
Mario: Multi-round Multiple-Aggregator Secure Aggregation with Robustness
against Malicious Actors

Truong Son Nguyen
Arizona State University

Tancrède Lepoint
Amazon Web Services Inc

Ni Trieu
Arizona State University

Abstract
Federated Learning (FL) enables multiple clients to collabo-
ratively train a machine learning model while keeping their
data private, eliminating the need for data sharing. Two com-
mon approaches to secure aggregation (SA) in FL are the
single-aggregator and multiple-aggregator models.

Existing multiple-aggregator protocols such as Prio (NSDI
2017), Prio+ (SCN 2022), Elsa (S&P 2023) either offer robust-
ness only in the presence of semi-honest servers or provide
security without robustness and are limited to two aggrega-
tors. We introduce Mario, the first multi-aggregator SA pro-
tocol that is both secure in a malicious setting and provides
robustness. Similar to prior work of Prio and Prio+, Mario
provides secure aggregation in a setup of n servers and m
clients. Unlike previous work, Mario removes the assumption
of semi-honest servers, and provides a complete protocol with
robustness against less than n/2 malicious servers, defense
with input validation of upto m− 2 corrupted clients, and
dropout of any number of clients. Our implementation shows
that Mario is 3.40× and 283.4× faster than Elsa and Prio+,
respecitively.

1 Introduction

Federated learning (FL) allows multiple clients to collabora-
tively train a machine learning model while keeping their data
private on-device. A crucial component is secure aggregation
(SA), which computes aggregated model without revealing
individual client models. While many SA protocols have been
proposed in the past decade [11, 12, 36, 43, 44, 45, 53, 64, 68,
69], they have limitations. First, many use the blueprint from
SecAgg [64], which requires pairwise keys between client
for each aggregation rounds and increases the total number
of rounds of communication. Recently, Flamingo [53] intro-
duced a “multi-round single-server” solution. Flamingo only
requires a one-time setup phase and can perform multiple
secure aggregation rounds with a single server. However, it
has a limitation: a predefined set of parties must participate in

the key generation process. This constraint is problematic for
large-scale FL scenarios where the participating parties can
dynamically change over time. Secondly, there is a lack of
emphasis on asynchronous (AsyncFL) updates, allowing late
model updates to contribute to the training process. Existing
works [57, 67] on AsyncFL have scaling issues, in particular
for lightweight devices, which limits their applicability.

More importantly, recent research highlights that a single-
server setup is not secure for clients. Loki [71] demonstrated
an attack where a malicious server, by modifying the network
architecture, can extract inputs from honest clients. This attack
is difficult to defend against in a single-server setup because
clients lack the ability to verify the integrity of the model
architecture and weight assignments they receive. A malicious
server can easily disguise compromised weight matrices by
embedding them with noisy row or column vectors.

Thus, it is desirable to consider a multiple servers setup,
where the servers share the same model architecture and
weights so that honest servers could tell malicious action from
malicious ones. Unfortunately, existing multiple-aggregator
protocols [5, 10, 16, 26, 31, 39, 40, 50, 63], which elimi-
nate client-to-client communication, have focused mainly on
the semi-honest settings (like Prio [26], Prio+ [5, 39, 40]) or
two-party malicious settings (like Poplar [16], Popstar [50],
Elsa [63]). Recent work such as Willow [13] can be extended
to multiple servers, but only addresses the case where a sin-
gle server performing aggregation is malicious. This study
tackles designing an SA protocol that solves all three main
challenges: one-time key setup with dynamic client inclusion,
asynchronous updates, and multiple malicious aggregators.

In contrast to existing approaches in multiple-aggregator
schemes, which use secret sharing or multi-party computation,
we leverage an additive homomorphic encryption (ThHE)
scheme based on the ring-learning-with-errors (RLWE) prob-
lem. We introduce a new variant, referred to as dynamic
ThHE, which supports dynamic party participation in a ma-
licious setting, thereby enhancing existing multi-aggregator
schemes that are currently limited to two parties [16, 50, 63].
This approach is also advantageous when compared to the

FL Malicious Malicious Robust w. Async. Multi
Protocol Server Client Mal. Server support server

SecAgg+ [12] ✓ ✗ ✗ ✗

ACORN [11] ✓ ✓ ✗ ✗

BASecAgg [67] ✗ ✗ ✗ ✓

Flamingo [53] ✓ ✗ ✗ ✗

Prio+ [5] ✗ ✓ ✗ ✗

ELSA [63] ✓ ✓ ✗ ✗ 2
Mario (Ours) ✓ ✓ ✓ ✓

Table 1: Qualitative Comparison of FL Protocols. Only
representative works are shown. Malicious Client indicates
scheme support input validation; For multi-server column,

indicates multi-server support, indicates single-server
decryptor-committee setting, ‘2’ indicates two-server only
setting, indicates single server.

single-aggregator model. Concretely, it eliminates the need to
re-run key setup when new clients join which is a limitation
of Flamingo [53]. It achieves constant amortized communica-
tion and computation costs per client, unlike SecAgg++ [12],
Flamingo [53] and ACORN [11] with logarithmic client com-
munication costs. It also supports both synchronous and asyn-
chronous FL settings and prevents malicious servers from
distributing inconsistent models [60] or customized convolu-
tional kernels [71] to clients.

While the past year has seen a surge in research about
lattice-based ThHE [9, 17, 18, 24, 27, 55], state-of-the-art
schemes face practical limitations when used in federated
learning. These limitations include: (1) the requirement for a
trusted key setup or malicious DKG to protect against mali-
cious servers in multi-server FL; (2) the inability to add new
servers during computation, a crucial feature for ensuring
robustness in multi-server FL. Thus, the direct use of such
methods lacks both secure and dynamic performance. This
work follows the ThHE framework of [55] and proposes a
simple scheme that simultaneously satisfies a compactness
property (i.e., the ciphertext size is independent of the number
of participants), a dynamic property, and has a decentralized
key generation.
Problem Statement. The ideal functionality of multiple-
aggregator secure aggregation in the synchronous FL
(SyncFL) and asynchronous FL (AsyncFL) is described as
follows. Let {U1, . . . ,Um} be a set of clients, each holding a
secret input vi (often a vector or tensor in the FL setting). The
protocol Π is a secure SA if it securely computes v = ∑i∈I vi,
where I = [m] in the SyncFL setting, and I ⊂ [m] is a dynamic
set of size k in the AsyncFL setting. The secure aggregation
computation makes use of n servers Pi∈[n]. Figure 1 presents
the ideal functionality for multi-aggregator SA.
Threat Model and Setting. Following the model in
SecAgg+ [12], Elsa [63], ACORN [11], we consider a sce-
nario where at least two clients remain honest, while the other
n− 2 clients may be malicious or controlled by malicious
servers. This scenario sets the lower bound for the number of

PARAMETERS: m clients {U1, . . . ,Um}, n servers {P1, . . . ,Pn}, a
threshold t < n and set size k ∈ [1,m].

FUNCTIONALITY:

• Waiting for input vi from the Ui∈I , where I = [m] in the
SyncFL settings and I ⊂ [m] is the dynamic set of size k in
the AsyncFL settings.

• Waiting for no input from the servers Pi∈[n].

• Give each client v = ∑
m
i=1 vi

Figure 1: Multi-server Secure Aggregation (SA) Ideal Functionality

honest clients in secure aggregation (SA). This is because if
n−1 parties are malicious, the adversary can learn the honest
party’s input from the SA output.

For the server setting, we assume that an adversary can
control a static set of up to t−1 malicious servers throughout
the entire protocol execution. While this static set assumption
is strong, it is worth noting that this is the first work to address
the challenge of malicious multi-party servers, and removing
this assumption can be explored in future work. Nevertheless,
we introduce a mechanism to reset the shares of the secret keys
using the new function of ThHE (i.e., ThHE.ShareRefresh),
which mitigates the impact of this assumption by allowing
the static set of malicious servers to be reset when the share
refresh is called after a few iterations.

Our Mario is robust to up to any number of client dropouts
and up to n− t servers dropouts during execution. We summa-
rize the properties and parameters of our scheme based on the
threat model in Table 2. The parameters represent the ideal
values that the best possible protocol can achieve.

• Malicious clients: We consider the threat of malicious
clients that may deviate from the protocol to gain addi-
tional information, such as other clients’ model updates, or
send manipulated encrypted models that could bias the final
aggregated result. In our protocol, we defend against these
threats by implementing input validation, which allows us
to ignore invalid inputs from malicious clients.

• Malicious servers: We consider malicious servers that may
deviate from the protocol to try to recover the raw client
model updates vi. Our scheme defends against two recent
attacks: model inconsistency attack [60] and attacks using
customized convolutional kernels [71], which can occur
even when the model updates have been securely aggre-
gated before reaching the servers.

• Robustness against malicious adversary: We study an ad-
ditional feature named robustness, or in some paper [42]
mentioned as "guarantee output delivery (GOD)". Given
a minority of malicious servers (less than half of the to-
tal number of servers), our protocol allows honest servers
to jointly compute the correct output without interference
from the malicious servers. This extends the security and
robustness of the two-server model (e.g., Elsa [63]), and
the multi-server model (e.g., Prio [26],Prio+ [5]).

2

Privacy t # mal. servers # mal. clients
Client’s Input ≥ 1 ≤ n−1 m−2
w. Robustness > n/2 < n/2 m−2

Table 2: Threat Model Condition and Privacy Guarantee
of Our Mario. mal. shorts for malicious. We assure privacy
of input in dishonest majorty malicious servers, and assure
privacy with robustness in honest majority set of servers, and
under up to 2 honest uncorrupted clients. m: number of clients,
n: number of servers.

To ensure robustness in the multiparty computation (MPC),
it is generally assumed that less than half of servers can
be malicious [41, 42, 49]. Indeed, if more than half of the
servers are malicious, they can collude and override the
semi-honest servers, compromising the correctness of the
output and making robustness unattainable.

Our Contributions. They are twofold:

• We propose Mario, the first multi-server secure aggregation
protocol that provides “privacy" against dishonest majority
of servers and clients, provides “privacy with robustness”
against honest majority set of servers and any set of cor-
rupted clients, provide input validation against malicious
clients. Our protocol achieves 3−9× better performance
than single-server SyncFL ACORN [11], 450−600× faster
runtime than the state-of-the-art single-server AsyncFL
BASecAgg [67], while running 3.40× faster than Elsa [63],
and 283.4× faster than Prio+.

• We realize a practical threshold additive homomorphic en-
cryption (ThHE) scheme that simultaneously ensures mali-
cious privacy and compactness in a dynamic system where
any party can join or drop out of the computation midway.
This work designs a novel efficient, compact, and robust
ThHE scheme that does not require any trusted setup.

Theoretical Comparison. Table 1 outlines the security levels
and various features supported by existing protocols closely
related to our work. Note that while ACORN and Prio+ offer
robustness, they do so only in a semi-honest server setting,
which does not meet the requirement for “robustness with
malicious servers.”

The key advantages of our protocol are: (1) Client com-
plexity independent of number of clients; (2) Security against
malicious adversaries; (3) Defense against invalid input from
malicious clients that poison the aggregated result (input vali-
dation); (4) Support for any number of clients dropouts with-
out affecting correctness/security; (5) Support privacy with
correctness. These features make Mario a comprehensive
solution for real-world applications.
Overview of Our Techniques. We make use of n servers
which are relatively stable, and a set of m clients join the
training for every round. Assume we have an efficient and

compact threshold additive homomorphic encryption (ThHE)
scheme. The n servers first jointly compute the public key and
distribute the secret key using ThHE.KeyGen. Then, they send
the public key pk to every client join training in the secure
aggregation computation.

We begin with a basic secure aggregation protocol in the
semi-honest setting. The process works as follows: each client
encrypts their local input model v using a public key, resulting
in ThHE.Encrypt(pk,v), and sends the encrypted model to the
leader server. The server then leverages the homomorphic
properties of the encryption scheme to compute the encrypted
sum. Afterward, a subset of t servers collaboratively decrypts
the sum and forwards the final result to the clients, who then
use it to update their local models.

To provide robustness against malicious clients, we lever-
age existed zero knowledge proof technique in ACORN [11]
that provides efficient range proof for client’s input. We adapt
the protocol into our system with the optimization using the
structure of our protocol: as the clients use public key encryp-
tion to encrypt their model, they do not need to communicate
with any other clients for proving the range of their input,
thus neglecting the additional O(log2(m)) communication
and computation cost for each client of ACORN-robust.

For malicious servers, we ensure the privacy of an hon-
est client’s input even in the presence of up to t − 1 mali-
cious servers. This is achieved through the use of a threshold
additive homomorphic encryption (ThHE) scheme, where
only a group of t or more servers can decrypt a given ci-
phertext, while fewer than t servers cannot, thereby keeping
the client’s input secure under encryption. However, relying
solely on existing ThHE schemes is insufficient to guarantee
complete security in malicious settings. The challenges are
twofold: (1) the adversary may perform a chosen ciphertext
attack—specifically, the aggregating server could replace the
encrypted sum with any ciphertext, such as a specific client
input vi, and requrest the t decryption servers into decrypt-
ing it; (2) the distributed key generation is not robust against
malicious adversaries.

To address (1), we implement a check on the correctness of
the ciphertext form, ensuring that the decryption servers only
decrypt the correct ciphertexts that are indeed the summation
of clients’ encrypted messages. To address (2), we rely on a
verifiable secret sharing scheme and propose an optimization
where verification can be performed in batches, given that
the secret share of the key is a long vector. Details of these
defenses can be found in Section 3.2.

In our FL scheme, we also ensure that the final result re-
mains correct (robustness property). We implement a con-
sistency check based on the assumption of honest majority
set of servers. Specifically, if the majority of server outputs
are consistent and/or proven to be correctly evaluated, the set
of clients will accept the final result as valid, allowing the
training process to continue.

As shown in Table 2, Mario provides input privacy to honest

3

Synchronous Asynchronous
SecAgg+ [12] ACORN [11] Flamingo [53] Prio+ [5] Elsa [63] Mario BASecAgg [67] Mario

Client Comm L+ logm L logm L logm Ln Ln L+n Lm/(k− t) L+n
Comp L logm+ log2 m L(logm+ logL) L logm Ln Ln L logL Lm logm/(k− t) L logL

Server Comm Lm+m logm Lm logm m(L+ logm) Lmn Lmn Lmn Lk Lkn
Comp Lm logm+m log2 m Lm logm Lm logm Lm Lm Lm Lk logk Lk

Table 3: Complexity Comparison of FL protocols. Only representative works are shown. The description of the parameters
presented in Table 4. The threshold in Mario is for the ThHE (the number of non-colluding servers).

Table 4: Definition of Parameters Used in This Paper

Parameter Description
n number of servers
m number of clients
k buffer size (async. setting)
L model size
t threshold for servers
τ threshold for clients
nb # neighbors for each client
N Degree of plaintext & ciphertext polynomial
q ciphertext modulo
p plaintext modulo
κ computational security parameter
λ statistical security parameter
[a]q unique integer in Zq with [a]q = a mod q
[x] a set {1, . . . ,x}
(x;y) concatenation of two vector x and y

client against the presence of up to t− 1 malicious servers,
and provides correct aggregation to set of honest servers and
clients against up to less than half of the malicious servers.

The remaining question is how to construct the efficient
ThHE protocol in the dynamic setting. We build on the under-
lying framework presented in the work of [55, 56, 59], where
servers utilize Shamir secret sharing to distribute their local se-
cret values among each other. These shares are then summed
to obtain the final “secret key share”. However, we extend
this approach to support a dynamic setting and improve both
communication and computation costs. At a simple idea, our
approach introduces t pivot parties that communicate with
other parties and secret share their inputs. This allows us to
implement mechanisms for new servers to join the training
process through ThHE.Join functionality. Specifically, new
servers can compute their share key using Lagrange interpola-
tion when t existing servers send a portion of the computation
data. Additionally, we provide ThHE.ShareRefresh, which
enables all servers to collectively refresh the existing shares
into a new set of shares—these are secret shares of the same
secret but under updated (t ′,n) parameters.

Furthermore, we extend the work of [55, 56, 59] to achieve
an efficient, parallelizable, and verifiable key generation pro-
cess, which we present in Appendix D.

2 Preliminary and Related Work

2.1 Secure Aggregation in Federated Learning

Federated Learning with Single Aggregator. Masking with
One-Time Pads (SecAgg [64]) is a popular technique used in
SA for SyncFL. It allows clients to mask the updates before
sending to the server. The masks are used to protect their
models and will be cancelled out when the server computes
the final aggregation. Flamingo [53] and ACORN [11] repre-
sent the state-of-the-art in SyncFL. Nonetheless, they exhibit
limitations such as the heavy communication between clients,
discussed in the introduction section.

For AsyncFL, [57] proposes a novel buffered asynchronous
aggregation method, which allows the users to send their up-
dates asynchronously while ensuring privacy by storing the
updates in a trusted execution environment. The BASecAgg
construction [67] removes the need for hardware support by
carefully designing the mask technique of SecAgg [64] such
that the masks cancel out even if they correspond to differ-
ent rounds. However, they only consider the threat model of
semi-honest server and semi-honest clients, and their client’s
communication and computation complexity depends on k,
the number of clients in buffer .
Federated Learning with Multiple Aggregators. Within
this model, existing methodologies encompass tailored sys-
tems for FL [5, 10, 16, 26, 31, 39, 40, 50, 63], alongside
systems designed for privacy-preserving aggregation of sta-
tistical data, such as Prio[26] and Prio+ [5]. Although this
approach effectively leverages lightweight federated learning,
the existing protocols either ensure security under semi-honest
conditions or are applicable solely to two-party scenarios
(Elsa [63]).
Federated Learning with Aid of Decryption Committee.
Between Single Aggregator and Multiple Aggregators in Fed-
erated Learning (FL), there are protocols that use committees
to assist with decryption. The involvement of these commit-
tees helps reduce the communication overhead for general
clients, which are often resource-constrained and may have
unstable connections. There are three recent works that fol-
low such settings: Flamingo [53], Willow [13], and OPA [47].
Although the setup are promising, they either do not cover
case of malicious committees, or have limitation on fixed set
of clients, and they only provide privacy with abort in case

4

of malicious adversaries, without considering correctness of
final result.

Secure Aggregation from HE. Indeed, ThHE has been used
to compute SA [23, 65, 72], and one of the most representative
is the threshold Paillier-HE which is expensive for a large n.
Since our ThHE is based on Polynomial-LWE (PLWE) and
its encryption/evaluation has mostly the same cost as the
traditional PLWE single-key HE. Therefore, our SA (as well
as our FL scheme) is more efficient than previous work.

Recent Attacks on SA. Regardless of implementing the ag-
gregation securely in the standard security definition [46],
there are many attacks to FL. For example, the malicious user
can perform poisoning/Byzantine attacks (inject poisoned up-
dates into the learner) to reduce the global model accuracy or
implant backdoors [14, 15]; and/or the malicious server can
provide different global model updates to different users to
infer information on users’ datasets (so-called model inconsis-
tency attack which was recently discovered by [60, 71]). Also,
malicious server can manipulate the training model architec-
ture, injecting a carefully designed kernel to steal client’s
input [71]. This work aims to prevent all of such attacks.

2.2 Threshold Homomorphic Encryption

Homomorphic encryption (HE) is a form of encryption that
allows performing arbitrary computations on encrypted data
without access to the secret key. Threshold Homomorphic
Encryption (ThHE) aims to protect an HE secret key by dis-
tributing it into n shares, each stored by a different party. Any
t parties can use the secret without reconstructing it whereas
any t−1 parties should not be able to recover or use the secret.

ThHE scheme of [17] does not provide compactness: the
evaluated ciphertext size is linear in number of input to homo-
morphic evaluation (e.g. n). Recent works [9, 18, 24, 27, 28]
enhance the asymptotic complexity of the ciphertext size
of [17], yet it remains linear in the number of parties. Within
the FL framework, this size is directly proportional to the
number of clients, which poses efficiency challenges. Our
work builds upon the approach of [55, 56, 59], where Shamir
secret sharing is used to keep the secret key compact with new
functionalities (i.e., ThHE.Join, ThHE.ShareRefresh) that fit
with FL setup.

Distributed Key Generation (DKG) [2, 3, 4, 7, 8, 61, 70]
allows a group of n parties to jointly compute a shared pair of
secret key. However, these protocols either have to assume that
the dealer are trusted or have to protect against the malicious
dealer with an expensive cost. In the context of FL, the fact
that a dealer knows the secret key would directly lead to leak
in user’s weight when the dealer collude with our computing
servers. Even more crucially, current DKG protocols lack
support for computing the public key in the unique format
required by ThHE.

3 Protocol Building Blocks

3.1 Our Dynamic Threshold HE
In the context of FL, we consider the ThHE as a tuple of
algorithms (ThHE.SecretKeyGen,ThHE.PublKeyComp,
ThHE.Join, ThHE.Encrypt,ThHE.PartDec, ThHE.FinalDec,
ThHE.Add, ThHE.ShareRefresh) where their ideal functional-
ities are described in Definition 1.

Definition 1. A dynamic threshold additive homomorphic
encryption ThHE scheme is a tuple of PPT algorithms ThHE
=(ThHE.SecretKeyGen,ThHE.PublKeyComp,ThHE.Join,
ThHE.Encrypt,ThHE.PartDec, ThHE.FinalDec, ThHE.Add,
ThHE.ShareRefresh) with the following properties:
• ThHE.SecretKeyGen(λ,n)→ (sk1, . . . ,skn): Given the se-

curity parameters λ and the number of parties n, output
to each party Pi the secret share ski, such that ski is the
Shamir share at ID i of a common secret key sk.

• ThHE.PublKeyComp(pk1, . . . ,pkn)→ pk: Given the local
public keys pki from n parties, output the global public key
pk such that (sk,pk) forms a valid pair of secret key and
public key, achieving the security parameter λ.

• ThHE.Join(ν)→ skν: When a new party with ID ν requests
to join, output the corresponding secret share of sk to party
Pν, i.e., output skν.

• ThHE.ShareRefresh(P = {P1, . . . ,Pn}, t ′)→ (sk1, . . . ,
skn): Given the input new threshold t ′ and a set of n parties
P , output the new threshold shares of the secret key and
distribute these shares to each corresponding party.

• ThHE.Encrypt(pk,m) → C: Given the message m and
public key pk, output the corresponding ciphertext C =
(C[1],C[0]) that encrypts m.

• ThHE.PartDec(C,ski): Given input C and ski, the party Pi
performs local partial decryption to compute C′ =C[1]+
C[0] · ski.

• ThHE.FinalDec(p1, . . . ,pt)→ m: On t partial decryptions,
output the decrypted message m

• ThHE.Add(C1, . . . ,Ck)→Cadd: Given k ciphertexts as in-
put, output the ciphertext that encrypts the sum of the plain-
texts of Ci∈[1,k].

Protocol Overview. This section presents an overview of our
ThHE protocol. The complete protocol description can be
found in Appendix D, along with a detailed security analysis
in Appendix E.

We build on the approach of [55, 56, 59], but introduce t
pivot parties, P1, . . . ,Pt . Each pivot samples a small secret key
si and uses t-out-of-n Shamir secret sharing to distribute si to
all other servers. After receiving all the Shamir shares, each
server sums them to obtain a “local secret key” ski.

The common public key pk is computed as follows: a leader
server generates a polynomial a as the second part of the pub-
lic key and sends a to the other servers. If all t pivot servers
are online, the public key is computed by aggregating the

5

partial public keys pki = [−a · ci,0 + ei]q sent by each pivot

Pi, resulting in pk =
(
[∑t

i=1 pki]q ,a
)

. Here, ci,0 represents
an additional component of the local secret key ski (i.e., the
additive share of the secret key sk), and ei is a small noise
polynomial sampled by the i-th pivot. If not all pivot servers
are available, a set A of t random servers is chosen, and the par-
tial public keys take the form pki =

(
−i
j−i ·a · ski + ei

)
. Thus,

we can use Lagrange interpolation to compute the public key,
leveraging the fact that a · ski represents the Shamir share of
the public key at server Pi. Encryption, partial decryption, and
decryption follow the protocol detailed in [55].

We further customize the threshold HE framework in [55]
by introducing three new functionalities: (1) verifiable key
generation, (2) parallelizable key generation, and (3) dynamic
joining for new servers during protocol execution.

Verifiable Key Generation. Firstly, to address the pres-
ence of malicious actors, we need a method to verify the
correctness of key generation. We achieve this by introducing
the function BatchSumVerify, as defined in Figure 2. This
function is utilized for both key verification and ciphertext
verification in the subsequent sections.

Parallelizable Key Generation. Secondly, we implement
parallelizable key generation. Since each Shamir share is a
function evaluation of a local polynomial at the server ID,
we can optimize the process by evaluating the polynomial in
batch. Specifically, we preprocess a Vandermonde matrix of
server indices and then create another matrix from the Shamir
polynomial coefficients. The Shamir shares for all parties are
obtained through matrix multiplication. By leveraging this
approach, we can efficiently perform key generation using
GPUs for matrix multiplication. The algorithm is illustrated
in Figure 13, with further details of this optimization provided
in Appendix D.4.

Dynamic Property. Finally, we introduce two new func-
tions: ThHE.Join and ThHE.ShareRefresh, to facilitate the
inclusion of new servers during the training process. When a
new party Pν requests to join (ThHE.Join), a random com-
mittee A of t servers is selected to compute the Shamir
share of sk for Pν using Lagrange interpolation. Specifi-
cally, each party Pk∈A computes uk = skk · LA(ν,k), where
LA(ν,k) = ∏ j∈A\k

ν−k
j−k is the Lagrange coefficient and skk

is the secret-shared key of Pk. The secret-shared key skν is
then computed as [∑i∈A vi]q. However, directly sending uk
to Pν could leak skk to them. To prevent this leakage, we
use zero-sharing. Specifically, the servers in A perform zero-
sharing [64] to obtain a zero share, which they then add to uk
before sending it to Pν. The zero share is cancelled at the end.
This method is similar to secure aggregation on LA(ν,k) · skk,
but without dropout handling, assuming a stable connection
among the servers.

While ThHE.Join allows new servers to join the system, it
introduces potential security concerns for Mario, as the num-
ber of malicious servers might exceed the pre-defined thresh-

old t. To mitigate this, we introduce the ThHE.ShareRefresh
feature, which allows the same secret key to be reshared (keep-
ing the public key unchanged) while updating the threshold
t to a new threshold t ′. At a high level, the idea involves
adding the existing t-out-of-n Shamir share ski of the secret
key sk with a new t ′-out-of-n Shamir share sk0

i of zero. This
approach works because (1) ski can be treated as a t ′-out-of-
n Shamir share where the highest t ′− t coefficients of the
Shamir polynomial are all zeros, and (2) Shamir shares have
an additive property. The remaining question is how to gener-
ate sk0

i . This can be done by using our ThHE.SecretKeyGen
protocol, where the secret key is set to zero.

3.2 Our Variant of Batch Sum’s Verification

Given a set of input vectors {⃗xi | 1 ≤ i ≤ η}, where each
party Pi<t holds a vector x⃗i, and the last party Pt holds the
remaining η− t vectors x⃗ j∈[t,η] along with a vector x⃗ that
potentially represents the sum of all η vectors, the goal is for
the party Pν to verify whether x⃗ = ∑

η

i=1 x⃗i in a single batch
operation. We define this functionality as BatchSumVerify,
and present its protocol in Figure 2.

In our FL scheme, we utilize this building block to verify
the integrity of ciphertexts. Specifically, we set η as the total
number of valid client messages, with x⃗i representing cipher-
text cti. If η< t (there are fewer than t valid client ciphertexts),
we set x⃗ j∈[η,t] to zero to ensure it does not affect the final veri-
fication result. Then, our BatchSumVerify function allows a
specific verifier server Pv to confirm that the ciphertext (the
sum/aggregation) it is about to decrypt is correct.

Additionally, we use this building block to prevent ma-
licious behavior during the public key computation in our
dynamic ThHE. In this process, each server Pi generates a
local public key pki, and the final public key is computed as
the aggregate of these local public keys. Therefore, when we
set η = t, with x⃗i representing the local public key pki held
by server Pi and x⃗ representing the final public key pk, the
function BatchSumVerify helps the verifier Pv confirm that the
output of ThHE.PublKeyComp is correct.

Protocol. Our batch verification of the sum (BatchSumVerify)
proceeds as follows: The t parties P1, . . . ,Pt form a committee
of provers. Each party Pi has an input vector x⃗i of length ℓ,
and Pt has additional input vectors x⃗ j∈[t+1,η], which helps the
verifier Pv verify that their input vector x⃗ is the sum of all the
parties’ inputs, without revealing information about x⃗i∈[η].

First, Pv generates a challenge vector α⃗ ∈ (Zq \ 0)ℓ and
sends it to all Pi∈[t]. Each party Pi∈[t−1], upon receiving the
challenge, computes JvKi = ⟨⃗α, x⃗i⟩, compressing their input
vector of length ℓ into a single value (Step 3). Pt is special
because it holds multiple vectors; therefore, it compresses its
input vectors by computing JvKt = ⟨⃗α,∑ j∈[t,η] x⃗ j⟩ as shown
in Step 4. Each party then sends gJvKi to Pv, who checks if
g⟨⃗α,⃗x⟩ = ∏

t
i=1 gJvKi . If the check fails, Pv declares that the vec-

6

PARAMETERS: The space Rq = Zq[X]/(XN + 1), a generator
g of Zq. A party Pv acts as the verifier, η ≥ t total number of
vectors.
INPUT:

• a set of t parties S = {P1, . . . ,Pt}
• Party Pi<t has x⃗i;
• Party Pt has x⃗ j∈[t,η];
• Pv has x⃗;

OUTPUT: Pv does “accept” if the x⃗ = ∑
η

i=1 x⃗i, else “reject”.

1: procedure BATCHSUMVERIFY(⃗x, x⃗1, . . . , x⃗η,S)
2: The party Pv generates ℓ values α⃗i∈[ℓ] ∈ Zq\{0} as chal-

lenges and sends them to everyone.
3: Each party Pi<t locally computes JvKi = ⟨⃗α, x⃗i⟩
4: Party Pt locally computes JvKt = ⟨⃗α,∑

η

j=t x⃗ j⟩
5: Pi sends gJvKi to Pv.
6: Pv computes Cv = ∏

t
i=1 gJvKi

7: Pv checks if Cv = g⟨⃗α,⃗x⟩, return “accept”, else return
“reject”

8: end procedure

Figure 2: Our Batch Sum’s Verification (BatchSumVerify).

tor x⃗ is not the sum of the vectors x⃗i
Our protocol BatchSumVerify is designed to ensure that it

always outputs "accept" when the sum x⃗ = ∑i∈[m] x⃗i is correct.
If the sum is incorrect, the protocol outputs "accept" only with
a negligible probability, specifically 1

q−1 . In our implemen-
tation, we set q of 54-bit. This negligible probability arises
because the challenge α is sampled randomly at each iteration
of BatchSumVerify by the verifier Pv. Furthermore, during the
execution of BatchSumVerify, there is no gain of knowledge
about the values of xi for parties j ̸= i. The sketched secu-
rity proof for our protocol BatchSumVerify is presented in
Appendix C.

3.3 Zero-knowledge Argument of Knowledge
Informally, a zero-knowledge argument of knowledge is a
set of PPT algorithms (P ,V) that enables two parties, the
prover P and the verifier V , to exchange information such that
after the evaluation, V can verify whether P possesses cer-
tain knowledge without revealing that knowledge. To prevent
malicious adversaries, we rely heavily on techniques from
Bulletproofs [22] for the correctness of dot product evalua-
tions, the input validation technique from ACORN [11], and
the correctness of ring operation from Pino et al. [29].

At a high level in Bulletproofs, to prove the knowledge of
vectors x,y ∈ ZL

q that satisfy ⟨x,y⟩= a for some public value
a, the prover recursively compresses x and y into smaller
vectors x’,y’ of half the size, which satisfy ⟨x’,y’⟩= a′ for a
public value a′. The communication overhead for this process
is 2⌈log(L)⌉ group elements and two Zq elements.

In Pino et al. [29], the goal is to verify the correctness of
ring operations, specifically proving that [∑k

i=1 UiTi+V]q = Z

in the ring Rq = Z[X]/(XN + 1). Here, k is a constant, and
Ui∈[k], Ti∈[k], V , and Z are polynomials in Rq. Both the verifier
and prover know Ui∈[k] and Z.

The prover begins by extending the original equation to
∑Ui∈[k]Ti∈[k] +V + D1q + D2(XN + 1) = Z, where D1 is a
polynomial of degree at most 2(N − 1), and D2 is a poly-
nomial of degree at most N − 1. Upon receiving a chal-
lenge α ∈ Zq from the verifier, the prover must show that
∑

k
i=1 Ui(α)Ti(α)+V (α)+D1(α)q+D2(α)(α

N +1) = Z(α).
This can be rewritten as

(
U1(α), . . . ,Uk(α);1;q;αN + 1

)
·(

T1, . . . ,Tk(α);V ;D1;D2
)
·
(
1,α, . . . ,αN−1

)
= Z(α).

The prover can then use Bulletproofs to prove
the correctness of this dot product. Since the vec-
tors (U1(α), . . . ,Uk(α);1;q;αN + 1), (1,α, . . . ,αN−1),
and Z(α) are known to the verifier, while only
(T1(α), . . . ,Tk(α);V (α);D1(α);D2(α)) remain secret,
Pino et al. can leverage the techniques from Gentry et al. [38]
to efficiently complete the proof of knowledge.

Bulletproofs also provide a zero-knowledge proof of knowl-
edge for range proofs, where the prover proves knowledge
of a variable x within a specific range [a,b]. However, this
method is less efficient when x is a long vector rather than a
single value. For this reason, we employ the technique from
ACORN [11] for such cases. We review the technique used
in ACORN in Section 5.2.

4 Semi-Honest Secure Aggregation

Given our building blocks, we design our secure aggregation
protocol (Mario) for a multi-server setting. This basic version
operates under the semi-honest threat model. In subsequent
sections, we introduce various defenses to adapt the protocol
for use in a malicious threat model.

We outline the blueprint of our construction in Figure 3. In
Step 1, the leader server P1 collects encrypted models from the
clients and forwards them to a set O of t online servers. Each
online server then performs homomorphic addition on the
ciphertexts individually (Steps 3-4) to obtain the ciphertext
of the sum. Subsequently, each server Pi ∈ O requests any t
servers to jointly decrypt the ciphertext (Step 4). Once the
sum is decrypted, Pi sends the result to every client, allowing
them to update their local models.
Remark. In our semi-honest secure aggregation protocol, the
leader P1 is responsible for performing all tasks in Steps 3 to
6, making Step 2 redundant. All other servers in O, with the
exception of those involved in decrypting the message for P1,
remain inactive and do not perform any additional tasks.

5 Achieving Malicious Secure Aggregation

If the servers and/or clients are malicious, the protocol de-
picted in Figure 3 is vulnerable to various attacks. Below,
we present all possible ways in which a group of malicious

7

PARAMETERS:

• a set of m clients U = {U1, . . . ,Um}
• a set of n servers P = {P1, . . . ,Pn}
• A dynamic THE scheme ThHE with malicious key generation.

• A hash function H : {0,1}⋆→{0,1}⋆

INPUT: The client U j ∈U has input v j. The server Pi has no input

ONE-TIME SETUP: The n servers together run ThHE.KeyGen which consist of (ThHE.SecretKeyGen,ThHE.PublKeyComp) to agree on a
public key pk and secretly shared a common secret key sk.

INITIALIZATION: The first server, P1, initializes a model M that the servers aim to train and sends this model to all clients in U.

EVERY SA ROUND:

1. Client U j in U sends ct j = ThHE.Encrypt(pk,v j) to the leader server P1

2. Leader server P1 forwards the ciphertext ct j to a set O of t online servers

3. For SyncFL, the server Pi ∈ O performs an additive evaluation on all encrypted ct(i)j as ct(i) = ThHE.Add(ct(i)1 , . . . ,ct(i)m).

4. For AsyncFL, server Pi ∈ O stores the received ct(i)j in the buffer B. When B is full, Pi computes ct(i) = ThHE.Add({ct ∈ B}).

5. Pi ∈ O chooses a set Ai of t−1 online servers, and sends ct(i) to Pτ ∈ Ai. If Ai∪Pi = O, the Pτ ∈ Ai uses their ct(τ), obtained from
Step (3-4), as ct(i) for the below computation.

• Each server Pτ∈Ai executes a partial decryption as pτ = ThHE.PartDec(ct(i),skτ) and sends it to Pi

• Server Pi performs a final decryption as v = ThHE.FinalDec(pi,{pτ}τ∈Ai), where pi = ThHE.PartDec(ct(i),ski)

6. Server Pi ∈ O sends v to all clients in U.

Figure 3: Our Blueprint Multi-server Secure Aggregation. Note: For the semi-honest protocol, a single leader server P1 can
perform all the tasks assigned to servers Pi ∈ O in Steps 3-6, and Step 2 is redundant.

servers and clients can either disrupt the final result or extract
information from semi-honest clients.

(A) At one-time setup, malicious servers can disrupt the pro-
tocol by sending incorrect shares or computing a wrong
public key during the key generation phase, potentially
causing the entire protocol to fail.

(B) At model initialization, a malicious server can assign
specific weights, as proposed in Loki [71], to attempt to
infer the clients’ inputs.

(C) At Step 1, malicious clients can send an encryption of
an incorrect message (Encryption Verification) as well
as send the message with wrong form (Input Validation),
interfering the training procedure.

(D) At Step 2, a malicious leader server may forward in-
correct encryptions received from clients to the other
servers.

(E) At Steps 3-4, a malicious server could conduct a chosen
ciphertext attack by reporting an incorrect computation
of the sum or substituting the result with a completely
different ciphertext.

(F) At Step 5, a malicious server involved in decryption
might send an incorrect result during partial decryption.

(G) At Step 6, a malicious server can send incorrect updates
to the clients in U.

Section 5.1 addresses (B), (D), and (E) to ensure input
privacy against up to t−1 malicious servers and any set of
m− 2 corrupted clients. Subsequently, Section 5.2 tackles
(A), (C), (F), and (G) to achieve robustness against fewer
than n/2 malicious servers and m−2 corrupted clients. Fig-
ure 4 presents our Mario construction in the malicious and
robustness setting.

5.1 Input Privacy

Defense in Model Initialization. To defend against (B), we
propose additional steps for the servers to jointly initialize
the model architecture and model weight. A naive approach
is to have all the servers in P send the initialized model to
the clients. However, it incurs communication overhead, both
for clients and servers. Therefore, a simple trick is to have
the leader server send the model to the clients, and have each
server send the hash of the initialized model. The client would

8

then check for inconsistency between the model he received
and the hash.

To ensure input privacy as well as defend against model
modification attacks like Loki [71], each client in U veri-
fies that the model M matches at least t− 1 of the received
hashes. If this condition is not met, the client must abort (Step
5, Initialization, Figure 4). For robustness, each client in U
identifies the hash that matches more than n/2 of the received
hashes and requests the corresponding model M from one
of the servers. If no matching hash is found, the client must
abort (Step 6).
Verification of Forwarded Ciphertext from Leader.
To address the issue of verifying the ciphertext ct j =
ThHE.Encrypt(pk,v j) being sent from the leader server to a
set O of t online servers—issue (D)—a naive approach would
involve having the client U j send the encrypted model ct j to
all Pi ∈ O. However, this would cause a significant commu-
nication on the client’s side. Instead, we use a simple trick
as before – using a hashing technique to mitigate this cost.
The client additionally sends the hash of the encrypted model
as h′j = H(ct j) to each server other than the leader, which
incurs only a small additional computational and communi-
cation cost compared to the naive approach. This process is
described in Step 1, Secure Aggregation, as shown in Figure 4.
Verifiable Ciphertext to Decrypt. To address issue (E),
where a server might send an incorrect ciphertext ct to the de-
cryption servers to learn more information, we need a verifica-
tion mechanism. For instance, if server Pi sends the ciphertext
of the first client, ct1, instead of the correct sum ct = ∑ct j,
a malicious server could potentially learn the input of this
specific client.

To counter this, we enable the decryption servers to ver-
ify that the ciphertext ct they receive from Pi is indeed the
sum of the ciphertexts ct j from each client. This can be in-
deed achieved by using our building block described in Sec-
tion 3.2—the batch verification of sums (BatchSumVerify),
i.e., verifying ct = ∑ct j.

5.2 Achieving Privacy with Robustness

Verifiable Key Generation for Threshold HE. In the context
of issue (A), where malicious servers might distribute incor-
rect threshold shares during Key Generation, we can mitigate
this risk by employing a technique from Feldman’s scheme
for verifiable secret sharing [35]. Feldman’s scheme provides
a method to verify the correctness of the shares distributed
among servers. By incorporating this technique, we ensure
that each server receives and validates threshold shares accu-
rately. We provide details on our construction of the verifiable
secret key sharing in Appendix D.3.

In addition, during the computation of the public key, there
is a risk that malicious servers involved in summing the local
public keys might produce an incorrect result. To address this

issue, we employ our building block – the batch verification
of the sum, BatchSumVerify, as illustrated in Figure 2.
Client Input Validation and Encryption Verification
(πvalid , πencveri f). To address issue (C), we implement two
defense mechanisms: input validation and encryption verifi-
cation.
Input validation. Our protocol is compatible with existing
techniques proposed in ACORN [11]. Additionally, the multi-
server model in our protocol allows for further optimization
of the ZKP approach used in ACORN.

To prove that each entry x j in a long vector x lies within
the range [0,b], ACORN [11] shows that it is equivalent for
the prover (i.e., the client) to show knowledge of three vectors
u,v,w such that:

(x′;u;v;w) · (x′;u;v;w) = a (1)

where a =−1− (b+1)2 and x′ = 2x− (b−1) ·1. The proof
of Equation (1) can be achieved using Bulletproofs, which
incurs a computational cost of O(L logL) and a communica-
tion cost of O(logL) on the client. Similar to ACORN, we
convert the range proof into a dot product proof. However,
our model improves upon ACORN-robust (ACORN with ro-
bustness against semi-honest servers) by eliminating the need
for additional O(log2(m)) computation and communication
with other clients for the proof of correct secret sharing.
Encryption Verification. This requires the client to prove that
the ciphertext sent is indeed the encryption of the message
used in input validation, we first present the encryption for-
mula in BFV encryption used to realize our ThHE (a more
detailed explanation can be found in Figure 9). The encryption
of a message m is given by:

ThHE.Encrypt(pk,m) = ([pk[0]u+ e1 +∆m]q, [pk[1]u+ e2]q)
(2)

where u← Rq is a random polynomial, and e1,e2 ← χ are
small noise polynomials.

To prove the correctness of encryption, we require two
proofs: (i) a proof to demonstrate the correct evaluation of the
ring operation, and (ii) a proof to show the smallness of the
noise polynomials e1 and e2.

For (i), we apply the technique from Pino et al. [29], as
discussed in Section 3.3 . By doing so, we can convert the
proof into a dot product proof and use Bulletproofs to verify
the correctness of the operation.

For (ii), it is equivalent to range proofs specifically tailored
for small vectors since the coefficients of ei should be within
the range [−1,1]. We then leverage the ACORN technique to
handle this efficiently. Specifically, we need a proof showing
the correctness of Equation 1, but with a=−1−(2+1)2 = 10
and x = e1 +1,e2 +1. This adjustment is because the bound
for ei is [-1, 1], making the bound for ei +1 [0, 2].

To sum up, to defend against (C), we ask from client the
proof πvalid showing the correct evaluation of Equation 1, the
proof πencveri f verifying the correctness of the encryption.

9

PARAMETERS:

• a set of m clients U = {U1, . . . ,Um}, a set of n servers P = {P1, . . . ,Pn}
• A dynamic THE scheme ThHE with malicious key generation defined in Definition 1.

• A Variant of Batch Sum’s Verification, BatchSumVerify, described in Figure 2.

• Proofs πvalid ,πencveri f , and πτ,partial described in Section 5.2.

• A hash function H : {0,1}⋆→{0,1}⋆

INPUT: The client U j ∈U has input v j. The server Pi has no input

ONE-TIME SETUP: The n servers together run ThHE.KeyGen which consists of (ThHE.SecretKeyGen,ThHE.PublKeyComp) to agree on a
public key pk and secretly shared a common secret key sk.

INITIALIZATION:

1. The servers in P agree on a random seed for initialization.

2. Each server in P initializes the model M using the agreed seed.

3. Server P1 sends the initialized model M to all clients in U.

4. The other servers Pi ̸=1 in P send the hash hi = H(M) of the model to the clients in U.

5. For input privacy, each client in U verifies that the model M matches at least t−1 of the received hashes. If not, abort.

6. For robustness, each client in U identifies the hash that matches more than n/2 of the received hashes and requests the corresponding
model M from one of the servers. If no matching hash is found, abort.

SECURE AGGREGATION:

1. The client U j∈[m] distributes ct j = ThHE.Encrypt(pk,v j) to a set O of t online servers as follows:

• U j sends ct j to the leader P1, and sends the hash h j = H(ct j) to servers Pi ∈ O \{P1}.
• The leader P1 forwards ct j to the Pi ∈ O \{P1}.
• Each server Pi ∈ O verifies that H(ct j) = h j. If the hashes do not match, the server aborts.

Clients also distribute πvalid ,πencveri f to the servers for input validation. The server Pi ∈ O then do the following:

• Verifies the proofs πvalid ,πencveri f

• For SyncFL, stores the “honest” client ID in set V if he accepts the proof. Then he computes ct(i) = ThHE.Add(cti∈V))

• For AsyncFL, stores the “honest” client ID in the buffer B and set V if he accepts the proof. If B is full, he computes
ct(i) = ThHE.Add(cti∈B))

2. Pi ∈ O forwards ct(i) and set V from Step 1 to all servers in P
3. Upon receiving ct(i) and V , Pk ∈ P run BatchSumVerify(ct(i),cti∈V ,O) to verify he receives the correct ciphertext.

4. Pi ∈ P chooses a set Ai of t servers, sends the corresponding Lagrange coefficients to each server in Ai. Pi and the servers in Ai
perform the following

(a) Each server Pτ∈Ai executes a partial decryption as pτ = ThHE.PartDec(ct(i),skτ) and a short proof πτ,partial and sends
(pτ,πτ,partial) to Pi

(b) The server Pi verify πτ,partial for every τ ∈ Ai, record all servers M ⊂ Ai that failed verification, rerun this step for a new set
A′i = (Ai \M)∪S′ where S′ is a new set of servers, |S′|= |M|

(c) Pi performs a final decryption as v(i) = ThHE.FinalDec(pi,{pτ}τ∈A), where pτ = ThHE.PartDec(ct(τ),skτ)

5. Client U j ∈U do the following step:

(a) request hi = H(v(i)) from Pi ∈ P , find the hash value h that is most frequent in the list {h1, . . . ,hn}
(b) record the set PH = {Pi∥hi = h}
(c) in sequence, ask for v(i) from Pi ∈ PH . Check if H(v(i)) = h, stop if true, else request for the next server in PH

Figure 4: Mario – Privacy with Correctness Multiserver Malicious Secure Aggregation

10

Even though it might seem complicated for the client, our
Mario is more efficient than ACORN-robust. In Mario, the
client can directly send all the proofs to the servers, whereas
in ACORN-robust, the client incurs additional log2(m) com-
putation and communication costs to prove and verify the
correctness of secret sharing and aggregation.
Verifiable Partial Decryption (πτ,partial). In our protocol’s
decryption phase, the server responsible for partial decryption,
Pτ, performs the following evaluation to compute the partial
decryption:

pτ = ThHE.PartDec(ct(i),skτ) = [ct(i)[1]LA(0,τ)skτ + eτ]q
(3)

where ct(i) is the ciphertext to decrypt, LA(0,τ) = ∏ j∈A\τ
−τ

j−τ

is the Lagrange coefficient, and eτ is a small noise.
To verify the correctness of the evaluation, the server Pτ

must prove two things: the ring operations in Equation (3)
are correct; and the noise eτ is within the allowable bounds.
For the former, we use Pino et al.’s technique to prove the
correct evaluation of ring operations. For the latter, we use a
zero-knowledge range proof from ACORN [11] to ensure that
the noise eτ is within the allowable bounds. Both techniques
are discussed in Section 3.3.

Thus, to address issue (F)—ensuring the correctness of
partial decryption—we apply the proof techniques (so-called
πτ,partial) discussed above. With these proofs, the server hold-
ing the encrypted sum can verify the correctness of all re-
ceived partial decryptions. Additionally, the server can iden-
tify any malicious parties that submitted incorrect partial de-
cryptions. If needed, the servers can redo the partial decryp-
tion round and replace the malicious servers with new ones.
Verifiable Final Result. To address (G), we employ a hashing
technique for consistency checks. Specifically, we have Step 2
for the selected servers in O to send the aggregated ciphertext
to all servers in the set P . Then, in Step 5, each server in P
sends the hash of its result to the client. In a setting with an
honest majority, the hash of the correct model will be provided
by more than half of the servers.

Upon receiving these hashes, the client identifies the servers
that provided the majority hash and requests the model from
one of them. If a server returns a model that does not match
the hash it provided, the client detects the discrepancy and
requests the model from another server. On average, the client
will need to make two requests to obtain the correct model
from an honest server.
Putting Everything Together. By integrating all the afore-
mentioned defenses, our Mario ensures both privacy and cor-
rectness within the malicious setting. The protocol outputs the
correct summation. We formally state the robustness against
malicious adversaries in the following lemma:

Lemma 1. Given the multi-server secure aggregation proto-
col presented in Figure 4, and the threat model of an honest
majority of servers and a dishonest majority of clients as
stated in Table 2, the following two statements hold:

1. Malicious servers cannot convince the client of an incor-
rect aggregated result.

2. Malicious clients’ inputs are ignored in the final summa-
tion and cannot interfere with the training process.

Sketched Proof. For the first statement, a malicious server at
Step 1 cannot distribute an incorrect encryption of the client’s
model due to the hashing consistency check. At Step 2-3, a
malicious server cannot decrypt the wrong message because
of BatchSumVerify. Furthermore, the server cannot provide
an incorrect partial decryption due to the check in Step 4-
b, which includes the proof πτ,partial . In Step 5, the client
verifies the decrypted result and accepts the result output by
the majority, ensuring that a minority of malicious servers
cannot interfere with the final result.

The second statement follows from Step 1. The servers
validate the client’s input and ignore any invalid inputs in
the final summation. They record valid clients in a set V and
perform aggregation only on this set.

6 Experiment

We evaluate FL protocols using a series of benchmarks on
a local machine (11th Gen Intel(R) Core(TM) i9-11900KF
Processor with an all-core CPU frequency of 3.50GHz, 16
vCPU, 32GB RAM). Based on the FHE standard [6], we set
N = 2048,q =0x3fffffff000001 (54 bits), p = 216.

6.1 Comparison to Prior Work
We evaluate the performance of both our semi-honest and
malicious protocols and compare them with state-of-the-art
protocols in both synchronous and asynchronous settings. The
results are summarized in Table 5. For Prio+ and Elsa, we
utilized their publicly available implementations on GitHub.
For BASecAgg, we obtained the runtime using the implemen-
tation provided by the paper’s authors. Since the implemen-
tation of ACORN is not publicly available, we estimated its
runtime based on the homomorphic encryption (HE) opera-
tions described in their paper.

For the semi-honest setup, our Mario outperforms Flamingo
and ACORN by factors of 2 − 70× and outperforms
BASecAgg by a factor of 356×. In terms of malicious multi-
server performance, we achieve a total runtime that is 3.40×
faster compared to Elsa and reduce the communication cost
for clients by 3.19×. This is due to our protocol’s design
where only one encrypted model is sent to the leader and the
hash is sent to the remaining servers.

Regarding communication cost, Mario shows a signifi-
cant improvement in client communication for the multi-
aggregator setup. This dues to fact that in Mario, the client
only needs to send the encrypted model to the leader aggrega-
tors and the hash to all other servers, eliminating the additional
communication cost associated with n−1 servers.

11

Table 5: Empirical Comparison of Federated Learning Schemes Setting. SH indicates semi-honest performance with no input validation,
MA indicates malicious adversaries performance. IV indicates Input Validation. The runtime and communication cost are for secure
aggregation only, no local training involved. The common setup is L = 44426,m = 1000. For ACORN, (nb,τ) ∈ {(24,2),(72,46),(118,95)}.
For Asyncronous setting, k = 100,τ = 50 for BASecAgg and k = 100,n = t = 2 for Ours. The “/” notation in server communication indicates
the cost of leader server / normal server in our protocol.

Setting Protocol
Runtime (s) Client Comm. (MB) Server Comm. (MB)

Multiple servers
0% 25% 50% 0% 25% 50% 0% 25% 50%

Sync
(SH)

ACORN[11] 0.32 0.69 1.60 0.18 0.19 0.20 228.95 229.56 229.56 ✗

Prio+[5] 51.02 10.93 5423 ✓

Mario 0.18 3.64 5003 / 3.89 ✓

Sync
(MA)

Elsa [63] 38.69 11.61 7118 ✓

Mario (w.o IV) 11.38 3.64 5003 / 5.95 ✓

Mario (incl. IV) 123.08 5.70 5003 / 5.95 ✓

Async BASecAgg [67] 11.09 11.09 15.31 1.15 1.15 23.00 0.79 0.79 11.61 ✗

(SH) Mario 0.043 3.64 504 / 3.67 ✓

6.2 Our Mario Performance
To understand the performance breakdown of our protocol,
we benchmark each component individually, including the
semi-honest protocol, key generation, input validation, and
decryption verification.
Semi-honest Performance. We present the runtime and com-
munication cost of our semi-honest protocol in Figure 5. The
figure shows that the communication cost for the client does
not depend on the number of clients participating in the round
and varies linearly with and the size of the model L. Interest-
ingly, the communication cost of client is independent from
number of servers. This is because the client only needs to
send a hash to servers except for the leader.
Key Generation. In Table 6, we present the performance
metrics for key generation. The table shows that by gener-
ating local keys in parallel, the cost of the key generation
step is reduced by factors of 8−47×, with higher speedups
observed in setups with more servers. Additionally, we report
the overhead runtime for public key verification, which in-
curs a small overhead ranging from 1.17 to 2.70 milliseconds,
thanks to the compression/batch technique (BatchSumVerify)
described in Figure 2. Most of the runtime in key generation
is attributed to the secret key verification step, which involves
N group exponentiations and N group multiplications, with
costs ranging from 5 to 13 seconds.

Table 6 also presents the costs associated with the join
(ThHE.Join) and key refresh (ThHE.ShareRefresh) operations.
We do not include the secret share verification costs in the join
and refresh metrics. The Join function requires between 14 to
48 milliseconds per new server joining, while the share refresh
operation costs between 120 to 456 milliseconds, depending
on the number of servers.
Input Validation and Encryption Verification. The perfor-
mance of input validation and encryption verification involves
two key components: range proof generation by clients and
range proof verification by servers. We benchmark both the
runtime and communication cost for input validation. These

Process Runtime (ms)
(6,10) (8,15) (11,20) (16,30)

KeyShare (vanilla) 1023 4022 6680 21127
KeyShare (parallel) 121 175 271 456
(Speed up) (8×) (23×) (25×) (46×)
Public Key Verif. 1.17 1.47 1.95 2.70
Secret Share Verif. 4895 6526 8974 13053
Join 14 14 30 48
ShareRefresh 120 175 271 456

Table 6: Runtime of Each Section of Key Generation in
Milliseconds. (·, ·) denotes different (t,n) assignments. The
Join and Share Refresh times exclude the secret share verifi-
cation costs.

Model
size

Client Computation cost (s)
comm. cost client (gen) server (verify)

214 270 KB 22 4.63
216 1.03 MB 94 17.7
218 4.10 MB 381 71.7
220 17 MB 1482 286.8

Table 7: Input Validation and Encryption Verification Es-
timate. Total number of clients to verify is m = 1000. Server
is using 4 cores.

are estimated using Figure 5 from ACORN [11] paper, adding
with the Bulletproofs for linear dot product proof.

Note that our approach incurs roughly 5× more runtime
compared to ACORN-detect (ACORN protocol to detect ma-
licious client, no robustness), due to the additional proofs of
encryption. However, this provides robustness and improves
upon ACORN-robust, which would result in approximately
log2(m) (≈ 100) times more runtime and communication cost
than our protocol due to the additional proof required for cor-
rect secret sharing.

12

2^14 2^16 2^18 2^20
100

101

102

103

104

105

106

client
leader
server

(a) Communication Cost (MB)

2^14 2^16 2^18 2^20
100

101

102

103

104 client
server

(b) Runtime (ms)

Figure 5: Mario’s Performance in the Semi-Honest Setting. Numbers on x-axis represent size of model L. Each line consists
of 4 points representing the measures for each assignment of (t,n): (6,10),(8,15),(11,20),(16,30).

0 0.1 0.2 0.3 0.4

0

1

2

3

t = 6,n = 10
t = 8,n = 15

t = 11,n = 20
t = 16,n = 30

Figure 6: Average number of re-selection over 10000 runs.
x-axis: ratio of malicious servers over total number of servers,
y-axis: average number of re-selection needed until hitting a
set of all honest servers.

Number of Re-Selection for Robust. In our privacy-with-
robustness protocol, servers must re-select a set of decryptors
until they find a set composed entirely of honest servers. This
experiment evaluates the expected number of re-selections re-
quired given an unknown pre-defined set of malicious servers.
The results, shown in Figure 6, indicate that for a setup of 30
servers with at least 16 honest ones, an honest server typically
needs to re-select decryptors about 3 times before finding
a set of all honest decryptors. The number of re-selections
decreases linearly with the ratio of malicious servers. This rel-
atively small number of re-selections is due to the protocol’s
ability to identify and exclude malicious decryptors during
the partial decryption phase, thus improving the efficiency of
subsequent re-selections.
Partial and Final Decryption Verification. The cost of de-
cryption verification is divided into two main costs: (1) the
proof generation and verification of the linear dot product,
and (2) the proof generation and verification of the range of
error term eτ for a party Pτ. Figure 7 presents the runtime for
both proof generation and verification across various model
sizes.

214 215 216 217 218 219 220

103

104

105 Proof Gen. Time (ms)
Proof Verif. Time (ms)

Figure 7: Proof generation and proof verification time (mil-
liseconds) at servers. Blue: generation time, Red: verification
time

7 Conclusion

In this work, we present Mario, the first multi-aggregator
protocol designed to achieve robustness against both mali-
cious servers and malicious clients, addressing a gap in previ-
ous multi-aggregator secure aggregation research [5, 26, 63].
Mario supports both synchronous and asynchronous settings
and is secure against recent attacks such as model inconsis-
tency [60] and modifications to model weights and architec-
ture [71]. Furthermore, while not explicitly covered, Mario
is fully compatible with Differential Privacy (DP), allowing
clients to add DP noise to their local gradients to enhance
protection against future attacks targeting secure aggregation.

Future work. In the future, we would like to extend upon
this paper (1) a single-aggregator equivalence of Mario; (2)
support of other aggregated statistics: min, max, frequency
count similar to Prio [26] by extending ThHE to fully homo-
morphic encryption; (3) improve input validation by using
encrypted value of binary input, which was inspired by the
approach used in Prio+ [5].

13

References
[1] https://github.com/Microsoft/SEAL.

[2] Adaptively secure non-interactive threshold cryptosystems. Theoretical
Computer Science, 2013.

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and
Gilad Stern. Bingo: Adaptivity and asynchrony in verifiable secret
sharing and distributed key generation. ePrint, 2022/1759.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and
Gilad Stern. Bingo: Adaptivity and asynchrony in verifiable secret
sharing and distributed key generation. Cryptology ePrint Archive,
Paper 2022/1759, 2022. https://eprint.iacr.org/2022/1759.

[5] Srinivas Addanki, Kristin Garbe, Eliot Jaffe, Rafail Ostrovsky, and
Antigoni Polychroniadou. Prio+: Privacy preserving aggregate statistics
via boolean shares. IACR ePrint Archive, 2021:576, 2021.

[6] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-
wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody,
Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomor-
phic encryption security standard. Technical report, HomomorphicEn-
cryption.org, Toronto, Canada, November 2018.

[7] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss.
Network-agnostic security comes (almost) for free in dkg and mpc.
Cryptology ePrint Archive, Paper 2022/1369, 2022. https://eprint.
iacr.org/2022/1369.

[8] Renas Bacho and Julian Loss. On the adaptive security of the threshold
bls signature scheme. CCS ’22.

[9] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit
Sahai. Secure MPC: Laziness leads to GOD. pages 120–150.

[10] Laasya Bangalore, Mohammad Hossein Faghihi Sereshgi, Carmit
Hazay, and Muthuramakrishnan Venkitasubramaniam. Flag: A frame-
work for lightweight robust secure aggregation. New York, NY, USA,
2023. Association for Computing Machinery.

[11] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meikle-
john, Mariana Raykova, and Cathie Yun. Acorn: Input validation for
secure aggregation. ePrint, 2022/1461, 2022.

[12] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Le-
point, and Mariana Raykova. Secure single-server aggregation with
(poly)logarithmic overhead.

[13] James Bell-Clark, Adrià Gascón, Baiyu Li, Mariana Raykova, and
Phillipp Schoppmann. Willow: Secure aggregation with one-shot
clients. Cryptology ePrint Archive, Paper 2024/936, 2024. https:
//eprint.iacr.org/2024/936.

[14] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin
Calo. Analyzing federated learning through an adversarial lens.
ICML’19.

[15] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks
against support vector machines. ICML’12.

[16] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. Cryptology
ePrint Archive, Paper 2021/017, 2021. https://eprint.iacr.org/
2021/017.

[17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam
Kim, Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems
from threshold fully homomorphic encryption.

[18] Katharina Boudgoust and Peter Scholl. Simple threshold (fully homo-
morphic) encryption from lwe with polynomial modulus. Cryptology
ePrint Archive, Paper 2023/016, 2023. https://eprint.iacr.org/
2023/016.

[19] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier
transform and its applications. McGraw-Hill New York, 1986.

[20] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. ITCS ’12.

[21] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-LWE and security for key dependent messages.
2011.

[22] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. Cryptology ePrint Archive, Paper 2017/1066,
2017. https://eprint.iacr.org/2017/1066.

[23] T. H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving
stream aggregation with fault tolerance. In Angelos D. Keromytis,
editor, Financial Cryptography and Data Security, 2012.

[24] Jung Hee Cheon, Wonhee Cho, and Jiseung Kim. Improved universal
thresholdizer from threshold fully homomorphic encryption. IACR
Cryptol. ePrint Arch., page 545, 2023.

[25] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In
ASIACRYPT 2017.

[26] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In NSDI, 2017.

[27] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and
Michael Walter. Noah’s ark: Efficient threshold-fhe using noise flood-
ing. In Proceedings of the 11th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, WAHC ’23, page 35–46, New
York, NY, USA, 2023. Association for Computing Machinery.

[28] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and
Michael Walter. Noah’s ark: Efficient threshold-fhe using noise
flooding. Cryptology ePrint Archive, Paper 2023/815, 2023. https:
//eprint.iacr.org/2023/815.

[29] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short discrete
log proofs for FHE and ring-LWE ciphertexts. Cryptology ePrint
Archive, Paper 2019/057, 2019. https://eprint.iacr.org/2019/
057.

[30] Yvo Desmedt. Threshold cryptosystems. In Advances in Cryptology —
AUSCRYPT ’92.

[31] F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa
Chase. Precio: Private aggregate measurement via oblivious shuffling.
Cryptology ePrint Archive, Paper 2021/1490, 2021.

[32] Taher ElGamal. On computing logarithms over finite fields.

[33] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. ePrint, 2012/144, 2012.

[34] Serge Fehr. Span programs over rings and how to share a secret
from a module. Master’s thesis, ETH Zurich, Institute for Theoretical
Computer Science, 1998.

[35] Frank A. Feldman. Fast spectral tests for measuring nonrandomness
and the DES. pages 243–254, 1988.

14

https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2022/1759
https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2024/936
https://eprint.iacr.org/2024/936
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2023/016
https://eprint.iacr.org/2023/016
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2023/815
https://eprint.iacr.org/2023/815
https://eprint.iacr.org/2019/057
https://eprint.iacr.org/2019/057

[36] Qi Gao, Yi Sun, Xingyuan Chen, Fan Yang, and Youhe Wang. An
efficient multi-party secure aggregation method based on multi-
homomorphic attributes. Electronics, 13(4), 2024.

[37] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure applications of pedersen’s distributed key generation protocol.
In Topics in Cryptology — CT-RSA 2003.

[38] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties.
Cryptology ePrint Archive, Paper 2021/1397, 2021. https://eprint.
iacr.org/2021/1397.

[39] Ming Hao, Hongyi Li, Guanhong Xu, Hui Chen, and Tianwei Zhang.
Efficient, private and robust federated learning. In ACSAC, 2021.

[40] Li He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-
robust machine learning. CoRR, 2020.

[41] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation
with linear communication complexity. In Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference,
volume 4117 of Lecture Notes in Computer Science, pages 463–482.
Springer, 2006.

[42] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On
combining privacy with guaranteed output delivery in secure multiparty
computation. In Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, volume 4117 of Lecture Notes
in Computer Science, pages 483–500. Springer, 2006.

[43] Y. Jiang, X. Luo, Y. Wu, X. Xiao, and B. Ooi. Protecting label distri-
bution in cross-silo federated learning. In 2024 IEEE Symposium on
Security and Privacy (SP), pages 112–112, Los Alamitos, CA, USA,
may 2024. IEEE Computer Society.

[44] E. Kabir, Z. Song, M. Rashid, and S. Mehnaz. Flshield: A validation
based federated learning framework to defend against poisoning attacks.
In 2024 IEEE Symposium on Security and Privacy (SP), pages 140–140,
Los Alamitos, CA, USA, may 2024. IEEE Computer Society.

[45] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kannan
Ramchandran. Fastsecagg: Scalable secure aggregation for privacy-
preserving federated learning. ArXiv, abs/2009.11248, 2020.

[46] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing
multi-party computation. ePrint, 2011/272, 2011.

[47] Harish Karthikeyan and Antigoni Polychroniadou. OPA: One-shot
private aggregation with single client interaction and its applications to
federated learning. Cryptology ePrint Archive, Paper 2024/723, 2024.
https://eprint.iacr.org/2024/723.

[48] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. CCS ’17.

[49] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT:
Super-fast and robust privacy-preserving machine learning. Cryptology
ePrint Archive, Paper 2020/592, 2020.

[50] Hanjun Li, Sela Navot, and Stefano Tessaro. Popstar: Lightweight
threshold reporting with reduced leakage. Cryptology ePrint Archive,
Paper 2024/320, 2024. https://eprint.iacr.org/2024/320.

[51] Yehuda Lindell and Ariel Nof. A framework for constructing fast
mpc over arithmetic circuits with malicious adversaries and an honest-
majority. Cryptology ePrint Archive, Paper 2017/816, 2017. https:
//eprint.iacr.org/2017/816.

[52] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lat-
tices and learning with errors over rings. In Advances in Cryptology –
EUROCRYPT 2010.

[53] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou,
and Tal Rabin. Flamingo: Multi-round single-server secure aggregation
with applications to private federated learning. ePrint, 2023/486, 2023.

[54] R. Moenck and A. Borodin. Fast modular transforms via division.
In 13th Annual Symposium on Switching and Automata Theory (swat
1972), 1972.

[55] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. An
efficient threshold access-structure for rlwe-based multiparty homo-
morphic encryption. J. Cryptol., 36(2):10, 2023.

[56] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat,
and Jean-Pierre Hubaux. Multiparty homomorphic encryption from
ring-learning-with-errors. Cryptology ePrint Archive, Paper 2020/304,
2020.

[57] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour,
Mike Rabbat, Mani Malek, and Dzmitry Huba. Federated learning with
buffered asynchronous aggregation. In AISTATS 2022.

[58] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99.

[59] Jeongeun Park. Homomorphic encryption for multiple users with less
communications. ePrint, 2021/1085.

[60] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding
secure aggregation in federated learning via model inconsistency. CCS,
2022.

[61] Torben Pryds Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO

’91.

[62] Michael Rabin. Verifiable secret sharing. In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing (STOC ’89), 1989.

[63] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa.
Elsa: Secure aggregation for federated learning with malicious actors.
In 2023 IEEE Symposium on Security and Privacy (SP), pages 1961–
1979, 2023.

[64] Aaron Segal, Antonio Marcedone, Benjamin Kreuter, Daniel Ramage,
H. Brendan McMahan, Karn Seth, K. A. Bonawitz, Sarvar Patel, and
Vladimir Ivanov. Practical secure aggregation for privacy-preserving
machine learning. In CCS, 2017.

[65] Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, Richard Chow,
and Dawn Song. Privacy-preserving aggregation of time-series data.
In NDSS 2011.

[66] Gustavus J. Simmons. How to (really) share a secret. In Shafi Gold-
wasser, editor, CRYPTO’ 88.

[67] Jinhyun So, Ramy E. Ali, Basak Güler, and Amir Salman Aves-
timehr. Secure aggregation for buffered asynchronous federated learn-
ing. CoRR, abs/2110.02177.

[68] Jinhyun So, Basak Guler, and A. Salman Avestimehr. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning.
ePrint, 2020/167.

[69] Elina van Kempen, Qifei Li, Giorgia Azzurra Marson, and Claudio
Soriente. Lisa: Lightweight single-server secure aggregation with a
public source of randomness, 2023.

15

https://eprint.iacr.org/2021/1397
https://eprint.iacr.org/2021/1397
https://eprint.iacr.org/2024/723
https://eprint.iacr.org/2024/320
https://eprint.iacr.org/2017/816
https://eprint.iacr.org/2017/816

2^14 2^16 2^18 2^20
100

101

102

103

104

105

106

client
leader
server

(a) Communication Cost (MB)

2^14 2^16 2^18 2^20
100

101

102

103

104 client
server

(b) Runtime (s)

Figure 8: Privacy with robustness performance. Numbers
on x-axis represent size of model L. Each line consists of 4
points representing the measures for each assignment of (t,n):
(6,10),(8,15),(11,20),(16,30).

[70] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng, Shengli
Liu, Yong Yu, Fangguo Zhang, and Liehuang Zhu. Practical asyn-
chronous distributed key generation: Improved efficiency, weaker as-
sumption, and standard model. Cryptology ePrint Archive, Paper
2022/1678, 2022. https://eprint.iacr.org/2022/1678.

[71] J. Zhao, A. Sharma, A. Elkordy, Y. H. Ezzeldin, S. Avestimehr, and
S. Bagchi. Loki: Large-scale data reconstruction attack against feder-
ated learning through model manipulation. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 30–30, Los Alamitos, CA, USA,
may 2024. IEEE Computer Society.

[72] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
Helen: Maliciously secure coopetitive learning for linear models. In
SP 2019.

A Estimate time of robustness protocol

Based on the number presented in Section 6.2, we estimate
the runtime and communication cost of the whole protocol.
The results are shown in Figure 8. Note that the client runtime
is slow due to the costly input validation operation, which is
the common issue shared with state-of-the-art ACORN [11].

B Preliminaries

Let N be a power of two and q be an integer. We denote
by R = Z[X]/(XN + 1) the ring of integers of the (2N)-th

cyclotomic field and Rq = Zq[X]/(XN + 1) the residue ring
of R modulo q. We represent an element a = ∑

(N−1)
i=0 aiX i ∈

R by the vector of its coefficients (a0, . . . ,a(N−1)). Given a
probability distribution D, we use x← D to denote that x is
sampled from D. A distribution χ over the integers is called
B-bounded if it is supported on [−B,B].

Let g be a generator of the field Zq, let a∈ Rq be a arbitrary
polynomial in Rq, A = (A1, . . . ,AN),B = (B1, . . . ,BN) ∈ ZN

q

be two arbitrary vectors size N. We write as a = ∑
N
i=0 aixi,

then we define the following three operators:

• Power of g: ga := (ga0 , . . . ,gaN)

• Multiplication: AB = (A1B1,A2B2, . . . ,ANBN)

• Power on ZN
q : An = AA . . .A (for n times) for any n ∈ N

B.1 Polynomial-LWE based HE
We construct our ThHE based on traditional lattice HE
schemes from the polynomial learning with error (PLWE)
assumption [21] (See Def 2) which is a simplified version
of the Ring-LWE [52]. These lattice HE schemes are faster
compared to other HE (based on Elgamal or Paillier) [32, 58]
and provide quantum resistance.

For easy understanding of our ThHE, we choose to present
a generic PLWE-based single-key HE scheme in Figure 9.
Note that our ThHE can be straightforwardly modified to
work with other HE schemes such as FV [33], BGV [20], and
CKKS [25].

PARAMETERS: The secret key space χ1, the noise space
χ2, the plaintext space Rp = Zp[X]/(XN +1), the cipher-
text and public key space Rq = Zq[X]/(XN + 1), and
∆ = ⌊q/p⌋

HE.KeyGen()→ (sk,pk)
• Sample s← χ1
• Sample a,a0← Rq and e,e0← χ2
• Output (sk,pk) where sk = s and pk = ([−a · s +

e]q,a)
HE.Encrypt(pk,m)→ ct

• Sample u← χ1 and e1,e2← χ2
• Let p0 = pk[0], p1 = pk[1]
• Compute c0 = [p0 ·u+ e1 +∆ ·m]q

and c1 = [p1 ·u+ e2]q
• Output (c0,c1)

HE.Decrypt(sk,ct)→ m
• Let c0 = ct[0], c1 = ct[1]
• Compute v = [c0 + c1 · s]q
• Output [1

∆
· v]p

HE.Add(ct1, . . . ,ctk)→ ct
• Output ct1 + . . .+ ctk

Figure 9: PLWE-based Additive HE Construction.

16

https://eprint.iacr.org/2022/1678

Definition 2. (Polynomial-LWE [21]) For security param-
eter λ and q = q(λ) > 1, set R = Z[X]/(XN + 1) and Rq =
Zq[X]/(XN + 1). For a random element s ∈ Rq and a dis-

tribution χ = χ(λ) over R, denote with A(q)
s,χ the distribution

obtained by choosing a uniformly random element a← Rq
and a noise term e← χ and outputting (a, [a · s+ e]q). The
Polynomial-LWE(PLWE) problem is to distinguish between
the distribution A(q)

s,χ and the uniform distribution.

B.2 Threshold Scheme and Secret Sharing
Threshold Scheme & Shamir Secret Sharing. A thresh-
old scheme (TS) with a threshold t over a secret space
K is two probabilistic polynomial-time (PPT) algorithms
(Sharet ,Rest) where:

• Sharet(k,n)→ (s1, . . . ,sn): On input a secret k ∈K and
n > t, the sharing algorithm returns n shares {s1, . . . ,sn}.

• Rest(si,1 . . . ,si,t) → k: On input a set of shares
(si,1 . . . ,si,t), the combining algorithm outputs the secret
k ∈K

The scheme must satisfy the following properties:

• Correctness: Rest(si,1 . . . ,si,t) = k

• Security: Any subset S = {si}i∈[n] for |S| < t reveals
nothing about the secret k.

Shamir secret sharing (S3) is a threshold scheme based
on Lagrange interpolation. To share a secret s in a finite
field Zp, the sharing phase of S3 chooses a polynomial f of
degree t−1 such that [f (0)]p = s, with all other coefficients
chosen uniformly in Zp. Each party Pi receives a share in
the form of the point (i,yi) = (i, [f (i)]p) on the polynomial.
The interpolation theorem guarantees that any t of the shares
can uniquely determine the polynomial f , and hence recover
the secret f (0). The traditional Shamir secret-sharing scheme
is typically implemented over a field. Therefore, this paper
adopts Lagrange interpolation in Zp for simplicity. For a more
comprehensive understanding of Shamir secret sharing over a
ring, we refer the reader to [34].
Verifiable Secret Sharing. Given a secret s to be shared to
n parties, namely JsKi to party Pi, so that any t parties can
together reconstruct s, Verifiable Secret Sharing (VSS) [62]
is the problem that ensure each of the n parties receive the
correct share, even in the present of a malicious dealer. In
terms of Shamir secret sharing, it is equivalent to the verifica-
tion that JsKi = s+∑

t−1
j=1 a ji j where s+ a1x+ · · ·+ at−1xt−1

represents the polynomial that was used in Shamir sharing.
Additive Secret Sharing. Given a set of n parties {P1, . . . ,Pn},
to additively secret share JxK an ℓ-bit value x of Pi to other
parties, he first chooses xi← Z2ℓ uniformly at random such
that x = ∑

n
j=1 x j mod 2ℓ, and then sends each x j to the party

Pj. For ease of composition, we omit the mod. To reconstruct

an additive shared value JxK, all parties Pj sends JxK = x j to
Pi, who locally reconstructs the secret value by computing
x←∑

n
i=1 x j. In this work, we define the additive secret sharing

of a value x as JxK.

C Sketched security proof for BatchSumVerify

• Completeness: If x = x1 + · · · + xm, then Cv =

∏
t
i=1 gJvKi = g∑JvKi = g∑⟨α,xi⟩ = g⟨α,x⟩. Therefore, if the

statement is correct, then Pv will always accept.

• Soundness: If x ̸= x1 + · · ·+ xm, the equation holds with
a probability of only 1

q−1 for ⌈logq⌉= 54 in our imple-
mentation.

• Zero-knowledge: The simulator on verifier Pv can simply
generate gJvKi for each Pi by randomly sampling values
from Zq.

D Dynamic Threshold HE

We realize the dynamic threshold HE in Definition 1 in Fig-
ure 11. The verifiable secret share of secret key is inspired
by Feldman’s verifiable secret sharing scheme [35]. In addi-
tion, we use additive verification function in Section 3.2 to
verify if the public key are jointly computed correctly. The en-
cryption/decryption functions are similar to BFV encryption
scheme [33].

Throughout this section, we refer to the servers as ‘parties’
to describe our ThHE scheme employed in our FL framework.
It is less likely for those parties (servers) to drop out frequently
during the protocol execution compare to remote clients in
FL.

D.1 System Design
In our ThHE, we classify participants into two categories:
pivot and non-pivot. Although any party can act as a pivot,
we recommend selecting a party with powerful devices
and stable connectivity, as pivots perform more work in
ThHE.SecretKeyGen(). We assume that the IP addresses of
participants are publicly available, enabling each party to de-
termine whether a particular party is online.

During ThHE.Join(), which generates a secret key for the
new Pv, it requires a set A of at least t online parties. If the set
of t pivot parties is available and online, Pv selects them as set
A. Otherwise, Pv selects a random online set A and announces
the IP addresses of the selected parties. In the event that a
party drops out in the middle of the process, Pv can re-select
another online party.

Our system also includes a combiner that aggregates infor-
mation from different parties. Any party can act as a combiner,
including pivot/non-pivot parties, or the leader server in our
FL application.

17

D.2 Construction in the Semi-honest Setting

Our dynamic ThHE protocol builds on the foundational frame-
work presented in [55, 56, 59], where servers use Shamir
secret sharing to distribute their local secret values among
themselves. For completeness, we provide a detailed descrip-
tion of the full construction in this section. Some aspects of
this approach are derived from previous work.

In our ThHE, there is a single public key pk, under which
all messages can be encrypted by different parties. Hence,
encryption and additive homomorphic computation are ef-
ficient and independent of the number of decryptors/parties
as they are performed in a similar fashion to single-key HE.
In this section, we show how key generation algorithm and
decryption work in ThHE using the Shamir secret sharing
(S3) scheme. Figure 11 formally presents our ThHE construc-
tion. We provide a detailed discussion on the correctness and
security for our ThHE construction in Appendix E.

D.2.1 Key Generation in ThHE

In the previous THE schemes [9, 17], linear secret sharing
(LSS) [66] is used in the key setup procedure. While LSS can
handle the noise blow-up in the decryption process, it needs
either a trusted third party or an expensive MPC to generate
the shares (the shared secret keys) for the parties. Moreover,
LSS requires a fixed set of parties as input. Thus, LSS is not
suitable for multi-round SA with one-time setup. We propose
to use distributed Shamir secret schemes (S3) [30, 37] for
ThHE, similar to [55]. However, direct use of the S3 causes
decryption fail because of a large Lagrange coefficient, which
will be discussed in detail below.

Secret Key Generation. We assume that there is a set of
t pivot parties {P1, . . . ,Pt}. Adapting S3 protocols [30, 37],
we first present how the pivots generate secret shares for
other parties. Our protocol starts with each pivot choosing
a random polynomial fi(X) = ∑

(t−1)
k=0 ci,kXk of degree (t−1)

where ci,0← χ1 (the B1-bounded distribution) and ci,k>0←
Rq. The pivot then sends a share [fi(j)]q to each party Pj∈[n].
The Pj∈[n] can add up its obtained shares to get a final share
(i.e., the shared secret key) as sk j = [∑t

i=1 fi(j)]q. Due to
linearity, the result is also a valid Shamir secret share where
the final secret value sk = [∑t

i=1 ci,0]q is additively shared by
t pivots. For the pivot Pi∈[t], their final share also consists of
the coefficient ci,0 so that the t pivots can generate a new
share for a new user in the same manner as described above.
Additionally, keeping the ci,0 allows the t pivots to easily
compute the public key and the decryption as we will discuss
later.

Indeed, the sum ∑
t
i=1 ci,0 is bounded by tB1 as each term

ci,0 is sampled from the B1-bounded distribution χ1. Conse-
quently, this sum is considerably smaller than the q value of
the HE setting. For example, we evaluate our ThHE applica-
tion (Federated Learning) with t ≤ 1000, and utilize the single-

key HE parameters from SEAL [1] library where ⌈logq⌉= 54
and B1 is relatively small (such as B1 = 1 in the ternary distri-
bution or B1 = 26 in the Gaussian distribution with standard
deviation σ = 3.2). Thus, we can omit the module q in the
secret key sk and represent sk as ∑

t
i=1 ci,0. When the secret

B1-bounded distribution χ1 (e.g., Gaussian distribution) has
an additive property, we can infer that sk is sampled from the
tB1-bounded distribution χ′1.

Public Key Computation. Computing pk can be naturally
completed using generic techniques from MPC, with each
party holding a shared key ski as a local input, and a com-
mon vector a. However, this solution might be inefficient. In
the following, we present an efficient protocol to compute
ThHE.PublKeyComp. For ease of composition, we omit the
second part of the pk (a vector a).

In the case that all pivots are alive, the pk can be com-
puted easily as follows. Each pivot broadcasts a partial pub-
lic key pki = [−a · ci,0 + ei]q for a small sample noise ei
from the B2-bounded distribution χ2. A combiner computes
pk =

[
∑

t
i=1 pki

]
q = [a · s+ e]q, where e = ∑k∈A ek is in the

tB2-bounded distribution χ′2. However, when one of the piv-
ots is not available, it becomes more challenging to compute
pk from the S3 shares.

Using a similar approach proposed in generating secret
keys, one can apply Lagrange linear combination. Con-
cretely, given t online parties Pk∈A, each can compute the
inner product pkk = −a · skk using its secret share skk ∈ Rq.
Then, pkk is sent to the combiner which can compute pk as[

∑k∈A pkkLA(0,k)+e
]

q for an additive noise e. Unfortunately,
this construction is insecure as the secret ski can be easily
recovered from pkk by the combiner.

Relying on the PLWE assumption, a possible approach
to resolve this issue is for a party Pk∈A to add small addi-
tive noise ek to the inner product, and reduce the result to
module q, i.e., pkk = [−a ·skk +ek]q. The combiner computes
pk as

[
∑k∈A pkkLA(0,k)

]
q. However, this solution might not

preserve the correct computation of the public key for two
reasons: (1) the reduction of each term a · skk before multi-
plying with a “rational” Lagrange coefficient LA(0,k) might
cause an incorrect reconstruction of the secret key; and (2)
the noise increases significantly because of a large Lagrange
coefficient when the combiner computes pk which has a noise[

∑k∈A ekLA(0,k)]q. The second issue has been pointed out
in [17] for a different but related problem. To address this, the
authors proposed to scale Lagrange coefficients to be integers
by multiplying with a term (n!)2, and also to increase the
modulus q of the scheme by log(n!) to support its additional
noise growth. However, the modulus q depends on the value
n, which leads to a non-compact ciphertext size.

Hence, we propose a different approach to ensure compact-
ness property while allowing decryption success. Specifically,
we assume that the set of A is publicly known by any party
in A, and each party Pk∈A computes pkk = [−a · skkLA(0,k)+

18

ek]q where ek ← χ2. One can consider that the pkk value is
an additive share of the joint public key pk. This allows the
combiner to compute pk as pk = [∑k∈A pkk]q without mak-
ing the noise blowup significantly. Note that pkk reveals
no information about skk since the PLWE assumption says
that

(
[−aLA(0,k)]q, [−a · skkLA(0,k)+ ek]q

)
hides skk. How-

ever, this solution raises another problem: the coefficients
of −a · skkLA(0,k) might not be integers. In Section D.2.5,
we show how to convert the term [−a · skkLA(0,k)]q to Rq
using our simple algorithm ConvMultq(). The key idea is to
find another value that makes the term −a · skk divisible by
the denominator of LA(0,k). In summary, the partial public
key has a formula pkk = [ConvMultq(−a ·skk,LA(0,k))+ek]q.
The joint public key is pk = [∑k∈A pkk]q = [a · s+ e]q where
the noise e = ∑k∈A ek is in the space χ′2.

D.2.2 ThHE.Join Computation

The main challenge is how to generate a new share skν for
a new party Pν when a subset of pivot parties drop out after
the initial setup (ThHE.KeyGen). To address the issue, we
propose to use Lagrange linear combination. Specifically, it is
assumed that there are t alive (either pivot or non-pivot) parties
Pk∈A for some party’s IDs k ∈ A. The new share skν can be
computed as ∑k∈A skkLA(ν,k) where LA(ν,k)=∏ j∈A\{k}

ν−k
j−k

is a Lagrange coefficient. However, it is insecure if each Pk∈A
sends a term skkLA(ν,k) to Pν since the Pν can factorize the
product and learn the skk. To handle this, we propose to mask
each term skkLA(ν,k) with a zero share zk where ∑k∈A zk = 0.
The masking prevents the attacker from learning an individual
skk and the zero-shares will be canceled out in the final sum
to maintain the correctness of the skν computation.

We now describe the zero-share generation [48, 64] as fol-
low. Each party Pk∈A chooses a random zk, j for j ∈ A, j > k,
and sends zk, j to the party Pj. After receiving z j,k from
the party Pj∈A, j<k, the Pk computes the zero share zk =

∑
j∈A, j<k

z j,k− ∑
j∈A, j>k

zk, j. It is easy to see that ∑k∈A zk = 0 as

desired.

D.2.3 ThHE.ShareRefresh Computation

The protocol calls ThHE.ShareRefresh to redistribute the
shares among servers. When many new servers join, the
protocol ensures that a combination of new and existing
servers cannot form a sufficiently large committee (e.g.,
more than t servers) capable of reconstructing the secret
key. Therefore, assuming the maximum number of malicious
servers is t− µ (for some µ > 0) before a new server joins,
ThHE.ShareRefresh must be invoked before every µ new
servers join, in order to increase the threshold t to t +µ

The way ThHE.ShareRefresh works is straightforward: a
set of t ′ servers is selected to act as the new pivot. Each of
these t ′ servers generates a t ′ out of n Shamir sharing of zero

PARAMETERS: The space Rq = Zq[X]/(XN + 1) and a set of
indices A
INPUT: x = (x1, . . . ,xN) ∈ Rq and LA(0,k) = ∏ j∈A\{k}

−k
j−k is a

Lagrange coefficient.
OUTPUT: [xLA(0,k)] ∈ Rq

1: procedure CONVMULTq(x,LA(0,k))
2: Find a,b such that a

b = LA(0,k) and gcd(a,b) = 1
3: Find qinv such that qinvq = 1 mod b
4: for i = 1, . . . ,N do
5: Compute x̄i =−qinvxi mod b
6: Compute x′i = xi + x̄i ∗q ▷ x′i = xi mod q
7: end for
8: return [x′LA(0,k)]q where x′ = (x′1, . . . ,x

′
N)

9: end procedure

Figure 10: Computation in Ring

(by setting the less significant coefficient c0,k of the poly-
nomial fi(X) to zero) and sends the share vi∈[t ′], j∈[n] to the
corresponding server Pj. Each server Pj∈[n] then updates its
current share sk j with [sk j +∑

t ′
i=1 vi, j]q. Since the original

share can be viewed as a t ′ out of n Shamir share of a polyno-
mial where the highest t ′− t coefficients are zero, the updated
share effectively becomes a Shamir share of the secret key
under the new threshold. The security is maintained because
the new shares are derived from a polynomial of degree t ′−1.

D.2.4 Encryption and Decryption

Our encryption follows directly from the encryption algorithm
of the conventional single-key HE. The encryption process
involves utilizing the noise space χ′2. This is for consistency
with the underlying HE construction, as depicted in Figure 9.
Note that the noise added to the public key pk also in this
domain.

In most existing HE schemes, the decryption has the form
[c0 + c1 · s]q where (c0,c1) is a ciphertext. Using the tech-
niques proposed in Section D.2.1, the decryption algorithm
can be implemented in a similar way to compute the pub-
lic key without revealing the secret key. Concretely, for any
set A of t alive parties, each Pk∈A can locally compute a par-
tial decryption pk = [ConvMultq(c1 ·skk,LA(0,k))+ek]q for a
small noise ek← χ2. The final decryption algorithm outputs[
p/q[c0+∑k∈A pk]q

]
p which is the desired plaintext when the

noise is sufficiently small.
If all t pivot parties are available, the partial decryption can

be simply implemented as follows. Each pivot Pi∈[t] sends
pi = [c1 · ci,0 + ei]q to a combiner, where ei← χ2 is a small
random noise. The combiner can perform a final decryption
by computing

[
p/q[c0 +∑

t
i=1 pi]q

]
p.

D.2.5 Computation in Ring

Recall that the pk is equal to
[

∑k∈A[−a · skkLA(0,k)+ ek]q
]

q

19

where each of the additive terms can be locally computed by
each party Pk∈A, and the LA(0,k) is not an integer. We present
a method named ConvMult to correctly evaluate the value as a
member of the finite field. The method is presented in Figure
10 .

To make the public key computation returns a correct form
of pk = [−a · s+ e]q, we have to deal with non-integer La-
grange coefficients LA(0,k). To this end, we introduce a func-
tion ConvMultq which aims to convert a term xLA(0,k) to a
polynomial in Rq, where x = (x1, . . . ,xN) ∈ Rq (in the pub-
lic key computation, x is −a · skk). The ConvMultq works as
below.

We present LA(0,k) as a fraction a
b where gcd(a,b) = 1.

Our goal is to make xi∈[N] to be divisible by b. It can be done
as follow. We first find x̄i satisfying that

xi +qx̄i = 0 mod b (4)

In our ThHE scheme, q is a large prime number. In addition,
b is less than ∏ j∈A\{k}(j− k) for the set of parties’ indices A
of size t. Thus, we have gcd(q,b) = 1. Consequently, Equa-
tion (4) has the unique solution x̄i = −xiqinv mod b, where
qinvq = 1 mod b. Furthermore, when we define x′i = xi + x̄iq,
we have x′i = xi mod q and x′i = xi +−xiqinvq = 0 mod b.
Therefore, x′i is dividable by b as desired and [xiLA(0,k)]q =
[x′iLA(0,k)]q. The function ConvMultq is presented in Fig-
ure 10.

D.3 Verifable Key Generation
When distributing threshold secret shares of the secret key, it
is essential to prevent malicious (pivot) parties from sending
incorrect shares. To address this, we use a method analogous
to Feldman’s verifiable secret sharing scheme [35].

We integrate the batch checking of share correctness from
[51] with Feldman’s verifiable sharing approach. This combi-
nation enables the parties in the protocol to verify the correct-
ness of the shares they receive. Details on how we implement
share correctness are presented in Figure 12.

• Completeness: If the share ski is correct ∀i ∈ A, then Se-
cretKeyVerify always outputs “accept”.

• Soundness: If some of the share ski is incorrect, then Se-
cretKeyVerify outputs “accept” with probability of 1

q−1 .

• Zero-knowledge: The simulator on parties Pi would gener-
ate their own random α at step 2, sampling commitment
C1, . . . ,Ct−1 uniformly from Zq, generate a random value
for JrKi at step 4 while uniformly sample C0 at step 6.

D.4 Parallel Polynomial Evaluation for Key
Generation

The parallel key generation algorithm consists of two phases:

• The first phase called Preprocessing, where each party at the
beginning just store values of [jk]q for all possible 1≤ j≤ n
and all 0 ≤ k ≤ t. This preprocessing step can be done
once and can be updated if total number of parties changed
without having to recompute all existed values.

• The second phase is the actual evaluation phase where the
party Pi receive request to evaluate fi(·) from n parties
{x1, . . . ,xn}. The party retrieves previously computed val-
ues of xk

j for all j ∈ [1,n] and forms a matrix. It also form
a matrix C from its own secret value ci,0, . . . ,ci,t−1. As
the matrix multiplication result in a matrix with column
j which has value of [∑k ci,kxk

j]q, the party i then outputs
polynomials from the result of the matrix multiplication.

We note that there are two main benefits by doing a parallel
evaluation in this manner:

• If the pivot parties are parties with high computational
power, they can use GPU for faster key generation as all
matrix multiplications can be done in parallel.

• We can concurrently evaluate requests from multiple clients,
thus increasing throughput of ThHE.SecretKeyGen.

To prove the correctness of the algorithm presented in Fig-
ure 13, we just write down the formula of C and X we formed
earlier as follow:

C =

 c(0)i,0 c(0)i,1 . . . c(0)i,t−1
...

c(t−1)
i,0 c(t−1)

i,1 . . . c(t−1)
i,t−1

 (5)

X =

 x0
1 x0

2 . . . x0
n

...

xt−1
1 xt−1

2 . . . xt−1
n

 (6)

Hence, C ·X =

 ∑
t−1
k=0 c(0)i,k xk

1 . . . ∑
t−1
k=0 c(0)i,k xk

n
.

∑
t−1
k=0 c(t−1)

i,k xk
1 . . . ∑

t−1
k=0 c(t−1)

i,k xk
n

We also have that for all X ∈ Zq

fi(x j)(X) =
t−1

∑
k=0

ci,kxk
j(X)

=
t−1

∑
k=0

(
t−1

∑
h=0

c(h)i,k Xh)xk
j

=
t−1

∑
h=0

(
t−1

∑
k=0

c(h)i,k xk
j)X

h

=
t−1

∑
h=0

(C ·X)h, jXh

(7)

Therefore, the representation of fi(x j) is the j-th column vec-
tor of C ·X , verifying the correctness of our output.

20

PARAMETERS:

• A threshold t, parties P1, . . . ,Pm for m ≥ t, a number n ∈ [t,m]. The B1-bounded and tB1-bonded secret spaces χ1 and χ′1,
respectively. The B2-bounded and tB2-bonded noise spaces χ2 and χ′2, the plaintext space Rp = Zp[X]/(XN +1), the ciphertext
and public key space Rq = Zq[X]/(XN +1), generator g of Zq, and ∆ = ⌊q/p⌋ for sufficiently large primes p and q.

• A single-key HE, a FuncEval, SecretKeyVerify, and a ConvMultq algorithm described in Figures 9, 13, 12, and 10, respectively.

PROTOCOL – ThHE.SecretKeyGen(λ,TS(t),P = {P1, . . . ,Pn})

1. For i ∈ [t], the pivot party Pi does the followings:

(a) Choose a random value ci,0← χ1, and t−1 random values ci,k← Rq for k ∈ [1, t−1]

(b) Form a polynomial of the degree (t−1) as fi(X) = ∑
(t−1)
k=0 ci,kXk, public commitments of ci,k: commi,k = gci,k

(c) Compute and send vi, j = FuncEval(1, . . . , t)[j] = [fi(j)]q to each party Pj∈[n]

(d) Each pivot Pi∈[t] outputs a shared secret key ski = (ci,0, [∑
t
j=1 v j,i]q)

(e) The server outputs the commitment Ck = ∏
t
i=1 commi,k = g∑

t
i=1 ci,k for all 0≤ k ≤ t−1

2. For i ∈ [t +1,n], Pi outputs a shared secret key ski = [∑t
j=1 v j,i]q

3. In case of malicious adversary, party P1≤i≤n runs SecretKeyVerify(ski,C0,C1, . . . ,Ct−1).

PROTOCOL – ThHE.ShareRefresh(P = {P1, . . . ,Pn}, t ′)

1. Sample a new set of t ′ pivot parties, WLOG {P1, . . . ,Pt ′}
2. For i ∈ [t ′], the new pivot party Pi does the followings:

(a) Choose t ′−1 random values ci,k← Rq for k ∈ [1, t−1]

(b) Form a polynomial of the degree (t ′−1) as fi(X) = ∑
(t−1)
k=1 ci,kXk, public commitments of ci,k: commi,k = gci,k

(c) Compute and send vi, j = FuncEval(1, . . . , t ′)[j] = [fi(j)]q to each party Pj∈[n]

(d) The server computes the commitment C′k = ∏
t
i=1 commi,k = g∑

t′
i=1 ci,k for all 1≤ k ≤ t ′−1

(e) The server updates the commitment Ck =Ck ∗C′k for all 1≤ k ≤ t−1 and Ck =C′k for t ≤ k ≤ t ′−1

3. For i ∈ [1,n], Pi outputs a shared secret key ski = ski +[∑t
j=1 v j,i]q

4. In case of malicious adversary, party P1≤i≤n runs SecretKeyVerify(ski,C0,C1, . . . ,Ct−1).

PROTOCOL – ThHE.Join(λ,{ski}i∈A,Pν∈[n+1,m])

1. If all t pivots {P1, . . . ,Pt} are online (e.g. A = {1, . . . , t}), they do the following: each Pi∈[t] computes and sends vi,ν = [fi(ν)]q to
a new party Pν who outputs a shared secret key skν = [∑t

i=1 vi,ν]q

2. If some subset of {P1, . . . ,Pt} dropout, a random t parties P(k∈A) for a set of indices A do the following:

(a) The party P(k∈A) computes uk = skkLA(ν,k) where LA(ν,k) = ∏ j∈A\{k}
ν−k
j−k is a Lagrange coefficient and skk is the Shamir

secret share of Pk

(b) Each party Pk chooses a random value zk, j for j ∈ A, j > k and then sends zk, j to Pj

(c) The party Pk∈A computes vk = uk + ∑
j∈A, j<k

z j,k− ∑
j∈A, j>k

zk, j and sends it to Pν

(d) Pν outputs a shared secret key skν = [∑i∈A vi]q

3. In case of malicious adversary, Pν runs SecretKeyVerify(skν,C1, . . . ,Ct−1)

Figure 11: Our Additive ThHE Construction from Polynomial-LWE (Text highlighting malicious key generation is colored in blue)

21

PROTOCOL – ThHE.PublKeyComp(λ,{ski}i∈A)

1. If all t pivots {P1, . . . ,Pt} are online (e.g. A = {1, . . . , t}), each pivot Pi broadcasts a partial public key pki = [−a · ci,0 + ei]q for
ei← χ2, and a combiner computes the public key pk = (

[
∑

t
i=1 pki

]
q,a).

2. If some subset of {P1, . . . ,Pt} dropout, a random t parties P(k∈A) for a set of indices A do the following. Each Pk broadcasts a
partial public key pkk = [ConvMultq(−a · skk,LA(0,k))+ ek]q for a random noise ek← χ2. A combiner computes the public key
as pk = ([∑k∈A pkk]q,a).

3. In case of malicious adverary, the parties run BatchSumVerify(pk[0],pki∈A[0]) to verify if public key is correctly computed.

PROTOCOL – ThHE.Encrypt(pk,µ):

1. Sample u← χ′1 and e1,e2← χ′2

2. Compute c0 = [p0 ·u+ e1 +∆ ·µ]q and c1 = [p1 ·u+ e2]q where p0 = pk[0], p1 = pk[1]

3. Output (c0,c1)

PROTOCOL – ThHE.Add(ct1, . . . ,ctn): Output HE.Add(ct1, . . . ,ctn)

PROTOCOL – ThHE.PartDec(ct,ski):

1. Let c0 = ct[0] and c1 = ct[1]

2. Output a partial decryption pi = (c0, [ConvMultq(c1 · ski,LA(0, i))+ ei]q) for a small noise ei← χ2.

3. If Pi is a pivot, Pi outputs an additional partial decryption p′i = (c0, [c1 · ci,0 + ei]q)

PROTOCOL – ThHE.FinalDec({pi}i∈A): Given any set A of t alive parties,

1. If A is a set of t partial decryptions from pivots, outputs
[
p/q[c0 +∑

t
i=1 p′i]q

]
p

2. Otherwise, outputs
[
p/q[c0 +∑k∈A pk]q

]
p

Figure 11: Our Additive ThHE Construction from Polynomial-LWE (Text highlighting malicious key generation is colored in blue) (cont.)

PARAMETERS: The space Rq = Zq[X]/(XN + 1) and a set of
online parties A
INPUT: Party Pv has a share skv that he wants to verify. Pv also
has C1, . . . ,Ct−1 where Ci = gci being the commitment of party
Pi Shamir polynomial
OUTPUT: “accept” if the skv is the correct Shamir share of party
Pv, else “reject”.

1: procedure SECRETKEYVERIFY(skv,C0, . . . ,Ct−1)
2: Pv check if

gskv[i] =C0[i](C1[i])v(C2[i])v2
. . .(Ct−1[i])vt−1

,∀i ∈ [N]

and abort if they are not equal
3: end procedure

Figure 12: Secret Key Verification.

E ThHE Properties

E.1 Compactness and Complexity
As the encryption and homomorphic computation of ThHE
are performed in a similar fashion to single-key HE. Thus, the
(evaluated) ciphertext size and the size of the partial decryp-
tion result are independent of the number of decryptors/parties.
Assume that the ciphertext size of the underlying single-key
HE only depends on the security parameter λ, so is the ThHE
ciphertext size. For completeness, we present the complexity
of each algorithm in Table 8.

E.2 Correctness
The ThHE’s correctness follows from the correctness of the
underlying threshold scheme and single-key HE schemes.

Definition 3. (Correctness) We say that a ThHE scheme is
correct if for all security parameter λ, a threshold scheme TS
with a threshold t, the k messages µi ∈ {0,1}⋆ for i ∈ [k], sets
P = {P1, . . . ,Pm} and P ′ = {P1, . . . ,Pn} for m ≥ n ≥ t. For
(pk,sk1, . . . ,skn)← ThHE.KeyGen(λ,TS(t),P ′); for ν∈ [n+
1,m],skν← ThHE.Join(λ,{ski}i∈A′ ,Pν) where A′ is an index
set of t shared secret keys; cti = ThHE.Encrypt(pk,µi),∀i ∈

22

Computation Communication
Pivot Non-Pivot Combiner Pivot Non-Pivot Combiner

ThHE.SecretKeyGen O(n log(t)) O(log(t)) – O(nN log(q)) O(tN log(q)) –
ThHE.PublKeyComp (1) O(N log(N)) – O(tN) O(N log(q)) – O(tN log(q))
ThHE.PublKeyComp (2) – O(N log(N)+ t) O(tN) – O(N log(q)) O(tN log(q))
ThHE.Join (1) O(log(t)) O(log(t)) – O(N log(q)) O(tN log(q)) –
ThHE.Join (2) – O(t2) – – O(tN log(q)) –
ThHE.Encrypt O(N log(N)) O(N log(N)) – – – –
ThHE.Add O(N) O(N) – – – –
ThHE.PartDec O(N log(N)) O(N log(N)) – O(N log(q)) O(N log(q)) –
ThHE.FinalDec – – O(tN) – – O(tN log(q))

Table 8: The Complexity of Our ThHE Construction. We have three types of parties: pivot, non-pivot, and combiner. The combiner can
be any party including pivot, non-pivot, or a third party such as a server in our FL application. The ThHE key generation and decryption
algorithms rely on Shamir secret sharing which contains the polynomial operations. Using fast Fourier transform (FFT) [19, 54], the two
t-degree polynomial multiplication has computational complexity of O(t log t), and n-point evaluation has the complexity O(n log t). (1): t
pivots are online. (2): A subset of pivots are offline but at least t parties are online. n, t represents the number of parties, the threshold for our
ThHE. The ciphertext space is Rq = Zq[X]/(XN +1). Cells with − denote computation/communication that is not valid by the protocol.

[k]; and ct = ThHE.Add(ct1, . . . ,ctk), we have:

Prob[ThHE.FinalDec(D) = µ1 + . . .+µk)] = 1−negl(λ)

where D= {ThHE.PartDec(ct,ski)) | i∈ A} and A is an index
set of t shared secret keys.

Theorem 2. (Correctness) Suppose TS is a threshold scheme
that satisfy correctness. Then, the ThHE construction de-
scribed in Fig. 11 satisfies correctness defined in Def. 3.

Proof. We prove the following:

• The ThHE.KeyGen and ThHE.Join algorithms gives the
valid share of the secret key sk = ∑

t
i=1 ci,0 to each party in

P who joins the computation at the beginning (the share
generated by ThHE.SecretKeyGen) or in the middle (the
share generated by ThHE.Join) of the process. Additionally,
given any t valid shares, the algorithm correctly computes
the public key pk which has the same formula as the public
key of the single-key HE scheme described in Figure 9.

• If the underlying (conventional) HE scheme satisfies cor-
rectness with the noise bound, the ThHE.PartDec algorithm
returns the correct plaintext p given the same noise bound,
and the encryption ct of the p which is computed by either
ThHE.Encrypt or ThHE.Add.

Fix the security parameter λ, threshold scheme TS
with a threshold t, the k messages µi ∈ {0,1}⋆ for
i ∈ [k], sets P = {P1, . . . ,Pm} and P ′ = {P1, . . . ,Pn} for
m ≥ n ≥ t, the following holds. For (pk,sk1, . . . ,skn) ←
ThHE.KeyGen(λ,TS(t),P ′); for ν ∈ [n + 1,m],skν ←
ThHE.Join(λ,{ski}i∈A′ ,Pν) where A′ is an index set of t
shared secret keys; cti = ThHE.Encrypt(pk,µi),∀i ∈ [k]; and
ct = ThHE.Add(ct1, . . . ,ctk). We must show that given D =
{ThHE.PartDec(ct,ski)) | i ∈ A} where A is an index set of

t shared secret keys, Prob[ThHE.FinalDec(pk,ct,D) = µ1 +
. . .+µk)] = 1−negl(λ). To this end, we show the followings.

(1) The ThHE.KeyGen generates the valid share of the secret
key sk = ∑

t
i=1 ci,0 to each party in P ′.

Let consider the t-degree polynomial f (X) = ∑
t
i=1 fi(X),

where the polynomial fi(X) = ∑
(t−1)
k=0 ci,kXk has been cho-

sen by the pivot party Pi∈[t]. As each ci,0 is sampled
from the B1-bounded distribution χ1, the value of f (0)
is bounded by tB1. We first show that each party Pi∈[n]
receives the valid S3 share [f (i)]q from ThHE.KeyGen.
Subsequently, we prove that any t shares can reconstruct
the jointed secret key sk = ∑

t
i=1 ci,0.

Recall that the pivot party’s key comprises of two com-
ponents, namely ski = (ci,0, [∑

t
j=1 v j,i]q). For the sake

of simplicity, we shall disregard the first component of
the key. According to ThHE.SecretKeyGen, it is easy
to see that ski = [f (i)]q holds for all i ∈ [m], given that
ski = [∑t

j=1 v j,i]q = [∑t
j=1[f j(i)]q]q.

(2) The ThHE.KeyGen algorithm correctly computes the pub-
lic key pk.
Given t partial public keys pki = [−a · ci,0 + ei]q from t
pivots, the first term of the public key is computed correctly
as pk =

[
∑

t
i=1 pki

]
q =

[
∑

t
i=1−a ·ci,0+ei

]
q = [−a ·s+e]q

for the noise e = ∑
t
i=1 ei. Note that the secret key sk =

∑
t
i=1 ci,0 and the noise e = ∑

t
i=1 ei, where all ci,0 and ei are

sampled from χ1 and χ2, respectively, thus, the sk and e
are sampled from the distribution χ′1 and χ′2, respectively.
In a general case when there is a set A of t alive par-
ties, each Pk∈A publishes its partial public key pkk =
[ConvMultq(−a · skk,LA(0,k))+ ek]q. This allows a com-
biner to correctly compute the joint public key which has
the same formula as the public key of the single-key HE

23

PARAMETERS: The space Rq = Zq[X]/(XN + 1), total
number of parties n, threshold t, number of points to eval-
uate ρ

INPUT: ci,0, ..,ci,t−1 ∈ Rq; x1, . . . ,xρ ∈ [n]
OUTPUT: fi(x j) = [∑t−1

k=0 ci,kxk
j]q, ∀ j ∈ [ρ]

1: procedure PREPROCESSING(ρ)
2: for j = 1, . . . ,ρ do
3: Compute z j = jk mod q
4: store a vector X j = {z0,z1, . . . ,xt−1} for later

usage
5: end for
6: end procedure
7: procedure FUNCEVAL(x1, . . . ,xρ)
8: for k = 1, . . . ,ρ do
9: Get Xxk = Preprocessing(ρ)[xk]

10: end for
11: Form a matrix X with k-th column equals Xxk

12: for j = 0, . . . , t−1 do
13: Form a vector C j = {c

(0)
i, j , . . . ,c

(t−1)
i, j } where

the elements satisfies: ci, j: ci, j = ∑
t−1
k=0 c(k)i, j Xk

14: end for
15: Form a matrix C with k-th column equals Ck
16: Compute the matrix multiplication: Y = [C ·X]q
17: Form n polynomials from Y : yk(x) = ∑

t
j=1 Yj,kx j

18: return y1, . . . ,yn
19: end procedure

Figure 13: Parallel Polynomial Evaluation

scheme described in Figure 9. It due to the fact that

pk =
[
∑
k∈A

pkk
]

q

=
[
∑
k∈A

[ConvMultq(−a · skk,LA(0,k))+ ek]q
]

q

=
[
∑
k∈A

[−a · skkLA(0,k)+ ek]q
]

q

=
[
−a[∑

k∈A
skkLA(0,k)]q +[∑

k∈A
ek]q

]
q

= [−a · s+ ∑
k∈A

ek]q

(3) The ThHE.Join give the valid share of the secret key sk =
∑

t
i=1 ci,0 to each new party.

In ThHE.Join, which generates a new secret key skν for
a new user Pν∈[m+1,n], the computation of skν is identi-
cal to that in ThHE.SecretKeyGen, provided all t pivots
are online. Thus, we have skν = [f (ν)]q. For a general
case scenario where a set A of any t parties is avail-
able, the computation1 of the skν is given by skν =
[∑k∈A skkLA(ν,k)]q. Here, LA(ν,k) = ∏ j∈A\{k}

ν−k
j−k is a

1For simplicity, we disregard the zero share, as it finally cancels out

Lagrange coefficient. Using Lagrange linear combina-
tion, the skν is a valid Shamir share of sk since we have
skν = [∑k∈A[f (k)]qLA(ν,k)]q = [f (ν)]q.
Given a set A of any t valid Shamir secret shares, one
can reconstruct sk by computing ∑k∈A skkLA(0,k) =

∑k∈A[f (k)]qLA(0,k) = [f (0)]q = sk.
(4) Assuming that the underlying (conventional) homomor-

phic encryption scheme satisfies correctness with a noise
bound of tB2, the ThHE.PartDec algorithm will return the
correct plaintext p when given the same noise bound tB2
and the encryption ct of p that was computed by either
ThHE.Encrypt or ThHE.Add algorithm.
Recall that the constant coefficient sk of f (X) is bounded
by tB1, which means that the secret key sk belongs to the
distribution χ′1. Additionally, the noise term e in the public
key pk is equal to [∑k∈A ek]q, where each local noise ek is
sampled from the B2-bounded distribution χ2, and there-
fore, the e also belongs to the tB2-bounded distribution
χ′2.
The ThHE.Add calls the additive evaluation algorithm
of the single-key HE. Hence, when using the underly-
ing single-key HE with the noise space χ′2 to prove that
Prob[ThHE.FinalDec(D) = C(µ1, . . . ,µk)] = 1− negl(λ)
where D= {ThHE.PartDec(ct,ski)) | i∈A}, it is sufficient
to prove that Prob[ThHE.FinalDec(D) = µ] = 1−negl(λ)
where ct is the encryption of µ =C(µ1, . . . ,µk).
In ThHE.Encrypt, the ciphertext ct = (c0,c1) is computed
as follows: c0 = [(−a · s+ e) ·u+ e′1 +∆ ·µ]q; c1 = [a ·u+
e′2]q; u← χ′1;e′1,e

′
2 ← χ′2; and ∆ = ⌊q/p⌋. When the set

A consists of the t pivot parties, they perform the partial
decryption p′i = [c1 ·ci,0+ei]q and then compute

[
p/q[c0+

∑
t
i=1 p′i]q

]
p. We have:

[c0 +
t

∑
i=1

p′i]q = [c0 +
t

∑
i=1

[c1 · ci,0 + ei]q]q

= [c0 + c1 · s+
t

∑
i=1

ei]q

=
[
[(−a · s+ e) ·u+ e′1 +∆ ·µ]q

+[a ·u+ e′2]q · s+
t

∑
i=1

ei
]

q

= [∆ ·µ+ e ·u+ e′1 + e′2 · s+ e′]q

where e′ = ∑
t
i=1 ei ∈ χ′2. Since all the variables

e,u,e′1,e
′
2,e
′,s are from the bounded distribution, the[

p/q[c0 +∑
t
i=1 p′i]q

]
p gives the desired plaintext µ.

In a general case when there is a set A of t alive parties, the
final decryption of the ciphertext ct = (c0,c1) is given
by

[
p/q[c0 + ∑k∈A pk]q

]
p where pk = [ConvMultq(c1 ·

24

skk,LA(0,k))+ ek]q. We have:

[c0 + ∑
k∈A

pk]q =
[
c0 + ∑

k∈A
[c1 · skkLA(0,k)+ ek]q

]
q

=
[
c0 + c1 ·∑

k∈A

(
skkLA(0,k)

)
+ ∑

k∈A
ek]q

]
q

= [c0 + c1 · s+
t

∑
i=1

ek]q

Similar to the above case, the final decryption
[
p/q[c0 +

∑k∈A pk]q
]

p gives the correct plaintext µ.

E.3 Security
The security definition of ThHE is stated in accordance with
the threshold security of [17] which includes the seman-
tic/simulation security in Definition 4 and Definition 5. The
challenge with these definitions is how to accurately reflect
the dynamics of the setting. For simplicity, we assume that
the adversary controls the malicious parties only after the join
or refresh share functions are called.

We state the semantic security and simulation of our ThHE
in Theorem 3 and Theorem 4, respectively in Appendix. At
the high-level idea, the security of our ThHE relies on the
PLWE assumption, the security of threshold scheme (e.g.,
Shamir secret sharing) and the single-key HE schemes. First,
we observe that all the broadcast messages in the ThHE con-
struction have a form (a, [a · x+ e]q) for a← Rq and e← χ2.
Based on the PLWE problem, these messages reveal nothing
about the underlying secret x. Second, we ensure that any set
of t−1 parties cannot reconstruct the original secret because
of the Shamir secret sharing scheme. Thus, no one can learn
the secret key as well as other parties’ input unless t parties
collude. Finally, the encryption and evaluation algorithms are
computed in a similar way to single-key HE. Therefore, if
the underlying single-key HE is secure, so are these two al-
gorithms of ThHE. For achieving malicious security, we can
refer directly to the discussion in Section 5 and Appendix D.3.

Definition 4. (Semantic Security) We say that a ThHE scheme
satisfies semantic security if for all security parameter λ, the
following holds. For any PPT adversary Adv, the following
experiment Exptsem

Adv,T hHE(1
λ) outputs 1 with negligible proba-

bility.
Exptsem

Adv,T hHE(1
λ):

• On input the security parameter λ, the adversary Adv out-
puts a threshold scheme TS with a threshold t.

• The challenger runs (pk,sk1, . . . ,skn) ←
ThHE.KeyGen(λ,TS(t),P ′), skν ←
ThHE.Join(λ,{ski}i∈A′ ,Pν), for ν ∈ [n + 1,m],
and {sk1, . . . ,skn} ← ThHE.ShareRefresh(P =
{P1, . . . ,Pn}, t ′), where P ′ = {P1, . . . ,Pn} and A′ is
an index set of t shared secret keys. The challenger provides
pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . ,Pm} for such that
|V |< t. Note that this occurs after ThHE.Join to ensure the
security of the dynamic model. For ThHE.ShareRefresh, we
can consider the security with respect to the new threshold
t ′ to be similar to that of the original threshold t.

• The challenger provides {ski | i ∈ V} along with the ct =
ThHE.Encrypt(pk,µ) for µ←{0,1}⋆ to Adv.

• The challenger provides the ciphertext ct =
ThHE.Encrypt(pk,µ) for µ←{0,1}⋆ to Adv.

• Adv outputs a guess µ′. The experiment outputs 1 if µ = µ′.

Definition 5. (Simulation Security) We say that a ThHE
scheme satisfies simulation security if for all security pa-
rameter λ, the following holds. There exists a stateful PPT
algorithm T = (T1,T2,T3,T4) such that for any PPT adver-
sary Adv, the following experiments ExptAdv,T hHE,REAL(1λ)

and ExptAdv,T hHE,IDEAL(1λ) are indistinguishable:
ExptAdv,T hHE,REAL(1λ):

• On input the security parameter λ, the adversary Adv out-
puts a threshold scheme TS with a threshold t.

• The challenger runs the key generation (pk,sk1, . . . ,skn)←
ThHE.KeyGen(λ,TS(t),P ′), the join algorithm
skν ← ThHE.Join(λ,{ski}i∈A′ ,Pν), for ν ∈ [n + 1,m],
and {sk1, . . . ,skn} ← ThHE.ShareRefresh(P =
{P1, . . . ,Pn}, t ′) where P ′ = {P1, . . . ,Pn} and A′ is an
index set of t shared secret keys. The challenger provides
the pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . ,Pm} such that |V |<
t, and k messages µ j∈[k] ← {0,1}⋆. Note that this occurs
after ThHE.Join to ensure the security of the dynamic model.
For ThHE.ShareRefresh, we can consider the security with
respect to the new threshold t ′ to be similar to that of the
original threshold t.

• The challenger provides {ski | i ∈ V} and the ciphertexts
ct j∈[k] = ThHE.Encrypt(pk,µ j) to Adv.

• Adv issues a polynomial number of queries for the
form (S ⊂ {P1, . . . ,Pm},C ⊂ {1, . . . ,m}}). For each
query, the challenger computes ĉt = ThHE.Add({cti |
i ∈ C}), and provides the partial decryption pi =
ThHE.PartDec(ĉt,ski),∀i ∈ S to Adv.

• Adv outputs a distinguishing bit b
ExptAdv,T hHE,IDEAL(1λ):
• On input the security parameter λ, the adversary Adv out-

puts a threshold scheme TS with a threshold t.
• The challenger runs (pk,sk1, . . . ,skn)← T1(λ,d,TS(t),P ′)

and skν ← T2(λ,{ski}i∈A′ ,Pν), for ν ∈ [n + 1,m] where
P ′ = {P1, . . . ,Pn} and A′ is an index set of t shared secret
keys. The challenger provides the pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . ,Pm} such that |V |<
t, and k messages µ j∈[k]←{0,1}⋆,

• The challenger provides {ski | i ∈ V} and the ciphertexts
ct j∈[k] = ThHE.Encrypt(pk,µ j) to Adv.

• Adv issues a polynomial number of queries for the form
(S ⊂ {P1, . . . ,Pm},C ⊂ {1, . . . ,m}). For each query, the

25

challenger computes ĉt = T3({cti | i ∈ C}), and provides
the partial decryption pi = T4(ĉt,ski),∀i ∈ S to Adv.

• Adv outputs a distinguishing bit b

Intuitively, the security definitions say that given an invalid
set V of parties (i.e., |V |< t), (1) the adversary should not be
able to learn anything about µ given the encryption of a mes-
sage µ chosen by the challenger; (2) when the adversary Adv
gives the ciphertexts ct j of the chosen messages µ j, requests
to perform computations C on the ciphertexts, and their partial
decryptions, the adversary should not learn any information
about the shared secret key of other honest parties or the se-
cret key sk from the partial decryptions. The Adv executes the
final decryption, but learns nothing except the ∑i∈C µi.

Theorem 3. (Semantic Security) Suppose HE is an addi-
tive homomorphic encryption scheme and TS is a threshold
scheme that satisfy security. Then, the ThHE construction
described in Figure 11 also satisfies semantic security defined
in Definition 4 under the PLWE assumption.

Proof. The semantic security of our ThHE follows from the
semantic security of the underlying FHE and the property of
threshold scheme in a straightforward way.

The encryption algorithm of our ThHE scheme follows the
same encryption of the single-key HE where the noise is sam-
ple from χ′2. In the ThHE.PublKeyComp, the noise term e of
the public key pk is obtained by summing up randomly sam-
pled noise terms ei from a B2−bounded distribution χ2. As
the χ2 (such as the Gaussian distribution) has an additive prop-
erty, the resulting e can be considered to be sampled from a
tB1-bounded distribution χ′1. This means that both encryption
and key generation sample noises from the same distribution
χ′2, which is identical with the encryption procedure of the
single-key HE.

The adversary Adv obtains access to shared keys from the
invalid set V . Thanks to the security guarantee of the threshold
scheme, Adv gains no knowledge about the secret key. With
no knowledge of the secret key, the security of the single-key
HE encryption (as is the case with our ThHE) ensures that no
information about the plaintext is disclosed during encryption
without knowing the secret key. Consequently, the adversary’s
ability to correctly guess the value µ′ = µ is negligible.

Theorem 4. (Simulation Security) Suppose HE is an addi-
tive homomorphic encryption scheme and TS is a threshold
scheme that satisfy security. Then, the ThHE construction de-
scribed in Figure 11 also satisfies simulation security defined
in Definition 5 under the PLWE assumption.

Proof. To prove the theorem, we simulate that the real-world
and ideal-world executions are indistinguishable. In our
ThHE, the T = (T1,T2,T3,T4) implements the ideal function-
ality of (ThHE.KeyGen
,ThHE.Join, ThHE.Add,ThHE.PartDec). Specifically,

• T1(λ,TS(t),P ′): On input the security parameter λ, a
TS with the threshold t, and P ′, the algorithm outputs
(pk,sk1, . . . ,skn) where (sk1, . . . ,skn) is generated from a
threshold scheme TS(t) in which any t values ski can con-
struct a secret value sk. The pk has a same formula as the
public key described in Figure 9.

• T2(λ,{ski}i∈A′ ,Pν): On input λ, an index set A′ of t shared
secret keys, the algorithm outputs skν which is a valid share
of the TS(t).

• T3(P = {P1, . . . ,Pn}, t ′): On an parties set P1, . . . ,Pn and
new threshold t ′, the algorithm outputs ski∈[n] which is a
valid share of the TS(t ′).

• T4({cti | i ∈C}): On input a set {cti | i ∈C}, the algorithm
outputs the ciphertext ĉt, which is encryption of the the sum
on {µi | i ∈C}, where µi is the plaintext of cti.

• T5(ĉt,ski): On input ĉt, and ski, the algorithm outputs pi
such that any t values pi can compute µ̂ which is the plain-
text of ct.
We now prove the theorem using a sequence of hybrid

experiments between a challenger and an adversary Adv. For
the correctness of the algorithm T , we refer the reader to
Theorem 2.

Hybrid 0: This is ExptAdv,T hHE,REAL(1λ) – the ThHE real
security experiment, where all parties run the ThHE scheme
honestly.

Hybrid 1: The same as the real interaction (Hybrid 0),
except that the challenger now samples (pk,sk1, . . . ,skn) us-
ing T1. Specifically, instead of computing (sk1, . . . ,skn)←
ThHE.SecretKeyGen
(λ,TS(t),P ′) and pk← ThHE.KeyGen(λ,{ski}i∈A) for a sub-
set A⊂ P ′, |A|= t, the challenger now samples these values
(pk,sk1, . . . ,skn)← T1(λ,TS(t),P ′). The rest of the experi-
ment remains unchanged.

In the ThHE.SecretKeyGen, each corrupt party Pj∈V re-
ceives vi, j = [fi(j)]q from the honest party Pi. Relying on
the security property of the threshold scheme, the adversary
Adv which controls the invalid set V of the size less than the
threshold t should have no different view from the shared keys
generated by T1. Moreover, when V consists of only pivots
parties, Adv sees no difference between the set of ideal shares
and the set of real shares of secret key due to the fact that the
remaining shares of honest pivot parties are unknown values
in χ1 domain to Adv and the sk is additively shared to t pivots,
which of them is honest. Therefore, the adversary view of two
worlds from ThHE.SecretKeyGen is identical.

To simulate the ThHE.PublKeyComp which computes the
public key pk, we consider two following cases based on the
method to compute the keys:
• All t pivots are online: In this case, the pivot publishes pki =
[−a · ci,0 + ei]q where ci,0← χ1 and ei← χ2. According to
the PLWE assumption, the pki reveals nothing about ci,0 to
the adversary.

• Some subset of pivots {P1, . . . ,Pt} dropout, a random t par-
ties P(k∈A) for a set of indices A is chosen for invoking

26

ThHE.PublKeyComp computation: In this case, the honest
Pk broadcasts a partial public key pkk = [ConvMultq(−a ·
skk,LA(0,k))+ ek]q for a random noise ek ← χ2. We can
present pkk as [−(aLA(0,k)) · skk + ek]q where both a and
LA(0,k) are the public values; and the values skk ∈ Rq,ek ∈
χ2. Note that [aLA(0,k)]q are uniformly sampled in Rq
due to the fact that a is uniformly sampled in Rq and
gcd(LA(0,k),q) = 1 for any k ∈ Zq,k ̸= 0. According to
the PLWE assumption, a pair

(
[aLA(0,k)]q,

[−(aLA(0,k)) ·skk +ek]q
)

hides skk. Therefore, pkk reveals
nothing to the adversary.
In summary, all the messages that were sent/received during

the ThHE.PublKeyComp procedures are either under a form
of (a, [a · x+ e]q), which can be replaced with random ones.
Hence, Hybrid 0 and Hybrid 1 are indistinguishable.

Hybrid 2: The same as Hybrid 1, except that the chal-
lenger now uses T2 to compute skν for the new Pν. Specifi-
cally, instead of computing skν← ThHE.Join(λ,{ski}i∈A,Pν)
for a subset A⊂ P ′, |A|= t, the challenger now samples the
skν← T2(λ,{ski}i∈A′ ,Pν). The rest of the experiment remains
unchanged.

In the ThHE.Join when the new key skν is computed by all
t pivot parties (Step 1), the simulation is simple as it is similar
to the case of the ThHE.SecretKeyGen. Consider a scenarios
when a random t parties P(k∈A) computes skν, the adversary
receives vk from the honest party Pk. The vk equals to vk = uk+
zk where the value zk = ∑

j∈A, j<k
z j,k− ∑

j∈A, j>k
zk, j is considered

as the share of zero, which was distributed by t parties (i.e., zk
looks random to the adversary as |V |< t). Thus, the corrupt
parties cannot unmask the vk = uk + zk to learn uk as well
as the secret key skk. Therefore, the ThHE.Join computation
is secure against up to t colluding parties. In other words,
ThHE.Join implements the ideal functionality of T1 securely.
Thus, Hybrid 1 and Hybrid 2 are indistinguishable.

Hybrid 3: The same as Hybrid 2, except that the challenger
now uses T3 to compute ski∈[n] for the new threshold t.

Generating the t ′-out-of-n Shamir secret shares of zero fol-
lows the concept of the ThHE.SecretKeyGen protocol, where
the secret key is initialized to zero. This approach is secure,
allowing us to replace the transcript with random values. Ad-
ditionally, we leverage the additive property of Shamir shares,
ensuring that the secret key (sk) is neither reconstructed nor
revealed during the computation. Therefore, Hybrid 1 and
Hybrid 2 are indistinguishable.

Hybrid 4: The same as Hybrid 3, except that the challenger
now computes ĉt,{pi}i∈S from T3,T4, respectively. Specifi-
cally, instead of computing the ĉt = ThHE.Add({cti | i ∈C})
and pi ← {ThHE.PartDec(ĉt,ski)}i∈S, the challenger now
samples the ĉt← T3({cti | i ∈C}) and pi← T4(ĉt,ski). The
rest of the experiment remains unchanged.

Note that, the µ j were chosen by the adversary. In addition,
the ThHE.Add({cti | i∈C}) calls the subroutine HE.Add({cti |
i ∈C}) of the single-key HE. Thus, the simulation for ĉt and

{ct j} j∈[k] is elementary. The only information sent to the
adversary is the set of values pi.

Recall that the partial decryption pi has a form pi =
[c1 · ci,0 + ei]q or pi = [ConvMultq(c1 · ski,LA(0, i)) + ei]q =
[c1LA(0, i) · ski + ei]q where ei ← χ2 is a small noise. Ac-
cording to the PLWE assumption, a pair (c1, [c1 · ci,0 + ei]q)
or ([c1LA(0, i)]q, [c1LA(0, i) · ci,0 + ei]q) protects information
about ci,0 or ski from the adversary Adv. Therefore, the Adv
gains no information about the secret key of the honest party,
regardless of the chosen C or plaintexts µ j. The Adv might
perform the final decryption to obtain ∑i∈C µi). However, this
provides the same information that Adv also receives in the
ideal world. Therefore, the Hybrid 2 and Hybrid 3 are indis-
tinguishable.

27

	Introduction
	Preliminary and Related Work
	Secure Aggregation in Federated Learning
	Threshold Homomorphic Encryption

	Protocol Building Blocks
	Our Dynamic Threshold HE
	Our Variant of Batch Sum's Verification
	Zero-knowledge Argument of Knowledge

	Semi-Honest Secure Aggregation
	Achieving Malicious Secure Aggregation
	Input Privacy
	Achieving Privacy with Robustness

	Experiment
	Comparison to Prior Work
	Our Mario Performance

	Conclusion
	Estimate time of robustness protocol
	Preliminaries
	Polynomial-LWE based HE
	Threshold Scheme and Secret Sharing

	Sketched security proof for BatchSumVerify
	Dynamic Threshold HE
	System Design
	Construction in the Semi-honest Setting
	Key Generation in ThHE
	ThHE.Join Computation
	ThHE.ShareRefresh Computation
	Encryption and Decryption
	Computation in Ring

	Verifable Key Generation
	Parallel Polynomial Evaluation for Key Generation

	ThHE Properties
	Compactness and Complexity
	Correctness
	Security

