
New constructions of pseudorandom codes

Surendra Ghentiyala ∗ Venkatesan Guruswami †

September 2024

Abstract

Introduced in [CG24], pseudorandom error-correcting codes (PRCs) are a new cryptographic
primitive with applications in watermarking generative AI models. These are codes where a
collection of polynomially many codewords is computationally indistinguishable from random,
except to individuals with the decoding key. In this work, we examine the assumptions under
which PRCs with robustness to a constant error rate exist.

1. We show that if both the planted hyperloop assumption introduced in [BKR23] and security
of a version of Goldreich’s PRG hold, then there exist public-key PRCs for which no
efficient adversary can distinguish a polynomial number of codewords from random with
better than o(1) advantage.

2. We revisit the construction of [CG24] and show that it can be based on a wider range of
assumptions than presented in [CG24]. To do this, we introduce a weakened version of
the planted XOR assumption which we call the weak planted XOR assumption and which
may be of independent interest.

3. We initiate the study of PRCs which are secure against space-bounded adversaries. We
show how to construct secret-key PRCs of length O(n) which are unconditionally indis-
tinguishable from random by poly(n) time, O(n1.5−ε) space adversaries.

∗Cornell University. sg974@cornell.edu. This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google. This work was done
while the author was visiting the Simons Institute for the Theory of Computing.

†Simons Institute for the Theory of Computing and Department of EECS, University of California, Berkeley.
venkatg@berkeley.edu. Research supported in part by a Simons Investigator award, and NSF grant CCF-2211972.

mailto:sg974@cornell.edu
mailto:venkatg@berkeley.edu

Contents

1 Introduction 1

1.1 PRCs and Applications . 1

1.2 Watermarking large language models . 2

1.3 Our results . 3

1.3.1 Planted hyperloop construction . 3

1.3.2 Revisiting [CG24] and planted XOR assumption 3

1.3.3 Unconditional PRCs for space-bounded adversaries 4

1.4 Further directions . 4

1.5 Related work . 5

2 Preliminaries 6

2.1 Notation . 6

2.2 Probability and combinatorics . 6

2.3 Indistinguishability and LPN . 7

2.4 Pseudorandom Codes . 8

3 A warmup 11

4 Planted hyperloop construction 13

4.1 The assumptions . 13

4.2 The construction . 15

4.3 Robustness . 15

4.4 A form of soundness . 17

4.5 Pseudorandomness . 17

4.6 Putting it all together . 17

5 The weak planted XOR construction 18

5.1 The assumption . 18

5.2 Evidence XORm,t,ε is a weaker assumption than XORm,t,0 19

5.3 The construction . 21

5.4 Robustness . 21

5.5 A form of soundness . 22

5.6 Pseudorandomness . 22

5.7 Putting it all together . 22

6 PRCs for space-bounded adversaries 23

ii

6.1 Construction . 23

6.2 Robustness . 23

6.3 Soundness . 25

6.4 Pseudorandomness . 26

6.5 Putting it all together . 27

7 Perspectives 28

A Time-space hardness of Θ(log n)-sparse LPN 31

B Hypergeometric distribution lemma 33

iii

1 Introduction

1.1 PRCs and Applications

An exciting recent work by Christ and Gunn [CG24] introduced the notion of pseudorandom error-
correcting codes (PRCs) with the intent to watermark generative AI models. Informally, pseudo-
random error-correcting codes are keyed coding schemes with the following three properties (see
Definition 2.14 and Definition 2.15 for details).

1. Pseudorandomness: codewords are computationally indistinguishable from random for any
algorithm which does not have the secret key.

2. Robustness: anyone with the secret key can decode corrupted codewords with overwhelming
probability.

3. Soundness: any fixed x ∈ {0, 1}n has a negligible probability (over the key generation algo-
rithm) of being decoded to a message by the decoding algorithm.

One of the beautiful insights of [CG24] is that PRCs can be used to watermark generative models
if one simply reinterprets the model as a channel which corrupts the randomness it uses. Consider
an abstracted polynomial time generative algorithm Generate that as part of its input takes in a
random input seed x ∈ {0, 1}n, and produces content t ∈ {0, 1}n. We model an adversary trying to
evade detection by a channel E ′ : {0, 1}n → {0, 1}n which corrupts the content t into t̃. Furthermore,
we assume that there exists an algorithm Recover which recovers an approximation x̃ of x from an
edited version of t̃. The channel E = Recover ◦ E ′ ◦ Generate then acts as a corrupting channel for
the input seed x.

Notice that if we run Generate seeded with a codeword from a PRC, rather than truly random
x, we obtain several desirable properties.

1. Undetectability [CGZ24]: the pseudorandomness of PRC outputs guarantees that water-
marked content is computationally indistinguishable from unwatermarked content. This guar-
antees that the quality of the outputs is not degraded by watermarking.

2. Tamper resistance: since the PRC comes with a robust decoding algorithm, we can detect
PRC codewords subjected to E , implying that the watermark is not removed by the tampering
of content by E ′ to the generated content t.

3. Few false positives: the soundness property guarantees that for any fixed human generated
text z1 . . . zn, with overwhelming probability, the decoding algorithm will not flag it as a
corrupted codeword (and thus watermarked text).

In this work, we are concerned with new constructions of pseudorandom codes. The assump-
tions required for the construction of pseudorandom codes in [CG24] are relatively strong (see
Section 1.3.2), and were subsequently weakened in the case of secret-key PRCs to the existence of
a local weak pseudorandom function family. [GM24].

We restrict ourselves to constructing zero-bit PRCs (the encoded message is always “1”, see
Definition 2.17) which are robust to all channels which introduce errors at a rate of 1/2 − ε (for

1

constant ε). [CG24] show how to bootstrap such constructions into constant rate PRCs (see Def-
inition 2.16). Furthermore, [CG24, GM24] show how to bootstrap such constructions into codes
which are robust to types of errors other than just substitution errors.

1.2 Watermarking large language models

We wish to emphasize that the framework of watermarking using PRCs is not restricted to any
one type of generative AI model. However, to help make the philosophy of watermarking using
PRCs more concrete, we review how [CG24] instantiate a PRC based scheme for watermarking
large language models (LLMs).

Imagine an abstracted model of an LLM which works over the binary alphabet and always
outputs text of length n. Concretely, consider an efficiently computable function f : {0, 1}∗ ×
{0, 1}∗ → [0, 1] which takes in the prompt and the output text so far as the input and outputs
the probability p ∈ [0, 1] that the next token will be 1. The use of the binary alphabet in f
is without loss of generality since all tokens can be represented in binary. Text generation on a
prompt y ∈ {0, 1}∗ works by iteratively sampling zi ← Ber(f(y, z1 . . . zi−1)) for all i ∈ [1, n]. The
final output of the LLM is then z1 . . . zn.

Let us now consider a different procedure to sample from the same distribution. We first sample
x1 . . . xn, each independently from Ber(1/2). To generate from the LLM on a prompt y ∈ {0, 1}∗,
we iteratively sample zi for i ∈ [1, n] as follows. Let pi = f(y, z1, . . . , zi−1), if pi ≤ 1/2, sample
zi from Ber(2pixi), otherwise sample zi from Ber(1 − (1 − xi)(1 − pi)). Note that since each xi
is sampled uniformly from Ber(1/2), zi is still distributed as Ber(pi), and therefore the output
distribution of the LLM on a prompt y remains unchanged from the previous example.

The key now is to create an LLM that samples x1 . . . xn from a pseudorandom error-correcting
code. We will call this new LLM the watermarking LLM. We assume that the original LLM is a
polynomial time algorithm (formally, we need a family of LLMs parameterized by input length for
the notion of a polynomial time algorithm to make sense, but we omit such details for the sake
of exposition). Therefore, the pseudorandomness property guarantees that the output distribution
of the watermarking LLM is computationally indistinguishable from the case when x1 . . . xn are
sampled at random, which we just saw is the same as the original LLM output distribution.

Furthermore, notice that if 0 < pi < 1, then zi = xi with probability greater than 1/2. There-
fore, if many pi are bounded away from one, the output of the watermarking LLM is relatively
close to the codeword x1 . . . xn. The watermarking LLM takes the codeword x1 . . . xn as one of its
inputs and outputs z1 . . . zn, and in this way it functions as a corrupting channel. For sufficiently
high entropy outputs, many pi are sufficiently close to 1/2, therefore z1 . . . zn is relatively close to
x1 . . . xn, and anyone with the secret key can decode z1 . . . zn, thereby confirming that the output
has been watermarked. Furthermore, the LLM output z = z1 . . . zn is also robust to corruptions by
an adversary trying to evade detection since z̃ will still be decoded by someone with a secret key
assuming that ∆(z, z̃) is small (which it will be if the adversary does not make significant changes
to z). Therefore, watermarked and edited text corresponds to corrupted PRC codewords.

For a discussion of how to watermark LLM text using PRCs as well as a other application of
PRCs (robust steganography), we refer the reader to [CG24].

2

1.3 Our results

For the purpose of watermarking, our PRCs usually need to be robust to p-bounded channels (see
Definition 2.12). Informally, these are channels where an adversary can arbitrarily flip any pn bits
of a codeword.

1.3.1 Planted hyperloop construction

The planted hyperloop assumption, introduced in [BKR23], asserts that a random 5-hypergraph is
distinguishable from a random 5-hypergraph with a special Θ(log n) size 3-hypergraph planted in
it with advantage at most o(1). [BKR23] show that if both the planted hyperloop assumption and
the security of Goldreich’s PRG [Gol11] instantiated with the predicate P5(x1, . . . , x5) = x1⊕ x2⊕
x3⊕x4x5 hold, then public key cryptography exists. We show that that similar assumptions imply
a type of public-key PRC.

Theorem 1.1 (informal version of Theorem 4.11). Under the assumption used to construct public
key cryptography in [BKR23] and o(1)-pseudorandomness of Goldreich’s PRG instantiated with the
P5(x1, . . . , x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 predicate, there exist public-key PRCs robust to p-bounded
channels for constant p < 1/2 and with o(1) pseudorandomness against PPT adversaries.

Informally, by γ pseudorandomness here, we mean that any PPT algorithm can distinguish a
polynomial number of samples from random with at most γ advantage.

There are at least two ways to interpret Theorem 4.11. The more obvious is simply the con-
struction of public-key PRCs from studied cryptographic assumptions. However, one can also view
it as suggesting that either the planted hyperloop assumption or the security of Goldreich’s PRG
with the P5 predicate is a surprisingly strong assumption. In particular, since the only other known
construction of public-key PRCs relies on fairly strong assumptions (see Section 1.3.2), this puts
the assumptions of Theorem 4.11 into a select group of assumptions implying public-key PRCs.
Our work offers no indication of which is the correct perspective.

1.3.2 Revisiting [CG24] and planted XOR assumption

In Section 5, we revisit the assumptions under which [CG24] construct PRCs. Their construction
is secure if either of the following hold

1. The planted XOR assumption and polynomial security of LPN with constant noise rate

2. 2O(
√
n) security of LPN

We revisit the first of these assumptions. While polynomial security of LPN with constant noise rate
is a very well established cryptography assumption, the planted XOR assumption (introduced in
[ASS+23]) is relatively new. It is therefore the most critical vulnerability in the [CG24] construction.
Informally, the planted XOR assumption says that a random matrix G ∈ {0, 1}m×n modified so
that O(log n) rows xor to 0m is computationally indistinguishable from a truly random matrix. We
therefore generalize and relax the assumption to what we call the weak planted XOR assumption
(see Assumption 5.2). Informally, the weak planted XOR assumption (with noise rate ε) says that

3

a random matrix G ∈ {0, 1}m×n modified so that O(log n) rows xor to a vector v sampled from
Ber(m, ε) is computationally indistinguishable from a truly random matrix.

We observe that both LPN and the weak planted XOR assumption have a noise rate parameter,
η and ε respectively. We show that there is a wide range of points along the ε, η parameter trade-off
curve for which pseudorandom codes robust to a constant noise rate exist.

Theorem 5.9. For efficiently computable m = poly(n), t = O(log n), η = o(1), ε = O(log(m)/(ηm))
which are functions of n and constant p ∈ [0, 1/2), if XORm,t,ε holds and LPN[η] holds, then there
exists a (1−negl(n), 1−negl(n),negl(n))-public-key PRC which is robust to all p-bounded channels
and pseudorandom against all PPT adversaries.

One can choose to read this result as saying more about the planted XOR assumption than the
construction of PRCs. Since adding noise to the planted xor assumption seems to weaken it (for
which we have some minor evidence Section 5.2) and interacts nicely with the LPN assumption,
the weak planted xor assumption may be the next natural variant of the planted xor assumption
to study.

1.3.3 Unconditional PRCs for space-bounded adversaries

A natural and fundamental question in this area is whether we can prove the unconditional existence
of PRCs (not based on cryptographic conjectures). To this end, we initiate the study of PRCs which
are pseudorandom against polynomial time, space-bounded adversaries. Here we rely on the results
showing that the problem of learning sparse parities (possibly with noise) is hard for space-bounded
adversaries [Raz18, KRT17, GKLR21].

Theorem 1.2 (informal). There exists a zero-bit PRC with codeword length O(n) that is robust to
error rate p for any constant p < 1/2 and is unconditionally pseudorandom against adversaries
which have O(n3/2−ε) space and poly(n) time.

Unfortunately, our scheme is unlikely to be practical for watermarking generative AI as most
generative models use more than O(n3/2) auxiliary space (where n is the size of the output of the
generative model). One can therefore view this result as a first step towards practical unconditional
PRCs. As the field of space-bounded cryptography progresses, one may hope we will eventually be
able to construct PRCs which are pseudorandom against O(n5) space and poly(n) time adversaries,
which may indeed be practical for watermarking generative AI. Conversely, we believe that our
scheme may already be useful for other use cases, such as robust steganography for particular types
of steganographic channels (see [CG24] for details on robust steganography).

1.4 Further directions

1. The construction of public-key pseudorandom codes from unstructured assumptions is possi-
bly the biggest question left open by this work. All known constructions rely on structured
assumptions like hardness of the learning parity with noise problem or the planted hyperloop
assumption. Even the construction of public-key PRCs from such a strong assumption as
indistinguishably obfuscation would be new and interesting.

4

2. The weak planted XOR assumption introduced in Section 5 merits more cryptoanalytic study.
Can we find more evidence that such an assumption is indeed weaker than the standard
planted XOR assumption?

3. It may also be interesting to study from a theoretical perspective whether there exist a general
set of generative model properties such that watermarking models with those properties using
some explicit error correcting codes (from some class of constructions) rather than a PRC
does not significantly degrade quality of model outputs.

1.5 Related work

The idea of pseudorandom error-correcting codes was introduced in [CG24] with the intent of
watermarking generative AI. They constructed a binary zero-bit encryption scheme robust to the
bounded adversarial substitution channel and used that to construct a binary, constant rate PRC
robust to both the bounded substitution channel and the random deletion channel. Followup
work by Golowich and Moitra [GM24] showed a construction of pseudorandom codes where the
alphabet size grows polynomially in the output length of the code from a zero-bit PRC. They
showed how to use such large alphabet pseudorandom codes to watermark LLM texts so that
they are robust to bounded edit-distance channels (channels allowing insertions, substitutions,
and deletions). Interestingly, their construction assumes the existence of a O(log n)-local weak
pseudorandom function family. This is quite similar to Section 4 which (among other things),
assumes the security of Goldreich’s PRG, which O(1)-local.

PRCs are perhaps most closely related to backdoored pseudorandom generators. Backdoored
PRGs (first introduced in [VV83]) are pseudorandom generators where anyone with a secret key
can distinguish PRG outputs from random. Zero-bit PRCs can just as well be thought of as
backdoored PRGs where the mechanism to distinguish PRG outputs from random is robust to
errors in its input.

The planted hyperloop construction of public-key cryptography [BKR23] is itself based on
[ABW10] and [Gol11]. These all belong to lines of work labeled expander-based cryptography which
utilize or change the structure of expander graphs to build cryptographic primitives [OST22].

Section 6 is based on [Raz18, KRT17, GKLR21], which show that the problem of learning sparse
parities with noise is hard for space-bounded algorithms. These results are intimately connected to
the area of space-bounded cryptography. In space-bounded cryptography (introduced in [Mau92]),
it is assumed all adversaries are space-bounded (have at most, say, o(n2) space, where n is the
message length). Unlike traditional cryptography, researchers have been able to prove unconditional
results in the bounded storage setting [CM97, Din01, DQW23].

Acknowledgements

The authors would like to thank Yinuo Zhang for helpful discussion. They would also like to thank
Sam Gunn and Noah Stephens-Davidowitz for reviewing early drafts of this work.

5

2 Preliminaries

2.1 Notation

We will use the notation
([n]
k

)
to denote the set of all size k subsets of [n]. We also often use the

notation x[a,b] to denote bits a through b (inclusive) of the string x. We write Ber(n, η) to denote
the distribution x1x2 . . . xn where each bit xi ∈ {0, 1} is sampled independently from Ber(η). We
write BSC(p) to denote the binary symmetric channel with crossover probability p. This is the
channel where each bit is flipped with probability p and remains the same with probability 1− p.
For x, y ∈ {0, 1}n, ∆(x, y) = |{i : xi ̸= yi}| is the Hamming distance between x and y. We also use
St,n = {x ∈ {0, 1}n : |x| = t} to denote the Hamming sphere of dimension n and radius t.

We will write x1, . . . , xn ← D to denote sampling x1, . . . , xn each independently from a distribu-
tion D and also occasionally overload this notation by writing x1, . . . , xn ← S to denote sampling
x1, . . . , xn each independently and uniformly from the set S.

If a ∈ {0, 1}n and b ∈ {0, 1}m, then ab ∈ {0, 1}n+m denotes the concatenation of a and b. For a
matrix G ∈ {0, 1}n×m, Gi ∈ {0, 1}m is row i of G.

2.2 Probability and combinatorics

Definition 2.1. We say a string a ∈ {0, 1}n is δ-biased if |{i : ai = 0} − {i : ai = 1}| ≤ δn.

Lemma 2.2. Let p1, . . . , pn ∈ [0, 1/2], if Xi ∼ Bern(pi), then

Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xn = 0] =
1

2

(
1 +

n∏
i=1

(1− 2pi)

)
.

Lemma 2.3 (Chernoff Bound [Che52]). Let X1, . . . , Xn be independent random variables, each
distributed as Ber(p). Let µ = np, and X = X1 + · · ·+Xn. If δ ≥ 0, then

Pr
X1,...,Xn

[X ≥ (1 + δ)µ] ≤ e−δ
2µ/(2+δ) .

If 0 < δ < 1, then
Pr

X1,...,Xn

[X ≤ (1− δ)µ] ≤ e−δ
2µ/3 .

We will use the same insights as [CG24] to reduce the case of p-bounded adversarial channels
to the case of the hypergeometric channel. For this we need the following lemma regarding the
hypergeometric distribution. Let Hyp(N,K, n) denote the distribution of the number of good
elements chosen when choosing n elements without replacement from a population of size N which
contains K good elements.

Lemma 2.4 ([Hoe94]). Let X ∼ Hyp(N,K, n) and p = K/N . Then for any 0 < t < K/N ,

Pr[X ≥ (p+ ε)n] ≤ e−2ε
2n .

6

Lemma 2.5. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n,m, t), then

1

2
+

1

2
min

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) ≤ Pr[X is even] ≤ 1

2
+

1

2
max

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) .

Corollary 2.6. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n,m, t) and p is a value maximizing |1− 2p| subject
to (m− t)/n ≤ p ≤ m/(n− t), then

Pr[X is even] ≤ 1

2
+

1

2
|1− 2p|t, and Pr[X is odd] ≤ 1

2
+

1

2
|1− 2p|t .

See Appendix B for proofs of Lemma 2.5 and Corollary 2.6.

Lemma 2.7. Let X1, . . . , XQ be uniformly distributed over [N].

Pr
X1,...,XQ

[∃i ̸= j,Xi = Xj] ≤
Q2

N
.

Definition 2.8. The statistical distance (also known as the total variation distance) of two distri-
bution X and Y on a finite domain D is defined as

∆(X,Y) =
1

2

∑
z∈D
|Pr[X = z]− Pr[Y = z]|

We say two distributions X and Y are statistically indistinguishable if ∆(X,Y) = negl(n).

Fact 2.9. Let A be a set and B ⊆ A. If X is uniformly distributed over A, and Y is uniformly
distributed over B, then ∆(X,Y) = 1− |B|/|A|.

2.3 Indistinguishability and LPN

For a class of functions ε, we say two distribution ensembles {Dn}n∈N, {En}n∈N are ε-indistinguishable
if for any probabilistic polynomial time, non-uniform adversary A, there exists a function ε′ ∈ ε
such that ∣∣∣∣ Pr

x←Dn

[A(x) = 1]− Pr
x←En

[A(x) = 1]

∣∣∣∣ ≤ ε′(n)

We say that {Dn}n∈N and {En}n∈N are computationally indistinguishable if they are negl(n)-
indistinguishable. We will often use the fact that if ∆(X,Y) ≤ ε, then no algorithm can distinguish
between a sample from X and a sample from Y with better than ε advantage.

Assumption 2.10. For η : N→ R which is a function of n, the LPN[η] assumption states that for
all m = poly(m) and all probabilistic poly(n) time algorithm A,∣∣∣∣∣ Pr

G← Fn×m
2 ,

s← Fm
2 ,

e← Ber(n, η)

[A(G,Gs+ e) = 1]− Pr
G← Fn×m

2 ,
u← Fn

2

[A(G, u) = 1]

∣∣∣∣∣ = negl(n)

7

For a fixed G, one LPN sample consists of sampling s← Fm
2 and e← Ber(n, η) and outputting

Gs + e. While Assumption 2.10 is stated for a single LPN sample, for a randomly sampled G, a
polynomial number of LPN samples would still be computationally indistinguishable from random.
This follows from a standard hybrid argument.

In our construction, we will actually rely on the following assumption, which Lemma 2 of
[ACPS09] shows is implied by Assumption 2.10.

Assumption 2.11. For η : N→ R which is a function of n, the LPN[η] assumption states that for
all m = poly(m) and all probabilistic poly(n) time algorithm A,∣∣∣∣∣ Pr

G← Fn×m
2 ,

s← Ber(m, η),
e← Ber(n, η)

[A(G,Gs+ e) = 1]− Pr
G← Fn×m

2 ,
u← Fn

2

[A(G, u) = 1]

∣∣∣∣∣ = negl(n)

2.4 Pseudorandom Codes

Definition 2.12 ([CG24]). We say that a length-preserving binary channel E : {0, 1}∗ → {0, 1}∗
is p-bounded if for all n ∈ N, Pr

x←{0,1}n
[|E(x)⊕ x| > pn] ≤ negl(n).

Definition 2.13. The d-hypergeometric channel E : {0, 1}n → {0, 1}n is defined as the channel E
which takes in x, samples y ← Sd,n, and outputs E(x) = x+ y.

We now define secret and public key pseudorandom codes.

Definition 2.14 (Secret-key PRC [CG24]). Let Σ be a fixed alphabet. An (α, β, γ)-secret-key
pseudorandom error-correcting code (abbreviated as secret-key PRC) with robustness to a channel
E : Σ∗ → Σ∗ and pseudorandomness against a class of adversaries C is a triple of polynomial time
randomized algorithms (KeyGen,Encode,Decode) satisfying

• (Syntax) There exists functions ℓ, n, k : N → N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}ℓ(λ), Encode : {1λ} × {0, 1}ℓ(λ) × Σk(λ) → Σn(λ), and Decode : {1λ} × {0, 1}ℓ(λ) × Σ∗ →
Σk(λ) ∪ {⊥}.

• (Error correction, or robustness) For any λ ∈ N and any message m ∈ Σk(λ),

Pr
sk←KeyGen(1λ)

[Decode(1λ, sk, E(x)) = m : x← Encode(1λ, sk,m)] ≥ α

• (Soundness) For any fixed c ∈ Σ∗,

Pr
sk←KeyGen(1λ)

[Decode(1λ, sk, c) = ⊥] ≥ β

• (Pseudorandomness) For any adversary A ∈ C,∣∣∣∣ Pr
sk←KeyGen(1λ)

[AEncode(1λ,sk,·)(1λ) = 1]− Pr
U
[AU (1λ)]

∣∣∣∣ = γ

where AU means that the adversary has access to an oracle that, on any (even previously
queried) input, outputs a freshly drawn uniform value from Σn(λ).

8

Definition 2.15 (Public-key PRC [CG24]). Let Σ be a fixed alphabet. An (α, β, γ)-public-key
pseudorandom error-correcting code (abbreviated as public-key PRC) with robustness to a channel
E : Σ∗ → Σ∗ and pseudorandomness against a class of adversaries C is a triple of polynomial time
randomized algorithms (KeyGen,Encode,Decode) satisfying

• (Syntax) There exists functions ℓDec, ℓEnc, n, k : N→ N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}ℓDec(λ) × {0, 1}ℓEnc(λ), Encode : {1λ} × {0, 1}ℓEnc(λ) × Σk(λ) → Σn(λ), and Decode : {1λ} ×
{0, 1}ℓDec(λ) × Σ∗ → Σk(λ) ∪ {⊥}.

• (Error correction, or robustness) For any λ ∈ N and any message m ∈ Σk(λ),

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, E(x)) = m : x← Encode(1λ, pk,m)] ≥ α

• (Soundness) For any fixed c ∈ Σ∗,

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, c) = ⊥] ≥ β

• (Pseudorandomness) For any adversary A ∈ C,∣∣∣∣ Pr
(sk,pk)←KeyGen(1λ)

[AEncode(1λ,pk,·)(1λ, pk) = 1]− Pr
U
[AU (1λ, pk)]

∣∣∣∣ = γ

where AU means that the adversary has access to an oracle that, on any (even previously
queried) input, outputs a freshly drawn uniform value from Σn(λ).

We will say that a (α, β, γ)-public-key or (α, β, γ)-secret-key PRC scheme (KeyGen,Encode,Decode)
is robust to a channel E and pseudorandom/secure against C if the definition Definition 2.15 or
Definition 2.14 respectively holds given E is instantiated as the channel and C is instantiated as the
class of adversaries. We adopt this notation of E and C as implicit parameters in Definition 2.15
and Definition 2.14 so as not to clutter the parameters but one can just as easily parameterize the
definition by all relevant variables (e.g. (α, β, γ, E , C)-public-key PRC).

We have expanded the definitions of secret-key PRC and public-key PRC from [CG24] by
including the parameters α, β, γ in the definition and including the new implicit parameter C (which
is necessary to formalize security against space-bounded adversaries Section 6). If we take C to
be all non-uniform, probabilistic, polynomial time (PPT) algorithms, and α = 1 − negl(λ), β =
1 − negl(λ), γ = negl(λ), we recover the original definitions given in [CG24]. When C and E are
clear from context, we will often say PRC to mean a (1− negl(λ), 1− negl(λ), negl(λ))-public-key
PRC or (1− negl(λ), 1− negl(λ),negl(λ))-secret-key PRC.

Definition 2.16. For Definition 2.15 and Definition 2.14, we define k(λ)/n(λ) as the rate of a
PRC.

Definition 2.17. We say a PRC scheme is a zero-bit PRC scheme if the only message m that is
ever encrypted is 1.

9

The image of the decoding function of a zero-bit scheme should only be {1,⊥} since we know
that 0 is never encoded by the PRC. Informally, a zero-bit PRC requires only that we distinguish
corrupted PRC outputs from strings which are not PRC outputs. We will focus on zero-bit PRCs
since when C is all PPT algorithms, [CG24] shows that the existence of a zero-bit secret-key or
public-key PRC implies the existence of a secret-key or public-key PRC respectively which has
essentially the same robustness as the original but a worse rate. See [CG24] for a formal statement.

Say we have a zero-bit encryption scheme where corrupted codewords are identified as such with
probability α(λ), random words are identified as codewords with probability α(λ)−1/poly(n), and
any polynomial number of codewords are γ-indistinguishable from random. This is not quite a
PRC since we do not have the soundness property. However, our next lemma shows that we can
use such a scheme to construct a (1− negl(λ), 1− negl(λ), γ) zero-bit PRC.

Lemma 2.18. Suppose that there exist PPT algorithms (KeyGen,Encode,Decode) such that

1. There exists functions ℓDec, ℓEnc, n, k : N → N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}ℓDec(λ) × {0, 1}ℓEnc(λ), Encode : {1λ} × {0, 1}ℓEnc(λ) × {1} → Σn(λ), and Decode : {1λ} ×
{0, 1}ℓDec(λ) × Σ∗ → {1,⊥}.

2. n(λ) = poly(λ).

3. For every d ≤ p·n(λ), d-hypergeometric channel E, and a 1−negl(λ) fraction of keys (sk, pk)←
KeyGen(1λ),

Pr
E
[Decode(1λ, sk, E(x)) = 1 : x← Encode(1λ, pk, 1)] ≥ α(λ)

where the randomness is over the randomness of the encoding algorithm and the errors of E.

4. There exists a δ(n) = 1/ poly(n) where α(λ)− δ(λ) ≥ 1/ poly(λ) such that for a 1− negl(λ)
fraction of keys (pk, sk)← KeyGen(1λ),

Pr
x←{0,1}n

[Decode(1λ, sk, x) = 1] ≤ δ(λ) .

5. For any q = poly(λ), X1, . . . , Xq ← Enc(1λ, pk, 1) is γ-indistinguishable from Y1, . . . , Yq ←
{0, 1}n(λ).

Then for every constant ε > 0, there exists of a zero-bit (1 − negl(λ), 1 − negl(λ), γ(λ))-public-key
PRC robust to any (p− ε)-bounded channel and pseudorandom against any PPT adversary.

Proof. Let ε > 0 be an arbitrarily small constant. Say α(λ)− δ(λ) ≥ 1/λc for some constant c and
sufficiently large n, and let t = λ100c/δ(λ). We now construct a (1 − negl(λ), 1 − negl(λ), γ(λ))-
public-key PRC with key generation, encoding, and decoding functions KeyGen′,Encode′,Decode′

respectively.

• KeyGen′(1λ): Sample (sk, pk)← KeyGen(1λ), z1, . . . , zt ← {0, 1}n(λ), and a random permuta-
tion π : [tn]→ [tn]. Output (sk′ = (sk, z1, . . . , zt, π), pk

′ = (pk, z1, . . . , zt, π)).

• Encode′(1λ, (pk, z1, . . . , zt, π), 1): Let ai ← Encode(1λ, pk, 1) for i ∈ [1, t]. Output π((a1 ⊕
z1)|| . . . ||(at ⊕ zt)).

10

• Decode′(1λ, (sk, z1, . . . , zt, π), x): Decompose π−1(x) ∈ {0, 1}nt into ã1|| . . . ||ãt with ãi ∈
{0, 1}n(λ) and let ai = ãi ⊕ zi. Let wi = 1 if and only if Decode(1λ, sk, ai) = 1. Output

1 if
∑t

i=1wi ≥ t · α(n)+δ(n)
2 and output ⊥ otherwise.

Observe that all the algorithms needed to specify our new PRC scheme PRC′ = (KeyGen′,Encode′,Decode′)
inherit poly(λ) running times from (KeyGen,Encode,Decode).

Consider a codeword x ∈ {0, 1}tn generated by Encode′ and let x′ = E(x). Because of the shifts
z1, . . . , zt and permutation π applied to the codeword, for the purpose of showing robustness, we
can assume without loss of generality that that Encode′ and Decode′ do not apply the shift z or the
permutation π and E samples m values without replacement from some distribution with support
on [1, (p− ε)tn] and then distributes m errors randomly into the tn coordinates of the codeword x.
One way to imagine sampling the errors E introduces is by sampling from some joint distribution
(P1, . . . , Pt) where Pi represents represents the number of errors to introduce into the ith block
of n bits, and then flipping Pi bits of the ith block of n bits randomly. Let us consider a fixed
m ∈ [1, (p− ε)tn], notice that the number of errors in the ith section of n bits is exactly distributed
as Hyp(nt,m, n). By Lemma 2.4, Pi > pn with negl(n) = negl(λ) probability. By union bound,
there is a 1− negl(λ) probability that Pi ≤ pn for all i ∈ [1, t]. Therefore, we can assume without
loss of generality that the errors in each block of n bits come from a p-hypergeometric channel.

We now show robustness of this new scheme. Notice that during the computation of
Decode′(1λ, (sk, z1, . . . , zt), x

′), each wi = 1 independently with probability α(n) by Item 3 and
since Pi ≤ pn. Furthermore, t · ((α(λ) + δ(λ))/2) = t(α(λ)− (α(λ)− δ(λ))/2) = t(α(λ)− 1/(2λc)).

So, by Lemma 2.3, the probability that
∑t

i=1wi < t · α(λ)+δ(λ)
2 is at most e−(1/(2λ

c))2α(λ)t/3 ≤
e−(1/(2λ

c))2δ(n)t/3 = negl(λ) by our choice of t. Therefore, there is a 1−negl(λ) chance that Decode′

outputs 1.

We now show soundness of the new scheme. Consider a fixed word x ∈ {0, 1}tn. If we sample
(sk, z1, . . . , zt) and run Decode′(1λ, (sk, z1, . . . , zt), x) = ⊥, the probability wi = 0 is exactly the
probability that Decode(1λ, si, ãi ⊕ z) = ⊥. This probability is δ(λ) by assumption since ãi ⊕ z is
a uniformly random value in {0, 1}n. Therefore, by Lemma 2.3, the probability that

∑t
i=1wi ≥

t · α(λ)+δ(λ)
2 = t · (δ(λ)+(α(λ)− δ(λ))/2) = t · (δ(λ)+1/(2λc)) is at most e−(1/(2λ

c)2)δ(λ)t/3 = negl(λ)
(where the last equality follows from our choice of t). Therefore there is a 1− negl(λ) chance that
Decode′ outputs ⊥.

Pseudorandomness of our new scheme follows immediately from the pseudorandomness of the
old scheme since the new scheme simply consists of codewords from the old scheme concatenated
together (with a shift z and permutation π applied on top).

Just as in [CG24], for the remainder of the paper, we will identify n with the security parameter.
This may be confusing since when λ is the security parameter, we say n(λ) is the length of the
code. However, letting n be the security parameter brings our notation in line with the works most
closely related to our own [BKR23, CG24, Raz18].

3 A warmup

Here we give informal an description of a zero-bit PRC schemes with is only robust to o(n) errors
and pseudorandom against any PPT adversary. Our primary purpose for presenting these schemes

11

is to build intuition around which types of assumptions are good for building PRCs. Very similar
PRF based constructions have already been described in [CG24, CGZ24, KGW+23, Arr22]. Though
we note that those seem to achieve robustness to any o(1/ log n) error rate, whereas the following
scheme is robust to any o(1) error rate.

We will examine a simple construction of PRCs, which, for any τ(n) = ω(1), is robust against
BSC(1/τ(n)). We choose BSC(1/τ(n)) instead of (1/τ(n))-bounded channels only for ease of
presentation. The existence of one-way functions implies the existence of a keyed pseudorandom

function family fk : {0, 1}
√

τ(n) log(n) → {0, 1}n using the GGM construction [GGM86]. Let t =
n3. The key generation algorithm selects the key k ← {0, 1}n, the encoding algorithm samples

x1, . . . , xt ← {0, 1}
√

τ(n) log(n) and outputs x1||fk(x1)|| . . . ||xt||fk(xt), and the decoding algorithm on

an input x̃1||ỹ1|| . . . ||x̃t||ỹt for x̃i ∈ {0, 1}
√

τ(n) log(n), ỹi ∈ {0, 1}n outputs 1 if ∆(fk(x̃i), ỹi) ≤ n/10
for any i ∈ [1, t] and ⊥ otherwise.

Robustness. Imagine subjecting a codeword x1||fk(x1)|| . . . xt||fk(xt) from this scheme to
BSC(p) for p = 1/τ(n). As long as there exists a i ∈ [t] such that the bits in xi remain unchanged
and the bits of fk(xi) suffer less than n/10 flips, the corrupted codeword will be decoded to zero.
For a fixed i, the probability that the bits of xi remain unchanged is

(1− p)log(n)
√

τ(n) =

((
1− 1

τ(n)

)log(n)τ(n)
) 1√

τ(n)

≥
(

1

n2

) 1√
τ(n)

for sufficiently large n. The probability that every xi is changed is at most(
1− 1

n
2√
τ(n)

)t

= negl(n)

by our choice of t. Furthermore, for any fixed i ∈ [t], the probability that more than n/10 cor-
ruptions occur in bits fk(xi) is negl(n) by Lemma 2.3. By the union bound, there is a 1− negl(n)
chance that there exists some i ∈ [t] such that xi is unchanged, and fk(xi) suffers fewer than n/10
bit-flips.

Soundness. Suppose the scheme were not sound, and there existed a series fixed string (pa-

rameterized by n) x∗1||y∗1|| . . . ||x∗t ||y∗t where x∗i ∈ {0, 1}
√

τ(n) log(n), yt ∈ {0, 1}n which were decoded
to 1 with non-negligible probability (where the probability is over k). Notice that for a truly ran-
dom function f , for any i ∈ [1, t], ∆(f(x∗i), y

∗
i) ≤ n/10 with negl(n) probability (by Lemma 2.3).

Now consider the polynomial time distinguisher A(1n) which when given oracle access to a func-

tion f ′ : {0, 1}
√

τ(n) log(n) → {0, 1}n outputs 1 if and only if there exists an i ∈ [t] such that
∆(x∗i , f

′(x∗i)) ≤ n/10. Notice that by assumption, if f ′ is a PRF, then A outputs 1 with non-
negligible probability, and if f ′ is truly random, it outputs 1 with negligible probability. Therefore,
A distinguishes between fk and a truly random function with non-negligible probability. This
contradicts the fact that fk is a PRF. We have arrived at a contradiction, so the scheme must be
sound.

Pseudorandomness. We will show that the outputs of this scheme are pseudorandom against
PPT adversaries by applying the hybrid lemma. Let q = poly(t) = poly(n) and consider the
following distributions:

12

1. (x1||fk(x1)|| . . . ||xq||fk(xq)) where k, x1, . . . , xq ← {0, 1}n

2. (x1||f(x1)|| . . . ||xq||f(xq)) where f is a random function and x1, . . . , xq ← {0, 1}n

3. (x1||f(x1)|| . . . ||xq||f(xq)) where f is a random function and x1, . . . , xq ← {0, 1}n conditioned
on all xi being distinct

4. (x1||y1|| . . . ||xq||yq) where x1, . . . , xq, y1, . . . , yq ← {0, 1}n conditioned on all xi being distinct

5. (x1||y1|| . . . ||xq||yq) where x1, . . . , xq, y1, . . . , yq ← {0, 1}n

Distributions 1 and 2 are computationally indistinguishable by the pseudorandomness of fk. Distri-
butions 2 and 3 are statistically indistinguishable by Fact 2.9 since conditioning on xi being distinct

only eliminates t2/2log(n)
√

t(n) = negl(n) fraction of possibilities (Lemma 2.7). Distribution 3 and
4 are the same. Distribution 4 and 5 are statistically indistinguishable by the same reasoning as
showed distribution 2 and 3 are indistinguishable. Therefore, by the hybrid lemma, distributions 1
and 5 are indistinguishable. Thus, the scheme satisfies the pseudorandomness property.

We see that the minimal cryptographic assumption of one-way functions lets us achieve robust-
ness to any o(1) error rate. This sets a baseline and tells us that for a scheme to be considered
non-trivial, it must be robust to a constant error rate. The critical weakness of the PRF construc-
tion is that for a codeword to be decoded correctly, all ω(log n) bits of some xi must remain intact.
One approach to fix this (used to construct secret-key PRCs in [GM24]) is to use a local weak
PRF family so that if that ∆(x, x′) being small implies that ∆(f(x), f ′(x)) is small. A different
approach is to aim for a scheme in which the decoding algorithm looks at a small number of bits of
the codeword. In particular, if the decoding algorithm only looks at O(log n) of the the codeword,
we may be able to achieve robustness to a constant error rate. This is the intuition that guides all
of our upcoming schemes. This is also the approach guiding the scheme proposed in [CG24].

4 Planted hyperloop construction

4.1 The assumptions

We begin by reviewing the assumptions used by [BKR23] to construct public-key cryptography. All
hypergraphs are assumed to have ordered hyperedges (a hyperedge is an ordered tuple of vertices
rather than a set of vertices).

Definition 4.1. A hyperloop is a 3-hypergraph where each vertex has degree two and we define the
size of a hyperloop as the number of hyperedges it contains.

The construction of [BKR23] plants t = 2Θ(ℓ) hyperloops S1, . . . , St of size ℓ = O(log n) into a
random hypergraph to create a 5-hypergraph H. The secret key is the set of t hyperloops and the
public key is H. We now formally present this construction.

Construction 4.2 ([BKR23]). Let L0 be a fixed hyperloop of size ℓ = O(log n). H is sampled as
follows. Let:

1. L be the union of t = 2Θ(ℓ) vertex-disjoint copies of L0,

13

Figure 1: A public key and PRG output with a single planted hyperloop L0. The secret key is
marked in red (from [BKR23]).

2. Q be a random 3-hypergraph with n vertices and m = n3/2−δ hyperedges,

3. P = Q ∪ L where L is planted on a random subset of the vertices of Q,

4. H is obtained by randomly adding 2 vertices to each hyperedge in P (where those 2 vertices
will be the last two in the ordered hyperedge)

The public key is the 5-hypergraph H and the secret key is S1, . . . , St where Si ⊆ {1, . . . ,m} are
they hyperedges corresponding to the ith planted copy of L0.

We refer to any hypergraph generated using Construction 4.2 as a planted hyperloop graph.
This leads us to our first assumption.

Assumption 4.3. For a sufficiently small constant δ, m = n1.5−δ, ℓ = 0.36 log n, and t = n0.75−δ,
P and Q are o(1)-indistinguishable in nO(1) time.

The planted hyperloop assumption as stated in [BKR23] is the same as Assumption 4.3 with the
exception that it assumes (1−Ω(1))-indistinguishably rather than o(1)-indistinguishably. However,
in the following statement, [BKR23] indicates that o(1)-indistinguishably is also a fair assumption:

Our security argument applies to distinguishers of any constant advantage.

The fact that the security arguments of [BKR23] apply to distinguishers of any constant advantage
rather than for some fixed constant advantage which is less than one leads us to believe that the
assumption of o(1)-indistinguishably in Assumption 4.3 is indeed fair. If one wishes to use the more
conservative assumption of 1 − Ω(1)-indistinguishability for Assumption 4.3, Theorem 4.11 holds
with (1− Ω(1))-indistinguishability rather than o(1)-indistinguishability.

We note (1 − Ω(1))-indistinguishability is a perfectly fine assumption for [BKR23] since they
are able to amplify this to negl(n)-indistinguishability using standard amplification techniques.
However, applying such amplification techniques would mean that our PRC would not be robust to
a constant error rate anymore. So we must make do with worse than negl(n)-indistinguishability.

Remark 4.4. Since ℓ = O(log n), a brute-force 2O(log2(n)) time algorithm can distinguish P from
Q by searching for the implanted hyperloop. This will imply that Construction 4.6 will not be

14

secure against 2O(log2(n)) time adversaries. Indeed, to our knowledge, all PRC are vulnerable to
quasi-polynomial time adversaries.

Hypergraphs with certain parameters (including planted hyperloop hypergraphs) can be used as
PRGs. To show how, we review Goldreich’s PRG. Fix the predicate P5(x1, . . . , x5) = x1⊕x2⊕x3⊕
x4x5. For an n vertex, m hyperedge, 5-hypergraph H, we define the PRG FH : {0, 1}n → {0, 1}m
as follows. On an input x, the bits of x are projected onto the vertices of H, and bit i of FH(x) is
given by applying P5 to the labeling of the vertices of hyperedge i.

Figure 1 gives a way to visualize Goldreich’s PRG. We interpret our hypergraph H as a bipartite
graph B where the input vertices of B represent vertices of H, the output vertices of B represent
the hyperedges of H, and edge (a, b) ∈ B if and only if vertex a is contained in hyperedge b in H.
See Figure 1 for the bipartite graph visualization with an example of the computation of FH . Our
second assumption is the security of Goldreich’s PRG instantiated with the P5 predicate.

Assumption 4.5. For every δ, m = n1.5−δ, and s = poly(n), random Q belonging to set of 5-
hypergraphs on n verticies with m hyperedges, and random x1, . . . , xs ∈ {0, 1}n, y1, . . . , ys ∈ {0, 1}m,
(Q,FQ(x1), . . . , FQ(xs)) and (Q, y1, . . . , ys) are o(1)-indistinguishable in nO(1) time.

We now justify Assumption 4.5. Notice that it is too much to hope for negl(n)-indistinguishably
in Assumption 4.5. To see why, notice that there is a Ω(1/n5) chance that the first two hyperedges
in Q contain the exact same vertices in the same order, which would cause the first bit of the output
of FQ to always equal the second bit of the output. Such a function FQ is clearly not a PRG.

The authors of [BKR23] use the weaker assumption that for every δ, m = n1.5−δ, random
Q, x ∈ {0, 1}n, y ∈ {0, 1}m, that (Q,FQ(x)) and (Q, y) are o(1)-indistinguishable in nO(1) time.
This differs from Assumption 4.5 in that it only guarantees o(1)-indistinguishability for one sample
from the PRG. However, Assumption 4.5 is in line with standard assumption about Goldreich’s
PRG [LV17, CDM+18].

4.2 The construction

Construction 4.6 (Hyperloop Construction, Hyperloop[δ,m, ℓ, t]). Let δ,m, ℓ, t be efficiently com-
putable functions of the security parameter n.

• KeyGen(1n): Sample H and S as in Construction 4.2 conditioned on all hyperedges of S1

being pairwise disjoint. output (sk = S, pk = H).

• Encode(1n, H, 1): Sample u← {0, 1}n and output FH(u).

• Decode(1n, S1, x): Compute w =
⊕

j∈S1
xj. If w = 0, output 1, otherwise output ⊥.

4.3 Robustness

We first review a basic fact about decoding in planted hyperloop graphs when the output is not
subjected to errors.

Lemma 4.7 (Claim 1 in [BKR23]). If H,S come from Construction 4.2 where the hyperedges
of S1 are disjoint, if we sample x uniformly at random from {0, 1}m and let y = FH(x), then
w =

⊕
j∈S1

yj has bias 2−ℓ towards being 0.

15

Proof. We use the notation xji to denote the value of the ith vertex of hyperedge j when x is
projected onto the vertices of H. Since all vertices in S1 have degree two,

⊕
j∈s1(xj1⊕xj2⊕xj3) = 0.

So,
⊕

j∈S1
yj =

⊕
j∈S1

(xj1 ⊕ xj2 ⊕ xj3 ⊕ xj4xj5) =
⊕

j∈S1
xj4xj5 . Notice that each term xj4xj5 in

the xor is 1 with probability 1/4. Furthermore, since all hyperedges in S1 are disjoint, the terms
xj4xj5 are independent for each j. Therefore, the bias of the xor of these biased independent terms,⊕

j∈S1
yj , has bias 2

−ℓ.

We now use this to prove that the output of Goldreich’s PRG instantiated with planted hyper-
loop graphs is indeed a robust to errors.

Lemma 4.8. Let δ,m, ℓ, t be the parameters specified in Assumption 4.3 and p be any constant in
[0, 1/2). There exists some polynomial p(n) such that for Construction 4.6, for all d ≤ pm, for all
keys (sk, pk)← KeyGen(1n),

Pr
E
[Decode(1n, sk, E(x)) = 1 : x← Encode(1n, pk, 1)] ≥ 1

2
+

1

p(n)
.

Here E is the d-hypergeometric channel and the randomness is over the randomness of the encoding
algorithm and the errors of E.

Proof. Let p′(n) be any polynomial such that the following holds:

1

2

(
1− 2

pm

m− ℓ

)ℓ

≥ 1

2
+ 1/p′(n) .

We will show that for all keys, over the randomness in the encoding function and E , that a codeword
from the PRC has a decent chance of being decoded to 1. Fix the key public and private key H,S.
Formally, we wish to show that

Pr
u,E

[Decode(1n, S1, E(FH(u))) = 1] =
1

2
+

1

p(n)

Since E is the d-hypergeometric channel, we can model channel E as an error vector e← Sd,m. So
the above statement is equivalent to

Pr
u,e

[Decode(1n, S1, FH(u)⊕ e) = 1] =
1

2
+

1

p(n)

Let us determine the probability that wi is zero for a fixed H,S. By Lemma 4.7 and Lemma 2.5
respectively,

Pr
u
[⊕j∈S1(FH(u)j) = 0] ≥ 1

2
+

1

n

Pr
e
[⊕j∈S1ej = 0] ≥ 1

2
+

1

2

(
1− 2

pm

m− ℓ

)ℓ

≥ 1

2
+

1

p′(n)
.

Since FH(ui) and ei are independent, the events ⊕j∈S1(FH(ui)j) = 0 and ⊕j∈S1eij = 0 are inde-
pendent, and therefore, by Lemma 2.2 we have

Pr
u,e

[w = 0] ≥ 1

2
+

1

n · p′(n)
.

16

4.4 A form of soundness

Lemma 4.9. Let δ,m, ℓ, t be the parameters specified in Assumption 4.3. For Construction 4.6,
for any key pair (pk, sk)← KeyGen(1n),

Pr
x←{0,1}n

[Decode(1n, sk, x) = 1] = 1/2 .

Proof. Recall that decoding in Construction 4.6 outputs ⊥ if some fixed O(log n) bits (depending
on sk) of x xor to 1. For a random string x, this happens with probability exactly 1/2.

4.5 Pseudorandomness

Lemma 4.10. Let δ,m, ℓ, t be the parameters specified in Assumption 4.3. Under Assumption 4.3
and Assumption 4.5, the outputs of Construction 4.6 are o(1)-indistinguishable from random by
any PPT adversary.

Proof. Say that the distinguishing algorithm gets s = poly(n) samples. We will now define sev-
eral distributions. Let H be the distributions defined in Construction 4.2, H ′ be the distribu-
tion defined for H in Construction 4.6, G be the uniform distribution over 5-hypergraphs with
n vertices and m hyperedges, X1, . . . , Xs all be uniform on {0, 1}n, and Y1, . . . , Ys all be uni-
form on {0, 1}m. For any graph g, let g(x) denote the output of Goldreich’s PRG instantiated
with the P5 predicate and graph g on input x. By Fact 2.9 and the fact that the KeyGen algo-
rithm in Construction 4.6 rejects a o(1) fraction of keys, the statistical distance between H and
H ′ is o(1). Therefore, (H,H(X1), . . . ,H(Xs)) and (H ′, H ′(X1), . . . ,H

′(Xs)) are distinguishable
with advantage at most o(1). By Assumption 4.3 (H,H(X1), . . . ,H(Xs)) is distinguishable from
(G,G(X1), . . . , G(Xs)) with o(1) advantage. By Assumption 4.5, (G,G(X1), . . . , G(Xs)) is distin-
guishable from (G, Y1, . . . , Ym) with at most 1 − o(1) advantage. These three facts along with
the hybrid lemma tell us that (H ′, H ′(X1), . . . ,H

′(Xs)) is distinguishable from (G, Y1, . . . , Ys) with
advantage at most o(1).

4.6 Putting it all together

Theorem 4.11. Let δ,m, ℓ, t be the parameters specified in Assumption 4.3 and p be a constant
in [0, 1/2). Under Assumption 4.3 and Assumption 4.5, Construction 4.6 is a (1 − negl(n), 1 −
negl(n), o(1))-public-key PRC robust to any p-bounded channel and pseudorandom against all PPT
adversaries.

Proof. Observe that the length of the codewords generated by Construction 4.6 is poly(n). Fur-
thermore, Lemma 4.8, Lemma 4.9, and Lemma 4.10 give us the remaining necessary preconditions
to apply Lemma 2.18 which gives (1− negl(n), 1− negl(n), o(1))-public-key PRC.

The o(1) pseudorandomness in Theorem 4.11 is not ideal but for the purpose of watermarking,
seems tolerable. We argue that even 1 − Ω(1) pseudorandomness seems tolerable. In the case of
watermarking, indistinguishably is generally to ensure that the quality of model outputs are not
degraded. One can therefore sample j = O(1) PRC generators G1, . . . , Gj . To generate, run the

17

model j times, and on the ith iteration, watermark using generator Gi. With high probability, one
of the j outputs of the model is of non-degraded quality.

To see why, we return to the definition of indistinguishably. For any polynomial time adversary,
A, since the outputs of a random PRC generator are distinguishable from random with 1 − Ω(1)
advantage by A, with high probability, there exists an i such that the distinguishing algorithm A
outputs the same thing when the content is watermarked using generator Gi as it does when the
content is not watermarked. This implies that the content watermarked with the PRC Gi is not
degraded.

5 The weak planted XOR construction

Christ and Gunn [CG24] gave a scheme which is secure if both the planted XOR assumption and
polynomial hardness of LPN with constant noise rate hold 1. We observe that while polynomial
hardness of LPN with constant noise rate is a well believed assumption, the planted XOR assump-
tion is a non-standard and relatively unstudied assumption. Therefore, the conjunction of these
two assumptions is quite a strong assumption. It therefore seems plausible a scheme based on a
strengthened LPN assumption and a weakened planted XOR assumption is more secure than the
one presented in [CG24]. To present such a scheme, we first introduce the weakened planted XOR
assumption.

5.1 The assumption

Let us define D0(m,n) as the uniform distribution over {0, 1}n×m and we will now define the
distribution D1(n,m, t, ε) which corresponds to the distribution of matrices where we strategically
implant a low weight vector in the row space.

Construction 5.1 (Generalization of [ASS+23]). We define the distribution D1(n,m, t, ε)

1. Sample G← {0, 1}n×m,

2. Choose a random tuple (a1, . . . , at) ⊆ [n]t such that i ̸= j implies ai ̸= aj,

3. Let u = Ga1 ⊕ · · · ⊕Gat−1, v ← Ber(m, ε), and update Gat to u+ v

4. Output (G, s) where s ∈ {0, 1}n is the t sparse indicator vector for (a1, . . . , at).

We are now ready to introduce the (weak) planted XOR assumption.

Assumption 5.2. For m, t : N→ N and ε : N→ [0, 1/2] which are efficiently computable functions
of n, the XORm,t,ε assumption states that for every probabilistic polynomial-time adversary A,∣∣∣∣ Pr

G←D0(n,m)
[A(G) = 1]− Pr

(G,s)←D1(n,m,t,ε)
[A(G) = 1]

∣∣∣∣ = negl(n)

1For a particular setting of parameters, it is also secure if LPN with constant noise rate is 2O(
√
n) hard

18

What is refereed to as the planted XOR assumption in [CG24] is simply XORm,O(logn),0. As
one of their major contributions, the authors of [CG24] give a PRC scheme which is secure if (i)
Assumption 5.2 with ε = 0, and m = n1−Ω(1), t = Θ(log n) is true, and (ii) constant noise rate
LPN is hard. In this section, we show that such a scheme can be based on a more expansive set
of assumptions. Informally, we will show that if for any m = poly(n), XORm,Θ(logn),O(log(m)/(mη))

holds and LPN[η] holds, then pseudorandom codes exist. For concreteness, one may wish to read
this section with the parameter regime η = 1/

√
n in mind since LPN[1/

√
n] is a well believed

assumption and the weakest LPN assumption known to imply public-key cryptography [Ale03].

5.2 Evidence XORm,t,ε is a weaker assumption than XORm,t,0

Before proceeding with our PRC construction, we give two pieces of evidence that XORm,t,ε is
indeed a weaker assumption than XORm,t,0. The first is a reduction which shows that XORm,t,0

implies XORm,t,ε.

Theorem 5.3. For any m, t : N → N and ε : N → [0, 1/2] which are efficiently computable
functions of n, if the XORm,t,0 assumption holds and Ber(n, ε) is efficiently sampable, then the
XORm,t,ε assumption holds.

Proof. We will show the contrapositive statement that if XORm,t,ε does not hold, then XORm,t,0

does not hold. If the XORm,t,ε assumption does not hold, then there exists a polynomial time
distinguisher A which can distinguish between D0(n,m) and D1(n,m, t, ε) with non-negligible
advantage p(n). Consider now the distinguisher A′, which on an input G ∈ Fn×m

q , samples
i ← [1, n], v ← Ber(m, ε), creates a new matrix G′ ∈ Fn×n

q where G′ = G, sets G′i ← G′i ⊕ v,
and then outputs A(G′).

Notice first that A′ is a polynomial time distinguisher since constructing G′ and running
A(G′) are efficient computations. We now show that A′ can distinguish between D0(m,n) and
D1(m,n, t, 0) with non-negligible advantage. Let us first consider the case when G is sampled from
D0(m,n). In this case G′ is distributed as D0(m,n).

Now let us consider the case when G is sampled from D1(m,n, t, 0). We now define three families
of distributions:

1. For any s ∈ {0, 1}n, let Ds
0(m,n) be distribution of G when it is sampled uniformly from

{0, 1}n×m subject to sTG = 0.

2. For any s ∈ {0, 1}n, let Ds
1(m,n) denote the distribution of G when it is sampled as follows:

sample v ← Ber(n, ε), sample G uniformly from {0, 1}n×m subject to sTG = v. Also denote
D1(m,n) = D1(m,n, t, ε).

3. Let Ds
2(m,n) denote the distribution of G when sample it as follows: sample i ← [1, n],

v ← Ber(n, ε), G← Ds
0(m,n), set Gi ← Gi⊕ v. Let D2(m,n) denote the distribution of G as

follows: Sample s← St,n and G← Ds
2(m,n).

Notice that Ds
2(m,n) = (t/n)Ds

1(m,n) + (1− t/n)Ds
0(m,n) since there is a t/n chance that si = 1,

19

in which case G is sampled from Ds
1(m,n). Therefore, the distribution of D2(m,n) is

D2(m,n) =
∑
s
|s|=t

Ds
2(m,n)(

n
t

)
=
∑
s
|s|=t

(
t

n

Ds
1(m,n)(

n
t

) +

(
1− t

n

)
Ds

0(m,n)(
n
t

))

=
t

n

∑
s
|s|=t

Ds
1(m,n)(

n
t

) +

(
1− t

n

)∑
s
|s|=t

Ds
0(m,n)(

n
t

)
=

t

n
D1(m,n) +

(
1− t

n

)∑
s
|s|=t

D0(m,n)

In our reduction, if G ← D0(m,n), then G′ ∼ D0(m,n), and if G ← D1(m,n, t, ε), then
G′ ∼ D2(m,n). The distinguishing advantage of A on these two distributions is∣∣∣∣ Pr

x←D0(m,n)
[A(x) = 1]− Pr

x←D2(m,n)
[A(x) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x←D0(m,n)

[A(x) = 1]− t

n
Pr

x←D1(m,n)
[A(x) = 1]−

(
1− t

n

)
Pr

x←D0(m,n)
[A(x) = 1]

∣∣∣∣
=

t

n

∣∣∣∣ Pr
x←D0(m,n)

[A(x) = 1]− Pr
x←D1(m,n)

[A(x) = 1]

∣∣∣∣
=

t

n
p(n)

Since f(n) is non-negligible, (t/n)p(n) is non-negligible. Therefore A distinguishes D0(m,n)
(the distribution of G′ when G comes form D0(m,n)) and D2(m,n) (the distribution of G′ when
G comes form D1(m,n, t, ε)) with non-negligible probability. So A′ is a distinguisher falsifying the
XORm,t,ε assumption.

Our second piece of evidence that XORm,t,ε is a weaker assumption than XORm,t,0 is that
XORm,t,ε seems more robust to known attacks than XORm,t,0. The first version of [CG24] assumed
XORΘ(n),t,0. However, a subsequent version of [ASS+23] gave an attack showing XORΘ(n),O(logn),0

is not true. The attack (Thm 4.26 of [ASS+23]) consists of sampling random m/2×m submatricies
of the input matrix G and then using Gaussian elimination to determine the submatrix contains a
sparse subset of rows which xor to zero. The newest version of [CG24] circumvents this problem
by setting m = n1−Ω(1). We note that while XORΘ(n),O(logn),0 is susceptible to this type of attack,
XORΘ(n),O(logn),ε is not for reasonable ε (say ε = 1/

√
m). When attempting this attack against

XORΘ(n),O(logn),0, we can use Gaussian elimination since we were looking for a zero vector in a
m/2 dimensional subspace. When attempting this attack against XORΘ(n),O(logn),ε, we must find
a low weight vector in a m/2 dimensional subspace. This problem is the average case version of
the problem finding a planted low weight codeword v in a linear code, a problem which is generally
believed to be intractable.

20

5.3 The construction

Construction 5.4 (Weak sparse xor construction, weakXOR[m, t, ε, η]). Let m, t, ε, η be efficiently
computable functions of the security parameter n

• KeyGen(1n): Sample (G, s) from D1(n,m, t, ε). Output (sk = s, pk = G).

• Encode(1n, G): Sample u← Ber(m, η), e← Ber(n, η). Output Gu+ e.

• Decode(1n, s, x): If sTx = 0, output 1. Otherwise, output ⊥.

5.4 Robustness

Lemma 5.5. Let m = poly(n), η = o(1), t = O(log n), ε = O(log(m)/(ηm)), and p be any constant
in [0, 1/2). There exists a polynomial p(n) such that for Construction 5.4, for any d ≤ pn, for a
1− negl(n) fraction of keys (pk, sk)← KeyGen(1n),

Pr
E
[Decode(1n, sk, E(x)) = 1 : x← Encode(1n, pk, 1)] ≥ 1

2
+

1

p(n)

where E is the d-hypergeometric channel. the randomness is over the randomness of the encoding
algorithm and the errors of E.

Proof. Let p(n) = p′(n) ·p′′(n) ·p′′′(n) where p′(n), p′′(n), and p′′′(n) are polynomials we will choose
later. Consider the key sampling procedure and let sTG = v. Notice that by Lemma 2.3, there is
a e−Ω(εm) chance that |v| ≥ 1.5εm. As long as ε = ω(log(m)/m), this means there is a 1− negl(n)
chance (over the key sampling procedure) that |v| ≤ 1.5εm. Let p′(n) be a polynomial so that
(1−2η)1.5εm ≥ 1/p′(n). We will assume for the remainder of the proof that (1−2η)|v| ≥ 1/nc since
this happens for a 1− negl(n) fraction of keys.

Fix the keys. We must show that over the randomness encoding function and the channel, that
a codeword from the PRC has a reasonable chance of being decoded to one. Formally, we wish to
show that

Pr
u,e,E

[Decode(1n, s, E(Gu+ e) = 1] =
1

2
+

1

p(n)

Since E is the d-hypergeometric channel, we can model the error from the channel as an error vector
e′ ← Sd,n. We then need to prove

Pr
u,e,e′

[Decode(1n, s,Gu+ e+ e′) = 1] =
1

2
+

1

p(n)

By the definition of our decoding function, the above probability is equal to

Pr
u,e,e′

[sT (Gu+ e+ e′) = 0] = Pr
u,e,e′

[(sTG)u+ sT e+ sT e′) = 0]

Since (sTG)u = vTu is the xor of the coordinates of u on which v is one, vTu is the xor
of |v| i.i.d Ber(η) random variables. Therefore, by Lemma 2.2, (sTG)u = vu has probability
1/2+(1−2η)|v| = 1/2+1/p′(n) of being zero. Similarly, let p′′(n) be a polynomial (which we know

21

exists by Lemma 2.2) so that sT e has at least a 1/2 + 1/p′′(n) chance of being 0. Let p′′′(n) be a
sufficiently large constant so that 1/2+(1/2)(pn/(n− t))t ≥ 1/2+1/p′′′(n). Finally, by Lemma 2.5,
sT e′ also has at least 1/2 + (1/2)(pn/(n − t))t ≥ 1/2 + 1/p′′′(n) chance of being 0. Since these
events are all independent sTGu + sT e + sT e′ has probability at least 1/2 + 1/p(n) of being 0 by
Lemma 2.2.

5.5 A form of soundness

Lemma 5.6. For any m, t, ε, η, k = poly(n), for Construction 5.4, for all key pairs (pk, sk) ←
KeyGen(1n), we have

Pr
x←{0,1}n

[Decode(1n, sk, x) = ⊥] = 1

2

Proof. Recall that decoding in Construction 5.4 outputs ⊥ if some fixed O(log n) bits (depending
on sk) of x xor to 1. For a random string x, this happens with probability exactly 1/2.

5.6 Pseudorandomness

Lemma 5.7. For any efficiently computable m = poly(n), t, ε, η, if XORm,t,ε holds, and LPN[η]
holds, then weakXOR[m, t, ε, η] is pseudorandom.

Proof. Let G be distributed uniformly over {0, 1}n×m, G′ be distributed according to D1(m,n, t, ε),
q = poly(n), x1, . . . , xq be distributed as Ber(m, η), and e1, . . . , eq be distributed as Ber(m, η). The
output distribution of weakXOR[m, t, ε, η] is G′x1+ e1, . . . , G

′xq + eq. By the XORm,t,ε assumption,
that distribution is indistinguishable from Gx1 + e1, . . . , Gxq + eq. The LPN[η] assumption implies
LPN′[η], which implies that Gx1+e1, . . . , Gxq+eq is indistinguishable from random. By the hybrid
lemma, G′x1 + e1, . . . , G

′xs + es is also indistinguishable from random.

Remark 5.8. Technically, we require something weaker than LPN[η] to hold for our proof of pseu-
dorandomness. We need only that LPN is secure when the distribution of the secret comes from
Ber(m, η) and the error comes from a distribution Ber(n, p) for any constant p < 1/2. However,
since the LPN assumption is typically stated solely in terms of the error rate and LPN[η] is sufficient
for this construction, we choose to state our results as being based on the (possibly stronger than
necessary) LPN[η] assumption.

5.7 Putting it all together

Theorem 5.9. For efficiently computable m = poly(n), t = O(log n), η = o(1), ε = O(log(m)/(ηm))
which are functions of n and constant p ∈ [0, 1/2), if XORm,t,ε holds and LPN[η] holds, then there
exists a (1−negl(n), 1−negl(n),negl(n))-public-key PRC which is robust to all p-bounded channels
and pseudorandom against all PPT adversaries.

Proof. Observe that the length of the codewords generated by Construction 5.4 is poly(n). Fur-
thermore, Lemma 5.5, Lemma 5.6, and Lemma 5.7 give us the remaining necessary preconditions
to apply Lemma 2.18 which gives (1− negl(n), 1− negl(n),negl(n))-public-key PRC.

22

6 PRCs for space-bounded adversaries

We now present a zero-bit PRC scheme based on the time-space hardness of the learning parity with
noise problem which is robust BSC(p) for any constant p < 1/2. The pseudorandomness of this
construction is unconditional and not based on cryptographic assumptions. The celebrated work of
[Raz18] showed that the learning parity without noise problem requires either a superpolynomial
number of samples or Ω(n2) memory. Follow-up work [KRT17] and [GKLR21] expanded this work
to the cases where the secret is sparse and the case where the samples are noisy. We will begin by
reviewing the relevant definitions and results.

Definition 6.1. The learning sparse parities problem with density ℓ and error rate ε is defined as
follows: The secret vector s is sampled uniformly at random from Sℓ,n. An algorithm A is given
samples (a, a · s + e) where a ← {0, 1}n, e ← Ber(1/2 − ε). We say A succeeds if it successfully
outputs s.

Definition 6.2. We say that a distribution of bits X1, . . . , Xn is next-bit unpredictable for a class
of adversaries C if for all A ∈ C and all i ∈ [1, n], there exists a negligible function ε(n) such that

Pr [A(1n, X1, . . . , Xi−1) = Xi] ≤
1

2
+ ε(n)

Lemma 6.3. Let q = poly(n) and ε = o(1). The distribution a1, a1 · s+ e1, . . . , aq, aq · s+ eq where
s ← SΘ(logn),n and ai ← {0, 1}n, ei ← Ber(1/2 − ε) for all i ∈ [1, q] is next-bit unpredictable for

PPT algorithms with O(n log0.99(n)/ε) space.

See Section 7 for a derivation of Lemma 6.3.

6.1 Construction

Construction 6.4 (small space resilient construction, SSR[ℓ, ε, k, δ]). Let ℓ, ε, k′ be efficiently com-
putable functions of the security parameter n and δ be a constant.

• KeyGen(1n): Sample s1, . . . , sk′ ← Sℓ,n and output sk = (s1, . . . , sk′).

• Encode(1n, (s1, . . . , sk′), 1): Sample a← {0, 1}n, e1, . . . , ek′ ← Ber(1/2− ε), output

a||a · s1 + e1|| . . . ||a · sk′ + ek′ .

• Decode(1n, (s1, . . . , sk′), x): Reinterpret x ∈ {0, 1}n+k′ as ã||b̃1|| . . . ||b̃k′ where ã ∈ {0, 1}n and
b̃i ∈ {0, 1} for all i ∈ [1, k′]. If ã is not 1/(2n0.4) balanced, output ⊥. Otherwise, let wi be

one if and only if ã · si = b̃i. If
∑k′

i=0wi ≥ k′/2 + nδ
√
k′ output 1 and otherwise output ⊥.

6.2 Robustness

Say that the decoder receives a string x = ã||b̃1|| . . . ||b̃k′ . Intuitively, for every i such that ã ·si = b̃i,
the decoder gains more confidence that x is a codeword. However, on first inspection, it seems
plausible one could flip a just a few of the first n bits of a codeword (turn a into ã) to ensure there

23

would exist very few i ∈ [k′] such that ã · si = b̃i. The existence of such an attack could potentially
imply that the code of Construction 6.4 is not particularly robust to errors. We will show that such
an attack does not affect robustness due to the sparsity of the si. In order to do so, we first review
a version of the Chernoff bound for weakly dependent random variables.

Definition 6.5 ([GLSS12]). A family Y1, . . . , Yk′ of random variables is read-d if there exists a
sequence X1, . . . , Xn of independent variables, and a sequence S1, . . . , Sk′ of subsets of [n] such that

1. Each Yi is a function of (Xj : j ∈ Si), and

2. No element of [n] appears in more than d of the Si’s.

Lemma 6.6 ([GLSS12]). Let Y1, . . . , Yk′ be a family of read-d indicator random variables with
Pr[Yi = 1] = pi and let p be the average of p1, . . . , pk′. Then for any ε > 0, the probabilities

Pr[Y1 + · · ·+ Yk′ ≥ (p+ ε)k′] and Pr[Y1 + · · ·+ Yk′ ≤ (p− ε)k′]

are both at most e−2ε
2k′/d

Lemma 6.7. Let ℓ ≤ O(log n), d = ω(log n), and k′ ≤ n. Consider S = {S1, . . . , Sk′} where each

Si is drawn uniformly at random from
([n]

ℓ

)
. Some element t ∈ [n] occurs in d elements of S with

probability negl(n).

Proof. Let Tt denote the event where i occurs in at least d elements of S. Since t occurs in each
element of S independently with probability ℓ/n, the probability that it appears in at least d
elements of S is the probability that a random variable distributed as Bin(k′, ℓ/n) is at least d.
Since k′ ≤ n and d = ω(log n), this is at most the probability that a random variable distributed
as Bin(n, c log(n)/n) is at least ω(log n). By Lemma 2.3, this probability is at most negl(n). Union
bounding over all t ∈ [n], we see that probability that there exits some element t ∈ [n] occurring in
more than d sets is at most n · negl(n) = negl(n).

Lemma 6.8. Let ε be some function of n, p be a constant in [0, 1/2), δ > 0, and k′ = (2n2δ/ε)2.
There exists a constant c > 0 such that for ℓ = c log(n), SSR[ℓ, ε, k′, δ] is robust to BSC(p) with
probability 1− negl(n).

Proof. The probability that a codeword is decoded to 1 correctly is equal to the probability that
the following experiment succeeds. We sample s1, . . . , sk′ ← Sℓ,n, e1, . . . , ek′ ∼ Ber(1/2 − ε),
a← {0, 1}n, and e′ from Ber(n+ k′, p). Let ã = a⊕ e′[1,n], b̃i = a · si + ei + e′n+i for every i ∈ [1, k′],

and wi = 1 if and only if ã · si = b̃i. The experiment succeeds if
∑k′

i=1wi ≥ k′/2 + nδ
√
k′.

By Lemma 6.7, we can fix S = {S1, . . . , Sk′} and assume that no element t ∈ [n] occurs in more
than nδ/2 = ω(log n) elements of S since this is true with 1− negl(n) probability.

We see that each wi is a function of {ar : r ∈ Sj} ∪ {e′r : r ∈ Sj} ∪ {ei, e′n+i}. Since we assumed
no element t ∈ [n] occurs in more than nδ/2 of the sets Sj , we see that no wi, wi′ where i ̸= i′ share
more than nδ random variables on which they are dependent. Therefore, wi are read-nδ random
variables. We will now compute the expectation of wi:

E[wi] = Pr[ã · si = b̃i]

24

= Pr[(a+ e′[1,n]) · si = (a · si) + ei + e′n+i]

= Pr[e′[1,n] · si = ei + e′n+i] .

Recall |si| = O(log n), and by symmetry, we can assume without loss of generality that si is a series
of ones followed by a series of zeros. So the above probability expression is equal to

= Pr[e′[1,c log(n)] + ei + e′n+i = 0]

=
1

2

(
1 + (1− 2p)c log(n)+1

(
1− 2

(
1

2
− ε

)))
=

1

2

(
1 + 2ε(1− 2p)c log(n)+1

)
where the second equality follows from Lemma 2.2. We can set c to be a sufficiently small constant
such that (1− 2p)c log(n)+1 ≥ 1/nδ so that the above is at least 1

2 + ε/nδ.

Now that we know the expected value for each wi, we can use the Chernoff bound for variables
with bounded dependence. For sufficiently large n, there are k′ such read-nδ variables and each has
probability at least 1/2+ ε/nδ of being 1. The probability that the decoding algorithm decodes to
⊥ is

Pr
[
w1 + · · ·+ wk′ ≤ k′/2 + nδ

√
k′
]
= Pr

[
k′∑
i=1

wi ≤ (1/2 + ε/nδ − ε/nδ + nδ/
√
k′)k′

]
≤ e−2(−ε/n

δ+nδ/
√
k′)2k′/nδ

= e−Ω(ε/nδ)2k′/nδ

= e−Ω(ε2/n2δ)k′/nδ

= e−Ω(ε2/n2δ)·Ω(n4δ/ε2)/nδ

= e−Ω(n2δ)/nδ

= negl(n)

where the second inequality follows from Lemma 6.6 and the third follows by assumption on the
value of k′. Therefore, there is a negl(n) chance that codeword is decoded to ⊥.

6.3 Soundness

On first inspection, it may seem strange that we output ⊥ when trying to decode strings where ã
is not balanced. This is to ensure soundness. To see why this exit condition is necessary, consider
what happens when the codeword is the string of all zeros. Construction 6.4 would certainly decode
this codeword to 0 regardless of what sk is. The requirement that ã eliminates the possibility of
such edge cases. We will now show the soundness of our zero bit encryption scheme by showing
that any fixed x ∈ {0, 1}n+k′ decodes to ⊥ with high probability.

Lemma 6.9. Let a ∈ {0, 1}n be a 1/n0.4-biased string, b ∈ {0, 1}, c be an arbitrary constant and s
be drawn uniformly at random from Sc log(n),n.

Pr
s
[a · s = b] ≤ 1/2 + negl(n)

25

Proof. Let r = |{i : ai = 1}| and notice n/2 − n0.6 ≤ r ≤ n/2 + n0.6 since a is σ-balanced. The
probability that a ·s = 0 is the probability X ∼ Hyp(n, r, c log(n)) is even. Since 1/2−O(1/n0.1) ≤
(r − c log(n))/n ≤ 1/2 + O(1/n0.1) and 1/2 − O(1/n0.1) ≤ r/(n − c log n) ≤ 1/2 + O(1/n0.1), by
Corollary 2.6, the probability thatX ∼ Hyp(n, r, c log(n)) is even is at most 1/2+O(1/n0.1)c log(n) =
1/2 + negl(n). A similar argument shows that the probability that a · s = 1 is at most 1/2 +
negl(n).

Lemma 6.10. Let 0 ≤ δ ≤ 1/100 be constant, ϵ be any function of n, k′ ≥ nδ be poly(n), and
ℓ = O(log n). For any fixed x ∈ {0, 1}n+k′, in the SRR[ℓ, ε, k′, δ] scheme,

Pr
sk

[Decode(sk, x) = ⊥] ≥ 1− negl(n) .

Proof. Let us reanalyze x as a||b1|| . . . ||bk′ where a ∈ {0, 1}n and bi ∈ {0, 1} for i ∈ [1, k′]. Consider
the set G = {j : a · sj = bj}. Recall that for x to not decode to ⊥, we need |G| ≥ k′/2+nδ

√
k′. By

Lemma 6.9, each i is in G independently with probability 1/2 + negl(n). So the mean value of |G|
is k′/2 + negl(n)k′. Therefore

Pr
sk

[Decode(sk, x) ̸= ⊥] = Pr
sk

[
|G| ≥ k′

2
+ nδ

√
k′
]

≤ Pr
sk

[
|G| ≥

(
1 +

nδ/100

√
k′

)(
k′

2
+ negl(n)

)]
= negl(n)

where the second to last inequality is true for sufficiently large n and the last inequality follows
from Lemma 2.3.

6.4 Pseudorandomness

We will show pseudorandomness of Construction 6.4 by first showing that any polynomial number
of codewords is next-bit unpredictable for a polynomial time, space-bounded adversary. Lemma 6.3
shows that sparse parity learning examples a||a · s+ e are next bit unpredictable. In this case, a is
random and one pseudorandom bit is output per freshly sampled a. However, in Construction 6.4,
the samples are of the form a||a · s1 + e1|| . . . ||a · sk′ + ek′ . In this case, a is random and multiple
pseudorandom bits are output per freshly sampled a. Fortunately, next-bit unpredictability of
samples of the form a||a · s + e implies next-bit unpredictability of samples of the form a||a · s1 +
e1|| . . . ||a . . . sk′ + ek′ .

Lemma 6.11. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), log(ε) ∈ Z, q = poly(n), k′ =
poly(n), and ℓ = Θ(log n). Let Enc be the encoding function of SSR[ℓ, ε, k′, δ]. Consider the
distribution induced by sk← KeyGen(1n) and X1, . . . , Xq ← Enc(1n, sk, 1) where Xi ∈ {0, 1}n+k′ for
all i ∈ [1, q]. No PPT, O(n log0.99(n)/ε) space adversary acts as a next bit predictor for X1, . . . , Xq.

Proof. Consider the following distribution on q(n+ 1) bits: Y = (a1, a1 · s+ e1, . . . , aq, aq · s+ eq)
where s ← Sℓ,n and ai ← {0, 1}n, ei ← Ber(1/2 − ε). Say for the sake of contradiction that
there exists an algorithm a polynomial time, O(n log0.99(n)/ε) space adversary A and a series of
indices {in}n∈N such that A could predict bit in of (X1, . . . , Xq) ∈ {0, 1}q(n+k′) with non-negligible

26

probability. We will use A to construct an algorithm A′ which acts as a next bit predictor for Y
by predicting bit {i′n}n∈N of Y with non-negligable probability.

Bit in cannot be a truly random bit belonging to a newly sampled a since then it would not be
predictable. Therefore, bit in corresponds to (ag · sj + eg,j) for some g ∈ [1, q], j ∈ [1, k′]. In words,
in is the jth parity bit from codeword g. We now construct A′ that will predict bit i′n = j(n+ 1)
of Y . A′ begins by sampling each s1, . . . , sk′ excluding sj from SΘ(logn),n. A′ then simulates A.

Recall Y = (a1, a1 · s+ e1, . . . , aq, aq · s+ eq) and A′ wishes to predict j(n+1) of Y . A′ samples
eu,v ← Ber(1/2− ε) for all u ∈ [q], v ∈ [1, k′]. Let ti ∈ {0, 1}n+k′ be (ai, ai · s1 + ei,1, . . . , ai · sj−1 +
ei,j−1, ai · s+ ei, ai · sj+1+ ei,j+1, ·sk′ + ei,k′). A′ feeds the first in− 1 bits of (t1, . . . , tq) to A, which
then outputs it prediction b. A′ outputs b.

We now confirm that A′ is a polynomial time, O(n log0.99(n)/ε) space algorithm. The sampling
of any e ← Ber(1/2 − ε) requires some care. If ε = 1/2x for some x = nO(1), we can use x bits to
sample an integer y uniformly at random from [1, 2x]. If y ∈ [1, 2x−1+1], we set e = 0 and otherwise
set e = 1. This sampling procedure results in e ∼ Ber(1/2 − ε). The rest of the computation still
clearly proceeds in poly(n) time. Furthermore, A′ only needs k′ · log(

(
n

log(n)

)
) = k′ · O(log2(n)) =

O(n) auxiliary space to store and compute with (s1, . . . , sk′). Therefore, A′ is a poly(n) time,
O(n log0.99(n)/ε) space algorithm.

Since (t1, . . . , tq) has the exact same distribution as (X1, . . . , Xq), it should be clear that A
predicts bit in of (t1, . . . , tq) non-negligible probability. Since by construction, that bit corresponds
exactly to bit j(n+1) of Y , we see that A′ predicts bit j(n+1) of Y with non-negligible probability.

Therefore, A′ is a poly(n) time, O(n log0.99(n)/ε) space algorithm which predicts bit i′n of the
output of Y . This contradicts Lemma 6.3.

Lemma 6.12. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), log(ε) ∈ Z, q = poly(n), k′ =
poly(n), and ℓ = Θ(log n). The scheme SSR[ℓ, ε, k′, δ] is pseudorandom against O(n log0.99(n)/ε)
space, poly(n) time adversaries.

Proof. Follows from Lemma 6.11 and observing that the standard hybrid argument showing that
next bit unpredictability implies pseudorandomness [Gol00] applies even for space-bounded adver-
saries.

6.5 Putting it all together

Theorem 6.13. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), k′ = (2n2δ/ε)2, and p be a
constant in [0, 1/2). There exists a constant c > 0 such that SSR[c log(n), ε, k, k′, δ] is a zero-bit
secret-key PRC which

• has output length n+ k′

• is robust to BSC(p)

• has key size O(k′ · log2(n))

• pseudorandom against probabilistic polynomial time, O(n log0.99(n)/ε) space adversaries.

27

Theorem 6.13 shows that Construction 6.4 can have quite small key sizes at the expense of
being pseudorandom against adversaries with smaller space. We now instantiate the parameter
regime we believe to be the most useful.

Corollary 6.14. Let 0 ≤ δ ≤ 1/100 be a constant and p be a constant in [0, 1/2). There exists a
constant c > 0 such that SSR[c log(n), ε, k, k′, δ] is a zero-bit secret-key PRC which

• has output length O(n)

• is robust to BSC(p)

• has key size O(n)

• pseudorandom against probabilistic polynomial time, O(n1.5−2δ/ log0.01(n)) space adversaries.

Proof. Follows by setting ε = log(n)n−1/2+2δ in Theorem 6.13.

Therefore, we have shown zero bit PRCs with O(n) length which are unconditionally pseudoran-
dom against poly(n) time, O(n1.5−δ) space (for any constant δ > 0) adversaries. It is natural to ask
if this leads to multi-bit PRCs. The construction of multi-bit PRCs with rate 1/n (construction 3
of [CG24]) also works in the space-bounded setting but has codeword length O(kn) when encoding
k bits. This would let us build k-bit PRCs with codeword length O(kn) which are pseudorandom
against PPT, O(n1.5−δ) space adverseries. However, that construction has the undesirable property
that it narrows the gap between the space of the adversary and the space of the encoding algorithm,
thereby making the scheme less secure. It would be interesting to build constant rate PRCs which
are unconditionally pseudorandom against PPT, space-bounded adversaries.

7 Perspectives

Here we review some of the design decisions we have made in our constructions.

In Section 6, we prove robustness to the binary symmetric channel rather than p-bounded
channels (we assume p is a constant in [0, 1/2)). One may ask whether it is possible to prove
robustness to all p-bounded channels rather than just the binary symmetric channel. To show
robustness to p-bounded channels, one could choose to apply a similar type of reduction as given
in Lemma 2.18 by including in the secret key a shift z and a permutation π. This reduces showing
robustness against p-bounded channels to showing robustness against d-hypergeometric channels
for all d ≤ pn, which is very similar to the binary symmetric channel. Since the robustness
probability only goes up as p goes down in Lemma 6.8, there exists a function u(n) = negl(n) such
that for all d ∈ [1, pn], Construction 6.4 is robust to BSC(d/n) with probability 1 − u(n). This
implies Construction 6.4 is robust to any d-hypergeometric channel for d ≤ pn with probability
O(n)u(n) = negl(n). However, such a reduction incurs an additive O(n log n) factor in the key size
since π is O(n log n) bits. In the space-bounded setting, having small keys is particularly important,
so we have chosen to focus on the standard setting of the binary symmetric channel, which allows
for remarkably small key sizes. However, it should not be hard to formalize the argument for
p-bounded channels.

28

This work focuses on the theoretical aspects of PRCs but one can also ask if Section 4 and
Section 5 are practical for watermarking LLM text. Unfortunately this seems unlikely. The problem
is that if we set the security parameter n = 128 (a reasonable security parameter), the application
of the Lemma 2.18, which allows us to construct a PRC from a scheme where there is only a
small advantage in distinguishing codewords from random words, requires us to concatenate many
codewords together, which may result in a code with a length of poly(n) for some very large
polynomial. This is too long to be practical. Fundamentally, Lemma 2.18 allows us to amplify
robustness by concatenating t codewords of length n to form a string x of length tn. Every n bit
block of y = E(x) that is decoded to 1 rather than ⊥ gives us more certainty that y is a corrupted
codeword.

There are, however, other ways to amplify our confidence. For example, each codeword of length
n can contain multiple checks. In Construction 5.4, (for simplicity consider the ϵ = 0 regime) we
sample G uniformly at random subject to sTG = 0m and then check if y is a corrupted codeword
by checking if sT y = 0. This gives us low confidence that y is a corrupted codeword, so we apply
Lemma 2.18. However, imagine we had s1, . . . , sτ and sampled G uniformly at random subject
to the constraints that sTi G = 0m for all i ∈ [1, τ]. Then to check if y is a corrupted codeword,
we check how many i ∈ [1, τ] there were such that sTi y = 0, and the more there were, the more
confidence that we could have that y is a corrupted codeword. This is the approach advocated by
[CG24].

Similarly, in Section 4, we implant poly(n) hyperloops but one use one for decoding (by checking
if
⊕

j∈S1
yj = 0) and then amplify our success probability using Lemma 2.18. From a theoretical

perspective, the polynomial size blowup in the length of the code incurred by Lemma 2.18 does not
matter. However, from a practical perspective, the correct approach would check how many i ∈ [1, t]
there are such that

⊕
j∈Si

yj = 0. In both cases, adding more structure in the encoding/decoding
stages means that the decoder knows with greater certainty if a word is a codeword, without
incurring a large blowup in codeword length.

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Proceedings of the Forty-Second ACM Symposium on Theory
of Computing, STOC ’10, page 171–180, New York, NY, USA, 2010. Association for
Computing Machinery. 5

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 595–618, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg. 8

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS,
pages 298–307, 2003. 19

[Arr22] Scott Arronson. My ai safety lecture for ut effective altruism, 2022. 12

29

[ASS+23] Shweta Agrawal, Sagnik Saha, Nikolaj Ignatieff Schwartzbach, Akhil Vanukuri, and
Prashant Nalini Vasudevan. k-SUM in the sparse regime. Cryptology ePrint Archive,
Paper 2023/488, 2023. https://eprint.iacr.org/2023/488. 3, 18, 20

[BKR23] Andrej Bogdanov, Pravesh Kothari, and Alon Rosen. Public-key encryption, local
pseudorandom generators, and the low-degree method. Cryptology ePrint Archive,
Paper 2023/1049, 2023. https://eprint.iacr.org/2023/1049. i, 3, 5, 11, 13, 14, 15

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Meaux, Mélissa Rossi, and Yann Rotella.
On the Concrete Security of Goldreich’s Pseudorandom Generator: 24th International
Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II, pages 96–124. 01
2018. 15

[CG24] Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid
Reyzin and Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, pages
325–347, Cham, 2024. Springer Nature Switzerland. i, ii, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 18, 19, 20, 28, 29

[CGZ24] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language
models. In The Thirty Seventh Annual Conference on Learning Theory, pages 1125–
1139. PMLR, 2024. 1, 12

[Che52] Herman Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations. The Annals of Mathematical Statistics, 23(4):493 – 507,
1952. 6

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded
adversaries. In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97,
pages 292–306, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. 5

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In Joe Kilian, editor,
Advances in Cryptology — CRYPTO 2001, pages 155–170, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. 5

[DQW23] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryp-
tography in the bounded storage model, revisited. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, pages 86–116, Cham, 2023.
Springer Nature Switzerland. 5

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, aug 1986. 12

[GKLR21] Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-sample lower
bounds for learning parity with noise, 2021. 4, 5, 23, 32

[GLSS12] Dmitry Gavinsky, Shachar Lovett, Michael E. Saks, and Srikanth Srinivasan. A tail
bound for read-k families of functions. Random Structures & Algorithms, 47, 2012. 24

30

https://eprint.iacr.org/2023/488
https://eprint.iacr.org/2023/1049

[GM24] Noah Golowich and Ankur Moitra. Edit distance robust watermarks for language
models, 2024. 1, 2, 5, 13

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, USA, 2000. 27

[Gol11] Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs, pages
76–87. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 3, 5

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds
for learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, page 990–1002, New York, NY, USA, 2018. Association for
Computing Machinery. 32

[Hoe94] Wassily Hoeffding. Probability Inequalities for sums of Bounded Random Variables,
pages 409–426. Springer New York, New York, NY, 1994. 6

[KGW+23] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom
Goldstein. A watermark for large language models. In International Conference on
Machine Learning, pages 17061–17084. PMLR, 2023. 12

[KRT17] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, page 1067–1080, New York, NY, USA, 2017. Association for Computing
Machinery. 4, 5, 23, 32, 33

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Minimizing the complexity of goldreich’s
pseudorandom generator. Cryptology ePrint Archive, Paper 2017/277, 2017. https:

//eprint.iacr.org/2017/277. 15

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology, 5(1):53–66, 1992. 5

[OST22] Igor C. Oliveira, Rahul Santhanam, and Roei Tell. Expander-based cryptography meets
natural proofs. computational complexity, 31(1):4, 2022. 5

[Raz18] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity
learning. J. ACM, 66(1), dec 2018. 4, 5, 11, 23, 32

[VV83] Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number generators,
with applications to protocol design. In 24th Annual Symposium on Foundations of
Computer Science (sfcs 1983), pages 23–30, 1983. 5

A Time-space hardness of Θ(log n)-sparse LPN

For our results in Section 6, we need to confirm that any algorithm which solves the learning
parity with noise where the secret has weight Θ(log n) with non-negligible probability requires a
significant amount of memory. We therefore begin by examining which parameter regimes we may

31

https://eprint.iacr.org/2017/277
https://eprint.iacr.org/2017/277

expect negligible success probability ([Raz18] [KRT17] [GKLR21] are generally not concerned with
the distinction between negligible and non-negligible success probability).

Definition A.1 ([KRT17], this version appears in [GRT18]). A set T ⊆ {0, 1}n is (ε, δ)-biased if
there are at most δ · 2n elements a ∈ {0, 1}n with |Ex∈RT [(−1)a·x]| > ε, (where a · x denotes the
inner product of a and x, modulo 2).

Definition A.2 ([GKLR21]). Let X,A be two finite sets. A matrix M : A × X → {−1, 1} is a
(k, ℓ)-L2-extractor with error 2−r if for every nonnegative f : X → R with ∥f∥2/∥f∥1 ≤ 2ℓ, there
are at most 2−k · |A| rows a ∈ A with

|⟨Ma, f⟩|
∥f∥1

≥ 2−r

. Where ∥f∥p = (Ex←X [|f(x)|p])1/p, Ma : X → R is the function corresponding to the ath row of
M , and ⟨Ma, f⟩ = Ex←X [f(x) · g(x)].

Lemma A.3 ([KRT17], this version appears in [GRT18]). There exists a sufficiently small constant
c such that the following holds. Let Sℓ,n = {x ∈ {0, 1}n : |x| = ℓ}. If ℓ ≤ n0.9, then Sℓ,n is an

(ε, δ)-biased set for ε = ℓ−cℓ, δ = 2−cn/ℓ
0.01

.

Lemma A.4 ([GRT18]). Let T ⊆ {0, 1}n be an (ε, δ)-biased set, with ε ≥ δ. Then the matrix
M : T × {0, 1}n → {−1, 1}, defined by M(a, x) = (−1)a·x is a (k, ℓ)-L2-extractor with error 2−r,
for ℓ = Ω(log(1/δ)), and k = r = Ω(log(1/ε)).

Lemma A.5 (Theorem 5 of [GKLR21]). Let 1/100 ≤ c ≤ ln(2)/3. Fix γ to be such that
(3c)/ ln(2) ≤ γ2 ≤ 1. Let X,A be two finite sets. Let n = log2 |X|. Let M : A ×X → {−1, 1} be
a matrix which is a (k′, ℓ′)-L2-extractor with error 2−r, for sufficiently large k′, ℓ′, and r′, where
ℓ′ ≤ n. Let

r := min

{
r′

2
,
(1− γ)k′

2
,
(1− γ)ℓ′

2
− 1

}
.

Let B be a branching program, of length at most 2r and width at most 2c·k
′·ℓ′/ε for the learning

problem that corresponds to the matrix M with error probability ε. Then the success probability of
B is at most O(2−r).

Lemma A.6. No probabilistic polynomial time, O(n log0.99(n)/ε) space algorithm solves the learn-
ing sparse parties problem with density Θ(log n) and error rate 1/2−ε with non-negligible probability.

Proof. We begin by observing that any probabilistic polynomial time, O(n log0.99(n)/ε) space al-
gorithm implies a deterministic polynomial time, O(n log0.99(n)/ε) space algorithm since a de-
terministic algorithm can simply use the first bit of a freshly sampled LPN sample any time it
needs a random bit. Therefore, we only need to show that no deterministic polynomial time,
O(n log0.99(n)/ε) space algorithm solves the learning sparse parties with density Θ(log n) and error
rate 1/2− ε with non-negligible probability.

Let ℓ = Θ(log n) be the weight of our LPN secret. Lemma A.3 tells us that there exists a constant
c such that Sℓ,n is an (ε, δ)-biased set where ε = ℓ−cℓ, δ = 2−cn/ℓ

0.01
. Since ε ≥ δ (for sufficiently

large n), by Lemma A.4, we see that the matrixM defined by Sℓ,n is a (k′, ℓ′)-L2-extractor with error
2−r

′
for ℓ′ = Ω(n/ℓ0.01), k′ = r′ = Ω(ℓ log(ℓ)). Notice that r′, k′, ℓ′ are all Ω(ℓ log(ℓ)). Therefore,

32

by Lemma A.5, we see that branching program which uses o(k′ℓ′/ε) = o(ℓ log(ℓ)n/(ℓ0.01ε)) =
O(nℓ0.99 log(ℓ)/ε) memory and O(2ℓ log(ℓ)) time has as a O(2−ℓ log(ℓ)) = negl(n) of solving the
learning parity with noise problem.

Finally, as pointed out in [KRT17], this gives us cryptography against a bounded space adver-
sary. Since the inner product is a strong extractor, if we select our secret s from Sℓ,n and output
(a1, a1 · s + e1), . . . , (at, at · s + et), at+1 (where t = poly(n), each ai is sampled uniformly from
{0, 1}n, and each ei is sampled from Ber(1/2 − ε)), no polynomial time, o(nℓ0.99 log(ℓ)/ε) space
algorithm can predict at+1 · s with noticeable probability.

B Hypergeometric distribution lemma

We restate and prove Lemma 2.5 and Corollary 2.6.

Lemma 2.5. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n,m, t), then

1

2
+

1

2
min

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) ≤ Pr[X is even] ≤ 1

2
+

1

2
max

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) .

Proof. Note that X is the number of special elements chosen if have n elements, of which m are
special, and we choose t. Consider selecting the elements one by one. LetXi be the indicator random
variable denoting if the ith element chosen is special, let ai denote the probability that we have an
even number of special elements after i items are chosen. Let pi denote Pr

X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 =

1|X1⊕ · · · ⊕Xi = 0]. We will show by induction that ai = 1/2+ (1+
∏i

j=1(1− 2pj)). When i = 0,
this holds trivially. We now show the inductive case.

ai+1 = Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 = 0]

= Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 = 0 ∩X1 ⊕ · · · ⊕Xi = 0]

+ Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 = 0 ∩X1 ⊕ · · · ⊕Xi = 1]

= Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 = 0|X1 ⊕ · · · ⊕Xi = 0] · ai

+ Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xi+1 = 0|X1 ⊕ · · · ⊕Xi = 1] · (1− ai)

= (1− pi+1) · ai + pi+1 · (1− ai)

= pi+1 + (1− 2pi+1)ai

=
1

2

1 +

i+1∏
j=1

(1− 2pj)

This concludes the inductive case. Notice that m−t

n ≤ pi ≤ m
n−t since every time we choose an

element, the proportional of special elements to total elements left is at least (m− t)/n and at most
m/(n− t). Therefore,

min
m−t
n
≤pi≤ m

n−t

1

2

(
1 +

t∏
i=1

(1− 2pi)

)
≤ Pr[X is even] ≤ max

m−t
n
≤pi≤ m

n−t

1

2

(
1 +

t∏
i=1

(1− 2pi)

)
.

33

The result follows by algebraic manipulation.

Corollary 2.6. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n,m, t) and p is a value maximizing |1− 2p| subject
to (m− t)/n ≤ p ≤ m/(n− t), then

Pr[X is even] ≤ 1

2
+

1

2
|1− 2p|t, and Pr[X is odd] ≤ 1

2
+

1

2
|1− 2p|t .

Proof. Observe that

max
m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) ≤ max
m−t
n
≤pi≤ m

n−t

t∏
i=1

|1− 2pi| ≤ |1− 2pi|t .

By Lemma 2.5,

Pr[X is even] =
1

2
+

1

2
max

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi) ≤
1

2
+

1

2
|1− 2p|t .

Similarly,

Pr[X is even] ≥ 1

2
+

1

2
min

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi)

=
1

2
+

1

2
max

m−t
n
≤pi≤ m

n−t

−
t∏

i=1

(1− 2pi)

=
1

2
− 1

2
max

m−t
n
≤pi≤ m

n−t

t∏
i=1

(1− 2pi)

≥ 1

2
− 1

2
|1− 2p|t .

This implies that the probability that X is odd is at most 1/2 + (1/2)|1− 2p|t.

34

	Introduction
	PRCs and Applications
	Watermarking large language models
	Our results
	Planted hyperloop construction
	Revisiting christ2024pseudorandom and planted XOR assumption
	Unconditional PRCs for space-bounded adversaries

	Further directions
	Related work

	Preliminaries
	Notation
	Probability and combinatorics
	Indistinguishability and LPN
	Pseudorandom Codes

	A warmup
	Planted hyperloop construction
	The assumptions
	The construction
	Robustness
	A form of soundness
	Pseudorandomness
	Putting it all together

	The weak planted XOR construction
	The assumption
	Evidence XORm, t, is a weaker assumption than XORm, t, 0
	The construction
	Robustness
	A form of soundness
	Pseudorandomness
	Putting it all together

	PRCs for space-bounded adversaries
	Construction
	Robustness
	Soundness
	Pseudorandomness
	Putting it all together

	Perspectives
	Time-space hardness of (n)-sparse LPN
	Hypergeometric distribution lemma

