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Abstract. Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their funda-
mental importance and versatility in modern cryptography. However, the inherently different nature of
quantum information significantly alters the landscape, necessitating a re-examination of ZK designs.

A crucial aspect of ZK protocols is their round complexity, intricately linked to simulation, which
forms the foundation of their formal definition and security proofs. In the post-quantum setting, where
honest parties and their communication channels are all classical but the adversaries could be quantum,
Chia, Chung, Liu, and Yamakawa [FOCS’21] demonstrated the non-existence of constant-round black-
box-simulatable ZK arguments (BBZK) for NP unless NP ⊆ BQP. However, this problem remains
widely open in the full-fledged quantum future that will eventually arrive, where all parties (including
the honest ones) and their communication are naturally quantum.

Indeed, this problem is of interest to the broader theory of quantum computing. It has been an
important theme to investigate how quantum power fundamentally alters traditional computational
tasks, such as the unconditional security of Quantum Key Distribution and the incorporation of Obliv-
ious Transfers in MiniQCrypt. Moreover, quantum communication has led to round compression for
commitments and interactive arguments. Along this line, the above problem is of great significance
in understanding whether quantum computing could also change the nature of ZK protocols in some
fundamentally manner.

We resolved this problem by proving that only languages in BQP admit constant-round fully-
quantum BBZK. This result holds significant implications. Firstly, it illuminates the nature of quantum
zero-knowledge and provides valuable insights for designing future protocols in the quantum realm.
Secondly, it relates ZK round complexity with the intriguing problem of BQP vs QMA, which is out
of the reach of previous analogue impossibility results in the classical or post-quantum setting. Lastly, it
justifies the need for the non-black-box simulation techniques or the relaxed security notions employed
in existing constant-round fully-quantum BBZK protocols.
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6.1.2 Ṽ ’s Unitary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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1 Introduction

Zero-Knowledge (ZK) protocols, pioneered by Goldwasser, Micali, and Rackoff [GMR85], enable a
prover to demonstrate the truth of a statement (e.g., one in an NP language) without disclosing
additional information (e.g., the NP witness) beyond the statement’s truthfulness. Since their
inception, ZK protocols have garnered considerable research interest and emerged as a cornerstone of
cryptography. Apart from serving as versatile primitives, ZK protocols are integral to secure multi-
party computation (MPC), another cornerstone of modern cryptography. Furthermore, exploration
of ZK protocols has unveiled intriguing aspects of computational complexity theory, as evidenced by
various studies [IY88, SV97a, SV97b, BGG+90, BMO90, GSY19, GIK+23] etc. Thus, investigating
the nature of ZK protocols is of significant importance.

Round Complexity and Black-Box Simulation. A crucial aspect of ZK protocol research is
understanding their round complexity, which is intricately linked to the concept of simulation, upon
which the formal definition of ZK protocols (and consequently their security proofs) relies.

The formal definition of ZK mandates the presence of a simulator S that interacts with a
malicious verifier V∗ and convinces V∗ that it is communicating with the honest prover. Importantly,
S possesses no secret input akin to that of the honest prover. Thus, the success of S in convincing
V∗ encapsulates the intuitive essence of ZK protocols — V∗ gains no extra information (other than
the statement’s truthfulness) from the interaction with the honest prover.

Typically, the simulator S interacts with V∗ in a black-box manner, meaning that S solely
leverages the Input/Output behavior of V∗ and treats it as an oracle. This black-box approach is
arguably the most natural choice for simulation, often being simpler and more modular compared to
non-black-box methods. Indeed, black-box simulation is widely employed in most positive results for
ZK (and MPC) protocols, including notable works such as [GMW86, FS90, GK96a, BCY91, BJY97],
among others (exceptions are discussed in Sec. 1.2).

Strong impossibility results have been established for ZK arguments5 employing black-box
simulation (dubbed BBZK henceforth). Goldreich and Krawczyk [GK96b] demonstrated that no
three-round BBZK protocols or public-coin constant-round BBZK protocols for NP exist unless
NP ⊆ BPP. Barak and Lindell [BL02] further established that constant-round BBZK protocols
with strict polynomial-time simulation are non-existent unless NP ⊆ BPP. Here, strict polynomial-
time simulation indicates that the simulator always runs in a fixed polynomial time, unlike an ex-
pected polynomial-time simulator whose runtime is polynomial time only in expectation. Notably, as
per [BL02], all existing constant-round BBZK protocols for NP rely on expected polynomial-time
simulation.

These impossibility results significantly advance our comprehension of zero-knowledge and offer
valuable guidance for positive results (i.e., constructions).

BBZK in the Quantum Era. All the above results are in the classical setting. However, it
is known that quantum information behaves in a fundamentally different manner. This poses an
intriguing question: What can we say about the round complexity of ZK protocols in the quantum
setting? Toward answering this question, two models need consideration — the post-quantum model
and the fully quantum model.

Post-Quantum ZK. This is the model where honest parties and their communication channels are
all classical, but the adversary could be a quantum machine. This model is particularly interesting

5 This refers to ZK protocols with computational soundness guarantee.
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in the near future, where adversaries may gain early access to quantum computing capabilities
while honest parties are not required to catch up to remain protected against them.

Exciting progress has been made in this model. The recent breakthrough by Bitansky and
Shmueli [BS20] presents a constant-round post-quantum ZK argument for NP using non-black-box
simulation. On the other hand, Chia, Chung, Liu, and Yamakawa [CCLY21] show that there does
not exist a constant-round post-quantum BBZK for NP unless NP ⊆ BQP. It is worth noting
that the result by [CCLY21] holds even for expected quantum-polynomial-time (QPT) simulation.
Thus, it is not merely a analogue of [BL02], but rather represents a qualitatively stronger impossi-
bility result in the post-quantum setting. These two results together essentially provide a complete
characterization of the round complexity of BBZK in the post-quantum setting.

Fully-Quantum ZK. This model represents the full-fledged quantum scenario meant to capture
the future quantum landscape, where all parties (including the honest ones) and communication
channels are allowed to be quantum. Unlike the post-quantum model, the fully-quantum capabilities
across all parties in this model opens up new possibilities. One example is the existence of ZK
protocols for QMA, which is infeasible in the post-quantum setting because classical honest provers
cannot utilize quantum QMA witnesses.

In contrast to the post-quantum model, our understanding of the round complexity of fully-
quantum BBZK is rather limited. While there exist fully-quantum BBZK protocols for NP and
even QMA (e.g., [BJSW16, BG20], etc.), they require at least super-constant rounds. Regarding
impossibility results, due to the quantum power of the honest parties, it is unclear if the aforemen-
tioned results in the post-quantum setting still hold. The only marginally relevant result is the work
of [JKMR09], which demonstrates the nonexistence of constant-round public-coin (or three-round
but potentially private-coin) post-quantum BBZK proofs for NP unless NP ⊆ BQP; this result
is relevant because it holds even if the last message in the protocol is quantum. In summary, the
central problem in the area remains widely open:

Question: Do there exist constant-round fully-quantum BBZK protocols for NP (or QMA)
with strict (or expected) QPT simulation?

It is worth noting that this question is of interest to the broader theory of quantum com-
puting. It has been an important theme to investigate how quantum power fundamentally alters
traditional computational tasks, such as the unconditional security of Quantum Key Distribution
[BB84] and the incorporation of Oblivious Transfers in MiniQCrypt [GLSV21, BCKM21]. Ad-
ditionally, quantum communication has led to round compression for commitments [Yan22] and
interactive arguments [KW00, KKMV09, BQSY24]. Along this line, this Question is of great signif-
icance in understanding whether quantum computing could also alter the nature of zero-knowledge
protocols in some fundamentally manner.

Moreover, answers to this Question hold significance for the following reasons:

1. Similar to the impossibility results in the classical and post-quantum settings, answers to this
Question would help further our understanding of zero-knowledge and serve as valuable guidance
for protocol design in the full-fledged quantum future.

2. Answers to this Question would relate zero-knowledge with the intriguing problem of BQP vs
QMA, while post-quantum protocols could at most relate to BQP vs NP, as explained above.

3. Recent works (e.g., [CCY21, CCLY22]) have achieved constant-round constructions for post-
quantum ZK and even 2PC w.r.t. a relaxed security notion called ε-simulation. These results,
along with the aforementioned [BS20, CM21] which utilize non-black-box simulation, all extend
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to the fully-quantum setting6. Without any answers to the above Question, it remains unclear
whether these results, when viewed in the fully-quantum setting, are truly optimal (in the sense
that the relaxation to ε-simulation or the use of non-black-box simulation is really necessary).

1.1 Our Results

We answer the above Question by establishing the following impossibility result.

Theorem 1. For any language L, if there exists a constant-round fully-quantum BBZK protocol
with expected QPT simulation, then it holds that L ∈ BQP.

It is worth noticing that Thm. 1 rules out expected QPT simulation, and thus it can be viewed
as the exact analogue of the [CCLY21] impossibility in the fully-quantum context. However, our
techniques to establishing Thm. 1 diverge significantly from [CCLY21] due to the fundamentally
different nature inherent in fully-quantum protocols. Further discussion on this matter will be
provided in Sec. 2.

As mentioned earlier in Item 2, since Thm. 1 is about quantum protocols, it allows us to connect
zero-knowledge with the quantum complexity class QMA, which we state as the following corollary.

Corollary 1 (of Thm. 1). There does not exist any constant-round fully-quantum BBZK protocol
for QMA (resp. NP) unless QMA ⊆ BQP (resp. NP ⊆ BQP).

Lastly, as previously mentioned in Item 3, Thm. 1 justifies the necessity, in the fully-quantum
context, of (1) the use of non-black-box simulation in [BS20], (2) the relaxation to ε-simulation
in [CCY21, CCLY22], and (3) the non-constant round complexity observed in existing BBZK or
secure quantum computation protocols with black-box simulation, e.g., [DNS12, BJSW16, BG20,
DGJ+20, GLSV21, ACL21] etc.

1.2 More Related Work

In the classical setting, there exist constant-round constructions of ZK (and even MPC) that utilize
non-black-box simulation to bypass the [BL02] lower bound, e.g., [Bar01, BG01, Lin03, Pas04, BP12,
Goy13, CPS13, PPS15, GOSV14], etc. But compared with black-box simulation, our knowledge of
non-black-box simulation is still limited.

We summarize additional impossibility results that are not directly related to the current work.
[Kat08] proved that there does not exist a four-round ZK proof with black-box simulation for
NP unless NP ⊆ coMA. [HPV20] showed that only languages in coMA admit a four-round
fully7 black-box ZK argument based on one-way functions. [KRR17] demonstrated that there does
not exist constant-round public-coin ZK proofs for NP even with non-black-box simulation under
certain assumptions on obfuscation. [FGJ18] showed that there does not exist three-round ZK
proofs for NP even with non-black-box simulation under the same assumptions.

The recent work by Lombardi, Ma, and Spooner [LMS22] introduced a new notion for simulation
called coherent-runtime expected QPT simulation. This notion allows the simulator to execute
expected QPT procedures coherently, resulting in a superposition over computations with different
runtimes, and subsequently “revert” the runtime by executing the same computation in reverse.
Utilizing this simulation notion, [LMS22] achieved a set of interesting results that bypass the lower
bounds established by [CCLY21].

6 It means that they also achieve quantum ZK for QMA or quantum 2PC for quantum functionalities.
7 This means that not only the simulation but also the construction is black-box (see [RTV04]).
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We note that the current work focuses exclusively on the notion of expected QPT as adapted
by [CCLY21]. For a detailed discussion on the provenance of (expected) quantum polynomial-time
Turing machines, please refer to Section 1.2 of [LMS21], particularly Footnote 2 therein.
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2 Technical Overview

At a high level, our approach to Thm. 1 aligns with the paradigm established by [BL02, CCLY21]
in the post-quantum setting. However, the fully quantum nature of the protocol introduces funda-
mentally different challenges.

In the following subsections, we begin by reviewing the approach proposed by [CCLY21]. Sub-
sequently, we elucidate the obstacles encountered when attempting to generalize their technique to
the fully quantum setting. Finally, we present our novel strategies to surmount these obstacles.

2.1 On the [CCLY21] Approach

[CCLY21] establishes that only languages in BQP admit constant-round post-quantum BBZK
(PQ-BBZK) with expected QPT simulation. At a high level, their approach operates in two main
steps:

– Step 1: Initially, for any language L, the method begins by assuming the existence of a constant-
round PQ-BBZK protocol 〈P ,V〉 with a strict QPT simulator S. Next, it constructs a specialized
malicious verifier Ṽ based on the honest V. Then, it builds a QPT decider for L using this Ṽ
and the simulator S, thereby placing L in BQP.

– Step 2: This step extends the above result concerning strict QPT simulation to expected QPT
simulation. To achieve this, the authors create another malicious verifier Ṽ ′, which effectively
runs the honest V and the aforementioned Ṽ in superposition. They then prove that if an
expected QPT simulator S exists, simulating the view of Ṽ ′, it can be truncated into a strict
QPT simulator S ′ while still providing sufficient simulation guarantees. Specifically, S ′ and Ṽ ′
can be leveraged to construct a BQP decider using a similar argument as in Step 1, thereby
ruling out expected QPT simulation as well. This step crucially relies on the quantum nature
of Ṽ ′ and S ′, a characteristic absent in the classical setting, where prior work such as [BL02]
fails to extend to expected polynomial-time simulation.

Throughout this technical overview, our sole focus will be on Step 1. This is because our approach
in the fully quantum setting mirrors the two-step structure outlined above, with our Step 2 closely
resembling that of [CCLY21]. Consequently, in the subsequent discussion, we will exclusively reca-
pitulate the techniques pertaining to Step 1, as it is the pertinent component for understanding
our new ideas later.
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The main idea behind Step 1, originating from [BL02], involves constructing Ṽ as a random-
aborting variant of the honest V. At each round k ∈ [K], where K denotes the constant round
complexity of the protocol, Ṽ operates as follows: it initially applies a function Hε (explained
shortly) to the prover’s messages (p1, . . . , pk) received up to that point (referred to as the prefix).
If Hε(p1, . . . , pk) = 0, Ṽ halts immediately and outputs a rejection symbol ⊥; otherwise (i.e.,
Hε(p1, . . . , pk) = 1), Ṽ behaves identically to the honest V. Here, Hε is a random function8 that
takes input of variable length k ∈ [K] and maps each (p1, . . . , pk) to 1 (or 0) with a properly chosen
probability ε (or 1− ε). Subsequently, a BQP decider B can be constructed as follows: given input
x, B(x) simply executes the simulator S Ṽ(x)(x) with black-box access to Ṽ(x) and outputs the result
produced by S Ṽ(x)(x). To demonstrate that B indeed functions as a valid BQP decider, it suffices
to establish the following:

– Completeness: For any x ∈ L, B(x) outputs acceptance with inverse-polynomial probability
1/poly(|x|);

– Soundness: For any x /∈ L, B(x) outputs acceptance with negligible probability negl(|x|).

To establish completeness, we observe that during the real execution between Ṽ(x) and the
honest prover P(x,w) with witness w for x, Ṽ(x) will output acceptance with a probability of at
least εK . This probability arises because Ṽ(x) behaves identically to the honest verifier, conditioned
on the function Hε outputting 1 in each of the K rounds. Subsequently, owing to the ZK property,
S Ṽ(x)(x) will output acceptance with a probability of at least εK − negl(|x|), which can be lower-
bounded by an inverse polynomial. This is achievable due to the fact that K is a constant, coupled
with a suitable choice of ε.

The proof of soundness is rather intricate. Let us first outline it in the classical context in
[BL02], where the idea originated. Assuming for contradiction that B(x) outputs acceptance with
some non-negligible probability δ(|x|) for some x /∈ L, [BL02] illustrates how to transform B into a
malicious prover P̃ that induces the honest verifier V to accept x with probability δ(|x|), thereby
compromising the soundness of the original ZK protocol. The approach involves P̃(x) internally
running the S Ṽ(x)(x) as B(x), while externally interacting with the honest verifier V(x). For each
k ∈ [K], when S queries its oracle with input (p1, . . . , pk) to determine the next verifier’s message
vk, P̃(x) sends pk to the external verifier V(x) to obtain vk, which it then forwards to S as the
response.

Initially, it is unclear whether such a P̃(x) would be effective due to a significant discrep-
ancy: the internal S might rewind its oracle Ṽ to obtain the next message for two distinct history
transcripts (p1, . . . , pk) 6= (p′1, . . . , p

′
k), while the external verifier V(x) anticipates a “straight-line”

interaction with P̃(x). [BL02] resolves this issue using the following strategy: through a careful
selection of ε, it is very unlikely that S could find (p1, . . . , pk) 6= (p′1, . . . , p

′
k) for some k ∈ [K]

so that Hε(p1, . . . , pk) = Hε(p
′
1, . . . , p

′
k) = 1. Consequently, if S has already acquired a message

vk pertaining to a (p1, . . . , pk) that satisfies Hε, we can confidently presume that all subsequent
queries by S in the form of (p′1, . . . , p′k) do not fulfill the condition imposed by Hε. According to
the definition of Ṽ, responses to such queries do not necessitate P̃ to engage with the external V,
as the response is simply the symbol ⊥. Hence, all messages relayed by P̃ between the internal S
and the external V indeed align with a “straight-line” execution.

8 Although the use of such a random function may render Ṽ inefficient, this can be rectified by replacing Hε with a
q-wise independent hash in the final BQP decider. Hence, for the sake of clarity, we will continue to employ Hε

throughout this overview without loss of generality.
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The Measure-and-Reprogram (MnR) Technique. The post-quantum setting considered in
[CCLY21] introduces a fundamental departure from the classical framework described in [BL02].
A quantum simulator S has the capability to execute quantum queries to its oracle Ṽ, which in
turn prompts quantum queries to the random function Hε. Notably, a single quantum query to Hε

enables S to acquire the responses vk for multiple prefixes (p1, . . . , pk) in superposition. Thus, it
becomes unclear if the aforementioned idea from [BL02] could work in this setting.

To address this challenge, [CCLY21] utilized the measure-and-reprogram (MnR) technique, orig-
inally developed to establish the post-quantum security of the Fiat-Shamir transform [DFMS19,
DFM20]. First, note that the operation of S Ṽ(x)(x) can be conceptualized as that of an oracle ma-
chine SIMHε(x), with Hε acting as the quantum oracle. Let H0 denote a null oracle that outputs
0 for all inputs. [CCLY21] propose replacing SIMHε(x) in the description of B(x) with a “MnR
version” of a new game SIMH0(x), which is almost identical to SIMHε(x), except for the following
distinctions:

1. It initializes the oracle as H0 (instead of Hε).

2. Assuming SIM makes q quantum queries to its oracle in total, the game begins by randomly
selecting K queries out of all these q queries. These selected queries are intended to be measured
(see the next step).

3. Each time SIM makes a query intended for measurement, the game measures this query to
determine a classical prefix (p1, . . . , pk). The oracle is then “reprogrammed” to output 1 for
input (p1, . . . , pk). Subsequent queries are answered using this updated oracle (until it gets
reprogrammed again).

By utilizing this revised definition of B(x), [CCLY21] successfully adapts the arguments from [BL02]
to their post-quantum setting as follows:

For completeness, it relies on a so-called MnR lemma (established in [DFMS19, DFM20, YZ21]),
which asserts that the output of the “MnR version” of SIMH0 does not differ much from the game
SIMH0 . Furthermore, SIMH0 does not differ much from the original game SIMHε due to the sparsity
of the random function Hε. As previously argued, SIMHε outputs acceptances for x ∈ L with a
“good” probability due to the ZK guarantee; then, so does the new B(x) that utilizes the “MnR
version” of SIMH0 .

For soundness, first note that the MnR version of SIMH0 initiates with the null oracle H0. As
the execution progresses, it undergoes reprogramming to output 1 solely for the measured, classical
(instead of super-position) queries made by SIM. This essentially facilitates the recovery of the
[BL02] arguments to establish that the messages relayed by P̃ between the internal MnR version
of SIMH0 and the external verifier V indeed constitute a “straight-line” execution. This eventually
completes the reduction from the soundness of B(x) to that of the original ZK protocol. (Further
discussion on this matter will be provided shortly.)

Benefits of the Classical Nature of the Protocol. In the forthcoming discussion, we emphasize
the aspects where the above [CCLY21] techniques rely on the classical nature of the ZK protocol.
It is worth noting that while some of these aspects were only implicit in [CCLY21], we need to
articulate them more explicitly as they represent the obstacles in our setting where the honest
parties are fully quantum.

Benefit 1. The most apparent benefit lies in the classical nature of the prover’s messages. This
is pivotal for adapting the random-aborting technique from [BL02] to the post-quantum setting,
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where the Hε is evaluated on the classical prover messages at each round, determining whether Ṽ
needs to prematurely abort.

Benefit 2. Note that Ṽ is constructed from the classical honest V, thus also maintaining a classical
nature. Once we fix the random tap r of Ṽ, the machine Ṽr becomes deterministic. Specifically,
since Ṽr is deterministic, when fed with the same prover’s messages (p1, . . . , pk), it will consistently
output the same next message vk. This point is crucial for the final construction of the malicious
prover P̃.

Recall that P̃ internally runs the simulator, which may attempt to rewind the execution. At
a certain round k, S may ask to view the verifier’s message multiple times via rewinding. While
the MnR technique with the H0 oracle could limit S to learning the value vk for only one prefix
(p1, . . . , pk), it cannot prevent S from requesting to view the response to the same (p1, . . . , pk) again.
Now, since Ṽr is deterministic, the response must be vk again. This implies that P̃ only needs to
learn the value vk from the external verifier only once to accommodate the internal S.

To further illustrate this advantage, let us momentarily assume that the verifier is not deter-
ministic, meaning that when queried on (p1, . . . , pk), it may provide different vk values. In such
a scenario, to perfectly simulate the environment for the internal S, P̃ would need to forward
(p1, . . . , pk) externally to learn the (potentially different) response vk when requested by S. How-
ever, note that in this soundness reduction, P̃ interacts with the external verifier in a straight-line
manner. Consequently, P̃ is not permitted to query the external verifier twice on the same prefix.

Benefit 3. The last benefit also pertains to the determinism of Ṽr, albeit in a more subtle manner.
It relates to an inherent feature of the MnR technique that was not explicitly mentioned in the
previous discussion. To grasp this issue, let us revisit the steps outlined in Items 2 and 3, where K
queries are selected to be measured. Although it can be argued9 that these measured queries would
ultimately form a complete transcript, there is no guarantee that the prover’s messages will appear
in the desired order.

To delve into this further, consider the scenario where the k-th (k ∈ [K]) selected query to be
measured from the oracle corresponds exactly to some (p1, . . . , pk), enabling P̃ to straightforwardly
forward pk to learn the response vk. However, this ideal situation does not always occur. For
instance, imagine the case where the constructed P̃ has yet to send any message to the external V.
Ideally, the subsequent move would involve P̃ forwarding the first prover message p1, obtained by
measuring the first selected query from the internal SIMH0 , to learn V’s response v1. However, it is
indeed possible that the first measurement results in a query format of (p1, p2) instead. Intuitively,
this represents a discrepancy where the internal execution of SIMH0 advances to round 2 while the
external execution between P̃ and V has not even commenced.

Indeed, this is a known issue in the literature, including the original MnR paper (see [DFM20,
Section 4.1]). Typically, it poses no significant problem for post-quantum applications. For instance,
[CCLY21] tackled it by leveraging the determinism of the verifier (once the random tap is fixed)
as follows: in the scenario described earlier, P̃ can pause the internal execution and “synchronize”
the external execution as follows: first, P̃ sends p1 (in the measurement outcome (p1, p2)) to the
external V to learn and store the response v1. Then, it sends the p2 to the external V to learn
v2. Now that P̃ has obtained the message v2 required for subsequent execution, it can resume
the internal execution. Additionally, if a future selected query from SIMH0 measures to p1, P̃ can
respond using the v1 obtained earlier. This strategy works due to the deterministic nature of the

9 The argument is not immediately evident and requires a close examination of the MnR technique. However, we
choose to omit the related intricacies as they are less pertinent to the current discussion.
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verifier. Specifically, when the random tap is fixed, the response to p1 is always v1, irrespective of
whether Vr has previously been invoked on (p1, p2) or not.

We next shift our focus to our proposals in the fully quantum setting, specifically addressing
how to handle the aforementioned dependency on the classical nature of the honest parties (or the
protocol).

2.2 Non-Programmable EPR Model with Classical Prover Messages

To address the reliance on the prover’s classical messages, as discussed in Benefit 1, we introduce
an intermediate model for zero-knowledge protocols that partially “de-quantizes” a fully quantum
protocol. This model, which we will refer to as the Non-Programmable EPR (NPE for short) model,
operates as follows. In the NPE model, a trusted third party prepares a polynomial number of EPR
pairs. At the start of the protocol, the prover and verifier each possess half of these EPR pairs.
Throughout the protocol, they are permitted to utilize these EPR pairs. When defining the zero-
knowledge property, the simulator holds the prover’s shares of the EPR pairs. It is crucial to
emphasize that in the definition of zero-knowledge, the simulator and verifier’s EPR shares are still
prepared and distributed by the trusted party. This stands in contrast to the widely-used Common
Reference String (CRS) model, where the simulator is responsible for generating the CRS when
defining zero-knowledge.

We next argue that if there exists a K-round fully-quantum BBZK protocol (in the standard
model), then it can be converted into a K-round BBZK protocol in the NPE model, where all
messages sent by the prover are classical. Roughly, this is because the prover can always use
quantum teleportation to transmit the originally quantum prover message. In more detail, whenever
the prover needs to send a quantum message pk, it instead does the following: The prover performs
a teleportation measurement on the (originally quantum) message pk and the EPR registers that
are meant to be used for this round, to obtain a classical measurement outcome p̃k (i.e., the
teleportation keys) and sends it to the verifier. Using p̃k and the corresponding EPR shares on the
verifier’s side, the verifier can recover the original message pk. Then, it behaves as in the original
protocol — generating vk, sending vk to the prover (note that we do not ask the verifier to perform
quantum teleportation), and moving to the next round.

The aforementioned transformation clearly preserves the round complexity of the original quan-
tum protocol. Furthermore, it can be shown that completeness, soundness, and zero-knowledge
properties are all maintained. This follows from rather standard techniques, so we will not delve
into further detail beyond mentioning the intuition behind the preservation: the EPR pairs are
solely used as a means for teleportation, effectively “de-quantizing” the prover’s messages; they do
not alter the inherent properties, such as soundness or the ZK property, of the original protocol.
For more details, please refer to Sec. 5.2 and Sec. 5.3.

With the above claim, it now suffices to establish Thm. 1 in the NPE model and assume that
all the prover messages are classical.

Finally, it is worth mentioning that the above de-quantization approach only provides us with
a well-defined random-aborting behavior for the verifier. However, it remains uncertain whether
this model truly offers substantial benefits, as both the verifier and the simulator still perform
inherently quantum operations. Moreover, the NPE model comes at a price: it introduces pre-shared
entanglement between the prover and the verifier, which may potentially complicate establishing
impossibility results. It is unclear whether what we pay justifies what we gain! Looking ahead, we
find that the techniques we develop in the sequel actually work even in the presence of pre-shared
entanglement.
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2.3 Inducing an Order on the Measured Messages

In this section, we introduce new ideas aimed at inducing an order on the measured messages in
the MnR game, in order to address the issue mentioned in Benefit 3. Looking ahead, these ideas
also prove to be helpful when we address (in Sec. 2.4) the issues mentioned in Benefit 2, as these
two benefits are closely related.

We propose that the malicious Ṽ maintain two registers additionally: a global counter register
gc and a local counter register lc. Both registers are initialized to 0. Intuitively, the global counter
will record the number of times the Ṽ has been invoked, and the local counter will record at which
round the current execution is located.

In particular, consider the k-th round when Ṽ receives a message pk. Assume that the current
local counter has a value of j− 1 (for some j) and the current global counter has a value of k− 1.10

Ṽ first increases the global counter from k − 1 to k, and then behaves by comparing these two
counters (before the increase of k − 1 happens):
1. If (j − 1) 6= (k − 1), then Ṽ does not do anything.
2. If (j − 1) = (k − 1), then Ṽ behaves as the honest verifier with random-aborting. In particular,

she first queries the oracle H to learn H(p1, . . . , pj).11 Note that the input to H is determined
by the local counter value j − 1, and in this case of (j − 1) = (k− 1), the value H(p1, . . . , pj) is
exactly the value H(p1, . . . , pk).
The subsequent movements of Ṽ are controlled by this value:
(a) If H(p1, . . . , pj) = 0, then Ṽ does not do anything;

(b) If H(p1, . . . , pj) = 1, then Ṽ generates the response vk to pk in the same manner as the
honest verifier. After that, Ṽ increases the local counter from j − 1 to j.

The most important sentences to notice in the above description are the ones underscored: at each
round, the global counter will always be increased; however, the local counter will be increased only
if that round is executed successfully, namely when H(p1, . . . , pj) = 1.

Let us explain the benefits of the above design. First, consider the “straight-line” execution
between Ṽ and the honest prover P. In this real execution, we claim that Ṽ simply behaves as
the random-aborting verifier as the one from [BL02] or [CCLY21]. That is, the use of these ex-
tra counters at least does not interfere with the “random-aborting” behavior in this straight-line
execution. This is particularly important to ensure that we can establish the completeness of the
BQP decider, which works in a similar manner as in [BL02, CCLY21]. This can be easily seen by
tracking the execution: At the beginning, both counters are set to 0. When the first message p1
arrives, the global counter first gets increased to |1〉gc. Next,
– If H(p1) = 0, then nothing will happen;
– If H(p1) = 1, then the message v1 is generated, and the local counter is increased to |1〉lc.

In summary, if H(p1) = 0 happens, then the counters become |1〉gc|0〉lc. According to our definition
in Item 1, the execution is essentially “dead” in the sense that nothing will happen in subsequent
steps, because the global and local counters are not consistent. This is exactly the same as in
[BL02, CCLY21]. If H(p1) = 1 happens, then the counters become |1〉gc|1〉lc and the execution
proceeds to the next round properly. This is also the same as in [BL02, CCLY21]. The similar
feature holds for every subsequent round, and thus one can see that our counters do not alter the
behavior of Ṽ (as in [BL02, CCLY21]) in the real, straight-line execution with the honest P.
10 As will become clear shortly, at the beginning of the k-th round, the global counter must have a value of k − 1.
11 We remark that this is not a typo. We mean to invoke H on input (p1, . . . , pj) when the local counter is j − 1.
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Next, we turn to the real virtue of the above design — it ensures that the measured messages
in the MnR game appear in an increasing order. Let us first show that the first selected (to be
measured) query could measure to p1. Recall that the MnR game starts with the null oracle H0.
Before the first measurement happens, H0 has not been reprogrammed and thus it outputs 0 on all
inputs. In this case, we know that the local counter j must be 0 (recall from Item 2b that the local
counter gets increased only in the H(p1, . . . , pj) = 1 branch). Thus, the first selected query sent to
H0 must be a superposition of messages of length j + 1 = 0 + 1 = 1. Therefore, the measurement
outcome must be some message p1.

Using a similar argument as above, we can indeed show that for the k-th selected (to be mea-
sured) query to the oracle, the length of the measured outcome could never exceed k (∀k ∈ [K]).
Finally, since there are only K selected measurement opportunities in the MnR game, if the exe-
cution of SIMH0(x) finally brings the local counter to value K (which is a necessary condition for
the verifier’s acceptance), it must be the case that the k-th selected query to the oracle measures
to exactly a length-k prover’s message (see Sec. 6.4.1 for a formal treatment). In other words, the
measurements will yield prover messages in the desired order.

Note that the above ideas only assist us in achieving the correct order of the measured messages.
However, it remains unclear how to construct the malicious prover P̃ to prove the soundness of B
because it is uncertain how to manage rewinding queries by S. This leads us to Sec. 2.4.

2.4 Simulation for Rewinding Queries

We now shift our focus to addressing the challenges mentioned in Benefit 2, particularly regarding
how to manage the rewindings required by S while operating internally within P̃.

Technically, the issue can be accurately described as follows: at a certain round k, when P̃
receives the (potentially quantum) message vk from the external V, we need to devise a mechanism
that enables P̃ to “re-use” this vk for future rewinding queries made by S when necessary.

The Intuition. Before delving into the technical intricacies, we aim to provide an intuitive under-
standing of our approach. Broadly speaking, our goal is to establish an intuition similar to that of
[BL02, CCLY21], which helps to extend the “simulator learns nothing new by rewinding” concept
to our fully quantum setting. This poses a significant challenge due to the fully quantum interac-
tion between S and Ṽ, intertwined with intermediate measurements conducted by S and the MnR
game.

To tackle this challenge, we will develop a series of analytical tools to characterize key aspects of
the interaction between S and Ṽ within the MnR game. These features will serve as crucial threads,
enabling us to navigate and maintain a detailed description of the overall state across all registers
held by S and Ṽ throughout the execution, at an appropriate resolution. As we will demonstrate
shortly, this detailed description will reveal a crucial observation: after each query of S, the overall
state can always be expressed as a superposition of a “good” branch and a “bad” branch:
– The good branch will mirror the state of the honest verifier in a real execution, at the appropriate

round.
– The bad branch comprises some “error” terms that we would ideally like to eliminate, but are

unable to do so. Fortunately, we can demonstrate that these error terms possess a structured
nature that enables us to assert the following recursive features:
• Round Slackness: The bad branch consistently lags behind the good branch. Specifically, if

the good branch corresponds to a real execution reaching round k, then the bad branch will
only contain (in superposition) executions that reached up to round k − 1.
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• Return Simulatability: In subsequent steps, S may rewind the execution by invoking Ṽ’s uni-
tary Ṽ †. For these queries, the structure of the bad branch permits us to utilize a “dummy
version” V̈ to substitute the unitary Ṽ . This V̈ solely adjusts the global and local counter
registers without affecting the overall state. Importantly, V̈ guarantees the following: regard-
less of how many rounds S rewinds the execution (answered using V̈ †), once the execution
(specifically, the good branch) returns to round k (with sufficient V̈ queries by S), the state
will be essentially identical to the state when it last reached round k. Additionally, S cannot
discern that Ṽ has been replaced with V̈ .

• Error Invariance: The error terms allow us to make the following recursive claim. After the
next move by the simulator S, the state can again be partitioned into a good branch and a
bad branch. Furthermore, the good branch exhibits the same features as described above,
while the bad branch maintains the same Round Slackness and Error Invariance.

Next, we demonstrate how these features lead to the desired construction of P̃ for our soundness
reduction. The P̃ can be outlined as follows: when S initially requests to observe vk (and the
MnR game measures H(p1, . . . , pk) = 1, granting S permission to observe vk), P̃ will transmit the
message pk to the external V, who will subsequently provide vk in response. P̃ will then relay this
vk to the internal S (corresponding to the good branch at round k). Subsequently, all queries from
S will be addressed using V̈ † (or V̈ ) until the internal execution returns to round k once more.
This same procedure is repeated for each subsequent round. In essence, when S seeks to observe
the message vk+1, it is provided by the external V for the first time, and all subsequent queries are
answered using V̈ or V̈ † until S requests the next message vk+2, and so forth.

Let us analyze the constructed P̃. Firstly, note that for each k ∈ [K], P̃ communicates with
the external V precisely once, when S requests to observe vk for the first time. All subsequent
queries are handled internally by P̃ using the dummy unitaries V̈ or V̈ †. Thus, the good branch, at
the conclusion of the execution, mirrors precisely the final state of the external verifier. Therefore,
the remaining task is to demonstrate that the good branch at the conclusion of the execution
encompasses sufficient “weight” on acceptance.

Due to the Return Simulatability, the S inside P̃ perceives itself to be operating within the
original real MnR game. Hence, it suffices to demonstrate that, at the culmination of the original
MnR game, the good branch possesses sufficient weight to warrant acceptance. To this end, the
Error Invariance property allows us to uphold the clean good-bad state structure throughout the
entire execution. Specifically, this structured state persists at the instant S concludes its simula-
tion. Now, we assert that the bad branch does not contribute to acceptance whatsoever. This is
because: (1) the bad branch, by virtue of the Round Slackness, cannot correspond to the round
K, and (2) the verifier will not accept an execution that has not reached the final round K. On
the contrary, recalling our initial assumption (for contradicting soundness), the overall state must
contain sufficient weight on acceptance. Therefore, only one possibility remains — all the weight
for acceptance is “concentrated” within the good branch at the conclusion of the simulation. This
concludes our argument establishing the validity of P̃.

We now transition to a technical discourse, delving into the mathematical instantiation of the
above intuition and ideas.

A Simplified Example. To elucidate our main idea, let us start with an simplified scenario. First,
it is crucial to outline certain behaviors of S and Ṽ that bear relevance to the ensuing discussion.

Our construction of Ṽ maintains K registers p1 . . . pK intended to store previous messages re-
ceived from the prover. Additionally, there exists a message transmission register m facilitating the
exchange of messages between the prover and verifier. Specifically, to transmit message pk, P loads
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it into m and forwards |pk〉m to the verifier. Upon receiving |pk〉m, the initial step of Ṽ — the unitary
operator of our malicious Ṽ — involves applying a swap operation between register pk and m. This
signifies Ṽ relocating message pk to its appropriate position (i.e., register pk) within her internal
space. Subsequently, Ṽ executes requisite computations to generate the response message vk.

We will also utilize a unitary Vpk , representing the operation of the honest verifier that derives
vk from message pk. Notably, in the present model (as per Sec. 2.2), all messages from the honest
prover are classical. Hence, we can presume that at round k, the operator of the honest verifier can
be represented as

∑
pk
|pk〉〈pk|pk ⊗ Vpk . That is, when the prover’s message is pk, the unitary Vpk is

applied by the honest verifier.
The simulator S is specified by a “local” operator S, which operates non-trivially on registers

m and S’s working space s. Specifically, S operates in two steps: (1) it invokes S to prepare a state
over registers m and s, and (2) it makes an oracle call to Ṽ (or Ṽ † for rewinding). Crucially, S is
not able to observe (let alone modify) the internal registers of Ṽ, as we are focusing on black-box
simulation.

Additionally, it is important to note that we are operating within the NPE model as described
in Sec. 2.2. While this restricts us to dealing only with classical prover messages, both the prover
and verifier now possess EPR pairs. Thankfully, we can regard these shares as stored in S’s inter-
nal register s and Ṽ’s internal registers v respectively; the following derivation proceeds without
explicitly referencing these shares.

Now, we are ready to describe our simplified example. Let us assume that the execution is
currently at round k, and the overall state of Ṽ has the following format:

|k〉gc|k〉lc|p1, . . . , pk〉p1...pk |ρ〉v, (2.1)

where v represents Ṽ’s other registers, and the (p1, . . . , pk) satisfies the current oracle Ĥ(p1, . . . , pk) =
1. (Recall that we are in the MnR game where the initial oracle H0 may get re-programmed during
the execution. We use Ĥ to denote the current oracle.)

Remark 1. Note that in Expression (2.1), we assume for simplicity that the current global counter
and local counter are both equal to k. Also, note that in the full-fledged game, Ṽ’s registers would be
in a much more complicated mixed state. Here, we assume this pure state format for simplicity. We
also make similar simplification assumptions for the following description and derivation regarding
the simulator’s behavior. These assumptions are meant to help the reader understand our ideas more
clearly, without being confused by complex notations of secondary importance. We will present a
discussion regarding the full-fledged case later in Sec. 2.5.

Now, assume that S wants to rewind the execution upon receiving input pk. In particular, let
us assume that S prepares |pk〉m together with some state |ϕpk〉s on her internal register s, and then
she rewinds the execution by invoking Ṽ †. Next, she applies her local unitary S, and finally calls
Ṽ to bring the execution back. Let us track the overall state during this procedure:

Ṽ SṼ †|k〉gc|k〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕpk〉s|ρ〉v
= Ṽ S|k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕpk〉sV

†
pk
|ρ〉v (2.2)

= Ṽ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk
(
S|pk〉m|ϕpk〉s

)
V †pk |ρ〉v (2.3)

= Ṽ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕ′pk〉sV
†
pk
|ρ〉v +

Ṽ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk
∑
p′k ̸=pk

|p′k〉m|ϕ′p′k〉sV
†
pk
|ρ〉v (2.4)
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= |k〉gc|k〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕ′pk〉s|ρ〉v +

Ṽ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk−1

∑
p′k ̸=pk

|p′k〉pk |pk〉m|ϕ′p′k〉sV
†
pk
|ρ〉v (2.5)

= |k〉gc|k〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕ′pk〉s|ρ〉v︸ ︷︷ ︸
good

+ |k〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk−1

∑
p′k ̸=pk

|p′k〉pk |pk〉m|ϕ′p′k〉sV
†
pk
|ρ〉v

︸ ︷︷ ︸
bad

,

(2.6)

where
– Eq. (2.2) follows from the definition of Ṽ — when (p1, . . . , pk) satisfies the current oracle Ĥ, Ṽ †

will simply decrease the global and local counters, and apply the honest verifier’s unitary V †pk .
– Eq. (2.3) follows from the fact that S’s local unitary S only touches upon registers m and s.
– Eq. (2.4) follows from decomposing the state on m and s in the computational basis on the m

register, i.e., S|pk〉m|ϕpk〉s =
∑

p′k
|p′k〉m|ϕ′p′k〉s.

– Eq. (2.5) again follows from the definition of Ṽ — when (p1, . . . , pk) satisfies the current oracle
Ĥ, Ṽ will simply decrease the global and local counters, and apply the honest verifier’s unitary
Vpk , which cancels the V †pk .

– To see Eq. (2.6), we need to recall that Ṽ indeed first swaps the contents of m and pk as we
described earlier. After that, the contents in registers p1 . . . pk do not satisfy Ĥ because p′k 6= pk.
Thus, the V †pk and the local counter will be left as they are, and only the global counter gets
increased.

Next, we define a “dummy” operator V̈ . It works in the identical manner as Ṽ , with the only
difference that V̈ does not perform the work of Vpk . Now, let us track the same execution but with
the V̈ in place of Ṽ .

V̈ SV̈ †|k〉gc|k〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕpk〉s|ρ〉v
= V̈ S|k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕpk〉s|ρ〉v
= V̈ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk

(
S|pk〉m|ϕpk〉s

)
|ρ〉v

= V̈ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕ′pk〉s|ρ〉v +

V̈ |k − 1〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk
∑
p′k ̸=pk

|p′k〉m|ϕ′p′k〉s|ρ〉v

= |k〉gc|k〉lc|p1, . . . , pk〉p1...pk |pk〉m|ϕ′pk〉s|ρ〉v︸ ︷︷ ︸
good

+ |k〉gc|k − 1〉lc|p1, . . . , pk〉p1...pk−1

∑
p′k ̸=pk

|p′k〉pk |pk〉m|ϕ′p′k〉s|ρ〉v︸ ︷︷ ︸
bad

,

(2.7)

where Eq. (2.7) follows from the similar derivation as we did for Eq. (2.6).

Remark 2. As an astute reader may have already noticed, the derivations above rely on an over-
simplification that we must now address. Recall that the unitary Vpk generates message vk. Right
after that, vk is stored in some register vk within the internal space of Ṽ. To actually deliver this
message to the prover, Ṽ needs to apply a swap operator between m and vk to load vk into m.
Thus, Ṽ’s operator Ṽ indeed also needs to interact with register m. However, this interaction is not
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reflected in the above derivations. We note that our actual proof in the main body does account
for this case. However, doing so requires demonstrating finer-grained properties of both S and Ṽ,
which cannot be accommodated within the limited space of this technical overview. Thus, we have
chosen to omit these details here. Nonetheless, we assert that this omission does not pose any real
problems for the subsequent discussion.

Now, let us elucidate how the example above illustrates the features outlined in the The Intu-
ition part. Firstly, observe that the branches labeled as good in Eq. (2.6) and (2.7) are identical,
despite being obtained through different procedures Ṽ SṼ † and V̈ SV̈ †, respectively. This essentially
demonstrates what we referred to as Return Simulatability earlier. Although Eq. (2.6) and (2.7) still
differ in the bad branches, it is clear that the bad branches in both equations have a local counter
value of k − 1, while the good branch has already progressed to round k (i.e., both the global and
local counters are equal to k). This aligns with what we call Round Slackness.

Additionally, recall from our design of counters in Sec. 2.3 that when the global counter differs
from the local counter, the unitary Ṽ does nothing. Therefore, the bad branches in Eq. (2.6)
and (2.7) are essentially “locked” there, contributing nothing to the subsequent execution. Moreover,
notice that in the good branches of both equations, the state |ρ〉v over the verifier’s internal register
v turns out to be identical to that in the initial state shown in Expression (2.1). This, along with the
uselessness of the bad branches we just explained, essentially means that to handle this “rewinding
then returning back to round k” procedure, one does not need to perform the work Vpk again (as
per Ṽ ); the dummy unitary V̈ will suffice.

On the Recursiveness of Error Invariance. Still, there is an obvious discrepancy between the
above simplified example and the Error Invariance described in the The Intuition part. Recall that
Error Invariance suggests that the good-bad structure will be recursively maintained. In our example,
we began with an initial state (i.e., Expression (2.1)) that only had a good branch (in that it only
contains the (p1, . . . , pk) satisfying H), while to establish Error Invariance, we should have started
with a state containing both good and bad branches.

However, the validity of our argument remains intact even if we start with a state containing
both good and bad branches. Let us delve into the main intuition. The bad branch in Eq. (2.6) differs
from that in Eq. (2.7) only in the presence of V †pk in front of |ρ〉v. This difference is not coincidental.
If we apply Ṽ SṼ † (resp. V̈ SV̈ †) to the state in Eq. (2.6) (resp. Eq. (2.7)), the resulting states will
still share an identical good branch, while the bad branches differ by a V †pk .

To illustrate, consider applying Ṽ SṼ † again to Eq. (2.6). The good branch will evolve in exactly
the same manner as the above Eq. (2.6), yielding a new good branch good1 and a new bad branch
bad1 (with the same V †pk hanging there).

The evolution of the original bad branch proceeds as follows: Since the global counter k differs
from the local counter k− 1, the first operator Ṽ † only reverts the global counter to k− 1 and does
nothing else. Subsequently, S’s local operator S is applied, potentially resulting in a state such as∑

p′k
|p′k〉m|ϕ′′p′k〉s as in Eq. (2.4). The subsequent application of Ṽ leads to a similar evolution as seen

from Eq. (2.4) to Eq. (2.6). In particular, this means that the (original) bad branch will eventually
leads to a new good branch good2 and a new bad branch bad2 (with the same V †pk hanging there).

In summary, at the end of the execution, good1 and good2 merge into a final good branch, while
bad1 and bad2 merge into a final bad branch, with a V †pk preceding the v register. This illustrates
that our argument extends even when starting with a superposition of good and bad branches!

This concludes our analysis of the simplified example. In the following Sec. 2.5, we will briefly
address the technical challenges that were omitted from the discussion above, but which will ne-
cessitate non-trivial effort and novel ideas in the full-fledged setting.
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2.5 On Those under the Rug

Branch-Wise Analysis. The first concern pertains to the assumption of a pure format in Expres-
sion (2.1). In the real execution, the overall state would be mixed due to two types of measurements.
Firstly, at each step, S needs to determine which of the two oracles Ṽ and Ṽ † to query. This can
be modeled by a special register u within S’s internal space s. After S applies the local unitary S
over m and s, a superposition such as α0|↓〉+α1|↑〉 will be generated on register u. S then measures
this register to decide whether to execute a ↓-query (i.e., invoking Ṽ ) or an ↑-query (i.e., invoking
Ṽ †). Secondly, given that we are operating within the MnR game, certain queries to H will prompt
measurements on registers p1 . . . pj.

We address this issue through the following approach. First, we claim that these measurements
occur at predetermined positions. To see that, notice that S’s measurements always happen right
before each oracle query; these are fixed places we know in advance. Additionally, the MnR mea-
surements are executed at locations sampled at the outset of the game (refer to Sec. 3.2). Hence,
the entire game can be perceived as a series of unitary operators interspersed with measurements
at predefined positions.

To analyze such a procedure, we can instead examine all possible outcomes of each intermediate
measurements. For each fixed “outcome sequence” (consisting of the outcomes of all intermediate
measurements), we can define a “sub-normalized” version of the game, where each intermediate
measurement is replaced with a projection that collapses the register to the predetermined outcome
specified in the outcome sequence. Any concerned property of the original game (in our case, it is the
final decision of the verifier) is essentially the aggregation of that of all possible “sub-normalized”
games. We formalize this property as a branch-wise equivalence lemma in Sec. 3.3. Leveraging this
lemma, we can indeed adopt the pure-state perspective as demonstrated in the aforementioned
simplified example.

Structure of the Local Counter. Next, we address a trickier issue. In the aforementioned
simplified example, we assumed that the local counter comprises a classical value |k〉lc. However, in
the actual execution, the local counter could carry a superposition of values. In such a scenario, it is
not immediately evident whether the state resulting from Ṽ SṼ † can be expressed in the clear good-
bad format illustrated in Eq. (2.6). Specifically, it is uncertain whether the local counter contains
a value smaller than the global counter in the bad branch (i.e., the Round Slackness property). On
the other hand, the earlier discussion about Round Slackness w.r.t. that simplified example exhibits
a recursive nature — we managed to establish it assuming that either the initial state lacks a bad
branch, or the bad branch is already round-slack (as explained previously for the case where the
initial state already contains a bad branch). This recursive argument now seems to place us in an
“egg-check dilemma.”

We address this issue as follows: Before initiating the derivation depicted in the aforementioned
simplified example, we establish a lemma that, in the “sub-normalized” game described earlier, offers
a full characterization of the structure of global and local counters (refer to Sec. 7.3 for details).
The principal implication of this lemma (see Lem. 14) can be intuitively summarized as follows:
Throughout the (sub-normalized) game, the overall state can be expressed as the sum of pure states
in superposition. For the branch where the p1 . . . pk registers contain precisely the values p1, . . . , pk
satisfying the current oracle H, both the global counter and the local counter equal k. Note that
this precisely corresponds to the good branch in the previous discussion. For all other branches (i.e.,
the bad branch) in the superposition, the local counter is strictly smaller than the global counter;
this is exactly what we require for Round Slackness! Essentially, this lemma establishes the Round
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Slackness even before we start the derivation (as shown in the simplified example), resolving the
egg-chicken dilemma.

Moreover, the clear characterization of the counter structures enables us to conduct the deriva-
tion without explicitly tracking the local counter. This is because all branches where the local
counter is smaller than the global counter (i.e., where Round Slackness is satisfied) can be grouped
under the name of a single bad branch. This presents a significant advantage for presentation: as
previously mentioned (and as demonstrated in Lem. 14), the local counter is in a superposition of
many values, resulting in the bad branch being a summation of multiple sub-branches. In such a sce-
nario, explicit enumeration of all the sub-branches in the derivation would be necessary. Although
the proof would still hold, it would certainly be overly complex to understand.

Commutativity Lemma and Hybrid Argument. There is one more issue worth mentioning
here. The simplified example discussed above only addresses the scenario where S rewinds the
execution by one round and subsequently resumes it. In the full-fledged setting, however, there
are K rounds, and at any given point, S can opt to rewind the execution as far back as desired.
Moreover, at each move, S may not necessarily provide the input |pk〉|ϕpk〉s as illustrated in the
example. Instead, it could potentially query the oracle Ṽ † with a general state ρ over the pk
and s registers. Handling this full-fledged setting presents significant challenges in performing the
derivation.

We resolve these issues as follows. Firstly, we encapsulate the aforementioned derivation as a
general, information-theoretic lemma concerning the commutativity of certain unitary operators.
This lemma, presented in Sec. 4, is meticulously crafted so that it can be later applied to handle
the general case where S queries her oracles with a general state over registers m and s. Essentially,
it asserts exactly what we demonstrated in the simplified example: if S rewinds the execution by
one step and then resumes it, the final state resulting from the real execution (utilizing Ṽ ) and the
one from the dummy execution (utilizing V̈ ) will possess an identical good branch, differing at the
bad branch with a structured error term.

However, it is important to note that this commutativity lemma is established in the rewinding-
one-step-back setting. Handling multiple-round rewinding necessitates new ideas. We address this
challenge through a careful design of hybrids. Roughly speaking, we create K+1 hybrids, with hy-
brid H0 representing the real MnR game (utilizing Ṽ ), and the k-th hybrid (for k ∈ [K]) structured
as follows:

Hybrid Hk: This hybrid is identical to Hk−1, except for the following difference:

– The first query (made by S) that brings the global counter from |k − 1〉gc to |k〉gc is answered
with Ṽ (as in the previous hybrid). However, all subsequent queries that bring the global counter
from |k − 1〉gc to |k〉gc (resp. from |k〉gc to |k − 1〉gc) are answered with the “dummy” unitary
V̈ (resp. V̈ †).

A helpful approach to understand these hybrids is to examine the baby case of K = 2, which we
also include in the main body as a warm-up example (see Sec. 8). In this scenario, there are only
three hybrids H0, H1, and H2. We illustrate them in Fig. 1:

– In hybrid H0, it can be seen from Fig. 1a that all the ↓-queries are answered using Ṽ and all
the ↑-queries are answered using Ṽ †.

– The hybrid H1 shown in Fig. 1b is identical to hybrid H0 except that the ↓-queries that bring
the global counter from |0〉gc to |1〉gc are answered using the dummy-version unitary V̈ , and the
↑-queries that bring the global counter from |1〉gc to |0〉gc are answered using the dummy-version
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Fig. 1: Illustration of Hybrids H0, H1, and H2

unitary V̈ †. This is except for the query labelled as sq(1), which represents the first time the
global counter successfully reaches value 1 (because it invokes the measurement on the query
to H in the MnR game).

– The hybrid H2 shown in Fig. 1c is identical to hybrid H1 except that the ↓-queries that bring
the global counter from |1〉gc to |2〉gc are answered using the dummy-version unitary V̈ , and the
↑-queries that bring the global counter from |2〉gc to |1〉gc are answered using the dummy-version
unitary V̈ †. This is except for the query labelled as sq(2), which represents the first time the
global counter successfully reaches value 2.

It is evident from Fig. 1c that hybrid H2 precisely corresponds to the “dummy” MnR game
necessary for constructing the malicious prover P̃ in our soundness reduction. Therefore, it is suffi-
cient to demonstrate that the acceptance probability remains unchanged across these three hybrids.
To establish this for H0 and H1, we can readily employ the previously mentioned commutativity
lemma. The disparity between these two hybrids only arises in the “first layer” (i.e., the execution
between the line of |0〉gc and the line of |1〉gc), which corresponds precisely to the one-step-back
rewinding scenario addressed by the lemma.

To transition from H1 to H2, we can leverage the same lemma. This is facilitated by the fact that
in H1, all the oracles for the first layer have already been substituted with the dummy operator
V̈ or V̈ † (except for the sq(1) and sq(2) queries). As the dummy V̈ essentially has no impact
except for some counter adjustments, the disparity between H1 and H2 can effectively be treated
as a one-step-back rewinding in the second layer alone. Consequently, it can be handled by the
commutativity lemma once more.
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It is conceivable that this argument extends to the scenario with any constant K, where we
simply invoke the commutativity lemma to argue the indistinguishability between each pair of Hk−1
and Hk (for all k ∈ [K]) in a similar manner as the above.

This eventually completes our proof.

2.6 Putting Things Together

Let us assemble all the techniques discussed thus far, providing a complete picture of how we
ultimately establish Thm. 1.

We first note that our focus will be on establishing a version of Thm. 1 where the simulator runs
in strict QPT, rather than expected QPT. Once this is accomplished, the extension to expected QPT
simulation follows the same technique from [CCLY21]. This extension will be covered in Sec. 10.

For a language L, assuming the existence of a constant-round fully-quantum BBZK protocol
〈P ,V〉, our objective is to construct a BQP decider B for the language L. This construction involves
leveraging V along with the ZK simulator S.

Toward that, we first introduce a non-programmable EPR model, where we can assume without
loss of generality that all prover messages are classical. Furthermore, we demonstrate that it suffices
to establish Thm. 1 in this model. This is covered in Sec. 5.

Subsequently, we define a random-aborting verifier Ṽ, akin to the one introduced in [CCLY21].
However, we augment it with a global counter and a local counter, as discussed in Sec. 2.3. These
two counters play a crucial role in the subsequent proofs. The precise definition of our Ṽ is elucidated
in Sec. 6.1.

We then proceed to define the desired BQP decider B in Sec. 6.2. Essentially, it executes the
measure-and-reprogram (MnR) version of S Ṽ(x)(x), with Ṽ’s random function instantiated by H0

and serving as the oracle in the MnR game. Our task then becomes demonstrating that B is both
complete and sound.

The proof for completeness is similar to that in [CCLY21], and it is presented in Sec. 6.3.
The proof for soundness is the most intricate aspect of our work. It entails addressing several

challenges discussed earlier in Sec. 2.3 to 2.5. In the main body, this is covered in Sec. 6.4 and Sec. 7
to Sec. 9.

3 Preliminaries

Notation. Let λ denote the security parameter throughout the paper. For a positive integer n ∈ N,
[n] denotes a set {1, 2 . . . , n}. For a finite set X , x $←− X means that x is uniformly chosen from X .
For a finite set X and a positive integer k, X≤k is defined to be

⋃
i∈[k]X i. For finite sets X and Y,

F(X ,Y) denotes the set of all functions with domain X and range Y.
A function f : N → [0, 1] is said to be negligible if for all polynomial p and sufficiently large

λ ∈ N, we have f(λ) < 1/p(λ); it is said to be overwhelming if 1 − f is negligible, and said to be
noticeable if there is a polynomial p such that f(λ) ≥ 1/p(λ) for sufficiently large λ ∈ N. We denote
by poly an unspecified polynomial and by negl an unspecified negligible function.

We will use the following convention. If we have a state |ρ〉ab over two registers a and b and a
unitary operator Ua that acts on registers a only, we will use Ua|ρ〉ab as an abbreviation for applying
Ua ⊗ Ib to |ρ〉ab (where Ib is the identity operator on register b). Also, if Ub operates non-trivially
only on register b, we will use |ψ〉aUb|ϕ〉b as an abbreviation for applying Ia ⊗ Ub to |ψ〉a|ϕ〉b.
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3.1 Technical Lemmas

The following lemma will be used throughout the paper.
Lemma 1 ([Zha12]). For any sets X and Y of classical strings and q-quantum-query algorithm
A, we have

Pr
[
AH = 1 : H ← F(X ,Y)

]
= Pr

[
AH = 1 : H ← H2q

]
where H2q is a family of 2q-wise independent hash functions from X to Y.

Differentiating Sparsity Functions as Quantum Oracles.

Lemma 2 ([HRS16, Lemma 3]). Let X be a finite set, ε ∈ [0, 1] be a non-negative real number,
and Hε be a distribution over Hε : X → {0, 1} such that we have Pr[Hε(x) = 1] = ε independently
for each x ∈ X . Let H0 : X → {0, 1} be the function that returns 0 for all inputs x ∈ X . Then for
any algorithm A that makes at most q quantum queries, we have∣∣Pr [AHε = 1 : Hε ← Hε

]
− Pr

[
AH0 = 1

]∣∣ ≤ 8q2ε.

3.2 (Ordered-Query) Measure-and-Reprogram Lemma

We recall the measure-and-reprogram (MnR) lemma developed by [DFMS19, DFM20]. In partic-
ular, we need the special “ordered-query” version of the (MnR) lemma formalized in [CCLY21,
Lemma 2.11]. We adapt it with some cosmetic changes to suit our applications.

We first give intuitive explanations for notation, which are taken from [CCLY21]. For a quantumly-
accessible classical oracle O, we denote by O ← Reprogram(O, x, y) to mean that we reprogram
O to output y on input x. For a q-quantum-query algorithm A, function H : X → Y, and
y = (y1, . . . , yk) ∈ Yk, we denote by A[H,y] to mean an algorithm that runs A w.r.t. an oracle that
computes H except that randomly chosen k queries are measured and the oracle is reprogrammed
to output yi on i-th measured query. Formal definitions are given below.

Definition 1 (Reprogramming Oracle [CCLY21, Definition 2.9]). Let A be a quantum algo-
rithm with quantumly-accessible oracle O that is initialized to be an oracle that computes some
classical function from X to Y. At some point in an execution of AO, we say that we reprogram O
to output y ∈ Y on x ∈ X if we update the oracle to compute the function Hx,y defined by

Hx,y(x′) :=

{
y if x′ = x

H(x′) otherwise

where H is the function computed by O before the update. This updated oracle is used in the rest of
execution of A. We denote by O ← Reprogram(O, x, y) the above reprogramming procedure.

Lemma 3 (Measure-and-Reprogram Lemma [CCLY21, Lemma 2.11]). Let X and Y be sets
of classical strings and k be a positive integer. Let A be a q-quantum-query algorithm with quantum
oracle access to an oracle that computes a function from X to Y and outputs x ∈ X k and a (possibly
quantum) output ρ. For a function H : X≤k → Y and y = (y1, . . . , yk) ∈ Yk, we define a MnR
game A[H,y] in Game 3.1.

Then, for any positive integer k, any q-quantum query algorithm A, any function H : X≤k → Y,
any vectors x∗ = (x∗1, . . . , x

∗
k) ∈ X k and y = (y1, . . . , yk) ∈ Yk, and any (potentially quantum)

predicate Pred, it holds that

Pr
[(
x = x∗

)
∧
(
Pred(x,y, ρ) = 1

)
: (x, ρ)← A[H,y]

]
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≥ 1

(2q + 1)2k
· Pr

[(
x = x∗

)
∧
(
Pred(x,y, ρ) = 1

)
: (x, ρ)← AHx∗,y

]
.

where Hx∗,y : X≤k → Y is defined as

Hx∗,y(x′) :=

{
yi if ∃i ∈ [k] s.t. x′ = (x∗1, ..., x

∗
i )

H(x′) otherwise
.

Remark 3. We remark that the original [CCLY21, Lemma 2.11] defines the output of A to be x ∈
X k, without the (possibly quantum) ρ part as in our Lem. 3. Our modification is fine since [CCLY21,
Lemma 2.11] is indeed a corollary of the “un-ordered” MnR lemma shown in [CCLY21, Lemma
2.10], which allows A to additionally output a (potentially quantum)12 part z. The derivation of
[CCLY21, Lemma 2.11] from [CCLY21, Lemma 2.10] holds even if one takes the quantum z (i.e.,
the ρ in our notation) into consideration.

Game 3.1: Measure-and-Reprogram Game A[H,y]

It works as follows:
1. For each i ∈ [k], uniformly pick (ji, bi) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} conditioned on that there

exists at most one i ∈ [k] such that ji = j∗ for all j∗ ∈ [q].
2. Let s denote the number of ji’s in {ji}i∈[k] that are not ⊥. We re-label the indices i for pairs
{(ji, bi)}i∈[k] so that j1 < j2 < . . . < js and js+1 = js+2 = . . . = jk = ⊥. (See Rmk. 4.)

3. Run AO where the oracle O is initialized to be a quantumly-accessible classical oracle that
computes H, and when A makes its j-th query, the oracle is simulated as follows:
(a) If j = ji for some i ∈ [s], measure A’s query register to obtain x′i = (x′i,1, . . . , x

′
i,ki

) where
ki ∈ [k] is determined by the measurement outcome, and then behaves according to the
value bi as follows:.
i. If bi = 0: First reprogram O ← Reprogram(O,x′i, yi), and then answer the ji-th query

using the reprogrammed oracle. (See Def. 1 for the definition of Reprogram.)
ii. If bi = 1: First answer the ji-th query using the oracle before the reprogramming, and

then reprogram O ← Reprogram(O,x′i, yi).
(b) Otherwise (i.e., j 6= ji ∀i ∈ [s]), answer A’s j-th query just using the oracle O without any

measurement or reprogramming.
4. Let (x = (x1, . . . , xk), ρ) be A’s output.
5. For all i ∈ {s+ 1, s+ 2, . . . , k}, set x′i = xi where xi := (x1, · · · , xi).
6. Output: The output of this game is defined as follows

– If it holds for all i ∈ [k] that x′i is a prefix of x′k, then output (x′k, ρ);
– Otherwise, output (⊥,⊥).

Remark 4 (Regarding Re-labeling). The re-labeling we performed in Step 2 is only cosmetic. It just
means to maintain an increasing order for the sequence {ji}i∈[k] and put all the ji’s which are ⊥ to
the very end in this sequence. It does not affect Game 3.1 at all because the order of the ji’s is not
used anywhere in this game. But we prefer to maintain an order for {ji}i∈[k] because it will help
simplify the presentation of our results and proofs later in this work.
12 More accurately, [CCLY21, Lemma 2.10] requires z to be a classical string. But [CCLY21, Lemma 2.10] is indeed

an adaption of the original MnR lemma from [DFM20, Theorem 6], where z is allowed to be quantum.
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3.3 Branch-Wise Equivalence Lemma

We hereby present a lemma pertaining to quantum computing. Although the proof of this lemma
is relatively straightforward, it plays a crucial role in streamlining certain aspects of the proof for
our main results.

Let us first provide an intuitive description of this lemma. Consider a quantum game wherein
unitaries and measurements are alternately applied to an initial pure state. Subsequently, a binary-
outcome POVM is applied, determining the final output of the game. We assert that the probability
of outputting 1 in such a quantum game can be expressed equivalently as follows:
– Firstly, we examine all possible outcomes of each intermediate measurements (except for the

final POVM). For each fixed “outcome sequence” (consisting of the outcomes of all intermediate
measurements), we can define a “sub-normalized” version of the game. In this modified version,
each intermediate measurement is replaced with a projection that collapses the register to a
predetermined outcome (specified in the “outcome sequence”). Finally, a binary-outcome POVM
is applied, determining the final output of this “subnormalized” game.

– We then aggregate the probabilities of outputting 1 across all possible “sub-normalized” games.
In the following, we present the formal lemma. To enhance clarity, we will first provide a simpli-

fied version of this lemma in Sec. 3.3.1, termed the “baby-case” version. In this context, we consider
a quantum game involving the alternating application of two unitaries and two measurements. This
simplified scenario serves to illustrate the essence of the lemma and the key concepts underlying
its proof. Subsequently, we will present the comprehensive, fully elaborated version in Sec. 3.3.2.

3.3.1 Baby-Case Version
We first present in Game 3.2 the quantum game of alternating applications of two unitaries and
measurements.

Game 3.2: Baby-Case Game G(|ψ⟩) with Alternating Unitary and Measurement

Parameters. Let |ψ〉 be a pure state over some registers. Let m be a ℓ-qubit subset of these
registers. Let U1 and U2 be unitaries over these registers. Let P = {E0, E1} be a binary-outcome
POVM over all the registers.

Game G(|ψ〉): on input |ψ〉, G(|ψ〉) performs the following operations:
1. Apply U1;
2. Measure register m in the computational basis;
3. Apply U2;
4. Measure register m in the computational basis;
5. Apply the POVM P .

Output: the output is defined to be the POVM measurement outcome. We denote it as
OUT

(
G(|ψ〉)

)
.

Lemma 4 (Branch-Wise Equivalence—Baby Case). Use the notation in Game 3.2. For
each m1,m2 ∈ {0, 1}ℓ, define

|ψ(2)
m1,m2

〉 :=
(
|m2〉〈m2|m U2

)(
|m1〉〈m1|m U1

)
|ψ〉.
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Then, it holds that

Pr
[
Out

(
G(|ψ〉)

)
= 1
]
=

∑
m1,m2∈{0,1}ℓ

〈ψ(2)
m1,m2

|E1|ψ(2)
m1,m2

〉.

Proof of Lem. 4. This lemma can be easily shown by tracking the steps in Game 3.2 with elementary
calculation.

Tracking Game 3.2. Right after Step 1, the state U1|ψ〉 can be written in the following format

U1|ψ〉 =
∑

m1∈{0,1}ℓ
αm1 |m1〉m|ψ̇(1)

m1
〉, (3.1)

where the αm1 ’s are amplitudes satisfies
∑

m1
|αm1 |2 = 1 and |ψ̇(1)

m1〉’s are pure states over registers
other than m. Measuring the m register (i.e., Step 2) results in the following mixture:

with probability |αm1 |2, the overall state collapses to |m1〉|ψ̇(1)
m1
〉.

For each possible state |m1〉|ψ̇(1)
m1〉, applying U2 (i.e., Step 3) yields

U2|m1〉|ψ̇(1)
m1
〉 =

∑
m2∈{0,1}ℓ

βm1,m2 |m2〉|ψ̇(2)
m1,m2

〉, (3.2)

where the βm1,m2 ’s are amplitudes satisfies
∑

m2
|βm1,m2 |2 = 1 and |ψ̇(2)

m1,m2〉’s are pure states over
registers other than m. Now, measuring the m register (i.e., Step 4) results in the following mixture:

with probability |βm1,m2 |2, the overall state collapses to |m2〉|ψ̇2
m1,m2

〉.

In summary, we can say that the state right before the POVM (i.e., Step 5) is the following
mixture:

with probability |αm1 |2 · |βm1,m2 |2, the overall state is |m2〉|ψ̇(2)
m1,m2

〉. (3.3)

Analyzing Sub-Normalized States. To relate Game 3.2 with the state |ψ(2)
m1,m2〉 defined in Lem. 4,

we now define some sub-normalized states. In particular, for each m1 ∈ {0, 1}ℓ, let

|ψ(1)
m1
〉 := |m1〉〈m1|U1|ψ〉 (3.4)
= αm1 |m1〉m|ψ̇(1)

m1
〉, (3.5)

where Eq. (3.5) follows from Eq. (3.1).
Then, it holds for the |ψ(2)

m1,m2〉 defined in Lem. 4 that

|ψ(2)
m1,m2

〉 = |m2〉〈m2|m U2|ψ(1)
m1
〉 (3.6)

= αm1 |m2〉〈m2|m U2|m1〉m|ψ̇(1)
m1
〉 (3.7)

= αm1βm1,m2 |m2〉|ψ̇(2)
m1,m2

〉, (3.8)

where Eq. (3.6) follows from Eq. (3.4) and the definition of |ψ(2)
m1,m2〉 in Lem. 4, Eq. (3.7) follows

from Eq. (3.5), and Eq. (3.8) follows from Eq. (3.2).
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Establishing Equivalence. With the above notation, it then follows that

Pr
[
Out

(
G(|ψ〉)

)
= 1
]
=
∑
m1,m2

|αm1 |2 · |βm1,m2 |2 · 〈m2, ψ̇
(2)
m1,m2

|E1|m2, ψ̇
(2)
m1,m2

〉 (3.9)

=
∑
m1,m2

α∗m1
· αm1 · β∗m1,m2

· βm1,m2 · 〈m2, ψ̇
(2)
m1,m2

|E1|m2, ψ̇
(2)
m1,m2

〉

=
∑
m1,m2

〈m2, ψ̇
(2)
m1,m2

|α∗m1
β∗m1,m2

E1αm1βm1,m2 |m2, ψ̇
(2)
m1,m2

〉

=
∑
m1,m2

〈ψ(2)
m1,m2

|E1|ψ(2)
m1,m2

〉, (3.10)

where Eq. (3.9) follows from Expression (3.3), Eq. (3.10) follows from Eq. (3.8).
This finishes the proof of Lem. 4.

3.3.2 Full-Fledged Version
We now extend the baby-case version into the full-fledged scenario. In particular, we generalize the
baby case in two aspects: (1) we allow alternating applications of multiple (instead of two) unitaries
and measurements, and (2) the intermediate measurements may performed over different registers.

We present the general quantum game in Game 3.3 and the lemma in Lem. 5.

Game 3.3: Game Gk(|ψ⟩) with Alternating Unitary and Measurement

Parameters. Let k be an positive integer. Let |ψ〉 be a pure state over some registers. For each
i ∈ [k], let mi be a ℓi-qubit subset of these registers. Let {Ui}i∈[k] be k unitaries. Let P = {E0, E1}
be a binary-outcome POVM over all the registers.

Game Gk(|ψ〉): on input |ψ〉, Gk(|ψ〉) iterates the following operations for each i ∈ [k]:
1. Apply Ui;
2. Measure register mi in the computational basis;

Output: finally, apply the POVM P and output the measurement outcome. We denote it as
OUT(Gk(|ϕ〉)).

Lemma 5 (Branch-Wise Equivalence). Use the notation in Game 3.3. For each possible vector
m = (m1, . . . ,mk) where mi ∈ {0, 1}ℓi for all i ∈ [k], define a sub-normalized state

|ψ(k)
m 〉 :=

( k∏
i=1

|mi〉〈mi|mi Ui
)
|ψ〉 =

(
|mk〉〈mk|mk Uk

)(
|mk−1〉〈mk−1|mk−1

Uk−1
)
· · ·
(
|m1〉〈m1|m1 U1

)
|ψ〉.

Then, it holds that
Pr
[
Out

(
Gk(|ψ〉)

)
= 1
]
=
∑
m

〈ψ(k)
m |E1|ψ(k)

m 〉,

where the summation over m means to sum over all m = (m1, . . . ,mk) ∈ {0, 1}ℓ1 × . . .× {0, 1}ℓk .

Proof of Lem. 5. We prove this lemma via a mathematical induction over the number k of mea-
surements (excluding the final POVM).
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Base Case (k = 1). This corresponds to game G1(|ψ〉) which consists of only one unitary U1

and one measurement over register m1 (before the final POVM). In this case, it is obvious that
Lem. 5 holds. Indeed, Lem. 4 can be understood as a special case of k = 2, modulo that the two
measurement there were performed over the same register m (i.e., m1 = m2 in the Lem. 5 notation).

Induction Step (k ≥ 2). We now assume the lemma holds for k − 1, and prove it for k.
Consider the first iteration of Gk(|ψ〉). Right after Step 1 of the first iteration, the state becomes

U1|ψ〉. Such a state can be written in the following format

U1|ψ〉 =
∑

m1∈{0,1}ℓ
αm1 |m1〉m1 |ψ̇(1)

m1
〉, (3.11)

where the αm1 ’s are amplitudes satisfies
∑

m1
|αm1 |2 = 1 and the |ψ̇(1)

m1〉’s are pure states over
registers other than m1. Measuring the m1 register (i.e., Step 2 in the first iteration) results in the
following mixture:

with probability |αm1 |2, the overall state collapses to |m1〉m1 |ψ̇(1)
m1
〉.

Therefore, the output of the game can be described as:

Pr
[
Out

(
Gk(|ψ〉)

)
= 1
]
=

∑
m1∈{0,1}ℓ

|αm1 |2 · Pr
[
Out

(
G2:k(|m1〉m1 |ψ̇(1)

m1
〉)
)
= 1
]
, (3.12)

where G2:k(|m1〉m1 |ψ̇
(1)
m1〉) denote the remaining party of Gk(|ψ〉) (i.e., right after the the first itera-

tion). For clearness, we present this game in Game 3.4.

Game 3.4: Game G2:k(|m1⟩m1 |ψ̇
(1)
m1⟩)

Parameters. Same as in Game 3.3.

Game G2:k(|m1〉m1 |ψ̇
(1)
m1〉): on input |m1〉m1 |ψ̇

(1)
m1〉, iterate the following operations for each i ∈

{2, 3, . . . , k}:
1. Apply Ui;
2. Measure register mi in the computational basis;

Output: apply the POVM P and output the measurement outcome.

Now, it is important to notice that Game 3.4 can be viewed as a version of Game 3.3 with
parameter k − 1, because it includes k − 1 iterations of alternating unitaries and measurements
(and then the final POVM). Therefore, we can invoke our induction assumption. In particular, for
each possible state |m1〉m1 |ψ̇

(1)
m1〉, our induction assumption implies that

Pr
[
Out

(
G2:k(|m1〉m1 |ψ̇(1)

m1
〉)
)
= 1
]
=
∑
m′

〈ψ̇(k−1)
m′ |E1|ψ̇(k−1)

m′ 〉, (3.13)

where the summation over m′ means to sum over all m′ = (m2, . . . ,mk) ∈ {0, 1}ℓ2 × . . .× {0, 1}ℓk ,
and the state |ψ(k−1)

m′ 〉 is defined as

|ψ̇(k−1)
m′ 〉 :=

( k∏
i=2

|mi〉〈mi|mi Ui
)
|m1〉m1 |ψ̇(1)

m1
〉. (3.14)

24



On the other hand, we note that

|ψ(k)
m 〉 =

( k∏
i=1

|mi〉〈mi|mi Ui
)
|ψ〉 (3.15)

=

( k∏
i=2

|mi〉〈mi|mi Ui
)
|m1〉〈m1|m1 U1|ψ〉

= αm1

( k∏
i=2

|mi〉〈mi|mi Ui
)
|m1〉m1 |ψ̇(1)

m1
〉 (3.16)

= αm1 |ψ̇
(k−1)
m′ 〉, (3.17)

where Eq. (3.15) is the definition of |ψ(k)
m 〉 (see Lem. 5), Eq. (3.16) follows from Eq. (3.11), and

Eq. (3.17) follows from Eq. (3.14).
With the above notation, we show the final derivation

Pr
[
Out

(
Gk(|ψ〉)

)
= 1
]
=

∑
m1∈{0,1}ℓ

|αm1 |2 · Pr
[
Out

(
G2:k(|m1〉m1 |ψ̇(1)

m1
〉)
)
= 1
]

(3.18)

=
∑

m1∈{0,1}ℓ
|αm1 |2 ·

∑
m′

〈ψ̇(k−1)
m′ |E1|ψ̇(k−1)

m′ 〉 (3.19)

=
∑

m′,m1∈{0,1}ℓ
〈ψ̇(k−1)

m′ |α∗m1
E1αm1 |ψ̇

(k−1)
m′ 〉

=
∑
m

〈ψ(k)
m |E1|ψ(k)

m 〉, (3.20)

where Eq. (3.18) follows from Eq. (3.12), Eq. (3.19) follows from Eq. (3.13), and Eq. (3.20) follows
from Eq. (3.17).

This completes the proof of the induction step.

This completes the proof of Lem. 5.

4 Error-Invariant Commutativity Lemma

In this section, we present an information-theoretic lemma regarding the commutativity of some
unitary operators. As will become evident later, this lemma will serve as a clean abstraction of the
behaviors of the ZK simulator and a malicious verifier we designed for the impossibility results.

4.1 Statement and Interpretation

Lemma 6 (Error-Invariant Commutativity Lemma). Let W0, W1, and U0 be unitary oper-
ators over Hm ⊗Ht ⊗Hs ⊗Ho satisfying the following requirements:

– W1 acts non-trivially only on Hm ⊗Ht ⊗Ho, and is identity on Hs.
– W0 is the swap operator between registers m and t, and is identity on Hs ⊗Ho.
– U1 acts non-trivially only on Hm ⊗Ht ⊗Ho, and is identity on Hs.
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Let Ha be a Hilbert space of ℓ qubits. Let a ∈ {0, 1}ℓ be a fixed classical string. Define the
following unitary operators on Ha ⊗Hm ⊗Ht ⊗Hs ⊗Ho:
– W := |a〉〈a|a ⊗W1 +

∑
a′ ̸=a |a′〉〈a′|a ⊗W0, where W0 and W1 are as specified above.

– W̃ := |a〉〈a|a⊗Imtso+
∑

a′ ̸=a |a′〉〈a′|a⊗W0, where Imtso is the identity operator onHm⊗Ht⊗Hs⊗Ho

and W0 are as specified above.
– U := |a〉〈a|a⊗U1+

∑
a′ ̸=a |a′〉〈a′|a⊗ Imtso, where U1 is as specified above and Imtso is the identity

operator on Hm ⊗Ht ⊗Hs ⊗Ho.
– S is an operator that acts non-trivially only on Ha ⊗Hs, and is identity on Hm ⊗Ht ⊗Ho.

These operators satisfy the following property:

– Let {|ρ(in)a′ 〉mtso}a′∈{0,1}ℓ be a sequence of (potentially sub-normalized) pure states over registers
m, t, s, and o. Define states |η(in)0 〉, |η

(in)
1 〉, |η

(out)
0 〉, and |η(out)1 〉 as follows:

|η(in)0 〉 := |a〉a|ρ
(in)
a 〉mtso +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0U
†
1W

†
1 |ρ

(in)
a′ 〉mtso (4.1)

|η(in)1 〉 := |a〉a|ρ
(in)
a 〉mtso +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0|ρ(in)a′ 〉mtso (4.2)

|η(out)0 〉 :=WUSU †W † · |η(in)0 〉 (4.3)

|η(out)1 〉 := W̃SW̃ † · |η(in)1 〉 (4.4)

Then, there exists a sequence of (potentially sub-normalized) pure states {|ρ(out)a′ 〉mtso}a′∈{0,1}ℓ
so that the states |η(out)0 〉 and |η(out)1 〉 defined above can be written in the following format:

|η(out)0 〉 = |a〉a|ρ(out)a 〉mtso +
∑

a′∈{0,1}ℓ\{a}

|a′〉aW0U
†
1W

†
1 |ρ

(out)
a′ 〉mtso (4.5)

|η(out)1 〉 = |a〉a|ρ(out)a 〉mtso +
∑

a′∈{0,1}ℓ\{a}

|a′〉aW0|ρ(out)a′ 〉mtso (4.6)

4.2 Proof of Lem. 6

In this proof, we assume for simplicity that each of the registers m, t, s, and o consists of ℓ qubits.
This assumption is without loss of generality because the subsequent derivation works regardless
of the length of these registers.

We first note that since S acts non-trivially only on Ha ⊗Hs, it holds that for any a′ ∈ {0, 1}ℓ,
s ∈ {0, 1}ℓ, and any pure state |ρa′,s〉mto,

S|a′〉a|s〉s|ρa′,s〉mto =
∑

a∗,s∗∈{0,1}ℓ
βa

′,s
a∗,s∗ |a

∗〉a|s∗〉s|ρa′,s〉mto, (4.7)

where each βa
′,s
a∗,s∗ is a complex number that depends on (a′, s, a∗, s∗).13 Note that since S may not

be unitary, the β values may not be normalized. But this does not affect our proof as we work with
sub-normalized states anyway.

In the following, we derive Eq. (4.5) and (4.6) one by one.
13 It is worth noting that Eq. (4.7) holds for any a′ ∈ {0, 1}ℓ, including the case where a′ equals to the a we fixed.
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4.2.1 Deriving Eq. (4.5)

We first derive Eq. (4.5):

|η(out)0 〉 =WUSU †W † · |η(in)0 〉 (4.8)

=WUSU †W † ·
(
|a〉a|ρ(in)a 〉mtso +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0U
†
1W

†
1 |ρ

(in)
a′ 〉mtso

)
(4.9)

=WUSU †W † ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0U
†
1W

†
1

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a′,s〉mto
)

=WUSU †W † ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉a
∑

s∈{0,1}ℓ
|s〉sW0U

†
1W

†
1 |ρ

(in)
a′,s〉mto

)
(4.10)

=WUSU † ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉sW †1 |ρ
(in)
a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉a
∑

s∈{0,1}ℓ
|s〉sU †1W

†
1 |ρ

(in)
a′,s〉mto

)
(4.11)

=WUS ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉sU †1W
†
1 |ρ

(in)
a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉a
∑

s∈{0,1}ℓ
|s〉sU †1W

†
1 |ρ

(in)
a′,s〉mto

)
(4.12)

=WUS ·
( ∑
a′∈{0,1}ℓ

|a′〉a
∑

s∈{0,1}ℓ
|s〉sU †1W

†
1 |ρ

(in)
a′,s〉mto

)
=WUS ·

( ∑
a′,s∈{0,1}ℓ

|a′〉a|s〉sU †1W
†
1 |ρ

(in)
a′,s〉mto

)
=WU ·

( ∑
a′,s∈{0,1}ℓ

S|a′〉a|s〉sU †1W
†
1 |ρ

(in)
a′,s〉mto

)
(by Eq. (4.7)) =WU ·

( ∑
a′,s∈{0,1}ℓ

∑
a∗,s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉sU †1W
†
1 |ρ

(in)
a′,s〉mto

)
=WU ·

∑
a′,s∈{0,1}ℓ

( ∑
s∗∈{0,1}ℓ

βa
′,s
a,s∗ |a〉a|s

∗〉sU †1W
†
1 |ρ

(in)
a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

∑
s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉sU †1W
†
1 |ρ

(in)
a′,s〉mto

)
=W ·

∑
a′,s∈{0,1}ℓ

( ∑
s∗∈{0,1}ℓ

βa
′,s
a,s∗ |a〉a|s

∗〉sW †1 |ρ
(in)
a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

∑
s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉sU †1W
†
1 |ρ

(in)
a′,s〉mto

)
(4.13)
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=
∑

a′,s∈{0,1}ℓ

( ∑
s∗∈{0,1}ℓ

βa
′,s
a,s∗ |a〉a|s

∗〉s|ρ(in)a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

∑
s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉sW0U
†
1W

†
1 |ρ

(in)
a′,s〉mto

)
(4.14)

= |a〉a
∑

a′,s,s∗∈{0,1}ℓ
βa

′,s
a,s∗ |s

∗〉s|ρ(in)a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

|a∗〉aW0U
†
1W

†
1

∑
a′,s,s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |s

∗〉s|ρ(in)a′,s〉mto (4.15)

= |a〉a|ρ(out)a 〉mtso +
∑

a∗∈{0,1}ℓ\{a}

|a∗〉aW0U
†
1W

†
1 |ρ

(out)
a∗ 〉mtso (4.16)

= |a〉a|ρ(out)a 〉mtso +
∑

a′∈{0,1}ℓ\{a}

|a′〉aW0U
†
1W

†
1 |ρ

(out)
a′ 〉mtso, (4.17)

where Eq. (4.8) follows from Eq. (4.3), Eq. (4.9) follows from Eq. (4.1), Eq. (4.10) follows from
the fact that all the unitary operators W0, U †1 , and W †1 act as identity on Hs, Eq. (4.11) follows
from the definition of W † and the fact that W †0 and W †1 act as identity on Hs, Eq. (4.12) follow
from the definition of U † and the fact that U †1 acts as identity on Hs, Eq. (4.13) follow from the
definition of U and the fact that U1 acts as identity on Hs, Eq. (4.14) follow from the definition
of W and the fact that W0 and W1 act as identity on Hs, and Eq. (4.15) follows from standard
algebraic calculation and the fact that all the unitary operators W0, U †1 , and W †1 act as identity on
Hs, Eq. (4.16) follows by defining

∀ a∗ ∈ {0, 1}ℓ, |ρ(out)a∗ 〉mtso :=
∑

a′,s,s∗∈{0,1}ℓ
βa

′,s
a∗,s∗ |s

∗〉s|ρ(in)a′,s〉mto, (4.18)

and Eq. (4.17) follows simply by renaming a∗ to a′.
This concludes the proof of Eq. (4.5).

4.2.2 Deriving Eq. (4.6)

Finally, we derive Eq. (4.6):

|η(out)1 〉 = W̃SW̃ † · |η(in)1 〉 (4.19)

= W̃SW̃ † ·
(
|a〉a|ρ(in)a 〉mtso +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0|ρ(in)a′ 〉mtso
)

(4.20)

= W̃SW̃ † ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉aW0

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a′,s〉mto
)

= W̃S ·
(
|a〉a

∑
s∈{0,1}ℓ

|s〉s|ρ(in)a,s 〉mto +

∑
a′∈{0,1}ℓ\{a}

|a′〉a
∑

s∈{0,1}ℓ
|s〉s|ρ(in)a′,s〉mto

)
(4.21)
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= W̃S ·
( ∑
a′∈{0,1}ℓ

|a′〉a
∑

s∈{0,1}ℓ
|s〉s|ρ(in)a′,s〉mto

)
= W̃ ·

( ∑
a′,s∈{0,1}ℓ

S|a′〉a|s〉s|ρ(in)a′,s〉mto
)

(by Eq. (4.7)) = W̃ ·
( ∑
a′,s∈{0,1}ℓ

∑
a∗,s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉s|ρ(in)a′,s〉mto
)

= W̃ ·
∑

a′,s∈{0,1}ℓ

( ∑
s∗∈{0,1}ℓ

βa
′,s
a,s∗ |a〉a|s

∗〉s|ρ(in)a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

∑
s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉s|ρ(in)a′,s〉mto
)

=
∑

a′,s∈{0,1}ℓ

( ∑
s∗∈{0,1}ℓ

βa
′,s
a,s∗ |a〉a|s

∗〉s|ρ(in)a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

∑
s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |a

∗〉a|s∗〉sW0|ρ(in)a′,s〉mto
)

(4.22)

= |a〉a
∑

a′,s,s∗∈{0,1}ℓ
βa

′,s
a,s∗ |s

∗〉s|ρ(in)a′,s〉mto +

∑
a∗∈{0,1}ℓ\{a}

|a∗〉aW0

∑
a′,s,s∗∈{0,1}ℓ

βa
′,s
a∗,s∗ |s

∗〉s|ρ(in)a′,s〉mto (4.23)

= |a〉a|ρ(out)a 〉mtso +
∑

a∗∈{0,1}ℓ\{a}

|a∗〉aW0|ρ(out)a∗ 〉mtso (4.24)

= |a〉a|ρ(out)a 〉mtso +
∑

a′∈{0,1}ℓ\{a}

|a′〉aW0|ρ(out)a′ 〉mtso, (4.25)

where Eq. (4.19) follows from Eq. (4.4), Eq. (4.20) follows from Eq. (4.2), Eq. (4.21) follows from
the definition of W̃ †, Eq. (4.22) follows from the definition of W̃ and the fact that W0 acts as
identity on Hs, and Eq. (4.23) follows from standard algebraic calculation and the fact that W0

acts as identity on Hs, Eq. (4.24) follows from the same definition of {|ρ(out)a∗ 〉}a∗∈{0,1}ℓ as shown in
Expression (4.18), and Eq. (4.25) follows by renaming a∗ to a′.

This concludes the proof of Eq. (4.6).

This eventually completes the proof of Lem. 6.

5 The Models for Quantum Zero-Knowledge

5.1 Quantum Black-Box Zero-Knowledge Protocols for NP

We define quantum black-box zero-knowledge proofs (and arguments) for NP. This model is similar
to the standard notion of post-quantum black-box zero-knowledge proofs (and arguments) for NP
(e.g., see [CCLY21]) with the following differences:
– The (honest) prover and verifier could be quantum polynomial-time machines. In particular,

their communication channel is also quantum.
In the following, we present the formal definitions. We first define quantum interactive proofs

(and arguments) for NP (in Sec. 5.1.1), and then define zero-knowledge property (in Sec. 5.1.2).
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5.1.1 Quantum Interactive Proofs/Arguments for NP

For an NP language L and x ∈ L, RL(x) is the set that consists of all (classical) witnesses w such
that the verification machine for L accepts (x,w).

A quantum interactive protocol 〈P ,V〉 is modeled as an interaction between interactive quantum
polynomial-time machines14 P ( dubbed the prover) and V (dubbed the verifier). We denote by
〈P(xP),V(xV)〉(x) an execution of the protocol where x is a common input, xP is the prover’s
private input, and xV is the verifier’s private input. We denote by ρ ← OUTV〈P(xP),V(xV)〉(x)
the final output of V, where ρ is a single-qubit state over a special register d of V. We also define a
quantum predicate Acc(·) which, on input a single-qubit state ρ, measures ρ in the computational
basis and outputs the measurement outcome. Intuitive, the output of Acc indicates if the the verifier
accepts (outputting 1) or rejects (outputting 0).

Definition 2 (Quantum Interactive Proofs/Arguments). A quantum interactive proof or
argument 〈P ,V〉 for an NP language L is a quantum interactive protocol between a QPT prover P
and a QPT verifier V that satisfy the following requirements:
– Completeness. For each x ∈ L and each w ∈ RL(x), it holds that

Pr
[
Acc(ρ) = 1 : ρ← OUTV〈P(w),V〉(x)

]
≥ 1− negl(λ).

– Statistical/Computational Soundness. The protocol is statistically (resp. computationally)
sound if for any unbounded (resp. non-uniform QPT) cheating prover P∗ and any x ∈ {0, 1}λ\L,
it holds that

Pr
[
Acc(ρ) = 1 : ρ← OUTV〈P∗,V〉(x)

]
= negl(λ).

The protocol is dubbed an interactive proof (resp. argument) if the soundness property is statistical
(resp. computational).

Remark 5. We note that considering the function Acc(·) as part of the verifier is a valid alternative.
However, we prefer to use the above formalism to treat Acc(·) as an “external” measurement. This
approach aims to facilitate our subsequent presentation, where we will assume without loss of
generality that the verifier V does not conduct any measurements.

Remark 6. In a plain standard quantum interactive protocol, V and P do not pre-share any entan-
glement at the beginning of the protocol.

5.1.2 Black-Box Quantum Zero-Knowledge
Next, we proceed to define the quantum zero-knowledge property. Toward that, we first need to be
more accurate about the malicious verifiers and the way the simulator interacts with the malicious
verifier.

Number of Rounds. We say that a quantum interactive proof/argument has K rounds if the
messages exchanged between P and V are of the following structure

(p1, v1, p2, v2, . . . , pK−1, vK−1, pK , vK),

where p1 is the first message P sends to V, and v1 is V’s response to p1, and p2 is the next message
P sends to V and so one. Some remarks regarding this message structure follow:
14 We refer to the literature (e.g., [HSS11]) for the standard notion of quantum interactive machines.
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– All the pi’s and vi’s could be quantum messages, as we allow quantum communication in quan-
tum interactive proofs/arguments.

– It is without loss of generality to assume that P sends the first message (i.e., p1).
– Typically, the last message should be from the prover to the verifier. However, in our model,

we ask the verifier to send the last message vK . We explain the reason in Rmk. 7.
– We remark that different authors may use the term “round” differently. In this work, we use

it to refer to a pair of adjacent messages. For example, (p1, v1) constitutes the first round, and
(p2, v2) constitutes the second round and so on. This is why we say that the protocol, where
2K messages are actually exchanged, has K rounds.

Remark 7 (On the last message vK). In this work, we require the honest verifier to send its final
decision qubit (i.e., register d) to the prover, which is exactly the last message vK . It is important to
note that this requirement does not impact completeness or soundness. However, it does influence
the definition of zero-knowledge. Specifically, it could potentially make the simulator’s task easier,
leading to a weaker definition of the zero-knowledge property. Nevertheless, since our goal is to
establish impossibility results, this assumption could only make our results stronger.

A related issue arises: If we ask the honest V to sends its final decision qubit as message vK ,
how do we define the final output of V? This can be handled as follows. When the message vK
is generated in register m, we ask V to keep a copy of it in a designated register d in its working
space w. Technically, V applies a CNOT gate on the register containing the decision qubit vK and
the register |0〉d where the former register is the control register, and then V sends the |vK〉m to the
prover as the last message. Note that this effectively collapses the decision qubit |vK〉d, but this is
fine since the predicate Acc(·) anyway performs computational measurement on the decision qubit
(see Def. 2).

Malicious Verifiers. For a formal definition of black-box quantum zero-knowledge, we give a
model of quantum malicious verifiers against quantum interactive protocols. A malicious verifier
Ṽ is specified by a sequence of unitary Ṽλ over the internal register v and the message register m

(whose details are explained later) and an auxiliary input ρλ indexed by the security parameter
λ ∈ N. We say that Ṽ is non-uniform QPT if the sizes of Ṽλ and ρλ are polynomial in λ. In the rest
of this paper, λ is always is always set to be the length of the statement x to be proven, and thus
we omit λ for notation simplicity.

Its internal register v consists of the instance register ins, auxiliary input register aux, and
verifier’s working register w. Part of the working space w is designated as the output register out.
Ṽ interacts with an honest prover P on a common input x and P’s private input w ∈ RL(x) in the
following manner:
1. Register ins is initialized to x, aux is initialized to ρ, and w and m are initialized to be 0 of

sufficient length.
2. P (with private input w) and Ṽ run the K-round protocol as follows. On round k ∈ [K],

(a) P sends message pk by loading it in register m. (Physically, one can think that register m was
in the hand of P at the beginning of this round; P loads message pk in m and sends m to Ṽ.)

(b) Ṽ applies the unitary Ṽ , which generates Ṽ’s response vk and loads it in register m. (Physi-
cally, one can think that register m is then sent to P; This is how we model “Ṽ sends message
vk to P”.)

3. At the end of the execution, Ṽ outputs the state in register out as her final output.
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We denote by 〈P(w), Ṽ(ρ)〉(x) the above execution and by ρout ← OUTṼ〈P(w), Ṽ(ρ)〉(x) the final
output ρout of Ṽ, which is a quantum state over out.

Black-Box Simulator. We now describe formally how the simulator S interacts with a malicious
verifier Ṽ defined above. We note that there are multiple ways to do so and we choose the following
one without loss of generality, which is particularly suitable for our proof of impossibility.

A quantum black-box simulator S is modeled as a quantum oracle Turing machine (e.g., see
[BBBV97]). We say that S is expected-QPT (resp. strict-QPT) if the expected (resp. maximum)
number of steps is polynomial in the input length, counting an oracle access as a unit step.

Note that we focus on black-box simulation. Thus, S can only query Ṽ via her unitary Ṽ and
its inverse Ṽ †, but does not get to see the internal register registers of Ṽ. Also, recall that m is used
to exchange messages as explained above. Therefore, for simulation, m is considered as being held
by S.

In more detail, a black-box simulator S is defined by a “local” unitary S. It is granted oracle
access to Ṽ and Ṽ †. It makes use of the following registers (in addition to Ṽ’s internal registers
that she could only access through Ṽ or Ṽ † )

– Register ins initialized to |x〉ins.

– Register m to exchange messages with the malicious verifier Ṽ;

– Register s, which is her “local” working space;

– A query-type register u in a 2-dimension Hilbert space spanned by the basis {|↓〉u, |↑〉u} (ex-
plained shortly).

S’s behavior is iterations of the following three steps:

1. Apply the local operator S on registers m, u, and s;

2. Measure the u register to learn the type of the next query (see the next bullet);

3. Make the oracle query according to the measurement outcome from the last step—if the mea-
surement outcome is |↓〉u, it query the Ṽ oracle on m; otherwise (i.e., the measurement outcome
is |↑〉u), it query the Ṽ † oracle on m.

S keeps repeating the above three steps until she decides to stop. At that moment, the internal
state of Ṽ (i.e., contents of register out) is defined to be the simulation output. Notation-wise, we
denote the above procedure by ρout ← S Ṽ(x;ρ)(x) the final output ρout of Ṽ, where ρout the final
state out (tracing out all other registers after the execution).

Black-Box Quantum ZK. With the above notations, we now present the definition of black-box
quantum zero-knowledge in Def. 3.

Definition 3 (Black-Box Quantum ZK Proofs/Arguments). A black-box quantum zero-
knowledge proof (resp. argument) for an NP language L is a quantum interactive proof (resp.
argument) 〈P ,V〉 for L (as per Def. 2) that additionally satisfies the following property:

– Black-Box Quantum Zero-Knowledge. There exists an expected-QPT simulator S such
that for each non-uniform QPT malicious verifier Ṽ with an auxiliary input ρ, it holds that

{
OUTṼ〈P(w), Ṽ(ρ)〉(x)

}
λ∈N,x∈L∩{0,1}λ,w∈RL(x)

c
≈
{
S Ṽ(x;ρ)(x)

}
λ∈N,x∈L∩{0,1}λ,w∈RL(x)

.
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5.2 Quantum ZK in the Non-Programmable EPR Model

In this section, we define a new model for quantum zero-knowledge, which we refer to as the
Non-Programmable EPR (NPE for short) model. Before we dive into the formal definitions, we
first provide an intuitive explanation of this model and how it helps us establish our impossibility
results for the (standard) QZK (as per Sec. 5.1).

The NPE model is an intermediate model where P and V pre-share EPR pairs issued by some
trusted third party. These EPR pairs can be used to “de-quantize” the prover’s messages. We will
show that given a fully quantum BBZK protocol, we can transform it into a BBZK protocol in
the NPE model with the same round complexity. This allows us to focus on the NPE model when
establishing our impossibility result.

We next proceed to the formal definitions.

Non-Programmable EPR Model. As explained above, QZK in this non-programmable EPR
model is almost identical to the standard QZK we defined in Sec. 5.1, except for how the prover’s
message is transmitted. Therefore, instead of presenting all the details (which include repeated
descriptions of the same steps as we did for the standard QZK model), we choose to describe the
non-programmable EPR model by only highlighting its differences from the standard QZK model.

The non-programmable EPR model (NPE) ZK is identical to the QZK protocol as we defined
in Sec. 5.1, except for the following differences
– We assume there is a trusted party Trust who prepares polynomially many EPR pairs

(e
(1)
1 , e

(1)
2 ), . . . , (e

(n)
1 , e

(n)
2 ),

where n(λ) is a fixed polynomial specified by the protocol.

– At the beginning of the protocol, the first halves of these EPR pairs (e
(1)
1 , . . . , e

(n)
1 ) are given to

the honest prover P as a part of its input; the second halves of these EPR pairs (e
(1)
2 , . . . , e

(n)
2 )

are given to the honest verifier V as a part of its input.
– The computation models for the honest prover P and honest verifier V are identical to that in

the standard QZK defined in Sec. 5.1, except that P and V now can make use of the EPR pairs
in their input during the execution, as long as the computation is QPT.
We note that we can continue to use the same interface between P and V as described in
Sec. 5.1.2. That is, though they additionally hold EPR pairs, the protocol still has the generic
form that P and V exchanges (possibly) quantum messages (p1, v1, . . . , pK , vK). The only mod-
ifications would be in the specific descriptions of their local unitary, which are anyway left
unspecified in the generic description provided in Sec. 5.1.
Similarly, we denote by

〈P
(
w, (e

(1)
1 , . . . , e

(n)
1 )
)
,V(e(1)2 , . . . , e

(n)
2 )〉(x)

the above execution, and by

ρ← OUTV〈P
(
w, (e

(1)
1 , . . . , e

(n)
1 )
)
,V(e(1)2 , . . . , e

(n)
2 )〉(x)

the final output of V, where ρ is a single-qubit state over a special register d of V. We re-use
the same definition of Acc(·) as in Sec. 5.1.

– The modeling of the malicious verifier Ṽ and the simulator S also remains the same as in
Sec. 5.1.2, except that S now gets the (e

(1)
1 , . . . , e

(n)
1 ) as additional input (similar as the honest

prover). We emphasize the following points regarding the simulator S.
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• S does not get to choose the EPR pairs. That is, the EPR pairs are always sampled by
the trusted party. S gets (e

(1)
1 , . . . , e

(n)
1 ) as input, and the other halves (e

(1)
2 , . . . , e

(n)
2 ) are

given to the (potentially malicious) verifier Ṽ. The latter is considered as being stored in Ṽ’s
internal registers, so S cannot see or modify these shares hold by Ṽ directly (unless through
oracle access to Ṽ’s unitary Ṽ and its inverse Ṽ †).

• We note that we can continue to use the same interface between S and Ṽ as described in
Sec. 5.1.2. In terms of notation, we can consider (e

(1)
1 , . . . , e

(n)
1 ) to be stored in a designated

region of S’s working space s, and (e
(1)
2 , . . . , e

(n)
2 ) to be stored in a corresponding region

of Ṽ’s working space w. Consequently, the generic description of how S interacts with Ṽ
remains unchanged—the only modifications would be in the specific descriptions of S’s local
unitary S and Ṽ’s unitary Ṽ , which are anyway left unspecified in the generic description
provided in Sec. 5.1.2.
Similarly, we use ρout ← S Ṽ

(
x,(e

(1)
2 ,...,e

(n)
2 );ρ

)(
x, (e

(1)
1 , . . . , e

(n)
1 )
)

to denote the final output ρout
of Ṽ, where ρout the final state on Ṽ’s internal register out (tracing out all other registers
after the execution).

With the above notation, we now present the formal definition for QZK in the NPE model in Def. 4.

Definition 4 (Black-Box QZK in the NPE Model). Let n(λ) be a fixed polynomial of the
security parameter λ. A black-box quantum zero-knowledge proof (resp. argument) for an NP
language L, in the n-pair non-programmable EPR model, is a quantum interactive protocol between
a QPT prover P and a QPT verifier V that satisfy the following requirements:

– Completeness. For any x ∈ L∩ {0, 1}λ, any w ∈ RL(x), and any n EPR pairs {e(i)1 , e
(i)
2 }i∈[n]

generated by Trust, it holds that

Pr
[
Acc(ρ) = 1 : ρ← OUTV〈P

(
w, (e

(1)
1 , . . . , e

(n)
1 )
)
,V(e(1)2 , . . . , e

(n)
2 )〉(x)

]
≥ 1− negl(λ).

– Statistical/Computational Soundness. The protocol is statistically (resp. computationally)
sound if for any unbounded (resp. non-uniform QPT) cheating prover P∗ and any x ∈ {0, 1}λ\L,
and any n EPR pairs {e(i)1 , e

(i)
2 }i∈[n] generated by Trust, it holds that

Pr
[
Acc(ρ) = 1 : ρ← OUTV〈P∗(e(1)1 , . . . , e

(n)
1 ),V(e(1)2 , . . . , e

(n)
2 )〉(x)

]
= negl(λ).

The protocol is dubbed a proof (resp. argument) if the soundness property is statistical (resp.
computational).

– Black-Box Quantum Zero-Knowledge. There exists an expected-QPT simulator S such
that for any non-uniform QPT malicious verifier Ṽ with an auxiliary input ρ and any n EPR
pairs {e(i)1 , e

(i)
2 }i∈[n] generated by Trust, it holds that

{
OUTṼ〈P

(
w, (e

(1)
1 , . . . , e

(n)
1 )
)
, Ṽ
(
(e

(1)
2 , . . . , e

(n)
2 ), ρ

)
〉(x)

}
λ∈N,x∈L∩{0,1}λ,w∈RL(x)

c
≈
{
S Ṽ
(
x,(e

(1)
2 ,...,e

(n)
2 );ρ

)(
x, (e

(1)
1 , . . . , e

(n)
1 )
)}

λ∈N,x∈L∩{0,1}λ,w∈RL(x)
.

Henceforth, we use n-NPE-BBQZK as the abbreviation for black-box quantum zero-knowledge ar-
guments in the n-pair non-programmable EPR model.
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5.3 Standard BBQZK Implies NPE-BBQZK
In this part, we show in lem. 7 that if (standard) BBQZK exists, then BBQZK in the NPE model
also exists. Moreover, the prover in the latter protocol only needs to send classical messages. Looking
forward, lem. 7 allows us to switch our attention to the NPE model—to prove that there does not
exist constant-round black-box quantum zero-knowledge, we only need to show that such protocols
do not exist in the NPE model.
Lemma 7. For a number K, assume that there exists a K-round black-box QZK proof (resp.
argument) as per Def. 3, where we assume w.l.o.g. that each messages exchanged in this protocol
are of the same length of ℓ(λ) qubits. Then, there exists a K-round black-box QZK proof (resp.
argument) in the (K · ℓ)-pair NPE model as per Def. 4, where all the messages sent by the prover
is classical.

Proof of Lem. 7. Consider a K-round BBQZK protocol 〈P ,V〉 as defined in Def. 3. We assume
without loss of generality that all the pk’s and vk’s message are of the same length ℓ(λ) qubits,
where ℓ(λ) is some polynomial of the security parameter λ. To establish Lem. 7, we show a compiler
that converts 〈P ,V〉 to a new protocol 〈P ,V〉npe in the (K · ℓ)-pair NPE model, with all prover’s
messages being classical.

At a high level, the compiler simply runs the original 〈P ,V〉 with only one difference: all the
prover’s messages pk’s are sent to the verifier by quantum teleportation. Note that each pk consists
of ℓ qubits. Thus, (K · ℓ) EPR pairs suffice for teleporting all prover’s messages. We present the
formal description of the compiler in Prot. 1, and then prove that the resulting protocol 〈P ,V〉npe
does satisfies the requirements in Lem. 7.

Protocol 1: NPE-BBQZK Protocol ⟨P,V⟩npe

Let n(λ) = K · ℓ(λ). Then, a K-round QZK in the NPE model is identical to the original QZK
protocol 〈P ,V〉 except for the following differences:
– Before the protocol starts, the trusted party prepares n EPR pairs

(e
(1)
1 , e

(1)
2 ), . . . , (e

(n)
1 , e

(n)
2 ).

The first halves of these EPR pairs (e
(1)
1 , . . . , e

(n)
1 ) are given to the honest prover P as a part

of its input (in addition to its original input x and w); the second halves of these EPR pairs
(e

(1)
2 , . . . , e

(n)
2 ) are given to the honest verifier V as a part of its input (in addition to its original

input x).
– P ane V then behaves as in the original execution of 〈P(w),V〉(x), except for the following

differences:
• When P wants to send message pk (∀k ∈ [K]), it does not send pk directly. Instead, it uses

quantum teleportation to transmit it, consuming the EPR shares (e((k−1)ℓ+1)
1 , . . . , e

(kℓ)
1 ). In

more detail, P performs the teleportation measurements over the ℓ-qubit message pk and
the ℓ-qubit EPR shares (e

((k−1)ℓ+1)
1 , . . . , e

(kℓ)
1 ). This leads to ℓ pairs of (classical) telepor-

tation keys {(a(i)k , b
(i)
k )}i∈[ℓ]. The honest prover P then sends p̃k = {(a(i)k , b

(i)
k )}i∈[ℓ] to the

verifier.
• When the honest verifier V receives p̃k = {(a(i)k , b

(i)
k )}i∈[ℓ], it first recover the quantum

message pk using the teleportation keys contained in p̃k and the corresponding halves
of the EPR pairs (e

((k−1)ℓ+1)
2 , . . . , e

(kℓ)
2 ). Then, V behaves in the same manner as in the

original protocol to generate message vk and sends it to the prover.
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• At the end of the execution, the verifier output whatever the original V would output in
the original 〈P(w),V〉(x) protocol.

From the description of Prot. 1, it is easy to see that the protocol 〈P ,V〉npe has K rounds,
consumes (K · ℓ) EPR pairs, and all the prover’s messages {p̃k}k∈[K] are classical. Also, the com-
pleteness follows direct from the completeness of the original 〈P ,V〉 protocol and the correctness
guarantee of quantum teleportation.

To prove soundness, we assume that there is a malicious QPT prover P̃npe that breaks the
soundness of 〈P ,V〉npe shown in Prot. 1. Then, we can construct another malicious QPT prover P̃
that breaks the soundness of the original protocol 〈P ,V〉 as follows. Machine P̃ samples the EPR
pairs by herself, and emulates machine P̃npe internally, on input (e

(1)
1 , . . . , e

(n)
1 ). When the internal

P̃npe sends the message p̃k, P̃ first recover the original quantum message pk using (e
(1)
2 , . . . , e

(n)
2 )

(note that this is possible because P̃ sampled the EPR pairs), and then forward pk to the external
honest verifier V; When the external V sends message vk, machine P̃ simply forward it to the internal
P̃npe. It is straightforward that if P̃npe breaks the soundness of 〈P ,V〉npe, then the constructed P̃
breaks the soundness of the original protocol 〈P ,V〉 as well.

The zero-Knowledge property follows from a similar argument as for soundness above. In more
detail, the black-box ZK simulator Snpe works as follows:
1. Given a malicious verifier Ṽnpe for the protocol Prot. 1, it first constructs a malicious verifier Ṽ

for the original protocol 〈P ,V〉 as follows:
– Machine Ṽ samples the EPR pairs by herself, and emulates machine Ṽnpe internally, on

input (e
(1)
2 , . . . , e

(n)
2 ). When the external P̃ sends the message pk (∀k ∈ [K]), Ṽ performs

teleportation measurements on pk and the EPR shares (e
((k−1)ℓ+1)
1 , . . . , e

(kℓ)
1 ), which yield

the classical keys p̃k = {(a(i)k , b
(i)
k )}i∈[ℓ]. Ṽ forward p̃k to the internal Ṽnpe. When the internal

Ṽnpe sends vk, Ṽ forwards it to the external P. At the end of the execution, Ṽ outputs
whatever the internal Ṽnpe outputs.

2. Snpe then invokes the simulator S of the original protocol Ṽ, providing the Ṽ constructed above
as the oracle required by S. Finally, Snpe outputs whatever S Ṽ outputs.

We first argue that the above Snpe only makes black-box access to Ṽnpe. This can be seen by noticing
that the construction of Ṽ requires only black-box access to Ṽnpe, and that the simulator S of the
original protocol makes only black-box to the Ṽ constructed in black-box from Ṽnpe.

As for the indistinguishability of the simulation, first notice that in a real execution between
the original honest prover P(x,w) and the above constructed Ṽ, the final output of Ṽ is identically
distributed as the final output of Ṽnpe obtained from an execution with the honest Prot. 1 prover
Pnpe(x,w). This is because Ṽ perfectly emulates the execution for the internal Ṽnpe, and eventually
outputs whatever the latter outputs. Then, by the ZK property of the original protocol, the output
of S Ṽ is computationally indistinguishable with Ṽ’s output in the real execution with P(x,w),
which, as we just argued, is identical to Ṽnpe’s output from the real execution with Pnpe(x,w). Also
notice that Snpe is defined to output whatever S Ṽ outputs. Therefore, the final output of Snpe is
computationally indistinguishable with Ṽnpe’s output from the real execution with Pnpe(x,w).

This completes the proof of Lem. 7.

6 Impossibility of Constant-Round Black-Box Quantum Zero-Knowledge

In this section, we prove the following Thm. 2.
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Theorem 2. For a language L, if there exists a constant-round black-box quantum zero-knowledge
argument (as per Def. 3), then it holds that L ∈ BQP.

It follows from Lem. 7 that to prove Thm. 2, it suffices to establish the following Thm. 3. The
rest of this section is devoted to proving Thm. 3.

Theorem 3. For a language L, if there exists a constant-round black-box quantum zero-knowledge
argument in the non-programmable EPR model (as per Def. 4) with prover’s messages being classical,
then it holds that L ∈ BQP.

Proof Structure. At a high level, our proof for Thm. 3 follows the paradigm established in
[BL02, CCLY21]. Given a fixed language L, we begin by assuming the existence of a constant-
round BBQZK protocol 〈P ,V〉 in the non-programmable EPR model, where the prover’s messages
are classical. We then proceed to construct a malicious verifier Ṽ, who behaves identically to the
honest V except for the fact that Ṽ aborts at each round with a carefully chosen probability of 1−ε.
To elaborate further, Ṽ employs a random oracle Hε that outputs 1 with probability ε; at each
round, Ṽ continues the execution only if Hε outputs 1 on input the prover’s messages Ṽ received
thus far.

Since the protocol 〈P ,V〉 is zero-knowledge, there must exist a black-box simulator S that,
when given oracle access to Ṽ, is able to simulate the output of Ṽ in the real execution. We then
demonstrate that the execution S Ṽ can be converted into a bounded-error quantum polynomial-
time decider B for the language L, thereby establishing that L ∈ BQP.

We make two important remarks regarding the above procedure:

1. On the Efficiency of Ṽ. Note that the final (QPT) decider B is constructed from S Ṽ . However,
the Ṽ described above is not QPT yet, because the random oracleHε does not have a polynomial-
size description.
We can address this issue in exactly the same manner as [CCLY21]. Specifically, the oracle Hε

can be replaced with a 2q-wise independent hash function, where q is the number of queries
made by the original S Ṽ machine to Hε. It then follows from Lem. 1 that the constructed BQP
decider B will function just as effectively. In the subsequent discussion, we will primarily focus
on the scenario where Ṽ uses Hε. For the replacement of Hε with a 2q-wise independent hash,
we refer to Sec. 10 for more details.

2. On the Expected QPT Running Time of S. Notice that the simulator in Def. 3 runs in
expected QPT time. Consequently, our impossibility results shown in Thm. 2 (and Thm. 3) aim
to rule out expected QPT simulation. However, the above paradigm does not work if S runs
in expected QPT, as it would result in the decider B running in expected QPT, which does not
meet the efficiency requirement (i.e., strictly QPT) for being a valid BQP decider.
Once again, we resolve this issue in the same manner as [CCLY21]. Specifically, we first utilize
the above paradigm to demonstrate the impossibility for strictly QPT simulation only. Then, we
extend this impossibility to expected QPT simulation using the identical argument as presented
in [CCLY21, Section 3.3]. For a formal treatment of this issue, we refer to Sec. 10.

We now proceed to the formal proof of Thm. 3. Given the complexity of this proof and its fulfillment
across several sections, we provide an overview of the contents of the related sections:
– In Sec. 6.1, we define the malicious Ṽ; in Sec. 6.2, we define the BQP decider B. It is important

to note that the Ṽ and B defined so far are subject to the efficiency issues mentioned in Items 1
and 2. However, we will proceed with the proof while ignoring these issues, as they will be
addressed in Sec. 10 as explained above.
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– We next prove that B is indeed a valid BQP decider. This requires us to demonstrate:

• Completeness: On input x ∈ L, B(x) accepts with 1/poly(λ) probability. This is established
in Sec. 6.3.

• Soundness: On input x /∈ L, B(x) accepts with negl(λ) probability. This proof is intricate.
In Sec. 6.4, we complete the proof for soundness assuming the important technical lemma
Lem. 11. Then, we conclude the proof of Lem. 11 in Sec. 7 to 9.

– In Sec. 10, we address the efficiency issues mentioned in Items 1 and 2. This completes the proof
of Thm. 3.

6.1 A Malicious Verifier

We start by considering a language L. For this L, assume that there exists a K-round black-box
quantum zero-knowledge argument 〈P ,V〉 in the non-programmable EPR model as per Def. 4,
where all the prover’s message are classical.

Let us recall that structure of the protocol as defined in Sec. 5.2. The protocol consists 2K
messages

(p1, v1, p2, v2, . . . , pK , vK).

That is, the protocol has K rounds in total. In round k ∈ [K], P sends message pk and V responds
with vk. Since we assumed that the prover’s messages are classical, all the messages (p1, . . . , pk)
are classical strings; but the messages (v1, . . . , vK) could be quantum. W.l.o.g., we assume that all
these massages are of the same length ℓ(λ), which is a polynomial in λ.

We now proceed to define the particular malicious verifier Ṽ.

6.1.1 Ṽ’s registers

Ṽ starts by initializing the following registers:

|x〉ins|0〉gc|0〉lc|0〉p1 . . . |0〉pK |0〉v1 . . . |0〉vK |0〉m|⊥〉t1 . . . |⊥〉tK |e
(1)
2 , . . . , e

(n)
2 ,0〉w|H〉aux, (6.1)

where the meaning of each register is explained below:

– Register ins stores the statement (or instance) x of language L, which is a common input to
both the verifier and the prover.

– Register gc is called the global counter register and register lc is called the local counter register.
The functionality of these two registers will become clear later when we describe the behavior
of Ṽ in Sec. 6.1.2.

– Register p1 . . . pK (resp. v1 . . . vK) are to store all the prover’s messages (resp. verifier’s messages).
The exact meaning of these registers will become clear later when we describe the behavior of
Ṽ in Sec. 6.1.2.

– Register m is used to exchange messages between the prover and the verifier. Again, the exact
meaning of m will become clear later when we describe the behavior of Ṽ in Sec. 6.1.2.

– Register t1 . . . tk will be used when the verifier decides to abort in a particular rounds. See
Sec. 6.1.2 for how these registers are used.
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– Register w is Ṽ’s working space. It contains suffices 0 states that will be used as ancilla qubits
during the computation. Also, recall that we are in the non-programmable EPR model, which
means that the verifier gets the second halves of n EPR pairs (e

(1)
2 , . . . , e

(n)
2 ). We choose to put

then in the w register as well. We remark that the subsequent proof does not need to refer to
these EPR shares explicitly.

– Register aux stores the truth table of a function H :M≤K → {0, 1}, where M = {0, 1}ℓ (note
that each pk is a classical string of length ℓ). This H comes from certain distributions that we
will specify later in our proof. Here, we remark that this H is the only inefficient part of Ṽ, and
we will eventually replace it with a 2q-wise independent hash function as mentioned in Item 1.

6.1.2 Ṽ ’s Unitary.

In this part, we define the malicious verifier Ṽ by specifying her unitary Ṽ . We present Ṽ in two
equivalent manners. The first description (shown in Algo. 6.1) is formulated to help the reader
understand the behavior of Ṽ at the operational level. However, it is initially unclear whether the
description in Algo. 6.1 can be implemented as a unitary circuit. Particularly, the Ṽ in Algo. 6.1,
at first glance, appears to utilize controlled gates on the function H. This poses a problem because
in later parts of the proof, we need to regard H as a quantum oracle. (It is not known whether one
can implement controlled gates on H in the model where H is provided as an oracle.)

Therefore, in Algo. 6.2, we provide a functionally equivalent description of Algo. 6.1. It is evident
from Algo. 6.2 that the Ṽ defined in Algo. 6.1 can indeed be implemented as a unitary that utilizes
H as a quantum oracle, without the need for any controlled gates on it.

In subsequent parts of the proofs, we primarily utilize Algo. 6.1 as it illustrates the operational
meaning more effectively. However, we may also reference Algo. 6.2 in certain instances where it
aids in clarifying matters (e.g., in the proof of Lem. 14 and the proof of lem. 10).

Operationally Clear Description. We start by defining two unitaries that works on the global
counter and local counter registers defined above.

Note that both gc and lc registers are initialized to 0. We set C = 2λ,15 and define the unitary
Ugc as the following mapping

Ugc : |i〉gc 7→ |i+ 1 mod C〉gc.

We also define the unitary to increase the local counter Ulc as follows:

Ulc : |i〉lc 7→ |i+ 1 mod (K + 1)〉lc.

We remark that modulus (k + 1) is good enough for us, because we will show later that the value
of the local counter will stay in the set {0} ∪ [K].

With the above notation in hand, we now describe Ṽ’s unitary Ṽ in Algo. 6.1.

Algorithm 6.1: Unitary Ṽ for the Malicious Verifier Ṽ

Helper Unitaries. Before we described Ṽ , we first define some helper unitaries. For each k ∈ [K]:
– Ak: swap pk and m. This unitary swaps the contents of pk and m.
– Bk: apply V ’s unitary. This unitary perform the following operation in superpositiona:

15 We remark that it suffices to set C to any super-polynomial function on λ. We choose 2λ only for concreteness.
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• If H(p1, . . . , pk) = 1, then apply the honest verifier’s unitary V to generate message vk.
We remark that the generated vk is now stored in register vk.
• If H(p1, . . . , pk) = 0, then do nothing;

– Ck: deliver vk. This unitary perform the following operation in superposition:
• If H(p1, . . . , pk) = 1, then swap the contents of registers m and vk.
• If H(p1, . . . , pk) = 0, then swap the contents of registers m and tk.

– C ′k: swap m and tk. This unitary is the swap operator between registers m and tk.
– Dk: increase local counter. This unitary perform the following operation in superposition:
• If H(p1, . . . , pk) = 1, then apply the unitary Ulc to increase the local counter by 1.
• If H(p1, . . . , pk) = 0, then do nothing.

Ṽ’s Unitary Ṽ . On each query, it compares the global counter value k with the local counter
value j and behaves accordingly. In particular:

Case k = j: It first applies the unitary Ugc to increase the global counter by 1, and then behaves
according to the (increased) global counter value k + 1. In particular:
– If k + 1 ∈ [K], then it applies Dk+1Ck+1Bk+1Ak+1 as defined above.
– Otherwise (i.e., k + 1 /∈ [K]), it does nothing (i.e., applies the identity operator).

Case (k 6= j): It first applies the unitary Ugc to increase the global counter by 1, and then behaves
according to the (increased) global counter value k + 1. In particular:
– If k + 1 ∈ [K], then it applies C ′k+1Ak+1 as defined above.
– Otherwise (i.e., k + 1 /∈ [K]), it does nothing (i.e., applies the identity operator).

Ṽ’s Output: It output all the registers. Notation-wise, we write the final output as
(
p =

(p1, . . . , pK), ρ
)
, where p1, . . . , pK is the contents in register p1 . . . pK and ρ is the state over the

remaining registers at halt.
a Henceforth, when we refer to (p1, . . . , pk), we mean the values stored in registers p1 . . . pk.

Notation. We will make use of the following notations. We write ṼH to refer to the malicious
verifier Ṽ when the function in register aux is instantiated by H (see Expression (6.1)). We use
〈P(w), ṼH〉(x) to denote the execution of the protocol between ṼH and the honest prover P, where
the comment input is x and the honest prover holds a witness w as its private input. We use
(p, ρ)← OUTṼ〈P(w), Ṽ

H〉(x) to denote the final output of Ṽ.

Remark 8 (Omitting EPR Shares). Notice that we are currently in the non-programmable EPR
model, and thus P (resp. Ṽ) also takes the EPR shares (e

(1)
1 , . . . , e

(n)
1 ) (resp. (e(1)2 , . . . , e

(n)
2 )) as a

part of its input. Henceforth, we omit these EPR pairs in our notation for succinctness, e.g., in
〈P(w), ṼH〉(x). This is fine because our proof never needs to explicitly refer to these EPR shares.
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On Implementing Ṽ as an Unitary. As discussed at the beginning of Sec. 6.1.2 , we now
show in Algo. 6.2 that the Ṽ defined in Algo. 6.1 can indeed be implemented as a unitary with
quantum-oracle access to H.

Algorithm 6.2: Unitary Implementation of Ṽ

At each round k ∈ [K], it behaves in the following three steps:

Step 1: It applies Ugc to increase the global counter from k − 1 to k. (Recall that right before
round k starts, the global counter is k − 1.)

Step 2: It behaves according to the current (i.e., already increased) global counter value k:
1. If k ∈ [K], then it applies the unitary Ak as defined in Algo. 6.1;
2. Otherwise (i.e., k /∈ [K]), it does not do anything (i.e., it applies the identity operator).

Step 3: It queries the (quantum) oracle H to learn the value H(p1, . . . , pj+1) and store this
value in a temporary register tmp. We note that j is the value of the current local counter and
(p1, . . . , pj+1) are the values stored in registers p1 . . . pj+1. Also note that in later proofs, the local
counter register may contain a superposition of values; that is why we need quantum oracle access
to H.

Step 4: It behaves according to the current (i.e., already increased) global counter value k:
1. If k ∈ [K], then it behaves by comparing the local counter value j with k − 1 (recall again

that k − 1 is the global counter value at the beginning of round k, before the Ugc at the very
beginning is applied):
(a) If (k − 1) = j, then it applies the DkCkBk defined in Algo. 6.1. Note that these operators

make use of the value H(p1, . . . , pk) as the control (qu)bit. But this is exactly the value
stored in register tmp defined in Step 3 (note that in this case j + 1 is exactly k). Thus,
DkCkBk can be implemented using tmp as the control register.

(b) Otherwise (i.e., (k − 1) 6= j), it applies the C ′k defined in Algo. 6.1.
2. Otherwise (i.e., k /∈ [K]), it does not do anything (i.e., it applies the identity operator)

The equivalence between Algo. 6.1 and Algo. 6.2 can be easily seen by comparing their respective
descriptions. Moreover, it is evident from the description of Algo. 6.2 that it can be implemented
as a unitary circuit with quantum oracle access to H — particularly, the query to H is elevated to
Step 3 and is not controlled by any register.

6.1.3 Understanding Ṽ with Two examples
To gain a better understanding of the unitary Ṽ defined in Algo. 6.1, let us consider two examples
where we instantiate the function H differently. We recommend that the reader not skip these
examples, as we will introduce important notations that will be utilized in the subsequent proofs
as well.

The First Example. In this example, consider a function H that always output 1 on all input.
For this such an H, it is not hard to see that the execution 〈P(w), ṼH〉(x) is effectively identical
to the 〈P(w),V〉(x) (i.e., the real protocol between honest prover and verifier)—in each round k,
only the branch corresponding to H(p1, . . . , pk) = 1 would happen; if one track the execution, it
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is easy to see that only the work performed by Bk actually matters (while Ak, Ck, and Dk are
there to deliver messages or maintain the counters), and Bk is nothing but emulating the honest
verifier V (in the H(p1, . . . , pk) = 1 branch). Therefore, the execution in this case is indeed a perfect
emulation of the real 〈P(w),V〉(x). In particular, ṼH ’s final output will be accepted by Acc with
the same probability 1 − negl(λ) as in the honest execution (see the Completeness requirement
in Def. 4).

Let us now turn to the local counter register. In this example, it is also straightforward that the
local counter register will contain the a classical value K at the end of the execution 〈P(w), ṼH〉(x).
This is simply because the local counter will increase by 1 at the end of each round (due to the
unitary Dk), and there are K rounds in total.

Moreover, we also know that the value (p1, . . . , pK) contained in the p part of the final output
of ṼH will be accepted by H. In particular, it holds that H(p) = 1, where 1 is the vector containing
K repetition of value 1 and H is the vector-valued version of H as defined in the following Def. 5.

Definition 5 (Vector-Valued Function). Let M := {0, 1}ℓ. Let H be a function from M≤K
to {0, 1}. Then, we define the vector-version H as follows:

∀p = (p1, . . . , pK) ∈MK , H(p) :=
(
H(p1),H(p1, p2), . . . , H(p1, . . . , pK)

)
.

The above observations for this example can be summarized as follows. For any x ∈ L and any
w ∈ RL(x), it holds that

Pr
[
Pred(ρ) = 1 ∧H(p) = 1 : (p, ρ)← OUTṼ〈P(w), Ṽ

H〉(x)
]

= Pr[Acc(ρ) = 1 : ρ← OUTV〈P(w),V〉(x)]
= 1− negl(λ),

where the Pred(·) is a quantum predicate defined in the following Def. 6.

Definition 6 (Predicate Pred). We define Pred(·) as a quantum predicate over the second part
(i.e., the ρ) in the output of Ṽ. In particular, Pred(ρ) = 1 if and only if the following conditions
hold:

1. Measure the local counter register lc in the computational basis and the measurement outcome
is K. (Recall that the lc register is contained in ρ.)

2. Measure register d in the computational basis and the measurement outcome is 1. (Recall that
the d register is a designated register in w containing the verifier’s final decision qubit (see also
Rmk. 7). It is contained in ρ because w is so.)

The Second Example. A more interesting example is when H is sampled from a family of random
functions that output 1 with probability ε. Formally, we define the following family of functions.

Definition 7 (Family of ε-Random Functions). LetM := {0, 1}ℓ. For a real number ε ∈ [0, 1]
and a positive integer K, let Hε,K be a distribution over Hε,K :M≤K → {0, 1} such that we have

Pr[Hε,K(p1, . . . , pk) = 1] = ε

independently for each (p1, . . . , pk) ∈ M≤K . (In the sequel, the value K is always fixed to the
number of rounds. Thus, we omit the K from the subscript of Hε,K and simply write is as Hε.)
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Consider a Hε that sampled from the Hε defined in Def. 7. Let us compare the the execu-
tion 〈P(w), ṼHε〉(x) and the honest execution 〈P(w),V〉(x). Due to a similar argument as we did
in the previous example with the all-accepting function H, it is easy to see that the execution
〈P(w), ṼHε〉(x), when conditioned on the fact that Hε(p1, . . . , pk) = 1 for all k ∈ [K], is identical to
the real execution 〈P(w),V〉(x) between the honest parties. In this case (i.e., the conditioned fact
happens), all the observations we made in the first example (regarding the accepting probability,
the local counter, the predicate Pred) remain valid.

On the other hand, it follows from Def. 7 that the event “Hε(p1, . . . , pk) = 1 for all k ∈ [K]”
happen with probability exactly εK over the randomly sampling of Hε.

Therefore, the following holds: For any x ∈ L and any w ∈ RL(x), it holds that

Pr

[
Pred(ρ) = 1 ∧Hε(p) = 1 :

Hε ← Hε
(p, ρ)← OUTṼ〈P(w), Ṽ

Hε〉(x)

]
≥ εK · Pr[Acc(ρ) = 1 : ρ← OUTV〈P(w),V〉(x)]
= εK ·

(
1− negl(λ)

)
= εK − negl(λ), (6.2)

where Hε is the vector-valued version of Hε as defined in Def. 5 and Pred(·) is the quantum predicate
defined in Def. 6.

6.1.4 Interaction between S and Ṽ

Recall from Sec. 5.1 and 5.2 that the simulator S is granted oracle access to Ṽ and Ṽ †. She does
not get to see the internal registers of Ṽ (except for register m). She has a local operator S, and
after each oracle query, her behavior consists of applying S and then measuring a special u register
to determine the type of the next query.

As for notations, for any function H, we use SIMH(x) to refer to the execution of S Ṽ(x)(x)
where the function in Ṽ’s aux register is instantiated by H. (Similar as in Rmk. 8, we omit the
EPR shares from our notation.) Also, recall from Sec. 5.1 that the output of the simulator is defined
to be the output of the malicious verifier at the end of simulation. For the particular Ṽ defined in
Algo. 6.1, the output of the simulation can be written as (p, ρ) ← SIMH(x), where (p, ρ) has the
same meaning as defined toward the end of Algo. 6.1.

With the above notations, let us know make three simply but useful claims.

Claim 4. For any x ∈ L, it holds that

Pr

[
Pred(ρ) = 1 ∧Hε(p) = 1 :

Hε ← Hε
(p, ρ)← SIMHε(x)

]
≥ εK

4
− negl(λ).

Proof of Claim 4. This claim simply follows from the ZK property of the protocol and Eq. (6.2).
In more detail,

Pr

[
Pred(ρ) = 1 ∧Hε(p) = 1 :

Hε ← Hε
(p, ρ)← SIMHε(x)

]
≥ Pr

[
Pred(ρ) = 1 ∧Hε(p) = 1 :

Hε ← Hε
(p, ρ)← OUTṼ〈P(w), Ṽ

Hε〉(x)

]
− negl(λ) (6.3)

≥ εK − negl(λ), (6.4)
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where Eq. (6.3) follows from the ZK property of the 〈P ,V〉 protocol, and Inequality (6.4) follows
form Eq. (6.2).

Then, Claim 4 simply follows from Inequality (6.4) and the fact that εK > εK

4 .

Remark 9 (On Tightness of Claim 4). One may wonder why we state Claim 4 with a lower bound of
εK

4 −negl(λ), given that the proof of Claim 4 already achieves a tighter lower bound of εK−negl(λ)
(i.e., Inequality (6.4)). This is because Claim 4 serves two purposes in the later part of our proof:
1. First, Claim 4 will be used when establishing the completeness property of the BQP decider

(in Lem. 8). For this purpose, we can indeed use Claim 4 with the tighter lower bound of
εK − negl(λ).

2. Second, Claim 4 will also be used when extending our impossibility results from strictly QPT
simulation to expected QPT simulation in Sec. 10. For this purpose, the tighter lower bound of
εK − negl(λ) does not suffice, and we have to use the bound of εK

4 − negl(λ).

Therefore, we choose to state Claim 4 with the lower bound of εK

4 − negl(λ).

Claim 5 (Classical Global Counter). For any function H, throughout the execution of SIMH(x),
the global counter register will always contain a classical value.

Proof of Claim 5. Note that S can only modify the content in the global counter register through
invoking her oracle Ṽ or Ṽ †. Then, Claim 5 can be easily seen from the definition of Ṽ in Algo. 6.1—
every invocation of Ṽ (resp. Ṽ †) will trigger Ugc (resp. U †gc) exactly once, increasing (resp. de-
creasing) the global counter by 1. Thus, the global counter will always contain a classical value,
decoherent from other registers.

This completes the proof of Claim 5.

Claim 6. For any function H, the execution SIMH(x) can be seen as an oracle-aided algorithm
where H plays the role of the oracle. If the simulator S makes q quieres to her oracle Ṽ and Ṽ † in
total, then the oracle H will be queries at most 2Kq times.

Proof of Claim 6. First, note that SIMH(x) can indeed be seen as an oracle-aided algorithm where
H plays the role of the oracle. This follows from the description of Ṽ, who only makes use of the
I/O behavior of H.

As for the number of queries, it suffices to show that each query of S (to her oracle Ṽ or Ṽ †)
will invoke at most 2K queries to H. This is true by definition of Ṽ Algo. 6.1: From the descritpion
there, unitaries Bk, Ck, and Dk all makes H queries. However, we remark that this can be done by
query the H once and store the output of H in a seperate register that can be used (as a control
register) by Bk, Ck, and Dk. In the manner, each Ṽ or Ṽ † query only invoke 2 quries to H (note that
we need one more query to uncompute each query to H). Then, Claim 6 follows because 2q ≤ 2Kq
for all positive interger K.

This completes the proof of Claim 6.

Remark 10 (On Tightness of Claim 6). The above proof of Claim 6 indeed establishes a tighter
upper bound on the number of queries — it shows that SIMH can make at most 2q queries to H.
One may wonder why we choose to claim the upper bound as 2Kq in the statement of Claim 6.
Indeed, our Claim 6 can be treated as the analogue of Observation 3 on Page 20 of [CCLY21],
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where the upper bound is 2Kq. We choose to use the same bound because this allows us to reuse
the same parameter settings (and certain calculations) in [CCLY21].

One may also wonder why we can save the multiplicative factor K in this bound while [CCLY21]
cannot in their Observation 3. This is due to a difference in the behavior of the malicious verifier
at the last round. In our case, the malicious verifier Ṽ’s behavior at the last round is syntactically
the same as other rounds. In particular, she only queries H once as we argued in the above proof
of Claim 6 (plus one more query for uncomputing). In contrast, the malicious verifier in [CCLY21]
behaves differently at the last round. Specifically, at the last round, the [CCLY21] verifier will
invoke H for K times to learn H(m1, . . . ,mi) for all i ∈ [K] and check if all these values are 1 (see
the top of Page 20 of [CCLY21]). We remark that our Ṽ does not need to perform such checks at
the last round. This is because (looking ahead) our proof will perform a fine-grained analysis of the
measure-and-reprogram game with respect to SIMH to establish certain properties of the prover’s
messages (p1, . . . , pK), which will effectively achieve the same effect as the checks performed by the
[CCLY21] verifier at the last round.

6.2 BQP Decider

In this section, we define the BQP decider for the language L.
First, let us take a closer look at the execution of SIMH . As we established in Claim 6, SIMH

can be treated as an oracle-aided execution, where H plays the role of the oracle. Our first step
toward constructing the BQP decider B is to put SIMH into the format of a measure-and-reprogram
(MnR) game, as discussed in Sec. 3.2.

MnR Game with ZK Simulator. We first define the MnR game w.r.t. the simulator S and
Ṽ(x) defined in previous sections. This game is simply an instantiation of MnR game defined in
Game 3.1 with the following notation:

1. We treat the execution of the simulator (with oracle access to Ṽ and Ṽ †) as an oracle machine
SIMH that has quantum oracle access to a random function H : X≤K → Y, where X = {0, 1}ℓ
and Y = {0, 1}. Let y = (y1, . . . , yK) ∈ YK .

2. Recall that the output of SIMH is defined to be the output Ṽ at halt, which is splitted as (p, ρ)
(see also Algo. 6.1).

3. Recall from Claim 6 that SIM as an oracle machine makes at most 2Kq queries to H in total.

Since this game will be particularly important for the sequel sections, we choose to present it
in full detail in Game 6.1.

Game 6.1: Measure-and-Reprogram Game SṼ [H,y](x)

It works as follows
1. For each i ∈ [K], uniformly pick (ji, bi) ∈ ([2Kq]×{0, 1})∪{(⊥,⊥)} conditioned on that there

exists at most one i ∈ [K] such that ji = j∗ for all j∗ ∈ [2Kq].
2. Let s denote the number of ji’s in {ji}i∈[K] that are not ⊥. We re-label the indices i for pairs
{(ji, bi)}i∈[K] so that j1 < j2 < . . . < js and js+1 = js+2 = . . . = jK = ⊥.

3. Run the oracle machine SIM(x) with oracle O, which is initialized to be a quantumly-accessible
classical oracle that computes H, and when SIM(x) makes its j-th query, the oracle is simulated
as follows:
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(a) If j = ji for some i ∈ [K], measure this query to obtain pi = (pi,1, . . . , pi,zi) where zi ∈ [K]
is determined by the measurement outcome, and then behaves according to the value bi as
follows:
i. If bi = 0: First reprogram O ← Reprogram(O,pi, yi), and then answer the ji-th query

using the reprogrammed oracle.
ii. If bi = 1: First answer the ji-th query using the oracle before the reprogramming, and

then reprogram O ← Reprogram(O,pi, yi).
(b) Otherwise (i.e., j 6= ji ∀i ∈ [s]), answer the j-th query just using the oracle O without any

measurement or reprogramming.

4. Let (p∗ = (p∗1, . . . , p
∗
K), ρout) be the output of S Ṽ at halt (as per Item 2).

5. For all i ∈ {s+ 1, s+ 2, . . . ,K}, set pi = p∗i where p∗i := (p∗1, . . . , p
∗
i ).

6. Output: The output of this game is defined as follows
– If it holds for all i ∈ [K] that pi is a prefix of pK , then output (pK , ρout);
– Otherwise, output (⊥,⊥).

Decider for BQP. With the above notation in hand, we proceed to define the BQP decider B.
Roughly speaking, B on input x simply runs the MnR game S Ṽ [H,y](x) as defined in Game 6.1 by
setting H to an all-zero function and setting y to an all-1 vector. It accepts (resp. rejects) if the
verifier Ṽ accepts (resp. rejects) at the end of the MnR game.

The formal description of B is presented in Algo. 6.3.

Algorithm 6.3: BQP Decider B(x)

On input a classical string x, machine B(x) works as follows:
1. (Parameter Setting.) Let 1 := (1, . . . , 1) containing K copies of 1. Let M := {0, 1}ℓ and
H0 :M≤K → {0, 1} be the zero-function, i.e., H0(p1, . . . , pi) = 0 for all (p1, . . . , pi) ∈M≤K .

2. (MnR Game with S Ṽ .) Execute (p, ρ) ← S Ṽ [H0,1](x) as per Game 6.1. That is, B(x)
executes Game 6.1 with H := H0 and y := (1, . . . , 1) and denotes the output of this procedure
as (p, ρ).

3. (Output.) It outputs 1 if and only if Pred(ρ) = 1, where Pred(ρ) is the predicate defined in
Def. 6.

Next, we argue that B is a valid BQP decider. Toward that, it suffices to establish the following
Lem. 8 and 9. We present the proof for Lem. 8 in Sec. 6.3. The proof for Lem. 9 is the most
technically involved part of this work. It will be covered in Sec. 6.4 and Sec. 7 to 9.

Lemma 8 (Completeness). For all L ∈ BQP and all x ∈ L∩{0, 1}λ, it holds for the B defined
in Algo. 6.3 that

Pr[B(x) = 1] ≥ 1

8 · (4Kq + 1)2K
− negl(λ),

where q is the number of oracle queries made by the S (to her oracle Ṽ or Ṽ †) during the execution
of S Ṽ [H0,1](x) in Step 2 of B(x) (i.e., Algo. 6.3).
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Lemma 9 (Soundness). For all L ∈ BQP and all x ∈ {0, 1}λ \ L, it holds for the B defined in
Algo. 6.3 that

Pr[B(x) = 1] = negl(λ).

6.3 Proof of Completeness

In this subsection, we prove Lem. 8.
We first set some parameters that will be used in this proof. Recall that q denotes the number

of oracle queries made by the S (to her oracle Ṽ or Ṽ †) during the execution of S Ṽ [H0,1](x) in
Step 2 of B(x) (i.e., Algo. 6.3). For this q, we define

εq :=
1

256K2q2(4Kq + 1)2K
. (6.5)

In the sequel, let ε ≤ εq be an arbitrary noticeable function in λ.

Notation. We first recall some notations that have already been defined previously. They will be
used in the sequel derivation:
– We will make use of the family of ε-random functions Hε defined in Def. 7. Note that this ε is

the particular noticeable ε ≤ εq we fixed above. When a probability is taken over the random
sampling of Hε ← Hε, we will not explicitly include this expression; instead, we simply write
Hε under the “Pr” symbol to indicate the sampling procedure.

– For a function Hε, we will make use of its vector-valued version Hε as defined in Def. 5.

– We will make use of S Ṽ [Hε,1](x), which is the MnR game Game 6.1 instantiated with H := Hε

and y := 1 containing K repetitions of 1’s.
– When we write β in under the “Pr” symbol, it means we sample β from a distribution Dε over
{0, 1}K , where each bit of β takes the value 1 with probability ε independently.

– For a function H, we will make use of the symbol SIMH , which is the execution of S with oracle
access to Ṽ whose random functions is instantiated by H. We treat the S Ṽ as an oracle-aided
machine with H playing the role of the oracle (as explained in Claim 6).

– For x = (x1, . . . , xK) ∈ {0, 1}Kℓ, y = (y1, . . . , yK) ∈ {0, 1}K , and a function H : ({0, 1}ℓ)≤K →
{0, 1}, recall the function Hx,y defined in Lem. 3:

∀i ∈ [K] ∀x′i = (x′1, . . . , x
′
i), Hx,y(x′i) :=

{
yi if x′i = (x1, ..., xi)

H(x′i) otherwise
.

With the above notations in hand, we now establish Lem. 8.
First, notice that

Pr[B(x) = 1] = Pr
[
Pred(ρ) = 1 : (p, ρ)← S Ṽ [H0,1](x)

]
(6.6)

≥ Pr
Hε

[Pred(ρ) = 1 : (p, ρ)← S Ṽ [Hε,1](x)]− 32K2q2ε (6.7)

where Eq. (6.6) follows from the definition and notation in Algo. 6.3, and Inequality (6.7) follows
from Lem. 2 and the fact that in the MnR game, there are 2Kq queries to the oracle H0 (or Hε)
in total (see Claim 6).
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Next, we derive a lower bound for the first term in the RHS of Inequality (6.7):

Pr
Hε

[Pred(ρ) = 1 : (p, ρ)← S Ṽ [Hε,1](x)]

=
∑

p∗∈{0,1}Kℓ∪{⊥}

Pr
Hε

[p = p∗ ∧ Pred(ρ) = 1 : (p, ρ)← S Ṽ [Hε,1](x)] (6.8)

≥ 1

(4Kq + 1)2K
·

∑
p∗∈{0,1}Kℓ∪{⊥}

Pr
Hε

[p = p∗ ∧ Pred(ρ) = 1 : (p, ρ)← SIMHp∗,1
ε (x)] (6.9)

=
ε−K

(4Kq + 1)2K
·

∑
p∗∈{0,1}Kℓ∪{⊥}

Pr
Hε,β

[p = p∗ ∧ Pred(ρ) = 1 ∧ β = 1 : (p, ρ)← SIMHp∗,β
ε (x)]

=
ε−K

(4Kq + 1)2K
·

∑
p∗∈{0,1}Kℓ∪{⊥}

Pr
Hε

[p = p∗ ∧ Pred(ρ) = 1 ∧Hε(p) = 1 : (p, ρ)← SIMHε(x)]

=
ε−K

(4Kq + 1)2K
· Pr
Hε

[Pred(ρ) = 1 ∧Hε(p) = 1 : (p, ρ)← SIMHε(x)] (6.10)

≥ ε−K

(4Kq + 1)2K
·
(
εK

4
− negl(λ)

)
, (6.11)

where Eq. (6.8) follows from the Law of Total Probability, Eq. (6.9) follows from Lem. 3, Eq. (6.10)
follows again from the Law of Total Probability, and Inequality (6.11) follows from Claim 4,

Finally, it holds that

Pr[B(x) = 1] ≥ ε−K

(4Kq + 1)2K
·
(
εK

4
− negl(λ)

)
− 32K2q2ε (6.12)

≥ 1

4 · (4Kq + 1)2K
− negl(λ)− 32K2q2ε

≥ 1

8 · (4Kq + 1)2K
− negl(λ), (6.13)

where Inequality (6.12) follows from Inequalities (6.7) and (6.11), and Inequality (6.13) follows from
our parameter setting that ε ≤ εq with the εq defined in Expression (6.5).

This completes the proof of Lem. 8.

6.4 Proof of Soundness
In this section, we prove Lem. 9.

At a high level, we assume for contradiction that Lem. 9 is false and show how to construct a
malicious prover P̃ breaking the soundness of the original protocol 〈P ,V〉. Toward that, we first
need to make some modifications to the machine B and the MnR game S Ṽ , making use of some
particular properties of the Ṽ we defined earlier. This is covered in Sec. 6.4.1 to 6.4.3. Next, we will
present the malicious prover P̃ and prove that it can indeed break the soundness. This is done in
Sec. 6.4.4.

6.4.1 Cleaning the MnR Game
6.4.1.1 Structure of zi’s
In the sequel, we focus on the MnR game S Ṽ [H0,1](x), which is exactly the game Game 6.1 with
H instantiated by the all-zero function H0 and y instantiated by the vector 1 of K repetition of
value 1.
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Recall that the length zi of the measurement outcome (pi,1, . . . , pi,zi) defined in Step 3 of the
MnR game S Ṽ [H0,1](x) is determined by the measurement. In the following Lem. 10, we show that
the length values zi’s will indeed exhibit a non-decreasing order. This property will be crucial for
the later parts of the proof.

For notational convenience, let us first give a name to S’s query to her oracle Ṽ (or Ṽ †) that
invokes the measurement in Step 3 of the MnR game S Ṽ [H0,1](x).

Definition 8 (Special Queries). During the execution of S Ṽ [H0,1](x), note that the ji-th query
to O must be invoked by S’s query to verifier Ṽ. We call this query of S to Ṽ (which in turn invokes
the ji-th query to O) as the i-th special query and denote it by sq(i).

Lemma 10. For the s defined in Step 2 and {zt}t∈[s] defined in defined in Step 3 of game
S Ṽ [H0,1](x), it holds that16

∀t ∈ [s], zt ≤ max{z1, z2 . . . , zt−1}+ 1. (In particular, z1 = 1 if s ≥ 1.)

Proof. In the following proof, (arbitrarily) fix a t ∈ [s].
Consider the moment of the execution when S is about to make the sq(t) query (i.e., the query

that will invoke the measurement of zt). Let us denote the overall state, at this moment, across all
the registers as ρ. Let us denote z := max{z1, z2, . . . , zt−1}.

At this moment, we know by definition of Game 6.1 that the oracle H0 has been re-programmed
to output 1 for input vectors of length at most z. In particular, if we denote the oracle at this moment
as Ĥ, then it outputs 0 on all vectors (p1, . . . , pz+1) of length z + 1.

Next, we claim that

∀j ∈ {z + 1, z + 2, . . . ,K}, Tr[|j〉〈j|lc ρ] = 0,

where |j〉〈j|lc is the projector that projects register lc to value j. That is, we claim that the lc

register of state ρ does not have any weights on value j ≥ z + 1 (or equivalently, j ≤ z). This is
because:

1. by the definition of Ṽ (see Algo. 6.1), for lc to contain the value z+1 or greater, it is necessary
that there exists some (p1, . . . , pz+1) such that H(p1, . . . , pz+1) = 1;

2. as we just argued, it holds for the current oracle Ĥ that Ĥ(p1, . . . , pz+1) = 0 for all possible
(p1, . . . , pz+1).

Now, let us example how the sq(t) query will be process using the description of Ṽ in Algo. 6.2.
In particular, according to Step 3 of Algo. 6.2, the maximum length of each “branch” in the
super-position query to H is upper bounded by j +1. Thus, the value zt determined by measuring
this super-position will not exceed j + 1 either. It then follows from the above argument that
zt ≤ j + 1 ≤ z + 1, satisfying the requirement of Lem. 10.

Finally, we remark that the above argument implies z1 ≤ 1 as a corner case. On the other hand,
if s ≥ 1, then z1 by definition lies in [K]. Thus, it follows that z1 = 1.

This completes the proof of Lem. 10.

We next show in Corollary 2 a powerful corollary of Lem. 10.
16 In Lem. 10 and its proof, for the corner case t = 1, the max is taken over ∅. We naturally define max(∅) = 0.
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Corollary 2 (of Lem. 10). For the game S Ṽ [H0,1](x), define the following event Ebad

EBad := (s 6= K) ∨ (z1 6= 1) ∨ (z2 6= 2) ∨ . . . ∨ (zK 6= K).

It then follows that

Pr
[
Pred(ρ) = 1 ∧ EBad : (p, ρ)← S Ṽ [H0,1](x)

]
= 0.

Proof of Corollary 2. We first define another “bad” event ẼBad

ẼBad :=
(
max{z1, . . . , zs} < K

)
.

Then, by Lem. 10, it is not hard to see that the event that “ẼBad happens” implies the event that
“EBad happens.”

Therefore, to prove Corollary 2, it suffices to prove the following inequality:

Pr
[
Pred(ρ) = 1 ∧ ẼBad : (p, ρ)← S Ṽ [H0,1](x)

]
= 0 (6.14)

The proof for Inequality (6.14) is very similar to that for Lem. 10. We include it below for the sake
of completeness.

Let z := max{z1, . . . , zs}. If event ẼBad happens, we know that z < K. Now, consider the
moment when the S halts. At this moment, we know by definition of game S Ṽ [H0,1](x) that
the oracle H0 has been re-programmed to output 1 for input vectors of length at most z < K. In
particular, if we denote the oracle at this moment as Ĥ, then it outputs 0 on all vectors (p1, . . . , pK)
of length K.

Next, we claim that
Tr[|K〉〈K|lc ρ] = 0, (6.15)

where |K〉〈K|lc is the projector that projects register lc to value K. That is, we claim that the lc

register of the final state ρ at S’s halt does not have any weights on value K. This is because:

1. by the definition of Ṽ (see Algo. 6.1), for lc to contain the value K, it is necessary that there
exists some (p1, . . . , pK) such that H(p1, . . . , pK) = 1;

2. as we just argued, it holds for the current oracle Ĥ that Ĥ(p1, . . . , pK) = 0 for all possible
(p1, . . . , pK).

In this case, Eq. (6.15) implies that Pred(ρ) = 0 (recall the definition of Pred in Algo. 6.3).
This completes the proof of Corollary 2.

Corollary 2 is powerful in the sense that it allows us to “clean” the game S Ṽ [H0,1](x) in the
following manner: during the execution of S Ṽ [H0,1](x), once the event EBad occurs, we can immedi-
ately abort the execution (possibly prematurely), without reducing the probability of Pred(ρ) = 1.
We formalize this observation as the following Game 6.2 (where we highlight its difference with
S Ṽ [H0,1](x) in red color) and Corollary 3.

Game 6.2: Measure-and-Reprogram Game S̈Ṽ [H0,1](x)

It works as follows
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1. For each i ∈ [K], uniformly pick (ji, bi) ∈ ([2Kq]×{0, 1}) ∪{(⊥,⊥)} conditioned on that there
exists at most one i ∈ [K] such that ji = j∗ for all j∗ ∈ [2Kq].

2. Let s denote the number of ji’s in {ji}i∈[k] that are not ⊥. We re-label the indices i for pairs
{(ji, bi)}i∈[K] so that j1 < j2 < . . . < js and js+1 = js+2 = . . . = jK = ⊥.
We re-label the indices i for pairs {(ji, bi)}i∈[K] so that j1 < j2 < . . . < jK .

3. Run the oracle machine S Ṽ with oracle O, which is initialized to be a quantumly-accessible
classical oracle that computes H0, and when S Ṽ makes its j-th query, the oracle is simulated
as follows:
(a) If j = ji for some i ∈ [K], measure this query to obtain pi = (pi,1, . . . , pi,zi) where zi ∈ [K]

is determined by the measurement outcome. It halts immediately and outputs (⊥,⊥) if
any of the following events happen:
i. zi 6= i, or
ii. pi−1 is not a prefix of pi.
The sq(i) queries are defined in the same manner as in Def. 8.
It then behaves according to the value bi as follows:
i. If bi = 0: First reprogram O ← Reprogram(O,pi, 1), and then answer the ji-th query

using the reprogrammed oracle.
ii. If bi = 1: First answer the ji-th query using the oracle before the reprogramming, and

then reprogram O ← Reprogram(O,pi, 1).
(b) Otherwise (i.e., j 6= ji ∀i ∈ [K]), answer the j-th query just using the oracle O without

any measurement or reprogramming.

4. Let (p∗ = (p∗1, . . . , p
∗
K), ρout) be the output of S Ṽ at halt (as per Item 2).

5. For all i ∈ {s+ 1, s+ 2, . . . ,K}, set pi = p∗i where p∗i := (p∗1, . . . , p
∗
i ).

6. Output: directly output (pK , ρout) The output of this game is defined as follows
– If it holds for all i ∈ [K] that pi is a prefix of pK , then output (pK , ρout);
– Otherwise, output (⊥,⊥).

Corollary 3 (of Corollary 2). For the S̈ Ṽ [H0,1](x) defined in Game 6.2 , it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← S̈ Ṽ [H0,1](x)

]
≥ Pr

[
Pred(ρ) = 1 : (p, ρ)← S Ṽ [H0,1](x)

]
.

Proof of Corollary 3. We prove this corollary by considering the red-color changes in Game 6.2 one
by one.

In Step 1, we simply prevent the value ji from taking the value ⊥. This follows immediately
from Corollary 2—if there exists some ji = ⊥, then it must follow that s 6= K, which is a part of the
EBad defined in Corollary 2. Thus, we can safely ignore this case without reducing the probability
of Pred(ρ) = 1.

The changes made in Steps 2 and 5 are direct consequences of the adjustment made in Step 1.
The introduction of Step 3(a)i can also be elucidated by Corollary 2. Specifically, the occurrence

of the event zi 6= i is encompassed within the definition of EBad outlined in Corollary 2. Conse-
quently, we can safely disregard this scenario without diminishing the probability of Pred(ρ) = 1.
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The inclusion of Step 3(a)ii essentially involves relocating the checks conducted in the original
Step 6 to an earlier stage, specifically within the current Step 3(a)ii.

This finishes the proof of Corollary 3.

Remark 11 (The Type of sq(i) Query). We remark that in Game 6.2, the sq(i) query must be a Ṽ
query (instead of being a Ṽ † query). This follows from a similar argument as we did in the proof of
Lem. 10. In more detail, note that the sq(i) query by definition invokes the measurement of p1 . . . pi
in Game 6.2, if the game is not aborted in Step 3a. If the sq(i) query is invoked by a Ṽ † query,
then by the definition of Ṽ (see Algo. 6.1), both the global counter and the local counter must be
of the same value i right before this query. However, this is simply impossible—using the argument
as we did in the proof of Lem. 10, the lc register has zero weights on value i before the sq(i) query
is processed. Therefore, the sq(i) query must be a Ṽ query.

6.4.1.2 Simplification Assumptions

Henceforth, we make three assumptions regarding the behavior of the simulator S that would
greatly simplify the remaining proof. We first present two assumptions which are easy to state and
validate.
– Assumption 1: When the global counter is |0〉gc,17 S will not make a Ṽ † query.

– Assumption 2: When the global counter is |K〉gc, S will not make a Ṽ query.
We argue that these assumptions will not decrease the probability of Pred(ρ) = 1 for Game 6.2. To
see that, consider that scenario where the S makes a Ṽ † (resp. Ṽ ) query when global counter is
|0〉gc (resp. |K〉gc). By the definition in Algo. 6.1, the effect of this Ṽ † (resp. Ṽ ) query is to apply
the identity operator (i.e., do nothing). Thus, such a query has no effects on the overall states at all
and can be ignored. More accurately, one can define another machine S∗ that behaves identically
to S except that when S tries to make a Ṽ † (resp. Ṽ ) query at |0〉gc (resp. |K〉gc), S∗ does not
do anything and pretend that this query has been answered. The probability of Pred(ρ) = 1 for
Game 6.2 w.r.t. this new S∗ is then identical to that of the original Game 6.2.

Next, we state and validate the third assumption.
– Assumption 3: For each k ∈ {0, 1, . . . ,K − 1}, before the sq(k + 1) query is made, we allow
S to operate directly on registers tz for all z ∈ {k + 1, k + 2, . . . ,K}. Then, for each k ∈ [K],
before the sq(k + 1) query is made, S will not try to make a Ṽ -query when the global counter
is |k〉gc.

We now argue that Assumption 3 will not decrease the probability of Pred(ρ) = 1 for Game 6.2.
Consider the scenario where before the sq(k+1) query is made, S makes a Ṽ when the global counter
is |k〉gc. At this moment, via the same argument as in the proof of Lem. 10 and Corollary 2, we
know that the local counter register does not have any weights on value k + 1. Therefore, the only
effect of this application of Ṽ , according to Algo. 6.1, it to increase the global counter to k + 1,
apply Ak+1, and then apply Ck+1,0. From S’s view point, this is nothing but swapping the registers
tk+1 and m. Moreover, note that after this query, the global counter has been increase to the value
k+1 while the local counter does not increase at all. Therefore, future Ṽ queries (before sq(k+1))
will always been answered by C ′k+1Ak+1 according to the global counter value k+1, until S makes
enough Ṽ † queries to bring the global counter back to value k. Therefore, instead of allowing S
to perform these queries, one can define another machine S∗ that behaves identically to S except
17 Note that due to Claim 5, we do not need to consider the case where the global counter is a superposition.

52



that when S tries to make a Ṽ query at |g〉gc (∀g ∈ {k, k + 1, . . . ,K − 1}) before the sq(k + 1)
query, S∗ dose not make this query; instead it operates directly on register tg+1. The probability
of Pred(ρ) = 1 for Game 6.2 w.r.t. this new S∗ is then identical to that of the original Game 6.2.
This is exactly what we allowed in Assumption 3.

6.4.2 Defining the Real Game

Looking into S Ṽ . Next, we re-state the game S̈ Ṽ [H0,1](x) defined in Game 6.2. This time, we
will look into the execution of S Ṽ and their registers. This is different from previous games where
we always treat S Ṽ as a “black-box” and only focus on how it accesses the oracle H0. We denote
this game as Real(S, Ṽ) and present it in Game 6.3.

It is straightforward that Game 6.3 is identical to Game 6.2 with only cosmetic changes. There-
fore, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← S̈ Ṽ [H0,1](x)

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ)

]
. (6.16)

Game 6.3: Game Real(S, Ṽ)

For each i ∈ [K], uniformly pick (ji, bi) ∈ [2Kq]× {0, 1} conditioned on that there exists at most
one i ∈ [K] such that ji = j∗ for all j∗ ∈ [2Kq]. We re-label the indices i for {(ji, bi)}i∈[K] so that
j1 < j2 < . . . < jK . Initialize H(0)

0 := H0 and p0 = ∅ and run the oracle machine S Ṽ(x) in the
following manner:
For each i ∈ [K]:
– For S’s Queries between sq(i− 1) and sq(i): Answer such queries with Ṽ and Ṽ † accord-

ingly, where Ṽ uses H(i−1)
0 as the oracle. (see below for the definitions of H(i−1)

0 for i ≥ 2.)

– For Query sq(i): Note that by definition (and Rmk. 11), the sq(i) query is a Ṽ -query and
it invokes a measurement over registers p1 . . . pi, resulting in the measurement outcome pi =
(p1, . . . , pi). If pi−1 is not a prefix of pi, the execution halts immediately with output (⊥,⊥).
Otherwise, it defines H(i)

0 := Hpi,1
0 and then behaves according to the value bi:

• If bi = 0, applies Ṽ using H(i)
0 as the oracle.

• If bi = 1, applies Ṽ using H(i−1)
0 as the oracle.

Output: Let (p∗, ρout) be the output of S Ṽ at halt. This game Real(S, Ṽ) outputs (pK , ρout).

6.4.3 Defining the Dummy Game

A Dummy Version of Ṽ. We first define a unitary V̈ , which should be treated as the “dummy
version” of Ṽ’s unitary Ṽ . We present it in Algo. 6.4, highlighting its difference with Ṽ (defined in
Algo. 6.1) in red color.

Algorithm 6.4: Unitary V̈ for a Dummy-Version of Ṽ

Helper Unitaries. We first define additional helper unitaries. For each k ∈ [K]:
– C̈k: swap m and tk. This unitary perform the following operation in superposition:
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• If H(p1, . . . , pk) = 1, then do nothing.
• If H(p1, . . . , pk) = 0, then swap the contents of registers tk and m.

Unitary V̈ . On each query, it compares the global counter value k with the local counter value
j and behaves accordingly. In particular:

Case (k = j): It first applies the unitary Ugc to increase the global counter by 1, and then behaves
according to the (increased) global counter value k + 1. In particular:
– If k+1 ∈ [K], then it applies Dk+1C̈k+1Ak+1, where Ak+1 and Dk+1 is defined in Algo. 6.1

and C̈k+1 is defined above.
– Otherwise (i.e., k + 1 /∈ [K]), it does nothing (i.e., applies the identity operator).

Case (k 6= j): It first applies the unitary Ugc to increase the global counter by 1, and then behaves
according to the (increased) global counter value k + 1. In particular:
– If k + 1 ∈ [K], then it applies C ′k+1Ak+1, where Ak+1 and Ck+1 is defined in Algo. 6.1
– Otherwise (i.e., k + 1 /∈ [K]), it does nothing (i.e., applies the identity operator).

A Dummy MnR Game. We now define another game Dummy(S, Ṽ). This game will essentially
serve as a malicious prover P̃ that could break the soundness of the original ZK protocol, leading to
our desired contradiction. Intuitively, Dummy(S, Ṽ) behaves identical to Real(S, Ṽ) except for that
it answers S’s queries between sq(i − 1) and sq(i) using the dummy version of Ṽ as we defined in
Algo. 6.4. We present the game in Game 6.4 and highlight its difference Real(S, Ṽ) (in Game 6.3)
in red color.

Game 6.4: Game Dummy(S, Ṽ)

For each i ∈ [K], uniformly pick (ji, bi) ∈ [2Kq]× {0, 1} conditioned on that there exists at most
one i ∈ [K] such that ji = j∗ for all j∗ ∈ [2Kq]. We re-label the indices i for {(ji, bi)}i∈[K] so that
j1 < j2 < . . . < jK . Initialize H(0)

0 := H0 and p0 = ∅ and run the oracle machine S Ṽ(x) in the
following manner:
For each i ∈ [K]:
– For S’s Queries between sq(i− 1) and sq(i): Answer such queries with V̈ and V̈ † accord-

ingly, using H(i−1)
0 as the oracle. (Note that V̈ is defined in Algo. 6.4.)

– For Query sq(i): Answered in the same manner as in Game 6.3.

Output: Let (p∗, ρout) be the output of S Ṽ at halt. This game Dummy(S, Ṽ) outputs (pK , ρout).

The following is the most involved lemma. We defer its proof to Sec. 7. In the following, we
show (in Sec. 6.4.4) how to finish the current proof of Lem. 9 assuming that Lem. 11 holds.

Lemma 11. For the Dummy(S, Ṽ) defined in Game 6.4 and the Real(S, Ṽ) defined in Game 6.3,
it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ)

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ)

]
.
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6.4.4 Finishing the Proof of Lem. 9
In this part, we finish the proof of Lem. 9 assuming that Lem. 11 holds.

We start by describing the malicious prover P̃ that we will use to break the soundness of the
original protocol 〈P ,V〉.

Algorithm 6.5: Malicious Prover P̃(x)

On input x, P̃(x) internally emulates Game 6.4 with the help of an external honest verifier V in
the following manner.

Registers: Note that to emulate Game 6.4, P̃ needs to prepare registers as in Expression (6.1).
To do that, P̃ prepares the following registers

|x〉ins|0〉gc|0〉lc|0〉p1 . . . |0〉pK |0〉m|⊥〉t1 . . . |⊥〉tK |H0〉aux (6.17)

Comparing Expression (6.17) with Expression (6.1), one can see that registers v1 . . . vK and w are
missing. As we will explain shortly, these registers can be think of being held by the external
honest verifier V.

Execution: P̃ emulates Game 6.4 in the following manner. For each i ∈ [K],
– For S’s Queries between sq(i − 1) and sq(i): P̃ answers such queries with in exactly the

same manner as Game 6.4. We emphasize that such queries will be answered using the V̈
or V̈ †. Note that V̈ by definition (see Algo. 6.4) will only make use of the registers shown
in Expression (6.17). Therefore, P̃ could emulate them internally, without touching upon the
external honest V’s registers.

– For Query sq(i): P̃ first behaves in the same manner as Game 6.4 until she obtains the
measurement outcome pi = (p1, . . . , pi). Also, same as Game 6.4, if the value pi−1 obtained
earlier is not a prefix of the current pi, P̃ aborts the execution directly.
If the execution has not been aborted so far, the next step in Game 6.4 is to apply the
unitary Ṽ . We emphasize that this is the (only) step that P̃ cannot finish by herself internally,
because the Ṽ operator defined in Algo. 6.1 (in particular, the operator Bi) needs to work on
the external honest V’s registers vi and w. To do that, P̃ simply puts pi in to the m register
and sends it to the external V (note that pi is a classical message). Then, by definition, the
honest V will compute the (possibly quantum) response v2, put it in the m register, and send
m back to P̃. Using this returned m register, P̃ can easily finish the remaining steps in exactly
the same manner as Game 6.4.

Output: We do not define any output for P̃. (In Game 6.4, the ρout part in the output is on the
register w. But this register is held by the external honest V in the current game.)

From the above description, it is easy to see that the view of S in Algo. 6.5 is identical to that
in Game 6.4. Thus, during the execution 〈P̃,V〉(x), the overall state across the joint registers held
by both the malicious P̃ (as defined in Algo. 6.5) and the honest V evolves in exactly the same
manner as in Game 6.4. Therefore, it follows that

Pr
[
Acc(ρ) = 1 : ρ← OUTV〈P̃,V〉(x)

]
≥ Pr

[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ)

]
, (6.18)

where the ‘>’ part in the “≥” sign in Inequality (6.18) is due to the following reason: Note that
the predicate Pred checks if the lc register contains K in addition to the check that the verifier’s
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decision bit is 1 (see Def. 6); however, the LHS in Inequality (6.18) only checks if the verifier’s
decision bit is 1.

Deriving the Final Contradiction. Now, we are ready to finish the proof of Lem. 9. Toward
that, we assume for contradiction that Lem. 9 does not hold. Formally, we assume that there exist
a L ∈ BQP, a x ∈ {0, 1}λ \ L, and a polynomial δ(·) so that for infinitely many λ it holds that

Pr[B(x) = 1] ≥ 1

δ(λ)
. (6.19)

It then follows that

Pr
[
Pred(ρ) = 1 : (p, ρ)← OutV

(
〈P̃,V〉(x)

)]
≥ Pr

[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ)

]
(6.20)

= Pr
[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ)

]
(6.21)

= Pr
[
Pred(ρ) = 1 : (p, ρ)← S̈ Ṽ [H0,1]

]
(6.22)

≥ Pr
[
Pred(ρ) = 1 : (p, ρ)← S Ṽ [H0,1]

]
(6.23)

= Pr[B(x) = 1] (6.24)

≥ 1

δ(λ)
, (6.25)

where Inequality (6.20) follows form Inequality (6.18), Eq. (6.21) follows from Lem. 11, Eq. (6.22)
follows from Eq. (6.16), Inequality (6.23) follows from Corollary 3, Inequality (6.24) follows from
the definition of B(x) (see Algo. 6.3), and Inequality (6.25) follows from Inequality (6.19).

Note that Inequality (6.25) contradicts the soundness of the protocol 〈P ,V〉.

This eventually completes the proof of Lem. 9.

7 Relating the Dummy and Real Games

In this section (and the next two sections), we establish Lem. 11.

7.1 Branch-Wise Equivalence Suffices

We first notice that Game 6.3 can be treated as a sequence of alternating unitaries and measure-
ments. In particular, there are two types of measurements (and (q+K) measurements are made in
total):
1. Type-1: Recall that the simulator S simply alternates between her local unitary S and the

measurement on register u, which determines the type of her next query (i.e., either Ṽ or Ṽ †).
Note that there are q such measurements on u since S makes q queries in total.

2. Type-2: When S makes the sq(i)-th query, it triggers a measurement on registers p1 . . . pi.
Note that there are K such measurements (if the game is not aborted prematurely).

Also, notice that in Game 6.3, the values {(ji, bi)}i∈[K] are sampled at the very beginning and after
that the timing of all the measurements are fixed. It then follows from Lem. 5 that the accepting
probability Pr[Pred(ρ) = 1] w.r.t. Game 6.3 can be equivalently expressed as the summation of

56



all accepting probabilities w.r.t. a “sub-normalized” version of Game 6.3 where all the (q + K)
measurements are replaced with projections. Formally, we defined the “sub-normalized” Game 6.3
(and similarly for Game 6.4) in Game 7.1.

Game 7.1: Sub-Normalized Games Real(S, Ṽ, J, pat) and Real(S, Ṽ, J, pat)

Parameters. Fix J = {(ji, bi)}i∈[K] where each ji ∈ [2Kq], each bi ∈ {0, 1}, and j1 < j2 < . . . <
jK . Also fix a classical string of (q +K) symbols pat = (u1, u2, . . . , uq, p1, p2, . . . , pK) where each
ui ∈ {↑, ↓}, and each pi ∈ {0, 1}ℓ. The following games are parameterized by the fixed (J, pat).

Game Real(S, Ṽ, J, pat). It behaves identically to Game 6.3 except for the following differences:
1. It does not sample the (ji, bi) pairs; instead, it uses the {(ji, bi)}i∈[K] contained in J .
2. When S needs to make the i-th measurement on u (corresponding to Type 1 above), it instead

applies the projector |ui〉〈ui| to u; (Note that the value ui is contained in pat.)
3. When the measurement on registers p1 . . . pi is triggered (corresponding to Type 2 above),

it instead applies the projector |p1, . . . , pi〉〈p1, . . . , pi| registers p1 . . . pi; (Note that the values
p1, . . . , pi are contained in pat.)

Game Dummy(S, Ṽ, J, pat). This is defined in a similar way as the above. Namely, It behaves
identically to Game 6.4 except for the following differences:
1. It does not sample the (ji, bi) pairs; instead, it uses the {(ji, bi)}i∈[K] contained in J .
2. When S needs to make the i-th measurement on u (corresponding to Type 1 above), it instead

applies the projector |ui〉〈ui| to u; (Note that the value ui is contained in pat.)
3. When the measurement on registers p1 . . . pi is triggered (corresponding to Type 2 above),

it instead applies the projector |p1, . . . , pi〉〈p1, . . . , pi| registers p1 . . . pi; (Note that the values
p1, . . . , pi are contained in pat.)

It then follows from Lem. 5 that
Pr
[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ)

]
=

1(
2Kq
K

)
· 2K

·
∑
J,pat

Pr
[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ, J, pat)

]
,

and that
Pr
[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ)

]
=

1(
2Kq
K

)
· 2K

·
∑
J,pat

Pr
[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ, J, pat)

]
,

where the summations are taken over all possible J and pat satisfying the requirements in Game 7.1.
(Note that the multiplicative factor 1/

((
2Kq
K

)
· 2K

)
is to compensate for the fact that the J is fixed

in Game 7.1, instead of being sampled randomly as in the original real Game 6.3 and dummy
Game 6.4.)

Therefore, to prove Lem. 11, it suffices to prove the following Lem. 12.
Lemma 12 (Branch-Wise Equivalence Suffices). For all (J, pat) satisfying the requirements
in Game 7.1, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ, J, pat)

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ, J, pat)

]
.
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The proof of Lem. 12 is involved. In the following Sec. 7.2, we prove Lem. 12 making use of a
technical lemma (i.e., Lem. 13). Then, the later proofs (i.e., Sec. 7.3, Sec. 7.4, Sec. 8, and Sec. 9)
are devoted to establishing Lem. 13.

7.2 Proving Lem. 12: Define Hybrids

Henceforth, we consider a fixed (J, pat) pair satisfying the requirements in Game 7.1. We first define
a sequence of hybrids H(J,pat)

0 ,H
(J,pat)
1 , . . . , H

(J,pat)
K .

Hybrid H
(J,pat)
0 . This is exactly the execution of Real(S, Ṽ, J, pat). Therefore, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← H0

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← Real(S, Ṽ, J, pat)

]
. (7.1)

Hybrid H
(J,pat)
k (k ∈ [K]). This hybrid is identical to H(J,pat)

k−1 , except for the following difference:

– The first query (made by S) that brings the global counter from |k − 1〉gc to |k〉gc (i.e., query
sq(k)) is answered with Ṽ (as in the previous hybrid). However, all subsequent queries that
brings the global counter from |k − 1〉gc to |k〉gc (resp. from |k〉gc to |k − 1〉gc) are answered
with the “dummy” unitary V̈ (resp. V̈ †).

This completes the description of the hybrids.

Intuition. Intuitively, we use these hybrids to replace the Ṽ (and Ṽ †) to its dummy version V̈
(and V̈ †) “one layer by one layer,” where by “layer” we mean the execution that brings the global
counter from some value k to k + 1. Note that such replacement does not affect the special sq(k)
queries, which are always answered by Ṽ across all the hybrids.

To further aid in interpreting these hybrids, we recommend referring to Fig. 2 on Page 69, where
we illustrate these hybrids for the simplified case of K = 2. In more detail,

– Fig. 2a is the real game Real(S, Ṽ, J, pat) where all the ↓ queries (resp. ↑ queries) are answered
by Ṽ (resp. Ṽ †);

– In Fig. 2b (corresponding to H(J,pat)
1 ), all the ↓ queries (resp. ↑ queries) in the first “layer” (i.e.,

the area between the horizontal line for |0〉gc and the horizontal line for |1〉gc) are replaced with
V̈ (resp. V̈ †), except for the sq(1) query, which is still answered by Ṽ .

– In Fig. 2c (corresponding to H(J,pat)
2 ), all the ↓ queries (resp. ↑ queries) in the first two layers

are replaced with V̈ (resp. V̈ †), except for the sq(1) and sq(2) query, which is still answered by
Ṽ .

Note that in this baby case of K = 2, the hybrid H
(J,pat)
2 illustrated by Fig. 2c is the last hybrid,

and obviously, it is exactly the dummy game Dummy(S, Ṽ, J, pat).
From the definition of hybrids (and the intuitive explanation above), it is easy to see that hybrid

H
(J,pat)
K is exactly the execution of Dummy(S, Ṽ, J, pat). Thus, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
K

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← Dummy(S, Ṽ, J, pat)

]
. (7.2)

It then following from Eq. (7.1) and Eq. (7.2) that to prove Lem. 12, it suffices to establish the
following Lem. 13.
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Lemma 13. For all (J, pat) satisfying the requirements in Game 7.1 and all k ∈ [K], it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
k−1

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
k

]
.

Proof Structure of Lem. 13. The remaining part of the proof focuses on establishing Lem. 13.
Its proof is quite intricate and spans several sections: Sec. 7.3, Sec. 7.4, Sec. 8, and Sec. 9. Here is
an overview of what each section covers:
– First, we remark that the hybrids described above is stated in a manner for ease of under-

standing; however, this presentation is not conducive to the mathematical derivations needed
to establish Lem. 13. Therefore, we need to restate these hybrids in a more mathematically
friendly form. To accomplish this, we introduce a lemma characterizing the structure of the
local counter and global counter registers in Sec. 7.3. Armed with this lemma, we proceed to
provide an alternative description of the hybrids in Sec. 7.4. This new description is essentially
equivalent but offers a more suitable framework for the subsequent mathematical analysis.

– Having established the alternative description of the hybrids in Sec. 7.4, we are now prepared
to demonstrate the indistinguishability between adjacent hybrids, as mandated by Lem. 13.
However, given the complexity of this proof, we opt to initially focus on the simplified case of
K = 2, aiming to elucidate the core concept in a more streamlined context. This treatment is
presented in Sec. 8.

– Ultimately, we provide the full proof for the general case (for an arbitrary constant K). This is
elucidated in Sec. 9.

7.3 Prove Lem. 13: Structure of Counters

Intuition. Let us first provide a high-level overview of this part. We assert that within any hybrid
H

(J,pat)
k , throughout its execution, the global counter and local counter will exhibit a nice structure

as defined in the following Lem. 14. Intuitively, Lem. 14 can be interpreted as follows: during the
execution of H(J,pat)

k , the overall state can be expressed as the sum of pure states in superposition,
and within each superposition, the local counter value does not exceed the global counter value.
Furthermore, for the superposition where the p1 . . . pi registers contain precisely the values p1, . . . , pi
(specified in pat), both the global counter and the local counter equal i.

Looking ahead, Lem. 14 bears significance for the subsequent proof for the following reason.
As per Algo. 6.1, the behavior of Ṽ is (partially) dictated by the global and local counters. In
other words, it necessitates comparing these two counters to determine the appropriate unitaries
to employ in Algo. 6.1. Hence, if we aim to monitor the evolution of the overall state throughout
the execution, we must monitor these two counters. It is not immediately evident whether this is
feasible, as the global and local counter registers might be in a complex superposition that defies a
neat mathematical expression.

Now, armed with Lem. 14, we possess a complete and clear understanding of the structure of
these two counters. This structured framework enables us to derive a “finer-grained” description of
the unitaries Ṽ and V̈ simply by examining the global counter, which, as noted in Claim 5, maintains
a classical value throughout the execution. As will become clear later in Sec. 8 and 9, such a
“finer-grained” characterization serves as the linchpin for tracking the overall states throughout the
hybrid executions. This capability, in turn, facilitates the establishment of the indistinguishability
conditions stipulated in Lem. 13.

We next proceed to the formal treatment.
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Lemma 14 (Counter Structure.). For each pair (J, pat) satisfying the requirements in Game 7.1,
each k ∈ [K]∪{0}, each hybrid H(J,pat)

k , let |ϕ(t,i)〉 denote the overall state right after the S’s query
that leads to the global counter’s t-th arrival at value i. Then, the following holds:
1. If this arrival at value i is due to the sq(i) query and the value bi = 1, then the state |ϕ(t,i)〉 can

be written in the following format:

|ϕ(t,i)〉 = |i〉gc|i− 1〉lc|p1, . . . , pi〉p1,...,pi |ρ(t,i)〉. (7.3)

2. In all the other cases (i.e., either this arrival at value i is not caused by the sq(i) query or it is
but bi = 0), the state |ϕ(t,i)〉 can be written in the following format:

|ϕ(t,i)〉 = |i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |ρ(t,i)〉 +

|i〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(t,i)
p′j+1
〉, (7.4)

where the summation over p′j+1 6= pj+1 means to take the summation over p′j+1 ∈ {0, 1}ℓ\{pj+1}.
For ease of understanding, we expand the above succinct expression in Eq. (7.4) as follows:

|ϕ(t,i)〉 =|i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |ρ(t,i)〉 +

|i〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1

∑
p′i ̸=pi

|p′i〉pi |ρ
(t,i)
p′i
〉 +

|i〉gc|i− 2〉lc|p1, . . . , pi−2〉p1,...,pi−2

∑
p′i−1 ̸=pi−1

|p′i−1〉pi−1 |ρ
(t,i)
p′i−1
〉 +

· · ·

|i〉gc|1〉lc|p1〉p1
∑
p′2 ̸=p2

|p′2〉p2 |ρ
(t,i)
p′2
〉 +

|i〉gc|0〉lc
∑
p′1

|p′1〉p1 |ρ
(t,i)
p′1 ̸=p1

〉.

Proof of Lem. 14. We prove this lemma via mathematical induction over the operations performed
by the simulator S. That is, we first prove that the initial state at the very beginning of the MnR
game is of the format shown in Eq. (7.4) (i.e., the Base Case), and then show that each movement
of S will lead to a new state of the same format shown in Eq. (7.3) or Eq. (7.3), depending on
which case between Cases 1 and 2 will happen (i.e., the Induction Step).

In the sequel, we consider a fixed pair (J, pat) and H
(J,pat)
k . We emphasize that the lower-case

“k” denotes the hybrid index. Do not confuse it with the capitalized “K” which denotes the round
complexity of the original 〈P ,V〉.

Base Case. This corresponds to the state at the very beginning of the MnR game. By definition,
the initial sate is of the format |0〉gc|0〉lc|ρ〉. It satisfies the format shown in Eq. (7.4) (by setting
|ρ(0,0)〉 := |ρ〉).

Induction Step. We assume that the lemma is true for the global counter’s t-th arrival at value
i, namely, the current overall state |ϕ(t,i)〉 satisfies the format shown in Lem. 14. We prove that
the simulator’s next query, no matter what this query is, will lead to a new state that satisfies the
format shown in Lem. 14 as well.

Toward that, let us first classify the possible movements of S when the state is |ϕ(t,i)〉.
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– Type 1: after applying the local operator S and measuring register u, S makes the sq(i + 1)
query for some i ∈ [K]. (Recall that when the global counter is i and S is about to make a sq(j)
query, then it must be the sq(i+ 1) query.)

– Type 2: after applying the local operator S and measuring register u, S makes a Ṽ query that
is not the sq(i+ 1) query. (This could happen only if the global counter i ≥ k)

– Type 3: after applying the local operator S and measuring register u, S makes a Ṽ † query. (This
could happen only if the global counter i > k)

– Type 4: after applying the local operator S and measuring register u, S makes a V̈ query. (This
could happen if the global counter i < k.)

– Type 5: after applying the local operator S and measuring register u, S makes a V̈ † query. (This
could happen if the global counter i ≤ k.)

The proof for the above five cases are very similar. In the following, we only show the proofs for
Type 1, Type 2, and Type 3. They are the most representative cases because Type 1 illustrates
why the statement of Lem. 14 contains two separate cases (i.e., Cases 1 and 2), and Type 2 and
Type 3 cover the both the “going-up” ↑-query and the “going-down” ↓-query.

Proof of Type 1: From our induction assumption, we know that right before the sq(i + 1) query,
the state |ϕ(t,i)〉 is of the format shown in either Eq. (7.3) or Eq. (7.4).

Next, we further claim that the state |ϕ(t,i)〉 must be of the format shown in Eq. (7.4) (i.e.,
we know for sure that we are in Case 2). Let us prove this: Assume for contradiction that this is
not the case, then |ϕ(t,i)〉 is of the format shown in Eq. (7.3) and in particular, the local counter
register contains the (classical) value i − 1. Now, since the next query is the sq(i + 1) query, it
will invoke the a measurement on the query made to the oracle H oracle query. Then, from Step
3 in Algo. 6.2, we know that H will be queried on registers p1 . . . pi and thus the measurement
outcome pi+1 is of length exactly zi+1 = i. However, this contradicts the requirement at Step 3a
(or otherwise the game is aborted prematurely at this step) of Game 6.2. Thus, the state |ϕ(t,i)〉
must be of the format shown in Eq. (7.4).

Therefore, the sq(i+ 1) will be handled as follows:
1. Ugc is first applied to increase the global counter from |i〉gc to |i+ 1〉gc.
2. The Ai+1 is applied;
3. The query to H will be made, which invokes the projection on the registers p1 . . . pi to value
|p1, . . . , pi+1〉p1...pi+1 . (Recall that we are currently in the “sub-normalized” game H(J,pat)

k . Thus,
the measurement has been replaced with this projection.) Also, as we just argued, the initial
state |ϕ(t,i)〉 was of the format shown in Eq. (7.4). Thus, all the branches in Eq. (7.4), except
for the first one, will be “killed” by the projector |p1, . . . , pi+1〉p1...pi+1 . Therefore, the resulting
state would be of the following format:

|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |pi+1〉pi+1 |ρ〉. (7.5)

4. Next, the behavior depends on the the local counter value (in superposition) and the value bi+1

specified in pat. In particular:
(a) If bi+1 = 0: the operator Di+1Ci+1Bi+1 (defined in Algo. 6.1) will be applied to Expres-

sion (7.5), resulting in the following state:

Di+1Ci+1Bi+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |pi+1〉pi+1 |ρ〉
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= |i+ 1〉gc|i+ 1〉lc|p1, . . . , pi〉p1,...,pi |pi+1〉pi+1Ci+1,0Bi+1,0|ρ〉 (7.6)
= |i+ 1〉gc|i+ 1〉lc|p1, . . . , pi+1〉p1,...,pi+1 |ρ(z,i+1)〉 (7.7)

where Eq. (7.6) follows from the definition of Di+1, Ci+1, and Bi+1 (see Algo. 6.1), and
Eq. (7.7) follows by defining |ρ(z,i+1)〉 := Ci+1,0Bi+1,0|ρ〉.
Obviously, Eq. (7.7) satisfies the format of Eq. (7.4) with t updated to z and i updated to
i+ 1 (i.e., we assume this is the global counter’s z-th arrival at value i+ 1).

(b) If bi+1 = 1: In this case, first the query will be answered and then the oracle is programmed.
Note that before the oracle is programmed, it must hold that H(p1, . . . , pi+1) = 0. Therefore,
by definition of Ṽ , only the operator Ci+1,0 will be effectively applied, resulting in the
following state:

|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |pi+1〉pi+1Ci+1,0|ρ〉
= |i+ 1〉gc|i〉lc|p1, . . . , pi+1〉p1,...,pi+1 |ρ(z,i+1)〉, (7.8)

where Eq. (7.8) follows by defining |ρ(z,i+1)〉 := Ci+1,0|ρ〉.
Obviously, Eq. (7.8) satisfies the format of Eq. (7.3) with t updated to z and i updated to
i+ 1 (i.e., we assume this is the global counter’s z-th arrival at value i+ 1).

This finishes the proof of Type 1.

Proof of Type 2: From our induction assumption, we know that right before the sq(i + 1) query,
the state |ϕ(t,i)〉 is of the format shown in either Eq. (7.3) or Eq. (7.4).

Next, we further claim that the state |ϕ(t,i)〉 must be of the format shown in Eq. (7.4) (i.e., we
know for sure that we are in Case 2). Let us prove this: Assume for contradiction that this is not
the case, then the last query is exactly the sq(i) query. At this moment, the sq(i+1) query has not
been made. Then, it follows from Assumption 3 that the next query is not a Ṽ query. However,
this contradicts the fact that this Type 2 is a Ṽ query.

Therefore, in the following, we only need to show the derivation starting from the state |ϕ(t,i)〉
shown in Eq. (7.4).

In this type, S first applies the local operator S. Then, she measures the u register. Recall
that we are in the “sub-normalized” game H(J,pat)

k , and thus this measurement is replaced with a
projector |↓〉〈↓|u (it must be a ↓ because in this case the coming query is Ṽ ). Finally, S makes a Ṽ
query. Notation-wise, we assume this leads to the global counter’s z-th arrival at value i+ 1.

In summary, the state |ϕ(t,i)〉 evolves as follows

|ϕ(z,i+1)〉 = Ṽ |↓〉〈↓|u S|ϕ
(t,i)〉

= Ṽ |↓〉〈↓|u S
(
|i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |ρ(t,i)〉 +

|i〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(t,i)
p′j+1
〉
)

(7.9)

= Ṽ

(
|i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |↓〉〈↓|u S|ρ

(t,i)〉 +

|i〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |↓〉〈↓|u S|ρ
(t,i)
p′j+1
〉
)

(7.10)
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= Di+1Ci+1Bi+1Ai+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |↓〉〈↓|u S|ρ
(t,i)〉 +

C ′i+1Ai+1|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |↓〉〈↓|u S|ρ
(t,i)
p′j+1
〉 (7.11)

= Di+1Ci+1Bi+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,piAi+1 |↓〉〈↓|u S|ρ
(t,i)〉 +

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1C
′
i+1Ai+1 |↓〉〈↓|u S|ρ

(t,i)
p′j+1
〉 (7.12)

= Di+1Ci+1Bi+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi
∑

p′i+1∈{0,1}ℓ
|p′i+1〉pi+1 |ρ

(t,i)
p′i+1
〉 +

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1C
′
i+1Ai+1 |↓〉〈↓|u S|ρ

(t,i)
p′j+1
〉 (7.13)

= Di+1Ci+1Bi+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi
(
|pi+1〉pi+1 |ρ(t,i)pi+1

〉 +∑
p′i+1 ̸=pi+1

|p′i+1〉pi+1 |ρ
(t,i)
p′i+1
〉
)

+

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1C
′
i+1Ai+1 |↓〉〈↓|u S|ρ

(t,i)
p′j+1
〉

= Di+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi
(
|pi+1〉pi+1Ci+1,1Bi+1,1|ρ(t,i)pi+1

〉 +∑
p′i+1 ̸=pi+1

|p′i+1〉pi+1Ci+1,0Bi+1,0|ρ(t,i)p′i+1
〉
)

+

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1C
′
i+1Ai+1 |↓〉〈↓|u S|ρ

(t,i)
p′j+1
〉 (7.14)

= Di+1|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi
(
|pi+1〉pi+1 |ρ(z,i+1)〉 +∑

p′i+1 ̸=pi+1

|p′i+1〉pi+1 |ρ
(z,i+1)
p′i+1

〉
)

+

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(z,i+1)
p′j+1

〉 (7.15)

= |i+ 1〉gc|i+ 1〉lc|p1, . . . , pi〉p1,...,pi |pi+1〉pi+1 |ρ(z,i+1)〉 +

|i+ 1〉gc|i〉lc|p1, . . . , pi〉p1,...,pi
∑

p′i+1 ̸=pi+1

|p′i+1〉pi+1 |ρ
(z,i+1)
p′i+1

〉 +

|i+ 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(z,i+1)
p′j+1

〉 (7.16)

= |i+ 1〉gc|i+ 1〉lc|p1, . . . , pi+1〉p1,...,pi+1 |ρ(z,i+1)〉 +
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|i+ 1〉gc
i∑

j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(z,i+1)
p′j+1

〉, (7.17)

where
– Eq. (7.9) follows from our induction assumption that the starting state |ϕ(t,i)〉 is as shown in

Eq. (7.4).
– Eq. (7.10) follows from the fact that |↓〉〈↓|u S does not operate on the gc, lc, and p1 . . . pi

registers.
– Eq. (7.11) follows from the definition of Ṽ (see Algo. 6.1).
– Eq. (7.12) follows from the fact that C ′i+1 and Ai+1 do not act on registers p1 . . . pi.
– Eq. (7.13) follows by expanding the pi+1 register under the computational basis for the state:

Ai+1 |↓〉〈↓|u S|ρ
(t,i)〉 =

∑
p′i+1∈{0,1}ℓ

|p′i+1〉pi+1 |ρ
(t,i)
p′i+1
〉.

– Eq. (7.14) follows from the following definitions:
• Define Ci+1,1 andBi+1,1 as the parts of Ci+1 andBi+1 (see Algo. 6.1) w.r.t. to theH(p1, . . . , pi+1) =
1 branch, and define Ci+1,0 and Bi+1,0 as the parts of Ci+1 and Bi+1 (see Algo. 6.1) w.r.t.
the H(p1, . . . , pi+1) = 0 branch. (Therefore, none of Ci+1,1, Ci+1,0, Bi+1,1, or Bi+1,0 act on
registers p1 . . . pi+1.)

– Eq. (7.15) follows by defining

|ρ(z,i+1)〉 := Ci+1,1Bi+1,1|ρ(t,i)pi+1
〉

|ρ(z,i+1)
p′i+1

〉 := Ci+1,0Bi+1,0|ρ(t,i)p′i+1
〉
(
∀p′i+1 6= pi+1

)
|ρ(z,i+1)
p′j+1

〉 := C ′i+1Ai+1 |↓〉〈↓|u S|ρ
(t,i)
p′j+1
〉
(
∀j ∈ {0, 1, . . . , i− 1}, ∀p′j+1 6= pj+1

)
.

– Eq. (7.16) follows by the definition of Di+1 (see Algo. 6.1).
Obviously, Eq. (7.17) satisfies the format of Eq. (7.4) with t updated to z and i updated to i+ 1.
This finishes the proof of Type 2.

Proof of Type 3: From our induction assumption, we know that right before the sq(i + 1) query,
the state |ϕ(t,i)〉 is of the format shown in either Eq. (7.3) or Eq. (7.4).

In the following, we show the derivation assuming the starting state |ϕ(t,i)〉 is of the Eq. (7.4)
format, because the other case (i.e., |ϕ(t,i)〉 is of the Eq. (7.3) format) can be established using the
same derivation.

In this type, S first applies the local operator S. Then, she measures the u register. Recall
that we are in the “sub-normalized” game H(J,pat)

k , and thus this measurement is replaced with a
projector |↑〉〈↑|u (it must be a ↑ because in this case the coming query is Ṽ †). Finally, S makes a
Ṽ † query. Notation-wise, we assume this leads to the global counter’s z-th arrival at value i− 1.

In summary, the state |ϕ(t,i)〉 evolves as follows

|ϕ(z,i−1)〉 = Ṽ † |↑〉〈↑|u S|ϕ
(t,i)〉

= Ṽ † |↑〉〈↑|u S
(
|i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |ρ(t,i)〉 +
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|i〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(t,i)
p′j+1
〉
)

(7.18)

= Ṽ †
(
|i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |↑〉〈↑|u S|ρ

(t,i)〉 +

|i〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |↑〉〈↑|u S|ρ
(t,i)
p′j+1
〉
)

(7.19)

= U †gcA
†
iB
†
iC
†
iD
†
i |i〉gc|i〉lc|p1, . . . , pi〉p1,...,pi |↑〉〈↑|u S|ρ

(t,i)〉 +

U †gcA
†
iC
′†
i |i〉gc

i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |↑〉〈↑|u S|ρ
(t,i)
p′j+1
〉 (7.20)

= |i− 1〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1A
†
i |pi〉piB

†
i,1C

†
i,1 |↑〉〈↑|u S|ρ

(t,i)〉 +

|i− 1〉gc
i−1∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

A†i |p
′
j+1〉pj+1C

′†
i |↑〉〈↑|u S|ρ

(t,i)
p′j+1
〉 (7.21)

= |i− 1〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1A
†
i |pi〉piB

†
i,1C

†
i,1 |↑〉〈↑|u S|ρ

(t,i)〉 +

|i− 1〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1

∑
p′i ̸=pi

A†i |p
′
i〉piC

′†
i |↑〉〈↑|u S|ρ

(t,i)
p′i
〉

|i− 1〉gc
i−2∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1A
†
iC
′†
i |↑〉〈↑|u S|ρ

(t,i)
p′j+1
〉 (7.22)

= |i− 1〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1 |ρ(z,i−1)〉 +

|i− 1〉gc
i−2∑
j=0

|j〉lc|p1, . . . , pj〉p1,...,pj
∑

p′j+1 ̸=pj+1

|p′j+1〉pj+1 |ρ
(z,i−1)
p′j+1

〉, (7.23)

where
– Eq. (7.18) follows from our induction assumption that the starting state |ϕ(t,i)〉 is as shown in

Eq. (7.4).
– Eq. (7.19) follows from the fact that |↑〉〈↑|u S does not operate on the gc, lc, and p1 . . . pi

registers.
– Eq. (7.20) follows from the definition of Ṽ (see Algo. 6.1).
– Eq. (7.21) follows from the definition of Di and Ugc (see Algo. 6.1), the fact that Ai does not

act on registers p1 . . . pi−1, the fact that C ′i does not act on registers p1 . . . pi, and the following
definitions.
• Define Ci,1 andBi,1 as the part of Ci andBi (see Algo. 6.1) corresponding to theH(p1, . . . , pi) =

1 branch (and thus Ci,1 and Bi,1 do not act on registers p1 . . . pi).
– Eq. (7.22) follows by isolating the (j = i − 1) term and that Ai does not act on registers

p1 . . . pi−1.
– Eq. (7.23) follows by defining

|ρ(z,i−1)〉 := A†i |pi〉piB
†
i,1C

†
i,1 |↑〉〈↑|u S|ρ

(t,i)〉+
∑
p′i ̸=pi

A†i |p
′
i〉piC

′†
i |↑〉〈↑|u S|ρ

(t,i)
p′i
〉

65



|ρ(z,i−1)
p′j+1

〉 := A†iC
′†
i |↑〉〈↑|u S|ρ

(t,i)
p′j+1
〉
(
∀j ∈ {0, 1, . . . , i− 2}, ∀p′j+1 6= pj+1

)
.

Obviously, Eq. (7.23) satisfies the format of Eq. (7.4) with t updated to z and i updated to i− 1.
This finishes the proof of Type 3.

This finishes the proof of Lem. 14.

7.4 Prove Lem. 13: Re-Stating the Hybrids

As explained at the beginning of Sec. 7.3, we now introduce an alternative characterization of the
hybrids. This perspective will prove valuable for the forthcoming mathematical derivations in Sec. 8
and 9.

Formally, we first define some auxiliary unitaries in Algo. 7.1. Subsequently, we present the new
description for the hybrids in Game 7.2. Finally, in Corollary 4, we demonstrate the equivalence of
this new description to the original one introduced in Sec. 7.2.

For a fixed (J, pat), recall that pat contain a fix sequence p = (p1, . . . , pK). For such a fixed p, we
re-define (in Algo. 7.1) the unitaries {(Ak, Bk, Ck, Dk)}k∈[K] that depend on this p. We emphasize
that these unitaries were originally defined in Algo. 6.1. Now, we re-load them w.r.t. a fix p.
(Technically, we should have include p in the superscript, such as Ap

k , to indicate the dependence
on p. But we choose to omit it for succinct notation.)

Algorithm 7.1: Re-Define Verifier’s Unitaries for Fixed (p1, . . . , pK)

For the p = (p1, . . . , pK) contained in (J, pat), we keep the Ugc, Ulc, and Ak the same as in
Algo. 6.1, but we re-define the unitaries Bk, Ck, C̈k, and Dk (∀k ∈ [K]) as follows:
1. Let Bk = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗Bk,1+

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉〈p′1, . . . , p′k|p1...pk ⊗
I. Note that Bk,1 is exactly the honest verifier’s unitary V to generate message vk (see
Algo. 6.1), which acts non-trivially only on vk and w, and works as identity on other reg-
isters.

2. Let Ck = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗Ck,1+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉〈p′1, . . . , p′k|p1...pk ⊗
Ck,0. Note that Ck,1 is the swap operator between registers m and vk, and Ck,0 is the swap
operator between registers m and tk.

3. Let C̈k = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk⊗I+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉〈p′1, . . . , p′k|p1...pk⊗Ck,0.
(Recall the definition of Ck,0 from Item 2.)

4. Let Dk = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk⊗Dk,1+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉〈p′1, . . . , p′k|p1...pk⊗
I. Note that Dk,1 is the local-counter increasing unitary Ulc, which acts non-trivially only on
lc.

It will be beneficial to monitor the registers on which the unitaries (in Algo. 7.1) have non-trivial
effects. For the reader’s ease, we summarize this in Table 1. For a unitary listed in the table, it
operates as the identity on registers not indicated in its row.

Next, we re-state the hybrids {H(J,pat)
k }k∈[K]∪{0} in Game 7.2 and prove in Corollary 4 that

they are indeed equivalent to the original version defined in Sec. 7.2.

Game 7.2: Re-Define the Hybrids {H(J,pat)
k }k∈[K]∪{0}

Parameters. Use the same (J, pat) as defined Game 7.1. Use the unitaries defined in Algo. 7.1. We
emphasize that this game inherits the “sub-normalized” nature of Game 7.1 for the fixed (J, pat)
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Table 1: Registers on which the unitaries acts non-trivially

Unitary
operators

Non-trivial
registers

Unitary
operators

Non-trivial
registers

Ak pk, m C̈k p1 . . . pk, tk, m
Bk p1 . . . pk, vk, w Dk p1 . . . pk, lc
Bk,1 vk, w Dk,1 lc

Ck p1 . . . pk, vk, tk, m Ugc gc

Ck,1 vk, m S m, u, s
Ck,0 tk, m

(this was already there in its original version defined in Sec. 7.2), where all the measurements are
replaced with projectors to the corresponding value contained in pat.

Hybrid H
(J,pat)
k (k ∈ [K] ∪ {0}). The hybrid behaves as follows for all i ∈ [K]:

1. When S makes the sq(i) Query: Note that by definition, this is the first ↓-query that
brings the global counter from |i− 1〉gc to |i〉gc. The hybrid behaves according to the value bi
contained in J :
– If bi = 0: answers this query by applying the following operator the overall state:

DiCiBi |p1, . . . , pi〉〈p1, . . . , pi|p1...pi AiUgc,

where recall that the values p1, . . . , pi are specified in pat.
– If bi = 1: answers this query by applying the following operator the overall state:

Ci,0 |p1, . . . , pi〉〈p1, . . . , pi|p1...pi AiUgc,

where recall that the values p1, . . . , pi are specified in pat.
2. When S makes a qeury between the sq(j − 1) and sq(j) queries: it behaves based on

the query type and the value of the global counter value z ∈ [K] ∪ {0}:
(a) For ↓-query and z < k: This corresponds to a V̈ -query bringing the global counter from
|z〉gc to |z+1〉gc. The hybrid answers it by applying Dz+1C̈z+1Az+1Ugc to the overall state.

(b) For ↓-query and z ≥ k: This corresponds to a Ṽ -query bringing the global counter from
|z〉gc to |z+1〉gc. The hybrid answers it by applying Dz+1Cz+1Bz+1Az+1Ugc to the overall
state.

(c) For ↑-query and z ≤ k: This corresponds to a V̈ †-query bringing the global counter from
|z〉gc to |z − 1〉gc. The hybrid answers it by applying U †gcA†zC̈†zD†z to the overall state.

(d) For ↑-query and z > k: This corresponds to a V †-query bringing the global counter from
|z〉gc to |z − 1〉gc. The hybrid answers it by applying U †gcA†zB†zC†zD†z to the overall state.

Corollary 4 (of Lem. 14). The hybrids {H(J,pat)
k }k∈[K]∪{0} defined in Game 7.2 are equivalent

to those defined in Sec. 7.2.

Proof of Corollary 4. In the following, consider a fixed pair (J, pat) and hybrid H
(J,pat)
k .
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The main idea of this proof as follows. First, note that the originalH(J,pat)
k (in Sec. 7.2) makes use

of the Ṽ and V̈ , which by definition determine what to do by comparing the global counter and the
local counter (see Algo. 6.1 and 6.4). On the other hand, Lem. 14 provides a full characterization of
the relation among the global counter, the local counters, and the p1 . . . pK registers throughout the
execution, which essentially allows the hybrid to determine what to do by checking the (classical)
value contained in the global counter only. This can be easily seen by comparing the original H(J,pat)

k

(in Sec. 7.2) and the one defined in Game 7.2 (together with the re-named unitaries in Algo. 7.1).
In the following, we show why they are equivalent for a representative type of query as an example.
Other types of queries can be argued in the same manner.

A Representative Example. Consider the case when S makes the sq(i) query for some i ∈ [K].
By definition (and Rmk. 11), this is a Ṽ query that brings the global counter from |i−1〉gc to |i〉gc.
This query is handled as follows in the original H(J,pat)

k (in Sec. 7.2) according to the definition of
Ṽ in Algo. 6.2:
1. Ugc is first applied to increase the global counter from |i− 1〉gc to |i〉gc.
2. The Ai is applied;
3. Then the query to H will be made, which invokes the projection on the registers p1 . . . pi to value
|p1, . . . , pi〉p1...pi . (Recall that we are currently in the “sub-normalized” game H(J,pat)

k . Thus, the
measurement on register p1 . . . pi has been replaced with this projection.) It then follows from
Lem. 14 that this projection will retain only the “branch” corresponding to |i− 1〉lc and “kill”
all other branches in the superposition. Thus, the current overall state must be of the following
format

|i〉gc|i− 1〉lc|p1, . . . , pi−1〉p1,...,pi−1 |pi〉pi |ρ〉. (7.24)
4. Next, the behavior depends on the the local counter value (in superposition) and the value bi

specified in pat. In particular:
(a) If bi = 0: In this case, first the oracle will be programmed and then the query will be

answered using the programmed oracle. By definition of Ṽ , the operator DiCiBi (defined in
Algo. 6.1) will be applied to Expression (7.24).

(b) If bi = 1: In this case, first the query will be answered and then the oracle is programmed.
Note that before the oracle is programmed, it must hold that H(p1, . . . , pi) = 0. Therefore,
by definition of Ṽ , only the operator Ci,0 will be effectively applied.

In summary, the above four steps can be unified as
– If bi = 0: apply DiCiBi |p1, . . . , pi〉〈p1, . . . , pi|p1...pi AiUgc.
– If bi = 1: apply Ci,0 |p1, . . . , pi〉〈p1, . . . , pi|p1...pi AiUgc.

This is exactly what happens in Game 7.2.

This completes the proof of Corollary 4.

8 Proving Lem. 13 (Warm-Up Case)

In this section, we prove Lem. 13 for the special case K = 2.
In this setting, there are only three hybrids to consider, namely H(J,pat)

0 , H(J,pat)
1 , and H

(J,pat)
2 .

To provide better intuition, we illustrate them in Fig. 2, with difference between adjacent hybrids
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Fig. 2: Illustration of Hybrids H(J,pat)
0 , H(J,pat)

1 , and H
(J,pat)
2

highlighted in red color. In more detail, Fig. 2 illustrates these three hybrids for some particular
(J, pat):

– In hybrid H
(J,pat)
0 , it can be seen from Fig. 2a that all the ↓-queries are answered using Ṽ and

all the ↑-queries are answered using Ṽ †.

– The hybrid H
(J,pat)
1 shown in Fig. 2b is identical to hybrid H

(J,pat)
0 except that the ↓-queries

that bring the global counter from |0〉gc to |1〉gc (except for the sq(1) query) are answered using
the “dummy-version” unitaryV̈ , and the ↑-queries that bring the global counter from |1〉gc to
|0〉gc are answered using the “dummy-version” unitary V̈ †.

– The hybrid H
(J,pat)
2 shown in Fig. 2c is identical to hybrid H

(J,pat)
1 except that the ↓-queries

that bring the global counter from |1〉gc to |2〉gc (except for the sq(2) query) are answered using
the “dummy-version” unitaryV̈ , and the ↑-queries that bring the global counter from |2〉gc to
|1〉gc are answered using the “dummy-version” unitary V̈ †.
For these hybrids, to prove Lem. 13, it now suffices to establish the following Lem. 15 and 16.

Lemma 15. For all (J, pat) satisfying the requirements in Game 7.1, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
0

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
1

]
.

Lemma 16. For all (J, pat) satisfying the requirements in Game 7.1, it holds that

Pr
[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
1

]
= Pr

[
Pred(ρ) = 1 : (p, ρ)← H

(J,pat)
2

]
.
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In the sequel, we prove these two lemmas in Sec. 8.1 and 8.2 respectively. We emphasize that
in the following, we use the notation established in Sec. 7.4.

8.1 Proving Lem. 15

We present a lemma (Lem. 17) that characterizes how the overall state evolves in H
(J,pat)
0 and

H
(J,pat)
1 . This lemma is the major workhorse that implies Lem. 15. In the sequel, we first show how

to establish Lem. 15 assuming that Lem. 17 holds. After that, we will present the proof of Lem. 17.

Lemma 17 (Invariance in H
(J,pat)
0 and H

(J,pat)
1 ). Assume that during the execution of H(J,pat)

0

(and H(J,pat)
1 ), the global counter reaches value 1 for T times in total. For each t ∈ [T ], there exist

(possibly sub-normalized) pure states {|ρ(t)
p′1
〉}p′1∈{0,1}ℓ so that the following holds: in hybrid H(J,pat)

0

(resp. H(J,pat)
1 ), when the global counter reaches value 1 for the t-th time, the overall state can be

written as |ϕ(t)〉 (resp. |ψ(t)〉) defined as follows

|ϕ(t)〉 = |p1〉p1 |ρ(t)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(t)
p′1
〉, (8.1)

|ψ(t)〉 = |p1〉p1 |ρ(t)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(t)p′1 〉. (8.2)

where the p1 is defined in pat and the unitaries B1,1, C1,0, and C1,1 are as defined in Algo. 7.1.

Finishing the Proof of Lem. 15. Let us consider the last time when the global counter reaches
value 1. By Lem. 17, the overall states in H

(J,pat)
0 and H

(J,pat)
1 would be of the following format

respectively

|ϕ(T )〉 =

Good︷ ︸︸ ︷
|p1〉p1 |ρ(T )p1 〉 +

Bad︷ ︸︸ ︷∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(T )
p′1
〉, (8.3)

|ψ(T )〉 =

Good︷ ︸︸ ︷
|p1〉p1 |ρ(T )p1 〉 +

Bad︷ ︸︸ ︷∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(T )p′1
〉 . (8.4)

Since this is the last time the global counter reaches value 1, the two hybrids H(J,pat)
0 and H

(J,pat)
1

by definition behave identically after that (see Fig. 2). That is, the states |ϕ(T )〉 and |ψ(T )〉 will go
through the same quantum procedure (let us denote it by F) and finally measured by the predicate
Pred.

Next, note that the states |ϕ(T )〉 and |ψ(T )〉 share the identical “branch” corresponding to |p1〉p1
(labeled as Good in the above equations). Also, the Bad branch will not contribute any shares to
the accepting probability of the predicate Pred—this is because the quantum procedure F will not
change the fact that p′1 6= p1 for the Bad branch, and recall that, as a consequence of Lem. 14, Pred
will output 0 if a branch in the superposition does not have any non-zero amplitude for |p1〉p1 .

In summary, only the Good branch matters for the remaining execution (i.e., that after the last
time when the global counter reaches value 1), contributing to the event Pred(ρ) = 1. Therefore,
Lem. 15 holds simply because |ϕ(T )〉 and |ψ(T )〉 share the same Good branch.
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Proving Lem. 17. Now, the only task remaining is to prove Lem. 17. We will demonstrate this
lemma through mathematical induction on the number t ∈ [T ], indicating the time at which the
global counter reaches the value 1. Throughout this proof, we will monitor the evolution of the
overall states in both H

(J,pat)
0 and H

(J,pat)
1 simultaneously. This is done in Sec. 8.1.1 and 8.1.2

respectively.

8.1.1 Base Case (t = 1)

We first derive how the overall state evolves in H
(J,pat)
0 .

This case corresponds to the very first time the global counter reaches 1. By definition, this
is due to the sq(1) query. In more detail, S will first apply her local unitary S, followed by the
projector |↓〉〈↓|u. Next, according to the notation in Game 7.2,

– If b1 = 0, then the operator D1C1B1 |p1〉〈p1|p1 A1Ugc will be applied;

– If b1 = 1, then the operator C1,0 |p1〉〈p1|p1 A1Ugc will be applied;

In the following, we show the proof for b1 = 0 only; the other case (i.e., b1 = 1) can be established
using the same argument.

If we assume that the initial state across all the registers are |ρ〉, then the state |ϕ(1)〉 will be as
follows:

|ϕ(1)〉 = D1C1B1 |p1〉〈p1|p1 A1Ugc |↓〉〈↓|u S|ρ〉
= D1C1B1|p1〉p1 |ρp1〉 (8.5)
= |p1〉p1D1,1C1,1B1,1|ρp1〉 (8.6)
= |p1〉p1 |ρ(1)p1 〉, (8.7)

where

– Eq. (8.5) follows by defining |ρp1〉 := 〈p1|p1A1Ugc |↓〉〈↓|u S|ρ〉;

– Eq. (8.6) follows from the definition of B1 C1, and D1 (see Algo. 7.1);

– Eq. (8.7) follows by defining |ρ(1)p1 〉 := D1,1C1,1B1,1|ρp1〉.

It is straightforward that the |ϕ(1)〉 shown in Eq. (8.7) satisfies the format shown in Eq. (8.1) when
t = 1.

Also, note that the hybrids H(J,pat)
0 and H

(J,pat)
1 are identical so far and thus |ϕ(1)〉 = |ψ(1)〉.

Therefore, it follows from Eq. (8.7) that

|ψ(1)〉 = |p1〉p1 |ρ(1)p1 〉.

Such a |ψ(1)〉 satisfies the format shown in Eq. (8.2) with t = 1 as well.
This finishes the proof for the base case t = 1.

8.1.2 Induction Step (t ≥ 2)

We assume that |ϕ(t−1)〉 and |ψ(t−1)〉 satisfy Lem. 17, and show in the following that Lem. 17 holds
when the global counter reaches 1 for the t-th time.

We establish this claim by considering the following MECE (mutually exclusive and collectively
exhaustive) cases:
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1. Case 1: The t-th arrival at value 1 is due to an immediate ↑↓ after the (t− 1)-th arrival. That
is, after the (t − 1)-th arrival, S first makes a ↑ query, bringing the global counter to 0, and
then makes an ↓ query, bringing the global counter back to 1.

2. Case 2: The t-th arrival at value 1 is due to an immediate ↓↑ after the (t− 1)-th arrival. That
is, after the (t − 1)-th arrival, S first makes a ↓ query, bringing the global counter to 2, and
then makes an ↑ query, bringing the global counter back to 1.

8.1.2.1 Proof for Case 1

We first describe formally how |ϕ(t−1)〉 (resp. |ψ(t−1)〉) evolves into |ϕ(t)〉 (resp. |ψ(t)〉) in Case 1:

1. S’s local unitary S is applied, followed by the projector |↑〉〈↑|u. Note that this step is identical
for both H

(J,pat)
0 and H

(J,pat)
1 .

Remark 12 (Hiding the Projector on Register u). In the sequel, we overload the notation S
to think of it as already including the projection |↑〉〈↑|u, and thus do not spell the |↑〉〈↑|u out
explicitly. We remark that this will not affect our proof, because what matters for S in the
following proof is the registers on which it operates, and the original S already operates non-
trivially on register u (see Table 1).

2. An ↑-query is made, bringing the global counter from 1 to 0. According to the notation in
Game 7.2:

– In H
(J,pat)
0 , this corresponds to applying U †gcA†1B

†
1C
†
1D
†
1;

– In H
(J,pat)
1 , this corresponds to applying U †gcA†1C̈

†
1D
†
1.

3. S will apply her local operation S again (followed by |↓〉〈↓|u which we hide as per Rmk. 12).
Note that this step is again identical for both H

(J,pat)
0 and H

(J,pat)
1 .

4. An ↓-query is made, bringing the global counter from 0 back to 1, which is the global counter’s
t-th arrival at value 1. According to the notation in Game 7.2:

– In H
(J,pat)
0 , this corresponds to applying D1C1B1A1Ugc;

– In H
(J,pat)
1 , this corresponds to applying D1C̈1A1Ugc.

It follows from the above description (and Rmk. 12) that the states |ϕ(t)〉 and |ψ(t)〉 can be written
as:

|ϕ(t)〉 = D1C1B1A1UgcSU
†
gcA
†
1B
†
1C
†
1D
†
1S|ϕ

(t−1)〉, (8.8)
|ψ(t)〉 = D1C̈1A1UgcSU

†
gcA
†
1C̈
†
1D
†
1S|ψ

(t−1)〉. (8.9)

High-Level Idea for the Sequel. Recall that our eventual goal is to prove that the states |ϕ(t)〉
and |ψ(t)〉 are of the format shown in Eq. (8.1) and (8.2) in Lem. 17. At a high level, we prove it
by applying Lem. 6 to Eq. (8.8) and (8.9). But we first need to perform some preparation work,
putting Eq. (8.8) and (8.9) into a format that is more “compatible” with Lem. 6. In the sequel,
we first perform the preparation work in Claims 7 and 8. Then, we show on Page 76 how to use
Claims 7 and 8 to complete the proof for Case 1.
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Claim 7. There exist (possibly sub-normalized) pure states {ρ̇(t−1)
p′1
}p′1∈{0,1}ℓ so that the following

holds

|ϕ(t)〉 = D1C1B1UgcS
p1/mU †gcB

†
1C
†
1

(
|p1〉p1 |ρ̇(t−1)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t−1)
p′1
〉
)

(8.10)

|ψ(t)〉 = D1C̈1UgcS
p1/mU †gcC̈

†
1

(
|p1〉p1 |ρ̇(t−1)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t−1)p′1
〉
)
, (8.11)

where Sp1/m is identical to S except that it treats register p1 as register m.

Proof of Claim 7. First, notice that

A1UgcSU
†
gcA
†
1 = A1UgcSA

†
1U
†
gc (8.12)

= A1UgcA
†
1S

p1/mU †gc (8.13)
= A1A

†
1UgcS

p1/mU †gc (8.14)
= UgcS

p1/mU †gc, (8.15)

where
– Eq. (8.12) and (8.14) follows from the fact that Ugc acts on different registers from A1 (see

Table 1);
– Eq. (8.13) from the fact that S acts as the identity operator on p1 (see Table 1) and that A1 is

nothing but a swap operator between m and p1 (see Algo. 6.1).

Proving Eq. (8.10). We now show the derivation for |ϕ(t)〉:

|ϕ(t)〉

= D1C1B1A1UgcSU
†
gcA
†
1B
†
1C
†
1D
†
1S|ϕ

(t−1)〉 (8.16)
= D1C1B1UgcS

p1/mU †gcB
†
1C
†
1D
†
1S|ϕ

(t−1)〉 (8.17)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1D
†
1S

(
|p1〉p1 |ρ(t−1)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(t−1)
p′1
〉
)

(8.18)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1D
†
1

(
|p1〉p1S|ρ(t−1)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1SC1,0B
†
1,1C

†
1,1|ρ

(t−1)
p′1
〉
)

(8.19)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1

(
|p1〉p1D

†
1,1S|ρ

(t−1)
p1 〉+∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1SC1,0B
†
1,1C

†
1,1|ρ

(t−1)
p′1
〉
)

(8.20)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1

(
|p1〉p1D

†
1,1S|ρ

(t−1)
p1 〉+∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0S
t1/mB†1,1C

†
1,1|ρ

(t−1)
p′1
〉
)

(8.21)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1

(
|p1〉p1D

†
1,1S|ρ

(t−1)
p1 〉+
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∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1S

t1/m|ρ(t−1)
p′1
〉
)

(8.22)

= D1C1B1UgcS
p1/mU †gcB

†
1C
†
1

(
|p1〉p1 |ρ̇(t−1)p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t−1)
p′1
〉
)
, (8.23)

where
– Eq. (8.16) follows from Eq. (8.8);
– Eq. (8.17) follows from Eq. (8.15);
– Eq. (8.18) follows from our induction assumption;
– Eq. (8.19) from from the fact that S acts as the identity operator on p1 (see Table 1);
– Eq. (8.20) from from the definition of D1 (see Algo. 7.1);
– Eq. (8.21) from the fact that S acts as the identity operator on t1 (see Table 1) and C1,0 is

nothing but a swap operator between t1 and m (see Algo. 7.1); (Note that St1/m is defined to
be an operator that is identical to S except that it treats t1 as m.)

– Eq. (8.22) follows from the fact that St1/m acts non-trivially on different registers from B1,1 and
C1,1 (see Table 1);

– Eq. (8.23) follows by defining

|ρ̇(t−1)p1 〉 := D†1,1S|ρ
(t−1)
p1 〉 and |ρ̇(t−1)

p′1
〉 := St1/m|ρ(t−1)

p′1
〉 (∀p′1 ∈ {0, 1}ℓ \ {p1}). (8.24)

Eq. (8.23) finishes the proof of Eq. (8.10) in Claim 7.

Proving Eq. (8.11). We now show the derivation for |ψ(t)〉. This is almost identical to the above
proof for Eq. (8.10). Nevertheless, we present it for the sake of completeness.

|ψ(t)〉 = D1C̈1A1UgcSU
†
gcA
†
1C̈
†
1D
†
1S|ψ

(t−1)〉 (8.25)
= D1C̈1UgcS

p1/mU †gcC̈
†
1D
†
1S|ψ

(t−1)〉 (8.26)

= D1C̈1UgcS
p1/mU †gcC̈

†
1D
†
1S

(
|p1〉p1 |ρ(t−1)p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(t−1)p′1
〉
)

(8.27)

= D1C̈1UgcS
p1/mU †gcC̈

†
1

(
|p1〉p1D

†
1,1S|ρ

(t−1)
p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0S
t1/m|ρ(t−1)

p′1
〉
)

(8.28)

= D1C̈1UgcS
p1/mU †gcC̈

†
1

(
|p1〉p1 |ρ̇(t−1)p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t−1)p′1
〉
)
, (8.29)

where
– Eq. (8.25) follows from Eq. (8.9);
– Eq. (8.26) follows from Eq. (8.15);
– Eq. (8.27) follows from our induction assumption;
– Eq. (8.28) follows from a similar argument as we did to derive Eq. (8.22) from Eq. (8.18);

– Eq. (8.29) follows from the same definitions of |ρ̇(t−1)p1 〉 and |ρ̇(t−1)
p′1
〉 as shown in Expression (8.24).
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Eq. (8.29) finishes the proof of Eq. (8.11) in Claim 7.

This completes the proof of Claim 7.

Claim 8. Let Sp1/m and {ρ̇(t−1)
p′1
}p′1∈{0,1}ℓ be as defined in Claim 7. Let

|γ(t−1)0 〉 := |p1〉p1 |ρ̇(t−1)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t−1)
p′1
〉 (8.30)

|γ(t−1)1 〉 := |p1〉p1 |ρ̇(t−1)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t−1)p′1
〉 (8.31)

|γ(t)0 〉 := C1B1UgcS
p1/mU †gcB

†
1C
†
1|γ

(t−1)
0 〉 (8.32)

|γ(t)1 〉 := C̈1UgcS
p1/mU †gcC̈

†
1|γ

(t−1)
1 〉. (8.33)

Then, there exist (possibly sub-normalized) pure states {|ρ̇(t)
p′1
〉}p′1∈{0,1}ℓ so that the following holds:

|γ(t)0 〉 = |p1〉p1 |ρ̇
(t)
p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t)
p′1
〉 (8.34)

|γ(t)1 〉 = |p1〉p1 |ρ̇
(t)
p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t)p′1 〉. (8.35)

Proof of Claim 8. This claim follows from an application of Lem. 6, with the notation correspon-
dence listed in Table 2. We provide a detailed explanation below.

Table 2: Notation Correspondence between Lem. 6 and Claim 8

Registers Operators Random Variables

In Lem. 6 In Claim 8 In Lem. 6 In Claim 8 In Lem. 6 In Claim 8

a p1 W1 C1,1 |a⟩a |p1⟩p1
m m W0 C1,0 |a′⟩a |p′1⟩p1
t t1 W C1 |ρ(in)a ⟩mtso |ρ̇(t−1)

p1 ⟩
s u, s, gc W̃ C̈1 |ρ(in)a′ ⟩mtso |ρ̇(t−1)

p′1
⟩

o other registers U1 B1,1 |η(in)0 ⟩ |γ(t−1)
0 ⟩

U B1 |η(in)1 ⟩ |γ(t−1)
1 ⟩

S UgcS
p1/mU†

gc |ρ(out)a ⟩mtso |ρ̇(t)p1 ⟩
|ρ(out)a′ ⟩mtso |ρ̇(t)

p′1
⟩

|η(out)0 ⟩ |γ(t)
0 ⟩

|η(out)1 ⟩ |γ(t)
1 ⟩

First, we argue that the premises in Lem. 6 are satisfied with the notation listed in Table 2:
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– Lem. 6 requires that W1 should work as the identity operator on register s. In terms of the
Claim 8 notation, this is satisfied by C1,1 (playing the role of W1) who works as identity on
registers u, s, and gc (playing the role of registers s). (Recall C1,1 from Table 1.)

– Lem. 6 requires that W0 should be a swap operator between m and t. In terms of the Claim 8
notation, this is satisfied by C1,0 (playing the role of W0), who is a swap operator between
registers m and t1 (playing the role of m and t respectively). (Recall C1,0 from Algo. 7.1.)

– Lem. 6 requires that W̃ is the identity operator on branch |a〉a and is identical to W0 on branches
|a′〉a with a′ 6= a. In terms of the Claim 8 notation, this is satisfied by C̈1 (playing the role of
W̃ ), who is the identity operator on branch |p1〉p1 (playing the role of |a〉a) and is identical to
C1,0 (playing the role of W0) on branches |p′1〉p1 (playing the role of |a′〉a) with p′1 6= p1. (Recall
C̈1 from Algo. 7.1)

– Lem. 6 requires that U1 should work as identity on register s. In terms of the Claim 8 notation,
this is satisfied by B1,1 (playing the role of U1), who works as identity on registers u, s, and gc

(playing the role of register s). (Recall B1,1 from Table 1.)
– Lem. 6 requires that S should act non-trivially only on registers a and s. In terms of the Claim 8

notation, this is satisfied by UgcS
p1/mU †gc (playing the role of S), who does not touch registers

beyond p1, u, s, and gc (playing the role of registers a and s). (Recall S from Table 1 and the
fact that Sp1/m is identical to S except that it treats p1 as m.)

Finally, we apply Lem. 6 (with the notation in Table 2) to the |γ(t−1)0 〉 and |γ(t−1)1 〉 defined in
Eq. (8.30) and (8.31) (playing the role of |η(in)0 〉 and |η(in)1 〉 in Lem. 6). This implies the existence of
(possibly sub-normalized) pure states {|ρ̇(t)

p′1
〉}p′1∈{0,1}ℓ (playing the role of {|ρ(out)a′ 〉mtso}a′∈{0,1}ℓ in

Lem. 6) such that the following holds

|γ(t)0 〉 = |p1〉p1 |ρ̇
(t)
p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t)
p′1
〉

|γ(t)1 〉 = |p1〉p1 |ρ̇
(t)
p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t)p′1 〉,

which are exactly Eq. (8.34) and (8.35) in Claim 8.
This completes the proof of Claim 8.

Finishing the Proof for Case 1. With Claims 7 and 8 at hand, we now finish the proof for
Case 1.

Proof for Eq. (8.1). We first establish Eq. (8.1):

|ϕ(t)〉 = D1|γ(t)0 〉 (8.36)

= D1

(
|p1〉p1 |ρ̇(t)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t)
p′1
〉
)

(8.37)

= |p1〉p1D1,1|ρ̇(t)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ̇

(t)
p′1
〉 (8.38)

= |p1〉p1 |ρ(t)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(t)
p′1
〉, (8.39)
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where
– Eq. (8.36) follows from Eq. (8.10) in Claim 7 and Eq. (8.32) in Claim 8;
– Eq. (8.37) follows from Eq. (8.34) in Claim 8;
– Eq. (8.38) follows from the definition of D1 (see Algo. 7.1);
– Eq. (8.39) follows by defining

|ρ(t)p1 〉 := D1,1|ρ̇(t)p1 〉 and |ρ(t)
p′1
〉 := |ρ̇(t)

p′1
〉 (∀p′1 ∈ {0, 1}ℓ \ {p1}). (8.40)

Note that Eq. (8.39) is exactly Eq. (8.1) in Lem. 17.

Proof for Eq. (8.2). Next, we establish Eq. (8.2):

|ψ(t)〉 = D1|γ(t)1 〉 (8.41)

= D1

(
|p1〉p1 |ρ̇(t)p1 〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t)p′1 〉
)

(8.42)

= |p1〉p1D1,1|ρ̇(t)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ̇(t)p′1 〉 (8.43)

= |p1〉p1 |ρ(t)p1 〉+
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(t)p′1 〉, (8.44)

where
– Eq. (8.41) follows from Eq. (8.11) in Claim 7 and Eq. (8.33) in Claim 8;
– Eq. (8.42) follows from Eq. (8.35) in Claim 8;
– Eq. (8.43) follows from the definition of D1 (see Algo. 7.1);

– Eq. (8.44) follows from the same definitions of |ρ(t)p1 〉 and |ρ(t)
p′1
〉 in Expression (8.40).

Note that Eq. (8.44) is exactly Eq. (8.2) in Lem. 17.

This eventually completes the proof for Case 1.

8.1.2.2 Proof for Case 2
We first remark that in Case 2, the computation that brings |ϕ(t−1)〉 to |ϕ(t)〉 is identical to that
brings |ψ(t−1)〉 to |ψ(t)〉, because H(J,pat)

0 and H(J,pat)
1 are identical when the global counter “jumps”

between 1 and 2. (This can be also seen pictorially by comparing Fig. 2a and Fig. 2b.) In the
following, we refer to this computation as Λ. That is, we have

|ϕ(t)〉 = Λ|ϕ(t−1)〉 (8.45)
|ψ(t)〉 = Λ|ψ(t−1)〉. (8.46)

Structure of Λ. While the exact format of Λ will not be substantial, our proof of Case 2 will rely
on certain properties of Λ, which we formalize in the following Claim 9.

Claim 9. For the operator Λ defined above, there exist two operators Λ0 and Λ1 so that
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– both Λ1 and Λ0 act as the identity operator on p1;
– Λ0 acts as the identity operator on t1;

and the following holds

Λ = |p1〉〈p1|p1 ⊗ Λ1 +
∑

p′1∈{0,1}ℓ\{p1}

∣∣p′1〉〈p′1∣∣p1 ⊗ Λ0, (8.47)

Λ0C1,0 = C1,0Λ
t1/m
0 , (8.48)

Λ0C1,0B
†
1,1C

†
1,1 = C1,0B

†
1,1C

†
1,1Λ

t1/m
0 , (8.49)

where Λt1/m
0 is identical to Λ0 except that it treats t1 as m.

Proof of Claim 9. First, note that Λ can be written as Λ = ΓzΓz−1 · · ·Γ1 (for some integer z),
where each Γi (i ∈ [z]) comes from the set of operators {S,A2, B2, C2, D2, Ugc, |p1, p2〉〈p1, p2|p1p2}.
This is because Λ only corresponds to the operations that happen when the global counter is no
less than value 1 (see Game 7.2 and Fig. 2b). We remark that S may also apply projectors on u,
but we consider it as a part of S as per Rmk. 12.

Therefore, to prove Claim 9, it suffices to show that for each operator

Γ ∈ {|p1, p2〉〈p1, p2|p1p2 , Ugc, S, A2, B2, C2, D2},

there exist two operators Γ0 and Γ1 so that
– both Γ1 and Γ0 act as the identity operator on p1;
– Γ0 acts as the identity operator on t1;

and the following holds

Γ = |p1〉〈p1|p1 ⊗ Γ1 +
∑

p′1∈{0,1}ℓ\{p1}

∣∣p′1〉〈p′1∣∣p1 ⊗ Γ0,
Γ0C1,0 = C1,0Γ

t1/m
0 ,

Γ0C1,0B
†
1,1C

†
1,1 = C1,0B

†
1,1C

†
1,1Γ

t1/m
0 .

In the following, we prove it for each possible Γ .
First, notice that the above is true for Γ = |p1, p2〉〈p1, p2|p1p2 , simply because such a Γ can be

written in the following format:

Γ = |p1, p2〉〈p1, p2|p1p2 = |p1〉〈p1|p1 ⊗ Γ1 +
∑

p′1∈{0,1}ℓ\{p1}

∣∣p′1〉〈p′1∣∣p1 ⊗ Γ0,
with Γ1 := |p2〉〈p2|p2 and Γ0 := I, and such a Γ0 vacuously satisfies the requires Γ0C1,0 = C1,0Γ

t1/m
0

and Γ0C1,0B
†
1,1C

†
1,1 = C1,0B

†
1,1C

†
1,1Γ

t1/m
0 .

The above is true for Γ = Ugc as well, because Ugc acts non-trivially only on register gc.
The above is also true for Γ = S because (1) S does not act on p1, (2) S does not work on

t1 and C1,0 is nothing but a swap operator between m and t1, and (3) St1/m acts non-trivially on
different registers from B1,1 and C1,1 (see Table 1).

The above is true for Γ = A2 as well, because A2 is nothing but the swap operator between
registers p2 and m (see Algo. 6.1).
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The only cases left are Γ ∈ {B2, C2, D2}. The proof for these cases are (almost) identical. In
the following, we only prove it for Γ = C2.

Γ = C2 = |p1, p2〉〈p1, p2|p1p2 ⊗ C2,1 +
∑

(p′1,p
′
2)∈{0,1}2ℓ\{(p1,p2)}

∣∣p′1, p′2〉〈p′1, p′2∣∣p1p2 ⊗ C2,0 (8.50)

= |p1〉〈p1|p1 ⊗ |p2〉〈p2|p2 ⊗ C2,1 +
∑

(p′1,p
′
2)∈{0,1}2ℓ\{(p1,p2)}

∣∣p′1〉〈p′1∣∣p1 ⊗ ∣∣p′2〉〈p′2∣∣p2 ⊗ C2,0

= |p1〉〈p1|p1 ⊗ |p2〉〈p2|p2 ⊗ C2,1 + |p1〉〈p1|p1 ⊗
( ∑
p′2∈{0,1}ℓ\{p2}

∣∣p′2〉〈p′2∣∣p2 )⊗ C2,0

+
∑

p′1∈{0,1}ℓ\{p1}

∣∣p′1〉〈p′1∣∣p1 ⊗ ( ∑
p′2∈{0,1}ℓ

∣∣p′2〉〈p′2∣∣p2 )⊗ C2,0

= |p1〉〈p1|p1 ⊗ Γ1 +
∑

p′1∈{0,1}ℓ\{p1}

∣∣p′1〉〈p′1∣∣p1 ⊗ Γ0, (8.51)

where Eq. (8.50) follows from the definition of C2 (see Algo. 7.1), and Eq. (8.51) follows by defining
Γ0 and Γ1 as follows

Γ1 := |p2〉〈p2|p2 ⊗ C2,1 +
( ∑
p′2∈{0,1}ℓ\{p2}

∣∣p′2〉〈p′2∣∣p2 )⊗ C2,0

Γ0 :=
( ∑
p′2∈{0,1}ℓ

∣∣p′2〉〈p′2∣∣p2 )⊗ C2,0.

Clearly, such a Γ0 satisfies the requires Γ0C1,0 = C1,0Γ
t1/m
0 and Γ0C1,0B

†
1,1C

†
1,1 = C1,0B

†
1,1C

†
1,1Γ

t1/m
0 ,

because (1) C2,0 is nothing but a swap operator between m and t2, and (2) Ct1/m
2,0 acts non-trivially

on different registers from B1,1 and C1,1 (see Table 1).

This finishes the proof of Claim 9.

Finishing the Proof for Case 2. With Claim 9 in hand, we now show how to finish the proof
for Case 2.

Proof of Eq. (8.1). First, we establish Eq. (8.1):

|ϕ(t)〉 = Λ|ϕ(t−1)〉 (8.52)

= Λ

(
|p1〉p1 |ρ(t−1)p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(t−1)
p′1
〉
)

(8.53)

= |p1〉p1Λ1|ρ(t−1)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1Λ0C1,0B
†
1,1C

†
1,1|ρ

(t−1)
p′1
〉 (8.54)

= |p1〉p1Λ1|ρ(t−1)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1Λ

t1/m
0 |ρ(t−1)

p′1
〉 (8.55)

= |p1〉p1 |ρ(t)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0B
†
1,1C

†
1,1|ρ

(t)
p′1
〉, (8.56)

where
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– Eq. (8.52) follows from Eq. (8.45);
– Eq. (8.53) follows from our induction assumption;
– Eq. (8.54) follows from Eq. (8.47) in Claim 9;
– Eq. (8.55) follows from Eq. (8.49) in Claim 9;
– Eq. (8.56) follows by defining

|ρ(t)p1 〉 := Λ1|ρ(t−1)p1 〉 and |ρ(t)
p′1
〉 := Λ

t1/m
0 |ρ(t−1)

p′1
〉 (∀p′1 ∈ {0, 1}ℓ \ {p1}). (8.57)

Clearly, Eq. (8.56) is of the same format as Eq. (8.1) in Lem. 17.

Proof of Eq. (8.2). Next, we present the derivation for Eq. (8.2):

|ψ(t)〉 = Λ|ψ(t−1)〉 (8.58)

= Λ

(
|p1〉p1 |ρ(t−1)p1 〉 +

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(t−1)p′1
〉
)

(8.59)

= |p1〉p1Λ1|ρ(t−1)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1Λ0C1,0|ρ(t−1)p′1
〉 (8.60)

= |p1〉p1Λ1|ρ(t−1)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0Λ
t1/m
0 |ρ(t−1)

p′1
〉 (8.61)

= |p1〉p1 |ρ(t)p1 〉 +
∑

p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρ(t)p′1 〉, (8.62)

where
– Eq. (8.58) follows from Eq. (8.46),
– Eq. (8.59) follows from our induction assumption,
– Eq. (8.60) follows from Eq. (8.47) in Claim 9,
– Eq. (8.61) follows from Eq. (8.48) in Claim 9,

– Eq. (8.62) follows from the same definitions of |ρ(t)p1 〉 and |ρ(t)
p′1
〉 as shown in Expression (8.57).

Clearly, Eq. (8.62) is of the same format as Eq. (8.2) in Lem. 17.
This finishes the proof for Case 2.

Finally, we remark that our proof for the base case in Sec. 8.1.1 and the proof for the induction
step in Sec. 8.1.2 together finish the proof of Lem. 17, which in turn finishes the proof of Lem. 15
eventually.

8.2 Proof of Lem. 16

Due to a similar argument as we did at the beginning of Sec. 8.1, we claim that: to prove Lem. 16,
it suffices to establish the following Lem. 18.

Lemma 18 (Invariance in H
(J,pat)
1 and H

(J,pat)
2 ). Assume that during the execution of H(J,pat)

1

(and H
(J,pat)
2 ), the global counter reaches value 2 for T times in total. For each t ∈ [T ], there
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exist (possibly sub-normalized) pure states {|ρ(t)
p′1,p

′
2
〉}p′1,p′2∈{0,1}ℓ×{0,1}ℓ so that the following holds: in

hybrid H(J,pat)
1 (resp. H(J,pat)

2 ), when the global counter reaches value 2 for the t-th time, the overall
state can be written as |ϕ(t)〉 (resp. |ψ(t)〉) defined as follows

|ϕ(t)〉 = |p1〉p1 |p2〉p2 |ρ(t)p1,p2〉 +
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ

(t)
p′1,p

′
2
〉, (8.63)

|ψ(t)〉 = |p1〉p1 |p2〉p2 |ρ(t)p1,p2〉 +
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ(t)p′1,p′2〉, (8.64)

where the summations are taken over all (p′1, p
′
2) ∈ {0, 1}ℓ × {0, 1}ℓ \ {(p1, p2)} (abbreviated as

(p′1, p
′
2) 6= (p1, p2) in the above), the (p1, p2) are defined in pat, and the unitaries B2,1, C2,0, and

C2,1 are as defined in Algo. 7.1.

Proving Lem. 18. Similar as the proof for Lem. 17, we establish Lem. 18 through mathematical
induction on the number t ∈ [T ], indicating the time at which the global counter reaches the value
2. Throughout this proof, we will monitor the evolution of the overall states in both H

(J,pat)
1 and

H
(J,pat)
2 simultaneously. This is done in Sec. 8.2.1 and 8.2.2 respectively.

8.2.1 Base Case (t = 1)

We first derive how the overall state evolves in H
(J,pat)
1 .

This case corresponds to the very first time the global counter reaches 2. By definition, this is
due to the sq(2) query. We assume w.l.o.g. that the overall state right before this query is some
pure state |ρ〉.

Remark 13. Actually, we know the exact format of this |ρ〉 from the already-established Lem. 17.
That is, this state must be of the format |ρ〉 = |p1〉p1 |ρp1〉+

∑
p′1∈{0,1}ℓ\{p1}

|p′1〉p1C1,0|ρp′1〉. However,
we remark that the exact format of |ρ〉 is not useful anywhere in this proof, and thus we do not
need to refer to this long expression in the following derivation.

By definition, the sq(2) query corresponds to the following procedure: S will first apply her
local unitary S (followed by the projector |↓〉〈↓|u which we hide as per Rmk. 12). Next, according
to the notation in Game 7.2,
– If b2 = 0, then the operator D2C2B2 |p1, p2〉〈p1, p2|p1p2 A2Ugc will be applied;
– If b2 = 1, then the operator C2,0 |p1, p2〉〈p1, p2|p1p2 A2Ugc will be applied;

In the following, we show the proof for b2 = 0 only; the other case (i.e., b2 = 1) can be established
using the same argument.

It follows from the above discussion that the state |ϕ(1)〉 in H
(J,pat)
1 can be written as follows:

|ϕ(1)〉 = D2C2B2 |p1, p2〉〈p1, p2|p1p2 A2UgcS|ρ〉
= D2C2B2|p1, p2〉p1p2 |ρp1,p2〉 (8.65)
= |p1, p2〉p1p2D2,1C2,1B2,1|ρp1,p2〉 (8.66)
= |p1, p2〉p1p2 |ρ(1)p1,p2〉, (8.67)

where
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– Eq. (8.65) follows by defining |ρp1,p2〉 := 〈p1, p2|p1p2A2UgcS|ρ〉;
– Eq. (8.66) follows from the definitions of B2, C2, and D2 (see Algo. 7.1);

– Eq. (8.67) follows by defining |ρ(1)p1,p2〉 := D2,1C2,1B2,1|ρp1,p2〉.
It is straightforward that the |ϕ(1)〉 shown in Eq. (8.67) satisfies the format shown in Eq. (8.63)
when t = 1.

Also, note that the game H
(J,pat)
1 and H

(J,pat)
2 are identical so far and thus |ϕ(1)〉 = |ψ(1)〉.

Therefore, it follows from Eq. (8.67) that

|ψ(1)〉 = |p1, p2〉p1p2 |ρ(1)p1,p2〉.

Such a |ψ(1)〉 satisfies the format shown in Eq. (8.64) with t = 1 as well.
This finishes the proof for the base case t = 1.

8.2.2 Induction Step (t ≥ 2)
We assume |ϕ(t−1)〉 and |ψ(t−1)〉 satisfy Lem. 18, and show in the following that Lem. 18 holds when
the global counter reaches 2 for the t-th time.

We first describe formally how |ϕ(t−1)〉 (resp. |ψ(t−1)〉) evolves into |ϕ(t)〉 (resp. |ψ(t)〉):
1. S’s local unitary S is applied (followed by the projector |↑〉〈↑|u which we hide as per Rmk. 12).

Note that this step is identical for both H
(J,pat)
1 and H

(J,pat)
2 .

2. An ↑-query is made, bringing the global counter from 2 to 1. According to the notation in
Game 7.2:
– In H

(J,pat)
1 , this corresponds to applying U †gcA†2B

†
2C
†
2D
†
2;

– In H
(J,pat)
2 , this corresponds to applying U †gcA†2C̈

†
2D
†
2.

3. At this point, there are two cases to consider:
(a) S can make a ↓-query immediately, bringing the global counter back to 2; or
(b) S can rewind the verifier Ṽ further, bringing the global counter to 0.
Defining Operator Λ: Looking ahead, our proof can handle these two cases at one stroke. To
do that, we denote the execution from this point until (exclusively) the next ↓ query that brings
the global counter to value 2 (i.e., the exact query that yields the global counter’s t-th arrival
at value 2) as an operator Λ. Λ might be S local operator S only, corresponding to Case 3a; Λ
might also be the combonation of some other operators, representing the operations performed
in Case 3b before the global counter’s next arrival at value 2.

4. After the application of the operator Λ defined above, an ↓-query is made, bringing the global
counter from 1 back to 2, which is the global counter’s t-th arrival at value 2. According to the
notation in Game 7.2:
– In H

(J,pat)
0 , this corresponds to applying D2C2B2A2Ugc;

– In H
(J,pat)
1 , this corresponds to applying D2C̈2A2Ugc.

It follows from the above description that the states |ϕ(t)〉 and |ψ(t)〉 can be written as:

|ϕ(t)〉 = D2C2B2A2UgcΛU
†
gcA
†
2B
†
2C
†
2D
†
2S|ϕ

(t−1)〉, (8.68)
|ψ(t)〉 = D2C̈2A2UgcΛU

†
gcA
†
2C̈
†
2D
†
2S|ψ

(t−1)〉. (8.69)
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We first make a useful claim that specifies the registers on which the Λ defined above acts
non-trivially.
Claim 10 (Non-Trivial Registers for Λ). The Λ defined in Step 3 acts non-trivially only on
registers m, u, s, p1, t1, lc, and gc (i.e., it works as the identity operator on the other registers).

Proof of Claim 10. By definition, Λ only contains operations that happen when the global counter
is 1 or smaller. This is best illustrated by Fig. 2b—Λ only contains operations that happen in
between the line corresponding to |0〉gc and the line corresponding to |1〉gc. That is, all the ↓ and ↑
queries are answered by the “dummy” operators V̈ and V̈ †. (One exception is the Ṽ corresponding
sq(1). But this does not matter in the current proof—Before the application of operator Λ, the
global counter has already been 2 (for t− 1 times), which implies that the sq(1) query has already
happened and thus cannot be a part of the operator Λ.)

Therefore, according to our notation in Game 7.2, operator Λ can be written as Λ = ΓzΓz−1 · · ·Γ1
(for some integer z) where each Γi (i ∈ [z]) comes from the set of operators {S,A1, C̈1, D1, Ugc}. It
then follows from Table 1 that Λ acts non-trivially only on registers m, u, s, p1, t1, lc, and gc.

This completes the proof of Claim 10.

High-Level Idea for the Sequel. Recall that our eventual goal is to prove that the states |ϕ(t)〉
and |ψ(t)〉 are of the format shown in Eq. (8.63) and (8.64) in Lem. 18. At a high level, we prove it
by applying Lem. 6 to Eq. (8.68) and (8.69). But we first need to perform some preparation work,
putting Eq. (8.68) and (8.69) into a format that is more “compatible” with Lem. 6. In the sequel,
we first perform the preparation work in Claims 11 and 12. Then, we show on Page 87 how to use
Claims 11 and 12 to complete the proof for the induction step.

The following Claim 11 can be viewed as an analogue of Claim 7.
Claim 11. There exist (possibly sub-normalized) pure states {ρ̇(t−1)

p′1,p
′
2
}(p′1,p′2)∈{0,1}ℓ×{0,1}ℓ so that the

following holds

|ϕ(t)〉 = D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2

(
|p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t−1)
p′1,p

′
2
〉
)

(8.70)

|ψ(t)〉 = D2C̈2UgcΛ
p2/mU †gcC̈

†
2

(
|p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t−1)p′1,p
′
2
〉
)

(8.71)

where Λp2/m is identical to the Λ defined in Step 3, except that it treats register p2 as m, and the
summations are taken over all (p′1, p′2) ∈ {0, 1}ℓ×{0, 1}ℓ\{(p1, p2)} (abbreviated as (p′1, p′2) 6= (p1, p2)
in the above).

Proof of Claim 11. First, notice that

A2UgcΛU
†
gcA
†
2 = A2UgcΛA

†
2U
†
gc (8.72)

= A2UgcA
†
2Λ

p2/mU †gc (8.73)
= A2A

†
2UgcΛ

p2/mU †gc (8.74)
= UgcΛ

p2/mU †gc, (8.75)

where
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– Eq. (8.72) and (8.74) follows from the fact that Ugc acts non-trivially on different registers from
A2;

– Eq. (8.73) from the fact that Λ acts as the identity operator on p2 (see Claim 10) and that A2

is nothing but a swap operator between m and p2 (see Algo. 6.1).

Proving Eq. (8.70). We now show the derivation for |ϕ(t)〉:

|ϕ(t)〉 = D2C2B2A2UgcΛU
†
gcA
†
2B
†
2C
†
2D
†
2S|ϕ

(t−1)〉 (8.76)
= D2C2B2UgcΛ

p2/mU †gcB
†
2C
†
2D
†
2S|ϕ

(t−1)〉 (8.77)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2D
†
2S

(
|p1〉p1 |p2〉p2 |ρ(t−1)p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ

(t−1)
p′1,p

′
2
〉
)

(8.78)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2D
†
2

(
|p1〉p1 |p2〉p2S|ρ(t−1)p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2SC2,0B
†
2,1C

†
2,1|ρ

(t−1)
p′1,p

′
2
〉
)

(8.79)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2

(
|p1〉p1 |p2〉p2D

†
2,1S|ρ

(t−1)
p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2SC2,0B
†
2,1C

†
2,1|ρ

(t−1)
p′1,p

′
2
〉
)

(8.80)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2

(
|p1〉p1 |p2〉p2D

†
2,1S|ρ

(t−1)
p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0S
t2/mB†2,1C

†
2,1|ρ

(t−1)
p′1,p

′
2
〉
)

(8.81)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2

(
|p1〉p1 |p2〉p2D

†
2,1S|ρ

(t−1)
p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1S

t2/m|ρ(t−1)
p′1,p

′
2
〉
)

(8.82)

= D2C2B2UgcΛ
p2/mU †gcB

†
2C
†
2

(
|p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t−1)
p′1,p

′
2
〉
)
, (8.83)

where
– Eq. (8.76) follows from Eq. (8.68);
– Eq. (8.77) follows from Eq. (8.75);
– Eq. (8.78) follows from our induction assumption;
– Eq. (8.79) from from the fact that S acts as the identity operator on p1 and p2 (see Table 1);
– Eq. (8.80) from the definition of D2 (see Algo. 7.1);
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– Eq. (8.81) from the fact that S acts as the identity operator on t2 (see Table 1) and C2,0 is
nothing but a swap operator between t2 and m (see Algo. 7.1); (Note that St2/m is defined to
be an operator that is identical to S except that it treats t2 as m.)

– Eq. (8.82) follows from the fact that St2/m acts non-trivially on different registers from B2,1 and
C2,1 (see Table 1);

– Eq. (8.83) follows by defining

|ρ̇(t−1)p1,p2 〉 := D†2,1S|ρ
(t−1)
p1,p2 〉 and |ρ̇(t−1)

p′1,p
′
2
〉 := St2/m|ρ(t−1)

p′1,p
′
2
〉
(
∀(p′1, p′2) ∈

(
{0, 1}ℓ×{0, 1}ℓ

)
\{(p1, p2)}

)
.

(8.84)
Eq. (8.83) finishes the proof of Eq. (8.70) in Claim 11.

Proving Eq. (8.71). We now show the derivation for |ψ(t)〉. This is almost identical to the above
proof for Eq. (8.70). Nevertheless, we present it for the sake of completeness.

|ψ(t)〉 = D2C̈2A2UgcΛU
†
gcA
†
2C̈
†
2D
†
2S|ψ

(t−1)〉 (8.85)
= D2C̈2UgcΛ

p2/mU †gcC̈
†
2D
†
2S|ψ

(t−1)〉 (8.86)

= D2C̈2UgcΛ
p2/mU †gcC̈

†
2D
†
2S

(
|p1〉p1 |p2〉p2 |ρ(t−1)p1,p2 〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ(t−1)p′1,p
′
2
〉
)

(8.87)

= D2C̈2UgcΛ
p2/mU †gcC̈

†
2

(
|p1〉p1 |p2〉p2D

†
2,1S|ρ

(t−1)
p1,p2 〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0S
t2/m|ρ(t−1)

p′1,p
′
2
〉
)

(8.88)

= D2C̈2UgcΛ
p2/mU †gcC̈

†
2

(
|p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t−1)p′1,p
′
2
〉
)
, (8.89)

where
– Eq. (8.85) follows from Eq. (8.69);
– Eq. (8.86) follows from Eq. (8.75);
– Eq. (8.87) follows from our induction assumption;
– Eq. (8.88) follows from a similar argument as we did to derive Eq. (8.82) from Eq. (8.78);

– Eq. (8.89) follows from the same definitions of |ρ̇(t−1)p1,p2 〉 and |ρ̇(t−1)
p′1,p

′
2
〉 as shown in Expression (8.84).

Eq. (8.89) finishes the proof of Eq. (8.71) in Claim 11.

This finishes the proof of Claim 11.

The following Claim 12 can be treated as an analogue of Claim 8.

Claim 12. Let Λp2/m and {ρ̇(t−1)
p′1,p

′
2
}(p′1,p′2)∈{0,1}ℓ×{0,1}ℓ be as defined in Claim 11. Let

|γ(t−1)0 〉 := |p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t−1)
p′1,p

′
2
〉 (8.90)
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|γ(t−1)1 〉 := |p1〉p1 |p2〉p2 |ρ̇(t−1)p1,p2 〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t−1)p′1,p
′
2
〉 (8.91)

|γ(t)0 〉 := C2B2UgcΛ
p2/mU †gcB

†
2C
†
2|γ

(t−1)
0 〉 (8.92)

|γ(t)1 〉 := C̈2UgcΛ
p2/mU †gcC̈

†
2|γ

(t−1)
1 〉. (8.93)

Then, there exist (possibly sub-normalized) pure states {ρ̇(t)
p′1,p

′
2
}(p′1,p′2)∈{0,1}ℓ×{0,1}ℓ so that the follow-

ing holds:

|γ(t)0 〉 = |p1〉p1 |p2〉p2 |ρ̇
(t)
p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t)
p′1,p

′
2
〉 (8.94)

|γ(t)1 〉 = |p1〉p1 |p2〉p2 |ρ̇
(t)
p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t)p′1,p′2〉. (8.95)

Proof of Claim 12. This claim follows from an application of Lem. 6, with the notation correspon-
dence listed in Table 3. We provide a detailed explanation below.

Table 3: Notation Correspondence between Lem. 6 and Claim 12

Registers Operators Random Variables

In Lem. 6 In Claim 12 In Lem. 6 In Claim 12 In Lem. 6 In Claim 12

a p1, p2 W1 C2,1 |a⟩a |p1, p2⟩p1p2
m m W0 C2,0 |a′⟩a |p′1, p′2⟩p1p2
t t2 W C2 |ρ(in)a ⟩mtso |ρ̇(t−1)

p1,p2 ⟩
s u, s, t1, gc, lc W̃ C̈2 |ρ(in)a′ ⟩mtso |ρ̇(t−1)

p′1,p
′
2
⟩

o other registers U1 B2,1 |η(in)0 ⟩ |γ(t−1)
0 ⟩

U B2 |η(in)1 ⟩ |γ(t−1)
1 ⟩

S UgcΛ
p2/mU†

gc |ρ(out)a ⟩mtso |ρ̇(t)p1,p2⟩
|ρ(out)a′ ⟩mtso |ρ̇(t)

p′1,p
′
2
⟩

|η(out)0 ⟩ |γ(t)
0 ⟩

|η(out)1 ⟩ |γ(t)
1 ⟩

First, we argue that the premises in Lem. 6 are satisfied with the notation listed in Table 3:
– Lem. 6 requires that W1 should work as the identity operator on register s. In terms of the

Claim 12 notation, this is satisfied by C2,1 (playing the role of W1) who works as identity on
registers u, s, t1, gc, and lc (playing the role of registers s). (Recall C2,1 from Table 1.)

– Lem. 6 requires that W0 should be the swap operator between m and t. In terms of the Claim 12
notation, this is satisfied by C2,0 (playing the role of W0), who is the swap operator between
registers m and t2 (playing the role of m and t respectively). (Recall C2,0 from Algo. 7.1.)

– Lem. 6 requires that W̃ is the identity operator on branch |a〉a and is identical to W0 on
branches |a′〉a with a′ 6= a. In terms of the Claim 12 notation, this is satisfied by C̈2 (playing
the role of W̃ ), who is the identity operator on branch |p1, p2〉p1p2 (playing the role of |a〉a) and
is identical to C2,0 (playing the role of W0) on branches |p′1, p′2〉p1p2 (playing the role of |a′〉a)
with (p′1, p

′
2) 6= (p1, p2). (Recall C̈2 from Algo. 7.1)
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– Lem. 6 requires that U1 should work as identity on register s. In terms of the Claim 12 notation,
this is satisfied by B2,1 (playing the role of U1), who works as identity on registers u, s, t1, gc,
and lc (playing the role of register s). (Recall B2,1 from Table 1.)

– Lem. 6 requires that S should act non-trivially only on registers a and s. In terms of the Claim 12
notation, this is satisfied by UgcΛ

p2/mU †gc (playing the role of S)—recall from Claim 10 that Λ
acts non-trivially on registers m, u, s, p1, t1, lc, and gc. Thus, UgcΛp2/mU †gc acts non-trivially
on registers p2, u, s, p1, t1, lc, and gc, which constitute registers a and s (see Table 3).

Finally, we apply Lem. 6 (with the notation in Table 3) to the |γ(t−1)0 〉 and |γ(t−1)1 〉 defined
in Eq. (8.90) and (8.91) (playing the role of |η(in)0 〉 and |η(in)1 〉 in Lem. 6). This implies the ex-
istence of (possibly sub-normalized) pure states {|ρ̇(t)

p′1,p
′
2
〉}(p′1,p′2)∈{0,1}ℓ×{0,1}ℓ (playing the role of

{|ρ(out)a′ 〉mtso}a′∈{0,1}ℓ in Lem. 6) such that the following holds

|γ(t)0 〉 = |p1〉p1 |p2〉p2 |ρ̇
(t)
p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t)
p′1,p

′
2
〉

|γ(t)1 〉 = |p1〉p1 |p2〉p2 |ρ̇
(t)
p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t)p′1,p′2〉,

which are exactly Eq. (8.94) and (8.95) in Claim 12.
This completes the proof of Claim 12.

Finishing the Proof for the Induction Step. With Claims 11 and 12 at hand, we now finish
the proof for the induction Step.

Proof for Eq. (8.63). We first establish Eq. (8.63):

|ϕ(t)〉 = D2|γ(t)0 〉 (8.96)

= D2

(
|p1〉p1 |p2〉p2 |ρ̇(t)p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t)
p′1,p

′
2
〉
)

(8.97)

= |p1〉p1 |p2〉p2D2,1|ρ̇(t)p1,p2〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ̇

(t)
p′1,p

′
2
〉 (8.98)

= |p1〉p1 |p2〉p2 |ρ(t)p1,p2〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0B
†
2,1C

†
2,1|ρ

(t)
p′1,p

′
2
〉, (8.99)

where
– Eq. (8.96) follows from Eq. (8.70) in Claim 11 and Eq. (8.92) in Claim 12;
– Eq. (8.97) follows from Eq. (8.94) in Claim 12;
– Eq. (8.98) follows from the definition of D2 (see Algo. 7.1);
– Eq. (8.99) follows by defining

|ρ(t)p1,p2〉 := D2,1|ρ̇(t)p1,p2〉 and |ρ(t)
p′1,p

′
2
〉 := |ρ̇(t)

p′1,p
′
2
〉
(
∀(p′1, p′2) ∈

(
{0, 1}ℓ × {0, 1}ℓ

)
\ {(p1, p2)}

)
.

(8.100)
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Note that Eq. (8.99) is exactly Eq. (8.63) in Lem. 18.

Proof for Eq. (8.64). We next establish Eq. (8.64):

|ψ(t)〉 = D2|γ(t)1 〉 (8.101)

= D2

(
|p1〉p1 |p2〉p2 |ρ̇(t)p1,p2〉+

∑
(p′1,p

′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t)p′1,p′2〉
)

(8.102)

= |p1〉p1 |p2〉p2D2,1|ρ̇(t)p1,p2〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ̇(t)p′1,p′2〉 (8.103)

= |p1〉p1 |p2〉p2 |ρ(t)p1,p2〉+
∑

(p′1,p
′
2) ̸=(p1,p2)

|p′1〉p1 |p′2〉p2C2,0|ρ(t)p′1,p′2〉, (8.104)

where
– Eq. (8.101) follows from Eq. (8.71) in Claim 11 and Eq. (8.93) in Claim 12;
– Eq. (8.102) follows from Eq. (8.95) in Claim 12;
– Eq. (8.103) follows from the definition of D2 (see Algo. 7.1);

– Eq. (8.104) follows from the same definitions of |ρ(t)p1,p2〉 and |ρ(t)
p′1,p

′
2
〉 in Expression (8.100).

Note that Eq. (8.104) is exactly Eq. (8.64) in Lem. 18.
This finishes the proof of the induction step of Lem. 18.

Finally, we remark that our proof for the base case in Sec. 8.2.1 and the proof for the induction
step in Sec. 8.2.2 together finish the proof of Lem. 18, which in turn finishes the proof of Lem. 16
eventually.

9 Proving Lem. 13 (Full Version)

In this section, we provide the proof of Lem. 13 for the general case (in contrast to the warm-up
case K = 2 shown in Sec. 8).

Due to a similar argument as we did at the beginning of Sec. 8.1, we claim that: to prove
Lem. 13, it suffices to establish the following Lem. 19.

Lemma 19 (Invariance in H
(J,pat)
k−1 and H

(J,pat)
k ). For a (J, pat) satisfying the requirements in

Game 7.1 and a k ∈ [K], assume that during the execution of H(J,pat)
k−1 (and H

(J,pat)
k ), the global

counter reaches value k for T times in total. For each t ∈ [T ], there exist (possibly sub-normalized)
pure states {|ρ(t)

p′1,...,p
′
k
〉}p′1,...,p′k∈{0,1}kℓ so that the following holds: in hybrid H(J,pat)

k−1 (resp. H(J,pat)
k ),

when the global counter reaches value k for the t-th time, the overall state can be written as the
|ϕ(t)〉 (resp. |ψ(t)〉) defined as follows:

|ϕ(t)〉 = |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ

(t)
p′1,...,p

′
k
〉,

(9.1)

|ψ(t)〉 = |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ
(t)
p′1,...,p

′
k
〉, (9.2)
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where the summations are taken over all (p′1, . . . , p
′
k) ∈ {0, 1}kℓ \ {(p1, . . . , pk)} (abbreviated as

(p′1, . . . , p
′
k) 6= (p1, . . . , pk) in the above), the (p1, . . . , pk) are defined in pat, and the unitaries Bk,1,

Ck,0, and Ck,1 are as defined in Algo. 7.1.

Proving Lem. 19. Similar as the proofs for Lem. 17 and 18, we establish Lem. 19 through
mathematical induction on the number t ∈ [T ], indicating the time at which the global counter
reaches the value k. Throughout this proof, we will monitor the evolution of the overall states in
both H

(J,pat)
k−1 and H

(J,pat)
k simultaneously. This is done in Sec. 9.1 and 9.2 respective.

9.1 Base Case (t = 1)

We first derive how the overall state evolves in H
(J,pat)
k−1 .

This base case corresponds to the very first time the global counter reaches value k. By definition,
this is due to the sq(k) query.

We assume w.l.o.g. that the overall state right before this query is some pure state |ρ〉. Then, by
definition, the sq(k) query corresponds to the following procedure: S first applies her local unitary
S (followed by the projector |↓〉〈↓|u which we hide as per Rmk. 12). Next, according to the notation
in Game 7.2,

– If bk = 0, then the operator DkCkBk |p1, . . . , pk〉〈p1, . . . , pk|p1...pk AkUgc will be applied;

– If bk = 1, then the operator Ck,0 |p1, . . . , pk〉〈p1, . . . , pk|p1...pk AkUgc will be applied.

In the following, we show the proof for bk = 0 only; the other case (i.e., bk = 1) can be established
using the same argument.

It follows from the above discussion that the state |ϕ(1)〉 in H
(J,pat)
1 can be written as follows:

|ϕ(1)〉 = DkCkBk |p1, . . . , pk〉〈p1, . . . , pk|p1...pk AkUgcS|ρ〉
= DkCkBk|p1, . . . , pk〉p1...pk |ρ̇p1,...,pk〉 (9.3)
= |p1, . . . , pk〉p1...pkDk,1Ck,1Bk,1|ρp1,...,pk〉 (9.4)
= |p1, . . . , pk〉p1...pk |ρ(1)p1,...,pk〉, (9.5)

where

– Eq. (9.3) follows by defining |ρp1,...,pk〉 := 〈p1, . . . , pk|p1...pkAkUgcS|ρ〉;

– Eq. (9.4) follows from the definitions of Bk, Ck, and Dk (see Algo. 7.1);

– Eq. (9.5) follows by defining |ρ(1)p1,...,pk〉 := Dk,1Ck,1Bk,1|ρp1,...,pk〉.

It is straightforward that the |ϕ(1)〉 shown in Eq. (9.5) satisfies the format shown in Eq. (9.1) when
t = 1.

Also, note that the game H
(J,pat)
k−1 and H

(J,pat)
k are identical so far and thus |ϕ(1)〉 = |ψ(1)〉.

Therefore, it follows from Eq. (9.5) that

|ψ(1)〉 = |p1, . . . , pk〉p1...pk |ρ(1)p1,...,pk〉.

Such a |ψ(1)〉 satisfies the format shown in Eq. (9.2) with t = 1 as well.
This finishes the proof for the base case t = 1.
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9.2 Induction Step (t ≥ 2)

We assume |ϕ(t−1)〉 and |ψ(t−1)〉 satisfy the requirements in Lem. 19, and show in the following that
Lem. 19 holds when the global counter reaches k for the t-th time.

We establish this claim by considering the following MECE (mutually exclusive and collectively
exhaustive) cases:

1. Case 1: The t-th arrival at value k happens because of the following operations performed by
the simulator S:

(a) S first applies her local unitary S and then makes18 an ↑-query, which brings the global
counter to k − 1;

(b) Next, S could perform any operations, as long as they keep the global counter ≤ k− 1. For
instance, S can choose to further rewind the execution by making another ↑-query, or S can
choose to make ↑ and ↓ queries that cause the global counter to jump between i − 1 and i
as long as i ≤ k− 1. The only restriction is that S will not bring the global counter back to
k (which is captured by the next step).
Defining Operator Υ : We define the operations performed by S as an operator Υ .

(c) After the application of Υ , the simulator S eventually makes a ↓-query that bring the global
counter back to k (i.e., exactly the t-th arrival at value k).

2. Case 1: The t-th arrival at value k happens because of the following operations performed by
the simulator S:

(a) S first applies her local unitary S and then makes a ↓-query, which brings the global counter
to k + 1;

(b) Next, S could perform any operations, as long as they keep the global counter ≥ k+ 1. For
instance, S can choose to make another ↓-query, or S can choose to make ↑ and ↓ queries
that cause the global counter to jump between i and i + 1 as long as i ≥ k + 1. The only
restriction is that S will not bring the global counter back to k (which is captured by the
next step).

(c) After the application of Λ, the simulator S eventually makes a ↑-query that bring the global
counter back to k (i.e., exactly the t-th arrival at value k).

Note that Steps 2a to 2c described above not only transition |ϕ(t−1)〉 to |ϕ(t)〉, but they also
transition |ψ(t−1)〉 to |ψ(t)〉. This is because these three steps maintain the global counter ≥ k,
and H

(J,pat)
k−1 and H

(J,pat)
k behave identically by definition until the global counter returns to k

(see Game 7.2).
Defining Operator Λ: We define the operations performed in Steps 2a to 2c as an operator
Λ.

In the following, we show the proof for these two cases in Sec. 9.2.1 respectively.

9.2.1 Proving the Induction Step: Case 1

We first describe formally how |ϕ(t−1)〉 (resp. |ψ(t−1)〉) evolves into |ϕ(t)〉 (resp. |ψ(t)〉) in Case 1.
According to the description in Case 1 and our notation in Game 7.2, it is clear that the states
18 Recall that this is determined by measuring the u reigster. And further recall that this measurement is replaced

with the projector |↓⟩⟨↓|u because we are in the sub-normalized game (see Game 7.2).
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|ϕ(t)〉 and |ψ(t)〉 in this case can be written respectively as:

|ϕ(t)〉 = DkCkBkAkUgcΥU
†
gcA
†
kB
†
kC
†
kD
†
kS|ϕ

(t−1)〉 (9.6)
|ψ(t)〉 = DkC̈kAkUgcΥU

†
gcA
†
kC̈
†
kD
†
kS|ψ

(t−1)〉, (9.7)

where the operator Υ is defined in Step 1b.
We first make a useful claim that specifies the registers on which the operator Υ (defined in

Step 1b) acts non-trivially. This claim can be treated as the analogue of Claim 10.

Claim 13 (Non-Trivial Registers for Υ ). The Υ defined in Step 1b acts non-trivially only on
registers m, u, s, p1 . . . pk−1, t1 . . . tk−1, lc, and gc (i.e., it works as the identity operator on the
other registers).

Proof of Claim 13. By definition, Υ only contains operations that happen when the global counter
is k − 1 or smaller.

Also, recall that we are talking about hybrids H(J,pat)
k−1 and H

(J,pat)
k now. Thus, all the ↓ and ↑

queries happening at global counter i ≤ k − 1 will be answered by the “dummy” operators V̈ and
V̈ † respective. (One exception is the Ṽ corresponding sq(i). But this does not matter in the current
proof—Right before the behaviors defined in Case 1 happen, the global counter is already k, which
implies that sq(i) (∀i ∈ [k]) has already happened and thus cannot be a part of the operator Υ .)

Therefore, according to our notation in Game 7.2, operator Υ can be written as Υ = ΓzΓz−1 · · ·Γ1
(for some integer z) where each Γi (i ∈ [z]) comes from the set of operators {S,Ugc}∪{Ai}i∈[k−1] ∪
{C̈i}i∈[k−1] ∪ {Di}i∈[k−1]. It then follows from Table 1 that Υ acts non-trivially only on registers m,
u, s, p1 . . . pk−1, t1 . . . tk−1, lc, and gc.

This completes the proof of Claim 13.

High-Level Idea for the Sequel. Recall that our eventual goal is to prove that the states |ϕ(t)〉
and |ψ(t)〉 are of the format shown in Eq. (9.1) and (9.2) in Lem. 18. At a high level, we prove it
by applying Lem. 6 to Eq. (9.6) and (9.7). But we first need to perform some preparation work,
putting Eq. (9.6) and (9.7) into a format that is more “compatible” with Lem. 6. In the sequel,
we first perform the preparation work in Claims 14 and 15. Then, we show on Page 95 how to use
Claims 14 and 15 to complete the proof for the induction step.

The following Claim 14 can be treated as an analogue of Claim 11.

Claim 14. There exist (possibly sub-normalized) pure states {ρ̇(t−1)
p′1,...,p

′
k
}(p′1,...,p′k)∈{0,1}kℓ so that the

following holds

|ϕ(t)〉 = DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
k

(
|p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk

〉+∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t−1)
p′1,...,p

′
k
〉
)

(9.8)

|ψ(t)〉 = DkC̈kUgcΥ
pk/mU †gcC̈

†
k

(
|p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk

〉+∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t−1)
p′1,...,p

′
k
〉
)

(9.9)
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where Υ pk/m is identical to the Υ defined in Step 1b, except that it treats register pk as m, and the
summations are taken over all (p′1, . . . , p′k) ∈ {0, 1}kℓ \ {(p1, . . . , pk)} (abbreviated as (p′1, . . . , p

′
k) 6=

(p1, . . . , pk) in the above).

Proof of Claim 14. First, notice that

AkUgcΥU
†
gcA
†
k = AkUgcΥA

†
kU
†
gc (9.10)

= AkUgcA
†
kΥ

pk/mU †gc (9.11)
= AkA

†
kUgcΥ

pk/mU †gc (9.12)
= UgcΥ

pk/mU †gc, (9.13)

where
– Eq. (9.10) and (9.12) follows from the fact that Ugc acts non-trivially on different registers from
Ak;

– Eq. (9.11) from the fact that Υ acts as the identity operator on pk (see Claim 13) and that Ak
is nothing but a swap operator between m and pk (see Algo. 6.1).

Proving Eq. (9.8). We now show the derivation for |ϕ(t)〉:

|ϕ(t)〉 = DkCkBkAkUgcΥU
†
gcA
†
kB
†
kC
†
kD
†
2S|ϕ

(t−1)〉 (9.14)
= DkCkBkUgcΥ

pk/mU †gcB
†
kC
†
kD
†
kS|ϕ

(t−1)〉 (9.15)

= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
kD
†
kS

(
|p1, . . . , pk〉p1...pk |ρ(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉
)

(9.16)

= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
kD
†
k

(
|p1, . . . , pk〉p1...pkS|ρ(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkSCk,0B
†
k,1C

†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉
)

(9.17)

= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
k

(
|p1, . . . , pk〉p1...pkD

†
k,1S|ρ

(t−1)
p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkSCk,0B
†
k,1C

†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉
)

(9.18)

= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
k

(
|p1, . . . , pk〉p1...pkD

†
k,1S|ρ

(t−1)
p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0Stk/mB†k,1C
†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉
)

(9.19)

= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
k

(
|p1, . . . , pk〉p1...pkD

†
k,1S|ρ

(t−1)
p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1S

tk/m|ρ(t−1)
p′1,...,p

′
k
〉
)

(9.20)
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= DkCkBkUgcΥ
pk/mU †gcB

†
kC
†
k

(
|p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t−1)
p′1,...,p

′
k
〉
)
, (9.21)

where
– Eq. (9.14) follows from Eq. (9.6);
– Eq. (9.15) follows from Eq. (9.13);
– Eq. (9.16) follows from our induction assumption;
– Eq. (9.17) from from the fact that S acts as the identity operator on registers p1 . . . pk (see

Table 1);
– Eq. (9.18) from the definition of Dk (see Algo. 7.1);
– Eq. (9.19) from the fact that S acts as the identity operator on tk (see Table 1) and Ck,0 is

nothing but a swap operator between tk and m (see Algo. 7.1); (Note that Stk/m is defined to
be an operator that is identical to S except that it treats tk as m.)

– Eq. (9.20) follows from the fact that Stk/m acts non-trivially on different registers from Bk,1 and
Ck,1 (see Table 1);

– Eq. (9.21) follows by defining |ρ̇
(t−1)
p1,...,pk〉 := D†k,1S|ρ

(t−1)
p1,...,pk〉

|ρ̇(t−1)
p′1,...,p

′
k
〉 := Stk/m|ρ(t−1)

p′1,...,p
′
k
〉 ∀(p′1, . . . , p′k) ∈

(
{0, 1}kℓ \ {(p1, . . . , pk)}

)
.

(9.22)

Eq. (9.21) finishes the proof of Eq. (9.8) in Claim 14.

Proving Eq. (9.9). We now show the derivation for |ψ(t)〉. This is almost identical to the above proof
for Eq. (9.8). Nevertheless, we present it for the sake of completeness.

|ψ(t)〉 = DkC̈kAkUgcΥU
†
gcA
†
kC̈
†
kD
†
kS|ψ

(t−1)〉 (9.23)
= DkC̈kUgcΥ

pk/mU †gcC̈
†
kD
†
kS|ψ

(t−1)〉 (9.24)

= DkC̈kUgcΥ
pk/mU †gcC̈

†
kD
†
kS

(
|p1, . . . , pk〉p1...pk |ρ(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ
(t−1)
p′1,...,p

′
k
〉
)

(9.25)

= DkC̈kUgcΥ
pk/mU †gcC̈

†
k

(
|p1, . . . , pk〉p1...pkD

†
k,1S|ρ

(t−1)
p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0Stk/m|ρ(t−1)
p′1,...,p

′
k
〉
)

(9.26)

= DkC̈kUgcΥ
pk/mU †gcC̈

†
k

(
|p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t−1)
p′1,...,p

′
k
〉
)
, (9.27)

where
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– Eq. (9.23) follows from Eq. (9.7);
– Eq. (9.24) follows from Eq. (9.13);
– Eq. (9.25) follows from our induction assumption;
– Eq. (9.26) follows from a similar argument as we did to derive Eq. (9.20) from Eq. (9.16);

– Eq. (9.27) follows from the same definitions of |ρ̇(t−1)p1,...,pk〉 and |ρ̇(t−1)
p′1,...,p

′
k
〉 as shown in Expres-

sion (9.22).
Eq. (9.27) finishes the proof of Eq. (9.9) in Claim 14.

This completes the proof of Claim 14.

The following Claim 15 can be treated as an analogue of Claim 12.
Claim 15. Let Υ pk/m and {ρ̇(t−1)

p′1,...,p
′
k
}(p′1,...,p′k)∈{0,1}kℓ be as defined in Claim 14. Let

|γ(t−1)0 〉 := |p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk
〉+

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t−1)
p′1,...,p

′
k
〉

(9.28)

|γ(t−1)1 〉 := |p1, . . . , pk〉p1...pk |ρ̇(t−1)p1,...,pk
〉+

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t−1)
p′1,...,p

′
k
〉 (9.29)

|γ(t)0 〉 := CkBkUgcΥ
pk/mU †gcB

†
kC
†
k|γ

(t−1)
0 〉 (9.30)

|γ(t)1 〉 := C̈kUgcΥ
pk/mU †gcC̈

†
k|γ

(t−1)
1 〉. (9.31)

Then, there exist (possibly sub-normalized) pure states {ρ̇(t)
p′1,...,p

′
k
}(p′1,...,p′k)∈{0,1}kℓ so that the following

holds:

|γ(t)0 〉 = |p1, . . . , pk〉p1...pk |ρ̇
(t)
p1,...,pk

〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t)
p′1,...,p

′
k
〉 (9.32)

|γ(t)1 〉 = |p1, . . . , pk〉p1...pk |ρ̇
(t)
p1,...,pk

〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t)
p′1,...,p

′
k
〉. (9.33)

Proof of Claim 15. This claim follows from an application of Lem. 6, with the notation correspon-
dence listed in Table 4. We provide a detailed explanation below.

First, we argue that the premises in Lem. 6 are satisfied with the notation listed in Table 4:
– Lem. 6 requires that W1 should act as the identity operator on register s. In terms of the

Claim 15 notation, this is satisfied by Ck,1 (playing the role of W1) who works as identity on
registers u, s, t1 . . . tk−1, gc, and lc (playing the role of registers s). (Recall Ck,1 from Table 1.)

– Lem. 6 requires that W0 should be the swap operator between m and t. In terms of the Claim 15
notation, this is satisfied by Ck,0 (playing the role of W0), who is the swap operator between
registers m and tk (playing the role of m and t respectively). (Recall Ck,0 from Algo. 7.1.)

– Lem. 6 requires that W̃ is the identity operator on branch |a〉a and is identical to W0 on branches
|a′〉a with a′ 6= a. In terms of the Claim 15 notation, this is satisfied by C̈k (playing the role
of W̃ ), who is the identity operator on branch |p1, . . . , pk〉p1...pk (playing the role of |a〉a) and is
identical to Ck,0 (playing the role of W0) on branches |p′1, . . . , p′k〉p1...pk (playing the role of |a′〉a)
with (p′1, . . . , p

′
k) 6= (p1, . . . , pk). (Recall C̈k from Algo. 7.1)
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Table 4: Notation Correspondence between Lem. 6 and Claim 15

Registers Operators Random Variables

In Lem. 6 In Claim 15 In Lem. 6 In Claim 15 In Lem. 6 In Claim 15

a p1 . . . pk W1 Ck,1 |a⟩a |p1, . . . , pk⟩p1...pk
m m W0 Ck,0 |a′⟩a |p′1, . . . , p′k⟩p1...pk
t tk W Ck |ρ(in)a ⟩mtso |ρ̇(t−1)

p1,...,pk ⟩
s u, s, t1 . . . tk−1, gc, lc W̃ C̈k |ρ(in)a′ ⟩mtso |ρ̇(t−1)

p′1,...,p
′
k
⟩

o other registers U1 Bk,1 |η(in)0 ⟩ |γ(t−1)
0 ⟩

U Bk |η(in)1 ⟩ |γ(t−1)
1 ⟩

S UgcΥ
pk/mU†

gc |ρ(out)a ⟩mtso |ρ̇(t)p1,...,pk ⟩
|ρ(out)a′ ⟩mtso |ρ̇(t)

p′1,...,p
′
k
⟩

|η(out)0 ⟩ |γ(t)
0 ⟩

|η(out)1 ⟩ |γ(t)
1 ⟩

– Lem. 6 requires that U1 should work as identity on register s. In terms of the Claim 15 nota-
tion, this is satisfied by Bk,1 (playing the role of U1), who works as identity on registers u, s,
t1 . . . tk−1, gc, and lc (playing the role of register s). (Recall Bk,1 from Table 1.)

– Lem. 6 requires that S should act non-trivially only on registers a and s. In terms of the Claim 15
notation, this is satisfied by UgcΥ

pk/mU †gc (playing the role of S)—recall from Claim 13 that Υ
acts non-trivially on registers m, u, s, p1 . . . pk−1, t1 . . . tk−1, lc, and gc. Thus, UgcΥ pk/mU †gc acts
non-trivially on registers pk, u, s, p1 . . . pk−1, t1 . . . tk−1, lc, and gc, which constitute registers
a and s (see Table 4).

Finally, we apply Lem. 6 (with the notation in Table 4) to the |γ(t−1)0 〉 and |γ(t−1)1 〉 defined
in Eq. (9.28) and (9.29) (playing the role of |η(in)0 〉 and |η(in)1 〉 in Lem. 6). This implies the ex-
istence of (possibly sub-normalized) pure states {|ρ̇(t)

p′1,...,p
′
k
〉}(p′1,...,p′k)∈{0,1}kℓ (playing the role of

{|ρ(out)a′ 〉mtso}a′∈{0,1}ℓ in Lem. 6) such that the following holds

|γ(t)0 〉 = |p1, . . . , pk〉p1...pk |ρ̇
(t)
p1,...,pk

〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t)
p′1,...,p

′
k
〉

|γ(t)1 〉 = |p1, . . . , pk〉p1...pk |ρ̇
(t)
p1,...,pk

〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t)
p′1,...,p

′
k
〉,

which are exactly Eq. (9.32) and (9.33) in Claim 15.
This completes the proof of Claim 15.

Finishing the Proof for the Induction Step. With Claims 14 and 15 at hand, we now finish
the proof for the induction Step.

Proof for Eq. (9.1). We first establish Eq. (9.1):

|ϕ(t)〉 = Dk|γ
(t)
0 〉 (9.34)
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= Dk

(
|p1, . . . , pk〉p1...pk |ρ̇(t)p1,...,pk〉+

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t)
p′1,...,p

′
k
〉
)

(9.35)

= |p1, . . . , pk〉p1...pkDk,1|ρ̇(t)p1,...,pk〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ̇

(t)
p′1,...,p

′
k
〉

(9.36)

= |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ

(t)
p′1,...,p

′
k
〉, (9.37)

where
– Eq. (9.34) follows from Eq. (9.8) in Claim 14 and Eq. (9.30) in Claim 15;
– Eq. (9.35) follows from Eq. (9.32) in Claim 15;
– Eq. (9.36) follows from the definition of Dk (see Algo. 7.1);
– Eq. (9.37) follows by defining |ρ

(t)
p1,...,pk〉 := Dk,1|ρ̇

(t)
p1,...,pk〉

|ρ(t)
p′1,...,p

′
k
〉 := |ρ̇(t)

p′1,...,p
′
k
〉 ∀(p′1, . . . , p′k) ∈

(
{0, 1}kℓ \ {(p1, . . . , pk)}

)
.

(9.38)

Note that Eq. (9.37) is exactly Eq. (9.1) in Lem. 19.

Proof for Eq. (9.2). Next, we establish Eq. (9.2):

|ψ(t)〉 = Dk|γ
(t)
1 〉 (9.39)

= Dk

(
|p1, . . . , pk〉p1...pk |ρ̇(t)p1,...,pk〉+

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t)
p′1,...,p

′
k
〉
)

(9.40)

= |p1, . . . , pk〉p1...pkDk,1|ρ̇(t)p1,...,pk〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ̇
(t)
p′1,...,p

′
k
〉 (9.41)

= |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉+
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ
(t)
p′1,...,p

′
k
〉, (9.42)

where
– Eq. (9.39) follows from Eq. (9.9) in Claim 14 and Eq. (9.31) in Claim 15;
– Eq. (9.40) follows from Eq. (9.33) in Claim 15;
– Eq. (9.41) follows from the definition of Dk (see Algo. 7.1);

– Eq. (9.42) follows from the same definitions of |ρ(t)p1,...,pk〉 and |ρ(t)
p′1,...,p

′
k
〉 shown in Expression (9.38).

Note that Eq. (9.42) is exactly Eq. (9.2) in Lem. 19.

This completes the proof of the induction step of Lem. 19 for Case 1.

9.2.2 Proving the Induction Step: Case 2
According to the description of Case 2, it holds that

|ϕ(t)〉 = Λ|ϕ(t−1)〉 (9.43)
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|ψ(t)〉 = Λ|ψ(t−1)〉, (9.44)

where recall that the operator Λ was defined toward the end of the description of Case 2.

Structure of Λ. While the exact format of Λ will not be substantial, our proof of Case 2 will rely
on certain properties of Λ. We formalize these useful properties in the following Claim 16, which
can be treated as an analogue of Claim 9.

Claim 16. For the operator Λ defined above, there exist two operators Λ0 and Λ1 so that

– both Λ1 and Λ0 act as the identity operator on p1 . . . pk;
– Λ0 acts as the identity operator on tk;

and the following holds

Λ = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ Λ1 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗ Λ0, (9.45)

Λ0Ck,0 = Ck,0Λ
tk/m
0 , (9.46)

Λ0Ck,0B
†
k,1C

†
k,1 = Ck,0B

†
k,1C

†
k,1Λ

tk/m
0 , (9.47)

where Λ
tk/m
0 is identical to Λ0 except that it treats tk as m, and the summation is taken over all

(p′1, . . . , p
′
k) ∈ {0, 1}kℓ \ {(p1, . . . , pk)} (abbreviated as (p′1, . . . , p

′
k) 6= (p1, . . . , pk) in the above).

Proof of Claim 16. First, note that Λ can be written as Λ = ΓzΓz−1 · · ·Γ1 (for some integer z),
where each Γi (i ∈ [z]) comes from the following set

{S,Ugc} ∪ {(Ai, Bi, Ci, Di)}i∈{k+1,k+2,...,K} ∪ {|p1, . . . , pi〉〈p1, . . . , pi|p1...pi}i∈{k+1,k+2,...,K}. (9.48)

This is because Λ only corresponds to the operations that happen when the global counter “jumps”
between some i and i+ 1 with i ≥ k (see Game 7.2). We remark that S may also apply projectors
on u, but we consider it as a part of S as per Rmk. 12.

Therefore, to prove Claim 16, it suffices to show that for each operator Γ in the set shown in
Expression (9.48), there exist two operators Γ0 and Γ1 so that

– both Γ1 and Γ0 act as the identity operator on p1 . . . pk;
– Γ0 acts as the identity operator on tk;

and the following holds

Γ = |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ Γ1 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗ Γ0,
Γ0Ck,0 = Ck,0Γ

tk/m
0 ,

Γ0Ck,0B
†
k,1C

†
k,1 = Ck,0B

†
k,1C

†
k,1Γ

tk/m
0 .

In the following, we prove it for each possible Γ .
First, notice that the above is true for Γ = |p1, . . . , pi〉〈p1, . . . , pi|p1...pi for each i ∈ {k + 1, k +

2, . . . ,K}, simply because such a Γ can be written in the following format:

Γ = |p1, . . . , pi〉〈p1, . . . , pi|p1...pi
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= |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ Γ1 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗ Γ0,
with Γ1 := |pk+1, pk+2 . . . , pi〉〈pk+1, pk+2 . . . , pi|pk+1...pi

and Γ0 := I, and such a Γ0 vacuously satisfies
the requires Γ0Ck,0 = Ck,0Γ

tk/m
0 and Γ0Ck,0B

†
k,1C

†
k,1 = Ck,0B

†
k,1C

†
k,1Γ

tk/m
0 .

The above is true for Γ = Ugc as well, because Ugc acts non-trivially only on register gc.
The above is also true for Γ = S because (1) S does not act on p1 . . . pk, (2) S does not act on

tk and Ck,0 is nothing but a swap operator between m and tk, and (3) Stk/m acts non-trivially on
different registers from Bk,1 and Ck,1 (see Table 1).

The above is true for Γ ∈ {Ai}i∈{k+1,k+2,...,K} as well, because for each i ∈ {k+1, k+2, . . . ,K},
Ai is nothing but the swap operator between registers pi and m (see Algo. 6.1).

The only cases left are Γ ∈ {(Bi, Ci, Di)}i∈{k+1,k+2,...,K}. The proof for these cases are (almost)
identical. In the following, we only present the proof for Γ = Ci (∀i ∈ {k + 1, k + 2, . . . ,K}) as a
representative example:

Γ = Ci

= |p1, . . . , pi〉〈p1, . . . , pi|p1...pi ⊗ Ci,1 +
∑

(p′1,...,p
′
i) ̸=(p1,...,pi)

∣∣p′1, . . . , p′i〉〈p′1, . . . , p′i∣∣p1...pi ⊗ Ci,0 (9.49)

= |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ |pk+1, . . . , pi〉〈pk+1, . . . , pi|pk+1...pi
⊗ Ci,1 +∑

(p′1,...,p
′
i) ̸=(p1,...,pi)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗ ∣∣p′k+1, . . . , p
′
i

〉〈
p′k+1, . . . , p

′
i

∣∣
pk+1...pi

⊗ Ci,0

= |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ |pk+1, . . . , pi〉〈pk+1, . . . , pi|pk+1...pi
⊗ Ci,1 +

|p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗
( ∑

(p′k+1,...,p
′
i) ̸=(pk+1,...,pi)

∣∣p′k+1, . . . , p
′
i

〉〈
p′k+1, . . . , p

′
i

∣∣
pk+1...pi

)
⊗ Ci,0 +

∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗( ∑
(p′k+1,...,p

′
i)∈{0,1}(i−k)·ℓ

∣∣p′k+1, . . . , p
′
i

〉〈
p′k+1, . . . , p

′
i

∣∣
pk+1...pi

)
⊗ Ci,0

= |p1, . . . , pk〉〈p1, . . . , pk|p1...pk ⊗ Γ1 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

∣∣p′1, . . . , p′k〉〈p′1, . . . , p′k∣∣p1...pk ⊗ Γ0, (9.50)

where Eq. (9.49) follows from the definition of Ci (see Algo. 7.1), and Eq. (9.50) follows by defining
Γ0 and Γ1 as follows

Γ1 := |pk+1, . . . , pi〉〈pk+1, . . . , pi|pk+1...pi
⊗ Ci,1 +( ∑

(p′k+1,...,p
′
i) ̸=(pk+1,...,pi)

∣∣p′k+1, . . . , p
′
i

〉〈
p′k+1, . . . , p

′
i

∣∣
pk+1...pi

)
⊗ Ci,0

Γ0 :=

( ∑
(p′k+1,...,p

′
i)∈{0,1}(i−k)·ℓ

∣∣p′k+1, . . . , p
′
i

〉〈
p′k+1, . . . , p

′
i

∣∣
pk+1...pi

)
⊗ Ci,0.

Clearly, such a Γ0 satisfies the requires Γ0Ck,0 = Ck,0Γ
tk/m
0 and Γ0Ck,0B†k,1C

†
k,1 = Ck,0B

†
k,1C

†
k,1Γ

tk/m
0 ,

because (1) we are in the case i ∈ {k + 1, k + 2, . . . ,K}, (2) Ci,0 is nothing but a swap operator
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between m and ti, and (3) Ctk/m
i,0 acts non-trivially on different registers from Bk,1 and Ck,1 (see

Table 1).

This finishes the proof of Claim 16.

Finishing the Proof for Case 2. With Claim 16 in hand, we now show how to finish the proof
for Case 2.

Proof of Eq. (9.1). First, we establish Eq. (9.1):

|ϕ(t)〉 = Λ|ϕ(t−1)〉 (9.51)

= Λ

(
|p1, . . . , pk〉p1...pk |ρ(t−1)p1,...,pk

〉 +∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉
)

(9.52)

= |p1, . . . , pk〉p1...pkΛ1|ρ(t−1)p1,...,pk
〉 +∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkΛ0Ck,0B
†
k,1C

†
k,1|ρ

(t−1)
p′1,...,p

′
k
〉 (9.53)

= |p1, . . . , pk〉p1...pkΛ1|ρ(t−1)p1,...,pk
〉 +∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1Λ

tk/m
0 |ρ(t−1)

p′1,...,p
′
k
〉 (9.54)

= |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0B
†
k,1C

†
k,1|ρ

(t)
p′1,...,p

′
k
〉,

(9.55)

where
– Eq. (9.51) follows from Eq. (9.43);
– Eq. (9.52) follows from our induction assumption;
– Eq. (9.53) follows from Eq. (9.45) in Claim 16;
– Eq. (9.54) follows from Eq. (9.47) in Claim 16;
– Eq. (9.55) follows by defining |ρ

(t)
p1,...,pk〉 := Λ1|ρ(t−1)p1,...,pk〉

|ρ(t)
p′1,...,p

′
k
〉 := Λ

tk/m
0 |ρ(t−1)

p′1,...,p
′
k
〉 ∀(p′1, . . . , p′k) ∈

(
{0, 1}kℓ \ {(p1, . . . , pk)}

)
.

(9.56)

Clearly, Eq. (9.55) is of the same format as Eq. (9.1) in Lem. 19.

Proof of Eq. (9.2). Next, we present the derivation for Eq. (9.2):

|ψ(t)〉 = Λ|ψ(t−1)〉 (9.57)

= Λ

(
|p1, . . . , pk〉p1...pk |ρ(t−1)p1,...,pk

〉 +

99



∑
(p′1,...,p

′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ
(t−1)
p′1,...,p

′
k
〉
)

(9.58)

= |p1, . . . , pk〉p1...pkΛ1|ρ(t−1)p1,...,pk
〉 +∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkΛ0Ck,0|ρ
(t−1)
p′1,...,p

′
k
〉 (9.59)

= |p1, . . . , pk〉p1...pkΛ1|ρ(t−1)p1,...,pk
〉 +∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0Λ
tk/m
0 |ρ(t−1)

p′1,...,p
′
k
〉 (9.60)

= |p1, . . . , pk〉p1...pk |ρ(t)p1,...,pk〉 +
∑

(p′1,...,p
′
k) ̸=(p1,...,pk)

|p′1, . . . , p′k〉p1...pkCk,0|ρ
(t)
p′1,...,p

′
k
〉, (9.61)

where
– Eq. (9.57) follows from Eq. (9.44);
– Eq. (9.58) follows from our induction assumption;
– Eq. (9.59) follows from Eq. (9.45) in Claim 16;
– Eq. (9.60) follows from Eq. (9.46) in Claim 16;

– Eq. (9.61) follows from the same definitions of |ρ(t)p1,...,pk〉 and |ρ(t)
p′1,...,p

′
k
〉 as shown in Expres-

sion (9.56).
Clearly, Eq. (9.61) is of the same format as Eq. (9.2) in Lem. 19.

This completes the proof of the induction step of Lem. 19 for Case 2.

Finally, we remark that our proof for the base case in Sec. 9.1 and the proof for the induction
step in Sec. 9.2 together finish the proof of Lem. 19, which in turn finishes the proof of Lem. 13
eventually.

10 On Expected-Polynomial Time Simulator and Efficient Verifier

In this section, we will fully show how the result Thm. 2 also works with expected polynomial-time
simulator and how to make the malicious verifier designed in Sec. 6.1.2 efficient.

We first describe the high-level ideas and intuition.

Expected Polynomial-Time Simulator. To show that our lower bound holds for expected
polynomial time simulator, we follow the idea in [CCLY21]. The idea is to design a modified
random-terminating malicious verifier Vexp based on Ṽ designed in Sec. 6.1.2. If there exists any
simulator Sexp that runs in expected polynomial time and SVexpexp outputs an accepting view, then we
can turn Sexp into a strict-polynomial time simulator S, which would violate our already proven
lower bound.

The new verifier Vexp is as follows. Vexp operates an honest verifier V and a random-terminating
verifier Ṽ designed in Sec. 6.1.2 in superposition, by using a control-qubit in an additional register
Cont:

|ψ̃〉Cont,aux =
1√
2
(|0〉Cont + |1〉Cont)⊗ |ψε〉aux,
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where |ψε〉aux is defined as:

|ψε〉aux :=
∑
H∈Hε

√
D(H)|H〉aux,

where H ∈ Hε is the function family defined in Def. 7 and D is the density function corresponding
to Hε.

The hope is that if we have any expected-polynomial time simulator Sexp, we run it up to a fixed
q number of steps and simply stop– the final output view of this ”truncated” simulator S with Vexp
is still an accepting one, with inverse polynomial probability. More importantly, we not only want
any accepting view, we also want the random-terminating branch of the verifier Vexp to be accepting
in this case, because otherwise we would not be able to transform the simulator-verifier interaction
SVexp into the BQP decider we designed in Sec. 6.2. Here comes how we use the control-qubit: at
the end of the protocol’s execution between S and Vexp, we show that the state in register Cont
has a large enough weight on the |1〉 component. Therefore, if we measure Cont in the end, there
is a large probability that we fall into the branch where we use the random-terminating Ṽ .

A major technical task we deal with is to ensure that the state in Cont is a pure state with
a specific format at the end of the protocol execution, for the rest of the arguments in [CCLY21]
to go through. To make sure that the final state in the Cont register is pure, [CCLY21] uses an
”adjusting” unitary when the verifier Vexp operates on the |0〉 (i.e. honest verifier branch) at the
end of the protocol execution, to disentangle the aux register and the Cont register. Our adjusting
unitary has the same design as in [CCLY21], but the analysis on why this procedure helps us
achieve the above goal deviates from the analysis of [CCLY21]. In [CCLY21], the proof considers
the verifier to take input a fixed classical randomness, which we don’t use in the quantum setting.
But we make the observation that the use of a fixed classical randomness is not necessary for the
proof. We will prove the corresponding lemma in our scenario and connect it with the rest of the
proofs.

Efficient Malicious Verifier. Note that the state |ψε〉aux is exponentially large, but we will use
the same method as in [CCLY21] to make our verifier efficient, by modifying a 2q-independent hash
function to simulate the functins in the family Hε.

10.1 Expected Polynomial-Time Simulator

We first cite a lemma from [CCLY21]. This lemma helps us make sure that the qubit in register
Cont remains as a pure state for the rest of the arguments to go through.

To achieve this, we must let the verifier Vexp apply an ”adjusting” unitary when operating under
the |0〉 (i.e. honest verifier) branch, The following unitary will be used at the end of the honest
verifier brancha and performs the following task: for any K-round prover message p, it adjusts the
aux register to have support only on the H’s that satisfies H(p) = 1.

Lemma 20 (Lemma 3.8 [CCLY21]). For any p = (p1, ..., pk) ∈ Mk, let Sp ⊆ Hε :M≤K →
{0, 1} be the subset consisting of all H such that H(p1, ..., pi) = 1 for all i ∈ [K]. There exists a
unitary Up such that

Up

∑
H∈Hε

√
D(H)|H〉aux =

∑
H∈Sp

√
D(H)

εK
|H〉aux.

The proof is the same as in [CCLY21] and we omit it here.
Next, we describe how the new malicious verifier Vexp works.
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Vexp uses the control-qubit Cont to control whether to apply an honest verifier unitary Vhon or
a random-terminating verifier unitary Ṽ defined in Sec. 6.1.2.

Vexp(|0〉Cont|other0〉other + |1〉Cont|other1〉other)

=|0〉ContVhon|other0〉other + |1〉ContṼ |other1〉other

where the other register refers to all the other registers the verifier will ever act on.
Additionally, the honest unitary Vhon applies the unitary Up from the Lem. 20 to register Cont

at the end of the protocol. More specifically, Vhon operates as follows:

Honest Vhon: it non-trivially acts on registers ins, gc, lc, p1, · · · , pK, v1, · · · , vK, t1, · · · , tK, m, w, aux
defined in Sec. 6.1.1:
1. It reads the value j in gc and increments it to i = j + 1 mod C 19. It swaps m and pi.
2. If the value in the global counter gc is i < K, it then applies the honest verifier’s unitary at

round i to registers ins, p1, · · · , pK, v1, · · · , vK, m, w. Note that register aux is not used by the
honest verifier because it only contains the function used for determining random termination.

3. If the value in the global counter gc is K , then it first applies the honest verifier’s unitary in
the corresponding round, then applies the adjusting unitary Up to p1, · · · , pK and aux:

|p1, · · · , pK ,H〉 → Up|p1, · · · , pK ,H〉

Next, we show that by running the above new malicious verifier Vexp with an honest prover P
on some instance x ∈ L, the final state in register Cont will be negligibly close to a pure state
that contains 1

εK+1
fraction of weight on the |0〉 component and εK

εK+1
fraction of weight on the |1〉

component.

Lemma 21. For any x ∈ L∩{0, 1}λ and w ∈ RL(x), suppose that we run 〈P (w), Vexp(|ψ̃ε〉)〉(x) and
measure the final output register and obtain outcome 1. Then the resulting state in Cont (tracing
out other registers) is negligibly close to |ϕε〉Cont :=

√
1

1+εK
|0〉Cont +

√
εK

1+εK
|1〉Cont.

Proof. We adapt the proof in [CCLY21] to be of use in our setting. By the completeness of the
honestly executed protocol Π, the completeness error is negl(λ).

Let |η〉 be the final state of the internal register of Vexp after executing 〈P (w), Vexp(|ψ̃ε〉)〉(x).
We additionally note that the final output register that stores Vexp’s decision bit is called d (defined
in Sec. 5.1.2). We denote Acc as a final measurement on the d register in the computational basis.

For β ∈ {0, 1}, let |ηβ〉 be the final state of the internal register of Vexp after executing
〈P (w), Vexp(|ψ̃ε〉)〉(x). where |ψ̃(β)

ε 〉Cont,aux := |β〉Cont ⊗ |ψε〉aux. Since Vexp only uses Cont as a
control register and |ψ̃ε〉Cont,aux = 1√

2

(
|ψ̃(0)
ε 〉Cont,aux + |ψ̃

(1)
ε 〉Cont,aux

)
, it is easy to see that we

have

|η〉 = 1√
2
(|η0〉+ |η1〉) . (10.1)

In the following, when we consider summations over H (they are over all H ∈ Hε, respectively,
unless otherwise specified) and prover messages p = (p1, · · · , pK).
19 C = 2λ defined in in Sec. 6.1.1.
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By the definition of Vexp and Lemma 20, we have

|η0〉 = Up|0〉Cont|x〉ins|K〉gc ⊗

(∑
p

αp

(∑
H

√
D(H)|H〉aux

)
|p〉p1,...,pK |otherp〉other|bp〉d

)

= |0〉Cont|x〉ins|K〉gc ⊗

∑
p

αp

 ∑
H∈Sp

√
D(H)

εK
|H〉aux

 |p〉p1,...,pK |otherp〉other|bp〉d


where p is prover’s messages and the register other refers to the concatenation of the registers w,
m, lc, v1 · · · vK, and t1, · · · , tK. The |otherp〉other is some sub-normalized state. The verifier’s final
output decision state |bp〉 in register d is dependent on the contents in register other.

Since Vhon is an honest verifier’s unitary except applying Up at the very end: the registers
p1 · · · pk, other, and d will evolve to exactly what they will be at the end of an honestly executed
protocol before Up is applied. After we apply Up, the only change is the weight on the aux register
for each p, according to Lem. 20. Also note that since P is an honest prover, the register lc and gc

will always have the same value throughout the protocol and the registers t1, · · · , tK are not used.
While for each p, the corresponding other register may hold a mixed state, the analysis assuming
other holding a pure state is without loss of generality.

By the completeness of Π, we have Pr[Acc(|η0〉) = 1] = 1− negl(λ). This implies

|η0〉 ≈ |0〉Cont|x〉ins|K〉gc ⊗

∑
p

αp,1

 ∑
H∈Sp

√
D(H)

εk
|H〉aux

 |p〉p1,...,pk |otherp,1〉other
 |1〉d

(10.2)

where ≈ means that the trace distance between both sides is negl(λ). The register p1, · · · , pk, other
now contains a state such that the final output bp = 1.

On the other hand, by the definition of Vexp, the value in d of |η1〉 can be 1 only if H ∈ Sp for
the transcript p. Therefore we have

|η1〉 = |1〉Cont|x〉ins|K〉gc ⊗

( ∑
p αp,1

∑
H∈Sp

(√
D(H)|H〉aux ⊗ |p〉p1,...,pk |otherp,1〉other ⊗ |1〉d

)
+ |garbage〉aux,p1,...,pk,other ⊗ |0〉d

)
for some (sub-normalized) state |garbage〉aux,p1,...,pk,other ⊗ |0〉d. By our design of the random-
terminating adversary Ṽ , conditioned on that H ∈ Sp, Ṽ performs the same operations as the
honest verifier does on the registers p1, · · · , pk, other. Ṽ can also easily uncompute the registers
t1, · · · , tK used to store aborting information for each round, which are not used in |η0〉. Therefore,
if we have b = 1 in register d, the state over the registers p1, · · · , pk, other is exactly the same as
the state over registers p1, · · · , pk, other in |η0〉 (conditioned on b = 1 in d).

By a similar argument to that for |η0〉, we have

|η1〉 ≈ |1〉Cont|x〉ins|K〉gc ⊗

( ∑
p αp,1

∑
H∈Sp

(√
D(H)|H〉aux

)
⊗ |p〉p1,...,pk |otherp,1〉other ⊗ |1〉d

+ |garbage〉aux,p1,...,pk,other|0〉d

)
(10.3)

By eq. (10.1) to (10.3), we have

(|1〉〈1|)d|η〉 ≈
1√
2

(√
1

εK
|0〉Cont + |1〉Cont

)
⊗ |x〉ins|K〉gc
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⊗
∑
p

αp,1

∑
H∈Sp

(√
D(H)|H〉aux

)
|p〉p1,...,pk |otherp,1〉other ⊗ |1〉d.

We omit the identity operator on registers other than d and (|1〉〈1|)d simply means the projection
onto states whose values in d is 0.

By normalization, we can see that the final state in Cont conditioned on the measurement
outcome of d is 1 is negligibly close to |ϕε〉Cont.

The rest of the proof follows from [CCLY21] Section 3.2. We describe the ideas here. Suppose
that there is a quantum black-box simulator Sexp for the protocol Π whose expected number of
queries is at most q/2 = poly(λ) that works for all possibly inefficient verifiers, then we can truncate
it into a strict polynomial time simulator S that makes only q queries based on the following
arguments:

1. The probability that Vexp accepts and the number of Sexp’s queries is at most q is at least
1/4− negl(λ) (See [CCLY21] Lemma 3.10).

2. The final state in Cont after the execution of SVexp(|ψ̃ε⟩)
exp conditioned on the above event is

negligibly close in trace distance to |ϕε〉 defined in Lem. 21 (See [CCLY21] Lemma 3.11).
In the end, we can argue that the truncated simulator S interacting with Vexp(|ψ̃ε〉) will lead to

an accepting view with probability εk

4 − negl(λ) on any x ∈ L ∩ {0, 1}λ.
We refer the readers to [CCLY21] Section 3.2 for the full proof.

10.2 Expected Polynomial-Time Simulator with Efficient Malicious Verifier

Now we describe how to make the above malicious verifier Vexp efficient.
The following lemma states that we can replace the inefficient function (represented by a truth

table) H ∈ Hε used for random-termination in the previous sections by a function with an efficient
description. Moreover, there exists an efficient implementation of the unitary in Lem. 20.

Lemma 22 ([CCLY21] Lemma 3.13). Let ε ∈ [0, 1] be a rational number expressed as ε = B
A

for some A,B ∈ N such that logA = poly(λ) and logB = poly(λ).20 For any Q = poly(λ), there
exists a family H̃ε = {H̃κ :M≤k → {0, 1}}κ∈K of classical polynomial-time computable functions
that satisfies the following properties.

1. For any algorithm A that makes at most q quantum queries and any quantum input ρ, we have

Pr
H←Hε

[
AH(ρ) = 1

]
= Pr

κ←K

[
AH̃κ(ρ) = 1

]
.

2. For any p = (p1, ..., pk) ∈ Mk, let Sp ⊆ K be the subset consisting of all κ such that
H̃κ(p1, ..., pi) = 1 for all i ∈ [k]. There exists a unitary U (q)

p such that

U
(q)
p

√
1

|K|
∑
κ∈K
|κ〉 =

√
1

|Sp|
∑
κ∈Sp

|κ〉.

Up can be implemented by a quantum circuit of size poly(λ).
20 Note that ε is also a function of λ, but we omit to explicitly write the dependence on ε for simplicity.
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The proof follows from [CCLY21]. Therefore we present the statement and intuition and refer
the readers to [CCLY21] for the full proof.

The idea of is to construct a family of 2q-wise independent hash function that have output
distribution the same as Hε, from a family of 2q-wise independent hash functions that have almost
uniform-random output distributions. We first make use of a 2q-independent hash function H ′. We
take the key κ to be k values of random {ai}i∈[k], ai ← [A]. When computing H̃κ(p1, · · · , pi): we add
ai to the outcome of H ′(p1, · · · , pi) and check if the sum satisfies H ′(p1, · · · , pi) + ai mod A ≤ B;
output 1 if yes and 0 otherwise.
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