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1 Introduction

This paper introduces a ZKP (zero-knowledge proof) based state update system, where each block contains a SNARK
proof aggregated from the user generated zkVM (zero knowledge virtual machine) proofs. It enables users to generate
state update proofs in their local machines, contributing to a secure, decentralized verification process. Our main
contribution in this paper, the recursive proofs system, addresses scalability by recursively verifying user proofs and
aggregating them in a hierarchical tree structure up to a root proof, serving as a block proof. The proposed solution
advances current blockchain paradigms by offering efficient recursive verification through ZKP, enhancing security
and reducing computational load.

2 Background

2.1 Recursive Zero-Knowledge Proofs

A non-interactive zk system consists of a prover P and a verifier V . The prover’s goal is to demonstrate that
a computation C has been executed with some public input x and some secret input w, known as the witness.
We follow the notations used in [4]. The prover generates a proof π using a publicly trusted arithmetic circuit
implementing C: P (x,w) → π. The verifier then checks the proof with V (x, π) → true/false, without needing to
know w.

A recursive zk proof verifies other zk proofs within its circuit. P demonstrates that they have verified several
inner proofs: P (x1, π1, x2, π2, . . .) → π. The recursive proving circuit enforces the constraints of verifiers for these
inner proofs. When the outer proof π is verified, the inner proofs π1, π2, . . . are also verified: V (x, π) → true ⇒
π1, π2, . . . are true.

Recursive proof composition was first introduced by [2] and later realized practically using cycles of elliptic curves
by [1]. Subsequent research, such as Halo2 [3] and Nova [5], has further enhanced recursion speed and verification
costs. Plonky2 [7] employs techniques from PLONK, FRI and Goldilocks fields, achieving the fastest recursion time
so far.

[4] introduces a system that uses MapReduce to aggregate multiple different types of proofs into a single succinct
root proof within a tree structure. [6] extends this tree structure into a vector commitment scheme, offering efficient,
updatable batch proofs for blockchain applications.

2.2 zkVMs

zkVMs are a novel approach to achieving scalability and privacy in blockchain systems. Unlike traditional ZKPs
that require custom circuits for each program, zkVMs act as virtual machines specifically designed for zk-proof
computations. This allows developers to write programs in a familiar language and leverage the zkVM’s built-in
capabilities to generate proofs. zkVM designs can be categorized based on their underlying cryptographic techniques.

One of the primary methods utilized in zkVMs is zk-STARKs, the combination of AIR and FRI. This approach
is exemplified by projects like Starkware, Risc0, Polygon Miden and SP1.

In parallel, folding-based methods have emerged as an alternative technique within zkVMs. These methods focus
on the recursive composition of proofs, enabling the verification of complex computations through the aggregation
of simpler proof instances.
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Lasso and Jolt are innovative frameworks within the zkVM landscape. Lasso enables a new strategy of efficient
lookups over very large tables. Jolt leverages Lasso to instantiate the “lookup singularity” by capturing the evaluation
of each primitive CPU instruction within several large table lookups.

2.3 Trustless State Update System

In decentralized systems, trustless state update mechanisms are crucial for ensuring the integrity and security of the
network without relying on a central authority. These systems use consensus algorithms to achieve agreement on the
state of the blockchain among distributed participants. Bitcoin (BTC), Tendermint and Ethereum (ETH) are some
examples.

Mina Protocol replaces the traditional blockchain with an easily verifiable proof. Rather than having each par-
ticipant verify historical transactions independently, the network collaborates to generate zk proofs for transactions.
This process allows end users to receive the state of the ledger accompanied by a zk-SNARK, which cryptographically
guarantees its accuracy.

3 VM Proof Recursion

In this section, we introduce how zkVM proofs are generated locally on the user’s machine and later used in our
state update system.

In zk-STARKs-based zkVMs, multiple STARK tables are used, usually including tables for CPU, Memory, Pro-
gram ROM, and more. These tables are connected by cross-table lookups, implemented by logUps. We express
zkVM proving as: Pvm(r, x) → π, where r is the program ROM that defines a unique program, and x are the
program inputs. In RISC-V based zkVMs, the program to be executed is compiled into RISC-V machine code, and
this compiled code is typically stored in an ELF file. This ELF file is then loaded into the zkVM for execution. r is
a cryptographic commitment of the ELF file.

3.1 Fixed Recursion and Dynamic Recursion

Our recursion system is a hybrid proving system that includes both fixed recursion circuits and dynamic recursion
circuits. The difference lies in that, in fixed recursion circuit, the verifier data (vd) is fixed in the circuit, meaning
we can only verify the proofs generated from vd. In dynamic recursion circuits, verifier data is passed as inputs,
supporting verification of proofs from different circuits. Mathematically, fixed recursion is P (π) → π′, and dynamic
recursion is P (vd, π) → π′.

Polygon Zero uses fixed recursion for their zkEVM application. They predefined a degree range for each STARK
table and used STARK to PLONK (more accurately speaking it is PLONKish + AIR) recursion to reduce its
individual table proofs to a fixed type proof (has the same vd), then aggregate all the PLONK proofs. In Risc0 and
SP1, they use zkVM to recursively verify their zkVM proofs, and thus they use dynamic recursion. The advantage
of Polygon’s method is its fast recursion speed, at least 2x faster than zkVM’s self-recursion. The advantage of Risc0
and SP1’s method is its flexibility; it can verify proofs produced by different programs, without worrying about the
size of the program execution leading to different proof configurations.

In our system, we combine the benefits of both methods, providing a fast and flexible recursion framework to
recursively verify zkVM proofs into a standard proof type and serve them in our later pipeline.

3.2 Batch STARKs

Similar to Plonky3, Batch STARKs are employed in the system. A Batch Merkle Tree is utilized to commit various
components from different STARKs, specifically the execution trace polynomials, AIR constraints quotient polyno-
mials, and cross-table lookup related polynomials. Values of polynomials from different tables with different degrees
are merged into a single Batch Merkle Tree. Figure 1 illustrates how a Batch Merkle Tree is built from merging two
Merkle Trees and used to compress Merkle proofs.

The Batch FRI protocol operates through random linear combinations [?]. Given a batch of L low-degree
polynomials q0(X), . . . , qL−1(X), the verifier samples a random challenge λ. The prover then computes the linear
combination

h(X) =

L−1∑
i=0

λi · qi(X),
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Figure 1: This figure illustrates the efficiency of using a Batch Merkle Tree to compress opening paths or Merkle
proofs. On the left side, opening two values from two separate Merkle Trees requires five nodes for the Merkle proofs.
On the right side, when the two opened values are on the same branch, only three nodes are needed. Thus, the
Merkle proofs in shorter Merkle Trees are effectively cost-free.

and provides the oracle of h(X) to the verifier. Subsequently, both the prover and verifier proceed with FRI for
h(X).

In the query phase of the FRI, each value is used to further verify the consistency between the oracle for h(X)
and those in the batch, q0(X), . . . , qL−1(X).

To accommodate polynomials of different degrees, similar to Plonky3, an enhancement has been made to the pro-
tocol. Consider a batch of D low-degree polynomials h0(X), . . . , hD−1(X) (these are the random linear combination
polynomials) with varying degrees 2a0 , . . . , 2aD−1 .

During the folding process in FRI, we perform a random linear combination of hi(X) with the polynomial fi(X)
at a specific FRI round i, provided the degree of fi(X) matches 2ai . Here f(X) = fE(X

2) + X · fO(X2), where
fE(X) and fO(X) are polynomials containing only even or odd terms of f(X), respectively. We substitute f(X)
with f ′

i(X) and continue FRI as follows:

f ′
i(X) = hi(X) + λi · fi(X)

3.3 Program Hash and Final VM Proof

As discussed earlier, there are two primary types of recursion used in zk-STARK based systems nowadays:

• AIR Recursion: This involves writing the zkVM verifier in a language like Rust and running Rust verifiers
within the zkVM to generate the recursive zkVM proof.

• PLONKish Recursion: This involves implementing the zkVM verifier in a zk circuit and generate the recursive
proofs in PLONKish + FRI form.

The advantage of AIR recursion is the generation of a consistent recursion program hash, regardless of the program
or its inputs, albeit at a slower speed. Conversely, PLONKish recursion offers faster performance but generates
varying recursion circuits when zkVM execution table sizes differ due to the fixed number of gates associated with
the circuits. This results in an undetermined recursion circuit hash.

Maintaining a consistent recursion circuit hash is crucial for proving systems. It ensures that only proofs generated
from trusted circuits are included. While projects like Risc0, Valida, and SP1 opt for AIR recursion, Polygon Zero
utilizes PLONKish recursion.

In the Plonky2 zkEVM, degree ranges for each STARK trace table are predefined. PLONKish recursion is used
to reduce each table’s proof to the proof in a fixed degree, and an additional PLONKish recursion circuit aggregates
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Figure 2: Recursion steps of a VM proof

them. While this approach yields consistent final recursion circuits, it sacrifices speed and deviates from the original
intent of the method.

In our PLONKish based recursion system, the degrees of STARK tables are public settings of the recursion
circuits. Given S STARK tables with degrees 2d0 , 2d1 , ...2dS−1 , the set {di}, i = 0..S forms the public settings, with
different sets resulting in different recursion circuit hashes. By testing various program inputs and their boundary
values, we obtain multiple sets {di,j}, where j = 0..T . We then set Di = maxj=0..T {di,j} and use {Di} as the final
public setting, padding each STARK table to degree {Di} during executions.

An alternative method involves adding trusted recursion circuits in public settings, such as using a Merkle tree to
store all valid recursion circuit hashes. This method works better when the number of STARK tables used in zkVM
is small.

With a trusted recursion circuit hash, we can now utilize Hash (Recursion Verifier Data — Program STARK
Merkle Root) as our new ROM hash. This process is illustrated in Figure 2.

4 Recursion of State update proofs

In this section, we introduce the ZK-based distributed proving system to aggregate offline VM proofs and validate
and combine all resulting state changes. Broadly this can be categorized into three steps:

1. Combining event attestations from zkVM proofs

2. Attesting to the relevant state data (updates, reads)

3. Proving the attested to data corresponds to the combined events
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4.1 Optional Hashing

One of the tools these steps utilize is notion is similar to the canonical hashing of [6] which we call optional hashing.
Optional hashing is a simple modification of any Merkle tree-capable hash function h(L,R) defined as follows:

1. If both L and R are present h′(L,R) = h(L,R)

2. If only the left child L is present h′(L, ∅) = L

3. If only the right child R is present h′(∅, R) = R

4. If neither child is present h′(∅, ∅) = ∅

4.2 Proof of Events

Events are facilitate zkVM interactions with
the on-chain data, and represent a constraint
on the current and next block state. Events
contain an address of the state node they ap-
ply to, and so consequently each corresponding
constraint applies to only one node of state.
Thus zkVM proofs typically attest to multi-
ple events via a Merkle commitment. For rea-
sons that will become clear, this tree must be
sorted by the node address to which the event
applies, and nodes are merged based on the
Longest Common Prefix of the binary inter-
pretation of these addresses. It is possible to
enforce this sort-order constraint through ad-
ditional proofs, but doing so at this stage is
actually unnecessary, for reasons that will be-
come clear.
One or more zkVM proofs can be arranged

into a Merkle proof tree, the leaf nodes of
which attest to the correctness of the zkVM
proofs and their event commitments. Branch
nodes combine two child proofs and attest to
the merge of their events.

Root
∅

Branch
L

Event
LLL

Event
LRL

Branch
RL

Node
RLL

Event
RLL

Event
RLL

Event
RLR

Figure 3: Event Merkle tree branching is based on LCP

4.2.1 Merge

Merging event trees (A and B) is done by re-
interpreting them with optional hashing. A
Merkle tree constructed with optional hashing
will result in the same Merkle commitment, but
enables the insertion of empty nodes.

A1|2
∅

A1

LRR
A2

RLR

B1|2|3
∅

B1

LRR
B2|3
R

B2

RLL
B3

RRL

Figure 4: Two event trees A and B
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By adding empty nodes to A for all B-only
addresses, and vice-versa, we can create an A′

and B′ are isomorphic to each other.

A1|2
∅

A1

LRR
A2

R

A2

RL

∅
RLL

A2

RLR

∅
RRL

B1|2|3
∅

B1

LRR
B2|3
R

B2

RL

B2

RLL
∅

RLR

B3

RRL

Figure 5: Two event trees A′ and B′ prepared to be merged

This isomorphic structure makes it easy to re-
cursively prove the merge of the trees A and
B results in tree C. If A and B are sorted,
and the merge is performed correctly, C will
be sorted, contain all the nodes from A and
B. All that’s needed are some simple circuits
which will recursively attest to nodes of A′, B′,
and C at each level.

A1|2B1|2|3
∅

A1

LRR

A1

LRR
B1

LRR

A2B2|3
R

A2B2

RL

B2

RLL
A2

RLR

B3

RRL

Figure 6: The merged tree C

Circuit M0

Public input: (vk, VA, VB , VC)
Computation: Check that VC = h′(VA, VB)

Circuit Mi

Public input: (vk, VL, VR, VM )
Witness: (πL, L, VLA, VLB , πR, R, VRA, VRB)
Computation:

1. If L = 0 check Verify(vk0, (vk, VLA, VLB , VL), πL)

2. If R = 0 check Verify(vk0, (vk, VRA, VRB , VR), πR)

3. If L ̸= 0 check Verify(vk, (vk, VLA, VLB , VL), πL)

4. If R ̸= 0 check Verify(vk, (vk, VRA, VRB , VR), πR)

5. Check that VM = h′(VL, VR)
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4.3 Proof of State Update

State is committed to by means of a fixed-depth sparse Merkle tree. A state update consists of the previous and
next Merkle commitments, as well as a summary commitment of all nodes for which any event exists (both reads
and writes). This summary commitment is constructed using optional hashing and commits to the address, previous
state, and next state of the selected nodes. Note how the summary tree is inherently sorted with merges occurring
based on the Longest Common Prefix of the binary interpretation of the node addresses.

In order to ensure selected addresses are correct, we exploit the parent-child-sibling relationship of addresses, i.e.
if the parent has an address of X, the left child must have an address of 2X, and the right child must have an address
of 2X + 1. The root of the tree must then have an address of 0.

Circuit S0

Public input: (A, S, HP , HN )
Computation:

1. Check that S = ∅ iff A = ∅

2. If S = ∅ check that HP = HN

3. If S ̸= ∅ check that S = H(A||HP ||HN )

Circuit Si

Public input: (A, S, HP , HN )
Witness: (πL, AL, SL, HLP , HLN , πR, AR, SR HRP , HRN )
Computation:

1. Check Verify(vki−1, AL, SL, HLP , HLN ), πL)

2. Check Verify(vki−1, AR, SR, HRP , HRN ), πR)

3. Check that S = ∅ iff A = ∅

4. If AL ̸= ∅ check that A = 2 ∗AL + 1

5. If AR ̸= ∅ check that A = 2 ∗AR + 1

6. Check that S = h′(SL, SR)

7. Check that HP = h′(HLP,HRP )

8. Check that HN = h′(HLN,HRN)

4.4 Proof Events and State Match

The final step in creating a block is to prove the event and state proofs correspond to each other. Note that the
event proof is attesting to a sorted tree of events, and the state proof is attesting to a sorted tree of summaries (in
addition to the new and old Merkle commitments). The event tree and the summary tree are paramorphic, i.e. they
share the same branch structure and shape, but where the summary tree contains just a single leaf for each address,
the event tree contains one or more events for each address.

This disparity in leaf multiplicity leaves us with two choices:

1. Combine the constraints of the events into a single super-constraint, which is validated against the summary.

2. Duplicate the summary leaf for each event and independently validate them, then combine these validations.

These approaches appear more different than they actually are in practice, as to prevent double-spends from
duplicate write events, information about the number of writes an applied by an individual constraint must be
passed upwards. As such, this paper will describe the former approach, while the latter is left as an exercise for the
reader.
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Circuit C0

Public input: (vk, A, C, HE)
Witness: (E)
Computation:

1. Check that HE = H(E)

2. Check that A = GetAddress(E)

3. Check that C = BuildConstraint(A, E)

Circuit Ci

Public input: (vk, A, C, HE)
Witness: (πL, CL, HLE , πR, CR HRE)
Computation:

1. Check Verify(vk, (vk, A, CL, HLE), πL)

2. Check Verify(vk, (vk, A, CR, HRE), πR)

3. Check C = CombineConstraints(CL, CR)

4. Check HE = h(HLE , HRE)

After this small tree of recursive ZKPs has unified the structure of the summary and events trees, it becomes
trivial to merklize with another recursive ZKP. This isomorphism is what necessitates the event sort order, and
implicitly enforces it. The resulting root proof attest to the relationship between these trees. By combining all three
proofs, along with a previous proof
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