
Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

Gilad Asharov

Bar-Ilan University

Ramat Gan, Israel

Gilad.Asharov@biu.ac.il

Koki Hamada

NTT Corporation

Tokyo, Japan

koki.hamada@ntt.com

Dai Ikarashi

NTT Corporation

Tokyo, Japan

dai.ikarashi@ntt.com

Ryo Kikuchi

NTT Corporation

Tokyo, Japan

9h358j30qe@gmail.com

Ariel Nof

Bar-Ilan University

Ramat Gan, Israel

ariel.nof@biu.ac.il

Benny Pinkas

Bar-Ilan University

Ramat Gan, Israel

Aptos Labs

Palo Alto, US

benny@pinkas.net

Junichi Tomida

NTT Corporation

Tokyo, Japan

tomida.junichi@gmail.com

ABSTRACT

We implement a secure platform for statistical analysis over mul-

tiple organizations and multiple datasets. We provide a suite of

protocols for different variants of JOIN and GROUP-BY operations.

JOIN allows combining data from multiple datasets based on a com-

mon column. GROUP-BY allows aggregating rows that have the

same values in a column or a set of columns, and then apply some

aggregation summary on the rows (such as sum, count, median,

etc.). Both operations are fundamental tools for relational databases.

One example use case of our platform is in data marketing in which

an analyst would join purchase histories and membership infor-

mation, and then obtain statistics, such as "Which products were

bought by people earning this much per annum?"

Both JOIN and GROUP-BY involve many variants, and we design

protocols for several common procedures. In particular, we propose

a novel group-by-median protocol that has not been known so far.

Our protocols rely on sorting protocols, and work in the honest

majority setting and against malicious adversaries. To the best of

our knowledge, this is the first implementation of JOIN and GROUP-

BY protocols secure against a malicious adversary.

KEYWORDS

Privacy-preserving protocols; multiparty computation; join; group-

by; honest majority

1 INTRODUCTION

We construct a framework for collecting data frommultiple sources,

sharing it betweenmultiple servers, and applying statistical analysis

to the shared data. For this purpose, we design and implement

various data analysis protocols that are actively secure in an honest

majority setting. The inputs and outputs of these protocols are

shared between the servers, and therefore different protocols can

be easily composed for performing versatile data analysis.

We study two major types of protocols:

(1) Join protocols. Join allows to combine data from multiple

datasets based on a common column (usually a key). This is a

powerful tool for querying and analyzing relational databases. For

example, in a financial system, Join can be used to combine data

from a Transactions table, and an Accounts table. This can allow

the system to display a customer’s transaction history with details

such as transaction amount, account balance, and transaction date.

We design and implement various versions of join protocols, such

as inner-join, outer-join, etc., and support the more challenging

case of datasets that might have multiple entries with the same key.

(2) Group-by protocols group rows that have the same values in a

certain column and then apply some aggregation or summary func-

tion on the rows of each group. For example, group-by-count com-

putes the number of rows in each group. Group-by is particularly

useful when dealing with large amounts of data because it allows

condensing the data and generates summary statistics that provide

useful insights. This is often used in data analytics applications, e.g.,

to identify trends or patterns. We design and implement protocols

for computing group-by count/sum/max/min/median/percentile,

where each of these protocols computes the designated statistic for

each of the groups while hiding all other information about the

groups.

1.1 Join Protocols

Considerable effort has been put into privately computing set inter-

section (PSI) and its variants.While most of these works concentrate

on cases where the protocol outputs the intersection of the input

sets, many applications require more general and robust properties:

• First, in addition to computing the intersection of two sets, it

is necessary to compute more complicated functionalities, such

as different types of join operations commonly used in SQL

commands (right-join, left-join, etc.).

• It is useful to support a setting where both inputs and outputs

of the protocol are secret-shared between multiple servers. This

Gilad Asharov et al.

enables the composition of different protocols and the computa-

tion of further joins, filtering, or aggregate information, without

disclosing any intermediate results.

• Furthermore, many existing works assume that inputs (join keys)

are unique, but this is not always the case with real-world data.

Designing efficient protocols for non-unique keys is significantly

harder, and techniques from the traditional setting of PSI cannot

be automatically translated.

Join variants and settings. We briefly overview the various vari-

ants of join that we support. Let 𝐿 and 𝑅 be tables with𝑛 and𝑚 rows

respectively. The first column in each table contains keys. The join

operation outputs a new table in which each row is a concatenation

of a row from 𝐿 and a row from 𝑅. There are four common variants

for the join operation. In all cases, the number of columns in the

output table is the sum of the numbers of columns in 𝐿 and in 𝑅.

• Inner join: The output table contains only rows with keys that

appear in both tables. All rows in 𝐿 and 𝑅 that have the same

key are concatenated and appear with the joint key.

• Left outer join: The output contains the inner join output table,

and all rows from 𝐿 which are unmatched (their key does not

appear in 𝑅). These latter rows have null/0 in columns corre-

sponding to 𝑅.

• Right outer join: The output contains the inner join output table,

as well as all rows from 𝑅 which are unmatched. These latter

rows have null/0 in columns corresponding to 𝐿.

• Full outer join: The output contains the inner join table, plus all

rows from both 𝐿 and 𝑅 that are not in the inner join. These

latter rows have null/0 in columns corresponding to the other

table.

A table can have a unique key for every row, or might have multiple

rows with the same key. The join operation can have three different

settings with regard to the keys:

• uu: Both tables have only unique keys (no duplicate keys).

• un: One of two tables can have duplicate keys. This case is typical

when joining a table with attributes and a table with historical

information. For example, each row in the first table includes a

name and information about a person, such as an address and

an age. In the second table, each row includes a name and the

details of a purchase that this person has made, where a single

person might have multiple rows associated with him or her.

• nn: Both tables can have duplicate keys. This is the general set-

ting, which is also called many-to-many join, but is inherently

less efficient. Our techniques do not directly apply to this setting,

and we leave extending them to this setting as future work.

In Figure 1, we illustrate an example of an inner join-un protocol,

i.e. an inner join where one table has unique keys (no duplicates)

and the other table might contain multiple data rows with the

same key. The output is the Table 𝐽 . Note that the output table also

contains rows with zeros elements. Such rows can be removed, as

we will show later. However, this would reveal some information

to the parties, namely, the size of the intersection. Thus, we view

cleaning the zero rows as an optional computation on top of the

output table. We will therefore provide an alternative definition for

the different variants of join, that explicitly includes the null rows.

JOIN is a fundamental feature of the SQL language that is widely

used in relational databases. It is also a standard SQL feature that

Input Table 𝐿

Attribute (no duplicate keys)

No. Country Age

3 USA 42

5 France 8

9 Canada 23

Input Table 𝑅

History (duplicate keys)

No. Purchase

3 Fresh Water

7 Lemonade

9 Drink mix

9 Fresh Water

Table 𝐽 output with the inner joined table

No. Country Age Purchase

3 USA 42 Fresh Water

7 0 0 0

9 Canada 23 Drink mix

9 Canada 23 Fresh Water

Figure 1: Example of inner join-un (unique + non-unique). The inputs are

tables 𝐿 and 𝑅, the output is table 𝐽 .
Input order

Key Value

1 2

3 4

1 3

3 5

2 1

Grouped order

Key Value

1 2

1 3

2 1

3 4

3 5

Output order

Key Value

1 5

2 1

3 9

null 0

null 0

Figure 2: The three different orders when processing group-by-sum. The

grouped order is a sorting of the input order according to the key, and the

output order is after applying the aggregate function (sum) on each group,

padded by null rows. (To improve readability, we do not use the notation

[[𝑥]] to indicate that the values are shared between the parties.)

is supported by most relational database management systems, in-

cluding popular systems like MySQL, Oracle, Microsoft SQL Server,

PostgreSQL, and SQLite. JOIN is a ubiquitous feature in data analy-

sis and reporting, both in relational databases and other data-related

applications. In fact, JOIN is so essential to relational databases that

it is difficult to imagine working with databases without it.

1.2 Group-By Protocols

We also study group-by operations over a shared table. Given a

table containing elements of the form ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩, where the same

key might appear more than once, we group rows that have the

same key into a summary record. This allows queries like “find the

number of customers in each country". The “summary" part is an

aggregate function such as count, min, max, etc.

For ease of exposition, we have three different types of orders:

• Input order: This is the order of the rows received in the input.

It contains keys and values in arbitrary order.

• Grouped order: This is sorting of the rows according to their

keys. As such, all rows that have the same keys are located next

to one another, and it is easier to compute aggregate functions

on each group, such as count, sum, etc.

• Output order:After we apply the group-by operation, we obtain

the output order. In that case, each key appears only once, and the

“value" next to the key corresponds to the aggregated information.

We fill the table to have the same dimensions as the input table

with null values, to avoid leakage of the number of unique keys.

We give a concrete example for the GroupBy.sum in Figure 2.

We provide a suite of protocols for commonGroup-by operations,

including count, sum, min, max, median, percentile. Just like

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

Join, the main underlying technique is sorting, and the protocols

were designed to utilize the linearity of the secret sharing scheme.

Just like JOIN, GROUP-BY is also a fundamental feature of the

SQL language and is widely used in relational databases. It is an SQL

feature that is supported by most relational database management

systems. Furthermore, many data analysis and visualization tools,

such as Excel, Tableau, and Power BI, also support Group-by clauses

or similar functionalities. This makes Group-by a ubiquitous feature

in data analysis and reporting, both in relational databases and other

data-related applications.

1.3 Tools and Techniques

The main tool that we use is a secure protocol for sorting shared

data, as in [4, 5].We also use generic secure computation for comput-

ing operations such as multiplication and equality. Our protocols

utilize the fact that linear operations on secret-shared data can

be computed without any interaction, and minimize the usage of

non-linear operations.

Overview of our techniques. We briefly overview some ideas

behind our constructions.

Join. Assume that the left input table L contains only unique

keys, and that the right input table R contains duplicate keys. De-

note by k𝐿 (resp. k𝑅) the column of keys in L (resp. R). Moreover,

the join variant that we are presenting in this overview is right-

outer join. The join table should have the same number of rows as

the R table, where for each key k𝑅𝑖 that appears in L, we append

the corresponding row from 𝐿; if k𝑅𝑖 ∉ 𝐿 we append a row of zeros.

The difficulty is therefore in (1) locating keys in 𝐿 that appear in

𝑅; and (2) (obliviously) propagating the corresponding values once

found. Note that there is no upper bound on the number of times

the same key might appear in 𝑅.

The protocol computes a permutation 𝜎 that (stable) sorts the list

(k𝐿,k𝑅,k𝐿). At this point, for every column 𝐿𝑖 of L, we generate a

vector (𝐿𝑖 , 0𝑛,−𝐿𝑖), where 𝑛 is the number of rows in R. We apply

𝜎 to this vector. Suppose that a key 𝑘 appears in k𝐿, and its row

in 𝐿 has the value 𝑣 in column 𝐿𝑖 . Denote by |𝑅(𝑘) | the number

of times this key appears in 𝑅. The permuted vector contains the

sequence (𝑣, 0 |𝑅 (𝑘) | ,−𝑣).
The protocol now computes a prefix-sum over the permuted

vector. This is a linear operation and can therefore be computed

without any communication. As a result of the prefix-sum, all the 0

values are replaced by the value 𝑣 . The −𝑣 at the end of the sequence
cancels the value 𝑣 , and propagates a 0 to the next position in the

vector.

The protocol then applies the inverse permutation 𝜎−1. Each lo-

cation in 𝑅 that has a matching key in 𝐿 receives the corresponding

𝑣 value. All other locations in 𝑅 receive a 0 value.

Group-by: A group-by protocol computes an aggregation func-

tion over all groups of rows, where a group is defined as a set of

rows that have the same key. We implement group-by protocols for

various aggregation functions, each requiring a designated protocol.

In this overview, we focus on group-by-median, which was not

studied before. The difficulty in computing group-by aggregation is

that the values of the keys are shared and hidden from the servers.

Given a table𝑇 consisting of keys
®𝑘 and values ®𝑣 , we sort the table

according to the keys and move items to a grouped order, where

rows with the same key are adjacent to each other. We present two

novel protocols for computing ranks in an ascending order and in

a descending order within each group. That is, if the group of rows

with a key 𝑘 has values (10, 20, 30, 40, 50), then the ascending ranks

are ®𝑎 = (0, 1, 2, 3, 4) and the descending ranks are
®𝑑 = (4, 3, 2, 1, 0).

Note that 30 is the median for this group.

We then run a local computation to compute a new column to

the table, which is ®𝑎− ®𝑑 = (−4,−2, 0, 2, 4). Note that only the median

value, 30, has its corresponding value in ®𝑎 − ®𝑑 equal to 0. By sorting

once again, this time with a preference function that places 0s first

and all other values afterward – we extract exactly the element 30.

The procedure we described only works if all groups have an

odd number of elements. The full protocol computes the median of

all groups, regardless of whether their size is even or odd.

Experiments.We implemented our join and group-by protocols

in the three-party setting, using the recent efficient stable sorting

protocol of Asharov et al. [5]. We ran experiments for various

table sizes. Our results show that our protocols are highly efficient.

For example, we are able to perform join-un for tables with 2
20

rows in 5.4 seconds and 18 seconds for semi-honest and malicious

security, respectively. For group-by median, which is the most time-

consuming group-by operation, the output is computed in 4 seconds

for semi-honest security and 12.5 for malicious security for a table

of the same size (2
20

records). Refer to Section 5 for more details.

1.4 Related Work

Blanton and Aguiar [9] proposed composable protocols for multiple

set operations over secret-shared data in the honest majority set-

ting. Their protocols are based on combining all inputs, sorting the

combined list, and applying generic MPC to compute set operations.

This structure for the protocol was used in different subsequent

work, as well as in our work, while extending the supported opera-

tions and improving efficiency (which was𝑂 (log𝑛) operations and
communication in the original protocol). Laur et. al. [21] proposed a

join protocol using oblivious shuffling and pseudo-random function

(PRF). Their approach is to compute a (deterministic) oblivious PRF

with the key as input, reveal it, and join tables of the same PRF

output. The main drawback of this approach is that it leaks the

number of duplicate keys and the sizes of intersections.

Mohassel et. al. [23] presented a practical join protocol based

on cuckoo hashing and an oblivious switching network. On the

downside, securing the last step against malicious adversaries ap-

pears to be challenging since it relies on one party not knowing

the revealed value; furthermore, this protocol can only manage

tables with unique keys. We also note that this protocol runs many

secure computations of a random encoding. In order to improve

performance, the implementation in [23] uses for this purpose the

LowMC cipher [2], that was later cryptanalyzed [22]. Our protocols

do not require MPC evaluation of specific ciphers, and therefore

are not required to use extremely efficient ciphers that might have

low security.

Sorting vs. hashing: It is instructive to compare the usage

of sorting to another technique that was often used by protocols

for private set intersection (PSI) (see e.g. [15, 25] and references

within) – hashing items using cuckoo hashing or other hashing

techniques so that all items that might potentially match with each

Gilad Asharov et al.

other are mapped to the same bin. There are two issues that make it

difficult to use hashing in our setting: (1) PSI is typically computed

between two parties that have private inputs, and therefore each

party can independently compute the hashing over its own input

items. On the other hand, in our setting, the inputs are shared, and

thus hashing would have to be jointly computed by all servers using

secure computation, which is much less efficient. (2) When all items

have unique keys, applying a random hash function to the keys

results in an output distribution that is independent of the inputs.

On the other hand, in our setting, multiple items in an input set

might have identical keys. In this case the output distribution of

hashing might leak information about the distribution of the keys

(at the extreme, if all input items have the same key then all items

are hashed to the same bin).

GraphSC. The techniques employed in our join protocols bear a

resemblance to those found in the GraphSC protocol and its subse-

quent developments [4, 24]. Specifically, as in those protocols our

approach uses oblivious sorts for rearranging related elements to

become adjacent. Afterwards information is disseminated between

neighboring vertices. While GraphSC idea is conceptually similar,

the setting of our work and that of GraphSC is significantly dif-

ferent: GraphSC is a framework for 2-party computation which

is based on garbled circuits, whereas our work is for any number

of parties and is based on secret sharing. Also, GraphSC achieves

semi-honest security while we achieve malicious security.

Despite the clear distinction between the two works, we consider

here a variant of GraphSC to the three-party case; Specifically, we

consider a protocol in which oblivious sort is implemented in a

similar manner as we do in our protocol. In addition, for computing

a label indicating whether a value should be copied to the next

stage, i.e., whether information should be propagated further, we

use the prefix-sum as implemented in “parallel aggregate" (see [24,

Fig 4]) while we consider this procedure as an interactive protocol

and not as a Boolean circuit. Even if we adopt those ideas to the

three parties setting, there exist two notable distinctions between

our join protocol and the one that can be implied by GraphSC:

Firstly, in our methodology, we apply an oblivious sort to a larger

input size of (2|𝐿 | + |𝑅 |) elements, as opposed to GraphSC’s em-

ployment of oblivious sort on an input of size |𝐿 | + |𝑅 |. However,
the benefit of our approach becomes apparent in the second dif-

ference: GraphSC requires additional 2 log(|𝐿 | + |𝑅 |) rounds and
𝑂 ((|𝐿 | + |𝑅 |) log(|𝐿 | + |𝑅 |)) multiplications to compute the label

indicating whether a value should be copied to the next stage. In

contrast, such computation is not needed by our approach. This

is because the information intended for propagation is inherently

nullified due to the nature of our data organization. Specifically,

each element in the set L appears twice–once with a positive value

and once with a negative value—while the elements in the set R

are positioned between these two instances. Consequently, we can

effectively compute local prefix sum means without the concern

of key matching. Using [5], the extra 𝐿 elements in the oblivi-

ous sort is translated to about 𝑂 (|𝐿 |ℓ𝑘) ≈ 𝑂 (|𝐿 | log |𝐿 |) multiplica-

tions, where ℓ𝑘 is the size of the keys. GraphSC needs an additional

𝑂 ((|𝐿 | + |𝑅 |) log(|𝐿 | + |𝑅 |)) multiplications. If sorting is further im-

proved, the additional multiplications in our protocol will decrease,

whereas the additional multiplications in the GraphSC approach

will remain the same.

Aggregation trees. The recent work of Badrinarayanan et. al. [8]

presented efficient join protocols based on using secure sorting

and aggregation trees. Aggregation trees apply to each element in

a vector a function that depends on the previous elements in the

vector. An aggregation tree is computed by computing two passes

up and down a tree that is constructed over the data. (This means

that computing an aggregation tree requires about 2 log𝑛 rounds,

besides the calls to the oblivious sorts.)

The aggregation tree construction has origins in the Parallel

RAM (PRAM) literature, where it was denoted as “prefix sum” or

“segmented scan” [10, 11]. We use the fact that secure computation

of linear operations, such as summation, can be done locally. There-

fore, unlike the PRAM literature, we are not bothered by the number

of “rounds” required for computing linear functions. We were thus

able to replace the usage of aggregation trees by applying secure

sorting together with simple secure computation and local compu-

tation of linear functions. The usage of sorting is preferable over

aggregation trees since it requires about 2 log(|𝐿 | + |𝑅 |) less commu-

nication rounds, and, perhaps more importantly, does not require

implementing a new algorithm, since sorting is already used by the

protocols. In addition, it seems non-trivial to utilize aggregation

trees for computing the group-by-median or group-by-percentile

functionalities.

For comparison, our protocol requires running oblivious sort on a

larger input, while the aggregation tree approach [8] requires extra

2 log(|𝐿 | + |𝑅 |) rounds and extra𝑂 (|𝐿 | + |𝑅 |) multiplications beyond

those that are necessary for the oblivious sort. The protocol in [8]

describes only inner joins.
1
Furthermore, no secure protocol against

malicious adversaries is proposed (the paper says that the protocol

can be extended to the malicious setting, but due to subtleties

about making generic statements in the malicious setting (input

extraction), this is deferred to future work). On the other hand, the

work of [8] also supports non-unique keys, while ours does not.

We summarize the differences between ourwork andGraphSC [24]

and aggregation trees [8] in Table 1. We note that protocols based

on Radix sort (such as [5]) require communication rounds linear in

a bit of the key. Therefore, even though we sort 2|𝐿 | + |𝑅 | elements,

the round complexity is the same as sorting |𝐿 | + |𝑅 | elements —

since the length of the keys is the same in both cases. Therefore, our

round complexity corresponds to the length of the keys, whereas

the round complexity of the other protocols is larger by at least

log(|𝐿 | + |𝑅 |) rounds.
Group-by-sum operation.Hamada et al. [17] proposed a protocol

for computing decision trees, and along the way computed group-

by-sum, while the input/output format is different, tailored for

decision trees.

Althoughwe can construct a group-by-sum protocol whose input

and output format are the same as ours by modifying their protocol

accordingly, there is a difference in efficiency. Our work focuses

on computing multiple statistics simultaneously using group-by

operations, and our protocols are optimized for these cases by

1
The paper [8] claims that other joins can be computed in the same way as in [23],

but it is unclear how to apply this for left/full outer join because in these cases, the

output must contain rows that were removed earlier in the protocol.

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

Protocol

Oblivious Sort Extra Extra

on input Rounds Multiplications

[24] 𝑛 +𝑚 log(𝑛 +𝑚) 𝑂 ((𝑛 +𝑚) log(𝑛 +𝑚))
[8] 𝑛 +𝑚 2 log(𝑛 +𝑚) 𝑂 (𝑛 +𝑚)
Ours 2𝑛 +𝑚 0 0

Table 1: Comparison of our work joint protocol with [8], and an adpation

of GraphSC [24] for the three party setting, where |𝐿 | = 𝑛 and |𝑅 | =𝑚. All

protocols are based on oblivious sort, while ours needed no extra rounds or

multiplications beyond the oblivious sort.

reusing a common operation (called a group-by-common operation,

described in Section 4.1). In case of computing multiple statistics

at once, our protocol is more efficient and requires one less call to

a sorting function compared to [17]. If the only statistics required

are just group-by-sum, then the two protocols have similar costs.

A more detailed comparison is discussed in Section 4.3.

Other works. There have been multiple works on grouped statis-

tics on secret shares [3, 4, 7, 17, 24]. The most relevant result of

Attrapadung et. al. [7], describing a grouped aggregation protocol

that can support group operations which include sum, max, and

min. The main difference is that our work also supports the median

and percentile group operations. In addition, as in computing the

join operation, our protocol only requires black-box computations

of sorting and simple circuits, making it easier to implement. In

fact, no implementation or evaluation is reported in [7].

Searchable encryption [14, 27] is a technique for outsourcing

information to a remote server and later extracting information

based on keyword search. Searchable encryption is based on the

model in which there is only one server. The common techniques

leak information, such as the search pattern or the access pattern.

In contrast, our model requires three servers, which allows for

hiding such information and efficiently computing more complex

functions (like group-by operations) on the servers’ side.

Summary of our contributions. We conclude this section by

providing a summary of our contributions:

• We provide a suite of protocols for statistical analysis on multiple

databases, supporting two major queries: JOIN and GROUP-BY.

• We support the main variants of JOIN: inner join, left outer

join, right outer join, and full outer join. We also support the

challenging case where one of the tables has non-unique keys.

• We support computing the GROUP-BY operation for aggregate

computation over groups of count, sum, min, max, median,

and percentile. To the best of our knowledge, ours is the first

technique that allows processing GROUP-BY of median and

percentile.

• All our protocols are secure against malicious behavior, and work

in the honest majority setting.

• Implementation: We have implemented our protocols in the

three-party setting. To the best of our knowledge, this is the first

implementation of join and group-by protocols secure against a

malicious adversary.

2 PRELIMINARIES

Let 𝑁 denote the number of parties running the MPC protocol,

and 𝑡 be the corruption threshold. In this work, we assume an

honest majority exists, i.e., 𝑡 < 𝑁
2
. Let ®𝑎 = (𝑎1, . . . , 𝑎𝑚) and ®𝑏 =

(𝑏1, . . . , 𝑏𝑚) be vectors. Let | | denote the concatenation of vectors,

i.e., ®𝑎 | | ®𝑏 = (𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚). We use F𝑝 to denote a finite

field, where all operations are modulo a prime number 𝑝 .

Security definition. To prove that our protocols are secure, we use

the standard definition based on the ideal/real-world paradigm [16].

We considermalicious security formalized for non-unanimous abort.

This means that the adversary first receives the output and then

determines for each honest party whether they will receive abort

or receive their correct output.

Linear secret sharing schemes. A secret sharing scheme with

threshold 𝑡 allows to distribute a secret across multiple parties with

the following two properties: (i) Each subset of 𝑡 parties cannot

learn any information about the secret; (ii) Any subset of 𝑡 + 1
honest parties can reconstruct the secret from the shares that they

received. An additional property that we require from the scheme

is linearity, namely that given threshold 𝑡 sharings of two secrets

𝑎 and 𝑏, if each user computes the sum of the shares it received

for 𝑎 and 𝑏, we obtain a threshold 𝑡 secret sharing of 𝑎 + 𝑏. Linear
secret sharing implies that linear operations, such as addition or

multiplication-by-a-constant, can be done locally by the parties over

their shares of the secret without any interaction. Two schemes

that satisfy these properties and are commonly used in the honest

majority setting are the Shamir’s secret sharing scheme [26] and

the replicated secret sharing scheme [18].

In this paper, we use the following two notations:

• [[𝑎]]: a secret sharing of 𝑎 ∈ F𝑝 .
• [[®𝑎]]: a secret sharing of a vector ®𝑎, i.e., [[®𝑎]] = ([[𝑎1]], . . . , [[𝑎𝑚]]).

Basic procedures. We next define some basic procedures that are

used in our protocols:

• [[®𝑎′]] ← PrefixSum([[®𝑎]]): Given a secret sharing ®𝑎 = 𝑎1, . . . 𝑎𝑚
as an input, output a secret sharing of ®𝑎′ = 𝑎′

1
, . . . , 𝑎′𝑚 , where

𝑎′
𝑘
=
∑𝑘
𝑖=1 𝑎𝑖 .

By the linearity of the secret sharing scheme, this procedure can

be locally computed by the parties with no interaction.

• [[𝛽]] ← Eqal([[𝑎]], [[𝑏]]): If 𝑎 = 𝑏, output a secret sharing of

𝛽 = 1. Otherwise, output a secret sharing of 𝛽 = 0. Similarly, we

define [[𝛽]] ← Eqal([[𝑎]], 𝑐) that outputs 𝛽 = 1 if 𝑐 = 𝑎 and

0 otherwise These procedures can be implemented through bit

decomposition [20] and a circuit computation for checking bit

equality.

• [[𝛽]] ← LessThan([[𝑎]], [[𝑏]]): If 𝑎 < 𝑏, output a secret sharing

of 𝛽 = 1. Otherwise, output a secret sharing of 𝛽 = 0.

This procedure can be implemented by first applying bit decom-

position and then computing a circuit which compares the bit

representation of each element.

• [[out]] ← Ifthen([[in]] : 𝑡, 𝑓)): Given in ∈ {0, 1}, if in = 1,

out = 𝑡 ; otherwise, out = f. Similarly, we define [[𝑜𝑢𝑡]] ←
Ifthen([[𝑖𝑛]] : [[𝑡]], [[𝑓]]) that outputs the same whereas the

inputs are shared.

Gilad Asharov et al.

These procedures can be implemented through circuit computa-

tion as [[𝑜𝑢𝑡]] = [[𝑖𝑛]] · ([[𝑡]] − [[𝑓]]) + [[𝑓]] (i.e., one multiplica-

tion).

• 𝑎 ← Reconstruct([[𝑎]]): In this procedure, the parties reveal a

secret 𝑎 by sending their shares of 𝑎 to each other. In the honest

majority setting, the shares of the honest parties alone suffice for

reconstructing the secret. Hence, the adversary cannot change

the opened value but only cause an abort.

Ideal functionalities. We define several ideal functionalities that

are used in our protocols.

(1) F
mult

- multiplication ideal functionality: We define an ideal

functionality F
mult

for multiplying shared values. The function-

ality receives [[𝑥]] and [[𝑦]] from the honest parties, reconstruct

𝑥 and 𝑦, and share 𝑧 = 𝑥 · 𝑦 to the parties. If the adversary is

malicious, then F
mult

first hands it its shares on [[𝑥]] and [[𝑦]],
and it allows the adversary to choose the corrupted parties’

shares of 𝑧.

(2) Fzero, Fone - Random secret generation: Let Fzero be an ideal

functionality that hands the parties a random secret sharing

of 0, while letting the adversary choose the corrupted parties’

shares. For a small number of parties, this functionality can be

realized efficiently without any interaction (except for short

setup) via pseudorandom zero sharing; e.g.,[13]. Observe that

the parties can generate a secret sharing of any constant 𝑐 by

generating [[0]] and then locally adding 𝑐 . In the paper, we

make use of the ideal functionality Fone, which produces a

secret sharing of 1.

(3) Fsort - The sorting ideal functionality: A permutation 𝜎 is a

bijective function from a finite set to itself, where usually the

underlying set is [𝑚] = {1, . . . ,𝑚}. A main building block in

our protocol is secure sorting, i.e., applying a permutation that

sorts a set of items, without revealing any information about the

set or the sorting permutation. To this end, let ®𝑣 = (𝑣1, . . . , 𝑣𝑚)
be a vector of items. Applying a permutation 𝜎 over ®𝑣 means

that the item 𝑣𝑖 is moved to position 𝜎 (𝑖). We abuse notation

and use 𝜎 (®𝑣) to denote applying 𝜎 on ®𝑣 , which results with a

vector ®𝑢. We use ®𝜎 = (𝜎 (1), . . . , 𝜎 (𝑚)) to denote the vector of

destinations of 𝜎 .

The Fsort ideal functionality defined below has three commands:

GenPermwhich computes the permutation that sorts a given input

vector [[®𝑘]]; ApplyPerm which applies the permutation on a shared

vector, and ApplyInv which applies the inverse of the permutation

on a shared vector. See Functionality 2.1. An implementation for

this functionality for the three-party setting is described in [5].

The number of communication rounds in GenPerm is the same as

the bit-length of the keys, which we can assume to be 𝑂 (log𝑛).
ApplyPerm and ApplyInv have a constant number of communica-

tion rounds. All our JOIN protocols compute GenPerm at most once,

and therefore the number of communication rounds is the length

of the key plus 𝑂 (1).

3 SECURE JOIN PROTOCOLS

We present efficient protocols for securely joining two tables that

are shared across a set of parties. The different variants and settings

for the join task were described in the introduction (Section 1.1).

We present protocols for each of these variants.

Functionality 2.1 (Fsort – Stable sorting):

• GenPerm: Upon receiving (GenPerm, [[®𝑘]]) from the honest

parties, Fsort reconstructs ®𝑘 , and computes the permutation 𝜎

such that 𝜎 (𝑖) ≤ 𝜎 (𝑗) if 𝑘𝑖 ≤ 𝑘 𝑗 and 𝑖 < 𝑗 . Then, it generates

[[®𝜎]] and sends each party its shares.

• ApplyPerm: Upon receiving (ApplyPerm, [[®𝜎]], [[®𝑣]]) from
the honest parties, Fsort reconstructs ®𝑣 and the permutation

𝜎 and applies 𝜎 (®𝑣) to obtain ®𝑣 ′. It computes shares of ®𝑣 ′ and
sends each party its shares.

• ApplyInv: Upon receiving (ApplyInv, [[®𝜎]], [[®𝑣]]) from the

honest parties, Fsort reconstructs ®𝑣 and the permutation 𝜎 and

applies the inverse of 𝜎 (®𝑣) to obtain ®𝑣 ′. It computes shares of

®𝑣 ′ and sends each party its shares.

If the adversary is malicious, then Fsort allows it to choose the

corrupted parties’ shares in each of the above.

The join protocols use a sub-protocol denoted FromLtoR. The

functionality of this protocol is defined in Section 3.2, and its im-

plementation is described in Section 3.5.

3.1 Join-un

We first discuss joining two tables, where one table contains unique

keys and the other table may contain duplicate keys. The protocol

makes direct usage of sorting and simple arithmetic operations and

does not require implementing an aggregation tree.

Figure 3 illustrates the input and output of the join protocol.

Input Table 𝐿

Key Values Valid

[[k𝐿1]] [[𝐿1,1]] · · · [[𝐿
1,𝑑]] [[v𝐿1]]

.

.

.
.
.
.

. . .
.
.
.

.

.

.

[[k𝐿𝑚]] [[𝐿𝑚,1]] · · · [[𝐿𝑚,𝑑]] [[v𝐿𝑚]]

Input Table 𝑅

Key Values Valid

[[k𝑅1]] [[𝑅1,1]] · · · [[𝑅1,𝑒]] [[v𝑅1]]
.
.
.

.

.

.
. . .

.

.

.
.
.
.

[[k𝑅𝑛]] [[𝑅𝑛,1]] · · · [[𝑅𝑛,𝑒]] [[v𝑅𝑛]]

Output Table 𝐽 (the result of the join of Table 𝐿 and 𝑅)

Key Values from L Values from R Valid

[[k𝐽1]] [[𝐽𝐿1,1]] · · · [[𝐽𝐿
1,𝑑]] [[𝐽𝑅1,1]] · · · [[𝐽𝑅1,𝑒]] [[v𝐽1]]

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

[[k𝐽𝑛′]] [[𝐽𝐿𝑛′,1]] · · · [[𝐽𝐿𝑛′,𝑑]] [[𝐽𝑅𝑛′,1]] · · · [[𝐽𝑅𝑛′,𝑒]] [[v𝐽𝑛′]]
Figure 3: Inputs and output of join algorithm.

The two tables to be joined are denoted as 𝐿 and 𝑅, with Table 𝐿

having𝑚 rows and 𝑑 + 2 columns and Table 𝑅 having 𝑛 rows and

𝑒 + 2 columns:

• Keys: The first column in both Table 𝐿 and Table 𝑅 contains

the keys, denoted as [[®k𝐿]] = ([[k𝐿1]], . . . , [[k𝐿𝑚]]) for the left
table 𝐿 and [[®k𝑅]] = ([[k𝑅1]], . . . , [[k𝑅𝑛]]) for 𝑅. We assume that

k𝐿𝑖 ,k𝑅 𝑗 are positive integers for all 𝑖, 𝑗 . It is assumed that the

keys of the left table, [[®k𝐿]], are all unique, whereas the keys of
the right table [[®k𝑅]] may have duplicate values.

• Values: In addition to the keys, the tables contain other entries,

where the entry of row 𝑖 and column 𝑗 is denoted as [[𝐿𝑖, 𝑗]] and
[[𝑅𝑖, 𝑗]], in tables 𝐿 and 𝑅, respectively.

• Validity: The last columns of both tables consist of bits that

represent whether each row is valid (the bit is 1) or not (the bit

is 0). The validity bit of the 𝑖th row in table 𝐿 or 𝑅, is denoted as

v𝐿𝑖 or v𝑅𝑖 , respectively.

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

If the bit is invalid, it means that the row is not part of the table,

and any values in the row should be ignored.

The output of the join operation is Table 𝐽 , and depends on what

kind of join is performed. The format of 𝐽 is basically the same

as of the input tables; the first column consists of keys, the last

column consists of validity bits, and the rest of the columns consist

of other entries. A caveat is that in the output of our protocols, the

values (𝐽𝐿𝑖,1, . . . , 𝐽𝐿𝑖,𝑑) and (𝐽𝑅𝑖,1, . . . , 𝐽𝑅𝑖,𝑒) may not be 0 (or null)

even if v𝐽𝑖 = 0. Hence, in order to use the output table as the input

table of our join-un protocols, we need to correct the format of the

output table such that (𝐽𝐿𝑖,1, . . . , 𝐽𝐿𝑖,𝑑) and (𝐽𝑅𝑖,1, . . . , 𝐽𝑅𝑖,𝑒) are all
0 if v𝐽𝑖 = 0. This can be easily obtained by multiplying the row

with v𝐽𝑖 .

Recall that we are computing a join-un and that table 𝐿 has𝑚

rows and table 𝑅 has 𝑛 rows. In order to hide the number of rows

in the output, the number 𝑛′ of rows in the joined table is set to be

𝑛 for an inner join and a right outer join (since in these cases the

output table might have as many rows as 𝑅). For a left outer join

and a full join, the number 𝑛′ of rows is set to be𝑚 + 𝑛.
In Section 3.11, we show how to remove “null rows"; however,

for now we present the tables as containing null rows as this also

makes the protocols simpler. We now define the tables that are

result by our operations:

Definition 3.1 (The table 𝐽). Let 𝐿 be a𝑚 × (𝑑 + 2) table, and 𝑅
be 𝑛 × (𝑒 + 2) table, as described in Figure 3. Then, a join operation

between 𝐿 and 𝑅 outputs a table 𝐽 , where the 𝑖-th row of 𝐽 consists of

([[k𝐽𝑖]], [[𝐽𝐿𝑖,1]], . . . , [[𝐽𝐿𝑖,𝑑]], [[𝐽𝑅𝑖,1]], . . . , [[𝐽𝑅𝑖,𝑒]], [[v𝐽𝑖]])

and is defined as described in Table 2 (for an inner join).

3.2 From L to R

A sub-procedure, which is also the crux of our protocols, is the proto-

col FromLtoR. The procedure receives as input sharing of the keys

[[®k𝐿]], [[®k𝑅]], and a sharing of a vector [[®𝐴]] = ([[𝐴1]], . . . , [[𝐴𝑚]]),
which we can think of as corresponding to some column of 𝐿.

The procedure outputs a sharing of a vector ([[𝑥1]], . . . , [[𝑥𝑛]]) =
FromLtoR([[®k𝐿]], [[®k𝑅]], [[®𝐴]]), such that :

𝑥𝑖 =

{
𝐴 𝑗 If ∃ 𝑗 s.t. k𝐿𝑗 = k𝑅𝑖 ,

0 otherwise

.

In other words, the output is a sharing of a vector with the same

size as a column of 𝑅; Moreover, it contains a value from [[®𝐴]] if the
corresponding keys in 𝐿 and 𝑅 match. (Recall that the 𝐿 has unique

keys, and therefore there is at most a single match in 𝐿 for any

key in 𝑅.) If we invoke this procedure where ®𝐴 is the 𝑖th column

of 𝐿, we get precisely the column 𝐽𝐿𝑖 in 𝐽 in, e.g., an inner join. As

another example, if we invoke the procedure on [[®𝐴]] which is the

all one vector, we receive as an output a column that consists of

indicators whether the “condition” column in Table 2 holds or not.

Looking ahead, when performing, e.g., a right outer join, the par-

ties invoke this procedure the same number of times as the number

of columns in 𝐿. We still do not show how to implement FromLtoR

but only describe next the two variants of right outer join and inner

join using FromLtoR as a sub-procedure. In Section 3.5, we show

how to implement the FromLtoR protocol.

3.3 Right Outer Join

Intuitively, to compute the right outer join, the parties invoke

FromLtoR on each of the columns of the table L. This results in the

columns 𝐽𝐿1, . . . , 𝐽𝐿𝑑 in 𝐽 of right outer join as per Table 2. The par-

ties output the column of the key of𝑅,k𝑅, followed by the computed

columns 𝐽𝐿1, . . . , 𝐽𝐿𝑑 , followed by the columns 𝐽𝑅1, . . . , 𝐽𝑅𝑒 and

the validation column v𝑅. Given the correctness of the FromLtoR

procedure, the correctness of the right outer join is immediate. We

describe the protocol in Protocol 3.2.

Protocol 3.2 ([[𝐽]] ← RightOuterJoin([[𝐿]], [[𝑅]])):

Input: (Shares of) tables [[𝐿]] and [[𝑅]] shown in Figure 3 (both tables

are assumed to be sorted according to their keys).

Output: (Shares of) Table [[𝐽]] as defined in Definition 3.1 for the right

outer join operation.

The protocol:

(1) For every 𝑘 ∈ [𝑑], invoke

[[®𝐽 𝐿𝑘]] = ([[𝐽 𝐿𝑘,1]], . . . , [[𝐽 𝐿𝑘,𝑛]]) = FromLtoR([[®k𝐿]], [[®k𝑅]], [[®𝐿𝑘]]) ,
where 𝐿𝑘 denotes the 𝑘th column of 𝐿. (see Section 3.2).

(2) Output: 𝐽 = ([[k𝑅𝑖]], [[𝐽 𝐿𝑘,1]], . . . , [[𝐽 𝐿𝑘,𝑛]],
[[𝑅𝑖 , 1]], . . . , [[𝑅𝑖 , 𝑒]], [[v𝑅𝑖]])1≤𝑖≤𝑛 .

Note that the cost of this protocol is basically the cost of FromLtoR,

which we analyze in Section 3.5.

3.4 Inner Join

For an inner join, the parties first compute the right outer join.

Then, for each row in 𝑅 for which there is no corresponding key in

𝐿, we have to replace the entire row with 0 in the table 𝐽 . We do

that by invoking FromLtoR on a vector that is all 1. This gives as

output a vector (𝑐1, . . . , 𝑐𝑛), which is exactly the condition column

in Table 8. That is, 𝑐𝑖 = 1 iff ∃ 𝑗 such that k𝐿𝑗 = k𝑅𝑖 . We then nullify

the corresponding rows of 𝑅 by using F
mult

and multiplying the 𝑖th

row of 𝑅 with 𝑐𝑖 . Finally, we compute the validation vector v𝐽 by

invoking FromLtoR on the vector v𝐿, and then pairwise multiply

(using F
mult

) the result with v𝑅. This results in v𝐿𝑗 ∧ v𝑅𝑖 if there
exists 𝑗 s.t. k𝐿𝑗 = k𝑅𝑖 , or 0 otherwise. The protocol is described in

Protocol 3.3.

3.5 From L to R – Implementation

We now turn our attention to the implementation of the proce-

dure FromLtoR. The protocol is described in Protocol 3.4. The

protocol receives as input the keys of the tables [[®k𝐿]] and [[®k𝑅]].
It first computes a permutation that computes a stable sort of

[[®k𝐿]], [[®k𝑅]], [[®k𝐿]] (Note that the vector [[®k𝐿]] appears twice, be-
fore and after [[®k𝑅]].) It applies this permutation to a shared vector

([[𝐴1]], . . . , [[𝐴𝑚]]), [[0]]𝑛, ([[−𝐴1]], . . . , [[−𝐴𝑚]]), where the mid-

dle part of the vector, [[0]]𝑛 , represents the entries of 𝑅, and the

outer parts are the entries of 𝐿. As a result, a 0 corresponding to a

row in 𝑅 which has the same key as a row in 𝐿, is located between

the𝐴𝑖 and −𝐴𝑖 values corresponding to that row in 𝐿. The protocol

now computes a prefix sum. As explained below, this computation

replaces any 0 entry whose key matches a key in 𝐿 with the corre-

sponding 𝐴𝑖 value. Finally, the protocol applies the reverse of the

Gilad Asharov et al.

Key Values from L Values from R Valid

Join Type k𝐽𝑖 𝐽𝐿𝑖,1 . . . 𝐽𝐿𝑖,𝑑 𝐽𝑅𝑖,1 . . . 𝐽𝑅𝑖,𝑒 v𝐽𝑖 Condition

Right outer join

k𝑅𝑖 𝐿𝑗,1 . . . 𝐿𝑗,𝑑 𝑅𝑖,1 . . . 𝑅𝑖,𝑒 v𝑅𝑖 ∃ 𝑗 s.t. k𝐿𝑗 = k𝑅𝑖
k𝑅𝑖 0 . . . 0 𝑅𝑖,1 . . . 𝑅𝑖,𝑒 v𝑅𝑖 otherwise

Inner join

k𝑅𝑖 𝐿𝑗,1 . . . 𝐿𝑗,𝑑 𝑅𝑖,1 . . . 𝑅𝑖,𝑒 v𝐿𝑗 ∧ v𝑅𝑖 ∃ 𝑗 s.t. k𝐿𝑗 = k𝑅𝑖
k𝑅𝑖 0 . . . 0 0 . . . 0 0 otherwise

Left outer join

For 𝑖 ≤ 𝑛, left outer join is the same as inner join; For 𝑛 < 𝑖 < 𝑛 +𝑚:

k𝐿𝑖 𝐿𝑖,1 . . . 𝐿𝑖,𝑑 0 . . . 0 v𝐿𝑖 (∀𝑗 : k𝐿𝑖 ≠ k𝑅 𝑗)
k𝐿𝑖 0 . . . 0 0 . . . 0 0 otherwise

Full join

For 𝑖 ≤ 𝑛, full join is the same as inner join

For 𝑛 < 𝑖 ≤ 𝑛 +𝑚, full join is the same as in left outer join

Table 2: Definition of the output table for the four join types, for unique (in L)- non-unique (in R) – un.

Protocol 3.3 ([[𝐽]] ← InnerJoin([[𝐿]], [[𝑅]])):

Input: (Shares of) tables [[𝐿]] and [[𝑅]] shown in Fig. 3 (both tables

are assumed to be sorted according to their keys).

Output: (Shares of) Table [[𝐽]] as defined in Definition 3.1 for the inner-

join operation.

The protocol:

(1) For every 𝑘 ∈ [𝑑], The parties invoke [[®𝐽 𝐿𝑘]] =

([[𝐽 𝐿𝑘,1]], . . . , [[𝐽 𝐿𝑘,𝑛]]) = FromLtoR([[®k𝐿]], [[®k𝑅]], [[®𝐿𝑘]]) ,
where 𝐿𝑘 denotes the 𝑘th column of 𝐿 (see Section 3.2).

(2) Computing 𝑱 𝑹1, . . . , 𝑱 𝑹𝒆 columns:

(a) Generate a vector [[1]]𝑚 by invoking Fone 𝑚 times.

(b) Invoke [[®𝑐]] = FromLtoR([[®k𝐿]], [[®k𝑅]], [[1]]𝑚) . Note that
𝑐𝑖 = 1 iff there exists 𝑗 such that k𝐿𝑗 = k𝑅 𝑗 .

(c) For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑒]: the parties send

([[𝑐𝑖]], [[𝑅𝑖,𝑗]]) to Fmult
and receive [[𝐽 𝑅𝑖,𝑗]].

(3) Computing v𝐽 column:

(a) Invoke [[®𝑣]] = FromLtoR([[®k𝐿]], [[®k𝑅]], [[®v𝐿]]) , where 𝑣𝑖 =
1 if there exists 𝑗 such that k𝐿𝑗 = k𝑅𝑖 and v𝐿𝑗 = 1.

(b) for every 1 ≤ 𝑖 ≤ 𝑑 , send ([[𝑣𝑖]], [[v𝑅𝑖]]) to Fmult
and receive

[[v𝐽𝑖]].
(4) Output: 𝐽 = ([[k𝑅𝑖]], [[𝐽 𝐿𝑖,1]], . . . , [[𝐽 𝐿𝑖,𝑑]],

[[𝐽 𝑅𝑖,1]], . . . , [[𝐽 𝑅𝑖,𝑒]], [[v𝐽𝑖]])1≤𝑖≤𝑛 .

sorting permutation to return the vector entries to their original

locations.

An execution of Protocol 3.4. To see why this procedure works,

we demonstrate the execution of the protocol inside the inner join

protocol for the example given in Figure 1. Specifically:

The permutation ®𝜎 : The parties start with shares [[®k𝐿]] and
[[®k𝑅]], and compute a permutation of a vector that contains the

keys of 𝐿, followed by the keys of 𝑅, and then followed again by the

keys of 𝐿. Note that the keys of Table 𝐿 appear twice at the left and

right sides of the unordered input. The keys of 𝑅 appear between

the two copies of the keys of 𝐿. Although we do not apply 𝜎 to the

data, applying 𝜎 to the inputs would reorder keys as follows:

Input:

| 3 | 5 | 9 3 7 9 9 3 | 5 | 9 |
L3 L5 L9 R3 R7 R9 R9 -L3 -L5 -L9

Output:

| 3 3 3 | | 5 5 | 7 | 9 9 9 9 |
L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

Protocol 3.4 ([[®𝑥]] ← FromLtoR([[®k𝐿]], [[®k𝑅]], [[®𝐴]])):

Input: (Shares of) the keys [[®k𝐿]], [[®k𝑅]], i.e., the keys of the
left table and the right table, respectively. In addition, shares of

a vector 𝐴 = (𝐴1, . . . , 𝐴𝑚).
Output: (Shares of) a vector [[®𝑥]] = ([[𝑥1]], . . . , [[𝑥𝑛]]), where
𝑥𝑖 = 𝐴𝑖 if there exists k𝐿𝑗 = k𝑅𝑖 , and 0 otherwise.

The protocol:

(1) The parties send (GenPerm, ([[®k𝐿]] ∥ [[®k𝑅]] ∥ [[®k𝐿]])) to
Fsort (Functionality 2.1) and receive [[®𝜎]].

(2) The parties generate 𝑛 shares of [[0]] (via calls to Fzero).
Recall that 𝑛 is the number of rows in the table 𝑅.

(3) Consider the vector [[®𝑓]] defined as

([[𝐴1]], . . . , [[𝐴𝑚]]), [[0]]𝑛, ([[−𝐴1]], . . . , [[−𝐴𝑚]]) .
(4) The parties send (ApplyPerm, [[®𝜎]], [[®𝑓]]) to Fsort (Function-

ality 2.1) and receive [[®𝑔]].
(5) [[®ℎ]] ← PrefixSum([[®𝑔]]) (see Section 2).

(6) The parties send (ApplyInv, [[®𝜎]], [[®ℎ]]) to Fsort (Function-
ality 2.1) and receive [[®𝑓 ′]] = ([[𝑓 ′

1
]], . . . , [[𝑓 ′

2𝑚+𝑛]]).
(7) Output: [[𝑓 ′

𝑚+1]], . . . , [[𝑓
′
𝑚+𝑛]].

Here, we use the notation |𝑥 , y , 𝑥 | , where |𝑥 and 𝑥 |
represent the two copies of the key of Table 𝐿, and y is the key

of Table 𝑅. Under each element, we also present in gray 𝐿𝑌 or 𝑅𝑌 ,

where the key is 𝑌 and the table the element comes from either

L or R. Elements in the second copy of 𝐿 are differentiated using

a minus sign (−). We use this notation to indicate the location

relationships before and after the permutation and to differentiate

identical values.

We demonstrate the execution of the protocol FromLtoR on the

column “Age" in the example of Figure 1. In this process, the vector

®𝑓 defined in Step 3 is

®𝑓 =
| 42 | 8 | 23 0 0 0 0 -42| -8| -23|
L3 L5 L9 R3 R7 R9 R9 -L3 -L5 -L9

where in gray, we show the corresponding keys. Next, in Step 4,

we compute the vector ®𝑔 = ApplyPerm(𝜎, ®𝑓), followed by
®ℎ =

PrefixSum(®𝑔) in in Step 5:

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

®𝑔 =
| 42 0 -42| | 8 -8| 0 | 23 0 0 -23|
L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

®ℎ =
| 42 42 0 | | 8 0 | 0 | 23 23 23 0 |
L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

Then, in Step 6, we invoke the inverse permutation on the result,

which returns each element to its original location, and we obtain

®𝑓 ′. In our example,
®𝑓 ′ is

®𝑓 ′ = | 42 | 8 | 23 42 0 23 23 0 | 0 | 0 |
L3 L5 L9 R3 R7 R9 R9 -L3 -L5 -L9

We claim that the vector “in the middle", that corresponds to the vec-

tor of elements that originated in R, that is, the vector (42, 0, 23, 23),is
precisely the “Age" column in the output table 𝐽 (see Figure 1).

More generally, if the input to the procedure is some vector of

values (𝐴1, . . . , 𝐴𝑚), then denoting the vector
®𝑓 ′ as (𝑓 ′

1
, . . . , 𝑓 ′

2𝑚+𝑛),
we claim that the values “in the middle" (𝑓 ′

𝑚+1, . . . , 𝑓
′
𝑚+𝑛) satisfy:

𝑓 ′𝑚+𝑖 =
{
𝐴 𝑗 If ∃ 𝑗 s.t. k𝐿𝑗 = k𝑅𝑖 ,

0 otherwise

.

To see why this holds, consider the vector ®𝑔 that is obtained after
applying 𝜎 . We divide ®𝑔 into sub-sequences and claim that in

®ℎ
at the end of each sub-sequence, the prefix sum 0. As a result, we

can analyze each sub-sequence separately. We have three types of

sub-sequences:

(1) Type I: sub-sequence of the form |𝐴 𝑗 , 0 , . . . , 0 , −𝐴 𝑗 | :
This sub-sequence occurs if there exists a key k𝐿𝑗 in 𝐿 that ap-

pears in 𝑅. The number of 0 s then correspond to the number

of times the key k𝐿𝑗 appears in 𝑅. Moreover, we want each

such 0 to obtain the value𝐴 𝑗 since this is the value associated

with k𝐿𝑗 in the vector ®𝐴. Assuming that the prefix sum when

reaching this sub-sequence starts is 0, the corresponding prefix-

sum in
®ℎ is (|𝐴 𝑗 , 𝐴 𝑗 , . . . , 𝐴 𝑗 , 0 |) , i.e., the last element

is 0. Moreover, each element from 𝑅 with key k𝑅𝑖 , for which

there exists k𝐿𝑗 in 𝐿, receives the value 𝐴 𝑗 .

(2) Type II: sub-sequence of the form |𝐴 𝑗 , −𝐴 𝑗 | : This sub-
sequence occurs if the key k𝐿𝑗 does not appear in 𝑅. In ®ℎ,
assuming that the prefix sum when reaching this sub-sequence

is 0, then corresponding prefix sum in
®ℎ is (|𝐴 𝑗 , 0 |). The prefix

sum of the last element in the sub-sequence is 0.

(3) Type III: sub-sequence of the form 0 , . . . , 0 : (which

continues until viewing the element |𝐴𝑘). This sub-sequence

occurs when there are rows in 𝑅 with key k𝑅𝑖 that do not exist

in 𝐿. Assuming that the prefix sum in
®ℎ until reaching this

sub-sequence is 0, the sum remains 0 since all elements in this

sub-sequence are 0s.

Besides the fact that the prefix of each sub-sequence ends with 0,

we have that for each value originated in R:

(1) If there exists a key k𝐿𝑗 in 𝐿 such that k𝐿𝑗 = k𝑅𝑖 (i.e., Type I),

then the corresponding value in R in
®ℎ obtains the value 𝐴 𝑗 .

(2) If there does not exist a key k𝐿𝑗 in 𝐿 such that k𝐿𝑗 = k𝑅 𝑗 , then

the value originated in R obtains the value 0 in
®ℎ (Type III).

Thus, after “unsorting", the elements return to their original places

in
®𝑓 . As a result, each element 𝑓 ′

𝑚+𝑖 (which is originally 0 in
®𝑓),

is either 𝐴 𝑗 if k𝐿𝑗 = k𝑅𝑖 , or 0 otherwise.

Implementationnote: In our join protocols, we invoke FromLtoR

several times, where in all invocations, the input contains the same

keys k𝐿,k𝑅. Therefore there is no need to re-compute the per-

mutation ®𝜎 every time, as the protocol can re-use the computed

permutation from previous invocations.

3.6 Only in L
Before moving to the left and full join operations, we provide a

sub-procedure that is needed in order to process left outer and full

joins. Specifically, now we are interested in finding the keys in 𝐿

that appear only in 𝐿 and do not have corresponding keys in 𝑅.

More formally, we are interested in a procedure.

[[®𝑐]] = OnlyInL([[®k𝐿]], [[®k𝑅]])
with [[®𝑐]] = (𝑐1, . . . , 𝑐𝑚), such that:

𝑐𝑖 =

{
1 if (∀𝑗 : k𝐿𝑖 ≠ k𝑅 𝑗)
0 otherwise

,

that is, 𝑐𝑖 = 1 if the key k𝐿𝑖 does not exist in R, and 0 otherwise.

Towards that end, consider invoking FromLtoR([[𝜎]], [[1𝑚]]),
where 𝜎 is the sorting permutation used above and 1

𝑚
is the all

one vector of size𝑚. We now view the intermediate values:
®𝑓 , ®𝑔, ®ℎ:

®𝑓 = | 1 | 1 | 1 0 0 0 0 -1| -1| -1|
L3 L5 L9 R3 R7 R9 R9 -L3 -L5 -L9

®𝑔 = (ApplyPerm, [[®𝜎]], [[®𝑓]])

®𝑔 = | 1 0 -1| | 1 -1| 0 | 1 0 0 -1|
L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

®ℎ = PrefixSum(®𝑔)
®ℎ = | 1 1 0 | | 1 0 | 0 | 1 1 1 0 |

L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

Here, each 𝑅 elements is 1 if and only if it has the same key as an

element in 𝐿.

At this point, we perform one more step: each element in
®ℎ

receives the negation of the element on its immediate right neighbor

(and for completeness, the last element remains the same). That is,

e.g., the element associated with −𝐿3 receives the negation of L5,

and the element associated with L5 receives the negation of -L5.

We get the following vector:

®𝑝 = | 0 1 0 | | 1 1 | 0 | 0 0 1 0 |
L3 R3 -L3 L5 -L5 R7 L9 R9 R9 -L9

We now apply the inverse permutation to return the elements to

their original position, i.e., run (ApplyInv, [[®𝜎]], [[®𝑝]]) to get

| 0 | 1 | 0 1 0 0 1 0 | 1 | 0 |
L3 L5 L9 R3 R7 R9 R9 -L3 -L5 -L9

Now we can return the first 𝑛 elements, i.e., (| 0 , | 1 , | 0). Indeed,
keys 3 and 9 appear in both tables in Figure 1, whereas 5 appears

only in L. To see why this works, consider again the three sub-

sequences that are in ®𝑔:

Gilad Asharov et al.

(1) Type I: sub-sequence of the form |1 , 0 , . . . , 0 , -1| : Re-
call that this sub-case occurs if there exists a key k𝐿𝑗 in L that

appear in R, and thus the values that are associated with 𝑅

will become 1 after the prefix sum. In that case, we want the

indicator bit to be 0, i.e., that | 1 will become | 0 . We obtain

exactly that by receiving the negation of the immediate right

neighbor.

(2) Type II: sub-sequence of the form |1 , -1| .This sub-sequence
occurs if the key k𝐿𝑗 does not appear in 𝑅. In that case, in

®ℎ we

will have (| 1 , 0 |), and we want that the indicator bit would

be 1. I.e., we want that | 1 will remain | 1 . By receiving the

negation of the immediate right neighbor, this | 1 stays | 1 .

(3) Type III: sub-sequence of the form 0 , . . . , 0 : This sub-

sequence does not involve elements from L, so it is not relevant.

After “unsorting" the elements return to their original place, and

the first 𝑛 elements are exactly the indicator bits. We proceed with

the pseudo-code of the procedure in Protocol 3.5.

Protocol 3.5 ([[®𝑐]] ← OnlyInL([[®k𝐿]], [[®k𝑅]])):

Input: (Shares of) the keys [[®k𝐿]], [[®k𝑅]], i. .e., the keys of the
left table and the right table, respectively.

Output: (Shares of) a vector [[®𝑐]] = ([[𝑐1]], . . . , [[𝑐𝑚]]), where
𝑐𝑖 = 1 if the key k𝐿𝑖 does not exist in 𝑅, and 𝑐𝑖 = 0 otherwise.

The protocol:

(1) Run (GenPerm, [[®k𝐿]], [[®k𝑅]], [[®k𝐿]]) by calling Fsort (Func-
tionality 2.1) and receive [[®𝜎]].

(2) The parties generate 𝑛 shares of [[0]] (via calls to Fzero).
(3) The parties generate 2𝑚 shares of [[1]] (via calls to Fone).
(4) Consider the vector [[®𝑓]] defined as ([[®1𝑚]], [[®1𝑛]], [[®−1𝑚]]).
(5) The parties send (ApplyPerm, [[®𝜎]], [[®𝑓]]) to Fsort (Function-

ality 2.1) and receive [[®𝑔]].
(6) [[®ℎ]] ← PrefixSum([[®𝑔]]) (see Section 2).

(7) For every 𝑖 ∈ [2𝑚 + 𝑛 − 1]: [[𝑝𝑖]] = 1 − [[𝑔𝑖]].
(8) Let [[𝑝2𝑚+𝑛]] = [[𝑔2𝑚+𝑛]] and ®𝑝 = (𝑝1, . . . , 𝑝2𝑚+𝑛).
(9) Run

®𝑓 ′ = (ApplyInv, [[®𝜎]], [[®𝑝]]) by calling Fsort.
(10) Output: (𝑓 ′

1
, . . . , 𝑓 ′𝑚), i.e., only the first𝑚 values of

®𝑓 ′.

Implementation note: In the inner join protocol (Protocol 3.3),

in Step 2b, we already invoke FromLtoR on the all one vector, and

therefore we already obtained Step 1-6 in OnlyInL. Therefore, we

re-use these values and do not re-compute them. Consequently, we

divided the protocol into corresponding different procedures for

modularity and readability.

3.7 Left Outer Join

We provide the left outer join in Protocol 3.6. In the protocol, the

parties first compute the inner join. Then, they compute the indica-

tor bits of which keys in 𝐿 do not appear in 𝑅 using Protocol 3.5

and select those rows from L using F
mult

.

3.8 Full Join

Our full join protocol can be obtained by replacing InnerJoin in

LeftOuterJoin (Protocol 3.6) with RightOuterJoin. Therefore,

we omit the details.

Protocol 3.6 ([[𝐽]] ← LeftOuterJoin([[𝐿]], [[𝑅]])):

Input: (Shares of) tables 𝐿 and 𝑅 shown in Fig. 3 (both tables

are assumed to be sorted according to their keys).

Output: Table as defined in Definition 3.1 for the outer join

operation.

The protocol:

(1) [[𝐽 ′]] ← InnerJoin([[𝐿]], [[𝑅]]), i.e., Protocol 3.3.
(2) Let [[®𝜎]] be the shares computed in line 1 of InnerJoin.

(3) Invoke [[®𝑐]] = OnlyInL([[®𝜎]]), where ®𝑐 = (𝑐1, . . . , 𝑐𝑚) such
that 𝑐𝑖 = 1 iff the key k𝐿𝑖 does not exist in R.

(4) Let 𝐽 be (𝑛 +𝑚) × (𝑑 + 𝑒 + 2) matrix where the first 𝑛 rows

are 𝐽 ′. We now fill the next𝑚 rows.

(5) For every 𝑖 ∈ [𝑚]:
(a) Set the key as [[k𝐽𝑛+𝑖]] = [[k𝐿𝑖]].
(b) For every 𝑗 ∈ [𝑑]: The parties send ([[𝑐𝑖]], [[𝐿𝑖, 𝑗]]) to
F
mult

and receive [[𝐽𝐿𝑛+𝑖, 𝑗]].
(c) The parties generate 𝑒 shares of 0 by calling Fzero and

set [[𝐽𝑅𝑖, 𝑗]] = [[0]] for every 1 ≤ 𝑗 ≤ 𝑒 .
(d) The parties send ([[𝑐𝑖]], [[v𝐿𝑖]]) to Fmult

and receive

[[v𝐽𝑛+𝑖]].
(6) Output: 𝐽 .

3.9 Efficiency and Security Analysis

We next prove the security of our protocol. Since the protocols are

very similar, we analyze only the inner join protocol (Protocol 3.3).

Let Feqjoin be an ideal functionality that receives from the honest

parties shares of the two tables, reconstructs them, and then hands

the corrupted parties shares of the inner join of the two tables as

defined in Definition 3.1. If the adversary is malicious, Feqjoin first

sends the adversary its shares of the input (as defined from the

inputs of the honest parties) and allows the adversary to choose

the corrupted parties’ shares and define the shares of the honest

parties accordingly. Then, we prove the following:

Theorem3.7. Protocol 3.3 securely computesFeqjoin with abort in the
(Fzero, Fone, Fmult

, Fsort)-hybrid model against malicious adversaries

controlling any 𝑡 < 𝑛/2 parties.
Proof: Let S be the ideal world simulator and A be the real-world

adversary. In the simulation, S interacts with A and plays the role

of the ideal functionalities Fzero, Fone, Fmult
, Fsort. Observe that in

the protocol, the parties do not interact at all but only hand inputs

to the ideal functionalities to receive back an output. Also note

that in the definition of all three ideal functionalities, the adversary

receives its input shares, and then it can choose its output shares.

The simulator, therefore, first receives the shares of 𝐿 and 𝑅 from

the Feqjoin. The entire computation then proceeds as follows: The

adversary receives its shares from the simulated ideal functionality

(Fzero, Fone, Fmult
, Fsort) and chooses its output shares. In between

invocations of ideal functionalities, it just performs some local

computations, and their result is supposed to be the input for the

following ideal invocation. As a result, the simulator (which knows

the output of the adversary in the previous ideal execution) can

perform the local computation on the shares and hand the adversary

its shares in the following ideal invocation. It is immediate that the

view of the adversary during the simulation is identically distributed

to its view in the real-world execution. □

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

F
mult

Fsort
GenPerm ApplyPerm

Right outer-join - 1 2

Inner join 𝑛 · 𝑒 + 𝑑 1 4

Left outer join 𝑛 · 𝑒 +𝑚(𝑑 + 1) + 𝑑 1 5

Full join 𝑚 · 𝑒 1 3

Table 3: Cost of our different join protocols, measured by the number of

calls to the multiplication and sorting functionalities. Recall that𝑚 × 𝑑 and

𝑛 × 𝑒 are the dimension of the left table and right table, respectively. Note

that Fsort has two operations: generating a permutation and applying it.

The cost of each operation depends on the size of the input vector, which

in our protocols is always 2𝑚 + 𝑛.

Cost analysis. In all our protocols, the only interaction between the

parties is inside the ideal functionalities Fsort, Fzero, Fone, and Fmult
.

As explained in Section 2, Fzero and Fone can be realized without

interaction for a small number of parties. Hence, we analyze the

cost of our protocols in terms of the number of calls to F
mult

and

Fsort; see Table 3.

3.10 Join-uu

We can simplify the above protocols to the join-uu setting, where

both tables contain only unique keys. Our join-uu protocol is

based on the join-un protocol and is reduced to sorting and circuit

evaluation.

The difference between join-uu and join-un is the method of

copying the value which is part of the join, i.e., FromLtoR protocol.

We show the protocol for the uu setting, FromLtoR-uu, in Proto-

col 3.9 and inner join protocol using FromLtoR-uu in Protocol 3.8.

In the join-un protocol, if there is a duplicate key with a certain

value 𝑣 , we compute ([[𝐿𝑖]], [[0]], . . . , [[0]], [[−𝐿𝑖]]) in FromLtoR

(Algorithm 3.4) and use prefix-sum to copy 𝐿𝑖 to 0s. On the other

hand, in the case of join-uu, the keys are unique, so at most, only

a single 0 follows 𝐿𝑖 . This simplifies sandwiching 0 by 𝐿𝑖 and −𝐿𝑖 .
More specifically, in Step 1 in join-un, a permutation is generated

from [[®k𝐿]] | | [[®k𝑅]] | | [[®k𝐿]], but in join-uu the permutation can be

generated from [[®k𝐿]] | | [[®k𝑅]]. Then, a flag is generated indicating

whether the key matches the next record’s, and the previous value

is copied accordingly using the Ifthen procedure. This reduces

the input size for GenPerm from 2𝑚 + 𝑛 to𝑚 + 𝑛. We remark that

GenPerm is the heaviest part of the sorting, and this of course has

a direct corresponding to the number of elements being sorted. The

difference between join-un and join-uu is the FromLtoR protocol.

We remark that in the setting of join-uu, it is easy to extend the

inner join protocol to left/right/full outer joins as claimed in [23].

3.11 Removing Null Rows

In all protocols above, the results include Null rows. Here, we show

how to remove those null rows. As we mentioned above, removing

the rows reveal the size of the intersection. Therefore, whether or

not to remove the null rows depends on the application.

Our protocol.We describe our protocol that removes invalid rows

in Protocol 3.10. The protocol computes the permutation that sorts

the “valid bit" column while preferring valid rows over invalid.

Then, it applies this permutation to each column separately, which

moves all the valid rows to the beginning of the table. Then, the

Protocol 3.8 ([[𝐽]] ← InnerJoin([[𝐿]], [[𝑅]])):

Input: (Shares of) tables [[𝐿]] and [[𝑅]] shown in Fig. 3 (both tables

are assumed to be sorted according to their keys).

Output: (Shares of) Table [[𝐽]] as defined in Definition 3.1 for the inner-

join operation.

The protocol:

(1) For every 𝑘 ∈ [𝑑], The parties invoke

[[®𝐽 𝐿𝑘]] = ([[𝐽 𝐿𝑘,1]], . . . , [[𝐽 𝐿𝑘,𝑛]]) =

FromLtoR-uu([[®k𝐿]], [[®k𝑅]], [[®𝐿𝑘]]) , where 𝐿𝑘 denotes the

𝑘th column of 𝐿 (see Section 3.2).

(2) Computing 𝑱 𝑹1, . . . , 𝑱 𝑹𝒆 columns:

(a) Generate a vector [[1]]𝑚 by invoking Fone 𝑚 times.

(b) Invoke [[®𝑐]] = FromLtoR-uu([[®k𝐿]], [[®k𝑅]], [[1]]𝑚) . Note
that 𝑐𝑖 = 1 iff there exists 𝑗 such that k𝐿𝑗 = k𝑅 𝑗 .

(c) For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑒]: the parties send

([[𝑐𝑖]], [[𝑅𝑖,𝑗]]) to Fmult
and receive [[𝐽 𝑅𝑖,𝑗]].

(3) Computing v𝐽 column:

(a) Invoke [[®𝑣]] = FromLtoR-uu([[®k𝐿]], [[®k𝑅]], [[®v𝐿]]) , where
𝑣𝑖 = 1 if there exists 𝑗 such that k𝐿𝑗 = k𝑅𝑖 and v𝐿𝑗 = 1.

(b) for every 1 ≤ 𝑖 ≤ 𝑑 , send ([[𝑣𝑖]], [[v𝑅𝑖]]) to Fmult
and receive

[[v𝐽𝑖]].
(4) Output: 𝐽 =

{ ([[k𝑅𝑖]], [[𝐽 𝐿𝑖,1]], . . . , [[𝐽 𝐿𝑖,𝑑]], [[𝐽 𝑅𝑖,1]], . . . , [[𝐽 𝑅𝑖,𝑒]], [[v𝐽𝑖]]) }1≤𝑖≤𝑛 .

Protocol 3.9 ([[®𝑥]] ← FromLtoR-uu([[®k𝐿]], [[®k𝑅]], [[®𝐴]])):

Input: (Shares of) the keys [[®k𝐿]], [[®k𝑅]], i.e., the keys of the
left table and the right table, respectively. In addition, shares of

a vector 𝐴 = (𝐴1, . . . , 𝐴𝑚).
Output: (Shares of) a vector [[®𝑥]] = ([[𝑥1]], . . . , [[𝑥𝑛]]), where
𝑥𝑖 = 𝐴𝑖 if there exists k𝐿𝑗 = k𝑅𝑖 , and 0 otherwise.

The protocol:

(1) The parties send (GenPerm, ([[®k𝐿]] ∥ [[®k𝑅]])) to Fsort (Func-
tionality 2.1) and receive [[®𝜎]].

(2) The parties send (ApplyPerm, ([[®k𝐿]] ∥ [[®k𝑅]])) to Fsort
(Functionality 2.1) and receive [[®k𝑋]].

(3) The parties generate flags [[®𝑒]] such that 𝑒𝑖 = 1 if k𝑋𝑖 =

k𝑋𝑖+1 which means the keys are matched: for every 𝑖 ∈ [𝑛+
𝑚 − 1], [[𝑒𝑖]] = Mod2ToModP(Eqal([[k𝑋𝑖]], [[k𝑋𝑖+1]])).

(4) The parties generate 𝑛 shares of [[0]] (via calls to Fzero).
Recall that 𝑛 is the number of rows in the table 𝑅.

(5) Consider the vector [[®𝑓]] defined as

([[𝐴1]], . . . , [[𝐴𝑚]], [[0]]𝑛) .
(6) The parties send (ApplyPerm, [[®𝜎]], [[®𝑓]]) to Fsort (Function-

ality 2.1) and receive [[®𝑔]].
(7) For every 𝑖 ∈ [𝑛 + 𝑚 − 1], [[ℎ𝑖+1]] ← Ifthen([[𝑒𝑖]] :

[[𝑔𝑖]], [[0]]) . Let [[ℎ1]] = [[0]].
(8) The parties send (ApplyInv, [[®𝜎]], [[®ℎ]]) to Fsort (Function-

ality 2.1) and receive [[®𝑓 ′]] = ([[𝑓 ′
1
]], . . . , [[𝑓 ′𝑚+𝑛]]). f

(9) Output: [[®𝑥]] := ([[𝑓 ′
𝑚+1]], . . . , [[𝑓

′
𝑚+𝑛]]).

parties compute the shares of the number of valid rows, num, simply

by summing all elements in the valid column. The parties reveal

num by publicly reconstructing it, and the parties output the first

Gilad Asharov et al.

num rows. Note that there is an alternative way to replace the

sorting by shuffling. We show that way in Section 3.11.

Protocol 3.10 ([[𝐽 ′]] ← RemoveNullRows([[𝐽]])):

Input: (Shares of) table 𝐽 as in Fig. 3. To ease notation, 𝐽 contains

𝐴 rows and 𝐵 columns. The last column of 𝐽 (the 𝐵th column)

contains validity bits.

Output: (Shares of) table 𝐽 ′ which is obtained by removing

invalid rows (i.e. removing all rows 𝑎 ∈ [𝐴] with 𝐽 [𝑎, 𝐵] = 0)

from 𝐽 .

The protocol:

(1) The parties send (GenPerm, [[®𝐽𝐵]]) to Fsort (Functional-

ity 2.1) preferring 1 over 0, where 𝐽𝐵 denotes the last column

of 𝐽 (which contains the validity bits). The parties receive

[[®𝜏]].
(2) For every 𝑗 ∈ [𝐵]: The parties call to Fsort (Functionality 2.1)
(ApplyPerm, [[®𝜏]], ([[𝐽1, 𝑗]], . . . , [[𝐽𝐴,𝑗]])) and receive back

the shares ([[𝐽 ′
1, 𝑗
]], . . . , [[𝐽 ′

𝐴,𝑗
]]).

(3) [[num]] := ∑𝐴
𝑖=1 [[𝐽𝑖,𝐵]], i.e., share of the number of valid

rows.

(4) The parties reveal num by running Reconstruct([[num]]),
see Section 2.

(5) [[𝐽 ′
𝑖, 𝑗
]]
1≤𝑖≤num, 𝑗∈[𝐵] .

Security. Let F
RemoveNull

be an ideal functionality that receives

shares of 𝐽 from the honest parties, reconstructs the table, and hands

the parties shares of 𝐽 ′ while allowing the adversary to choose the

corrupted parties’ shares. Unlike the previous protocols, where

the parties do not interact (but only communicate with the ideal

functionalities), here the parties interact to reveal num. For proving

security, we must allow the ideal adversary to learn num before

handing the output to the honest parties. Hence, we let F
RemoveNull

hand num to the adversary. Note that this is not private information

and is learned by the adversary in the protocol anyway.

Theorem 3.11. Protocol 3.10 securely computes F
RemoveNull

with

abort in the Fsort-hybrid model against malicious adversaries control-

ling any 𝑡 < 𝑛/2 parties.

Proof: Let S be the ideal world simulator and A be the real-world

adversary. The simulation of the ideal functionality Fsort is trivial
since it only receives the output shares fromA without outputting

anything. To simulate the opening of num, we note that (i)S knows

the corrupted parties’ shares of num. This follows since these are

computed by performing linear operations over the output shares

of the ApplyPerm command, which are known to S. Thus, the sim-

ulator S can carry-out the local linear operations over the shares it

holds, and obtain the corrupted parties’ shares. (ii) S knows num.

This follows since before the opening of num, it receives num from

the trusted party computing F
RemoveNull

. Thus, to simulate the

opening of num, S chooses the honest parties’ shares randomly un-

der the constraint that together with the corrupted parties’ shares,

they will reconstruct to num. Then, it sends them toA, simulating

the honest parties sending their shares to the corrupted parties in

the Reconstruct procedure. Upon receiving back the corrupted

parties’ shares, if an honest party 𝑃 𝑗 aborts the computation, since

it cannot reconstruct num, then S sends abort𝑗 to the trusted party
computing F

RemoveNull
. Otherwise, it sends continue𝑗 to the trusted

party. Finally, S outputs whatever A outputs and halts.

The only difference between the simulation and a real execution

is how the honest parties’ shares of num are computed. However,

since in both executions the shares are random and reconstructed to

the same num, given the corrupted parties’ shares, the distribution

is the same. □

Cost of removing nulls. The cost of the protocols is one call to

GenPerm and one call to ApplyPerm. The cost of each instruction

depends on the size of the sent input table. The parties also run the

Reconstruct procedure, but the cost of this is amortized away.

Alternative Way To Remove Null RowsWe describe an alter-

native protocol for removing null rows in Protocol 3.12. In proto-

col 3.10, the rows with a valid bit of 0 are moved backward and

deleted by outputting the first num rows. On the other hand, the

alternative way is shuffling rows, revealing the valid bit, and ex-

tracting rows with a valid bit is 1. The revealed value is not num but

0 or 1; however, the random shuffling makes the order uniformly

random so the revealed information for an adversary is the same

as revealing num, and the same security statement is satisfied.

This method is more efficient than protocol 3.10 if the share

generation of random permutation is more efficient than GenPerm

of valid bit. In the three-party case, random permutation can be gen-

erated without communication as shown in [5], and this alternative

way is therefore efficient.

Protocol 3.12 ([[𝐽 ′]] ← RemoveNullRows2([[𝐽]])):

Input: (Shares of) table 𝐽 as in Fig. 3. To ease notation, 𝐽 contains

𝐴 rows and 𝐵 columns. The last column of 𝐽 (the 𝐵th column)

contains validity bits.

Output: (Shares of) table 𝐽 ′ which is obtained by removing

invalid rows (i.e. removing all rows 𝑎 ∈ [𝐴] with 𝐽 [𝑎, 𝐵] = 0)

from 𝐽 .

The protocol:

(1) The parties locally generate shares [[®𝜏]] of a random permu-

tation.

(2) For every 𝑗 ∈ [𝐵]: The parties call to Fsort (Functional-
ity 2.1) (ApplyPerm, [[®𝜏]], ([[𝐽1, 𝑗]], . . . , [[𝐽𝐴,𝑗]])) and receive
back the shares ([[𝐽 ′

1, 𝑗
]], . . . , [[𝐽 ′

𝐴,𝑗
]]).

(3) For 𝑖 ∈ [𝐴], the parties reveal 𝐽 ′
𝑖,𝐵

by running

Reconstruct([[𝐽 ′
𝑖,𝐵
]]), see Section 2.

(4) [[𝐽 ′
𝑖, 𝑗
]]𝑖:𝐽 ′

𝑖,𝐵
=1, 𝑗∈[𝐵] .

4 SECURE GROUP-BY PROTOCOL

In this section, we present our secure group-by protocols. Recall

from the introduction that we differentiate between three different

orders of the table we analyze: (1) Input order (the keys appear in

arbitrary manner); (2) grouped order (the keys are sorted so rows

with the same keys are located one next to another, it is easier

to compute aggregating functions); (3) and output order, where

each key appears only once, and the “value" corresponds to the

aggregated information on the entire group. See also Figure 2.

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

There are several variants according to which aggregation func-

tion is applied to the group. Let𝑇 denote the input table containing

𝑚 rows of pairs ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩, and let 𝐾 = {𝑘1, . . . , 𝑘𝑛} be the set
of unique keys (ordered in ascending order). For a key 𝑘 ∈ 𝐾 , we
let Val[𝑘] be the set of values that are associated with 𝑘 , that is,

Val[𝑘] = {𝑣 | (𝑘, 𝑣) ∈ 𝑇 }. We list the different variants of group-by

that we support. Each operation outputs a table consisting of the

key of each group together with the aggregate function on Val[𝑘],
padded with𝑚 − 𝑛 rows of null.

Operation Aggregation Function

GroupBy.count |Val[𝑘] |
GroupBy.sum

∑
𝑣∈Val[𝑘] 𝑣

GroupBy.mean (∑𝑣∈Val[𝑘𝑖] 𝑣)/|Val[𝑘𝑖] |
GroupBy.max max𝑣{Val[𝑘𝑖]}
GroupBy.min min𝑣{Val[𝑘𝑖]}

GroupBy.median Median(Val[𝑘𝑖])

The ideal functionality. We define the general functionality

FGB.X parameterized by a function 𝑋 ∈ {count, sum,mean,max,
min,median}. The functionality receives as input shares of [[®𝑘]]
and [[®𝑣]] from all honest parties. The functionality then reconstructs

®𝑘 and ®𝑣 , and hands the adversary its shares. It then sorts the keys

and values into sets, finds the set of unique keys 𝐾 = {𝑘1, . . . , 𝑘𝑛}
and defines values Val[𝑘𝑖] for each key 𝑘𝑖 . Then, it defines the ta-

ble 𝑇 as (𝑘𝑖 , 𝑋 (Val[𝑘𝑖])𝑛𝑖=1, followed by𝑚 − 𝑛 rows of (null, 0). It
receives from the adversary its output shares, and generates the

shares of the honest parties accordingly.

4.1 GroupBy.common: Common Process for

Group-By Operations

Since the different group-by operations are similar in nature, we

first introduce a common procedure that outputs intermediate data

for the various group-by operations. The input to the procedure is

the vector of keys [[®𝑘]] and the vector of values [[®𝑣]]. The output is
as follows:

(1) [[®𝑘G]]: Shares of the keys ®𝑘 in a grouped-order.

(2) [[®𝑣G]]: Shares of the values ®𝑣 in a grouped-order.

(3) [[®𝑒]]: Shares of flags, where 𝑒𝑖 = 1 if 𝑘G [𝑖] is the last element

in its group, and 0 otherwise.

(4) [[®𝑘GN]]: the same order of
®𝑘G such that only the last element

in each group is not null (and thus the keys are unique). That

is, 𝑘GN [𝑖] =
{
𝑘G [𝑖] if 𝑒𝑖 = 1

null otherwise

.

(5) [[𝜋GNtoOUT]]: A permutation that sorts𝑘GN while moving null

values to the end. If applied on
®𝑘GN, it computes the output

order of the keys.

(6) [[®𝑘OUT]]: shares of the keys in the output order (padded with

nulls).

We demonstrate the output of GroupBy.common on the input

of Figure 2. The protocol for GroupBy.common is described in

Protocol 4.1.

Input Output

®𝑘 ®𝑣 ®𝑘G ®𝑣G ®𝑒 ®𝑘GN ®𝜋GNtoOUT ®𝑘OUT
1 2 1 2 0 null 4 1

3 4 1 3 1 1 1 2

1 3 2 1 1 2 2 3

3 5 3 4 0 null 5 null
2 1 3 5 1 3 3 null

Input O. Group O. Output O.

A note about sorting: In Step 1 the protocol invokes the GenPerm
protocol to compute a permutation which sorts the inputs based on

both 𝑘 and 𝑣 . (Namely, if two rows have the same key and different

values, the row with the smaller value will be located first.) Using 𝑣

as part of the sorting key is required for computing GroupBy.max,

GroupBy.min and GroupBy.median, but is not required for com-

putingGroupBy.count,GroupBy.sum andGroupBy.mean. There-

fore in the latter case the protocol can compute GenPerm using only
the 𝑘 values. This can substantially improve the overhead, since

the overhead of sorting depends on the length of the keys.

Protocol 4.1 (([[®𝑘G]], [[®𝑣G]], [[®𝑒]], [[®𝜋GNtoOUT]], [[®𝑘GN]], [[®𝑘OUT]])
← GroupBy.common([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]] of length𝑚. The bit length of

each key is ℓ-bit.

Output: see in the description above.

The protocol:

(1) The parties send (GenPerm, [[®𝑘, 𝑣]])2 to Fsort (Functional-
ity 2.1) and receive [[®𝜋]].

(2) The parties invoke Fsort (Functionality 2.1) twice with in-

puts

(ApplyPerm, [[®𝜋]], ([[®𝑘]])) and (ApplyPerm, [[®𝜋]], ([[®𝑣]]))
to receive [[®𝑘G]], [[®𝑣G]].

(3) ∀𝑖 ∈ [𝑚 − 1], set [[𝑓𝑖]] ← eqall([[𝑘G [𝑖]]], [[𝑘G [𝑖 + 1]]]),
and [[𝑒𝑖]] = 1 − [[𝑓𝑖]].

(4) Set [[𝑒𝑚]] = [[1]] (by calling Fone).3
(5) ∀𝑖 ∈ [𝑚], set [[𝑘GN [𝑖]]] ← Ifthen([[𝑒𝑖]] :

[[𝑘G [𝑖]]], [[null]]).
(6) The parties send (GenPerm, [[®𝑒]]) to Fsort (Functionality 2.1)

with an order preferring 1 over 0, and receive [[®𝜋GNtoOUT]].
(7) The parties send (ApplyPerm, [[®𝜋GNtoOUT]], [[®𝑘GN]]) to

Fsort (Functionality 2.1) and receive [[®𝑘OUT]].
(8) Output ([[®𝑘G]], [[®𝑣G]], [[®𝑒]], [[®𝑘GN]], [[®𝜋GNtoOUT]], [[®𝑘OUT]]).

4.2 Group-by-Count

We show GroupBy.count in Protocol 4.2, followed by an example.

We use GroupBy.common and look at the grouped order. We give

each element with 𝑒𝑖 = 1 its rank in the grouped order list. We then

2
We sort keys and values together such that, within each group, we prefer values with

smaller values over larger values.

3
We use here a generation of shares of 1. If the threshold is tight, i.e., 𝑛 = 2𝑡 + 1,
then this is not needed, and we can just take the constant 1. However, we prove our

protocol for any 𝑡 < 𝑛/2. If the threshold used for the secret sharing scheme is higher

than the actual number of corruptions, then the shares of the honest parties should

remain secret even though the secret is known.

Gilad Asharov et al.

move to the output order by applying 𝜋GNtoOUT, and compute the

differences of the ranks of adjacent elements in this order. Recall

that if we compute only GroupBy.count, we skip the processes re-

garding values [[®𝑣]] inGroupBy.common becauseGroupBy.count

does not change the values. We, therefore, abuse notation and use

only the output we actually need from GroupBy.common, and the

implementation we optimize it as well.

Protocol 4.2 ((𝑘OUT, [[®𝑐]]) ← GroupBy.count([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]]
The protocol:

(1) ([[®𝑘G]], [[®𝑒]], [[®𝜋GNtoOUT]], [[®𝑘OUT]])
← GroupBy.common([[®𝑘]]).

(2) For every 𝑖 ∈ [𝑚]: [[𝑥𝑖]] ← Ifthen([[𝑒𝑖]] : 𝑖,𝑚).
(3) The parties send (ApplyPerm, [[®𝜋GNtoOUT]], [[®𝑥]]) to Fsort

(Functionality 2.1) and receive [[®𝑦]]
(4) [[𝑐1]] := [[𝑦1]]
(5) For every 𝑖 ∈ [2,𝑚]: [[𝑐𝑖]] = [[𝑦𝑖]] − [[𝑦𝑖−1]]
(6) Output ([[®𝑘OUT]], [[®𝑐]])

®𝑘 ®𝑣 ®𝑘G ®𝑒 ®𝑥 ®𝑘OUT ®𝑦 ®𝑐
1 2 1 0 5 1 2 2

3 4 1 1 2 2 3 1

1 3 2 1 3 3 5 2

3 5 3 0 5 null 5 0

2 1 3 1 5 null 5 0

Input O. Grouped O. Output O.

Table 4: Example for group-by-count.

We next show an example GroupBy.count in Table 4. To see

why the protocol is correct, in the vector ®𝑥 , we have that: 𝑥𝑖 = 𝑖
if 𝑘G [𝑖] is the last element in its group, and 𝑥𝑖 = 𝑚 otherwise. In

other words, if 𝑘G [𝑖] is the last key in its group, then it contains

the total number of elements with keys smaller or equal to the key.

Applying 𝜋GNtoOUT moves ®𝑥 from grouped order to output order,

and so in ®𝑦, each element 𝑦𝑖 that corresponds to a key that is not

null, contains the total number of elements with keys smaller or

equal to 𝑘𝑖 . By subtracting 𝑐𝑖 = 𝑦𝑖 −𝑦𝑖−1, we get exactly the number

of elements with the key 𝑘𝑖 . Moreover, the last element that does

not correspond to null in 𝑦 (i.e., the value of the last key) contains

the total number of elements,𝑚. Each element that corresponds

to null received 𝑥𝑖 =𝑚, and thus by taking 𝑦𝑖 − 𝑦𝑖−1 all the null
values get𝑚 −𝑚 = 0.

Claim 4.3. Protocol 4.2 securely computes the FGroupBy.count func-
tionality against malicious adversaries controlling any 𝑡 < 𝑛/2 par-
ties.

Proof: To see why the protocol is correct, in the vector ®𝑥 , we have
that:

𝑥𝑖 =

{
𝑖 if 𝑘G [𝑖] is the last element in its group ,

𝑚 otherwise

.

In other words, if 𝑘G [𝑖] is the last key in its group, then it contains

the total number of elements with keys smaller or equal to the key.

Applying 𝜋GNtoOUT moves ®𝑥 from grouped-order to output-order,

and so in ®𝑦, each element 𝑦𝑖 that corresponds to a key that is not

null, contains the total number of elements with keys smaller or

equal to 𝑘𝑖 . By subtracting 𝑐𝑖 = 𝑦𝑖 −𝑦𝑖−1, we get exactly the number

of elements with the key 𝑘𝑖 . Moreover, the last element that does

not correspond to null in 𝑦 contains the total number of elements,

𝑚. Finally, each element that correspond to null received 𝑥𝑖 =𝑚,

and thus by taking 𝑦𝑖 − 𝑦𝑖−1 we get 0.
As for security, all operations are easy to simulate since we are

working with shares and honest majority. Specifically, the simulator

first receives shares from the ideal functionality of the corrupted

parties. Then, all computations are local and deterministic, or that

the parties receive some shares from some inner ideal functionality

in the hybrid model (such as Fsort, etc.). The simulator knows ex-

actly the shares that the adversary is supposed to have as it holds

the adversary’s input shares and all computations are local. It then

hands the adversary the shares it is supposed to receive from the in-

ner functionality, and receives from the adversary its output shares

in that functionality. It therefore can continue and compute locally

the shares that the adversary is supposed to receive in the following

ideal invocation. At the end of the execution, it can compute what

the output shares of the adversary are supposed to be (those are

just local computations over information that the simulator already

has), and it hands those shares to FGroupBy.count. The trusted party
then computes the shares of the honest parties given the shares of

the corrupted parties.

It follows that the simulator perfectly simulates the view of the

adversary. As such, the output of the adversary is exactly the same

in both worlds.We also saw that the underlying secrets of the shares

of the output are the same in both the real world and the ideal world.

Thus, the shares of the honest parties are uniform conditioned on

the shares of the adversary and the secrets. Therefore, the joint

distribution of the view of the adversary and the shares of the

honest parties is the same in the ideal-world and the real-world.

□

4.3 Group-by-Sum and Mean

We show the group-by-sum protocol in Protocol 4.4. Note, if we

compute only GroupBy.sum, we can remove values [[®𝑣]] from the

sort keys in GroupBy.common because GroupBy.sum does not

require the values [[®𝑣G]] in a grouped-order to be sorted.

This protocol can also compute variants of the sum, such as

the sum-of-squares, or an inner-product. This can be done by first

running a protocol for computing the required multiplications and

then executing the group-by-sum protocol.

®𝑘 ®𝑣 ®𝑘G ®𝑒 ®𝑣G ®𝑤 ®𝑥 ®𝑘OUT ®𝑦 ®𝑠
1 2 1 0 2 2 15 1 5 5

3 4 1 1 3 5 5 2 6 1

1 3 2 1 1 6 6 3 15 9

3 5 3 0 4 10 15 null 15 0

2 1 3 1 5 15 15 null 15 0

Input O. Grouped O. Output O.

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

Protocol 4.4 ([[®𝑘OUT]], [[®𝑠]]) ← GroupBy.sum([[®𝑘]], [[®𝑣]]):

Input: Keys [[®𝑘]] and values [[®𝑣]].
Output: Keys in output order [[®𝑘OUT]] and grouped sum [[®𝑠]]
(1) ([[®𝑘G]], [[®𝑣G]], [[®𝑒]], [[®𝜋GNtoOUT]], [[®𝑘GN]], [[®𝑘OUT]]) ←

GroupBy.common([[®𝑘]], [[®𝑣]]).
(2) [[®𝑤]] ← PrefixSum([[®𝑣G]])
(3) For every 𝑖 ∈ [𝑚]: [[𝑥𝑖]] ← Ifthen([[𝑒𝑖]] : [[𝑤𝑖]], [[𝑤𝑚]]).
(4) The parties send (ApplyPerm, [[®𝜋GNtoOUT]], [[®𝑥]]) to Fsort

(Functionality 2.1) and receive [[®𝑦]]
(5) For every 𝑖 ∈ [𝑚]: [[𝑠𝑖]] = [[𝑦𝑖]] − [[𝑦𝑖−1]], where [[𝑥 ′

0
]] :=

[[0]]
(6) Output ([[®𝑘OUT]], [[®𝑠]])

Claim 4.5. Protocol 4.4 securely computes the FGroupBy.sum function-

ality against malicious adversaries controlling any 𝑡 < 𝑛/2 parties.
Proof: We start with correctness. To see why the algorithm is cor-

rect, the vector ®𝑤 contains the prefix sum of the values in grouped-

order. Namely, 𝑤𝑖 =
∑

𝑗≤𝑖 𝑣G [𝑗]. In the vector ®𝑥 , we have that 𝑥𝑖
is:

𝑥𝑖 =

{
𝑤𝑖

𝑤𝑚
=

{ ∑
𝑗≤𝑖 𝑣G [𝑗] if 𝑘G [𝑖] is the last element in its group ,∑𝑚
𝑗=1 𝑣G [𝑗] otherwise

.

Applying 𝜋GNtoOUT on ®𝑥 moves all elements in the first branch

to the top of the array. This is the vector ®𝑦. In the array ®𝑦, each
key 𝑘𝑖 contains the sum of all values with keys smaller or equal

𝑘𝑖 . By subtracting 𝑠𝑖 = 𝑦𝑖 − 𝑦𝑖−1, we get exactly the sum of values

of all keys with the key 𝑘𝑖 . Moreover, rows corresponding to null
values have the total sum of all values in the array. By computing

𝑦𝑖 − 𝑦𝑖−1, we extract the sum of the keys of each group. Moreover,

since all elements that correspond to null hold the same sum (the

total sum), they all become 0s.

Security follows from the same reasoning as in Claim 4.3, and

due to the fact that we have an honest majority. □

Cost comparison with a protocol in [17]. The protocol pro-

posed as Algorithm 11 in [17] (called GroupSum2) is similar to

our GroupBy.sum protocol, and GroupSum2 can also be used to

compute group-by-sum. We compare the cost of computing group-

by-sum using our protocol with that of using GroupSum2.
Assuming that GroupBy.common has already been executed,

ourGroupBy.sum requires one less call to GenPerm thanGroupSum2
since GroupBy.sum is optimized for use after GroupBy.common

but GroupSum2 is not. Our GroupBy.sum requires𝑚 calls to F
mult

and one call to ApplyPerm, as shown in Table 6. On the other hand,

the typical cost when using GroupSum2 is𝑚 calls to F
mult

, one

call to GenPerm, and one call to ApplyPerm. This is achieved, for
example, by the following computation.

(1) Locally compute the inputs of GroupSum2 from the outputs of

GroupBy.common.

(2) Compute [[®𝑠1]] by running Steps 1 through 4 of GroupSum2.
(3) Output ([[®𝑘OUT]], [[®𝑠1]]) as ([[®𝑘OUT]], [[®𝑠]]).

If we do not assume the pre-execution of GroupBy.common, the

number of calls to functionalities that require interaction is equal

between the cases using GroupBy.sum and GroupSum2. When

using GroupBy.sum, we sequentially perform GroupBy.common

and GroupBy.sum, which requires 2𝑚 calls to F
mult

, two calls to

GenPerm, four calls to ApplyPerm, and 𝑚 calls to equality check.

Note that we save one call to GenPerm by using [[®𝑘]] as the sort
key instead of [[®𝑘, 𝑣]] in Step 2 of GroupBy.common. When using

GroupSum2, the natural protocol would be as follows.

(1) Run Steps 1 through 4 of GroupBy.common. We use [[®𝑘]] as
the sort key instead of [[®𝑘, 𝑣]].

(2) Locally compute the inputs ofGroupSum2 from [[®𝑣G]] and [[®𝑒]].
(3) Compute [[®𝑠1]] by running Steps 1 through 4 of GroupSum2.
(4) Compute [[®𝑘GN]] by running Step 5 ofGroupBy.common using

[[®𝑔]] instead of [[®𝑒]].
(5) Compute [[®𝑘OUT]] by running Step 7 of GroupBy.common us-

ing [[𝜋]] computed in Step 2 ofGroupSum2 instead of [[®𝜋GNtoOUT]].
(6) Output ([[®𝑘OUT]], [[®𝑠1]]) as ([[®𝑘OUT]], [[®𝑠]]).
This protocol requires 2𝑚 calls to F

mult
, two calls to GenPerm, four

calls to ApplyPerm, and𝑚 calls to equality check. This is the same

cost as when using GroupBy.sum.

Group-by-Mean. Now that we have group-by-sum and count,

we can also compute group-by-mean, since the mean is the sum

divided by the count. When computing grouped statistics, it is

common to reveal the count and sum (or mean), and in this case,

the parties conduct group-by-sum and count, reveal them, and then

obtain mean by dividing the sum by the count in plaintext. In the

special case where the count is not revealed but the mean is to be

computed, the parties divide the output of group-by-sum by that of

group-by-count using division protocol (e.g., [6]).

4.4 Group-by-Min/Max

We show group-by-max and min protocols in Protocols 4.6 and 4.8.

Protocol 4.6 (([[®𝑘OUT]], [[®𝑦]]) ← GroupBy.max([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]].
Output: Grouped keys [[®𝑘OUT]] and its maximum [[®𝑦]]
The protocol:

(1) ([[®𝑘G]], [[®𝑣G]], [[®𝑒]], [[®𝜋GNtoOUT]], [[®𝑘GN]], [[®𝑘OUT]]) ←
GroupBy.common([[®𝑘]], [[®𝑣]]).

(2) For every 𝑖 ∈ [𝑚]: [[𝑥𝑖]] ← Ifthen([[𝑒𝑖]] : [[𝑣G [𝑖]]], [[0]])
(3) The parties send (ApplyPerm, [[®𝜋GNtoOUT]], [[®𝑥]]) to Fsort

(Functionality 2.1) and receive [[®𝑦]]
(4) Output ([[®𝑘OUT]], [[®𝑦]])

®𝑘 ®𝑣 ®𝑘G ®𝑒 ®𝑣G ®𝑥 ®𝑘OUT ®𝑦
1 2 1 0 2 0 1 3

3 4 1 1 3 3 2 1

1 3 2 1 1 1 3 5

3 5 3 0 4 0 null 0

2 1 3 1 5 5 null 0

Input O. Grouped O. Output O.

Claim 4.7. Protocol 4.6 securely computes FGroupBy.max against

malicious adversaries controlling any 𝑡 < 𝑛/2 parties.

Proof: For correctness, recallGroupBy.common sorts the elements

according to both the keys and the values. Therefore, the maximal

Gilad Asharov et al.

value within each group in 𝑣G is the last element in each group.

Those are exactly the locations where 𝑒𝑖 = 1. Therefore, in ®𝑥 , each
𝑥𝑖 is either the maximal value in its group (if it is the last element

in its group), or it is 0. By applying the permutation 𝜋GNtoOUT on ®𝑥
we get exactly the output. Security follows from similar reasoning

as in Claim 4.3. □

Min. We proceed with describing GroupBy.min in Protocol 4.8.

Protocol 4.8 (([[®𝑘OUT]], [[®𝑦]]) ← GroupBy.min([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]].
Output: Grouped keys [[®𝑘OUT]] and its minimum [[®𝑦]].
The protocol:

(1) ([[®𝑘G]], [[®𝑣G]], [[®𝑒]], [[®𝜋GNtoOUT]], [[®𝑘GN]], [[®𝑘OUT]]) ←
GroupBy.common([[®𝑘]], [[®𝑣]]).

(2) For each 𝑖 ∈ [𝑚]:
(a) [[𝑥𝑖]] ← Ifthen([[𝑒𝑖−1]] : [[𝑣G [𝑖]]], [[0]]) (where
[[𝑒0]] = [[1]]).

(b) [[𝑔𝑖]] := 1 − [[𝑒𝑖−1]]
(3) The parties send (GenPerm, [[®𝑔]]) to Fsort (Functionality 2.1)

and receive [[®𝜋OUT]].
(4) The parties send (ApplyPerm, [[®𝜋OUT]], [[®𝑥]]) to Fsort (Func-

tionality 2.1) and receive [[®𝑦]]
(5) Output ([[®𝑘OUT]], [[®𝑦]])

®𝑘 ®𝑣 ®𝑘G ®𝑒 ®𝑣G ®𝑥 ®𝑔 ®𝑘OUT ®𝑦
1 2 1 0 2 2 0 1 2

3 4 1 1 3 0 1 2 1

1 3 2 1 1 1 0 3 4

3 5 3 0 4 4 0 null 0

2 1 3 1 5 0 1 null 0

Input O. Grouped O. Output O.

Claim 4.9. Protocol 4.8 securely computes FGroupBy.min against ma-

licious adversaries controlling any 𝑡 < 𝑛/2 parties.

Proof: The structure of GroupBy.min is slightly different than

our other group-by protocol, since we do not use 𝜋GNtoOUT. To

understand why group-by-min is correct, recall that after sorting

the elements inGroupBy.common, theminimal value in each group

is the first element (as we sort the keys and the values). Moreover

𝑒𝑖 = 1 only if it is the last element in its group; this means that

the first element in the next group is in index 𝑖 + 1. This is why 𝑥𝑖
relates to 𝑒𝑖−1. We compute vectors ®𝑥 and ®𝑔, satisfying:

𝑥𝑖 =

{
𝑣G [𝑖] if 𝑘G [𝑖] is the first element in its group ,

0 otherwise

.

and

𝑔𝑖 =

{
0 if 𝑘G [𝑖] is the first element in its group

1 otherwise

.

As such, ®𝑥 contains all the minimum values in each group, but it is

not in an output-order. We also cannot use 𝜋GNtoOUT since it moves

the last element in each group to the top; not the first element in

each group. We compute a permutation 𝜋OUT which sorts [[®𝑔]], and
so it moves all rows with 0 to the beginning.

However, by the definition of ®𝑔, these rows correspond to the

rows with the minimal value in each group. Thus, we can apply this

permutation on ®𝑥 , which brings all minimal values to the beginning

of the output vector as required. □

4.5 Group-by-Median

In this section, we present a protocol for computing the median

for each group. We use the following definition for the median: If

the number of records is odd, the median is the middle value (in

sorted order). In other words, it is the value for which the number of

elements greater than it is equal to the number of elements smaller

than it. If the number of records is even, the median is the average

of the two middle records. For example, the median of the values

{10, 20, 30, 40} is 25 = (20+30)/2. (We recognize that, in some cases,

the median of a set with an even number of elements is defined

differently. It is the value that is greater than exactly half of the

elements, e.g., 30 in the example above. Our protocol can be adapted

for computing this value as the median, as described in Footnote 4.)

In order not to leak whether the number of records is odd or

even, the protocol computes “2 times the median,” which is just 2

times the median if the number of records is odd and also the sum of

the two middle values if the number of records is even. The original

median can be obtained by dividing the reconstructed value by 2.

If it is required to move the record to another protocol without

reconstructing it, we can truncate the LSB by using a truncation

protocol (e.g., from [6]).

The group-by-median uses three sub-protocols:

• rank
+
computes for each element its rank in its group, in as-

cending order and starting from 0. For example, if the same key

appears in 4 rows, with the values {10, 20, 30, 40}, then the rank

of 10 is 0, the rank of 20 is 1, etc. The output is given in a grouped

order.

• rank
−
computes for each element its rank in its group in de-

scending order. The output is given in a grouped order.

• FindZeroOrOne receives keys and values in a grouped order,

together with a vector of values ®𝑥 with the guarantee that within

each group, only one of the elements 𝑥𝑖 has a value 0 or 1. The

procedure selects only the values for which 𝑥𝑖 is 0 or 1, and

returns them in an output order.

Finding the median. After running rank
+
and rank

−
, the pro-

tocol computes for each element the values a-d, which is equal

to “ascending order rank - descending order rank” and d-a which
is equal to “descending order rank - ascending order rank”. If the

number of records in a group is odd, then a-d=d-a= 0 for the me-

dian value. See, e.g., the keys 1 and 3 in Figure 4. If the number of

records in a group is even, one of the two middle values has a-d= 1.

The other middle value has d-a= 1. See, e.g., the key 2 in Figure 4.

Note that in a − d, in each group, we have exactly one element that

is 0 or 1; Likewise, in d − a, in each group, we have exactly one

element that is 0 or 1. Therefore, we apply FindZeroOrOne on

each separately, which returns exactly one value in each group and

in output order. If the number of records in a group is odd, then in

both executions, it would return the same value. If the number of

records in a group is even, in each execution, we would get differ-

ent values—the two middle values. We therefore sum the resulting

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

values and get either “2 times the median" (odd) or “the sum of two

middle values" (even).
4

We show the complete GroupBy.median in Protocol 4.10. Fig-

ure 4 shows the process example of GroupBy.median.

Protocol 4.10 (([[®𝑘OUT]], [[®𝑤]]) ← GroupBy.median([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]].
Output: Grouped keys [[®𝑘G]] and its median [[®𝑤]].

(1) Run ([[®𝑘OUT]], [[®𝑘G]], [[®𝑎]]) ← rank
+ ([[®𝑘]], [[®𝑣]]).

(2) Run ([[®𝑘OUT]], [[®𝑘G]], [[®𝑑]]) ← rank
− ([[®𝑘]], [[®𝑣]]).

(3) Run [[®𝑧]] ← FindZeroOrOne([[®𝑘G]], [[®𝑣G]], [[®𝑎 − ®𝑑]]).
(4) Run [[®𝑤]] ← FindZeroOrOne([[®𝑘G]], [[®𝑣G]], [[®𝑑 − ®𝑎]]).
(5) [[®𝑣]] = [[®𝑤]] + [[®𝑧]].
(6) Output: ([[®𝑘OUT]], [[®𝑣]]).

®𝑘G ®𝑣G ®𝑎 ®𝑑 ®𝑎 − ®𝑑 ®𝑑 − ®𝑎
1 3 0 2 -2 2

1 10 1 1 0 0

1 15 2 0 2 -2

2 2 0 1 -1 1

2 4 1 0 1 -1

3 1 0 0 0 0

Grouped Order

®𝑘OUT ®𝑧 ®𝑤 ®𝑣
1 10 10 20

2 4 2 6

3 1 1 2

null 0 0 0

null 0 0 0

null 0 0 0

Output Order

Figure 4: Example for GroupBy.median protocol (Protocol 4.10). ®𝑎 is the

result of rank
+
(the rank of each element within its group in ascending

order) and
®𝑑 is the result of rank

−
(the rank of each element in its group

in descending order). Recall that we compute “sum of medians" to hide the

number of elements in each group.

Security. To prove the security of the protocol, we first formalize

the functionalities F
rank

+ (resp. Frank−): The functionality receives
the shares from the honest parties, reconstruct

®𝑘 and ®𝑣 , and hands

the adversary’s its shares. It computes 𝑘OUT, 𝑘G. For computing

®𝑎, it just scans 𝑘G and gives each key its rank within its group

(in ascending order). Respectively, for computing
®𝑑 in rank

−
, the

functionality counts the number of elements in each group, say 𝑐𝑖
for the 𝑖th group, and computes for the 𝑗th element in the group

(starting from 0) the rank 𝑐𝑖 − 𝑗 − 1. In both functionalities, it asks

the adversary for its shares and computes the shares of the honest

parties based on the corrupted parties’ shares and the secrets –

𝑘OUT, 𝑘G, and ®𝑎 (resp. ®𝑑).
We also formalize the ideal functionality of FindZeroOrOne,

denoted as FFindZeroOrOne. The functionality receives from the

honest parties shares of
®𝑘G, ®𝑣G and ®𝑥 . It verifies that for every

group, exactly one element in each group has 𝑥𝑖 = 0 or 𝑥𝑖 = 1.

If this condition does not hold, then the functionality aborts. The

functionality then for each group 𝑘𝑖 finds the elements 𝑣 𝑗 for which

4
The protocol can easily be changed to compute the median according to the alternative

definition, which sets the median of a set with an even number of items, 2ℓ , to be

the item with rank ℓ + 1. The adapted protocol only computes and examines a-d and

applies FindZeroOrOne on that vector.

𝑥 𝑗 = 0 or 1. It generates a table containing all these pairs, and

pad it with 𝑚 − 𝑛 null rows (where 𝑛 is the number of unique

keys). The interaction with the adversary is the same as in all other

functionalities in our setting: When reconstructing the inputs it

gives the corrupted parties their shares (which is determined from

the shares of the honest parties). Before giving output to the honest

parties, it first lets the adversary determine its output, and then the

functionality chooses the shares of the honest parties accordingly.

Claim 4.11. Protocol 4.10 securely computes the FGroupBy.median
functionality against malicious adversaries controlling any 𝑡 < 𝑛/2
parties.

Proof: Correctness holds by inspection: inside each group, if the

number of elements is odd (say 2𝑘 + 1) then exactly one element in

®𝑎 − ®𝑑 and in
®𝑑 − ®𝑎 is 0. This is always the element with rank 𝑘 + 1,

which is the median. FindZeroOrOne will find this element and

will return it (twice).

If the number of elements is even (say 2𝑘) then exactly one

element is 1 – this is the element with the rank 𝑘 + 1 in the group:

its value in ®𝑎 is 𝑘 + 1 and in
®𝑑 is 𝑘 . In ®𝑑 − ®𝑎, there is exactly one

element in
®𝑑 − ®𝑎 that is 1: this is the element with rank 𝑘 in the

group: In
®𝑑 its value is 𝑘 + 1 and in ®𝑎 its value is 𝑘 . Therefore,

FindZeroOrOne finds the two elements with rank 𝑘 and 𝑘 + 1 and
the algorithm returns the sum of them.

Security follows from a similar reasoning as in Claim 4.3. □

4.6 Sub-protocols for Group-by-Median

We propose the three protocols rank
+, rank−, FindZeroOrOne,

which are sub-protocols for GroupBy.median.

rank
+
The protocol for rank

+
appears in Protocol 4.12.

Protocol 4.12 (([[®𝑘OUT]], [[®𝑘G]], [[®𝑎]]) ← rank
+ ([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]]
Output: Grouped keys [[®𝑘G]] and its ascending rank [[®𝑎]] (start-
ing rank is 0).

The protocol:

(1) ([[®𝑘OUT]], [[®𝑐]]) ← GroupBy.count([[®𝑘]], [[®𝑣]]).
(2) Store [[®𝑘G]] and [[®𝜋GNtoOUT]], which is outputs of

GroupBy.common in the process of GroupBy.count.

(3) The parties send (ApplyInv, [[®𝜋GNtoOUT]], [[®𝑐]]) to Fsort
(Functionality 2.1) and receive [[®𝑑]]

(4) [[®𝑠]] ← PrefixSum([[®𝑑]])
(5) For every 𝑖 ∈ [𝑚], [[𝑎𝑖]] = (𝑖−1)− [[𝑠𝑖−1]] (where [[𝑠0]] = 0).

I.e., the current location 𝑖 − 1 minus the number of items in

all preceding groups.

(6) Output ([[®𝑘OUT]], [[®𝑘G]], [[®𝑎]]).

An example of an execution of Protocol 4.12 is given below.

Gilad Asharov et al.

®𝑘 ®𝑣 ®𝑘OUT ®𝑐 ®𝑘G ®𝑑 ®𝑠 ®𝑎
2 2 1 3 1 0 0 0

1 3 2 2 1 0 0 1

1 15 3 1 1 3 3 2

2 4 null 0 2 0 3 0

3 1 null 0 2 2 5 1

1 10 null 0 3 1 6 0

Input O. Output O. Grouped O.

Claim 4.13. Protocol 4.12 securely computes the Frank+ functionality
against malicious adversaries controlling any 𝑡 < 𝑛/2 parties.

Proof:We just show correctness. We start with the output-ordered

as inGroupBy.common, and returns it into grouped-order (®𝑑). This
is done by applying the inverse of 𝜋GNtoOUT and so we move from

®𝑑 to
®𝑑 . That is, next to each element in

®𝑘G that actually appears

in the output order (recall that those are the last elements within

each group), in
®𝑑 we find the number of elements in that group,

and 0 in the other locations. The vector ®𝑠 is then the prefix-sum of

®𝑑 . Therefore, in ®𝑠:
• Next to each element with key 𝑘𝑖 that is not the last in its group,

we find the total number of elements with keys smaller than 𝑘𝑖 .

• Next to each element with key 𝑘𝑖 that is the last one in its group,

we find the total number of elements with keys smaller than or

equal to 𝑘𝑖 .

As such, 𝑠𝑖−1 always contains the total number of elements with

keys smaller than 𝑘𝑖 . By taking (𝑖 − 1), i.e., the total number of

elements until the 𝑘𝑖 , minus 𝑠𝑖−1, i.e., the total number of elements

with keys strictly smaller than 𝑘𝑖 , we get the rank of 𝑘𝑖 in its group.

□

rank
−
.We describe the protocol in Protocol 4.14.

Protocol 4.14 (([[®𝑘OUT]], [[®𝑘G]], [[®𝑑]]) ← rank
− ([[®𝑘]], [[®𝑣]])):

Input: Keys [[®𝑘]] and values [[®𝑣]]
Output: Grouped keys [[®𝑘G]] and its descending rank [[®𝑑]]
(starting from 0).

(1) ([[®𝑘OUT]], [[®𝑐]]) ← GroupBy.count([[®𝑘]], [[®𝑣]])
(2) Store [[®𝑘G]] and [[®𝜋GNtoOUT]], which is outputs of

GroupBy.common in the process of GroupBy.count

(3) For every 𝑖 ∈ [𝑚 − 1]: [[𝑥𝑖]] = [[𝑐𝑖+1]], and set 𝑥𝑚 = [[0]].
(4) The parties send (ApplyInv, [[®𝜋GNtoOUT]], [[®𝑥]]) to Fsort

(Functionality 2.1) and receive [[®𝑦]].
(5) Set [[𝑠𝑚]] = 0. For every 𝑖 = 𝑚 − 1, . . . , 1 (in descending

order):

(a) [[𝑠𝑖]] := [[𝑦𝑖]] + [[𝑠𝑖+1]]
(6) For every 𝑖 ∈ [𝑚]: [[𝑑𝑖]] =𝑚 − 𝑖 − [[𝑠𝑖]]
(7) Output ([[®𝑘OUT]], [[®𝑘G]], [[®𝑑]])

An example of an execution of Protocol 4.14 is given below.

®𝑘 ®𝑣 ®𝑘OUT ®𝑐 ®𝑥 ®𝑘G ®𝑦 ®𝑠 ®𝑑
2 2 1 3 2 1 0 3 2

1 3 2 2 1 1 0 3 1

1 15 3 1 0 1 2 3 0

2 4 null 0 0 2 0 1 1

3 1 null 0 0 2 1 1 0

1 10 null 0 0 3 0 0 0

Input O. Output O. Group O.

Claim 4.15. Protocol 4.14 securely computes the Frank− functional-

ity against malicious adversaries controlling any 𝑡 < 𝑛/2 parties.
Proof:We show correctness.We start with the output ofGroupBy.count.

In ®𝑥 , each element (that appears in the output order) contains the

number of elements with keys strictly greater than its key. We then

move from the output order to the group order, and this is the vector

®𝑦. On the vector ®𝑦 we compute “suffix-sum" into the vector ®𝑠 . As a
result, in each 𝑠𝑖 , each element contains the number of elements

with keys greater than its key (and not including its key).

As such, 𝑠𝑖 always contains the total number of elements with

keys strictly greater than 𝑘𝑖 . By taking (𝑚− 𝑖), i.e., the total number

of elements greater (or equal) 𝑘𝑖 , minus 𝑠𝑖 , i.e., the total number of

elements with keys strictly greater than 𝑘𝑖 , we get the descending

order rank of 𝑘𝑖 in its group. □

FindZeroOrOne. Yet onemore helping procedure for implement-

ing GroupBy.median is FindZeroOrOne. This procedure receives

set of keys
®𝑘G and values ®𝑣G in a grouped order, and a set of values ®𝑥

with the following guarantee: Within each group, only one element

has value 𝑥𝑖 which is 0 or 1.

To implement this procedure, we define the predicate

EqalZeroOrOne([[𝑎]]) on some shared value 𝑎, which returns

[[1]] if 𝑎 = 0 or 1, and it returns [[0]] otherwise. We discuss how

to implement this procedure below. By the input assumption on

®𝑥 , if we apply EqalZeroOrOne on each element 𝑥𝑖 , exactly one

element in each group would result with 1. We then return, in an

output order, that value of the element with the indicator 1. We

implement FindZeroOrOne in Protocol 4.16.

Protocol 4.16 ([[®𝑤]] ← FindZeroOrOne([[®𝑘G]], [[®𝑣G]], [[®𝑥]])):

Input: Grouped keys [[®𝑘G]], [[®𝑣G]] and values [[®𝑥]] with the

guarantee that exactly one element in each group has 𝑥𝑖 = 0 or

𝑥𝑖 = 1.

Output: The values that correspond to 𝑥𝑖 = 0 or 𝑥𝑖 = 1 in a

grouped order.

(1) For every 𝑖 ∈ [𝑚], set [[𝛼𝑖]] = EqalZeroOrOne([[𝑥𝑖]]).
(2) For every 𝑖 ∈ [𝑚], the parties send (𝛼𝑖 , 𝑣G [𝑖]) to Fmult

and

receive ®𝑧.
(3) The parties send (GenPerm, 1 − [[𝛼𝑖]]) to Fsort (Functional-

ity 2.1) and receive back [[𝜋]].
(4) The parties send (ApplyPerm, [[𝜋]], [[𝑧]]) to Fsort (Function-

ality 2.1) and receive [[®𝑤]].
(5) Output [[®𝑤]].

EqalZeroOrOne([[𝑎]]): A simple way to implement this pro-

cedure it to truncate the LSB from 𝑎, and then run eqall([[𝑎′]], 0)

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

(where 𝑎′ is the truncated 𝑎). Alternatively, one can check equality

to 0 and 1 separately, and then run a circuit that computes the OR

operation.

The following claim follows easily by inspection and by the

correctness of the underlying primitives (Fsort, EqalZeroOrOne,

etc.):

Claim 4.17. Protocol 4.16 securely computes FFindZeroOrOne against
malicious adversaries controlling any 𝑡 < 𝑛/2 parties.

4.7 Generalizing group-by-median into

quartiles and percentiles

Quartiles and percentiles are generalizations of the median, and

are used to analyze the shape of the distribution, especially the

dispersion, in a way that is resistant to outliers.

We generalize the group-by-median protocol to obtain percentiles.

More precisely, for each group of 𝑐 elements the protocol computes

the

(
𝑡

𝑡+𝑢 (𝑐 − 1) + 1
)
-th element.

5
This is the median if 𝑡 = 𝑢 = 1,

quartiles if 𝑡 = 𝑖 and 𝑢 = 4 − 𝑖 for 1 ≤ 𝑖 ≤ 3, and percentiles if 𝑡 = 𝑗

and 𝑢 = 100 − 𝑗 for 0 ≤ 𝑗 ≤ 100.

If the number of elements in the groupminus one, i.e., the number

of intervals between elements, 𝑐 − 1, is not divisible by 𝑡 + 𝑢, then
let 𝜏 = 𝑡

𝑡+𝑢 (𝑐 − 1) + 1 and 𝛿𝜏 = ⌈𝜏⌉ − 𝜏 , and let the 𝜏-th element in

𝑣1, . . . , 𝑣𝑐 be the interpolated value, 𝑣∗ = 𝛿𝜏𝑣 ⌈𝜏 ⌉−1 + (1 − 𝛿𝜏)𝑣 ⌈𝜏 ⌉ .
Similar to GroupBy.median, our GroupBy.percentile protocol

outputs (𝑡 + 𝑢)𝑣∗ instead of 𝑣∗ to avoid Real-number operations,

i.e., dividing by 𝑡 +𝑢. We can easily extend our protocol to compute

𝑣∗ directly by using a division protocol [6].

We show the generalized protocol GroupBy.percentile in Pro-

tocol 4.10.

Protocol 4.18 (([[®𝑘OUT]], [[®𝑧]]) ← GroupBy.percentile(𝑡,𝑢, [[®𝑘]],
[[®𝑣]])):

Input: Parameters 𝑡 and 𝑢, and keys [[®𝑘]] and values [[®𝑣]]
Output: Grouped keys [[®𝑘G]] and its

𝑡
𝑡+𝑢 -th element [[®𝑧]]

(1) ([[®𝑘OUT]], [[®𝑘G]], [[®𝑎]]) ← rank
+ ([[®𝑘]], [[®𝑣]]).

(2) ([[®𝑘OUT]], [[®𝑘G]], [[®𝑑]]) ← rank
− ([[®𝑘]], [[®𝑣]]).

(3) For every 𝑖 ∈ [𝑚]:
(a) Invoke [[𝑓𝑖]] ← isInRange(𝑢 · [[𝑎𝑖]], 𝑡 · [[𝑑𝑖]], 𝑡 · [[𝑑𝑖]] +

𝑡 + 𝑢).
(b) The parties send (𝑢 [[𝑎𝑖]] −𝑡 [[𝑑𝑖]], [[𝑣𝑖−1]]) to Fmult

and

receive [[𝑥𝑖]]
(c) The parties send (𝑡 +𝑢−𝑢 [[𝑎𝑖]] +𝑡 [[𝑑𝑖]], [[𝑣𝑖]]) to Fmult

and receive [[𝑦𝑖]]
(d) The parties send ([[𝑥𝑖]] + [[𝑦𝑖]], [[𝑓𝑖]]) to Fmult

and re-

ceive [[𝑧𝑖]]
(4) The parties send (GenPerm, 1 − [[®𝑓]]) to Fsort (Functional-

ity 2.1) and receive [[®𝜌]].
(5) The parties send (ApplyPerm, [[®𝜌]], [[®𝑧]]) to Fsort (Function-

ality 2.1) and receive [[®𝑧OUT]]
(6) Output ([[®𝑘OUT]], [[®𝑧OUT]])

The main idea is that the (𝑡
𝑡+𝑢 (𝑐 − 1) + 1)-th element divides

the intervals between the grouped 𝑐 elements in a ratio of 𝑡 to 𝑢.

5
This definition is the one used in the python library NumPy and in the PER-

CENTILE.INC function in Microsoft Excel.

Therefore, if we multiply the outputs of rank
−
and rank

+
by 𝑡 and

𝑢, respectively, then the point at which the large/small relationship

between the two values is swapped is the (𝑡
𝑡+𝑢 (𝑐−1)+1)-th element.

Using this observation, the protocol first computes the flag
®𝑓 in

which 1 appears only at the ⌈ 𝑡
𝑡+𝑢 (𝑐 − 1) + 1⌉-th element in each

group, where 𝑐 is the count of each group. We explain below in

more detail how to compute this flag.

Let ®𝑎 and ®𝑑 be the ascending and descending orders computed

by rank
+
and rank

−
. Let the 𝑖-th record among all records for

1 ≤ 𝑖 ≤ 𝑚 be the 𝑗-th record in a group whose count is 𝑐 (and

therefore 1 ≤ 𝑗 ≤ 𝑐). Let 𝑎𝑖 = 𝑗 − 1, 𝑑𝑖 = 𝑐 − 𝑗 . Here, we want to set
𝑓𝑖 = 1 iff 𝑗 = ⌈ 𝑡

𝑡+𝑢 (𝑐 − 1) + 1⌉ holds. We observe that

𝑗 = ⌈ 𝑡

𝑡 + 𝑢 (𝑐 − 1) + 1⌉

⇔ 𝑗 − 1 <
𝑡

𝑡 + 𝑢 (𝑐 − 1) + 1 ∧
𝑡

𝑡 + 𝑢 (𝑐 − 1) + 1 ≤ 𝑗

⇔ 𝑢 (𝑗 − 1) < 𝑡 (𝑐 − 𝑗) + (𝑡 + 𝑢) ∧ 𝑡 (𝑐 − 𝑗) ≤ 𝑢 (𝑗 − 1)
⇔ 𝑢𝑎𝑖 < 𝑡𝑑𝑖 + (𝑡 + 𝑢) ∧ 𝑡𝑑𝑖 ≤ 𝑢𝑎𝑖 ,

which can be computed from 𝑢 [[®𝑎]] and 𝑡 [[®𝑑]].
After obtaining the flag

®𝑓 representing the ⌈ 𝑡
𝑡+𝑢 (𝑐 − 1) + 1⌉-th

element in each group, the remaining task is computing the output

of (𝑡 +𝑢) times the interpolated value, 𝑣∗ = 𝛿𝜏𝑣 ⌈𝜏 ⌉−1 + (1−𝛿𝜏)𝑣 ⌈𝜏 ⌉ ,
where 𝜏 = 𝑡

𝑡+𝑢 (𝑐 − 1) + 1 and 𝛿𝜏 = ⌈𝜏⌉ − 𝜏 . Recall that if 𝑓𝑖 = 1 and

⌈𝜏⌉ = 𝑗 , 𝑎𝑖 = 𝑗 − 1, and 𝑑𝑖 = 𝑐 − 𝑗 hold, then

𝛿𝜏 = 𝑗 −𝜏 = 𝑗 −
(𝑡

𝑡 + 𝑢 (𝑐 − 1) + 1
)
=
𝑡 𝑗 + 𝑢 𝑗 − 𝑡𝑐 − 𝑢

𝑡 + 𝑢 =
𝑢𝑎𝑖 − 𝑡𝑑𝑖
𝑡 + 𝑢 .

Therefore, the output of GroupBy.percentile (which is (𝑡 + 𝑢)𝑣∗
to avoid real-number operation) is multiplying

(𝑡 + 𝑢)𝑣∗ = (𝑢𝑎𝑖 − 𝑡𝑑𝑖)𝑣𝑖−1 + (𝑡 + 𝑢 − 𝑢𝑎𝑖 + 𝑡𝑑𝑖)𝑣𝑖
with 𝑓𝑖 to filter rows with 𝑓𝑖 = 0.

Protocol 4.19 ([[𝑓]] ← isInRange([[𝑎]], [[𝑟0]], [[𝑟1]])):

Input: Shares of 𝑎, 𝑟0 and 𝑟1.

Output: A shared bit 𝑓 , where 𝑓 = 1 if 𝑟0 ≤ 𝑎 < 𝑟1 and 0

otherwise.

(1) Invoke [[𝑒0]] ← lessthan([[𝑎]], [[𝑟0]]).
(2) Invoke [[𝑒1]] ← lessthan([[𝑎]], [[𝑟1]]).
(3) The parties send (1− [[𝑒0]], [[𝑒1]]) to Fmult

and receive [[𝑓]].
(4) Output ([[𝑓]])

An example of an execution when 𝑡 = 1 and 𝑢 = 3 (computing

first quartile) is shown in Table 5.

We next show how to implement the isInRange procedure.

The is done by first comparing the input 𝑎 to the lower bound and

upper bound inputs, using the lessthan procedure. This produces

two shared bits [[𝑒0]] and [[𝑒1]]. Note that 𝑒0 = 1 if 𝑎 < 𝑟0 and 0

otherwise, and 𝑒1 = 1 if 𝑎 < 𝑟1 and 0 otherwise. Hence, multiplying

1 − 𝑒0 and 𝑒1 yield 1 if and only if 𝑟0 ≤ 𝑎 < 𝑟1 as required.

4.8 Removing Null rows

As in the case of the join protocols, we have the option to remove

Null rows. For Group-by protocols, removing Null rows can be

conducted as in the join protocols since [[®𝑒]] in group-by-common

can be regarded as the valid bit.

Gilad Asharov et al.

®𝑘 ®𝑣 ®𝑘G ®𝑣G ®𝑎 ®𝑑 ®𝑓 𝑢 ®𝑎 − 𝑡 ®𝑑 ®𝑥 ®𝑦 ®𝑧 ®𝑘OUT ®𝑧OUT
1 2 1 2 0 1 0 -1 0 10 0 1 9

3 4 1 3 1 0 1 3 6 3 9 2 4

1 3 2 1 0 0 1 0 0 4 4 3 17

3 5 3 4 0 1 0 -1 -1 20 0 null 0

2 1 3 5 1 0 1 3 12 5 17 null 0

Input O. Grouped O. Output O.

Table 5: Process example of GroupBy.percentile when 𝑡 = 1 and 𝑢 = 3 (first quartile). For the key 1 there are 𝑐 = 2 elements, 𝜏 = 𝑡
𝑡+𝑢 (𝑐 − 1) + 1 = 1 + 1/4,

and 𝛿𝜏 = ⌈𝜏 ⌉ − 𝜏 = 3/4. The protocol computes the 𝜏 th element in the group {2, 3}, which is 𝑣∗ = 𝛿𝜏 · 𝑣⌈𝜏⌉−1 + (1 − 𝛿𝜏)𝑣⌈𝜏⌉ = 3

4
𝑣1 + 1

4
𝑣2 = 2

1

4
. The protocol

outputs (𝑡 +𝑢)𝑣∗ = 4 · 2 1

4
= 9 instead of 𝑣∗ to avoid real-number operations.

F
mult

Fsort Equality

CheckGen(m) apply(𝑚)
GroupBy.common 𝑚 3 3 𝑚

GroupBy.count - - 1 -

GroupBy.sum 𝑚 - 1 -

GroupBy.max 𝑚 - 1 -

GroupBy.min 𝑚 1 1 -

GroupBy.median 2𝑚 2 5 4𝑚

Table 6: Costs of our group-by protocols, measured by the number of calls

to the underlying primitives: multiplication, generating a permutation,

applying a permutation and checking equality between two shared values.

We note that the cost of GroupBy.common is not included in the cost of

each of the other operations, since it can be called once for all operations.

4.9 Cost analysis

Table 6 summarizes the costs of our group-by protocols. For each

protocol, we present the number of calls to each of the underlying

sub-protocols that we use. Since GroupBy.common is used in each

of the group-by operations, we computed its cost separately. If

one computes many statistics over a data-set, it suffices to run

GroupBy.common once and feed its output to all other operations.

5 EXPERIMENTAL RESULTS

This section describes the experimental results of our implemen-

tation of the join and group-by protocols, for the setting of three

servers and one single corrupted party.

Setting. For the building block of our protocols, we used the recent

three-party stable sorting protocol of Asharov et al. [5], which has

communication that grows linearly with the size of the data sets,

and the number of rounds is logarithmic in the key length. For

multiplication, we used the protocol of Araki et al. [28], where

each party sends only one field element per multiplication. Our

secret sharing was defined over the field F
2
61−1, which supports

faster multiplication as 2
61 − 1 is a Mersenne prime. To achieve

malicious security, we used the technique used in [1, 12, 19], where

the parties hold a MAC over each secret. This requires them to

invoke the multiplication protocol twice for each multiplication

operation in the protocol, to maintain the MAC. We note that this

method achieves statistical security. In our implementation, the

statistical security is roughly 2
−30

. The reason for this is that in

the sorting protocol of [5], the elements are decomposed to their

bit representation. This requires us to maintain a MAC over each

Operation Protocol Round Complexity

Join-uu

[23] 𝑟prf + 𝑟eq + 𝑐1
Ours 𝑟gp + 𝑐ap + 𝑐ai + 𝑟eq + 𝑐2

Join-un

[8] 𝑟gp + 𝑐ap + 𝑐ai + 2 log(𝑛 +𝑚) + 𝑐3
Ours 𝑟gp + 𝑐ap + 𝑐ai + 𝑐4

Table 7: Comparison of round complexity with previous protocols in the

semi-honest security model.𝑚,𝑛 refer to the sizes of the left and right

tables, respectively. 𝑟prf refers to the round complexity of computing

pseudo-random function (LowMC in [23]) on shared inputs. 𝑟eq refers to

the round complexity of equality check, which depends on the algorithm.

𝑟gp, 𝑐ap, 𝑐ai refer to the round complexity of GenPerm,ApplyPerm,

ApplyInv, respectively. Note that 𝑟gp = 𝑂 (ℓ) and independent of𝑚,𝑛,

where ℓ is the bit length of the sorting keys. 𝑐1, 𝑐2, 𝑐3, 𝑐4 are additional

small constants. We can assume that 𝑐xx ≤ 5.

secret shared bit. We used the field F
2
32 in the MAC for a small field.

By the analysis of [12], this implies success cheating probability of

2/(231 − 1) ≈ 2
−30

.

We have implemented our protocols in C++11. Our experiments

were performed in two experimental environments, denoted by

HI and LO. In the experiments performed with HI, the parameters

were set up to achieve the best possible performance. In contrast,

the LO environment is used mainly to compare our results with

previous works. HI consists of three servers connected by a 10 Gbps

LAN with an RTT of 0.136 ms. Each server has two Intel Xeon Gold

6144k (3.50GHz 8 cores/16 threads) CPUs and 765GB of memory.

LO consists of three computers connected by a 1 Gbps LAN with an

RTT of 0.362 ms. Each computer has an Intel Core i7-6700 (3.40GHz

4 cores/16 threads) CPU and 32GB memory, which is roughly the

same setting used in [8, 23].

Join protocols.

We first measured the running times of our join protocols. We

consider table sizes of𝑚 ∈ {28, 212, 216, 220}. In our measurements,

the number of rows in both tables was 𝑚, and each table had a

column of 32-bit keys and a column of 50-bit values.

We present in Table 7 the round complexity and in Table 8 the

running times of our join protocols and previous works. Each run-

ning time for our protocols is an average of five measurements. The

running times and total communication for [23] and [8] are taken

from the corresponding papers for comparison.

The experimental results on HI show that our implementation

achieves very fast joins on three-servers. For example, joining tables

Secure Statistical Analysis on Multiple Datasets:
Join and Group-By

Time (sec.) Total Communication (MB)

Operation Security Protocol

𝑚 𝑚

2
8

2
12

2
16

2
20

2
8

2
12

2
16

2
20

Join-uu

SH [23] 0.02 0.03 0.3 9.1 0.3 4.9 78.1 1249.4

SH Our (HI) 0.030 0.037 0.185 3.850
0.48 12.19 193.47 3094.36

SH Our (LO) 0.027 0.069 0.908 15.311

Mal. Our (HI) 0.220 0.216 0.638 10.642
3.17 59.29 941.37 15054.26

Mal. Our (LO) 0.127 0.298 3.827 61.195

Join-un

SH [8] 0.09 0.21 1.3 21.6 1.5 22.8 364 5560

SH Our (HI) 0.021 0.039 0.240 5.463
0.64 17.81 283.73 4538.23

SH Our (LO) 0.023 0.094 1.294 21.764

Mal. Our (HI) 0.160 0.182 0.794 17.978
3.65 75.57 1202.98 19241.31

Mal. Our (LO) 0.099 0.344 4.746 77.139

Table 8: The running times in seconds and communication overhead in MB for inner join. SH and Mal. refer to Semi-honest and Malicious. In the

experiments, both tables have𝑚 rows and two columns (one for the key and the other for associated value).

of 2
20

records takes 3.850 seconds and 5.463 seconds with semi-

honest security when the join operation is join-uu and join-un,

respectively. It takes only 10.642 seconds for join-uu and 17.978

seconds for join-un with malicious security. Overall, the running

times of our protocols with malicious security are 2.76–4.00 times

larger than those with semi-honest security for𝑚 = 2
20
.

It is important to note that the LowMC cipher [2] that was used

in the experiment in [23] has later been cryptanalyzed [22]. The

overhead of our protocol does not depend on the implementation

of a specific cipher, and therefore there is no need to use high

performance ciphers that might have low security.

Our semi-honest protocols have comparable performance to

those of existing works. Although a fair comparison is difficult

due to the different measurement environments, for semi-honest

security, both [23] and [8] results are between our LO and HI results.

We are the first to implement join protocols secure against a

malicious adversary. Finally, for join-un, we have a left-outer join

which is non-trivial to obtain from the join protocol in [8].

We also measured the communication overhead of our join pro-

tocols in the same setup as the running time measurements. Since

the communication overhead does not depend on the servers, we

measured it only on HI. We present in Table 8 the communication

overhead of our join protocols and previous works. The communi-

cation overhead for [23] and [8] are taken from the corresponding

papers for comparison.

For join-uu, our semi-honest protocol required about 2.5 times

as much communication as [23]. On the other hand, for join-un,

our semi-honest protocol required only about 0.82 times as much

communication as [8]. The communication overhead of our mali-

cious security protocol was about 4.9 and 4.3 times higher than that

of our semi-honest protocol for join-uu and join-un, respectively.

Group-by protocols. We also measured the running times of our

implementations of group-by protocols. Our implementation of

GroupBy.count and GroupBy.sum, used a modified and more ef-

ficient GroupBy.common protocol that does not use [[®𝑣]] as input
to the sorting operation (but rather only the key column); see im-

plementation note in Section 4.1. We again consider table sizes of

𝑚 ∈ {28, 212, 216, 220}. In our measurements the table has𝑚 rows,

a column of 32-bit keys and a column of 50-bit values.

Time (sec.)

Operation Secu- 𝑚

rity 2
8

2
12

2
16

2
20

GroupBy.common SH 0.054 0.068 0.251 3.740

Mal. 0.440 0.449 0.794 9.979

GroupBy.common SH 0.023 0.026 0.098 1.550

(without sort by [[®𝑣]]) Mal. 0.188 0.197 0.356 4.744

GroupBy.max* SH 0.001 0.001 0.005 0.094

Mal. 0.002 0.002 0.007 0.125

GroupBy.min* SH 0.001 0.002 0.007 0.115

Mal. 0.004 0.004 0.015 0.189

GroupBy.median* SH 0.006 0.007 0.020 0.302

Mal. 0.057 0.084 0.188 2.575

GroupBy.count** SH 0.001 0.001 0.004 0.069

Mal. 0.001 0.001 0.005 0.096

GroupBy.sum** SH 0.001 0.001 0.004 0.070

Mal. 0.001 0.002 0.008 0.150

Table 9: The running times in seconds for group-by operations measured

in the HI setting. * and ** denote the running times of GroupBy.common

and its modified version (excluding [[®𝑣]] for sorting), respectively. In the

Security column, SH and Mal. refer to Semi-honest and Malicious.

Time (sec.)

Operation Secu- 𝑚

rity 2
8

2
12

2
16

2
20

GroupBy.common SH 0.043 0.061 1.046 17.245

Mal. 0.257 0.345 4.216 66.422

GroupBy.common SH 0.020 0.028 0.438 7.196

(without sort by [[®𝑣]]) Mal. 0.115 0.157 1.889 29.877

GroupBy.max* SH 0.000 0.001 0.021 0.345

Mal. 0.002 0.003 0.044 0.678

GroupBy.min* SH 0.001 0.002 0.032 0.548

Mal. 0.003 0.005 0.074 1.112

GroupBy.median* SH 0.004 0.009 0.093 1.635

Mal. 0.041 0.077 0.810 14.413

GroupBy.count** SH 0.001 0.001 0.014 0.220

Mal. 0.001 0.003 0.032 0.522

GroupBy.sum** SH 0.001 0.001 0.013 0.206

Mal. 0.001 0.003 0.046 0.727

Table 10: The running times in seconds for group-by operations measured

in the LO setting. The abbreviations and symbols are the same as in Table 9.

Gilad Asharov et al.

The results for HI and LO are presented in Tables 9 and 10,

respectively. In the tables, the running time of GroupBy.common

is excluded from the run time of the other group-by protocols, since

group-by protocols often computes multiple statistics at the same

time, which requires only a single invocation of GroupBy.common.

The results in Table 9 show extremely fast group-by operations.

Even for a table with 2
20

records, and even for the most time-

consuming group-by-median operation, the output is computed

in 4.042 (= 3.740 + 0.302) seconds with semi-honest security and

in 12.554 (= 9.979 + 2.575) seconds with malicious security. Our

protocols are advantageous when computing several types of statis-

tics simultaneously. For example, computing all group-by statistics

of max, min, median, count and sum, takes 4.390 seconds for the

semi-honest security and 13.114 seconds for the malicious security.

The running times in LO are 2.94–8.06 times larger than those in HI

when𝑚 = 2
20
. The difference in time between malicious and semi-

honest in GroupBy.median is comparably large. This is expected

to be due to the fact that our implementation of GroupBy.median

contains many bit operations which incur a large overhead when

using the compiler of [12].

ACKNOWLEDGEMENTS

Asharov is sponsored by the Israel Science Foundation (grant No. 2439/20),

by JPM Faculty Research Award, and by the European Union’s

Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No. 891234.

REFERENCES

[1] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. 2021.

An Efficient Passive-to-Active Compiler for Honest-Majority MPC over Rings.

In ACNS 2021 (Lecture Notes in Computer Science, Vol. 12727), Kazue Sako and

Nils Ole Tippenhauer (Eds.). Springer, 122–152. https://doi.org/10.1007/978-3-

030-78375-4_6

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,

and Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT 2015,

Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056. Springer, 430–454. https:

//doi.org/10.1007/978-3-662-46800-5_17

[3] Mohammad Anagreh, Peeter Laud, and Eero Vainikko. 2021. Parallel Privacy-

Preserving Shortest Path Algorithms. Cryptogr. 5, 4 (2021), 27. https://doi.org/

10.3390/cryptography5040027

[4] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In CCS ’21: 2021 ACM

SIGSAC Conference on Computer and Communications Security, Virtual Event,

Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna,

and Elaine Shi (Eds.). ACM, 610–629. https://doi.org/10.1145/3460120.3484560

[5] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas,

Katsumi Takahashi, and Junichi Tomida. 2022. Efficient Secure Three-Party

Sorting with Applications to Data Analysis and Heavy Hitters. In CCS 2022,

Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 125–138.

https://doi.org/10.1145/3548606.3560691

[6] Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Takahiro

Matsuda, Ibuki Mishina, Hiraku Morita, and Jacob C. N. Schuldt. 2022. Adam

in Private: Secure and Fast Training of Deep Neural Networks with Adaptive

Moment Estimation. Proc. Priv. Enhancing Technol. 2022, 4 (2022), 746–767.

[7] Nuttapong Attrapadung, Hiraku Morita, Kazuma Ohara, Jacob C. N. Schuldt,

Tadanori Teruya, and Kazunari Tozawa. 2022. Secure Parallel Computation on

Privately Partitioned Data and Applications. In CCS 2022, Heng Yin, Angelos

Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 151–164. https://doi.org/10.

1145/3548606.3560695

[8] Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan Raghu-

raman, and Peter Rindal. 2022. Secret-Shared Joins with Multiplicity from Ag-

gregation Trees. In ACM SIGSAC Conference on Computer and Communications

Security (CCS).

[9] Marina Blanton and Everaldo Aguiar. 2012. Private and oblivious set and multiset

operations. In ASIACCS ’12. 40–41.

[10] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. IEEE Trans.

Computers 38, 11 (1989), 1526–1538.

[11] Guy E. Blelloch. 1990. Prefix sums and their applications. https://www.cs.cmu.

edu/~guyb/papers/Ble93.pdf

[12] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority MPC for Malicious

Adversaries. In CRYPTO 2018 (Lecture Notes in Computer Science, Vol. 10993),

Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, 34–64. https://doi.

org/10.1007/978-3-319-96878-0_2

[13] R. Cramer, I. Damgård, and Y. Ishai. 2005. Share Conversion, Pseudorandom

Secret-Sharing and Applications to Secure Computation. In TCC (LNCS, Vol. 3378).

Springer, 342–362.

[14] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions. In

Proceedings of the 13th ACM Conference on Computer and Communications Secu-

rity, CCS 2006, Ari Juels, Rebecca N.Wright, and Sabrina De Capitani di Vimercati

(Eds.). ACM, 79–88.

[15] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient Private

Matching and Set Intersection. In Advances in Cryptology - EUROCRYPT 2004, In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

Interlaken, Switzerland, May 2-6, 2004, Proceedings (Lecture Notes in Computer

Science, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, 1–19.

[16] O. Goldreich. 2004. Foundations of Cryptography.

[17] Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Koji Chida. 2023. Efficient decision

tree training with new data structure for secure multi-party computation. Proc.

Priv. Enhancing Technol. 2023, 1 (2023), 343–364. https://doi.org/10.56553/popets-

2023-0021

[18] Mitsuru Ito, Akira Saito, and Takao Nishizeki. 1989. Secret sharing scheme

realizing general access structure. Electronics and Communications (Part III:

Fundamental Electronic Science) 72, 9 (1989), 56–64.

[19] Ryo Kikuchi, Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi, Ai Ishida,

Takahiro Matsuda, Yusuke Sakai, and Jacob C. N. Schuldt. 2019. Field Extension

in Secret-Shared Form and Its Applications to Efficient Secure Computation. In

ACISP 2019 (Lecture Notes in Computer Science, Vol. 11547), Julian Jang-Jaccard

and Fuchun Guo (Eds.). Springer, 343–361. https://doi.org/10.1007/978-3-030-

21548-4_19

[20] Ryo Kikuchi, Dai Ikarashi, Takahiro Matsuda, Koki Hamada, and Koji Chida.

2018. Efficient Bit-Decomposition and Modulus-Conversion Protocols with an

Honest Majority. In ACISP 2018. 64–82.

[21] Sven Laur, Riivo Talviste, and Jan Willemson. 2013. From Oblivious AES to

Efficient and Secure Database Join in the Multiparty Setting. In ACNS 2013

(Lecture Notes in Computer Science, Vol. 7954), Michael J. Jacobson Jr., Michael E.

Locasto, Payman Mohassel, and Reihaneh Safavi-Naini (Eds.). Springer, 84–101.

https://doi.org/10.1007/978-3-642-38980-1_6

[22] Fukang Liu, Takanori Isobe, and Willi Meier. 2021. Cryptanalysis of Full LowMC

and LowMC-M with Algebraic Techniques. In CRYPTO 2021 (Lecture Notes in

Computer Science, Vol. 12827), Tal Malkin and Chris Peikert (Eds.). Springer,

368–401. https://doi.org/10.1007/978-3-030-84252-9_13

[23] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins

and PSI for Secret Shared Data. In ACM SIGSAC Conference on Computer and

Communications Security (CCS).

[24] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,

and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In SP

2015. IEEE Computer Society, 377–394. https://doi.org/10.1109/SP.2015.30

[25] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private Set Intersection Using Permutation-based Hashing. In 24th USENIX Secu-

rity Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015,

Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association, 515–530.

[26] A. Shamir. 1980. On the Power of Commutativity in Cryptography. In ICALP.

[27] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical

Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Security

and Privacy, Berkeley, California, USA, May 14-17, 2000. IEEE Computer Society,

44–55.

[28] T.Araki, J.Furukawa, Y.Lindell, A.Nof, and K.Ohara. 2016. High-Throughput

Semi-Honest Secure Three-Party Computation with an Honest Majority. In ACM

CCS. ACM, 805–817.

https://doi.org/10.1007/978-3-030-78375-4_6
https://doi.org/10.1007/978-3-030-78375-4_6
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.3390/cryptography5040027
https://doi.org/10.3390/cryptography5040027
https://doi.org/10.1145/3460120.3484560
https://doi.org/10.1145/3548606.3560691
https://doi.org/10.1145/3548606.3560695
https://doi.org/10.1145/3548606.3560695
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.56553/popets-2023-0021
https://doi.org/10.56553/popets-2023-0021
https://doi.org/10.1007/978-3-030-21548-4_19
https://doi.org/10.1007/978-3-030-21548-4_19
https://doi.org/10.1007/978-3-642-38980-1_6
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1109/SP.2015.30

	Abstract
	1 Introduction
	1.1 Join Protocols
	1.2 Group-By Protocols
	1.3 Tools and Techniques
	1.4 Related Work

	2 Preliminaries
	3 Secure Join Protocols
	3.1 Join-un
	3.2 From L to R
	3.3 Right Outer Join
	3.4 Inner Join
	3.5 From L to R – Implementation
	3.6 Only in L
	3.7 Left Outer Join
	3.8 Full Join
	3.9 Efficiency and Security Analysis
	3.10 Join-uu
	3.11 Removing Null Rows

	4 Secure GROUP-BY Protocol
	4.1 GroupBy.common: Common Process for Group-By Operations
	4.2 Group-by-Count
	4.3 Group-by-Sum and Mean
	4.4 Group-by-Min/Max
	4.5 Group-by-Median
	4.6 Sub-protocols for Group-by-Median
	4.7 Generalizing group-by-median into quartiles and percentiles
	4.8 Removing Null rows
	4.9 Cost analysis

	5 Experimental Results
	References

