
Cryptobazaar: Private Sealed-bid Auctions at Scale

Andrija Novakovic
Geometry Research

andrija@geometry.dev

Alireza Kavousi
University College London

a.kavousi@cs.ucl.ac.uk

Kobi Gurkan
Geometry Research
kobi@geometry.dev

Philipp Jovanovic
University College London

p.jovanovic@ucl.ac.uk

Abstract
This work introduces Cryptobazaar, a novel scalable, private,
and decentralized sealed-bid auction protocol. In particular,
our protocol protects the privacy of losing bidders by pre-
serving the confidentiality of their bids while ensuring public
verifiability of the outcome and relying only on a single un-
trusted auctioneer for coordination. At its core, Cryptobazaar
combines an efficient distributed protocol to compute the
logical-OR for a list of unary-encoded bids with various novel
zero-knowledge succinct arguments of knowledge that may
be of independent interest. We further present variants of our
protocol that can be used for efficient first-, second-, and more
generally (p+1)st-price as well as sequential first-price auc-
tions. Finally, the performance evaluation of our Cryptobazaar
implementation shows that it is highly practical. For example,
a single run of an auction with 128 bidders and a price range
of 1024 values terminates in less than 0.5 sec and requires
each bidder to send and receive only about 32 KB of data.

1 Introduction

An auction is a sales process in which potential buyers aim to
acquire goods or services by placing competitive bids. Auc-
tions thus facilitate transactions by enforcing a specific set
of rules regarding the resource allocation of a group of bid-
ders. An auctioneer usually coordinates an auction process
and may also be a seller of goods or services. There are vari-
ous different types of auctions with the four main ones being
first-price sealed-bid, second-price sealed-bid (Vickrey), as-
cending open-bid (English), and descending open-bid (Dutch).
Throughout history auctions have been used for countless dif-
ferent purposes. They also play a crucial role in many digital
systems such as for selling and buying of advertisements [54],
for allocating block space and determining the transaction or-
der to mitigate maximal extractable value (MEV) in cryptocur-
rencies [22,46], or for renting out hardware to run large-scale
computations or to store data [36], and more.

A digital auction system should provide various essential
properties, including: (1) privacy for (losing) bidders to pre-

vent disclosure of their bid preferences [36] which is partic-
ularly crucial to ensure fairness in iterative auctions, as any
leakage may allow bidders to adapt their strategies in sub-
sequent runs [1, 22, 31]; (2) verifiability to ensure that third
parties (auditors) can verify the outcome and penalize misbe-
having participants [31]; (3) trust minimization to mitigate the
influence that a potentially malicious auctioneer could have
on the auction’s outcome [50]; and (4) scalability to ensure
that the auction protocol can meet the requirements of the
application (in terms of the number of bidders or price ranges)
in which it is used and not be a performance bottleneck (in
terms of computational and communication overheads) [36].

There have been many attempts to design sealed-bid auc-
tion systems with the above properties but they usually fall
short in one way or another: In the commonly used commit-
reveal approach, bidders first commit to their bids and open
them later after all bids have been submitted [51]. This ap-
proach has incentive misalignments though given that bids
may be selectively revealed and it is usually difficult to protect
the privacy of losing bidders. There have been recent attempts
to address the incentive problem through time-based cryp-
tography [27, 48, 56] but none have managed to address the
privacy issue as well so far. Other approaches rely on heavy
cryptographic machinery such as generic secure multi-party
computation (MPC) [8] or fully homomorphic encryption
(FHE) [32] to address the privacy challenges which, however,
severely impacts scalability making these protocols not prac-
tically useful or restricting them to small scale settings. In a
recent attempt, Addax [57] achieves both privacy and scala-
bility but only under a weakened threat model that requires
non-colluding assumption among (two or more) auctioneers.

In this work, we propose Cryptobazaar, a novel private
auction protocol which improves over the state-of-the-art by
addressing the previously identified challenges. In particular,
Cryptobazaar provides (1) privacy for (losing) bidders/bids
by only revealing the the winning bid and the sale price; (2)
verifiability to ensure that all protocol steps can be publicly
verified by anyone (e.g., auditors) to flag any misbehavior;
(3) trust minimization to support auction execution in peer-to-

1

mailto:andrija@geometry.dev
mailto:a.kavousi@cs.ucl.ac.uk
mailto:kobi@geometry.dev
mailto:p.jovanovic@ucl.ac.uk

peer mode while also allowing a single untrusted auctioneer
as coordinator for additional efficiency; (4) scalability to sup-
port a large number of bidders and price ranges while having
low overheads in terms of computation and bandwidth con-
sumption for bidders and auctioneer; and (5) versatility to
support first-, second-, and more general (p+ 1)-price auc-
tions (i.e., uniform auction) as well as an iterative mode with
only a slight adjustment of the main protocol.

Technical overview. In Cryptobazaar we encode bids as
unary vectors enabling us to determine the results of an
auction run in a privacy-preserving yet scalable way via a
distributed Boolean-OR over all bids using the anonymous
veto protocol [30]. To ensure the well-formedness of the
submitted values while maintaining privacy, we design and
use various new efficient zero-knowledge proofs. These
include, for example, arguments for proving correctness of
unary encodings which could be also useful for other appli-
cations like voting. We further show how to link Pederson
commitments to univariate sumcheck and how to replace
an inner-product argument with a univariate sumcheck to
improve prover efficiency. These newly developed techniques
on inner-product arguments [9, 13], log-derivatives [29],
and univariate sumcheck [6] may be of independent interest.
We break possible ties via public randomness [34] and
efficient zero-knowledge set membership proofs preserving
the privacy of the winner. Moreover, we show how to
extend the base version of Cryptobazaar to second- and
more generally (p+ 1)st-price auctions efficiently without
re-running the protocol which is a common practice for a
private Vickery auction [39]. Finally, we propose a variant to
run secure iterative auctions using setup re-randomization
techniques, making Cryptobazaar particularly appealing for
practical use cases. As a concrete application, Cryptobazaar
could be an alternative for the auction protocol used in the
Ethereum block building process [22] demanding the auction
to terminate in a fraction of its 12-second block time window.

In summary, we make the following contributions:
• We propose Cryptobazaar, a scalable private sealed-bid auc-

tion protocol that supports first- and second-price auctions
and relies only on a untrusted auctioneer for coordination.

• We co-design various novel (public coin) zero-knowledge
succinct arguments of knowledge to ensure the well-
formedness of the different protocol steps.

• We present two extensions to Cryptobazaar showing how
to support (p+1)-price auctions and iterative auctions effi-
ciently without having to re-run the full protocol.

• We demonstrate the practicality of our system by evaluating
an open-source implementation of Cryptobazaar in Rust.
Concretely, a run of the auction with 128 bidders and a price
range of 1024 values terminates in less than 0.5 seconds
and requires each bidder to communicate only about 32 KB
of data.

The remainder of the paper is organized as follows: Sec-
tion 2 provides the required background, Section 3 introduces
Cryptobazaar and the protocol details, Section 4 discusses
the zero-knowledge proof techniques that we developed, Sec-
tion 5 provides various extensions of Cryptobazaar, Section 6
presents the evaluation results for our implementation, and
Section 7 gives an overview on related work.

2 Background

2.1 Notation

We write x $← S to denote uniform sampling of element x
from finite set S and [n] for the set of integers {1, . . . ,n}.
We denote by G a cyclic group of prime order p and by F
a finite (scalar) field. We write group operations additively.
We indicate group elements by uppercase letters G ∈G, and
scalars by lowercase letters a ∈ F. Given a scalar a ∈ F and
group element G ∈ G, we denote scalar multiplication by
a ·G ∈ G. We express vectors of elements in boldface, e.g.,
aaa = (a1, . . . ,an) ∈ Fn. We denote the inner product of two
vectors aaa,bbb ∈ Fn as ⟨aaa,bbb⟩ = ∑

n
i=1 aibi and the entry-wise

multiplication of two vectors as aaa ◦ bbb = (a1 · b1, . . . ,an · bn).
To denote the scalar multiplication of scalar a ∈ F with every
element of a vector of group elements GGG ∈Gn, we write a ·
GGG = (a ·G1, . . . ,a ·Gn). Given 1 ≤ l ≤ n and vector aaa ∈ Fn,
we denote the slice of the first l elements of aaa by aaa[:l] =
(a1, . . . ,al) ∈ Fl and the slice of the last n− l elements of aaa
by aaa[l:] = (al+1, . . . ,an) ∈ Fn−l . A non-empty subset H ⊆ F
is said to be a multiplicative subgroup of field F if H is closed
under multiplication and inverses. Given a non-empty subset
H ⊆ F we denote by zH(X) = ∏w∈H(X −w) the vanishing
polynomial of H. Capitalized bold font A ∈ Fn×m denotes
a matrix, with n rows and m columns. Blinding factors are
denoted by Greek letters. We denote the security parameter
by λ ∈N and implicitly assume for a given n that n = poly(λ).

2.2 Bilinear Groups

Let G1 and G2 be two cyclic groups of prime order p with
generators G and H, respectively. Let e : G1×G2→GT be a
bilinear map with the following properties.

• Bilinearity. For all U ∈ G1 and V ∈ G2 and a,b ∈ F, we
have e(aU,bV) = e(U,V)ab.

• Non-degeneracy. It holds that e(G,H) ̸= 1.

We call (G1,G2,GT , p,G,H,e) a bilinear group if e is effi-
ciently computable. For ease of notation, we define [x]1 =
xG ∈G1, and [x]2 = xH ∈G2. We sometimes also write [1]1
and [1]2 for the generators G of G1 and H of G2, respectively.

2

2.3 Commitment Schemes
A commitment scheme allows a sender to commit to a secret
value and open it later in a verifiable way such that a receiver
can check whether the revealed value is consistent with the
committed one. A commitment scheme has two main secu-
rity properties, namely (1) binding, meaning that the com-
mitment cannot be opened to two different values, and (2)
hiding, meaning that the commitment should not reveal any
information about the committed secret value. The Peder-
sen commitment scheme [42] is an example of a widely-used
commitment scheme that is perfectly hiding and computa-
tionally binding in which a sender can commit to a secret
value x ∈ F using generators G,H ∈G and randomness r ∈ F
via C = xG+ rH ∈ G. Vector commitments [14] are an ex-
tension allowing a sender to commit to a set of values and
open them individually later on with two popular examples
being Merkle trees and Pedersen vector commitments. Finally,
a polynomial commitment scheme (PCS) [33] is a variant of a
vector commitment scheme that enables the sender to commit
to a polynomial such that the receiver can confirm claimed
evaluations of the committed polynomial later. In more detail:

Definition 1 (Polynomial Commitment Scheme (PCS)). A
polynomial commitment scheme PCS is defined by the fol-
lowing algorithms:
• SP← PCS.Setup(1λ,d): Takes as input a security parame-

ter λ and an integer d, and outputs system parameters SP
to commit to a polynomial of degree ≤ d.

• C ← PCS.Commit(SP,φ(·)): Takes as input the system
parameters SP and a polynomial φ(·), and outputs a com-
mitment C to φ(·).

• (π,φ(w)) ← PCS.Open(SP,φ(·),w): Takes as input the
system parameters SP, the polynomial φ(·), and a point
w, and outputs the polynomial evaluation φ(w) and an eval-
uation proof π.

• 1/0← PCS.Verify(SP,C,w,φ(w),π): Takes as input the
system parameter SP, the commitment C, a point w, the
evaluation φ(w), and the proof π, and verifies that φ(w) is
indeed the evaluation of polynomial φ at value w in com-
mitment C using proof π.

A PCS furthermore satisfies the following security properties:
• Correctness. Given C ← PCS.Commit(SP,φ(·))

and (π,φ(w)) ← PCS.Open(SP,φ(·),w), then
PCS.Verify(SP,C,w,φ(w),π) = 1 with probability 1.

• Polynomial Binding. An adversary should not be able to
produce two different polynomials φ(·) and φ′(·) such that
PCS.Commit(SP,φ(·)) = PCS.Commit(SP,φ′(·)), except
with negligible probability.

• Evaluation Binding. An adversary should not be
able to produce values {C,(w,φ(w),π),(w,φ′(w),π′)}
with PCS.Verify(SP,C,w,φ(w),π) = 1,
PCS.Verify(SP,C,w,φ′(w),π′) = 1, and φ(w) ̸= φ′(w),
except with negligible probability.

In our protocols we use the popular KZG PCS [33]:

• SP← KZG.Setup(1λ,d): Outputs a bilinear pairing group
(G1,G2,GT , p,G,H,e), and system parameters SP =
[τi]1 = (G,τG, . . . ,τdG) for trapdoor τ ∈ F which is gen-
erated by a (distributed) trusted authority.

• C ← KZG.Commit(SP,φ(·)): Outputs the commitment
C = [φ(τ)]1 = ∑

d
i=0 φi[τ

i]1.
• (π,φ(w))← KZG.Open(SP,φ(·),w): Computes the quo-

tient polynomial q(X) = (φ(X)− φ(w)) · (X −w)−1 and
outputs evaluation φ(w) and proof π = [q(τ)]1.

• 1/0 ← KZG.Verify(SP,C,w,φ(w),π): Outputs 1 if
e(π, [τ−w]2) = e(C− [φ(w)]1, [1]2) holds and 0 otherwise.

The basic version of KZG is not hiding since it is determin-
istic. However, in some situations having hiding is desirable.
This means that no PPT adversary should learn anything about
an unqueried evaluation point w′ given information of up to d
evaluations. By masking commitment and proof with random-
izers, one can turn KZG into blinded KZG [55] and achieve
hiding. KZG requires a setup phase to compute system param-
eters SP that include a trapdoor τ. To ensure that no individual
party knows τ, which would enable them to undermine the
security of KZG, one can use a distributed protocol to com-
pute SP ensuring security as long as there is a single honest
contribution [40]. Alternatively, one could use a PCS that
does not require a trusted setup at the cost of a performance
trade-off [5].

2.4 Anonymous Veto

In Cryptobazaar we use the anonymous veto (AV) proto-
col [30] as one of the main building blocks. AV is an efficient
two-round protocol for computing the logical-OR function
over a set of input bits without revealing any information
about the individual ones. AV is run over a cyclic group G
of prime order p with a generator G in which the Decision
Diffie-Hellman (DDH) problem is hard. The AV protocol
works as follows:

• Each party i samples a random value xi ∈ F, and broad-
casts xiG. After seeing messages from all other parties, i
computes Yi = ∑

i−1
j=1 x jG−∑

n
j=i+1 x jG.

• After obtaining Yi, each party i computes a value Ri as either
Ri = riYi if they veto or Ri = xiYi if they do not veto where

ri
$← F, and sends Ri to all of the other participants.

The output of the AV protocol is obtained by having each party
compute R = ∑

n
i=1 Ri. If no one vetoes then R = 0, otherwise

if at least one party vetoes then R ̸= 0. This follows from
the definition of Yi that implies ∑i xiYi = 0 (see Proposition
1, [30]). To illustrate this equality more intuitively, let X be
the vector of elements obtained after the first AV round, i.e.,

3

X i = xiG, then we define matrix M as

M =

0 −1 −1 · · · −1
1 0 −1 · · · −1

1 1
.

...
...

...
. . . 0 −1

1 1 · · · 1 0

 .

Now it holds ⟨X ,M ·XT ⟩= 0. The AV protocol preserves the
privacy of a participating party as long as not all the other
parties collude. The security of this scheme stems from the
inability of an attacker to distinguish between riYi and xiYi
under the DDH assumption. Later we show how the structure
of M can be used to efficiently delegate the computation of Yi
for i ∈ [n] to a single untrusted party.

2.5 Zero-knowledge Argument of Knowledge
In Cryptobazaar we deploy zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs) [41] to en-
force honest behavior of the parties and ensure public verifia-
bility. These are defined as follows:

Definition 2 (Argument System). A (non-interactive) argu-
ment system for an efficiently decidable binary relation R
for an NP language LR is a tuple of probabilistic polynomial
algorithms AS= (Setup,Prove,Verify,Simulate) such that:
• (crs, td)← AS.Setup(1λ,R): The setup algorithm takes as

input a security parameter λ and a relation R and outputs a
common reference string crs and a trapdoor td.

• π← AS.Prove(crs,u,w): The prover algorithm takes as
input the crs, a statement u and a witness w and outputs an
argument π.

• 0/1← AS.Verify(crs,u,π): The verifier algorithm takes as
input the crs, a statement u, and an argument π and outputs
1 (accept) if the proof was accepted and 0 otherwise.

• π← AS.Simulate(crs, td,u): The simulator takes as input
the crs, a simulation trapdoor td, and a statement u and
outputs an argument π.

For an argument system to be a zkSNARK, we require
certain security properties to protect the prover from witness
leakage and the verifier from a forged proof. Informally, an
argument system should have completeness, where an honest
prover always convinces the verifier about a true statement. It
also requires knowledge soundness demanding the prover to
indeed know the witness whenever it generates a valid proof.
Lastly, an argument system should be zero-knowledge and
does not leak any information besides the truth of the state-
ment. We provide the formal definitions in Appendix A.1.
An argument system is public coin if all the messages sent
form the verifier have uniform distribution and are indepen-
dent from the ones received from the prover. This then allows
to make the protocol non-interactive using Fiat-Shamir [21].

Note that all our arguments throughout the paper will be pub-
lic coin and thus can be made non-interactive. We prove
the security of our arguments in the Algebraic Group Model
(AGM) [25]. There are different ways to build zkSNARKs
concretely. We follow the approach in PLONK [26] by taking
polynomial interactive oracle proofs (IOP) [7], combining it
with a polynomial commitment scheme to obtain succinct in-
teractive arguments, and applying the Fiat-Shamir transform
to make it non-interactive. Below we recall the basics for
some of the techniques that we use in our zkSNARKs.

2.5.1 Inner-product Arguments (IPA)

An inner-product argument [9] is an efficient argument system
for the following relation:

R = {(GGG,HHH ∈Gn,P ∈G,c ∈ Fp;aaa,bbb ∈ Fn
p) :

P = ⟨aaa,GGG⟩+ ⟨bbb,HHH⟩,
c = ⟨aaa,bbb⟩}

An IPA convinces the verifier that the prover knows the
openings of two Pedersen vector commitments satisfying a
given inner product relation. Bunz et al. [12] proposed an
improved IPA where the inner-product value c is hidden as
part of the vector commitment P and with logarithmic proof
size in the vector dimension n. IPA can be generalized to
capture other types of inner products, including ones that
work with bilinear pairings [13].

2.5.2 Univariate Sumcheck Protocol

The univariate sumcheck protocol [6] relates the sum of any
(low-degree) polynomial over a multiplicative subgroup H of
field F to the polynomial’s evaluation at a single point. The
following lemma offers a polynomial IOP that we use for
constructing some of our arguments.

Lemma 1 (Univariate Sumcheck for Subgroups). Given a
multiplicative subgroup H of field F, a polynomial f (X) sums
to σ over H if and only if f (X) can be written as Xg(X)+
h(X)zH(X)+σ/|H|.

Interactive argument systems exploit the following basic
property of polynomials, which is commonly known as the
Schwartz-Zippel lemma [58].

Lemma 2 (Schwartz-Zippel). Let F be any field, and let
g : Fm→ F be a nonzero polynomial of total degree at most d.
Then, on any finite set S⊆ F and for any xxx← Sm, Pr[g(xxx) =
0]≤ d

|S| .

An implication of the Schwartz-Zippel lemma is that for
any two distinct (univariate) polynomials φ1 and φ2 of to-
tal degree at most d over F, they agree (i.e., φ1(x) = φ2(x))
mostly at d/|F| fraction of inputs. So, one could verify that a
polynomial relation holds with overwhelming probability by
evaluating it at a random point.

4

2.5.3 Logarithmic Derivatives

As in basic calculus, the logarithmic derivative of a polyno-
mial φ(X) over a field F is defined as φ′(X) · φ(X)−1. Fur-
ther, the logarithmic derivative of a product function φ(X) =

∏
n
i=1(X + zi), where zi ∈ F, is equal to the sum of its recip-

rocals, i.e., φ′(X) ·φ(X)−1 = ∑
n
i=1(X + zi)

−1. Further if two
normalized polynomials have the same logarithmic derivative,
they are equal, as stated by the following lemma [29].

Lemma 3. Let aaa,bbb ∈ Fn
p with p > n. Then, ∏

n
i=1(X +ai) =

∏
n
i=1(X +bi) if and only if ∑

n
i=1(X +ai)

−1 =∑
n
i=1(X +bi)

−1.

Further, Haboeck [29] shows that it is possible to ob-
tain the unique fractional decomposition of the logarithmic
derivative of a product function φ(X) = ∏

n
i=1(X + zi) via

φ′(X) · φ(X)−1 = ∑z∈F m(z) · (X + z)−1 where m(z) ∈ [n] is
the multiplicity of the value z in z1, . . . ,zn.

3 Cryptobazaar

In this section we present Cryptobazaar, our private scalable
sealed-bid auction protocol. In Section 3.1 we discuss system
and threat models, in Section 3.2 we present the design goals,
and in Section 3.3 we discuss the protocol details.

3.1 System and Threat Models

In Cryptobazaar we assume that there are m bidders, an un-
trusted auctioneer, and one or more auditors with access to
an append-only public log (e.g., a public ledger) and a price
range of n values. Each bidder communicates with the auc-
tioneer through a public authenticated channel. We do not
assume any point-to-point channel (and thus interaction) be-
tween bidders as they might have no priori information about
the number of protocol participants or their identities. Our
communication pattern resembles a star topology with the auc-
tioneer being the coordinator. Note that Cryptobazaar can also
work in a peer-to-peer setting without an auctioneer but we
prefer the auctioneer-based mode henceforth due to its lower
bandwidth consumption and since they are usually present in
practice [57].

We model bidders and auctioneer as covert adversaries [2]
who may arbitrarily deviate from the correct execution of the
protocol as long as they are not detected. If they are caught,
they might be subject to penalties (e.g., financial or reputa-
tional). The auditor gets involved at the end of the auction
to validate the outcome using the information posted on the
public log. However, no information should be leaked beyond
what can already be inferred from the auction including the
(second) highest bid. We assume that authentication between
bidders and auctioneer and the penalizing of misbehaving
parties is handled out of band.

3.2 Design Goals
We aim to achieve the following goals in designing Crypto-
bazaar:
• Privacy: The protocol only discloses the (second) highest

bid and protects the privacy of (losing) bidders.
• Verifiability: If any participant misbehaves during the pro-

tocol execution, verification fails and the cheating party is
detected with overwhelming probability. All protocol steps
are publicly verifiable and auditors could verify the protocol
run using the data posted on a public log.

• Trust minimization: The protocol runs in a decentraliza-
tion fashion where bidders do not necessarily know each
other and there is no trust on the auctioneer as a coordinator.

• Scalability: The protocol supports a large number of bid-
ders and price ranges while having low overheads in terms
of computation and bandwidth consumption for bidders and
auctioneer.

3.3 Protocol Description
Figure 1 presents an overview of Cryptobazaar which consists
of the two phases preprocessing and bidding. Below we focus
on the core protocol and present the necessary validity proofs
only abstractly. We defer the discussion of the proofs’ techni-
cal details to Section 4. Note that these proofs are computed
asynchronously and sent to the public log to be verified later.

Preprocessing phase. Each bidder initially samples two vec-
tors xxx,rrr ∈ Fn, and computes XXX = xxx ·G ∈Gn. Suppose all the
input values (i.e., bids) are integers in the range [0,n]. Each
bidder encodes their bid as a unary vector bbb = (b1, . . . ,bn),
where b j = 1 if and only if j ≤ b. For example, for n = 5 the
bid b = 3 is represented as 11100. Observe that the values in
XXX are randomly sampled and thus are independent from the
bids. Furthermore, each bidder computes the polynomial com-
mitments x,r,b, constructs three validity proofs πx,πr,πb,
and appends (x,r,b,XXX ,πx,πr,πb) to the public log.

The auctioneer then carries out n runs of the AV protocol
(first round) in parallel on the values received from the bidders
and computes the vectors YYY i for i ∈ [m] as the row-vectors of
a m×n matrix Y = M ·X, where M is the AV matrix (Section
2.4), and X contains row-vectors XXX . Finally, the auctioneer
appends the row-vectors YYY i to the public log and optionally
sends YYY i to bidder i for all i.

Bidding phase. After a bidder received its individual vector
YYY i, they compute ZZZi = (xxxi+bbbi◦rrri)◦YYY i. The values of random
vector rrri are enabled depending on the values of the unary vec-
tor bbbi. So, for each j ∈ [n] we have either ZZZi j = (xxxi j + rrri j)YYY i j
if bbbi j = 1 or ZZZi j = xxxi jYYY i j if bbbi j = 0. Each bidder furthermore
computes a validity proof πZi showing the well-formedness
of the vector ZZZi, i.e., its consistency with their committed vec-
tors xi,ri,bi and vector YYY i. Then, the auctioneer completes
the AV protocols and determines the outcome by computing

5

Preprocessing phase

Each bidder i ∈ [m] executes the following steps:

1. Sample random non-zero vectors xxxi,rrri ∈ Fn.

2. Create polynomial commitments xi of xxxi and ri of rrri.

3. Compute vector XXX i such that XXX i = xxxi ·G.

4. Create a proof πxi showing that xi and XXX i both encode
the same vector xxxi.

5. Create a proof πri showing that rrr j ̸= 0 for each j ∈ [n].

6. Decide on bid bi and compute its unary encoding bbbi.

7. Compute a (blinded) polynomial commitment bi of bbbi.

8. Create a proof πbi that bbbi is a valid unary encoding.

9. Append (xi,ri,bi,XXX i,πxi ,πri ,πbi) to the public log.

Once all bidders are done, the auctioneer executes the follow-
ing steps:

10. Load row-vectors XXX i to compute m×n matrix Y = M ·X
where M is the matrix as specified in Section 2.4.

11. Append row-vector YYY i to the public log for each i ∈ [m].

Bidding phase

Each bidder i ∈ [m] executes the following steps:

1. Load row-vector YYY i and compute vector ZZZi such that
ZZZi = (xxxi +bbbi ◦ rrri)◦YYY i.

2. Create a proof πZi showing that ZZZi is of the above form.

3. Append (bi,ZZZi,πbi ,πZi) to the public log.

Once all bidders are done, the auctioneer executes the follow-
ing steps:

4. Compute vector RRR such that RRR j = ∑
m
i=1(ZZZi) j for j ∈ [n].

5. Append RRR to the public log.

The highest bid is defined by the highest index w with RRRw ̸= 0.

6. The candidate winner constructs a proof πw to demon-
strate their eligibility.

Figure 1: The Cryptobazaar protocol

RRR = ∑
m
i=1(ZZZi). The index w of the highest non-zero value in

RRR indicates the highest bid.
To find the winner in a first-price auction, we simply deter-

mine the highest bid and the corresponding bidder wins. After
the winning price has been announced, a candidate winner
can claim their win by providing a proof πw showing that they
have indeed bid one at position/index w. Given that the AV
computes a logical-OR across all bids and thus only distin-
guishes whether there is at least one bid for a certain value or
not, there might actually be multiple bids at the same price.
In this case, the auctioneer can use public randomness [34] to
choose among the set of candidate winners.

For a first-price auction, we are done at this point. For a

second-price auction, we need to run the protocol again after
excluding the current winner to compute the second-highest
price as the sale price. In Section 5, we propose a variant
that supports second-price and more generally (p+1)st-price
auction [35] without having to re-run the protocol.

Theorem 1. The Cryptobazaar protocol (Figure 1) achieves
completeness, privacy, soundness, and public verifiability.

We provide the proof to Theorem 1 in Appendix B.1.

Reducing computational overheads. The original AV proto-
col has linear O(n) communication cost (assuming broadcast)
and quadratic O(n2) computational cost for each participant.
However, it is possible to reduce the computational overhead
to determine the values YYY i to O(n) group operations from the
naive computation M ·X requiring O(n2) group operations.
We observe that by utilizing the relationship between con-
secutive rows of M, we have YYY i+1 = YYY i +XXX i +XXX i+1. Note
that YYY 0 can be computed by a single multiscalar multiplica-
tion (MSM) [19] of size n between the first row of M and
XXX . In total, this leads to O(n) group operations. To verify the
computation, anyone with access to the transcript can simply
run the same computation in O(n) group operations and com-
pare the outputs. Verifying that vectors XXX ,YYY and RRR are valid
requires more elaboration which we provide in Section 4.

4 Validity Proofs

In this section we present the technical details of the validity
proofs used in Cryptobazaar. In Section 4.1 we discuss the
preprocessing phase proofs πxi (Step 4), πri (Step 5), and πbi

(Step 8) and in Section 4.2 we discuss the bidding phase
proofs πZi (Step 2) and πw (Step 6).

4.1 Preprocessing Phase

Proof πxi [Step 4]. The goal of this validity proof is to link a
KZG polynomial commitment with a vector of elliptic curve
points XXX to show that they both encode the same vector xxx.
More precisely, we need to develop an argument of knowledge
for the following relation Rpv:

Rpv =

 (SP,G);

(x,XXX);
(xxx);

 f (X) = x̃xx
x= [f (τ)]1
XXX i = xxxiG,∀i

Here x̃xx is the low degree extension (LDE) of xxx. We provide
the corresponding argument Πpv in Figure 2 which proves
that XXX and polynomial commitment x encode the same vector
xxx.

Lemma 4. The protocol Πpv for relation Rpv, see Figure 2,
satisfies completeness, soundness, and zero-knowledge.

6

Round 1 Verifier: Send random challenge γ ∈ F.
Round 1 Prover:

1. Compute q(X) =
f (X)− f (γ)

X−γ
.

2. Send q= [q(τ)]1.

Round 2 Verifier:

1. Compute [y]1← ∑
n
i=1 Li(γ)Xi.

2. Assert e(x− [y]1 + γq, [1]2) = e(q, [τ]2).

Figure 2: Interactive zero-knowledge argument of knowledge
protocol Πpv for relation Rpv.

We provide the proof for Lemma 4 in Appendix B.2.

Proof πri [Step 5]. The goal of this proof is to show that
rrri ̸= 0 for the following two reasons. First, these random
values are enabled according to the values of unary bid vector
bbbi and vice-versa. That is, setting rrri = 0 essentially prevents
verifying if the bidder used the same bid that they committed
earlier. Second, we later show how the candidate winner can
use these random values to construct a proof of eligibility.
Before we proceed with describing the relation, it is helpful
to state a simple but crucial technique.

Blinding. Constructing succinct arguments often requires
the prover P to open some committed polynomial f (X) at
some random point γ (which is due to the Schwartz-Zippel
Lemma 2 that facilitates efficient equality check of polyno-
mials). To show that the relation R (f1(X), f2(X), . . . , fn(X))
holds over subgroup H of field F, one could instead show that
R (f1(h), f2(h), . . . , fn(h)) = 0,∀h ∈H. This is equivalent to
demonstrating the knowledge of some quotient polynomial
q(X) such that R (f1(X), f2(X), . . . , fn(X)) = q(X)zH(X),
where zH(X) is a vanishing polynomial of H [33]. Since send-
ing plain evaluations may leak information, one can blind the
(witness) polynomial to achieve zero-knowledge. To do so, we
follow the approach used in Marlin [15] where the prover P
samples a random polynomial r(X) of degree (at least) equal
to the number of openings they have to provide during the pro-
tocol and send f̂ (X) = f (X)+ r(X)zH(X). So, f̂ (X) does not
leak information on f (X) up to a certain number of openings,
i.e., zero-knowledge is provided up to a query bound [15].
Further, the use of vanishing polynomial makes the evalua-
tions of f̂ (X) be equal to those of f (X) over H and thus it
does not affect the relation R (f1(X), f2(X), . . . , fn(X)).

Now assume that the number of positions n is a power
of 2, let H be a multiplicative subgroup of size n, and let
zH(X) be a vanishing polynomial of H. Let r(X) be a low
degree extension of rrr, then P samples a random masking
polynomial m(X) and commits to the blinded variant of r(X),
i.e., r̂(X) = r(X) + m(X)zH(X). Then we develop a zero-
knowledge argument of knowledge for the following relation

Round 1 Prover:

1. Sample random degree-1 blinding polynomial b(X).

2. Compute s(X) such that s(wi) = r(wi)−1,∀wi ∈H.

3. Blind s(X) by setting ŝ(X) = s(X)+b(X)zH(X).

4. Sample a random blinding polynomial m(X) to blind
r(X) by setting r̂(X) = r(X)+m(X)zH(X).

5. Compute q(X) such that r̂(X)ŝ(X)−1 = q(X)zH(X).

6. Send s= [ŝ(τ)]1,q= [q(τ)]1.

Round 1 Verifier: Sample and send random γ ∈ F.
Round 2 Prover: Send openings rγ = r̂(γ),sγ = ŝ(γ).
Round 2 Verifier: Sample and send random α ∈ F.
Round 3 Prover:

1. Set φ(X) = r(X)+αŝ(X)+α2q(X).

2. Compute (·,t) = KZG.Open(SP,φ(X),γ).

3. Send t.

Round 3 Verifier:

1. Compute qγ = (rγ · sγ−1) · zH(γ)
−1.

2. Set y = rγ +αsγ +α2qγ and c= r+αs+α2q.

3. Assert 1 = KZG.Verify(SP,c,γ,y,t).

Figure 3: Interactive zero-knowledge argument of knowledge
protocol Πnz for relation Rnz.

Rnz showing that r(wi) ̸= 0 for each wi ∈H.

Rnz =

 (SP,H);

(r);
(r(X),m(X));

 r= [r(τ)+m(τ)zH(τ)]1,
r(wi) ̸= 0 ∀wi ∈H

We provide the corresponding argument Πnz in Figure 3.
Lemma 5. The protocol Πnz for relation Rnz, see Figure 3,
satisfies completeness, soundness, and zero-knowledge.

We provide the proof for Lemma 5 in Appendix B.3.

Proof πbi [Step 8]. The goal of this proof is to show that bbbi
is a valid unary encoding of bidder i’s bid bi. To construct
this proof we use logarithmic derivatives, see Section 2.5.3,
and translate the problem to an equality of sum of recipro-
cals. To do this, we first re-formulate the problem to make it
more amenable to logarithmic derivatives, show its equiva-
lency with the problem of unary encoding and then present
the proof system for this re-formulated problem. Given a pos-
itive integer n, the unary representation for a value b ∈ [0,n]
includes an array of |b| ‘ones’ and |n−b| ‘zeroes‘. To prove
that a vector bbb of length n is a valid unary encoding of b,
consider the following lemma:

Lemma 6. There are 1 ≤ i < n and 0 ≤ j < n such that
i+ j = n and bbb is a vector of i ‘ones’ concatenated with j
‘zeros’ if and only if bbb starts with ‘1’ and vector ∆ defined
as below consists of all ‘zeros’ except a single ‘one’, i.e.,
∆i = bi−bi+1 if i < n and ∆i = bi if i = n.

7

We provide the proof for Lemma 6 in Appendix B.4.
To prove the correct form of ∆, we use logarithmic deriva-

tives [29]. Due to the unique fractional decomposition of
logarithmic derivatives, see Section 2.5.3, we need to prove
that ∑

n
i=1

1
X+∆i

= n−1
X+0 +

1
X+1 . Logarithmic derivatives allow

us to check that, given the vectors ttt, fff , and mmm, each value
fi appears exactly mi times in ttt which can be expressed via
∑

n
i=1

1
X+ fi

= ∑
n
i=1

mi
X+ti

. To prove this, we turn the fractional
expression into a polynomial one via low degree extensions 1

of the functions t|K, f|H,m|K over multiplicative subgroups
H and K of size n. The prover can show that the equality
holds at a random challenge γ as per Lemma 2, i.e., that

∑
n
i=1

1
γ+ f (wi)

= ∑
n
i=1

m(wi)
γ+t(wi)

. With that in mind, the relation
Runary for which we need to develop an argument of knowl-
edge is as follows:

Runary =

 (SP,H);

(u);
(u(X),m(X));

 u= [u(τ)+m(τ)zH(τ)]1
u(X) is LDE of bbb

We present the corresponding argument Πunary in Figure 4.

Lemma 7. The protocol Πunary for relation Runary, see Fig-
ure 4, satisfies completeness, soundness, and zero-knowledge.

We provide the proof for Lemma 7 in Appendix B.5.

4.2 Bidding Phase

Proof πZi [Step 2]. The goal of this proof is to enable a bidder
to show that ZZZ = (xxx+ bbb ◦ rrr) ◦YYY . More generally, given the
message received after the preprocessing phase YYY , the bidder
has to prove that their message sent in the bidding phase is of
the form ZZZ = aaaYYY , where aaa = xxx+bbb◦ rrr. We prove this by using
an inner product argument (IPA) showing that ⟨⟨rrr ◦aaa⟩,YYY ⟩=
⟨rrr,ZZZ⟩, where rrr = (r,r2, . . . ,rn) for a (separation) challenge
r. 2 This way, the verifier computes C = ∑r jZ j and the prover
is left to show it is indeed equivalent to a generalized IPA [13]
between aaa and YYY . Thus, we need to develop an argument of
knowledge for the following relation:

Rsum =

 (SP,G,H,H);

(a,YYY ,ZZZ);
(aaa)

 a(X) is LDE of aaa,
a= [a(τ)]1,

a(w j)YYY j = ZZZ j

We provide the corresponding argument Πsum in Figure 5.

Lemma 8. The protocol Πsum for relation Rsum, see Figure 5,
satisfies completeness, soundness, and zero-knowledge.

1Let φ1 : {0,1}v→ F be any function mapping a v-dimensional Boolean
hypercube to F. A v-variate polynomial φ2 over F is said to be an extension
of φ1 if φ2 agrees with φ1 for all xxx ∈ {0,1}v. We can think of a (low-degree)
extension φ2 of φ1 as an error-corrected encoding, amplifying the distance
between the original polynomials according to Schwartz-Zippel lemma. We
refer the reader to [47] for more details.

2A random linear combination of terms is needed to guarantee that the
equivalency holds for all j ∈ [n] and no terms cancel out.

Round 1 Prover:

1. Compute f (X) such that f (wi) = u(wi)−u(wi+1),∀wi ∈
H\wn−1.

2. Sample blinding polynomials m(X),b(x) to blind u(X)
by setting û(X) = u(X)+m(X)zH(X) and f (X) by set-
ting f̂ (X) = f (X)+b(X)zH(X).

3. Compute (·,u1) = KZG.Open(SP, û(X),1).

4. Compute Q f (X) such that f̂ (X)− (u(X)− u(wX)) =
Q f (X)zH(X).

5. Send f= [f̂ (τ)]1,u1,qf = [Q f (τ)]1.

Round 1 Verifier: Sample and send random γ.
Round 2 Prover:

1. Compute B(X) such that B(wi) = 1
γ+ f (wi)

,∀wi ∈H.

2. Sample random r(X) and compute blinded B̂(X) =
B(X)+ r(X)zH(X).

3. Compute QB that B̂(X)(f (X)+ γ)−1 = QB(X)zH(X).

4. Sample random S(X) and set s = ∑h∈H S(h).

5. Send b= [B̂(τ)]1,qb = [QB(τ)]1,s= [S(τ)]1, s.

Round 2 Verifier: Sample and send random α.
Round 3 Prover:

1. Set v = 1
γ
+ n−1

γ+1 .

2. Compute R(X) and Q(X) such that S(X) + αB̂(X) =
s+α·v

n +XR(X)+Q(X)zH(X).

3. Send r= [R(τ)]1,q= [Q(τ)]1.

Round 3 Verifier: Sample and send random β.
Round 4 Prover: Send openings uβ = u(β),uw,β = u(wβ),
fβ = f̂ (β), Q f ,β = Q f (β), Bβ = B̂(β), sβ = S(β), QB,β =
QB(β), Rβ = R(β), and Qβ = Q(β).
Round 4 Verifier: Sample and send random v.
Round 5 Prover:

1. Compute A(X) = (u(X)+v f (X)+v2Q f (X)+v3B̂(X)+

v4S(X)+ v5QB(X)+ v6R(X)+ v7Q(X)) · (X +β)−1.

2. Compute Aw(X) = u(X) · (X−wβ)−1.

3. Send a= [A(τ)]1 and aw = [Aw(τ)]1.

Round 5 Verifier:

1. Assert that 1 = KZG.Verify(SP,u,1,1,u1) and fβ −
(uβ−uw,β) = Q f ,βzH(β)

2. Set v = 1
γ
+ n−1

γ+1 .

3. Assert that S(β)+αBβ = s+α·v
n +βRβ +QβzH(β).

4. Set C = u+ vf+ v2qf+ v3b+ v4s+ v5qb+ v6r+ v7q

and y = uβ + v fβ + v2Q f ,β + v3Bβ + v4sβ + v5QB,β +

v6Rβ + v7Qβ.

5. Assert that 1 = KZG.Verify(SP,C,β,y,a) and 1 =
KZG.Verify(SP,u,wβ,uw,β,aw).

Figure 4: Interactive zero-knowledge argument of knowledge
protocol Πunary for relation Runary.

8

Verifier: Send a random c.
Prover and Verifier:

1. Compute c = (1,c,c2, . . . ,cn−1) and C = ⟨c,Y⟩.
2. Set C′ =C and n′ = n.

3. Rescale the basis X by computing Xc = c◦X .

Prover: Set a′ = a and X′ = Xc and initialize r = 0.
Until n′ = 1 do:

1. Set n′ = n′
2 , L = ⟨a′lo,X

′
hi⟩, and R = ⟨a′hi,X

′
lo⟩.

2. Sample random rl and rr.

3. Send L+ rlH and R+ rrH.

Verifier:

4. Sample and send a random challenge α.

5. Compute C′ = α−1L+C′+αR.

Prover:

6. Compute C′ = α−1L+C′+αR.

7. Set a′ = ⟨a′lo,a
′
hi

α⟩ and X ′ = ⟨X′lo,X
′
hi

α−1
⟩.

8. Compute r = r+α1rl +αrr.

When n′ = 1:
Prover and Verifier:

1. Compute f (X) = ∏
l=logn
i=0 (1+αl−iX2i

).

2. Interpolate f̃ (X) from f (X).

Verifier:

1. Compute X ′ = ⟨Xc, f⟩, where vector f denotes coeffi-
cients of f (X).

2. Invoke Rpse((pp,srs,X ′,H);(qa, f̃ (X),C′);(a(X),a′,r)).

Figure 5: Interactive zero-knowledge argument of knowledge
protocol Πsum for relation Rsum.

We provide the proof for Lemma 8 in Appendix B.6.

Removal of one inner product. As part of the argument sys-
tem for the above relation, we introduce a technique that could
be of independent interest. We observe that when running an
IPA between vectors of aaa and YYY with the verifier having access
to the polynomial commitment qa of aaa, one can replace an
instance of IPA with an instance of univariate sumcheck [6].
As we describe next, it reduces the computation cost of the
prover and the proof size. We first build an intuition on why
this works followed by our full argument protocol for Rsum.

Assume that a prover P wants to convince a verifier V
that C = ⟨aaa,XXX⟩, where aaa ∈ Fn and XXX ∈Gn

1 is a set of random
generators. Let F = ⟨aaa,GGG⟩ be a commitment to the vector aaa
using some basis GGG ∈ Gn

1. Then, P and V should run two
IPAs in parallel3, one for F and the other for C. The former
is needed to convince V that P is indeed using aaa. Follow-

3Running IPAs in parallel matters security-wise, as we need to use the
same set of challenges for both [23].

ing the IPA protocol [12, 13], at each round the prover folds
in half the vectors aaa,GGG and XXX and both P and V derive up-
dated commitments F ′,C′. In the last round, P sends a fully
folded a′, and V computes the fully folded values G′,X ′. The
verifier then checks if a′G′ = F ′ and a′X ′ = C′. It turns out
that computing a′ from aaa is a multi-scalar multiplication of
size n where the scalar factors are the coefficients of the
polynomial f (X) = ∏

l=logn
i=0 (1+αl−iX2i

), and αi are the ran-
dom challenges picked by the verifier [11, 13]4. So, we have
a′ = ⟨aaa, fff ⟩ where fff are the coefficients of polynomial f (X).
Further, let f̃ (X) denote a polynomial such that its evaluations
are equal to fff . Therefore, instead of running the IPA for F the
prover needs to show that ∑

n
i=0 a(X) f̃ (X) = a′ using an in-

stance of univariate sumcheck. This way, the prover no longer
needs to compute the folding for G which is genuinely ex-
pensive, overall improving run time. Note that we instantiate
the polynomial commitment scheme with KZG to show that
∑h∈H a(h) f̃ (h) = a′, where H is a multiplicative subgroup of
F of order n.

So far, we have not considered zero-knowledge. To make
IPA zero-knowledge, the prover first forms the perfectly
blinded commitment Cb =C+ rH and then samples random
scalars rl ,rr to compute the left and right blinded commit-
ments Li,b = Li + rlH, Ri,b = Ri + rrH. One subtlety we need
to get around is to avoid sending a′ in plain at the last round
while allowing the verifier to check that a′X ′ =C′ holds. We
tackle this by having the prover show knowledge of opening
of a Pedersen commitment that is defined by the folded basis
X ′ and blinder H. Thus, we should develop an argument Rpse

to link an instance of the Pedersen commitment with a uni-
variate sumcheck showing that given a Pedersen commitment
P = xG+ rH, we have ∑

n
i=0 a(X) f̃ (X) = x without leaking

any information about x.
Remark 1. The auditor is not computationally restricted
thus we assume they can interpolate f̃ (X) from f (X). How-
ever, this part can be verifiably delegated. Let W denote
a set of n-th roots of unity, then the prover can show that
∑wi∈W f̃ (wi)p(wi) = f (α) for a random α such that p(wi) =
αi. Note that evaluating f (X) at α takes O(logn) field oper-
ations, and validity of p(X) can be proved by showing that
p(w0) = 1 and that p(wX) = αp(X) when X ∈W \wn−1.
Remark 2. We develop Rpse as a generic independent rela-
tion where both a(X),b(X) are witnesses. However, in the
last round of our inner product protocol we use the public
polynomial f̃ (X), thus we slightly abuse notation and we put
f̃ (X) directly in the instance instead of committing to it.

Linking Pedersen commitment to univariate sumcheck.
We now develop a zero knowledge argument of knowledge
for proving the equality of Pedersen commitment [42] and
univariate sumcheck [6] that may be of independent in-
terest. Given a Pedersen Commitment P = xG + rH, the

4In the non-interactive variant the challenges are computed by applying a
hash function modeled in random oracle on the messaged received from the
prover in each round of IPA for C = ⟨aaa,XXX⟩ which is running in parallel.

9

prover P aims to prove the knowledge of aaa,bbb ∈ Fn such that
∑

n
i=0 aaaibbbi = x, without leaking any information about x. We

define the relation Rpse as follows:

Rpse =

 (SP,G,H,H);

(a,b,P);
(a(X),b(X),x,r);

 a= [a(τ)]1
b= [b(τ)]1

P = xG+ rH
∑h∈H a(h)b(h) = x

We present a zero-knowledge argument realizing the relation
Rpse in Figure 6. At a high level, the prover P computes and
commits to a(X) and b(X), low degree extensions of aaa and
bbb over H. Then the prover P and the verifier V engage in a
(public coin) interactive argument for proving knowledge of
x and that ∑h∈H a(h)b(h) = x. This is done by invoking both
(zero-knowledge) arguments for proving the opening of Peder-
sen commitment and univariate sumcheck. Note that proving
the knowledge of opening of Pedersen Commitment is done
by providing two Schnorr proofs of knowledge of discrete
logarithm. However, P should take additional care when sam-
pling blinders for the univariate sumcheck instance. The key
insight is that in the first round P samples a blinder B(X) for
zero-knowledge univariate sumcheck such that its sum over H
is equal to the randomness/blinder used in the first instance of
the underlying Schnorr proof, denoted by p. Then in the sec-
ond round after receiving challenge c from V , P shows that
∑h∈H B(h)+ ca(h)b(h) = cx+ p. As mentioned earlier, we
make use of this argument as a sub-argument of the protocol
realizing the relation Rpse. So, we slightly modify the relation
and assume that P already committed to a(X),b(X). This,
however, leads to the following issue. At the last round of the
zero-knowledge univariate sumcheck, P has to send openings
of a(X),b(X) at a random challenge, potentially introducing a
leakage affecting zero-knowledge. One way to deal with this
is to assume that witness polynomials a(X),b(X) are already
properly blinded and thus openings do not produce any leak-
age. By looking closely at the argument for Rpse, we notice
that in our case a(x) is properly blinded and b(x) is a public
polynomial, guaranteeing zero-knowledge. So, we state the
relation assuming the openings of a(X),b(X) do not affect
zero-knowledge. However, we later describe how to adapt
the argument to make it generalized and cover the situations
where the witness polynomials are committed without blin-
ders. The argument is agnostic to the polynomial commitment
scheme but we instantiate it with KZG.

Lemma 9. The protocol Πpse for relation Rpse presented
in Figure 6 satisfies completeness, soundness, and zero-
knowledge.

We provide the proof for Lemma 9 in Appendix B.8.

Proof πw [Step 6]. After determining the highest bid w, the
winner can simply open their bid vector at the corresponding
position showing that bbbw = 1. We can further preserve the
privacy of candidate winners, particularly in case there is a
tie and only one of them should be picked. We now develop

Round 1 Prover:

1. Sample random p,s and compute Q = pG+ sH.

2. Compute b0 =
p
n and sample random b1,b2,b3,b4,b5,b6,

then compute B(X) = b0+b1X +b2X2+b3X3+b4X4+
(b5 +b6X)zH(X), observe that ∑h∈H B(h) = p.

3. Send Q,B= [B(τ)]1.

Round 1 Verifier: Send random challenge c
Round 2 Prover:

1. Compute z1 = cx+ p and z2 = cr+ s.

2. Compute R(X),q(X) such that B(X) + ca(X)b(X) =
z1
|H| +XR(X)+q(X)zH(X).

3. Compute D(X) = R(X) · XN−1−(n−2) where N is the
length of the SP proving key.

4. Send z1,z2,R= [R(τ)]1,q= [q(τ)]1,D= [D(τ)]1.

Round 2 Verifier: Sample and send a random opening chal-
lenge γ ∈ F∗ \{H,0}.
Round 3 Prover: Send openings aγ = a(γ),bγ = b(γ),Bγ =
B(γ),Rγ = R(γ).
Round 3 Verifier: Send random separation challenge v.
Round 4 Prover:

1. Compute W (X) = (a(X)+ vb(X)+ v2B(X)+ v3R(X)+
v4q(X)) · (X− γ)−1.

2. Send W= [W (τ)]1.

Round 4 Verifier:

1. Check that cP+Q = z1G+ z2H.

2. Compute qγ = (Bγ + caγbγ− z1
n − γRγ) · zH(γ)

−1.

3. Compute C = a+ vb+ v2B+ v3R+ v4q.

4. Compute y = aγ + vbγ + v2Bγ + v3Rγ + v4qγ.

5. Assert 1 = KZG.Verify(SP,C,γ,y,W).

6. Set degree bound d = N− 1− (n− 2), where N is the
length of the SP proving key.

7. Assert e(R, [xd]2) = e(D, [1]2).

Figure 6: Interactive zero-knowledge argument of knowledge
protocol Πpse for relation Rpse.

another zero-knowledge argument to enable the candidate
winner to show their eligibility while preserving their privacy.
Before describing the relation, recall that the followings hold:
(1) XXX = xxxG, (2) bbb is a vector with valid unary encoding, (3)
aaa = xxx+ bbb ◦ rrr, and (4) ZZZ = aaaYYY . We observe that the candi-
date bidder can demonstrate their eligibility if they manage to
prove that the discrete logs of XXXw and ZZZw are different, ensur-
ing that bbbw = 1. So, it is enough to prove knowledge of x, and
r such that XXXw = xG, (x+ r)YYY w = ZZZw, and r ̸= 0. To preserve
privacy, we follow the standard approach in the literature [45]
to have auctioneer/auditor compute a public vector commit-
ment C (e.g., using a Merkle Tree) of all triples (XXXw,ZZZw,YYY w)
and then each candidate winner proves knowledge of satisfy-

10

ing x and r for some pair in the vector. Further, each candidate
winner has to compute a nullifier [45] nul to ensure that they
cannot submit multiple proofs. The corresponding relation
Rwin is as follows:

Rwin =

(

C,nul;
x,r,X ,Y,Z,π

) r ̸= 0,
xG = X ,

(x+ r)Y = Z,
nul = H (x,r),

Verify(C;(X ,Y,Z);π) = 1

Observe that it is enough to prove knowledge of some x,

and r and not the ones committed in the first place. This fol-
lows from the fact that the bidder already proved connection
between vectors xxx and rrr with XXX and YYY . Should the bidder
provide any other satisfying x′ and r′, it would break the dis-
crete logarithm assumption. If there is a tie we can utilize
public randomness [34] to break the tie and choose among
the submitted proofs fairly. We highlight that preserving the
privacy of the winner is important in applications where the
winner could be subject to attacks like briberies [4].

5 Extensions

5.1 Efficient Second-price Auctions
Our main protocol, see Figure 1, can support both first- and
second-price auctions. However, in the latter case, we need
to re-run the protocol without the winner to detect the second
highest price, as with other private auctions [57]. We now
show how to modify the Cryptobazaar protocol to support
second-price and generally (p+1)st-price auctions more effi-
ciently without having to re-run the protocol. In this variant,
the set of bidders who propose the top p bids will win and
purchase the (identical) goods at the (p+1)st price.

Preprocessing. This phase is mostly as before, with the only
exception being that each bidder uses a Boolean encoding
for their bid b such that bbb = (0, . . . ,b j, . . . ,0), where b j = 1
if and only if j = b. To construct validity proof πbi , we can
use similar techniques based on log derivatives as before.

Finding the highest bid. This step is as before, and the high-
est bid is defined by the highest position w such that RRRw ̸= 0.

Finding the winner. This step is as before, except that we now
have a possible set of winners bidding at positions [w,w− p+
1], with the sale price being the highest position w′ such that
RRRw′ ̸= 0 and w′ < w− p+1.

We remark that the efficiency gained in this variant comes
with some privacy leakage. That is, one can learn all the bids
submitted in the auction protocol by examining the protocol
transcript, but without linking the bids to the corresponding
bidders. This variant still offers a decent amount of privacy
(i.e., unlinkability of bidders and their bids [18]) and could be
of interest depending on the applications, e.g., when moving
from single-item to multi-item NFT auctions [38].

5.2 Sequential First-price Auctions
An inherent limitation of the AV protocol is that the winner
can examine the protocol transcript and check if they were
the only winner. In particular, they can try inputting x in the
second round and see if the output is still random, implying
another party has vetoed. Consequently, the winner of a Cryp-
tobazaar auction can learn the second-highest price of a given
run. A similar issue has been also observed in other proto-
cols like Addax [57]. Although this might not be problematic
in a Vickery auction or when the participating bidders fre-
quently change, it might result in a strategic advantage to the
current winner when choosing their bids for future runs of it-
erative/sequential first-price auctions, e.g., when several items
are sold one after the other to the same group of buyers [22].
For example, the winner who learns the second-highest price
might choose their bid in the next run slightly above the pre-
vious second-highest price to minimize the amount they have
to pay while maximizing their winning chances.

Before we describe how to address this issue below, ob-
serve that there is a conflict of interest between the seller and
the winner. Thus our solution aims to take advantage of such
collusion disincentivization between the seller and a bidder
preventing them from winning at a lower price. So, we as-
sume the auctioneer has common interest with the seller (e.g.,
auctioneer is the seller).

Preprocessing. This step is as before, except that the auc-
tioneer also acts as a bidder and submits their own bid. In
particular, for their own bid they choose the maximum price,
i.e., b0 = n. Moreover, there is no need for the bidders to
decide and commit to their bid in this phase, allowing them
to adaptively decide on their bids in the bidding phase. This
further allows running the pre-processing in an offline phase
as common in the MPC literature [20].

Finding the highest bid. This step is as before. However,
since the auctioneer bid the maximum price b0 = n the leakage
of the second-highest price to the winner is prevented. The
auctioneer then computes YYY 0 with b0 = 0 locally to find the
highest position w such that RRRw ̸= 0 and announces this value.

Finding the winner. This step is as before, except that we
might need to add a fraud proof. That is, if the auctioneer
announces a bid w′ that is lower than the actual highest bid w,
the honest winner could present a fraud proof showing that
bbbw = 1 to slash the cheating auctioneer.

Another option to relax the assumption on the auctioneer
is to have multiple auctioneers and assume that at least one of
them is honest in line with the anytrust threat model [49].

Re-using the preprocessing phase. To reduce the overheads
for bidders in the iterative variant of Cryptobazaar, it is useful
to explore whether bidders could re-use the values they com-
puted in the preprocessing phase for future runs of the auction
(besides the option of pre-computing k sets of these values in
advance as soon as they know that they will participate in k

11

auctions). With that in mind, note that re-using the random
matrix Y for multiple runs of the auction is not secure, as one
can learn information about the bids by comparing the proto-
col transcripts. Interestingly, we can efficiently re-randomize
the matrix Y by re-randomizing only a single row-vector XXX i in
the matrix X. Given this, we can essentially make the protocol
non-interactive. However, we need to be careful regarding the
possible collusion between the party who re-randomizes the
matrix Y and the bidders. We can either sample a small subset
of bidders for re-randomization or make a threshold/anytrust
security assumption on the auctioneer’s side. In case some
bidders wish to leave the auction, one could also on-board
new bidders to the protocol and use their contributions for
re-randomization without the need for bidders who remain to
re-do their preprocessing. Moreover, observe that if we allow
the winner to open its bid vector at the winning index w to
announce its eligibility (instead of using a zero-knowledge
set membership proof), the winner is incentivized to re-do its
preprocessing phase to protect its privacy for future runs of
the auction.

Protection against non-responsive winner. One might won-
der what if a candidate winner does not show up to claim their
win, given that there is no way to determine the winner if they
do not come forward voluntarily due to the privacy guarantees
of the AV protocol. We argue that this is not problematic since
the winner has no incentive to remain silent. Furthermore, one
can slightly tweak the protocol requiring the winner to claim
their win within a certain time window and if they do not,
declare the second-highest bidder as winner and give them
the chance to claim the win. This continues until some bidder
presents a valid proof for the currently eligible slot.

6 Evaluation

We implemented Cryptobazaar in Rust using the cryptog-
raphy framework arkworks [59]5. The implementation is
generic and supports any pairing-friendly curve. We run our
benchmarks on an Apple MacBook Pro with an M1 Max chip
with 10 cores and 64 GB memory. For the benchmarks we
instantiated our implementation with the BN254 curve and
we focus on the main computational overheads for individual
bidders and the auctioneer. We notice that the most demand-
ing computation for both bidder and auctioneer is running
multiscalar multiplications (MSM) which are implemented
in the arkworks module VariableBaseMSM. The arkworks
code is not particularly optimized and switching to hardware-
specialized libraries such RapidSnark [43] or gnark [10]
may further improve performance obviously.

Bidder overheads. The preprocessing phase of an individual
bidder i is dominated by the computation of the validity proofs

5We provide our implementation at https://github.com/akinovak/
cryptobazaar-impl .

πxi , πri , and πbi for relations Rpv,Rnz, and Runary, respectively.
All proofs require O(1) elliptic curve points and field elements
except the proof for Rpv. Thus, the amount of data each bidder
has to send is m + O(1) elliptic curve elements and O(1)
field elements. For example, given a price range of n = 1024
the overall amount of data an individual bidder has to send
is about 32 KB assuming a single elliptic curve point is 32
bytes. The bidding phase of a bidder i is dominated by the
computation of the validity proof πZi for the relation Rsum. We
provide the computational overheads to compute the above
proofs for price ranges n ∈ {128,1024,8192} in Table 1a.

Note that the computation of the validity proofs is not on the
critical path for certain deployment scenarios given our threat
model, like running an auction via optimistic roll-ups [44].

Auctioneer overheads. The preprocessing phase of the auc-
tioneer is dominated by the computation of the vectors YYY i
requiring 1 MSM and m−1 elliptic curve additions per AV
and thus n MSMs of size m and n · (m−1) elliptic curve ad-
ditions in total. We provide the running times to compute
vectors YYY i for the number of bidders m ∈ {32,128,256} and
price ranges n ∈ {128,1024,8192} in Table 1b. Each vector
YYY i contains n elliptic curve points for i ∈ [m] and assuming
an elliptic curve point is 32 bytes, the auctioneer thus sends
m vectors of size 32n bytes. For example, for n = 1024 and
m = 128 this amounts to 32 KB per bidder or 4.2 MB in total.

After the bidding phase, the auctioneer needs to add n el-
liptic curve points per AV. It starts from the highest price
and runs until it finds the first non-zero point. In the worst
case where all bidders bid the minimal price, it runs m ·n el-
liptic curve additions. We report the (worst case) running
times for computing vector RRR for the number of bidders
m ∈ {32,128,256} and price ranges n ∈ {128,1024,8192}
in Table 1c. In practice the expected running time to compute
RRR should be much lower since the auctioneer stops as soon as
the first non-zero entry is found.

Remark. It would be helpful to see how the numbers we
choose for evaluation reflect the real-world deployments. A
promising application is the use of (sealed-bid) auctions in
Ethereum via proposer-builder separation architecture [24].
In the current realization [22], builders take part in an auction
to bid for their prepared block and the one with the highest bid
is chosen to be proposed by the proposer. According to the
recent work of [53], the block preparation is almost dominated
by 25 builders/bidders ([53], Table 5). Moreover, the authors
managed to collect 191 builder public keys ([53], Table 2),
which means the number of bidders is likely lower given
that each could hold several public keys (e.g., Titan builder
has disclosed 12 public keys in their official document). So,
our experiments with 32, 128, and 256 bidders reflects what
currently deployed large-scale systems like Ethereum require.
Furthermore, bids range usually from cents to tens of dollars
and a realistic deployment would likely be 1000≤ n≤ 10000
depending on the application [57].

12

https://github.com/akinovak/cryptobazaar-impl
https://github.com/akinovak/cryptobazaar-impl

Table 1: Cryptobazaar microbenchmarks (in ms) for number of bidders m and price ranges n.

(a) Individual bidder overheads to com-
pute validity proofs.

n 128 1024 8192

πxi 13.59 101.51 807.21
πri 2.38 10.25 58.38
πbi 2.53 10.68 62.03
πZi 27.28 141.38 953.36

(b) Auctioneer overheads to compute
AV matrix Y.

m / n 128 1024 8192

32 1.84 14.19 112.12
128 4.29 38.87 286.60
256 7.75 59.00 552.24

(c) Auctioneer overheads to compute re-
sults vector RRR.

m / n 128 1024 8192

32 0.30 6.36 50.48
128 1.95 26.83 145.06
256 4.01 32.90 265.14

Table 2: A high-level comparison among state-of-the-art sealed-bid auction protocols. A black (white) circle states that the
protocol does (does not) provide a given property and a half circle states that the protocol provides the property under certain
circumstances / with some restrictions. Privacy refers to the confidentiality of bids during and after protocol execution. Scalability
refers to having low computation and communication costs. Trust minimization states whether the protocol makes any trust
assumptions or not. Versatility captures the ability to (securely) support different protocol variants without major modifications.

Protocols Privacy Scalability Trust minimization Versatility

Riggs [48] # G# #
Cicada [27] # G# #
SEAL [3] # #
Addax [57] # G#
Cryptobazaar

7 Related Work

Riggs [48] realizes decentralized sealed-bid auctions using
time-based cryptography. The protocol has bidders commit
to their bids which are then either self-opened by bidders
or force-opened through (sequential) computation. Although
the idea of using time-based cryptography for sealed-bid auc-
tion was already explored in the literature [17, 52], this work
addresses the practical details of the deployment setting in-
cluding running auctions in parallel while locking up enough
collateral without privacy leakage. Cicada [27] is another re-
cent auction protocol that differs from Riggs by proposing
a non-interactive protocol via homomorphic time lock puz-
zles [37] that pack many puzzles (i.e., bids) into a single one.
None of the aforementioned protocols offer privacy for bids
after the protocol execution though. In Cicada, there is an on-
chain coordinator (as auctioneer) and off-chain solver. The
solver needs to present the outcome to the auctioneer (with
proofs) to let the auctioneer announce the winner. One can
use Cryptobazaar in a similar fashion by having an on-chain
auctioneer (i.e., smart contract) and off-chain coordinator to
help with the computation.

Two recent private auction protocols are SEAL [3], and
Addax [57]. The SEAL protocol is auctioneer-free and the
bidders themselves jointly compute the highest bid by inter-
acting with each other, leading to a communication bottleneck.
Similar to ours, they also make use of anonymous veto [30]
as their underlying primitive but in a quite different way. First,
they modify the original AV protocol where each bidder needs
to commit to two random values for each run of the protocol.

Second, bidders use a modified AV to compute the logical-
OR of their input bits starting from the most significant bid
where the bidders dynamically change their input to the AV
according to some decision rule in case the output of last the
AV equals 1, limiting the usability of the system. An issue of
this approach is that bidders learn during protocol execution
that they lost and thus need to be incentivized to finish the
protocol run. Moreover, SEAL uses traditional Sigma pro-
tocols instead of more efficient succinct validity arguments.
Addax [57] is a private online ad exchange that has a sealed-
bid auction protocol at its core. The protocol adopts an affine
aggregatable encoding (AFE) introduced in Prio [16] allowing
an auction to be conducted over secret-shared bids. Crypto-
bazaar shares some common properties with Addax including
using price range, unary encoding of bids, and performing
bitwise OR on inputs. However, the crucial advantage of our
design is its more relaxed threat model of only requiring a
single untrusted auctioneer as coordinator while Addax needs
at least two non-colluding auctioneers due to their adoption
of Prio-based techniques. Although a side-by-side compari-
son between Cryptobazaar and Addax is difficult due to the
different settings (e.g., evaluations on Apple M1 vs AWS,
threat models, etc.), we provide some numbers for intuition:
Addax (Cryptobazaar) incurs a computational overhead of
1802 ms (1880 ms) per bidder per auction run and terminates
in 440 ms (431 ms) for 96 (128) bidders and a price range
of 10000 (8192). This shows that the performance of Crypto-
bazaar and Addax is in the same ballpark while Cryptobazaar
provides a better threat model and more versatility in terms
of deployment.

13

Acknowledgements

We thank Guillermo Angeris for constructive discussions on
auction theory. This work is supported by a grant from the
Ecosystem Support Program of the Ethereum Foundation.

References

[1] Ramiro Alvarez and Mehrdad Nojoumian. Comprehen-
sive survey on privacy-preserving protocols for sealed-
bid auctions. Computers & Security, 88:101502, 2020.

[2] Yonatan Aumann and Yehuda Lindell. Security against
covert adversaries: Efficient protocols for realistic ad-
versaries. Journal of Cryptology, 23(2):281–343, 2010.

[3] Samiran Bag, Feng Hao, Siamak F Shahandashti, and
Indranil Ghosh Ray. Seal: Sealed-bid auction without
auctioneers. IEEE Transactions on Information Foren-
sics and Security, 15:2042–2052, 2019.

[4] Jeb Bearer, Benedikt Bünz, Philippe Camacho, Binyi
Chen, Ellie Davidson, Ben Fisch, Brendon Fish, Gus
Gutoski, Fernando Krell, Chengyu Lin, et al. The
espresso sequencing network: Hotshot consensus,
tiramisu data-availability, and builder-exchange. Cryp-
tology ePrint Archive, 2024.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Fast reed-solomon interactive ora-
cle proofs of proximity. In 45th international collo-
quium on automata, languages, and programming (icalp
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P Ward.
Aurora: Transparent succinct arguments for r1cs. In
Advances in Cryptology–EUROCRYPT 2019: 38th An-
nual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Darmstadt, Ger-
many, May 19–23, 2019, Proceedings, Part I 38, pages
103–128. Springer, 2019.

[7] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas
Spooner. Interactive oracle proofs. In Theory of Cryp-
tography: 14th International Conference, TCC 2016-B,
Beijing, China, October 31-November 3, 2016, Proceed-
ings, Part II 14, pages 31–60. Springer, 2016.

[8] Erik-Oliver Blass and Florian Kerschbaum. Strain: A
secure auction for blockchains. In Computer Security:
23rd European Symposium on Research in Computer Se-
curity, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proceedings, Part I 23, pages 87–110. Springer,
2018.

[9] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log set-
ting. In Advances in Cryptology–EUROCRYPT 2016:
35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35, pages
327–357. Springer, 2016.

[10] Gautam Botrel, Thomas Piellard, Youssef El
Housni, Arya Tabaie, Gus Gutoski, and Ivo Kub-
jas. Consensys/gnark-crypto: v0.11.2, January
2023.

[11] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive
proof composition without a trusted setup. Cryptology
ePrint Archive, 2019.

[12] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE symposium on security and privacy (SP),
pages 315–334. IEEE, 2018.

[13] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan
Tyagi, and Psi Vesely. Proofs for inner pairing prod-
ucts and applications. In Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the
Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings,
Part III 27, pages 65–97. Springer, 2021.

[14] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In Public-Key Cryptography–
PKC 2013: 16th International Conference on Practice
and Theory in Public-Key Cryptography, Nara, Japan,
February 26–March 1, 2013. Proceedings 16, pages 55–
72. Springer, 2013.

[15] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas Ward. Marlin: Pre-
processing zksnarks with universal and updatable srs.
In Advances in Cryptology–EUROCRYPT 2020: 39th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croa-
tia, May 10–14, 2020, Proceedings, Part I 39, pages
738–768. Springer, 2020.

[16] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, ro-
bust, and scalable computation of aggregate statistics. In
14th USENIX symposium on networked systems design
and implementation (NSDI 17), pages 259–282, 2017.

[17] Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio
Malavolta, and Sri Aravinda Krishnan Thyagarajan.
Minting mechanism for proof of stake blockchains. In

14

Applied Cryptography and Network Security: 18th Inter-
national Conference, ACNS 2020, Rome, Italy, October
19–22, 2020, Proceedings, Part I 18, pages 315–334.
Springer, 2020.

[18] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech.
Formal verification of e-auction protocols. In Interna-
tional Conference on Principles of Security and Trust,
pages 247–266. Springer, 2013.

[19] Youssef El Housni and Gautam Botrel. Edmsm: multi-
scalar-multiplication for snarks and faster montgomery
multiplication. Cryptology ePrint Archive, 2022.

[20] Daniel Escudero, Vipul Goyal, Antigoni Polychroni-
adou, and Yifan Song. Turbopack: honest majority mpc
with constant online communication. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 951–964, 2022.

[21] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Conference on the theory and application of crypto-
graphic techniques, pages 186–194. Springer, 1986.

[22] Flashbots. Introduction to mev-boost. https:
//docs.flashbots.net/flashbots-mev-boost/
introduction, 2024.

[23] Ethereum Foundation. Curdleproofs: A shuffle ar-
gument protocol. https://github.com/asn-d6/
curdleproofs/tree/main, 2022.

[24] Ethereum Foundation. Proposer builder separation (pbs)
- ethereum roadmap. https://ethereum.org/en/
roadmap/pbs/, 2024.

[25] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The al-
gebraic group model and its applications. In Advances in
Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19–23, 2018, Proceedings, Part II 38, pages 33–62.
Springer, 2018.

[26] Ariel Gabizon, Zachary J Williamson, and Oana Ciob-
otaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[27] Noemi Glaeser, István András Seres, Michael Zhu, and
Joseph Bonneau. Cicada: A framework for private non-
interactive on-chain auctions and voting. Cryptology
ePrint Archive, 2023.

[28] Oded Goldreich. Foundations of cryptography: volume
2, basic applications. Cambridge university press, 2009.

[29] Ulrich Haböck. Multivariate lookups based on logarith-
mic derivatives. Cryptology ePrint Archive, 2022.

[30] Feng Hao and Piotr Zieliński. A 2-round anonymous
veto protocol. In International Workshop on Security
Protocols, pages 202–211. Springer, 2006.

[31] J Horwitz and K Hagey. Google’s secret ‘project
bernanke’revealed in texas antitrust case. Wall Street
Journal, 2021.

[32] Jong-Hyuk Im, Taek-Young Youn, and Mun-Kyu Lee.
Privacy-preserving blind auction protocol using fully
homomorphic encryption. Advanced Science Letters,
22, 2016.

[33] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings 16, pages
177–194. Springer, 2010.

[34] Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic.
Sok: Public randomness. In 2024 IEEE 9th European
Symposium on Security and Privacy (EuroS&P), pages
216–234. IEEE, 2024.

[35] Hiroaki Kikuchi. (m+ 1) st-price auction protocol. IE-
ICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, 85(3):676–
683, 2002.

[36] Michal Król, Alberto Sonnino, Argyrios Tasiopoulos,
Ioannis Psaras, and Etienne Rivière. Pastrami: privacy-
preserving, auditable, scalable & trustworthy auctions
for multiple items. In Proceedings of the 21st Interna-
tional Middleware Conference, pages 296–310, 2020.

[37] Giulio Malavolta and Sri Aravinda Krishnan Thyagara-
jan. Homomorphic time-lock puzzles and applications.
In Annual International Cryptology Conference, pages
620–649. Springer, 2019.

[38] Jason Milionis, Dean Hirsch, Andy Arditi, and Pranav
Garimidi. A framework for single-item nft auction mech-
anism design. In Proceedings of the 2022 ACM CCS
Workshop on Decentralized Finance and Security, pages
31–38, 2022.

[39] Jose A Montenegro, Michael J Fischer, Javier Lopez,
and Rene Peralta. Secure sealed-bid online auctions
using discreet cryptographic proofs. Mathematical and
Computer Modelling, 57(11-12):2583–2595, 2013.

[40] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau,
and Dan Boneh. Powers-of-tau to the people: Decen-
tralizing setup ceremonies. In International Conference
on Applied Cryptography and Network Security, pages
105–134. Springer, 2024.

15

https://docs.flashbots.net/flashbots-mev-boost/introduction
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://github.com/asn-d6/curdleproofs/tree/main
https://github.com/asn-d6/curdleproofs/tree/main
https://ethereum.org/en/roadmap/pbs/
https://ethereum.org/en/roadmap/pbs/

[41] Anca Nitulescu. zk-snarks: A gentle introduction. Ecole
Normale Superieure, 2020.

[42] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Annual international cryptology conference, pages
129–140. Springer, 1991.

[43] RapidSnark. https://github.com/iden3/
rapidsnark, 2021.

[44] Ethereum Research. Nft auc-
tion. https://ethresear.ch/t/
off-chain-l2-nft-auction-protocol-idea/
12930, 2024.

[45] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459–474. IEEE, 2014.

[46] Jan Christoph Schlegel. Transaction ordering auctions.
arXiv preprint arXiv:2312.02055, 2023.

[47] Justin Thaler et al. Proofs, arguments, and zero-
knowledge. Foundations and Trends® in Privacy and
Security, 4(2–4):117–660, 2022.

[48] Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby,
Joseph Bonneau, and David Mazières. Riggs: Decen-
tralized sealed-bid auctions. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1227–1241, 2023.

[49] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Scalable anonymous group
communication in the anytrust model. In European
Workshop on System Security (EuroSec), volume 4,
2012.

[50] Fei Wu, Thomas Thiery, Stefanos Leonardos, and
Carmine Ventre. Strategic bidding wars in on-chain
auctions. arXiv preprint arXiv:2312.14510, 2023.

[51] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu,
Xiapu Luo, and Guoai Xu. Ethereum name ser-
vice: the good, the bad, and the ugly. arXiv preprint
arXiv:2104.05185, 2021.

[52] Jie Xiong and Qi Wang. Anonymous auction proto-
col based on time-released encryption atop consortium
blockchain. arXiv preprint arXiv:1903.03285, 2019.

[53] Sen Yang, Kartik Nayak, and Fan Zhang. Decentral-
ization of ethereum’s builder market. arXiv preprint
arXiv:2405.01329, 2024.

[54] Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and
Sam Seljan. An empirical study of reserve price optimi-
sation in real-time bidding. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1897–1906, 2014.

[55] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich,
Mary Maller, Anca Nitulescu, and Mark Simkin. Caulk:
Lookup arguments in sublinear time. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 3121–3134, 2022.

[56] Haoqian Zhang, Michelle Yeo, Vero Estrada-Galinanes,
and Bryan Ford. Zeroauction: Zero-deposit sealed-
bid auction via delayed execution. Cryptology ePrint
Archive, 2024.

[57] Ke Zhong, Yiping Ma, Yifeng Mao, and Sebastian Angel.
Addax: A fast, private, and accountable ad exchange in-
frastructure. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’23), pages
825–848, 2023.

[58] Richard Zippel. Probabilistic algorithms for sparse poly-
nomials. In International symposium on symbolic and
algebraic manipulation, pages 216–226. Springer, 1979.

[59] zkSNARK ecosystem. arkworks contributors. https:
//arkworks.rs, 2024.

A Definitions

A.1 Zero Knowledge Argument of Knowledge

A proof system enables a prover P to convince a verifier
V about some statement u such that ∃w : (u;w) ∈ R , where
w is the corresponding witness and R is a polynomial-time
decidable relation. A proof of knowledge system further con-
vinces the verifier that not only the witness exists, but also
the prover knows it. When a proof system only demonstrates
some statement holds and does not leak any information about
the witness, it is zero-knowledge. A proof system is an ar-
gument when it holds for a computationally bounded prover
under certain computationally hard assumption.

Definition 3 (zkSNARK). A (non-interactive) argument sys-
tem AS = (Setup,Prove,Verify,Simulate) for R is a zk-
SNARK if it satisfies the following properties:
• Completeness. Given a true statement u for relation R , a

honest prover P with a valid witness w should convince
the verifier V . More formally, for all λ ∈ N and for all
(u,w) ∈ R :

Pr

[
AS.Verify(crs,u,π) = 1

∣∣∣ (crs,td)← AS.Setup(1λ,R)

π← AS.Prove(crs,u,w)

]
= 1

16

https://github.com/iden3/rapidsnark
https://github.com/iden3/rapidsnark
https://ethresear.ch/t/off-chain-l2-nft-auction-protocol-idea/12930
https://ethresear.ch/t/off-chain-l2-nft-auction-protocol-idea/12930
https://ethresear.ch/t/off-chain-l2-nft-auction-protocol-idea/12930
https://arkworks.rs
https://arkworks.rs

• Knowledge Soundness. There is an extractor that can com-
pute a witness whenever the adversary produces a valid
argument. The extractor gets full access to the adversary’s
state, including any random coins. Formally, we require
that for all PPT adversaries A there exists a PPT extractor
EA such that

Pr

[
AS.Verify(crs,u,π) = 1

∧(u,w) /∈ R

∣∣∣ (crs,td)← AS.Setup(1λ,R)

((u,π);w)← A ||EA (crs)

]
≤ negl

• Succinctness. A non-interactive argument where the veri-
fier runs in polynomial time λ+ |u| and the proof and the
common reference string sizes are polynomial λ, is a fully
succinct SNARK.

• Statistical Zero-knowledge. An argument is zero-
knowledge if it does not leak any information besides the
truth of the statement. Formally, if for all λ ∈ N, for all
(u,w) ∈ R and for all PPT adversaries A , the following
two distributions are statistically close:

D0 = {π0← AS.Prove(crs,u,w) : (crs,td)← AS.Setup(1λ,R)}

D1 = {π1← AS.Simulate(crs,td,u) : (crs,td)← AS.Setup(1λ,R)}

An argument of knowledge is public coin if all the mes-
sages sent form the verifier have uniform distribution and are
independent from the ones received from the prover. This
then allows to make the protocol non-interactive using Fiat-
Shamir [21].

B Proofs

B.1 Proof for Theorem 1

An auction protocol takes as input m submissions
b1, . . . ,bm in a domain χ and outputs the highest bid bw =
max{b1, . . . ,bm} as the winning one. Inspired by [27], we
now provide a formal definition for a (verifiable and private)
sealed-bid auction ΠAuction.

Definition 4 (Selead-bid auction). A sealed bid auction
ΠAuction = (Setup,Seal,Eval,Verify) is defined with the fol-
lowing algorithms:
• (SP)← Auction.Setup(1λ): The algorithm takes as input

a security parameter λ, and outputs system parameters SP.
• (ci,πi)← Auction.Seal(SP, i,b): The algorithm takes as

input the system parameters SP and submission b of user
i ∈ [m], and outputs a sealed bid ci and a proof of well-
formedness πi.

• (y,π) ← Auction.Eval(SP,{ci,πi}i∈[m]): The algorithm
takes as input the system parameters SP, the sealed bid
ci together with their corresponding proof πi for i ∈ [m],
and outputs the final result y and a validity proof π.

• (1/0)← Auction.Verify(SP,y,πw): The algorithm verifies
if the output y is indeed the correct result of the auction bw.

Definition 5 (Completeness). A sealed-bid auction ΠAuction

satisfies completeness if the algorithm Eval outputs the high-
est bid bw assuming all parties follow the protocol and any
setup phase is performed correctly. More formally, for all
λ ∈ N and for all b1, . . . ,bm ∈ χ

Pr

y = bw

∣∣∣
(SP)← Auction.Setup(1λ)

(ci,πi)← Auction.Seal(SP, i,b) ∀i ∈ [m]

(y,π)← Auction.Eval(SP,{ci,πi}i∈[m])

Auction.Verify(SP,y,πw) = 1

= 1

Definition 6 (Soundness). Let bw denote the highest (honest)
bid and assume the adversary A corrupts the auctioneer and
k ≤ m− 2 bidders. A sealed-bid auction ΠAuction satisfies
soundness if there is a negligible function negl such that for
all PPT adversaries A and for all λ ∈ N

Pr

Auction.Verify(SP,y,πw) = 1

∧ y ̸= bw

∣∣∣
(SP)← Auction.Setup(1λ)

(b j ,c j ,π j)← A(SP) ∀ j ∈ [k]

(c,π)← Auction.Seal(SP, ·,b)
(y,πw)← Auction.Eval(SP,{ci,πi}i∈[m])

≤ negl

Definition 7 (Privacy). The sealed-bid auction ΠAuction satis-
fies privacy if for all PPT adversaries A corrupting the auc-
tioneer and k≤m−2 bidders and for all λ ∈N, there exists a
PPT simulator S and a negligible function negl such that

∣∣∣∣∣Pr

[
A(SP,b,c,π) = 1

∣∣∣ (SP)← Auction.Setup(1λ)

(c,π)← Auction.Seal(SP, ·,b) ∀i /∈ [k]

]
−

Pr

[
A(SP,b,c,π) = 1

∣∣∣ (SP)← Auction.Setup(1λ)

(b,c,π)← S(SP, ·) ∀i /∈ [k]

]∣∣∣∣∣≤ negl

Proof. Completeness follows directly from that of the under-
lying AV protocol. Note that the value Z = (x+b◦ r)◦Y sent
by each bidder in the bidding phase, see Figure 1, is essen-
tially the same as that of sent in the original AV, where here
the randomness r comes to play depending on the bid value.
Soundness follows from the underlying argument of knowl-
edge protocols. We now go over the possible situations that
may lead to an incorrect outcome and argue that all are cap-
tured by the soundness of the arguments systems. The sce-
narios are: (1) the auctioneer is honest and some bidders are
malicious, (2) the auctioneer is malicious and all bidders are
honest, (3) the auctioneer is malicious and colludes with some
bidders. A malicious bidder may (A1) provide inconsistent
values for the first round of AV conflicting with their com-
mitments, (A2) provide invalid unary encoding, (A3) provide
inconsistent values for the second round of AV conflicting
to their initial commitments, (A4) wrongly claim they are
the candidate winner. All of the aforementioned items will
lead to the failure of the verification of Rpv, Runary, Rsum, and
Rwin with overwhelming probability. A malicious auctioneer
may (B1) send incorrect value after the first round of AV, (B2)
output a wrong bid as the winner. Both of the aforementioned

17

items will be detected publicly. A malicious auctioneer which
is colluding with some malicious bidders could do a combi-
nation of the cases mentioned above that lead to failure in
verification and are detected publicly.
Privacy: Before we describe our formal privacy analysis we
intuitively argue about the privacy of the underlying AV pro-
tocol. When xi is sampled randomly by bidder i, the adversary
controlling all but one bidder (i.e., without full collusion) can-
not break the privacy of the bidder i (Theorem 4, [30]) and the
confidentiality of its input. This is because the value Yi has
a uniform distribution (Lemma 3, [30]) and under the DDH
assumption one cannot distinguish between xiYi and a random
group element riYi. It is straightforward to extend this to a
vector of values xxxi,rrri, and YYY i as in our case.
We now proceed to prove Cryptobazaar’s privacy using
real/ideal simulation paradigm [28]. We start by defining
an ideal functionality F that acts as a trusted third party, re-
ceiving the protocol’s input and giving its output. A protocol
is said to be secure if what the adversary can learn from the
interaction with protocol (and output) could also be learned
from the interaction with the ideal functionality. This is for-
mally shown by constructing a simulator S that can generate
a simulated view (i.e., protocol transcript) for the adversary
which is indistinguishable from the actual protocol transcript
without having access to the honest parties’ inputs.

Let b1, . . . ,bh denote the set of honest bids and without
loss of generality assume the adversary A corrupts the
auctioneer and k ≤ m− 2 bidders, with h+ k = m. Further,
let out = (b∗, sp) denote the set of outputs, including the
highest (honest) bid, and second highest (honest) bid. The
description of ideal functionality F and simulator S are
given in Figure 7 and Figure 8, respectively. We define a
sequence of hybrid distributions starting from the actual
protocol transcript/distribution and ending with the simulated
transcript/distributions. We argue that each two consecutive
hybrids are computationally indistinguishable, implying
the indistinguishably of the real and ideal distributions.
Note that we exploit the zero-knowledge property of the
underlying validity arguments, the privacy guarantees of
the underlying AV protocol, and the hiding property of
the underlying polynomial commitment to simulate the views.

Hybrid0 This is the actual view of the Cryptobazaar protocol.

Hybrid1 The same as Hybrid0, except that the simulator S
does the following on behalf of each honest bidder i ∈ [h].
It computes and appends (x̃, q̃, b̃, X̃XX , π̃x, π̃r, π̃b) to the public
log. This view is indistinguishable from the last one due to
the uniform random distribution of x̃xx, r̃rr, the zero-knowledge
property of the underlying proofs for π̃x, π̃r, π̃b, and the
hiding property of the polynomial commitment b̃. Note that
the original KZG commitment is deterministic in the sense
that the same polynomials have the same commitment. So,
for the indistinguishably to hold we need to use blinded KZG.

Input: h bids b1, . . . ,bh from honest bidders
Output: (b∗, sp), where
• Compute b∗ = max(b1, . . . ,bh).
• Find w, such that bw = b∗

• Compute sp = max(b1, . . . ,bw−1,bw+1, . . . ,bh).
F outputs (b∗,sp) at the end.

Figure 7: Ideal Functionality F for Cryptobazaar

Hybrid2 The same as Hybrid1, except that the matrix Y is
computed with respect to the simulated row-vectors X̃XX i for
i∈ [h] and the ones from adversary XXX ′′′j for j ∈ [k]. This hybrid
is computationally indistinguishable from Hybrid1 due to the
privacy guarantee of AV under the DDH assumption. That is,
having one honest row-vector X included in the matrix Y, its
row-vectors YYY i have uniform distributions (Lemma 3, [30]).

Hybrid3 The same as Hybrid2, except that the simulator S
computes the vectors Z̃ZZi on behalf of honest bidders using
its chosen bids. It also computes the validity proofs π̃Zi

for i ∈ [h]. The indistinguishability of this hybrid from the
previous one stems from the security guarantee of the AV
protocol under the DDH assumption and the zero-knowledge
property of the π̃Zi .

Hybrid4 The same as Hybrid3, except that the output vector is
computed as RRR = ∑

h
i=1(Z̃ZZi) +∑

k
j=1(ZZZ

′′′
j), where the highest

position w should equal b∗. Otherwise, the simulator aborts.
Observe that due to the unary encoding and the way AV
works, a valid unary proof for the highest bid π̃b∗ should be
enough to ensure the privacy of honest bidders and failure to
do so by A does not affect the security of the view. Therefore,
this view is indistinguishable from the previous one.

Hybrid5 The same as Hybrid4, except that the simulator
computes an eligibility proof π̃w on behalf of the candidate
honest winner. This view is computationally indistinguishable
form the previous one due to the zero-knowledge property of
the π̃w.

Hybrid6 This is the view of A ′ simulated by S in Cryptobazaar.
Further, the simulator sets b∗ = 0 and sends the corresponding
Z̃ZZ to the adversary. The adversary can now learn the second
highest price sp by determining the highest non-zero position
at RRR = ∑

h
i=1(Z̃ZZi)+∑

k
j=1(ZZZ

′′′
j). So, the adversary learns nothing

beyond the output (b∗,sp) at the end of the protocol.

18

S({xxx′′′j,rrr′
′′
j} j∈[k],{b′j} j∈[k],out)

1. Receive the output out = (b∗,sp) from F .

2. Sample random non-zero vectors x̃xxi, r̃rri ∈ Fn for i ∈ [h].
It also computes their corresponding commitments x̃i, r̃i
and validity proofs π̃xi , π̃ri .

3. Sample random bid bi for i ∈ [h] such that one of them
is equal to b∗ and others are smaller. Also, set one of the
bids to sp such that others (excluding b∗) are smaller or
equal.

4. Compute the polynomial commitment to unary encoding
of the bids bi for i ∈ [h]. It also computes their corre-
sponding validity proofs π̃bi .

5. Knowing the description of AV, compute Y = M ·X in-
cluding row-vector X ′i for i ∈ [k] received from an adver-
sary A .

6. Compute vector ZZZi = (xxxi +bbbi ◦ rrri)◦YYY i on behalf of hon-
est bidders together with validity proofs π̃Zi for i ∈ [h].

7. Receive the values ZZZ′′′j for j ∈ [k] from A . If ZZZ′′′ is not of
valid form, it aborts.

8. Compute the vector RRR=∑
h
i=1(ZZZi)+∑

k
j=1(ZZZ

′′′
j). Note that

A can also compute the same vector at this point.

9. The highest bid is highest position w such that RRRw ̸= 0.
Check if Rw = b∗; otherwise, it aborts.

10. Set b∗ = 0 and compute its corresponding vector ZZZ =
(xxx+bbb∗ ◦ rrr)◦YYY .

11. Compute the vector RRR = ∑
h
i=1(ZZZi)+∑

k
j=1(ZZZ

′′′
j).

12. The second highest bid is highest position w such that
RRRw ̸= 0. Check if Rw = sp; otherwise, it aborts.

Figure 8: Simulator for Cryptobazaar

B.2 Proof for Lemma 4

Proof. Completeness is immediately followed by writing
out the verification equation as e(G,H) f (τ)− f (γ)+γq(γ) =

e(G,H)τq(τ). So, this is just the equation q(X) = f (X)− f (γ)
X−γ

evaluated at a challenge point γ. Next, we proceed to show
that this argument is knowledge sound by building an efficient
extractor E that extracts the witness and then show how to
build a simulator.

Soundness. Suppose that malicious P commits to f (X),X
such that there exists i for which Xi ̸= f (wi). Denote
f (γ) = y. Then, except with negligible probability we have
∑

n
i=0 Li(γ)Xi = [y′]1 ̸= [y]1. Finally, from soundness of the

KZG commitment the malicious P has only negligible proba-
bility in constructing an accepting opening proof that f (γ) =
y′ ̸= y.

Zero knowledge. We construct Spv such that given instance
x,X, toxic waste τ, and verifier’s challenge produces a tran-

script that is identically distributed to the transcript obtained
from interaction with the honest prover that has a valid
witness. Given γ, we have [y]1 ← ∑

n
i=0 Li(γ)Xi that looks

random given DDH assumption. Simulator then computes
q= (f− [y]1)(τ− γ) which is randomly distributed over γ. It
is easy to check that q satisfies verifier’s pairing check and
therefore Spv is able to produce a valid transcript which is
indistinguishable from the one in the actual protocol.

B.3 Proof for Lemma 5

Proof. We proceed to show this argument is knowledge sound
by building an efficient extractor E that extracts the witness.
Afterwards, we prove zero-knowledge by building up a simu-
lator.

Knowledge soundness. As adversary A is algebraic, when-
ever it sends a commitment to some polynomial it also sends
the actual polynomial. Further, if the verifier V does not ac-
cept then A clearly does not win the game, thus further assume
that V accepts. Then, since A is algebraic, it sends ŝ(X) and
q(X) together with s and q. E then reconstructs r(X) from
ŝ(X), q(X), and (publicly-known) zH(X) in polynomial time.

Zero knowledge. We construct Snz that, given instance r,
trapdoor τ and verifier randomness, produces a transcript that
is equally distributed as the transcript obtained from the inter-
action with the honest prover that has a witness. Note that Snz
samples all values s,q,rγ,sγ,qγ uniformly at random. In the
real execution r(X) and s(X) are blinded with m(X) and b(X),
respectively, thus commitments and evaluations also look ran-
dom. The simulator then computes c = r+αs+α2q and
y = rγ +αŝγ +α2qγ as in the real protocol execution. Finally,
by knowing trapdoor τ it computes t= (c− [y]1)(τ− γ).

B.4 Proof for Lemma 6

Proof. If bbb is a valid unary encoding, then it is straightforward
to see that ∆ has the defined structure. In particular, it consists
of all zeros except a one at index i. From the other side,
suppose that ∆ has defined structure and that bbb starts with one.
Let set index i such that ∆i = 1 and i ̸= n. From this we have
bbbi−bbbi+1 = 1. Given that all the other values of ∆ are zero we
can derive that bbb j = bbbi+1 for j ∈ [i+1,n] and that bbb j = bbbi for
j ∈ [1, i]. Since bbb1 = 1, thus bbb j = 1 for j ∈ [1, i] and from this
bbb j = 0 for j ∈ [i+1,n], the claim is proved. In case that i = l,
with the same reasoning we can conclude that ∆n = bbbn = 1
and thus for j ∈ [1,n−1] we have bbb j = bbbn = 1.

19

B.5 Proof for Lemma 7

Proof. We show that this argument is knowledge sound by
building an efficient extractor E that extracts the witness and
then proceed to build a simulator.

Knowledge soundness. If V does not accept then A clearly
does not win the game, thus further assume that V accepts. By
the knowledge soundness of the log derivative argument we
know that if verifier accepts then evaluations of f (X) indeed
consists of one ‘1’ and all zeroes except with negligible prob-
ability. Then from knowledge soundness of KZG we argue
that u(1) = 1 except with negligible probability. Finally as A
is algebraic, whenever it sends a commitment to some poly-
nomial it also sends the actual polynomial. Therefore, A send
polynomial f (X). Then, E computes u(w) from f (1) and
u(1) and then it iteratively computes all u(wi) from f (wi−1)
and u(wi−1).

Zero knowledge. We construct Sunary such that given in-
stance u, toxic waste τ and verifier’ challenge, produces a
transcript that is identically distributed to the transcript ob-
tained from interaction with honest prover that has a witness.
Note that polynomials u(X), f (X),B(X) are properly masked
such that their commitments and openings have random distri-
butions. Snz can then simply sample random elliptic curve and
field elements and with knowledge of τ it can simulate correct
opening proofs. Further, by the definition of zero-knowledge
univariate sumcheck R(X),Q(X) at round 3 are also random.

B.6 Proof for Lemma 8

Proof. Given that our protocol is closely similar to the gener-
alized IPA introduced in Bunz et al. [13], we just give a high
level intuition and refer the reader to [13] for more details.
Completeness is straightforward. Given that we use the same
form of blinding the zero knowledge can be proven with the
identical method of [13]. Soundness can be proven as follows.
The extractor first runs the extractor of Rpse to extract a′,r.
Then in the similar fashion, the extractor builds a tree of tran-
scripts by rewinding and recursively extracts vectors ai ∈ F

n
2i

for i ∈ (logn, logn−1, . . . ,0).

B.7 Rpse with Blinders
We show how to deal with the aforementioned leakage
when a(X),b(X) are not properly blinded. Our solution to
handle this is by committing to two blinding polynomials
s1(X),s2(X) and proving that this polynomials are multiples
of ZH(X), thus ∑h∈H si(h) = 0, and they do not affect the
sumcheck. Then, we prove the argument is knowledge
sound and we provide a simulator to prove it is indeed a

zero-knowledge argument of knowledge. The complete
protocol is presented in Figure 9.

B.8 Proof for Lemma 9

Proof. Completeness is straightforward. We argue that our
protocol is knowledge sound in the Algebraic Group Model
by building an efficient extractor E that extracts the witness.
Knowledge soundness is defined by a game involving an al-
gebraic adversary A and an efficient extractor E . Given the
SP, adversary A produces the instances a,b,P and produces
an interactive argument for the verifier. Then, the goal of
the extractor is to interact with A and at the end to output
the witness x,r,a(X),b(X). We say that A wins the game
if V accepts and one of the following relations is false:
a = [a(τ)]1,b = [b(τ)]1,xG + rH = P,∑h∈H a(h)b(h) = x.
The protocol has knowledge soundness if there is efficient
E and that A cannot win the game except with negligible
probability. If V does not accept then A clearly does not
win the game, thus further assume that V accepts. As A is
algebraic, whenever it sends a commitment to some polyno-
mial it also sends the actual polynomial. Therefore, during
the protocol execution A sends s1,s2,B,R,q,D,Qs together
with s1(X),s2(X),B(X),R(X),q(X),D(X),Qs(X). First, by
the knowledge soundness of the proof of opening of Ped-
ersen commitment there exists extractor EPedersen such that
except with a negligible probability it extracts x, p,r,s, where
z1 = cx+ p and z2 = cr+s. Further, the passing of all the KZG
checks implies that by the knowledge soundness of KZG and
Schwartz-Zippel all polynomial identities hold except with
negligible probability. Since zero knowledge sumcheck re-
lation also passes we conclude that ∑h∈H B(h) + c(a(h) +
s1(h))(b(h)+ s2(h)) = z1, except with negligible probability.
From the check that ZH(X) divides both s1(X) and s2(X) we
know that they do not affect the sum since ZH(h) = 0, ∀h∈H,
thus ∑h∈H si(h) = 0. Therefore, ∑h∈H B(h)+ ca(h)b(h) = z1.
Now suppose that ∑h∈H a(h) ·b(h) = x′ ̸= x and suppose that
P commits to B(X) such that ∑h∈H B(h) = p′ ̸= p. Then, we
have that cx+ p = cx′+ p′ which is true only if c = p′−p

x−x′ ,
that happens with probability 1

|F| . Thus we have shown that
if V accepts then ∑h∈H a(h)b(h) = x holds with overwhelm-
ing probability. The last ambiguity we have to deal with is
extracting a(X),b(X). Even though A is algebraic it does not
send a(X),b(X) since commitments a,b are already in the
instance. However, E has the access to s1(X),s2(X) and from
asγ,bsγ it can compute aγ and bγ. Thus rewinding A n times
and obtaining different opening challenges γi enable E to
fully interpolate a(X),b(X). From witness extended emula-
tion [47] here we know that this E is still efficient and that it
fails only with negligible probability.

20

Round 1 Prover:

1. Sample random p,s and compute Q = pG+ sH.

2. Compute b0 =
p
n and sample random b1,b2,b3,b4,b5,b6,

then compute B(X) = b0+b1X +b2X2+b3X3+b4X4+
(b5 +b6X)zH(X), observe that ∑h∈H B(h) = p.

3. Sample random r0,r1,r2,r3 and compute s1(X) = (r0 +
r1X) ·ZH(X) and s2(X) = (r2 + r3X + r4X2) ·ZH(X).

4. Send Q,B= [B(τ)]1,s1 = [s1(τ)]1,s2 = [s2(τ)]1.

Round 1 Verifier: Send random challenges c and α.
Round 2 Prover:

1. Compute z1 = cx+ p and z2 = cr+ s.

2. Compute R(X),q(X) such that B(X) + c(a(X) +
s1(X))(b(X)+ s2(X)) = z1

|H| +XR(X)+q(X)zH(X).

3. Compute D(X) = R(X) · XN−1−(n−2) where N is the
length of SP proving key.

4. Compute Qs(X) such that s1(X) + αs2(X) =
Qs(X)ZH(X).

5. Send z1,z2,R = [R(τ)]1,q = [q(τ)]1,D = [D(τ)]1,Qs =
[Qs(τ)]1.

Round 2 Verifier: Sample and send a random opening chal-
lenges γ ∈ F∗ \H,β.
Round 3 Prover: Send openings asγ = a(γ)+ s1(γ), bsγ =
b(γ)+ s2(γ), Bγ = B(γ), Rγ = R(γ), s1,β = s1(β), s2,β = s2(β).
Round 3 Verifier: Send random separation challenge v.
Round 4 Prover:

1. Set W (X) = (a(X) + s1(X) + v(b(X) + s2(X)) +
v2B(X)+ v3R(X)+ v4q(X)) · (X− γ)−1.

2. Set T (X) = (s1(X)+ vs2(X)+ v2Qs(X)) · (X−β)−1

3. Send W= [W (τ)]1,T= [T (τ)]1.

Round 4 Verifier:

1. Check that cP+Q = z1G+ z2H.

2. Compute QS,β = (s1,β +αs2,β) · zH(β)
−1.

3. Assert 1←KZG.Verify(s1+vs2+v2Qs,β,s1,β+vs2,β+

v2QS,β,qT).

4. Compute qγ = (Bγ + caγbγ− z1
n − γRγ) · zH(γ)

−1.

5. Set C = a+s1+ v(B+s2)+ v2B+ v3R+ v4q.

6. Compute y = asγ + vbsγ + v2Bγ + v3Rγ + v4qγ.

7. Assert 1 = KZG.Verify(SP,C,γ,y,W).

8. Set degree bound d = N− 1− (n− 2), where N is the
length of SP proving key.

9. Assert e(R, [xd]2) = e(D, [1]2).

Figure 9: Interactive zero-knowledge argument of knowledge
protocol Πpse with blinders for relation Rpse.

To prove zero knowledge property, we construct Spse such
that given instance P,a,b, toxic waste τ and verifier’s chal-

Spse((G,H),P,a,b,τ,c,γ,v)

1. Sample random z1,z2 and compute Q = z1G+ z2H−cX .

2. Sample random a1,a2,a3 and send Q,B = [a1]1,a2 =
[a2]1,a3 = [a3]1.

3. Sample random a4,a5,a6 and send z1, z2, R= [a4]1, q=
[a5]1, D= τN−1−(n−2)[a4]1, and Qs = [a6]1.

4. Sample random Bγ,asγ,bsγ,Rγ,s1,β,ss,β and send them
together with qγ,qS,β such that

Bγ + caγbγ =
z1

n
+ γRγ +qγZH(γ)

and
QS,βzH(β) = s1,β +αs2,β .

5. Compute

(a) q1 = (τ− γ)−1 · (qa +qs1 − [asγ]1)

(b) q2 = (τ− γ)−1 · (qb +qs2 − [bsγ]1)

(c) q3 = (τ− γ)−1 · (qB− [Bγ]1)

(d) q4 = (τ− γ)−1 · (qR− [Rγ]1)

(e) q5 = (τ− γ)−1 · (qq− [qγ]1)

(f) q6 = (τ−β)−1 · (qs1 − [s1,β]1)

(g) q7 = (τ−β)−1 · (qs2 − [s2,β]1)

(h) q8 = (τ−β)−1 · (qS− [QS,β]1) .

6. Compute and send qW = q1 + vq2 + v2q3 + v3q4 + v4q5
and qT = q6 + vq7 + v2q8.

Figure 10: Simulator for Rpse

lenge, produces a transcript that is identically distributed to
the transcript obtained from interaction with honest prover
that has a witness. In Figure 10, we outline the steps of the
simulator and then argue that simulator produces an accept-
ing transcript and that all messages are correctly distributed.
It can be seen that all KZG checks are passing and that by
definition cX +Q = z1G+ z2H, therefore V accepts. We now
argue about the indistinguishability of the real and simulated
transcripts.

1. z1,z2 are uniformly sampled, thus Q matches the actual
distribution.

2. s1,s2 are blinded with r0,r2 for prover and a2,a3 for
simulator respectively.

3. B is blinded with b1 for prover and a1 for simulator.

4. R is blinded with b2 for prover and a4 for simulator.

5. q is blinded with b5 for prover and a5 for simulator.

21

6. Qs is blinded with r4 for prover and a6 for simulator.

7. Bγ is blinded with b3 for prover and uniformly sampled
for simulator.

8. Rγ is blinded with b4 for prover and uniformly sampled
for simulator.

9. qγ is blinded with b6 for prover and uniformly sampled
for simulator.

10. s1,β,s2,β are blinded with r1,r3 for prover and uniformly
sampled for simulator.

11. asγ is uniformly distributed since it has random contri-
bution from both a(X) and s1(X) for prover and it is
uniformly sampled for simulator.

12. bsγ is uniformly distributed since it has random contri-
bution from both b(X) and s2(X) for prover and it is
uniformly sampled for simulator.

13. W,T uniquely satisfy the KZG openings.

22

	Introduction
	Background
	Notation
	Bilinear Groups
	Commitment Schemes
	Anonymous Veto
	Zero-knowledge Argument of Knowledge
	Inner-product Arguments (IPA)
	Univariate Sumcheck Protocol
	Logarithmic Derivatives

	Cryptobazaar
	System and Threat Models
	Design Goals
	Protocol Description

	Validity Proofs
	Preprocessing Phase
	Bidding Phase

	Extensions
	Efficient Second-price Auctions
	Sequential First-price Auctions

	Evaluation
	Related Work
	Definitions
	Zero Knowledge Argument of Knowledge

	Proofs
	Proof for Theorem 1
	Proof for Lemma 4
	Proof for Lemma 5
	Proof for Lemma 6
	Proof for Lemma 7
	Proof for Lemma 8
	Rpse with Blinders
	Proof for Lemma 9

