulator S as follows:

1. In the beginning, the simulator S emulates FRand-dMSM for the adversary A. Therefore, S knows the whole
sharings of [[X]]d, [[y]]d, ⟨z⟩d.

2. For i ∈ [m1], j ∈ [m2]: S receives the corrupted servers’ shares of [[A(j)
i ]]H, [[b(j)i ]]H and ⟨out(j)⟩H, the incon-

sistency error ∆
A

(j)
i

,∆
b
(j)
i

and ∆out(j) , and the additive error d(j) from FVerify-dMSM.

3. The simulator S emulates FCoin and faithfully samples a random r ∈ F.

4. For j ∈ [m2]:

(a) The simulator S computes the corrupted servers’ shares of [[C(j)]]2d and ⟨out(j)⟩d.

(b) The simulator S samples a random group element vector C(j) as the secret. Basing on C(j), the cor-
rupted servers’ shares of [[C(j)]]2d, the inconsistency errors {∆

A
(j)
i

,∆
b
(j)
i

}i∈[m1], the simulator S can

determine the whole sharings of [[C(j)]]2d.

(c) The simulator S computes out(j) := d(j) +
∏

i∈[k] C
(j)
i and sets out(j) as the secret. Basing on out(j), the

corrupted servers’ shares of ⟨out(j)⟩d, the inconsistency error ∆out(j) , the simulator S can determine the
whole sharings of ⟨out(j)⟩d.

5. The simulator S computes the whole sharings of [[Ĉ]]2d and ⟨ ˆout⟩d.

6. The simulator S honestly complete the protocol. If the check passes, S sets b′ := 1; otherwise, S sets b′ := 0.

7. The simulator S receives b from FVerify-dMSM. If b ̸= b′, S aborts.

8. If an honest server aborts, S sends ABORT to FVerify-dMSM; otherwise, S sends CONTINUE to FVerify-dMSM.

Indistinguishability proof. We prove the indistinguishability through the following hybrids.
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• Hybrid Hybr0: This is the real-world execution.

• Hybrid Hybr1: Same as hybrid Hybr0, except that S executes Step 1-5 of the above simulation strategy.

Lemma 4. Hybrid Hybr1 is perfectly indistinguishable from Hybr0.

Proof. Here we show that the simulated [[Ĉ]]2d, ⟨ ˆout⟩d are perfectly indistinguishable from the real [[Ĉ]]2d, ⟨ ˆout⟩d.
Due to Step 1-2, S can compute the corrupted servers’ shares of [[Ĉ]]2d, ⟨ ˆout⟩d. To determine the whole
sharings of [[Ĉ]]2d, ⟨ ˆout⟩d, S only needs to know the distribution of Ĉ, ˆout. Notice that, S receives d(j) =

out(j) −
∏

i∈[m1·k](A
(j)
i )(b

(j)
i ) for j ∈ [m2]. In Hybr0 (the real-world), Ĉ, ˆout are masked by

∏
i∈[k] X

yi

i and z

respectively, which are random subject to z =
∏

i∈[k] X
yi

i . Therefore, we conclude that Ĉ is a uniformly ran-

dom vector while ˆout is a group element such that ˆout = z·
∏

j∈[m2]
(d(j)+

∏
i∈[k] C

(j)
i )r

j

. On the other hand, in
hybrid Hybr1, S randomly samples C(j) for j ∈ [m2]; thus, it is easy to see that Ĉ is also uniformly random,
which has the same distribution as that in Hybr0. As for ˆout, S computes ˆout = z·

∏
j∈[m2]

(d(j)+
∏

i∈[k] C
(j)
i )r

j

,
which also has the same distribution as that in Hybr0. In conclusion, Hybr1 is perfectly indistinguishable from
Hybr0.

• Hybrid Hybr2: Same as hybrid Hybr1, except that S executes Step 4-6 of the above simulation strategy.

Lemma 5. Hybrid Hybr2 is perfectly indistinguishable from Hybr1.

Proof. We observe that the adversary A can distinguish these two hybrids if and only if the simulator S
aborts, which would happen when there exists a j ∈ [m2] such that out(j) ̸=

∏
i∈[m1·k](A

(j)
i )(b

(j)
i ) but ˆout =∏

i∈[k] Ĉi holds. It is easy to see that it is sufficient to show that if there exists a j ∈ [m2] such that d(j) ̸= 0,

then we have z ·
∏

j∈[m2]
(d(j) +

∏
i∈[k] C

(j)
i )r

j ̸=
∏

i∈[k] Ĉi.

Since
∏

i∈[k] Ĉi =
∏

i∈[k] X
yi

i ·
∏

i∈[k],j∈[m2]
(C

(j)
i )r

j

and
∏

i∈[k] X
yi

i = z, our goal becomes to show that∏
i∈[k],j∈[m2]

(C
(j)
i )r

j ̸=
∏

j∈[m2]
(d(j) +

∏
i∈[k] C

(j)
i )r

j

, if there exists a j ∈ [m2] such that d(j) ̸= 0, which
is trivial. In conclusion, Hybr2 is perfectly indistinguishable from Hybr1.

Hybrid Hybr2 is the ideal-world execution. Therefore, we prove that the real-world execution is indistinguishable
from the ideal-world execution, which completes the proof.

7.3 Malicous-secure packed secret sharing multiplication

In this subsection, we discuss how to handle PSS multiplication against a malicious adversary. The malicious
secure version of FPSSMult-Semi, which is denoted as FPSSMult-Mal, is depicted in Appendix B.3. In [GPS21a], Goyal
et al. propose a protocol that can securely realize FPSSMult-Mal. For completeness, we present this protocol ΠPSSMult

in Figure 14.

Theorem 8. The protocol ΠPSSMult depicted in Figure 14 securely realizesFPSSMult-Mal depicted in Figure 29 in theFDouble-Rand-
hybrid world against a malicious adversary corrupting up to t servers.

Proof. we refer interested readers to see the proof in [GPS21a].

Verifying PSS multiplication. In [GPS21a], Goyal et al. showed how to detect malicious behaviors during the
process of ΠPSSMult. More precisely, they propose an ideal functionality FVerify-PSSMult and show how to realize this
functionality. Formally, we present the ideal functionality FVerify-PSSMult in Figure 15. We refer interested readers
to see the protocol that securely realizes FVerify-PSSMult in [GPS21a] and present a formal theorem in Theorem 9.

Theorem 9. There exists a protocol that can securely realize FVerify-PSSMult depicted in Figure 15 against a malicious adver-
sary corrupting up to t servers.

Proof. we refer interested readers to see the proof in [GPS21a].
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Let [[x]]d, [[y]]d be the input degree-d packed secret shares of vectors a, b that are to be element-wise multiplied.

Preprocessing phase:

1. The servers invoke FDouble-Rand to prepare a pair of random shares [[r]]d, [[r]]2d, where r ∈ Fk is a random vector
unknown to any server Si.

Online phase:

1. Each server Si computes [[e]]2d = [[x]]d · [[y]]d + [[r]]2d and send it to S1.

2. S1 receives enough shares and reconstructs e.

3. S1 sample a random degree-d sharing [[e]]d and distribute it to others.

4. Each server computes [[z]]d := [[e]]d − [[r]]d.

Protocol ΠPSSMult

Figure 14: The ΠPSSMult Protocol

The functionality FVerify-PSSMult interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of
the corrupted servers. Let H be the set of the honest servers.

Upon receiving (VERIFYMULT,m, {[[x(i)]], [[y(i)]], [[z(i)]]}i∈[m]) from S1, . . . , SN , where m is the number of PSS tuples
that all servers want to verify, it does:

1. For i ∈ [m]:

• Reconstruct x(i), y(i) and z(i) using the shares from the honest servers.

• For a ∈ {x,y,z}: compute the new PSS [[a(i)]]H of the secret a(i), such that for each honest server, its
share of [[a(i)]] is equal to its share of [[a(i)]]H. Send the corrupted servers’ shares of [[a(i)]]H and
∆

a(i) := [[a(i)]]− [[a(i)]]H ∈ FN to the adversary S, where ∆
a(i) describes the inconsistency of [[a(i)]].

• Compute d(i) := z(i) − x(i) ∗ y(i) and send d(i) to the adversary S.

2. If there exists i ∈ [m] such that d(i) ̸= 0N , set b := 0; otherwise, set b := 1.

3. Send b to the adversary S. For each honest server h ∈ H, upon receiving an input from the adversary S,

• If it is (CONTINUE, h), send b to h.

• If it is (ABORT, h), send ABORT to h.

Functionality FVerify-PSSMult

Figure 15: The functionality FVerify-PSSMult
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7.4 Put everything together

We have already shown how to achieve malicious security for PSS permutation, dMSM, and PSS multiplication.
Replacing the semi-honest secure components with these malicious secure ones, we can obtain a malicious secure
collaborative zk-SNARK. Formally, we have the following theorem.

Theorem 10. Let C be a data-parallel circuit. Let (Setup,Prove,Verify) be a zk-SNARK described in [XZZ+19] for C.
There exists a collaborative zk-SNARK (Setup,ΠMal,Verify) for C, where ΠMal is a MPC protocol that computes Prove
in {FPSSPermute-Mal,FdMSM-Mal,FPSSMult-Mal,FVerify-PSSPermute,FVerify-dMSM,FVerify-PSSMult,H}-hybrid world, against a ma-
licious adversary who corrupts at most t servers. Here H denotes a random oracle.

Proof. Protocol description. We first provide the protocol description of the underlying protocol ΠMal in the fol-
lowing.

1. The servers invoke the semi-honest protocol Π described in Appendix C.2 with the following modifications:
(i) when the servers need to invokeFPSSPermute-Semi,FdMSM-Semi,FPSSMult-Semi, they invokeFPSSMult-Mal,FdMSM-Mal,
FPSSMult-Mal instead; (ii) the servers do not output the final result for the time being.

2. The servers try to detect the malicious behaviors through the following checks:

(a) For a permutation function p, let mp denote the number of tuples computed by FPSSPermute-Mal. The
tuples are denoted by

([[x(1)]], [[x̂(1)]]), ([[x(2)]], [[x̂(2)]]), . . . , ([[x(mp)]], [[x̂(mp)]]).

The servers send (VERPERMUTE,mp, {[[x(i), [[x̂(i)]]]]}i∈[m1], p(·)) toFVerify-PSSMult to check the correctness
of these tuples.

(b) Let m1,m2 denote the numbers that are used to describe the tuples computed by FdMSM-Mal. More
precisely, the tuples are denoted by

({[[A(1)
i ]], [[b

(1)
i ]]}i∈[m1], ⟨out

(1)⟩),

({[[A(2)
i ]], [[b

(2)
i ]]}i∈[m1], ⟨out

(2)⟩),
...

({[[A(m2)
i ]], [[b

(m2)
i ]]}i∈[m1], ⟨out

(m2)⟩).

The servers send (VERMSM,m1,m2, {{[[A(j)
i ]], [[b

(j)
i ]]}i∈[m1], ⟨out(j)⟩}j∈[m2]) to FVerify-dMSM to check the

correctness of these tuples.
(c) Let m3 denote the number of tuples computed by FPSSMult-Mal. The tuples are denoted by

([[x(1)]], [[y(1)]], [[z(1)]]), ([[x(2)]], [[y(2)]], [[z(2)]]), . . . ,

([[x(m3)]], [[y(m3)]], [[z(m3)]]).

The servers send (VERIFYMULT,m3, {[[x(i)]], [[y(i)]], [[z(i)]]}i∈[m3]) to FVerify-PSSMult to check the correct-
ness of these tuples.

3. If all the above checks pass, the servers output the final result of Π; otherwise, the servers simply abort.

Security. Here we provide a stretch of the security analysis. The security of our semi-honest protocol Π is proven
through Theorem 3. However, a malicious adversary may instruct the corrupted servers to deviate from the pro-
tocol, resulting in incorrect outputs received by the honest servers, which is captured by FPSSPermute-Mal,FdMSM-Mal,
and FPSSMult-Mal. By letting the servers invoke FVerify-PSSPermute,FVerify-dMSM,FVerify-PSSMult, the malicious behaviors
caused by the adversary will be detected. Since our protocol ΠMal only makes oracle to the random oracle H, the
ideal functionalities FPSSPermute-Mal,FdMSM-Mal,FPSSMult-Mal,FVerify-PSSPermute,FVerify-dMSM,FVerify-PSSMult, besides each
server performing local operations on the shares of inputs. The security of this protocol follows the security of the
functionalities invoked straightforwardly.

Efficiency. Given a data-parallel d-depth arithmetic circuit C with B sub-copies and a total of n gates in the input
layer, the total work of each server can be divided into two parts: proving and verification. The proving cost is
the same as the semi-honest case, namely O( |C|N ) computation and space. The verification involves O( |C|N log |C|

N ) =

Õ( |C|N ) computation and O( |C|N ) space. Therefore, the total cost of each server is Õ( |C|N ) computation and O( |C|N )
space.
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8 Implementation and Evaluations

We provide implementation and performance evaluation of our semi-honest protocols.
Implementation details. We first implemented two primary components, ΠdSumcheck and ΠdMKZG. This was fol-
lowed by developing a proof-of-concept implementation for collaborative proof generation, specifically designed
for data-parallel circuits. We also created a simplified implementation of Libra for comparison purposes. We
utilized the mpc-net crate [Ozd22] for network communication and the arkworks library [ac22] for finite field
and elliptic curve operations. Overall, our project involved more than 2800 lines of Rust code. We provide our
codebase at https://github.com/LBruyne/Collaborative-GKR.
Experiment setup. To evaluate the performance of our protocols, we conducted a comparative analysis with zk-
SaaS [GGJ+23] and a local prover of Libra [XZZ+19]. We chose the distributed Plonk implementation (denoted
as Plonk-zkSaaS) in [GGJ+23] as a benchmark baseline since it focuses on arithmetic circuits, similar to our ap-
proach. The benchmark was performed on their open-source implementation [Pol23]. Recall that Plonk-zkSaaS
operates under a partially distributed setting with one powerful server and several regular ones, while our work
is fully distributed with equal server capabilities. Therefore, we consider the following two settings:

• Partially distributed setting (for Plonk-zkSaaS): This includes a powerful server (g7.6xlarge instance with
24 vCPUs, 96 GB RAM), and the other normal servers (c7.large instances with 2 vCPUs, 4 GB RAM).

• Fully distributed setting (for our proposal): All servers are uniform c7.large instances with 2 vCPUs and 4
GB of RAM.

We also assessed the local prover of Libra and other protocols on a single 2 vCPUs, 4 GB RAM instance. Our
evaluation excluded the preprocessing stage, aligning with previous benchmarks [OB22, GGJ+23].

8.1 Performance of distributed primitives

We commence by evaluating the performance of two key protocols in proof generation, the sumcheck protocol
and the PC scheme. For both protocols, we varied the number of inputs and compared the execution time between
the fully distributed setup (with 128 servers) and a local prover. The servers in the distributed setup were linked
through a high-speed 4Gbps network.

The results of these experiments are summarized in Figure 16. For both the sumcheck protocol and the PC
scheme, we note that the performance in a fully distributed setting is approximately 30× superior to that of a
local prover, particularly when the number of inputs is large. This finding aligns with our theoretical analysis and
demonstrates the scalability of our construction.

217 218 219 220 221 222 223 224 225 226 227

# of Inputs (n)

20

22

24

26

28

210

212

214

216

218

Ti
m

e 
(m

s)

Distributed (N = 128)
Local

(a) Performance for ΠdSumcheck.
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(b) Performance for ΠdMKZG.

Figure 16: Performance of two distributed primitives, comparing proving time with a local prover. In the dis-
tributed setting, 128 servers are linked with a 4Gbps network.
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8.2 Performance of collaborative proof generation

Next, we concentrated on assessing the performance of our collaborative proof generation process. We compared
our fully distributed protocol against two different setups: (i) Plonk-zkSaaS, and (ii) a local Libra prover. Given
that our protocol is tailored for data-parallel circuits, our experiments were based on a circuit comprising 64 copies,
each with a depth of 16. We denoted the total number of gates in the circuit as |C|. To evaluate performance across
various circuit sizes, we altered the number of gates in each layer.
The evidence of fully distributed proof generation. In our experiments, all servers in the fully distributed setting
incur the same running time and communication costs. A key observation is the even distribution of memory
requirements among servers, enhancing our protocol’s ability to manage larger circuits compared to local provers
or partially distributed settings.
Comparison with a local Libra prover. We first compare with a local Libra prover. We put a detailed breakdown of
running times for each related component in Figure 17. The results show that the performance of our protocol is
4× to 19× better than a local prover, varying with the number of gates. The reduced memory requirement per
server in a fully distributed setting allows the handling of larger circuits than possible by a local prover. With 128
servers, our performance does not match the theoretical 32× improvement, due to the PSS multiplications in the
distributed sumcheck protocol for GKR relations, it adds computational and communication overheads which is
not required in a local prover case.
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Figure 17: Comparison of proving time between a local Libra prover and a fully distributed cluster of 128 servers,
interconnected with a network bandwidth of 4Gbps. The bar graph indicates the breakdown for each component
involved in the process. Missing data points of the local prover setting are due to the memory limitation of the
machine.

Comparison with Plonk-zkSaaS. We also conduct a comparison between our protocol and Plonk-zkSaaS from
[GGJ+23]. This excludes multi-threading optimizations for both schemes. As depicted in Figure 18, our pro-
tocol shows significantly lower computation and communication costs per server. This efficiency is attributed
to two factors: (i) the underlying zk-SNARK Libra is more efficient than Plonk, and (ii) our protocol avoids the
use of the computationally demanding dFFT primitive. According to [GGJ+23], the dFFT primitive places a heavy
computational load on the powerful server and requires extensive communication with other servers. Conversely,
our protocol distributes overheads evenly among all servers. Moreover, as Table 1 indicates, our protocol is less
memory-intensive. While Plonk-zkSaaS maxes out its memory capacity on relatively powerful machines for cir-
cuits larger than 224 gates, our protocol which is executed by consumer machines can handle circuits up to 227

gates, demonstrating greater scalability.
Varying server count and bandwidth. We then maintain a constant circuit size while varying the number of
servers and network bandwidth. The results are summarized in Figure 19. We observe a linear improvement in
our protocol’s efficiency with an increasing number of servers. A reduction in bandwidth leads to longer com-
munication times, resulting in a smaller efficiency gain. Despite this, the loss in efficiency due to communication
overhead can be mitigated by adding more servers. As shown in Figure 19, our protocol still achieves considerable
efficiency gains (about 4 times) with 256 servers, even under a limited bandwidth (64Mbps) network.
Financial cost comparison. Finally, we compare the financial costs of our system with [GGJ+23], referencing
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Figure 18: Comparison of proving time and communication cost between Plonk-zkSaaS and this work, both in a
cluster where 128 servers are linked with a network bandwidth of 4Gbps. The performance of Plonk-zkSaaS is
assessed by measuring the proving time and communication cost specifically for the designated powerful server.
The evaluation does not include multi-threading optimizations.

|C| Ours Plonk-zkSaaS
Time Comm. Time Comm.

223 2.5 s 190 MB 2193 s 184 GB
224 4.9 s 379 MB 4399 s 368 GB
225 9.6 s 757 MB — —
226 19.2 s 1512 MB — —

Table 1: Extra data for circuit sizes from 223 to 226. Here Comm. denotes the communication cost, and — indicates
the corresponding circuit is not available due to the memory limitation. The data of Plonk-zkSaaS is obtained
from the powerful server. When |C| = 225, the powerful server of Plonk-zkSaaS consumes 96 GB memory before
crash, whereas in our protocol each server utilizes only 2.15 GB. Neither of the performances considers multi-
threading optimizations.

Google Cloud’s pricing for spot instances and network services3 [GCP23]. With 128 low-level instances and a
4Gbps network bandwidth, our protocol generates a proof for a 219 gate circuit in 0.2s, at a cost of around 6.2 cents,
mainly due to network charges. In comparison, the estimated cost of [GGJ+23] is 89.8 cents. Thus, our cost is just
7% of theirs. This substantial saving is due to two factors: (i) our protocols only require lower-spec machines,
avoiding the need for a high-capacity server; (ii) the reduced communication cost leads to lower network fees.
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A Additional Preliminaries

A.1 Zero-knowledge arguments

An interactive argument system for an NP relationship R is a protocol between a prover P and a verifier V. The
protocol runs in several rounds, allowing V to ask questions in each round based on P’s previous answers. At
the end of the protocol, V is convinced by P that there exists a witness w such that R(x,w) = 1 for some public
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input x. Further, we focus on the zero-knowledge argument of knowledge that P convinces V that he knows such a
witness w that satisfies the relationship without leaking information about w. Formally, we give the definition of
zero-knowledge interactive argument of knowledge as follows:

Definition 4. A tuple of three algorithms (G, P, V) is a zero-knowledge interactive argument of knowledge forR if it satisfies
the following properties:

• Completeness. For every pp output by G(1λ), a statement-witness pair (x,w) such that R(x,w) = 1, the following
relation holds:

Pr [⟨P(w),V⟩(x, pp) = 1] = 1

• Knowledge soundness. For any PPT prover P∗, there exists a PPT extractor E such that for every pp output by
G(1λ), any input x, and the extractor’s output w∗ ← EP∗

(pp, x), the following relation is negl(λ):

Pr [⟨P∗,V⟩(x, pp) = 1 ∧R(x,w∗) = 1]

• Zero-knowledge. There exists a PPT simulator S that for any PPT algorithm V∗,R(x,w) = 1, pp output by G(1λ),
it holds that:

ViewV∗
(⟨P(w),V∗⟩(x, pp)) ≈ SV

∗
(x)

where ViewV∗
(⟨P(w),V∗⟩(x, pp)) is the view of V∗ in the real protocol, and SV∗

(x) is the view generated by S given
x and the transcript of V∗. ≈ denotes the two distributions are computationally indistinguishable.

A public-coin interactive argument system can be made non-interactive under the random-oracle model using
the Fiat-Shamir heuristic transformation [FS87]. We say the argument system is succinct if the running time of the
verifier and the total communication cost (proof size) are both of poly(λ, |x|, log |w|). A zero-knowledge Succinct Non-
interactive ARgument of Knowledge is called a zk-SNARK. Formally, A zk-SNARK constitutes a tuple of algorithms
(Setup,Prove,Verify):

• Setup(1λ,R)→ pp: It takes the security parameter λ and the NP relationR as inputs, and outputs the public
parameter pp.

• Prove(pp, x, w) → π: It takes the public parameter pp, the public input x, and the witness w as inputs, and
outputs a proof π.

• Verify(pp, x, π) → {0, 1}: It takes the public parameter pp, the statement x, and the proof π as inputs, and
outputs a bit b indicating acceptance (b = 1) or rejection (b = 0).

A zk-SNARK has the following security properties: completeness, knowledge soundness, zero-knowledge prop-
erty and succinctness. We refer interested readers to see formal definitions of these properties in [GGJ+23].

A.2 Secure multi-party computation

Let C : ({0, 1}λ)N → ({0, 1}λ)N be a circuit and let P1, . . . ,PN be the parties that will participate in a secure Multi-
Party Computation (MPC) protocol Π for C. During the execution of Π, we assume that each party Pi has a private
input xi ∈ {0, 1}λ, and Pi wants to receive yi ∈ {0, 1}λ as output, where (y1, . . . , yN ) := C(x1, . . . , xN ), without
revealing its private input.

We analyze the security of the MPC protocol Π in the real-world/ideal-world paradigm [Can00]. Here we pro-
vide an informal and high-level description for this paradigm, and we refer readers to see more details in [Can00].
In real-world execution, the real parties P1, . . . ,PN communicate with each other to execute Π, and there is an
adversaryAwho can choose a set of parties before the beginning of the execution, and we call it static corruption.
The set of the corrupted parties is denoted by Corr. In ideal-world execution, there are dummy parties P̃1, . . . , P̃N ,
an ideal-world adversary (a.k.a, the simulator) S who can corrupt the same set Corr, and a trusted entity called
ideal functionality F . The ideal functionality F receives inputs from the dummy parties and the simulator, then
computes C, and delivers the corresponding output to the parties. We say the protocol Π securely realizes F , if the
outputs of parties in real-world execution is computationally indistinguishable from those in ideal-world execu-
tion. Notice that, in this work, we also use the term “hybrid world”. More concretely, when we say a protocol is
in the G-hybrid world, it means that the parties can have an oracle access to an ideal functionality G. In this work,
we consider security with abort as in [OB22], i.e., the adversary can cause some honest parties to abort during the
protocol execution.
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Recall that, in this work, we aim to design an efficient MPC protocol for the prover algorithm Prove of a zk-
SNARK scheme (Setup,Prove,Verify). For the ease of presentation, when we say that Π is an MPC protocol Π
that computes Prove, we mean that the prover algorithm Prove can be represented as a circuit, and the protocol
Π securely realizes an ideal functionality who computes this circuit. Similar treatments can be found in prior
works [OB22, GGJ+23].

B Helper Functionalities

In this section, we put some helper functionalities that are used in the main body of this paper.

B.1 Functionality for coin-flipping

Here we introduce the functionality for coin-flipping. It allows all parties to receive the same uniformly random
string. Throughout the paper, we only consider the security with abort; therefore, here we let the functionality
capture the security with abort. Formally, we present the functionality for coin-flipping in Figure 20.

The functionality FCoin interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized with a
finite field F. Let H be the set of the honest servers.

Upon receiving (FLIP, ℓ) from S1, . . . , SN , do:

• Sample s← Fℓ and send (FLIP, s) to all corrupted parties.

• Send CONTINUE to the adversary S. For each honest party h ∈ H, upon receiving an input from S,

– If it is (CONTINUE, h), send (FLIP, s) to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FCoin

Figure 20: The functionality FCoin.

B.2 Functionalities for preprocessing

Here we introduce some ideal functionalities that will be used in the preprocessing phase, and these functionalities
aim to provide some correlated randomness that will be consumed in the online phase protocol. We note that there
are two approaches to realize these functionalities: (i) let the servers invoke a corresponding MPC protocol; and
(ii) let a trusted third party deliver these correlated randomness. In this work, we employ the second approach;
therefore, we omit the protocol descriptions that are used to realize these functionalities. We note that in [GPS21a,
GGJ+23], the authors showed how to realize some of these functionalities; we refer interested readers to see them
in [GPS21a, GGJ+23].
Generating shares of random values. Here we provide the ideal functionality for generating shares of a random
value, which is denoted as FRand. Formally, we put the detailed description of FRand in Figure 21.
Generating double packed shares of random vectors. Here we provide the ideal functionality for generating
double-packed shares of a batch of random vectors, which is denoted as FDouble-Rand. Formally, we put the detailed
description of FDouble-Rand in Figure 22.
Generating random shares for PSS permutation. Here we provide the ideal functionalities for generating random
shares for PSS permutation for both semi-honest security (which is denoted as FRand-PSSPermute-Semi) and malicious
security (which is denoted as FRand-PSSPermute-Mal). Formally, we put the detailed descriptions of FRand-PSSPermute-Semi

and FRand-PSSPermute-Mal in Figure 23 and Figure 24 respectively.
Converting packed shares to regular shares. Here we provide the ideal functionality for converting packed
shares to regular shares for both semi-honest security and malicious security, which are denoted as FPSSToss-Semi

andFPSSToss-Mal, respectively. Formally, we put the detailed description ofFPSSToss-Semi andFPSSToss-Mal in Figure 25
and Figure 26, respectively.
Generating random shares for dMSM. Here we provide the ideal functionality for generating random shares for
dMSM, which is denoted as FRand-dMSM. Formally, we put the detailed description of FRand-dMSM in Figure 27.
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The functionality FRand interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized with a
finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving RAND from S1, . . . , SN , do:

• Receive a set of shares {si}i s.t. Si∈Corr from the adversary S.

• Sample a random vector r ∈ Fk and sample a random degree-d packed secret sharing [[r]] such that for all
Si ∈ Corr, the i-th share of [[r]] is si.

• Send CONTINUE to the adversary S. For each honest party h ∈ H, upon receiving an input from S,

– If it is (CONTINUE, h), send its corresponding share of [[r]] to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FRand

Figure 21: The functionality FRand.

The functionality FDouble-Rand interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized
with a finite field F.

Upon receiving DOUBLERAND from S1, . . . , SN , do::

• Receive shares {ui, vi}i∈Corr from S.

• Choose a random vector r ∈ Fk and sample random degree-d and 2d packed secret sharing [[r]]d and [[r]]2d
such that the shares of the corrupted parties are identical to those received from the S, i.e., {ui, vi}i∈Corr .

• Send the shares [[r]]d and [[r]]2d to all parties.

Functionality FDouble-Rand

Figure 22: The functionality FDouble-Rand.

The functionality FRand-PSSPermute-Semi interacts with a set of the servers S1, . . . , SN and an adversary S. It is parame-
terized with a finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving (RANDPERMUTE, p(·)) from S1, . . . , SN , where p(·) is a permutation function, do:

• Receive a set of shares {ui, vi}i s.t. Si∈Corr from the adversary S.

• Sample a random vector r ∈ Fk and compute r̂ := p(x).

• Sample two random degree-t packed secret sharing [[r]] and [[r̂]] such that for all Si ∈ Corr, the i-th share of
[[r]] (resp. [[r̂]]) is ui (resp. vi).

• Distribute [[r]] and [[r̂]] to all servers.

Functionality FRand-PSSPermute-Semi

Figure 23: The functionality FRand-PSSPermute-Semi.
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The functionality FRand-PSSPermute-Mal interacts with a set of the servers S1, . . . , SN and an adversary S. It is parame-
terized with a finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving (RANDPERMUTE, p(·)) from S1, . . . , SN , where p(·) is a permutation function, do:

• Receive a set of shares {ui, vi}i s.t. Si∈Corr from the adversary S.

• Receive a vector d ∈ Fk from the adversary S.

• Sample a random vector r ∈ Fk and compute r̂ := p(r) + d.

• Sample two random degree-t packed secret sharing [[r]]H and [[r̂]]H such that for all Si ∈ Corr, the i-th share
of [[r]]H (resp. [[r̂]]H) is ui (resp. vi).

• Receive two vectors ∆r,∆r̂ ∈ FN from the adversary S and compute [[r]] := [[r]]H +∆r and [[r̂]] := [[r̂]]H +∆r̂ .

• Send CONTINUE to the adversary S. For each honest party h ∈ H, upon receiving an input from S,

– If it is (CONTINUE, h), send its corresponding shares of [[r]] and [[r̂]] to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FRand-PSSPermute-Mal

Figure 24: The functionality FRand-PSSPermute-Mal.

The functionality FPSSToss-Semi interacts with a set of the servers S1, . . . , SN and an adversary S.

Upon receiving (TOSS, [[x]]) from all servers, do:

• For each j ∈ [k], receive from the adversary a set of shares {uj,i}i∈Corr from S.

• Reconstruct x = (x1, ..., xk) from [[x]].

• For each j ∈ [k], computes a random sharing of xj such that the shares of the corrupted servers are identical
to those received from S, i.e., {uj,i}i∈Corr .

• For each j ∈ [k], distribute ⟨xj⟩ to all servers.

Functionality FPSSToss-Semi

Figure 25: The functionality FPSSToss-Semi.

The functionality FPSSToss-Mal interacts with a set of the servers S1, . . . , SN and an adversary S.

Upon receiving (TOSS, [[x]]) from all servers, do:

• Reconstruct the correct x = (x1, . . . , xk) using the shares from the honest servers.

• Compute the new PSS [[x]]H of the secrets x, such that for each honest server, its share of [[x]] is equal to its
share of [[x]]H. Send the corrupted servers’ shares of [[x]]H and ∆x := [[x]]− [[x]]H ∈ FN to the adversary S,
where ∆x describes the inconsistency of [[x]].

• Receive a vector d ∈ Fk from the adversary S, and set x := x+ d.

• For each j ∈ [k], receive a set of shares {uj,i}i∈Corr from the adversary S.

• For each j ∈ [k], computes a random sharing ⟨xj⟩H such that the shares of the corrupted servers are identical
to those received from S, i.e., {uj,i}i, s.t. Si∈Corr .

• For each j ∈ [k], receive ∆j from the adversary S and compute ⟨xj⟩ := ⟨xj⟩H +∆j .

• For each honest server h ∈ H, upon receiving an input from the adversary S,

– If it is (CONTINUE, h), send its corresponding share of {⟨xj⟩}j∈[k] to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FPSSToss-Mal

Figure 26: The functionality FPSSToss-Mal.
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The functionality FRand-dMSM interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized
with a finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving RANDMULT from S1, . . . , SN , do:

• Receive a set of shares {ui, vi, si}i s.t. Si∈Corr from the adversary S.

• Sample random vectors A ∈ Gk, b ∈ Fk and sample random degree-d packed secret sharing [[A]] and [[b]] such
that for all Si ∈ Corr, the i-th shares of [[A]] and [[b]] are ui and vi respectively. Note that, we let
A = (A1, . . . , Ak) and b = (b1, . . . , bk).

• Compute z :=
∏

i∈[k] Ai · gbi . Sample a random degree-d Shamir’s sharing ⟨z⟩ such that for all Si ∈ Corr, the
i-th share of ⟨z⟩ is si.

• Send CONTINUE to the adversary S. For each honest party h ∈ H, upon receiving an input from S,

– If it is (CONTINUE, h), send its corresponding shares of [[A]], [[b]], ⟨z⟩ to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FRand-dMSM

Figure 27: The functionality FRand-dMSM.

B.3 Functionality for packed secret sharing multiplication

Here we provide the ideal functionality for PSS multiplication (given two PSS [[a]], [[b]], the goal is to compute [[c]]
such that c = a∗b) for both semi-honest and malicious security, which are denoted asFPSSMult-Semi andFPSSMult-Mal,
respectively. Formally, we put the detailed description of FPSSMult-Semi and FPSSMult-Mal in Figure 28 and Figure 29,
respectively.

The functionality FPSSMult-Semi interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized
with a finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving (PSSMULT, [[a]], [[b]]) from S1, . . . , SN , do:

• Receive a set of shares {ui}i∈Corr from the adversary S.

• Reconstruct a = (a1, ..., ak) and b = (b1, ..., bk) from [[a]], [[b]].

• Compute c := a ∗ b, where ∗ means element wise multiplication, i.e., ci = ai · bi for i ∈ [k].

• Sample random sharing [[c]] of c, such that the shares of the corrupted servers are identical to those received
from S, i.e., {ui}i, s.t. Si∈Corr .

• Distribute [[c]] to all servers.

Functionality FPSSMult-Semi

Figure 28: The functionality FPSSMult-Semi.

In [GPS21a], Goyal et al. presented a protocol that can securely realize FPSSMult-Semi against a semi-honest
adversary. They also proved that the same protocol can securely realize FPSSMult-Mal against a malicious adversary.
For completeness, we present their protocol in Section 7.3. Notice that, for multiplying two packed shares, this
procedure incurs a communication cost of O(k) elements.

B.4 Functionality for packed secret sharing permutation

Formally, we present the ideal functionality for PSS permutation FPSSPermute-Semi in Figure 30 and put the proto-
col ΠPSSPermute-Semi that securely realizes it in Figure 31. Notice that, in the preprocessing phase of our protocol
ΠPSSPermute-Semi, we let the servers invoke a functionality FRand-PSSPermute-Semi to generate a pair of random shares
[[r]] and [[r̂]], where r̂ = p(r) and r; we put the detailed description of FRand-PSSPermute-Semi in Appendix B.2. The
security of the protocol ΠPSSPermute-Semi is proven through Theorem 11.

Theorem 11. The protocol ΠPSSPermute-Semi depicted in Figure 31 securely realizes FPSSPermute-Semi depicted in Figure 30 in
the
FRand-PSSPermute-Semi-hybrid world against a semi-honest adversary corrupting up to t servers.
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The functionality FPSSMult-Mal interacts with a set of the servers S1, . . . , SN and an adversary S. It is parameterized
with a finite field F. Let Corr be the set of the corrupted servers. Let H be the set of the honest servers.

Upon receiving (PSSMULT, [[a]], [[b]]) from S1, . . . , SN , do:

• Reconstruct the correct a = (a1, . . . , ak) and b = (b1, . . . , bk) using the shares from the honest servers.

• Compute the new PSS [[a]]H, [[b]]H of the secrets x, such that for each honest server, its share of [[a]] (resp. [[b]])
is equal to its share of [[a]]H (resp. [[b]]H). Send the corrupted servers’ shares of [[a]]H, [[b]]H,
∆a := [[a]]− [[a]]H ∈ FN and ∆b := [[b]]− [[b]]H ∈ FN to the adversary S, where ∆a (resp. ∆b) describes the
inconsistency of [[a]] (resp. [[b]]).

• Receive a vector d ∈ Fk from the adversary S. Compute c := a ∗ b+ d.

• Receive a set of shares {ui}i∈Corr from the adversary S. Sample a random sharing [[c]]H of c such that the
shares of the corrupted servers are identical to those received from S, i.e., {ui}i, s.t. Si∈Corr .

• Receive ∆ ∈ FN from the adversary S and compute [[c]] := [[c]]H +∆.

• For each honest server h ∈ H, upon receiving an input from the adversary S,

– If it is (CONTINUE, h), send its corresponding share of [[c]] to h.

– If it is (ABORT, h), send ABORT to h.

Functionality FPSSMult-Mal

Figure 29: The functionality FPSSMult-Mal.

Proof. We refer interested readers to see the proof in [GPS21a].

The functionality FPSSPermute-Semi interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of
corrupted servers.

Upon receiving (PERMUTE, [[x]], p(·)) from S1, . . . , SN , where [[x]] is a degree-d packed secret sharing of x and p(·) is
a permutation, it does:

1. Reconstruct the secret x← Open([[x]]) and compute the permuted secret x̂ := p(x).

2. Receive a set of shares {si}i s.t. Si∈Corr from the adversary S. Sample a random degree-d packed secret
sharing [[x̂]] of x̂ such that for all Si ∈ Corr, the i-th share of [[x̂]] is si.

3. Distribute the shares [[x̂]] to all servers.

Functionality FPSSPermute-Semi

Figure 30: The functionality FPSSPermute-Semi

Let [[x]] be the input degree-d PSS of a vector x that is to be permuted and let p(·) be the permutation function that
is to be used.

Preprocessing phase:

1. The servers invoke FRand-PSSPermute-Semi to prepare a pair of random shares [[r]] and [[r̂]], where r̂ = p(r) and r
and r̂ are unknown to any server Si.

Online phase:

1. Each server Si computes [[m]] := [[x]] + [[r]] and send [[m]] to S1.

2. S1 reconstructs to get the vector m and performs the permutation on m to get m̂ := p(m). Then S1

computes [[m̂]] and distributes the shares to other servers.

3. Each server Si locally computes [[x̂]] := [[m̂]]− [[r̂]].

Protocol ΠPSSPermute-Semi

Figure 31: The ΠPSSPermute-Semi protocol
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B.5 Functionality for distributed multi-scalar multiplication

Notice that, in the preprocessing phase of the protocol, we let the servers invoke a functionality FDouble-Rand to gen-
erate a pair of random shares [[r]]d, [[r]]2d and a functionality FPSSToss-Semi to transform a packed secret sharing [[r]]d
to a normal Shamir secret sharing ⟨r1⟩, ..., ⟨rk⟩. The detailed description of these two functionalities is provided in
Appendix B.2. The security of the protocol ΠdMSM-Semi is proven secure through Theorem 12.

Theorem 12. The protocol ΠdMSM-Semi depicted in Figure 33 securely realizes FdMSM-Semi depicted in Figure 32 in the
{FDouble-Rand,FPSSToss-Semi}-hybrid world against a semi-honest adversary corrupting up to t servers.

Proof. We refer interested readers to see the proof in [GGJ+23].

The functionality FdMSM-Semi interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of
corrupted servers. It does:

Upon receiving (MULT,m, [[A1]], . . . , [[Am]], [[b1]], . . . , [[bm]]) from the servers, where m is the number of pairs, do:

1. For each i ∈ [m], reconstruct (A(i−1)k+1, ..., Aik) from [[Ai]] and reconstruct (b(i−1)k+1, ..., bik) from [[bi]].

2. Receive a set of shares {ui}i∈Corr from the adversary.

3. Compute out =
∏

i∈[m] A
bi
i .

4. Sample a random sharing ⟨out⟩ of out, such that the shares of the corrupted parties are identical to those
received from the adversary, i.e., {ui}i∈Corr .

5. Distribute the shares ⟨out⟩ to all servers.

Functionality FdMSM-Semi

Figure 32: The functionality FdMSM-Semi

Let A1, ..., An be n group elements in G and b1, ..., bn be n field elements in F. The protocol allows N servers
to collaboratively compute

∏n
i=1 A

bi
i in a distributed manner. Without loss of generality, we assume k|n, where

k is the packing factor, and we set m := n/k. Each server holds packed secret shares [[Aj ]] of vectors Aj =
{A(j−1)k+i}i∈[k] and [[bj ]] of vectors bj = {b(j−1)k+i}i∈[k], for each j ∈ [m], respectively.

Preprocessing phase:

1. The servers invoke FDouble-Rand to prepare a pair of random shares [[r]]d, [[r]]2d, where r ∈ Fk is a random vector
unknown to any server Si.

2. The servers send [[r]]d to FPSSToss-Semi, which returns ⟨r1⟩, ..., ⟨rk⟩ to the servers.

Online phase:

1. Each server Si computes [[C]]2d =
∏

j∈[n
k
][[Aj ]]

[[bj ]]d
d .

2. Each server Si computes [[D]]2d = [[C]]2d · g[[r]]2d and send it to S1.

3. S1 receives enough shares and reconstructs D = (D1, ..., Dk).

4. S1 computes E =
∏

j∈[k] Dj and send it to each server.

5. Each server computes ⟨out⟩ = E∏
j∈[k] g

⟨rj⟩
as the output.

Protocol ΠdMSM-Semi

Figure 33: The ΠdMSM-Semi Protocol .

C Collaborative proof generation for Libra

In [XZZ+19], Xie et al. introduced Libra, a zk-SNARK with O(|C|) prover time for arbitrary arithmetic circuit C of
size |C|. The high-level idea is to combine a linear-time sumcheck protocol with a PC scheme, as detailed in Section
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2.3. In this section, we demonstrate how to utilize distributed primitives introduced in this work to implement a
collaborative proof generation for data-parallel circuits, by securely computing the prover algorithm of Libra.

C.1 Distributed sumcheck protocol for GKR relations

We first detail how to adapt the distributed sumcheck protocol (ΠdSumcheck) for GKR relations (Equation 2). First
consider a specific term ˜multi(g,x,y)Ṽi(x)Ṽi(y) in this relation, referred as the GKR function in [XZZ+19]. In
their study, the authors propose an efficient two-phase algorithm for this function. Here we give a quick review
of this algorithm. Assuming n = 2ℓ, without loss of generality, the objective is to run sumcheck within O(n) time
on ∑

x,y∈{0,1}ℓ

f1(g,x,y)f2(x)f3(y) (10)

for a specified challenge vector g ∈ Fℓ, where f2, f3 : Fℓ → F are multilinear extension of known n-sized arrays
Af2 ,Af3 , and f1 : F3l → F is a multilinear polynomial of a sparse array containing at most n = 2ℓ non-zero
elements (representing the gate label in the circuit). The linear-time algorithm involves two phases, each running
a sumcheck for the product of two multilinear functions:

• In the first phase, run sumcheck on:∑
x,y∈{0,1}ℓ

f1(g,x,y)f2(x)f3(y) =
∑

x∈{0,1}ℓ

f2(x)hg(x)

where hg(x) =
∑

y∈{0,1}ℓ f1(g,x,y)f3(y). After this, the variables of x are bound to a random vector u.

• In the second phase, run sumcheck on: ∑
y∈{0,1}ℓ

f1(g,u,y)f2(u)f3(y)

after which the variables of y are bound to a random vector v.

Since both of the two phases are similar, we focus on the first phase for illustration. We refer readers to Section 3
of [XZZ+19] for details. To run sumcheck on the products of f2(x) and hg(x), one need to firstly compute Ahg

,
the evaluations of hg(x) on x ∈ {0, 1}ℓ, which presents challenge. To complete this, the authors suggest the single
prover compute:

hg(x) =
∑

G(z) · f3(y), for all (z,x,y) such that f1(z,x,y) = 1 (11)

where G(z) is the multilinear extension of another n-sized array Ag , which can be easily computed. On the other
hand, it takes O(n) time for the prover to traverse all non-zero elements in the evaluations of f1(z,x,y) to figure
out Ahg . After obtaining Ahg , sumcheck on the product of f2 and hg can be performed in O(n) time smoothly.

All the steps outlined above can be expedited by invoking Πsumcheck and the PSS multiplications ΠPSSMult, ex-
cept for Equation 11, due to the sparsity of f1. Assuming the servers possess packed shares of the vectors Af2 ,Af3 ,
and Ag (each share representing a small k-size vector), handling Equation 11 remains a challenge because the en-
tries to compute are not well-aligned within the shares. To see this, one can consider a case that the two entries
corresponding to G(z) and f3(y) might not be at identical indices within the same shares. A realignment of these
shares is required before performing PSS multiplication. This realignment involves not just internal permutations
within the shares, but also value swapping across different shares. Such operations result in both O(n) compu-
tational complexity and equivalent communication costs. Therefore, in the context of general circuits, it is not
immediately clear how to leverage PSS to accelerate this process.

However, if C is data-parallel, this issue can be resolved. For data-parallel circuits, we can arrange the values
at the identical positions of each sub-copy into a vector (assuming B > k, for simplicity). These values are then
packed into a single element using the PSS scheme. Since these values are at identical positions in each copy, the
computations performed on them will be consistent. Therefore, they are naturally aligned within the shares. This
alignment allows Equation 11 to be processed in a SIMD fashion, utilizing PSS multiplications between the packed
shares of Ag and Af3 . As a result, the computational complexity is reduced to O(nk ) = O( n

N ), and the need for
additional communications due to realignment is avoided.

Considering that every term in the GKR relation takes the form of Equation 10, it is feasible to execute the
sumcheck protocol on GKR relations for data-parallel circuits. Under this approach, each server faces both com-
putational and space complexities of O( n

N ).
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C.2 Detailed construction

In this subsection, we outline the construction of a collaborative zk-SNARK for data-parallel circuits, based on
a zk-SNARK called Libra [XZZ+19]. We will describe a version without the property t-zero-knowledge. This
property can be achieved by adding random masking polynomials, following the methodology described in prior
works [ZGK+17b, XZZ+19, ZXZS20, XZC+22].

Consider C as a data-parallel circuit comprising B identical copies, where each copy is a d-depth layered
arithmetic circuit. Suppose C contains n gates in each layer. Without loss of generality, we assume n,N, k,B are
all powers of 2, with the provision for padding them if necessary. The servers collaboratively generate proof as
follows.
Preprocessing phase. The servers invoke dMKZG.Setup in ΠdMKZG (Figure 5) to prepare public parameters, which
will be used in the dMSM computation of dMKZG.Commit and dMKZG.Open procedure.
Online phase. On the input x and (extended) witness w, the servers collaboratively generate proof for the relation
C(x,w) = 1. Here, (x,w) represents all wires in the circuit, namely {Vi}i∈[0,d], which is the evaluations of {Ṽi}i∈[0,d]

on the hypercube {0, 1}logn, respectively. The servers receive packed secret shares of {Vi}i∈[0,d] as inputs, denoted
as {[[Vi]]}i∈[0,d]. Specifically, variables in the same position of each sub-copy are packed together.

The following procedure runs under the random oracle model, where we use H to denote a random oracle.
When we say each instance of the servers makes a random query to H, it means that the servers reconstruct shares
of the transcript T and each of them locally makes an oracle query to receive the same random challenge r = H(T ).

1. The servers invoke dMKZG.Commit in ΠdMKZG (Figure 5) to compute the commitment comṼd
.

2. The servers make a random query to H and receive a challenge g ∈ Flogn.

3. The servers generate proof for Ṽ0(g) =
∑

x,y∈{0,1}log n
˜add1(g,x,y)(Ṽ1(x)+Ṽ1(y))+ ˜mult1(g,x,y)Ṽ1(x)Ṽ1(y).

This involves running 3 sumcheck for GKR functions, which can be facilitated by invoking ΠdSumcheck (Fig-
ure 4) and ΠPSSMult (Figure 14). After this process, the servers obtain two random vectors u(1),v(1) from the
sumcheck protocols.

4. In each layer i = 1, ..., d− 1, the servers make two random queries to H and receive two random challenges
αi, βi ∈ F. The servers collaboratively generate proof for αiṼi(u

(i))+βiṼi(v
(i)) =

∑
x,y∈{0,1}log n fi(Ṽi+1(x), Ṽi+1(y)),

where fi is the GKR relation, as defined by Equation 2. This involves running sumcheck for each GKR func-
tion, which can be facilitated by our protocols as well. After this process, the servers obtain two random
vectors u(i+1),v(i+1) from the sumcheck protocols.

5. At the input layer, the servers invoke dMKZG.Open in ΠdMKZG to generate proofs for evaluations f(u(d)) and
f(v(d)).

Since there are O(d) calls to ΠdSumcheck and ΠPSSMult, and one call to dMKZG.Commit and dMKZG.Open, the total
proving work is of O(d · n+ n) = O(|C|), and the computational and space overhead for each server are O( |C|N ).
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