
Encrypted MultiChannel Communication (EMC2): Johnny Should
Use Secret Sharing

Gowri R. Chandran
Technical University of Darmstadt

Darmstadt, Germany
chandran@encrypto.cs.tu-

darmstadt.de

Kilian Demuth
Technical University of Darmstadt

Darmstadt, Germany
demuth@peasec.tu-darmstadt.de

Kasra Edalatnejad∗
Technical University of Darmstadt

Darmstadt, Germany
edalat@encrypto.cs.tu-darmstadt.de

Sebastian Linsner
Technical University of Darmstadt

Darmstadt, Germany
linsner@peasec.tu-darmstadt.de

Christian Reuter
Technical University of Darmstadt

Darmstadt, Germany
reuter@peasec.tu-darmstadt.de

Thomas Schneider
Technical University of Darmstadt

Darmstadt, Germany
schneider@encrypto.cs.tu-

darmstadt.de

ABSTRACT
Nowadays, the problem of point-to-point encryption is solved by
the wide adaptation of protocols like TLS. However, challenges
persist for End-to-End Encryption (E2EE). Current E2EE solutions,
such as PGP and secure messengers like Signal, suffer from issues
like 1) low usability, 2) small user base, 3) dependence on central
service providers, and 4) susceptibility to backdoors. Concerns over
legally mandated backdoors are rising as the US and EU are propos-
ing new surveillance regulations requiring chat monitoring. We
present a new E2EE solution called Encrypted MultiChannel Com-
munication (EMC2), based on𝑛-out-of-𝑛 secret sharing. EMC2 splits
messages into multiple secret shares and sends them through in-
dependent channels. We show that multiple independent channels
exist between users and EMC2 provides E2EE with no single point of
trust, no setup, and is understandable by the general public. Our so-
lution complements existing tools and strengthens the case against
legally enforced backdoors by demonstrating their ineffectiveness.

1 INTRODUCTION
Most Internet communication today occurs through encrypted
channels. While the adoption of protocols such as TLS [30, 38]
has resolved point-to-point encryption, practical challenges remain
for E2EE. The primary E2EE solutions are encrypted emails using
PGP [20] and S/MIME [41], and secure messengers like Signal [43].
Solutions based on PGP require users to manage cryptographic
keys and certificates. These solutions suffer from severe usability
issues [40, 56] and low adaption rates. Secure messengers based
on protocols like Signal [1, 49] improve usability by making key
management transparent. However, they still face challenges like
requiring trust in central service providers especially in proprietary
applications with closed-source code likeWhatsApp, whereas open-
source alternatives like Signal have limited user bases. Messengers
are deployed by service providers that face legal threats from pro-
posed surveillance regulations in the US [53] and the EU [19]. These
regulations aim to mandate monitoring and backdoors in encrypted
communication to assist law enforcement or to target child sexual
abuse material. Academics have warned about the dangers these
laws pose to E2EE, democracy, and fundamental rights [50]. Despite

∗Corresponding author.

academic efforts, requests for unrealistic solutions from policymak-
ers persist due to a lack of technical understanding.

We take a different perspective to achieving E2EE, aiming to
tackle trust and regulation challenges. Our core idea is very sim-
ple. We split messages into multiple secret shares and send them
through independent channels where all but one channel can be bro-
ken/backdoored. We prioritize the following goals in our solution:

Public understandability. The protocol should be understand-
able by the general public with no background in math or IT.

No single point of trust. The protocol should not depend on
trusting a single service provider such that it is infeasible tomandate
backdoors or client monitoring through a single provider.

No setup. To achieve high receiver coverage, users should be
able to initiate secure communication without requiring recipients
to generate public keys or register for a specific application.

While prior work offer elegant solutions for E2EE messaging,
these solutions often rely on complex mathematical constructs inac-
cessible to the general public. We believe understandable solutions
are essential for public and political debates. Forcing messengers
to weaken E2EE by introducing backdoors negatively impacts the
rights of all users. We demonstrate that these regulations will not
hinder the capability of users, even those without technical back-
ground, to initiate confidential communications.

We design our E2EE solution based on 𝑛-out-of-𝑛 secret shar-
ing which is a generalization of One-Time Pad (OTP) encryption.
The OTP encryption, introduced in the early 20th century, is the
first cipher to achieve information-theoretic security. It is one of
the simplest ciphers, requiring only an XOR operation between
the message and a random key. However, as it requires sending a
random key that is as long as the message through an independent
secure channel, OTP is rarely used in practice. Generating long
random keys is easy nowadays using a pseudorandom generator
(PRG) like AES in counter mode. We argue that today multiple
independent and secure channels already exist between users. On
average, users have two mail addresses and six social media/mes-
senger accounts. Each communication channel is encrypted at least
in a client-server fashion, where only the service providers can
eavesdrop on the messages. We propose that combining multiple
independent channels through OTP enables E2EE.

Chandran, et al.

Roadmap. We design an E2EE messaging solution called En-
crypted MultiChannel Communication based on OTP and study
its properties in §2. We show that multiple independent secure
channels exist between users in §3. We systematize existing private
communication tools and compare them to EMC2 in §4. Finally, we
discuss the next steps and how EMC2 improves the ecosystem in §5.

We do not envision EMC2 as a replacement for general-purpose
messengers like Signal. EMC2 does not provide anonymity and
users are often not motivated to take extra steps for E2EE in typical
use cases. However, we believe solutions understandable by a gen-
eral audience are essential for public debates. The lack of setup in
EMC2 allows contacting arbitrary users and achieving high receiver
coverage. Its simplicity enables a secure, verifiable solution without
public-key cryptography or trusted service providers, achievable
in just a few lines of code. Secure E2EE messengers still face limita-
tions such as reliance on central platforms and regulatory pressures.
EMC2 complements these solutions by enabling senders to distrib-
ute the trust across multiple service providers without requiring any
server-side change. By demonstrating the ineffectiveness of laws
mandating backdoors, EMC2 aims to strengthen the arguments
against such laws and alleviate pressure on server-side solutions.

2 DESIGN OF EMC2

At a high level, there are three steps for sending messages via EMC2.
1) We provide a tool that allows users to encrypt/decrypt a message
𝑀 using OTP which only requires an XOR operation such that
𝑀 = 𝑚1 ⊕𝑚2. The simplicity and statelessness of this operation
allow EMC2 to run offline and be deployed as a program, script, or
static webpage1 2) EMC2 adds a plaintext preamble to encrypted
message shares that explains how the decryption works. 3) The
sender manually sends the two encrypted shares𝑚1 and𝑚2 to the
receiver through two independent channels. We define communica-
tion channels, explain how EMC2 works, and study its properties.

Channel. Communication occurs through various links such
as an instant message, SMS, email, or social media direct message.
We model a channel 𝑐 , that supports two operations 𝑐 .Send(𝑀)
and𝑀 ← 𝑐 .Recv(), as a series of service providers that relay data
from a sender to a receiver through point-to-point encrypted links.
While P2P encryption prevents network observers from eavesdrop-
ping, service providers may access plaintext message𝑀 . We denote
the set of providers observing the plain message as 𝑐 .Obsv. For
example, an email sent from Gmail to Yahoo is encrypted in transit
via TLS (of the SMTPS protocol [33]) but is accessible in plaintext
by both service providers, 𝑐 .Obsv = {Google, Yahoo}, in addition
to the sender and the receiver. We assume the existence of two
independent channels 𝑐1 and 𝑐2 between the sender and the re-
ceiver, where no adversary controls all communication channels:
𝑐1.Obsv ∩ 𝑐2.Obsv = ∅. While this adversary model is common in
theory, ensuring non-collusion in practice where channels may face
subpoenas can be challenging. We justify this assumption in §3.

While we use the notion of OTP for simplicity and historical
context, our approach is equivalent to 𝑛-out-of-𝑛 boolean secret
sharing, supporting easy generalization to 𝑛 channels. E2EE com-
munication in EMC2 works as follows:
EMC2.Send(𝑀). To send a message𝑀 :
1See https://encrypto.de/EMC2 for our demo.

(1) The sender uses EMC2 to secret share the message 𝑀 by
choosing a random key 𝑚1 ←$ {0, 1} |𝑀 | , setting 𝑚2 ←
𝑀 ⊕𝑚1, and optionally encoding the shares via Base64.

(2) EMC2 automatically appends a plaintext preamble explain-
ing how the decryption works at the beginning of𝑚1 and
𝑚2.

(3) The sender sends the two shares through different channels
as 𝑐1.Send(𝑚1) and 𝑐2.Send(𝑚2).

𝑀 ← EMC2.Receive(). To receive a message𝑀 :
(1) The receiver receives𝑚1 ← 𝑐1.Recv() and𝑚2 ← 𝑐2.Recv().
(2) The receiver gets the plaintext preamble explaining the

decryption process and how to access EMC2.
(3) The receiver uses EMC2 to optionally decode shares and

decrypts the message as𝑀 ←𝑚1 ⊕𝑚2.
Encoding. Some communication channels like email restrict con-

tent to printable ASCII characters. Moreover, manual copy&paste
of shares between EMC2 and channels will be more complicated
if messages contain non-printable characters. To ease the use of
EMC2, we include an optional encoding step where the message
shares𝑚1 and𝑚2 are encoded/decoded using Base64 [24].

2.1 Analysis
Confidentiality.OTP encryption guarantees information-theoretic
security as long as the shares (keys) are chosen at random and no
adversary can observe all channels. We may use a PRG to generate
keys reducing security to a computational guarantee.

Security. The security properties of EMC2 depend on the prop-
erties of the underlying channels. We provide a detailed discussion
of the security properties of EMC2 in §A. However, in favor of
simplicity and user understandability, EMC2 does not offer any
guarantee for integrity, authenticity, or non-repudiation.

Anonymity. EMC2 does not offer any anonymity protection or
metadata hiding mechanisms.

Understandability. EMC2 consists of three operations: 1) gener-
ating a random bitstring, 2) XOR operation, and 3) optional Base64
encoding/decoding. These can be explained through elementary
math. To illustrate these concepts, we use coin tossing for random-
ness generation, bit flipping for XOR, and a look-up table for Base64
encoding. Major programming languages natively support secure
randomness generation and Base64 further simplifying our code.
Beyond understandability, the simplicity of EMC2 allows compact
implementations that are easy to share, verify, and harden.

Trust. EMC2 is a fully client-side solution that distributes trust
across existing communication channels.

Receiver coverage. EMC2 requires no setup phase. Senders can
initiate E2EE communication via two channels without prior recip-
ient action. This setup-free design separates receiver coverage from
the user base, avoiding the cold start problem where limited initial
users can hinder adoption. EMC2 achieves high receiver coverage by
bootstrapping on existing channels like email or popular chat apps.

Usability.Requiring users tomanually copy&paste shares through
two channels adds friction and lower usability. However, mistakes
in EMC2 are low stake, in contrast with PGP accidents like publish-
ing a secret key. As EMC2 does not rely on underlying channels for

https://encrypto.de/EMC2

EMC2 : Johnny Should Use Secret Sharing

E2EE, multi-device support and device recovery can be managed
through server-side solutions. We are conducting a user study to
assess the usability of EMC2 as part of future work.

Efficiency. The bottleneck of EMC2 is the manual sending and
receiving of messages. EMC2 avoids public-key operations and its
cost is dominated by its underlying channels. The total communi-
cation cost is O(𝑛 |𝑀 |) bytes, scaling linearly with the number of
channels𝑛 and the message size |𝑀 |. While optimizations like using
constant-size seeds instead of random shares could reduce the cost
to |𝑀 |, we prioritize the simplicity of the unoptimized approach.

2.2 Automation
The focus of EMC2 is simplicity and understandability. That is why
we decided to leave the process of copy&pasting messages as a
manual step. This minimizes the trust surface to a tiny code base
and makes the whole process visible to the users. An alternative is
automating the whole process for better usability.

Email. Users often use a single application for handling multiple
email accounts. Prior work has shown the effectiveness of plugins
for automating secret sharing across multiple email providers [8].

Messengers. We have solutions that provide API integration
for multiple messengers [6, 52], and new EU regulations such as
the Digital Markets Act [18] require interoperability from major
messengers. We expect that messaging across different messengers
will become possible in the same way that email works across
providers. This will facilitate building apps to automate sending
OTP encrypted messages across multiple chat channels.

3 MULTICHANNEL COMMUNICATION
For over a century, cryptographers assumed that having multiple
independent channels between a sender and a receiver is infeasible.
However, the proliferation of social media and widespread adoption
of point-to-point encryption via protocols like TLS has changed this.
Statistical studies on email usage show over 4.2 billion active email
users with an average of 1.85 email accounts per person [22, 23].
This 1.85 email addresses per person is attributed to the majority of
users having at least two emails to separate accounts for private life,
work, and spam. Another study indicates that, on average, users are
registered to 6.7 social media and messengers [15]. Many of these
platforms surpass one billion active monthly users led byWhatsApp
with over 2.4 billion active users [34]. Registration on these plat-
forms often requires a mobile phone number or an email address,
which are usually visible and searchable. Nowadays, most Internet
communication enables point-to-point encryption (e.g., TLS [38]
for messengers and SMTPS [33] for emails), protecting users against
eavesdroppers and only revealing (leaking) information to service
providers. Given these numbers, it is safe to assume that finding
at least two independent channels between two users is feasible.

We discuss two common scenarios for secure communication:
Professional. Users often need secure communication with

individuals in specific professions like journalists, lawyers, or gov-
ernment officials, where sensitive information is exchanged. In such
professional settings, users typically have multiple modes of con-
tact, including private and professional email addresses and mobile

phone numbers, linked to various messengers. Additionally, pro-
fessionals often maintain accounts on social media platforms like
LinkedIn and X (formerly Twitter), enabling users to find multiple
contact channels without directly requesting them.

Social. Sending sensitive social messages often happens with
people personally known by the sender. In such scenarios, it is com-
mon to know the recipient’s private email addresses, mobile phone
numbers and connected messengers, and social media accounts on
platforms like Facebook, Instagram, TikTok, or Snapchat. These
social platforms also provide messaging services.

We assume no adversary can control or observe all channels as
mentioned in §2. Since EMC2 allows users freedom in channel selec-
tion, we can’t enforce this directly. Users should be aware of three
scenarios that break this assumption: 1) If an adversary compro-
mises a user’s device, they can observe all communications. 2)When
an entity controls multiple platforms (e.g. WhatsApp, Facebook
Messenger, and Instagram by Meta), it observes multiple channels
that may look independent. Thus, users should use channels from
different companies. 3) Subpoenas can compel service providers in
a single jurisdiction to reveal data, so channels from different juris-
dictions are recommended. While high-resource adversaries may
still perform targeted attacks, mass surveillance of EMC2 users and
requiring monitoring from messengers would be cost-prohibitive.

4 RELATEDWORK
We systematize existing tools and approaches to achieve E2EE
communication and how they interact or compare with EMC2.

4.1 Email
PGP. Encrypted email protocols like PGP and S/MIME are one of the
first attempts at achieving E2EE. Unfortunately, they are notorious
for their complex setup process and severe usability issues [40, 56].
The general audience struggles to understand the inner workings
and properties of PGP. Additionally, mistakes, such as sharing the
secret key instead of the public key, can be catastrophic. PGP has
a low adaptation rate compared to email use which further limits
its functionality as sending a secure message before the receiver
generates and shares their key is not possible.

Autocrypt. The primary challenge of PGP is securing the secret
key and distributing the public key. There are community efforts
aiming to make PGP key management transparent, such as the Au-
toCrypt protocol [4], supported by mail agents like DeltaChat [16]
and K9 [25]. AutoCrypt-enabled mail agents automatically create
public keys and propagate them through SMTP headers without
interfering with generic email providers. This enables opportunistic
encryption when the receiver’s public key is known, using PGP
and S/MIME directly. However, AutoCrypt still faces low adoption
and key management issues in multi-device scenarios.

Secure email providers. Some email providers are security-
focused like Proton [36], StartMail [44], and Tuta [51] and support
E2EE. These solutions automatically generate and manage PGP
keys for users, where secret keys are encrypted with a password
only known to the client and stored on the server. These services
use PGP encryption when the receiver belongs to the same provider
or has a known public key. If there is no known receiver public key,

Chandran, et al.

the mail is encrypted via a symmetric key. The sender has to send
this symmetric key to the receiver via an out-of-band channel and
the provider offers a web portal to assist the decryption.

Prior work by Kobeissi [26], has studied the E2EE properties of
these secure email providers and raised concerns about 1) the use
of low-entropy passwords to protect secret keys from providers and
2) reliance on large cryptographic code bases served as dynamic
websites by providers to protect users’ secret messages and pass-
words. In contrast, EMC2 requires no password or long-term keys,
and the code is minimal and runs offline.

PrivMail.The closest work to EMC2 is PrivMail [8], which secret
shares emails across multiple email providers. PrivMail provides
keyword search over secret shared emails to facilitate server-side
monitoring and spam filtering. EMC2 supports arbitrary communi-
cation channels and focuses on understandability and verifiability.

4.2 Messengers
The most popular way to achieve E2EE is using secure messen-
gers such as Signal [43], Telegram [46], Threema [47], and What-
sApp [55]. Regulations such as the Digital Market Act [18] demand
interoperability between major messengers. The main contenders
for an interoperable protocol are Matrix [31], MLS [5], and Sig-
nal [1], all providing E2EE. At first glance, this may solve the prob-
lem of E2EE communication, but concerns remain. Many large
messengers, like WhatsApp with over 2 billion active users, are pro-
prietary software where users cannot see or verify what protocol
is running and have to trust the service provider blindly. Open-
source alternatives like Signal, despite high security perception,
have smaller user bases (40 million active Signal users) limiting their
coverage and functionality compared to email or larger messengers.
Moreover, all above mentioned messengers rely on central service
providers. While they offer theoretical guarantees for E2EE, their
security mechanism is not visible or understandable by the general
public and they are susceptible to regulations mandating backdoors.

EMC2 can achieve high receiver coverage by allowing senders to
initiate secure messaging without requiring receivers to install an
app. Running EMC2 over E2EE messengers is an excellent solution
to distribute trust across multiple service providers. By provid-
ing a simple and understandable client-side E2EE solution, EMC2

demonstrates the ineffectiveness of mandating backdoors.

4.3 Anonymous communication systems
Stand alone. Anonymous communication systems, often provid-
ing E2EE, have been thoroughly studied over the years. Various
approaches include: Crowds [37], DC-net [10, 11, 21], Differen-
tial privacy [28, 29, 54], Mixnet [9, 13, 27], PIR [2, 3], and traffic-
shaping [17, 35]. However, these systems are bound by the anonymity
trilemma [14] stating that each solution can only achieve two prop-
erties out of strong anonymity, low bandwidth overhead, and low
latency. This often leads to higher costs or delays. Supporting meta-
data protection is crucial for many sensitive scenarios, but to the
best of our knowledge, none of these solutions have achieved a
large enough user base for our receiver coverage goal.

While EMC2 can use anonymous communication systems as the
underlying channels, the privacy of the system will be limited to

the weakest channel metadata protection offered at best. Therefore,
EMC2 is not suitable for use cases requiring strong anonymity.

Tor hidden services. Anonymous messengers like Briar [7],
Cwtch [12], Ricochet [39], and Tox [48] build peer-to-peer (P2P)
messaging using Tor hidden services. These solutions require both
the sender and receiver to be online simultaneously and do not
support asynchronous communication. These messengers are often
used in niche scenarios, have a limited user base (millions), and
receiver coverage is restricted to those who have installed the app.

Web3. There are efforts to build decentralized web3 anonymous
messengers that operate on top of a decentralized network or a
blockchain such as Session [42], Status [45], and XXmessenger [32].
While decentralization helps with removing the central trust, these
solutions suffer from a small user base and receiver coverage too.

4.4 Embedded messengers
Many organizations handling sensitive information, such as banks,
legal firms, and journalist groups, provide mobile apps offering on-
line functionality and support. Many apps allow users to message
the organization’s employees. These apps often hardcode the orga-
nization’s public keys or rely on TLS encryption, but as they have
a first-party server that is the intended recipient of the message,
they arguably provide E2EE. While these apps enable secure com-
munication for some sensitive roles like lawyers and journalists,
creating, deploying, and verifying a secure messaging app for every
organization needing confidential contact is not a scalable solution.

5 DISCUSSION AND CONCLUSION
We designed EMC2, an E2EE solution that uses 𝑛-out-of-𝑛 secret
sharing to distribute trust across 𝑛 communication channels provid-
ing point-to-point encryption. EMC2 can be used over arbitrary ex-
isting and widely deployed channels and does not require any setup;
this allows supporting a high receiver coverage. The sender needs to
know about EMC2. However, the receiver just follows a short expla-
nation embedded in the secret shares to read encrypted messages,
without having to install an application or register for a service.

Simplicity.Many features of EMC2 are enabled by its simplicity.
Simplicity is the cornerstone of our understandability by a general
audience and enables building compact solutions with a few lines
of code that are easy to share, harden, verify, and audit.

Use cases. The primary design goal of EMC2 is educating the
public about E2EE and demonstrating the ineffectiveness of legal
mandates for backdoors. EMC2 complements existing E2EE solu-
tions and does not aim to replace them. EMC2 is effective in cases
where conversation confidentiality is the main goal such as contact-
ing lawyers and sending medical or financial data. However, EMC2

is not suitable for all scenarios including cases involving journalists
or activists where protecting metadata is crucial.

Future work.We are currently running a user study to inves-
tigate the usability of manually copy&pasting messages and to
measure the impact of understandability on trust. Moreover, it is
possible to extend EMC2 to support E2EE group messaging.

Acknowledgements. This project was funded by the DFG
within SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230. It also received funding from the ERC under

EMC2 : Johnny Should Use Secret Sharing

the European Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 850990 PSOTI). ChatGPT was used for
text refinement to improve clarity.

REFERENCES
[1] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security

notions, proofs, and modularization for the signal protocol. In Eurocrypt, 2019.
[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with com-

pressed queries and amortized query processing. In IEEE S&P, 2018.
[3] Sebastian Angel and Srinath T. V. Setty. Unobservable communication over fully

untrusted infrastructure. In USENIX OSDI, 2016.
[4] AutoCrypt Project. Autocrypt: E-mail encryption settings discovery. https:

//autocrypt.org.
[5] Richard Barnes, Raphael Robert, and Joe Hildebrand. The Messaging Layer

Security (MLS) Protocol. https://datatracker.ietf.org/doc/rfc9420, 2023.
[6] Bird. Bird - omnichannel communication solutions. https://www.bird.com.
[7] Briarproject. Briar: Secure messaging anywhere. https://www.briarproject.org.
[8] Gowri R. Chandran, Raine Nieminen, Thomas Schneider, and Ajith Suresh. Priv-

mail: A privacy-preserving framework for secure emails. In ESORICS, 2023.
[9] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 1981.
[10] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous

messaging system handling millions of users. In IEEE S&P, 2015.
[11] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group

messaging. In ACM CCS, 2010.
[12] Cwtch. Surveillance Resistant Infrastructure. https://cwtch.im.
[13] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of

a type III anonymous remailer protocol. In IEEE S&P, 2003.
[14] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate.

Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency -
choose two. In IEEE S&P, 2018.

[15] Datareportal. Global social media statistics. https://datareportal.com/social-
media-users.

[16] Delta Chat. Delta chat is a decentralized and secure messenger. https://delta.chat.
[17] Kasra Edalatnejad, Wouter Lueks, Julien Pierre Martin, Soline Ledésert, Anne

L’Hôte, Bruno Thomas, Laurent Girod, and Carmela Troncoso. Datasharenet-
work: A decentralized privacy-preserving search engine for investigative jour-
nalists. In USENIX Security, 2020.

[18] European Commission. The digital markets act. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A52020PC0842, 2020.

[19] European Commission. Proposal for a Regulation of the European Parliament
and of the Council laying down rules to prevent and combat child sexual abuse.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN, 2022.

[20] Simson L. Garfinkel. PGP - pretty good privacy: encryption for everyone. O’Reilly,
1995.

[21] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A scalable
and efficient protocol for anonymous communication. Technical report, Cornell
University, 2003. http://www.cs.cornell.edu/people/egs/papers/herbivore-tr.pdf.

[22] Radicati Group. Email Statistics Report, 2018-2022. https://www.radicati.
com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-
2022_Executive_Summary.pdf.

[23] Radicati Group. Email Statistics Report, 2023-2027. https://www.radicati.
com/wp/wp-content/uploads/2023/04/Email-Statistics-Report-2023-2027-
Executive-Summary.pdf.

[24] S. Josefsson. The base16, base32, and base64 data encodings. https://datatracker.
ietf.org/doc/rfc4648, 2006.

[25] K9 mail. Advanced email for android. https://k9mail.app.
[26] Nadim Kobeissi. An analysis of the protonmail cryptographic architecture. IACR

Cryptol. ePrint Arch., 2018. Paper 2018/1121. https://eprint.iacr.org/2018/1121.
[27] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient

communication system with strong anonymity. PoPETs, 2016.
[28] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private

messaging immune to passive traffic analysis. In USENIX OSDI, 2018.
[29] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yodel: strong metadata security

for voice calls. In ACM Symposium on Operating Systems Principles (SOSP), 2019.
[30] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. TLS 1.3 in practice: How TLS

1.3 contributes to the internet. In The Web Conference (WWW), 2021.
[31] Matrix. Matrix: An open network for secure, decentralized communication.

https://matrix.org.
[32] XX messanger. XX messenger: Building a world where your life belongs to you.

https://xx.network.
[33] K. Moore and C. Newman. Cleartext Considered Obsolete: Use of Transport

Layer Security (TLS) for Email Submission and Access. https://datatracker.ietf.
org/doc/rfc8314, 2018.

[34] Bussiness of apps. App statistics: Messaging apps. https://www.businessofapps.
com.

[35] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. The loopix anonymity system. In USENIX Security, 2017.

[36] Proton. Proton Mail: Secure email that protects your privacy. https://proton.me.
[37] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.

ACM TISSEC, 1998.
[38] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. https:

//datatracker.ietf.org/doc/rfc8446, 2018.
[39] Ricochet. Ricochet Refresh: an open-source project to allow private and anony-

mous instant messaging. https://www.ricochetrefresh.net.
[40] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent E. Seamons. Why Johnny

Still, Still Can’t Encrypt: Evaluating the Usability of a Modern PGP Client. CoRR,
abs/1510.08555, 2015. https://arxiv.org/abs/1510.08555.

[41] Jim Schaad. Secure/multipurpose internet mail extensions (s/mime) version 4.0
message specification. https://datatracker.ietf.org/doc/rfc8551, 2019.

[42] Session. Session messenger: Send encrypted messages, not metadata. https:
//getsession.org.

[43] Signal. Signal messenger. https://signal.org.
[44] StartMail. StartMail: Secure email that puts your privacy first. https://www.

startmail.com.
[45] Status. Status messenger: Chat privately with friends. https://status.app/features/

messenger.
[46] Telegram. Telegram: a new era of messaging. https://telegram.org.
[47] Threema. Threema: The secure messenger for individuals and companies. https:

//threema.ch.
[48] Tox. Tox: A New Kind of Instant Messaging. https://tox.chat.
[49] Perrin Trevor and Marlinspike Moxie. The double ratchet algorithm. GitHub

wiki, 2016.
[50] Carmela Troncoso, Bart Preneel, et al. An open letter to the euro-

pean commission: Concerns over new proposed child sexual abuse regu-
lation. https://cdt.org/wp-content/uploads/2023/05/2023-05-16-Letter-from-
Public-Interest-Technologists.pdf, 2023.

[51] Tuta. Tuta: Secure email made for you. https://tuta.com/security.
[52] Twilio. Twilio - Communication APIs for SMS, Voice, Video and Authentication.

https://www.twilio.com.
[53] United States Senate. S.1207 - earn it act of 2023, 118th congress. https://www.

congress.gov/bill/118th-congress/senate-bill/1207, 2023.
[54] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-

vuzela: scalable privatemessaging resistant to traffic analysis. InACM Symposium
on Operating Systems Principles (SOSP), 2015.

[55] WhatsApp Inc. Whatsapp messenger: secure and reliable free private messaging
and calling. https://www.whatsapp.com.

[56] Alma Whitten and J. Doug Tygar. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In USENIX Security, 1999.

A IMPACT OF UNDERLYING CHANNELS ON
SECURITY

In EMC2, the sender can freely choose the underlying channels.
The security properties of these channels greatly affect the over-
all security of the communication system. Users often lack full
knowledge of these channel properties, and presenting them with
a detailed channel-based analysis would conflict with our goal of
simplicity and understandability. Therefore, we do not make claims
to guarantee integrity, authenticity, non-repudiation, and deniability.
Though, we provide an informal analysis for interested readers.

The classic OTP cipher sends message shares through insecure
channels, assuming the adversary cannot observe all share. This
method offers no integrity or authenticity protection, but users
can achieve deniability easily. Given a communication transcript
𝑀 =𝑚1 ⊕𝑚2 and a desirable fake message 𝑀′, users can forge a
share𝑚′1 = 𝑀 ⊕ 𝑀′ to decrypt𝑚2 into the fake message𝑀′.

EMC2 supports various mediums, such as email and WhatsApp,
each offering different security properties. For instance, we assume
all channels are protected by a series of encrypted point-to-point
links using protocols like TLS. This transport layer protection en-
sures that network adversaries cannot break the integrity of chan-
nels, and the attack surface is limited to channels’ service providers,
𝑐 .Obsv. Now we discuss security properties in more detail.

https://autocrypt.org
https://autocrypt.org
https://datatracker.ietf.org/doc/rfc9420
https://www.bird.com
https://www.briarproject.org
https://cwtch.im
https://datareportal.com/social-media-users
https://datareportal.com/social-media-users
https://delta.chat
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0842
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0842
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN
http://www.cs.cornell.edu/people/egs/papers/herbivore-tr.pdf
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2023/04/Email-Statistics-Report-2023-2027-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2023/04/Email-Statistics-Report-2023-2027-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2023/04/Email-Statistics-Report-2023-2027-Executive-Summary.pdf
https://datatracker.ietf.org/doc/rfc4648
https://datatracker.ietf.org/doc/rfc4648
https://k9mail.app
https://eprint.iacr.org/2018/1121
https://matrix.org
https://xx.network
https://datatracker.ietf.org/doc/rfc8314
https://datatracker.ietf.org/doc/rfc8314
https://www.businessofapps.com
https://www.businessofapps.com
https://proton.me
https://datatracker.ietf.org/doc/rfc8446
https://datatracker.ietf.org/doc/rfc8446
https://www.ricochetrefresh.net
https://arxiv.org/abs/1510.08555
https://datatracker.ietf.org/doc/rfc8551
https://getsession.org
https://getsession.org
https://signal.org
https://www.startmail.com
https://www.startmail.com
https://status.app/features/messenger
https://status.app/features/messenger
https://telegram.org
https://threema.ch
https://threema.ch
https://tox.chat
https://cdt.org/wp-content/uploads/2023/05/2023-05-16-Letter-from-Public-Interest-Technologists.pdf
https://cdt.org/wp-content/uploads/2023/05/2023-05-16-Letter-from-Public-Interest-Technologists.pdf
https://tuta.com/security
https://www.twilio.com
https://www.congress.gov/bill/118th-congress/senate-bill/1207
https://www.congress.gov/bill/118th-congress/senate-bill/1207
https://www.whatsapp.com

Chandran, et al.

Integrity. The integrity of communication in EMC2 depends on
the weakest integrity protection among the underlying channels.
Any modification to a message requires altering at least one of the
message shares. If all channels protect the integrity of message
shares 𝑚𝑖 , we can infer that the combined message 𝑀 =

⊕
𝑚𝑖

remains unmodified.

Authenticity. Like integrity, the authenticity of EMC2 relies on
the weakest authenticity protection among the channels.

Deniability. Communication remains deniable if one of the
underlying channels is deniable or lacks integrity protection. As
long as a user can alter or deny one of the shares undetected, the
deniability proof of the classic OTP cipher holds.

	Abstract
	1 Introduction
	2 Design of MC2
	2.1 Analysis
	2.2 Automation

	3 Multichannel communication
	4 Related work
	4.1 Email
	4.2 Messengers
	4.3 Anonymous communication systems
	4.4 Embedded messengers

	5 Discussion and conclusion
	References
	A Impact of underlying channels on security

