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Abstract

Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE

implicitly solve the following shifted multi-preimage sampling problem: given matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑚𝑞 and

targets t1, . . . , tℓ ∈ Z𝑛𝑞 , sample a shift c ∈ Z𝑛𝑞 and short preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑚𝑞 such that A𝑖𝝅𝑖 = t𝑖 + c for all
𝑖 ∈ [ℓ]. In this work, we introduce a new technique for sampling A1, . . . ,Aℓ together with a succinct public trapdoor

for solving the multi-preimage sampling problem with respect to A1, . . . ,Aℓ . This enables the following applications:

• We provide a dual-mode instantiation of the hidden-bits model (and by correspondence, a dual-mode NIZK

proof for NP) with (1) a linear-size common reference string (CRS); (2) a transparent setup in hiding mode

(which yields statistical NIZK arguments); and (3) hardness from LWE with a polynomial modulus-to-noise

ratio. This improves upon the work of Waters (STOC 2024) which required a quadratic-size structured reference

string (in both modes) and LWE with a super-polynomial modulus-to-noise ratio.

• We give a statistically-hiding vector commitment with transparent setup and polylogarithmic-size CRS, com-

mitments, and openings from SIS. This simultaneously improves upon the vector commitment schemes of

de Castro and Peikert (EUROCRYPT 2023) as well as Wee and Wu (EUROCRYPT 2023).

At a conceptual level, our work provides a unified view of recent lattice-based vector commitments and hidden-bits

model NIZKs through the lens of the shifted multi-preimage sampling problem.

1 Introduction
Starting from the seminal works of Ajtai [Ajt96] and of Gentry, Peikert, and Vaikuntanathan [GPV08], lattice

trapdoors have played a critical role in building advanced cryptographic primitives from lattices. These include

notions like hash-and-sign signatures [GPV08], identity-based and attribute-based encryption [GPV08, ABB10b,

ABB10a, CHKP10, GVW13, BGG
+
14, GVW15a, BTVW17], homomorphic signatures [GVW15b], functional commit-

ments [dCP23, WW23b, BCFL23, WW23a], succinct non-interactive arguments [ACL
+
22, CLM23], and non-interactive

zero-knowledge (NIZK) proofs [Wat24].
1

Lattice trapdoors. In this work, we focus on gadget trapdoors [MP12]. In this setting, a trapdoor for a matrix

A ∈ Z𝑛×𝑚𝑞 is a short matrix T where AT = G and G = I𝑛 ⊗ gT ∈ Z𝑛×𝑚𝑞 is the gadget matrix, I𝑛 denotes the 𝑛-by-𝑛

identity matrix, and gT = [20, 21, . . . , 2⌈log𝑞⌉−1]. Given a trapdoor for a matrix A along with a target vector c ∈ Z𝑛𝑞 ,
we can efficiently compute a short preimage 𝝅 ∈ Z𝑚𝑞 satisfying A · 𝝅 = c. In fact, we can even sample random short

discrete Gaussian preimages, whose distribution we denote by A−1 (c).

Shifted multi-preimage sampling. Recent constructions of lattice-based vector commitments [PPS21, WW23b]

and non-interactive zero-knowledge (NIZK) proofs [Wat24] implicitly considered variants of a “shifted multi-preimage

sampling problem” which is parameterized by a collection of matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑚𝑞 :

1
Earlier constructions of lattice-based NIZKs [CCH

+
19, PS19] did not require lattice trapdoors.
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Shifted multi-preimage sampling: Given targets t1, . . . , tℓ ∈ Z𝑛𝑞 , sample a random vector c r← Z𝑛𝑞 along

with short discrete Gaussian preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑚𝑞 satisfying A𝑖𝝅 𝑖 = t𝑖 + c for all 𝑖 ∈ [ℓ].

Solving this problem for arbitrary matrices A1, . . . ,Aℓ requires knowing some hint (e.g. trapdoors) related to

these matrices. The aforementioned applications also require “somewhere hardness:” namely, that the short integer

solutions (SIS) or the learning with errors (LWE) problems is hard with respect to any individual A𝑖 even given the

hint. This rules out the trivial solution of taking the hint to be trapdoors for each matrix A1, . . . ,Aℓ . As a warm-up,

observe that for ℓ = 1 (and A1 being uniformly random), this problem is straightforward. One can sample a short

Gaussian 𝝅1 ∈ Z𝑚𝑞 and set c = A1𝝅1 − t1. The work of [GPV08] shows that when𝑚 ≥ 𝑂 (𝑛 log𝑞), the distribution
of c is statistically close to uniform over Z𝑛𝑞 .

For the more general version with ℓ > 1 targets, prior works [PPS21, WW23b, Wat24] required a hint of size

𝑂 (ℓ2), even for special cases of the problem where the target vectors t1, . . . , tℓ are the all-zeroes vector 0𝑛 . Among

them, only the work of Wee and Wu [WW23b] solved the problem in full generality for arbitrary target vectors. They

showed how to sample a random c together with random short discrete Gaussian preimages 𝝅1, . . . , 𝝅 ℓ satisfying

A𝑖𝝅 𝑖 = t𝑖 + c. In their construction, the hint corresponds to a gadget trapdoor for the matrix

Dℓ ≔


A1 G

. . .
...

Aℓ G

 = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G] . (1.1)

The work of [WW23b] uses the gadget trapdoor to sample a random Gaussian preimage of Dℓ for the target vector

(t1, . . . , tℓ ) ∈ Z𝑛ℓ𝑞 ; namely, a vector (𝝅1, . . . , 𝝅 ℓ , ĉ) where

Dℓ


𝝅1

...

𝝅 ℓ

ĉ


=


A1 G

. . .
...

Aℓ G



𝝅1

...

𝝅 ℓ

ĉ


=


t1
...

tℓ

 .
They then set c = −Gĉ. In this case, for all 𝑖 ∈ [ℓ], A𝑖𝝅 𝑖 = t𝑖 − Gĉ = t𝑖 + c, as required. Moreover, the ensuing

distribution of (c, 𝝅1, . . . , 𝝅 ℓ ) is statistically close to that given by first sampling c r← Z𝑛𝑞 and then 𝝅 𝑖 ← A−1𝑖 (t𝑖 + c).

Drawbacks of prior works. There are two major drawbacks of needing to include hints for A1, . . . ,Aℓ as part

of the public parameters of the scheme:

• Trusted setup. First, sampling the hint typically requires private randomness. Existing constructions use private

randomness to sample A1, . . . ,Aℓ along with their respective trapdoors. In the aforementioned applications (to

vector commitments [PPS21, WW23b] and NIZKs [Wat24]), an adversary who knows the private randomness

is able to break security of the associated scheme. Thus, the aforementioned constructions all rely on a trusted
setup to sample the CRS.

• Hint size. The aforementioned approaches require a hint whose size is quadratic in the dimension ℓ . Here ℓ is

the input dimension (in the case of vector commitments) or the length of the hidden-bits string (in the case of

using a hidden-bits generator [FLS90, QRW19] to construct a NIZK). Thus, the existing schemes have large

public parameters.

This work: eliminating the hint. In this work, we show how to construct a shifted multi-preimage trapdoor
sampler that allows us to solve the shifted multi-preimage sampling problem with respect to a carefully-chosen set

of matrices A1, . . . ,Aℓ without hints. In our construction, the matrices A1, . . . ,Aℓ will be correlated, but the marginal

distribution of each individual A𝑖 remains uniformly random, albeit with slightly larger dimensions 𝑛 × (𝑚 · ⌈log ℓ⌉).
Moreover, both SIS and LWE are hard with respect to any individual A𝑖 . In fact, A𝑖 is simply B − u𝑖 ⊗ G, where
B r← Z𝑛×𝑚 · ⌈log ℓ ⌉𝑞 and u𝑖 ∈ {0, 1}⌈log ℓ ⌉ is the binary representation of 𝑖 . Given only the matrix B, we show that we

can publicly derive a gadget trapdoor for the matrix Dℓ in Eq. (1.1). Each entry in the public trapdoor of Dℓ lies in
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{−1, 0, 1}. Here, we rely on the machinery from [GSW13, BGG
+
14, DHM

+
24] for homomorphic computation on matrix

encodings. Having a publicly-computable gadget trapdoor means that in our applications, the public parameters only

needs to specify the single (uniformly) random matrix B; we do not need to include the matrices A1, . . . ,Aℓ or its

trapdoor for Dℓ (say, as needed in [WW23b]). This immediately yields improvements to existing constructions of

lattice-based vector commitments and dual-mode NIZKs which we discuss in more detail below.

Vector commitments. Recall that a vector commitment allows a user to succinctly commit to a vector x and also

succinctly open to individual components 𝑥𝑖 of the committed vector. The security properties are binding and hiding.

Binding says that an adversary should not be able to open a commitment 𝜎 to two distinct values 𝑥𝑖 ≠ 𝑥 ′𝑖 at any index 𝑖 .
Hiding says that the openings for any set of indices should not reveal anything about the values at unopened indices.

By integrating our shifted multi-preimage trapdoor sampler with the framework of [WW23b], we obtain a

statistically-hiding and computationally-binding vector commitment scheme (Corollary 6.15) from the SIS assump-

tion with a transparent (i.e., public-coin) setup. For committing to ℓ-dimensional inputs over Zℓ𝑞 , the size of the

(uniformly-random) common reference string (CRS), the commitment, and the openings are all poly(_, log ℓ). Our
construction simultaneously improves upon and inherits the properties of prior vector commitments from the

SIS assumption [PSTY13, LLNW16, PPS21, dCP23, WW23b]. Here, we focus on comparing with the most recent

schemes [dCP23, WW23b]:

(1) Like [dCP23, WW23b], our scheme is linearly homomorphic and supports stateless updates (i.e., given a

commitment 𝜎 to a vector x it is possible to transform it into a commitment to x′ using only knowledge of

𝜎 and the difference x′ − x);

(2) We achieve a transparent and polylogarithmic-size CRS, matching [dCP23] and improving upon the quadratic-

size CRS in [WW23b];

(3) We achieve statistical hiding and can directly commit to vectors over Zℓ𝑞 (while preserving linear homomor-

phism), as achieved in [WW23b] but not in [dCP23].

We refer to Section 2.3 for further discussion and comparison of our approach with prior work.

Dual-mode NIZKs. Our second application is to (dual-mode) hidden-bits generators [FLS90, QRW19, LPWW20],

which imply dual-mode NIZKs. In a dual-mode NIZK [GOS06, GOS12], the CRS can be sampled from one of two

computationally-indistinguishable distributions: one distribution yields computational NIZK proofs while the other

yields statistical NIZK arguments. Previously, Peikert and Shiehian [PS19] showed how to construct dual-mode NIZKs

for NP from LWE by constructing a correlation-intractable hash function [CGH04, KRR17, HL18, CCRR18, CCH
+
19].

For many years, the correlation-intractability approach was the only way of realizing NIZKs for NP from lattices.

Very recently, Waters [Wat24] showed a new path for constructing NIZKs from lattices by constructing a hidden-

bits generator from the LWE assumption. A hidden-bits generator [FLS90, QRW19] is a cryptographic primitive that

generates a succinct commitment to a pseudorandom sequence of hidden bits (and relative to a common reference

string). Unlike the case of vector commitments, we require the commitment to statistically bind to the sequence of

hidden bits (relative to the long CRS). Since the commitments are succinct and the hidden-bits generator is statistically

binding, the number of possible hidden-bit strings that can be associated with a commitment is small.

In this work, we present a new hidden-bits generator by combining our shifted multi-preimage trapdoor sampler

with ideas and techniques from [WW23b] and [Wat24]. Our hidden-bits generator improves upon the [Wat24]

hidden-bits generator in three key aspects (Corollary 5.18):

(1) We achieve a shorter CRS whose size scales linearly with the number of hidden bits ℓ . This improves upon

the quadratic dependency in [Wat24].

(2) In hiding mode, our scheme has a transparent setup (i.e., a uniform random CRS). This yields statistical NIZK

arguments with a transparent setup. The [Wat24] construction required a structured CRS in both modes.

(3) Security relies on LWE with a polynomial modulus-to-noise ratio, improving upon the super-polynomial
modulus-to-noise ratio in [Wat24].
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Waters [Wat24] implicitly constructed a hidden-bits generator starting from a shifted multi-preimage trapdoor sampler

for the special case where the ℓ target vectors are set to the all-zeroes vector (the vector c corresponds to the succinct

commitment and the preimage 𝝅 𝑖 corresponds to an opening for the 𝑖th bit). The sampler in [Wat24] essentially

outputs random linear combinations of quantities in the CRS.

Substituting our shifted multi-preimage trapdoor sampler into the [Wat24] approach yields our improved hidden-

bits generator. In particular, Properties (1) and (2) follow immediately from the improved parameters for our shifted

multi-preimage trapdoor sampler. The binding analysis for our hidden-bits generator is the same as that in [Wat24],

whereas the hiding analysis follows the proof of statistical hiding for the vector commitment from [WW23b]. The

latter eliminates the use of noise flooding used in [Wat24], which allows us to achieve Property (3). We refer to

Section 5 for a more detailed technical comparison of our approach with that of [Wat24].

Taken together, we obtain a dual-mode NIZK for NP from LWE via the hidden-bits model approach that achieves

all of the properties of the Peikert-Shiehian construction [PS19] based on correlation-intractable hash functions.

Our scheme has the additional appealing feature that it does not need to make non-black-box use of cryptographic

primitives or lattice-sampling algorithms. But more broadly, our results show that the hidden-bits model approach

is just as versatile for realizing NIZKs for NP from the LWE assumption as the correlation-intractability framework.

Anew abstraction. At a conceptual level, our work provides a unified andmoremodular view of recent lattice-based

vector commitments [PPS21, WW23b] and dual-mode NIZKs [Wat24] through the lens of the shifted multi-preimage

sampling problem. By focusing on and giving an improved construction of this key cryptographic object (the shifted

multi-preimage trapdoor sampler), we immediately obtain improvements to both vector commitments and dual-mode

NIZKs. We believe that the notion of shifted multi-preimage sampling, as well as our new techniques for solving

this preimage sampling problem, will find additional applications to other lattice-based primitives in the future.

2 Technical Overview
The main technical building block in this work is a shifted multi-preimage trapdoor sampler for solving the shifted

multi-preimage sampling problem. Namely, starting from a seed (i.e., a randommatrix) B r← Z𝑛×𝑡𝑞 where 𝑡 = ⌈log ℓ⌉ ·𝑚,

we construct a structured matrix of the form in Eq. (1.1):

Dℓ ≔


A1 G

. . .
...

Aℓ G

 = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G] .

The description of Dℓ is extremely simple: let u𝑖 ∈ {0, 1}⌈log ℓ ⌉ be the binary representation of 𝑖 , and set

A𝑖 := B − uT
𝑖 ⊗ G ∈ Z𝑛×𝑡𝑞 (2.1)

Moreover, Dℓ has the following remarkable property: given only the seed B, we can derive a gadget trapdoor for

Dℓ where the entries of the trapdoor are in the set {−1, 0, 1}. Before we describe how to construct the trapdoor, we

describe three properties of Dℓ that are useful for our applications:

• Shifted multi-preimage sampling: Given Dℓ , its trapdoor, and target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , we can sample

a uniform randomly c r← Z𝑛𝑞 together with short vectors 𝝅 𝑖 ∈ Z𝑚𝑞 such that A𝑖𝝅 𝑖 = t𝑖 + c ∈ Z𝑛𝑞 for all 𝑖 ∈ [ℓ].

• Hardness: For all 𝑖 ∈ [ℓ], both SIS and LWE are hard with respect to any A𝑖 even given Dℓ and its trapdoor.

• Preimage distribution: We require that the joint distributions of (𝝅1, . . . , 𝝅 ℓ , c) sampled using Dℓ and its

trapdoor to be statistically close to sampling c r← Z𝑛𝑞 and 𝝅 𝑖 ← A−1𝑖 (t𝑖 + c). In other words, the distribution of

each 𝝅 𝑖 should be statistically close to a random discrete Gaussian 𝝅 𝑖 conditioned on A𝑖𝝅 𝑖 = t𝑖 + c.

In the applications to vector commitments (resp., hidden-bits generators), the first property will be used to sample

the commitment and the openings, the second will be used to argue binding (resp., mode indistinguishability), and

the third will be use to argue hiding.
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A gadget trapdoor for Dℓ . To derive a gadget trapdoor T for Dℓ , we rely on the machinery from [GSW13, BGG
+
14,

DHM
+
24] for homomorphic computation on matrix encodings. We consider the specific application to the family

of indicator functions {𝛿u : {0, 1}𝑘 → {0, 1}}u∈{0,1}𝑘 given by

𝛿u (x) :=
{
1 x = u
0 x ≠ u.

Next, let B ∈ Z𝑛×𝑘𝑚𝑞 be a matrix. Then, there is an efficient (and explicit) algorithm that takes as input u, x ∈ {0, 1}𝑘
and outputs a short matrix HB,u,x (with entries in {−1, 0, 1}) where

(B − xT ⊗ G) · HB,u,x =

{
Bu − G if u = x
Bu if u ≠ x,

(2.2)

and moreover, we can efficiently compute Bu ∈ Z𝑛×𝑚𝑞 given just B and u.2 Setting 𝑘 = ⌈log ℓ⌉, we have:


B − uT

1
⊗ G G

. . .
...

B − uT
ℓ ⊗ G G

︸                                               ︷︷                                               ︸
Dℓ

·


−HB,u1,u1 · · · −HB,uℓ ,u1

...
. . .

...

−HB,u1,uℓ · · · −HB,uℓ ,uℓ
G−1 (Bu1 ) · · · G−1 (Buℓ )

︸                                ︷︷                                ︸
T

=


G

. . .

G

 . (2.3)

Shifted multi-preimage sampling using T. Given the trapdoor T for Dℓ = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗G], we can use

the [WW23b] approach to solve the shifted multi-preimage sampling problem with respect to the matrices A1, . . . ,Aℓ .

Specifically, given target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , we use T to sample a Gaussian preimage (𝝅1, . . . , 𝝅 ℓ , ĉ) to the linear

system 
A1 G

. . .
...

Aℓ G

︸                      ︷︷                      ︸
Dℓ

·


𝝅1

...

𝝅 ℓ

ĉ


=


t1
...

tℓ

 . (2.4)

By construction, for all 𝑖 ∈ [ℓ], we have A𝑖𝝅 𝑖 + Gĉ = t𝑖 , or equivalently, A𝑖𝝅 𝑖 = t𝑖 − Gĉ. Defining c = −Gĉ, we obtain
a solution (𝝅1, . . . , 𝝅 ℓ , c) to the shifted multi-preimage sampling problem.

Hardness. The second property we require is that the SIS and LWE problems are hard with respect to any A𝑖 given

Dℓ = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G] together with the trapdoor for Dℓ . It suffices to show that given any index 𝑖 ∈ [ℓ]
and any matrix A∗ ∈ Z𝑛×𝑡𝑞 , we can simulate a seed B ∈ Z𝑛×𝑡𝑞 the expands into matrices A1, . . . ,Aℓ where A𝑖 = A∗.
We refer to this as a “somewhere programmability” property on our shifted multi-preimage trapdoor sampler. Recall

from Eq. (2.1) that A𝑖 = B − uT
𝑖 ⊗ G. To simulate a seed B that expands to A∗ in position 𝑖 , we can set

B := A∗ + uT
𝑖 ⊗ G.

Under this definition, A𝑖 = B− uT
𝑖 ⊗ G = A∗, as required. Moreover, when A∗ is uniformly random (i.e., A∗ is an SIS or

LWE challenge), then the simulated seed is distributed identically to the real seed. This shows that given an SIS or LWE

challenge matrixA∗ ∈ Z𝑛×𝑡𝑞 , we can simulate an identically-distributed seed B that expands toA∗ in position 𝑖 . This suf-
fices to demonstrate hardness of the SIS or LWE problems with respect to any of the matrices A𝑖 associated with a seed.

2Bu is the homomorphic evaluation of 𝛿u on B.
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Preimage distribution. The preimage distribution property requires that the joint distribution of (𝝅1, . . . , 𝝅 ℓ , c)
sampled using Dℓ , T to be statistically close to sampling c r← Z𝑛𝑞 and 𝝅 𝑖 ← A−1𝑖 (t𝑖 + c). This basic requirement follows

directly by properties of the discrete Gaussian distribution (see Lemma 3.6). For the application to statistically-hiding

vector commitments, we require a stronger simulatability property that stipulates that there is an efficient algorithm

that samples a seed B together with trapdoors for the individual matrices A1, . . . ,Aℓ . These trapdoors are used to

efficiently simulate the distribution 𝝅 𝑖 ← A−1𝑖 (c). To satisfy this stronger hiding requirement, we append to the seed

a random A r← Z𝑛×𝑚𝑞 and derive Dℓ by setting

A𝑖 := [A | B − u𝑖 ⊗ G]

This way, we can derive gadget trapdoors for A1, . . . ,Aℓ starting from a gadget trapdoor for A. It is straightforward
to check that we can still derive a gadget trapdoor for the modified Dℓ given just A,B, and moreover, that the

required hardness properties continue to hold. We provide the formal definition and construction details of our

shifted multi-preimage trapdoor sampler in Section 4.

2.1 Application to Vector Commitments
Our shifted multi-preimage trapdoor sampler can be directly applied to the Wee-Wu vector commitment [WW23b]

to obtain a statistically-hiding (and computationally-binding) scheme with a short transparent setup. We first recall

their construction (rephrased in the language of shifted multi-preimage sampling). In the following description, let

ℓ be the vector dimension.

• The common reference string contains matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑡𝑞 together with a hint for solving the shifted

multi-preimage sampling problem with respect to A1, . . . ,Aℓ .

• The commitment to an input x ∈ Zℓ𝑞 is a vector c ∈ Z𝑛𝑞 and an opening to value 𝑥𝑖 ∈ Z𝑞 at index 𝑖 ∈ [ℓ] is a
short preimage 𝝅 𝑖 where A𝑖𝝅 𝑖 = 𝑥𝑖e1 + c and e1 = [1, 0, . . . , 0]T is the first canonical basis vector.

In other words, a commitment c and the openings (𝝅1, . . . , 𝝅 ℓ ) form a solution to the shifted multi-preimage sampling

problem with respect to matrices A1, . . . ,Aℓ and target vectors 𝑥1e1, . . . , 𝑥ℓe1. The work of [WW23b] solve the shifted

multi-preimage sampling problem by publishing random matrices A1, . . . ,Aℓ in the CRS together with a gadget

trapdoor for the matrix Dℓ = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G]. Thus, their construction requires a structured CRS whose

size scales quadratically with the input dimension ℓ .

Vector commitments with short transparent setup. To obtain a vector commitment scheme with a succinct

transparent setup, we replace the structured matrixDℓ and its trapdoor T in the [WW23b] CRS with the seed [A | B] of
our shifted multi-preimage trapdoor sampler. This is sufficient for correctness. Security then follows by the properties

of the shifted multi-preimage trapdoor sampler:

• Binding: The [WW23b] scheme is computationally binding if SIS is hard with respect to A𝑖 (even given Dℓ

and T).3 This is the same hardness property satisfied by our shifted multi-preimage trapdoor sampler.

• Hiding: The [WW23b] scheme is statistically hiding if there is an alternative (and statistically indistinguishable)

way to sample Dℓ , T together with knowledge of a gadget trapdoor for each A1, . . . ,Aℓ . This is the simulatability

property of our shifted multi-preimage trapdoor sampler.

Taken together, we obtain a statistically-hiding vector commitment scheme with a transparent setup. Moreover,

the size of the common random string is polylogarithmic in the vector dimension (in contrast to [WW23b] which

required a structured quadratic-size CRS). We compare with other vector commitment schemes in Section 2.3 and

give the formal description in Section 6.

3
Technically, binding holds if the SIS assumption holds with respect to A𝑖 without the first row, but we elide this detail in this overview.
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2.2 Application to Dual-Mode NIZKs for NP
The second application of our shifted multi-preimage trapdoor sampler is to dual-mode hidden-bits generators, which

in turn, implies a dual-mode NIZK for NP. We start with a more modular view of the dual-mode hidden-bits generator

by Waters [Wat24] in the language of the shifted multi-preimage sampling and then show how our shifted multi-

preimage trapdoor sampler can simultaneously reduce the CRS size (from quadratic to linear), achieve transparent

setup in hiding mode, and only rely on LWE with a polynomial modulus-to-noise ratio. Thus, we simultaneously

improve on functionality and security.

Hidden-bits generators. At a high level, a hidden-bits generator [QRW19] is a cryptographic primitive that

generates a pseudorandom sequence of hidden bits from a short seed. Moreover, the user can provide local openings

to any subset of the bits (with respect to a commitment of the seed). The unopened bits should remain pseudorandom.

While both vector commitments and hidden-bits generators have the flavor of committing to a long input with a

short commitment, there is a key distinction between the two notions:

• In a vector commitment, the user can choose any string of bits r ∈ {0, 1}ℓ and derive a succinct commitment to

r. The scheme is computationally binding (i.e., it is hard for an adversary to open a commitment to two distinct

values at any single index).

• In a hidden-bits generator, the user samples a succinct commitment 𝜎 . The commitment together with a long
CRS determines an associated hidden-bits string r ∈ {0, 1}ℓ . In this setting, the binding property is statistical;
each commitment can only be opened to at most one bit-string r with respect to the CRS. Since the commitment

is succinct, the number of potential bit-strings r ∈ {0, 1}ℓ that has an associated commitment 𝜎 is small.

More formally, a hidden-bits generator consists of three main algorithms:

• The Setup(1_, 1ℓ ) algorithm takes the security parameter _ and the output length ℓ and outputs a common

reference string crs.

• The GenBits(crs) algorithm takes the common reference string and outputs a short commitment 𝜎 , a bit-string

r ∈ {0, 1}ℓ , and openings 𝜋1, . . . , 𝜋ℓ .

• The Verify(crs, 𝜎, 𝑖, 𝑟𝑖 , 𝜋𝑖 ) algorithm takes the common reference string crs, the commitment 𝜎 , an index 𝑖 ∈ [ℓ],
a bit 𝑟𝑖 ∈ {0, 1}, and a proof 𝜋𝑖 and decides whether to accept or reject.

The security requirements are (1) binding which says that the adversary should not be able to open a commitment 𝜎 to

both a 0 and a 1 at any index 𝑖; and (2) hiding, which says that given the commitment 𝜎 , the bits 𝑟𝑖 together with their

openings 𝜋𝑖 for all 𝑖 ∈ 𝑆 , the unopened bits 𝑟𝑖 for 𝑖 ∉ 𝑆 should be pseudorandom. In conjunction with information-

theoretic NIZKs for NP in the hidden-bits model [FLS90], a hidden-bits generator gives a NIZK for NP [QRW19].

In a dual-mode hidden-bits generator [LPWW20], we impose an additional property where the crs output by Setup
is in one of two computationally indistinguishable modes. In binding mode, the hidden-bits generator should be statis-
tically binding while in hiding mode, the hidden-bits generator should be statistically hiding. Dual-mode hidden-bits

generators imply dual-mode NIZKs for NP (i.e., NIZKs where the CRS can be sampled in one of two computationally-

indistinguishable modes, with one mode yielding computational NIZK proofs and the other yielding statistical NIZK

arguments). Recently, Waters [Wat24] constructed the first dual-mode hidden-bits generator from LWE.

The [Wat24] hidden-bits generator. We now describe the recent dual-mode hidden-bits generator by Wa-

ters [Wat24] in the language of the shifted multi-preimage sampling problem. In the following description, let ℓ be

the length of the hidden-bits string.

• The common reference string consists of matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑡𝑞 .

• To generate a hidden-bits string, the prover invokes the shifted multi-preimage sampling procedure for

A1, . . . ,Aℓ to obtain a random c r← Z𝑛𝑞 together with short preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑡𝑞 satisfying A𝑖𝝅 𝑖 = c for
all 𝑖 ∈ [ℓ]. In this setting, all of the target vectors t1, . . . , tℓ in the shifted multi-preimage sampling problem

are the all-zeroes vector 0𝑛 . The commitment is c and an opening at index 𝑖 is 𝝅 𝑖 .
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• The CRS also contains vectors v1, . . . , vℓ ∈ Z𝑡𝑞 which in conjunction with the openings, determine the hidden-

bits string: the 𝑖th bit 𝑏𝑖 is given by ⌊vT
𝑖𝝅 𝑖⌉, where we write ⌊·⌉ to denote the rounding operation (i.e., ⌊𝑥⌉

outputs 0 if |𝑥 | < 𝑞/4 and 1 if |𝑥 − 𝑞/2| < 𝑞/4).

The distribution of v𝑖 determines whether the bit 𝑏𝑖 is binding or hiding:

• When vT
𝑖 = sT𝑖A𝑖 + eT𝑖 is an LWE sample, then the bit 𝑏𝑖 is completely determined by the CRS component v𝑖

and the commitment c. To see this, consider any valid opening (𝝅 𝑖 , 𝑏𝑖 ) for any commitment c ∈ Z𝑛𝑞 on index

𝑖 . Then, it must be the case that 𝝅 𝑖 is short and A𝑖𝝅 𝑖 = c. Moreover,

𝑏𝑖 = ⌊vT
𝑖𝝅 𝑖⌉ = ⌊vT

𝑖𝝅 𝑖 − eT𝑖𝝅 𝑖⌉ = ⌊(sT𝑖A𝑖 + eT𝑖 )𝝅 𝑖 − eT𝑖𝝅 𝑖⌉ = ⌊sT𝑖 c⌉,

where the second equality holds as long as vT
𝑖𝝅 𝑖 is far from a rounding boundary (enforced by the verification re-

lation) and the fact that if 𝝅 𝑖 is small, then so is eT𝑖𝝅 𝑖 . Thus, in this case, the commitment c completely determines

the associated bit 𝑏𝑖 . Importantly, this analysis holds for any (even adversarial) choice of the commitment c.

• When v𝑖
r← Z𝑡𝑞 is a uniform random vector, then v𝑖 and c leaks no information about 𝑏𝑖 ; in particular, the bit 𝑏𝑖 is

statistically close to uniform given the commitment c and the openings 𝝅 𝑗 for all 𝑗 ≠ 𝑖 . In our work, we argue this

by relying on the hiding property of our shifted multi-preimage trapdoor sampler. Namely, when 𝝅 𝑖 ← A−1𝑖 (c)
and v𝑖 is uniform, the distribution of vT

𝑖𝝅 𝑖 ∈ Z𝑞 is statistically close to uniform over Z𝑞 ; this holds by appealing to
the leftover hash lemma and the fact that the discrete Gaussian distribution has high min-entropy. Moreover, the

preimage distribution property of shifted multi-preimage trapdoor sampler also ensures that each 𝝅 𝑖 is indepen-

dent of 𝝅 𝑗 for 𝑗 ≠ 𝑖 (indeed, the preimage distribution property stipulates that each 𝝅 𝑖 is sampled independently

from A−1𝑖 (c), independently of all other 𝝅 𝑗 ). The work of [Wat24] relied on a noise smudging argument to argue

hiding. We refer to Section 5 for a more detailed comparison between the two approaches for analyzing hiding.

Finally, the distribution of v𝑖 in the two modes is computationally indistinguishable under the LWE assumption. In

the context of the shifted multi-preimage trapdoor sampler, we require that LWE hold with respect to the matrix A𝑖 .

Instantiating [Wat24] with the shifted multi-preimage trapdoor sampler. The work of [Wat24] solve the

shifted multi-preimage sampling problem by publishing a collection of short preimages in the common reference string.

This leads to a structured CRS in both binding and hiding modes, and moreover, the size of the CRS scales quadratically

with the output length of the hidden-bits generator. The [Wat24] scheme also requires a super-polynomial modulus

to implement the noise smudging argument needed for hiding.

In this work, we replace the CRS with the seed for our shifted multi-preimage trapdoor sampler. This provides

an efficient way to solve the shifted multi-preimage sampling problem and thus, suffices to instantiate the general

blueprint of [Wat24]. In this case, the CRS for the hidden-bits generator consists of the seed for the sampler together

with the vectors v1, . . . , vℓ ∈ Z𝑡𝑞 . This yields a hidden-bits generator with a CRS that is linear in the output length.

Moreover, in statistically-hiding mode, each v𝑖 is uniformly random, and we obtain a scheme in the common random
string model (equivalently, a scheme with a transparent setup). We provide the full details in Section 5.

Dual-mode NIZKs for NP. Taken together, we obtain a dual-mode hidden-bits generator from plain LWE (Corol-

lary 5.18). In conjunction with existing compilers [FLS90, QRW19, LPWW20, Wat24], this yields a dual-mode NIZK

for NP from LWE with a polynomial modulus-to-noise ratio (Corollary 5.19). Our construction achieves the same

set of properties as the Peikert-Shiehian construction [PS19] based on correlation-intractable hash functions. Our

approach thus yields an alternative route to constructing NIZKs for NP that does not rely on non-black-box use of

cryptographic primitives or lattice sampling algorithms.

2.3 Related Work
Vector commitments. Starting from Merkle’s construction of vector commitments from any collision-resistant

hash function [Mer87], many works have studied constructions of vector commitments from algebraic assumptions

over groups with bilinear maps [LY10, KZG10, CF13, LRY16, LM19, TAB
+
20, GRWZ20], groups of unknown or-

der [CF13, LM19, CFG
+
20, AR20, TXN20], and lattice-based assumptions [PSTY13, LLNW16, PPS21, dCP23, WW23b].
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Compared to schemes like Merkle [Mer87] based on collision-resistant hash functions, the advantage of the algebraic

approach we take is the support for properties like linear homomorphism (e.g., given commitments to x, x′, we can
compute a commitment to the sum x + x′) or the support for stateless updates. Moreover, the basic approach based

on collision-resistant hash functions does not satisfy hiding. It is possible to augment Merkle commitments to be

(statistically) hiding using (lossy) public-key encryption or (statistical) NIZK arguments.

Prior to this work, the state-of-the-art in lattice-based vector commitments are [dCP23, WW23b]; both works give

constructions from the SIS assumption. The work of de Castro and Peikert [dCP23] has a transparent polylogarithmic-

size CRS (similar to our scheme). However, their scheme does not natively support hiding. While their work describes

a way to achieve statistical hiding, the transformation comes at the price of relaxing binding to the weaker notion

of target binding (i.e., where an adversary cannot open an honestly-generated commitment to two different values).

Alternatively, one could compose the [dCP23] commitment scheme with a statistical NIZK argument [PS19, Wat24]

(or a lossy public-key encryption scheme [PW08, HLOV11]) to obtain a statistically-hiding scheme. This approach

would additionally bring in the LWE assumption. The advantage of our approach is we achieve statistical hiding

directly without needing additional tools. Conversely, the scheme of Wee and Wu [WW23b] is statistically hiding.

However, their scheme requires a structured CRS whose size scales quadratically with the vector dimension. Our

construction has a transparent and polylogarithmic-size CRS.

Non-interactive zero-knowledge. NIZKs have been extensively studied and today, we have constructions from

most standard algebraic assumptions; these include factoring [FLS90], pairing-based assumptions [CHK03, GOS06],

(sub-exponential) decisional Diffie-Hellman [JJ21], learning with errors [CCH
+
19, PS19, Wat24], and the combination

of learning parity with noise in conjunction with multivariate quadratic equations [DJJ24]. Among the lattice-based

constructions, the initial constructions [CCH
+
19, PS19] leveraged correlation-intractable hash functions to provably

instantiate the Fiat-Shamir heuristic, while the more recent work of [Wat24] show how use the LWE assumption

to implement the classic hidden-bits model.

3 Preliminaries
Throughout this work, we write _ to denote the security parameter. For a positive integer 𝑛 ∈ N, we define the set
[𝑛] := {1, . . . 𝑛}. For a positive integer 𝑞 ∈ N, we write Z𝑞 to denote the ring of integers modulo 𝑞. We write poly(_)
to denote a fixed polynomial in _. We write negl(_) to denote a function that is negligible in _ (i.e., a function that

is 𝑜 (_−𝑐 ) for all 𝑐 ∈ N). We say an event occurs with overwhelming probability if the probability of its complement

occurring is negligible. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of

its input. For two ensembles of distributions D1 =
{
D1,_

}
_∈N and D2 =

{
D2,_

}
_∈N indexed by a security parameter,

we say they are computationally indistinguishable if for all efficient adversaries A, there exists a negligible function

negl(·) such that for all _ ∈ N,��
Pr[A(1_, 𝑥) = 1 : 𝑥 ← D1,_] − Pr[A(1_, 𝑥) = 1 : 𝑥 ← D2,_]

�� = negl(_).

We say they are statistically indistinguishable if there exists a negligible function negl(·) such that for all _ ∈ N, the
statistical distance between them is negl(_). We write D1

𝑐≈ D2 (resp., D1

𝑠≈ D2) if D1 and D2 are computationally

(resp., statistically) indistinguishable. We write D1 ≡ D2 if the distributions are identical.

Vectors and matrices. Throughout, we use bold uppercase letters (e.g., A,B) to denote matrices, bold lowercase

letters (e.g., u, v) to denote vectors, and non-boldface letters to refer to their components (e.g., v = [𝑣1, . . . , 𝑣𝑛]). For
matrices A1, . . . ,Aℓ , we write diag(A1, . . . ,Aℓ ) to denote the block diagonal matrix where the blocks are the matrices

A1, . . . ,Aℓ . For a vector v ∈ Z𝑛 , we write ∥v∥ to denote the ℓ∞-norm of v. When v ∈ Z𝑛𝑞 , we write ∥v∥ to denote the

ℓ∞-norm of the vector (over Z𝑛) obtained by first associating each component 𝑣𝑖 ∈ Z𝑞 with its unique representative in

the set (−𝑞/2, 𝑞/2] ∩ Z. For a matrix A, we write ∥A∥ to denote the ℓ∞-norm of the vector obtained by concatenating

together the columns of A (i.e., ∥A∥ = max𝑖, 𝑗 |𝐴𝑖, 𝑗 |).

Lemma 3.1 (Full Rank Matrices [GPV08, Lemma 5.1]). Let 𝑛,𝑚,𝑞 be lattice parameters where 𝑞 is prime and
𝑚 ≥ 2𝑛 log𝑞. Then, all but a negl(𝑛) fraction of matrices A ∈ Z𝑛×𝑚𝑞 are full rank.
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Discrete Gaussians and gadget matrices. We write 𝐷Z,𝑠 to denote the discrete Gaussian distribution over Z with

width parameter 𝑠 > 0. For a matrix A ∈ Z𝑛×𝑚𝑞 and a target vector y ∈ Z𝑛𝑞 in the column-span of A, we write A−1 (y) to
denote the random variable x← 𝐷𝑚

Z,𝑠 conditioned onAx = y mod 𝑞. Note that if y is not in the column-span ofA, then
the distribution A−1 (y) simply outputs ⊥ with probability 1. We extend A−1 to operate on matrices by applying A−1

column-wise. For positive integers 𝑛, 𝑞 ∈ N, we write G = I𝑛 ⊗ gT ∈ Z𝑛×𝑚′𝑞 to be the gadget matrix [MP12] where I𝑛 is

the identity matrix of dimension 𝑛, gT = [1, 2, . . . , 2⌈log𝑞⌉−1], and𝑚′ = 𝑛⌈log𝑞⌉. For dimensions𝑚 ≥ 𝑚′, we overload
the notation and write G ∈ Z𝑛×𝑚𝑞 to denote the “padded gadget matrix” [I𝑛 ⊗ gT | 0𝑛×(𝑚−𝑚′ ) ]. The inverse function
G−1 : Z𝑛𝑞 → Z𝑚

′
𝑞 expands each entry 𝑥 ∈ Z𝑞 into a column of size ⌈log𝑞⌉ corresponding to the bits in the binary

representation of 𝑥 . Similarly, whenG ∈ Z𝑛×𝑚𝑞 is a padded gadget matrix with dimension𝑚 ≥ 𝑚′, we extend the output
of G−1 : Z𝑛𝑞 → Z𝑚𝑞 by zero-padding each column. By construction, for all t ∈ Z𝑛𝑞 , it follows that G · G−1 (t) = t mod 𝑞.

Lemma 3.2 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters where𝑚 ≥ 2𝑛 log𝑞.
Then, for all but a negl(𝑛)-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , all width parameters 𝑠 > log𝑚 and all vectors y ∈ Z𝑛𝑞 in the
column-span of A,

Pr[∥x∥ >
√
𝑚𝑠 : x← A−1𝑠 (y)] ≤ 𝑂 (2−𝑚).

For the particular case of the discrete Gaussian over the integers and any _ ∈ N,

Pr[|𝑥 | >
√
_𝑠 : 𝑥 ← 𝐷Z,𝑠 ] ≤ 2

−_ .

Lemma 3.3 (Discrete Gaussian Preimages [GPV08, adapted]). Let 𝑛,𝑚,𝑞, 𝑠 be lattice parameters where𝑚 ≥ 𝑛 ⌈log𝑞⌉
and 𝑠 ≥ log𝑚. Then the statistical distance between the following distributions is at most negl(𝑛):{

Gx : x← 𝐷𝑚
Z,𝑠

}
and

{
u : u r← Z𝑛𝑞

}
.

Discrete Gaussian preimages. We will need to reason about the distribution of [diag(A1, . . . ,Aℓ ) | B]−1𝑠 (t) where
A𝑖 ∈ Z𝑛×𝑚𝑞 and B ∈ Z𝑛ℓ×𝑘𝑞 .

Definition 3.4 (Minimum Distance of Λ(A𝑖 )). For a matrix A ∈ Z𝑛×𝑚𝑞 , we write Λ(A𝑖 ) to denote the 𝑞-ary lattice

Λ(A) := {y ∈ Z𝑚 : y = ATx mod 𝑞 for some x ∈ Z𝑚}. For a lattice Λ ⊂ R𝑚 , we write _∞
1
(Λ) to denote the minimum

distance _∞
1
(Λ) := min0≠v∈Λ ∥x∥.

Lemma 3.5 (Minimum Distance of Random Matrix [GPV08, Lemma 5.3]). Let 𝑛,𝑚,𝑞 be lattice parameters where 𝑞
is prime and𝑚 ≥ 2𝑛 log𝑞. Then, for all but a 𝑞−𝑛 = negl(𝑛) fraction of matrices A ∈ Z𝑛×𝑚𝑞 , _∞

1
(Λ(A)) ≥ 𝑞/4.

Lemma 3.6 (Discrete Gaussian Preimages [WW23b, Corollary 2.11]). Let 𝑛,𝑚,𝑞, 𝑡 be parameters where𝑚 ≥ 𝑛. Take
any ℓ, 𝑘 = poly(𝑛, log𝑞), any collection of matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑚𝑞 where A𝑖 is full rank and _∞1 (Λ(A𝑖 )) ≥ 𝑡 for all
𝑖 ∈ [ℓ], any collection of matrices B1, . . . ,Bℓ ∈ Z𝑛×𝑘𝑞 , and any target vector t ∈ Z𝑛ℓ𝑞 . Define the following matrices

C =


A1 B1

. . .
...

Aℓ Bℓ

 and t =


t1
...

tℓ

 .
Then, for all width parameters 𝑠 ≥ 𝑞/𝑡 · log(ℓ𝑚), the statistical distance between the following distributions is negl(𝑚):

{
v : v← C−1𝑠 (t)

}
and



v1
...

vℓ
vℓ+1


:

vℓ+1 ← 𝐷𝑘
Z,𝑠 ,

v𝑖 ← (A𝑖 )−1𝑠 (t𝑖 − B𝑖u).


. (3.1)
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Min-entropy. Let D be a distribution with finite support X. We define the min-entropy of D to be H∞ (D) :=
− logmax𝑥∈X Pr[𝑋 = 𝑥 : 𝑋 ← D]. We now state the following corollary of the leftover hash lemma [HILL99]:

Lemma 3.7 (Leftover Hash Lemma). Let𝑚,𝑞 ∈ N be positive integers where 𝑞 is prime. Let D be a distribution over
Z𝑚𝑞 where H∞ (D) ≥ 2_ + log𝑞. Then, for all ℓ = ℓ (_), the statistical distance between the following two distributions
is at most ℓ (_) · 2−_ :{

(v, vTx1, . . . , vTxℓ ) :
v r← Z𝑚𝑞

∀𝑖 ∈ [ℓ] : x𝑖 ← D

}
and

{
(v, 𝑟1, . . . , 𝑟ℓ ) :

v r← Z𝑚𝑞
∀𝑖 ∈ [ℓ] : 𝑟𝑖 r← Z𝑞

}
.

Lemma 3.8 (Min-Entropy of Discrete Gaussian [PR06, Lemma 2.11, adapted]). Let 𝑛, 𝑞 be lattice parameters and
suppose𝑚 ≥ 2𝑛 log𝑞. Then, for all but a negl(𝑛)-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , all width parameters 𝑠 ≥ log𝑚, all
target vectors y ∈ Z𝑛𝑞 , the random variable x← A−1𝑠 (y) has min-entropy H∞ (x) ≥ 𝑛/2.

Gadget trapdoors. Our constructions will use the gadget trapdoors from [MP12], which builds on a long sequence

of works on constructing lattice trapdoors [Ajt96, GPV08, AP09, ABB10a, ABB10b, CHKP10].

Theorem 3.9 (Gadget Trapdoor [MP12, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters with𝑚 ≥ 3𝑛 ⌈log𝑞⌉. Then there
exist efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1𝑛, 𝑞,𝑚) → (A,T): On input the lattice dimension 𝑛, the modulus 𝑞, and the number of samples𝑚, the
trapdoor-generation algorithm outputs a matrix A ∈ Z𝑛×𝑚𝑞 together with a trapdoor T.

• SamplePre(A,T, y, 𝑠) → x: On input a matrix A ∈ Z𝑛×𝑚𝑞 , a trapdoor T, a target vector y ∈ Z𝑛𝑞 , and a Gaussian
width parameter 𝑠 , the preimage-sampling algorithm outputs a vector x ∈ Z𝑚𝑞 .

Moreover, the above algorithms satisfy the following properties:

• Trapdoor distribution: If (A,T) ← TrapGen(1𝑛, 𝑞,𝑚), then the distribution of A is 2−𝑛-close to the uniform
distribution over Z𝑛×𝑚𝑞 . Moreover, AT = G and ∥T∥ = 1.

• Preimage sampling: For all matrices T, width parameters 𝑠 > 0, and all target vectors y ∈ Z𝑛𝑞 in the column
span of A, the output x← SamplePre(A,T, y, 𝑠) of SamplePre satisfies Ax = y.

• Preimage distribution: Suppose T is a gadget trapdoor forA ∈ Z𝑛×𝑚𝑞 (i.e., AT = G). Then, for all 𝑠 ≥ 𝑚 ∥T∥ log𝑛,
and all target vectors y ∈ Z𝑛𝑞 , the statistical distance between the following distributions is at most 2−𝑛 :

{x← SamplePre(A,T, y, 𝑠)} and
{
x← A−1𝑠 (y)

}
.

Homomorphic evaluation. Our construction of succinct functional commitments will rely on the lattice homo-

morphic evaluation procedure developed in [GSW13, BGG
+
14, DHM

+
24]. In this work, we consider a specialization

to indicator functions 𝛿u : {0, 1}ℓ → {0, 1} where

𝛿u (x) :=
{
1 x = u
0 x ≠ u.

Specifically, we focus on the version for “database reads” from [DHM
+
24, §4.1].

Theorem 3.10 (Homomorphic Encodings [DHM
+
24, Theorem 4.5, adapted]). Let _ be a security parameter and

𝑛 = 𝑛(_), 𝑞 = 𝑞(_) be lattice parameters. Take any𝑚 ≥ 𝑛 ⌈log𝑞⌉ and let ℓ = ℓ (_) be an input length. Then, there exist
a pair of efficient algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 𝛿u) → Au: On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 and the indicator function 𝛿u (where u ∈ {0, 1}ℓ ), the
input-independent evaluation algorithm outputs a matrix Au ∈ Z𝑛×𝑚𝑞 .
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• EvalFX(A, 𝛿u, x) → HA,𝛿u,x: On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 , an indicator function 𝛿u (where u ∈ {0, 1}ℓ ), and an
input x ∈ {0, 1}ℓ , the input-dependent evaluation algorithm outputs a matrix HA,u,x ∈ Zℓ𝑚×𝑚𝑞 .

Moreover for all security parameters _ ∈ N, matrices A ∈ Z𝑛×ℓ𝑚𝑞 , all indicator functions 𝛿u ∈ F , and all inputs x ∈ {0, 1}ℓ ,
the matrices Au ← EvalF(A, 𝛿u) and HA,u,x ← EvalFX(A, 𝛿u, x) satisfy the following properties:

• HA,u,x ∈ {−1, 0, 1}ℓ𝑚×𝑚 .

• (A − xT ⊗ G) · HA,u,x = Au − 𝛿u (x) · G.

Moreover, the running time of EvalF(A, 𝛿u) and EvalFX(A, 𝛿u, x) is bounded by 2
ℓ · poly(𝑛,𝑚, ℓ, log𝑞).

Lattice assumptions. We recall the short integer solutions (SIS) [Ajt96] and learning with errors (LWE) [Reg05]

problems.

Assumption 3.11 (Short Integer Solutions [Ajt96]). Let _ be a security parameter and 𝑛 = 𝑛(_),𝑚 =𝑚(_), 𝑞 = 𝑞(_),
and 𝛽 = 𝛽 (_) be lattice parameters. We say the short integer solution problem SIS𝑛,𝑚,𝑞,𝛽 holds if for all efficient

adversaries A,

Pr

[
Ax = 0 and 0 < ∥x∥ ≤ 𝛽 :

A r← Z𝑛×𝑚𝑞 ;

x← A(1_,A)

]
= negl(_).

Assumption 3.12 (Learning with Errors [Reg05]). Let _ be a security parameter and 𝑛 = 𝑛(_),𝑚 =𝑚(_), 𝑞 = 𝑞(_),
and 𝑠 = 𝑠 (_) be lattice parameters. We say the learning with errors problem LWE𝑛,𝑚,𝑞,𝑠 holds if for all efficient

adversaries A,����Pr [A(A, sTA + eT) = 1 :

A r← Z𝑛×𝑚𝑞

s r← Z𝑚𝑞 , e← 𝐷𝑚
Z,𝑠

]
− Pr

[
A(A, uT) = 1 :

A r← Z𝑛×𝑚𝑞

u r← Z𝑚𝑞

] ���� = negl(_).

4 Shifted Multi-Preimage Trapdoor Sampler
In this section, we describe our technique for deriving a collection of matrices A1, . . . ,Aℓ together with a trapdoor for

solving the shifted multi-preimage sampling problem from a short common random string. Our construction relies

on the following key lemma asserting that a certain structured matrix has a public trapdoor:

Lemma 4.1 (Structured Lattice with a Public Trapdoor). Let _ be a security parameter and 𝑛 = 𝑛(_), 𝑚 = 𝑚(_)
and 𝑞 = 𝑞(_) be lattice parameters. Suppose 𝑚 ≥ 𝑛 ⌈log𝑞⌉. Then, for all ℓ ∈ N, and 𝑡 = 𝑚 ⌈log ℓ⌉, there ex-
ists an explicit polynomial-time algorithm StructTrapGen that takes as input (B, u1, . . . , uℓ ) where B ∈ Z𝑛×𝑡𝑞 , and
u1, . . . , uℓ ∈ {0, 1}⌈log ℓ ⌉ are distinct vectors, and outputs a gadget trapdoor T ∈ Z(ℓ𝑡+𝑚)×ℓ𝑚𝑞 where ∥T∥ = 1 for the matrix

D′ℓ =


B − uT

1
⊗ G G

. . .
...

B − uT
ℓ ⊗ G G

 ∈ Z
ℓ𝑛×(ℓ𝑡+𝑚)
𝑞 .

Proof. Algorithm StructTrapGen(B, u1, . . . , uℓ ) works as follows:

1. For 𝑖 ∈ [ℓ], let 𝛿u𝑖 : {0, 1}⌈log ℓ ⌉ → {0, 1} be the indicator function where 𝛿u𝑖 (v) outputs 1 if v = u𝑖 and 0

otherwise. For each 𝑖, 𝑗 ∈ [ℓ], compute HB,u𝑖 ,u𝑗
← EvalFX(B, 𝛿u𝑖 , u𝑗 ) and Bu𝑖 ← EvalF(B, 𝛿u𝑖 ).

2. Output the trapdoor

T =


−HB,u1,u1 · · · −HB,uℓ ,u1

...
. . .

...

−HB,u1,uℓ · · · −HB,uℓ ,uℓ
G−1 (Bu1 ) · · · G−1 (Buℓ )


∈ Z(ℓ𝑡+𝑚)×ℓ𝑚𝑞 . (4.1)
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To complete the proof, we show that the trapdoor T output by StructTrapGen satisfies the required properties. Namely,

we need to show that

D′ℓT =


B − uT

1
⊗ G G

. . .
...

B − uT
ℓ ⊗ G G

 ·

−HB,u1,u1 · · · −HB,uℓ ,u1

...
. . .

...

−HB,u1,uℓ · · · −HB,uℓ ,uℓ
G−1 (Bu1 ) · · · G−1 (Buℓ )


=


G

. . .

G

 . (4.2)

Since 𝑡 =𝑚 · ⌈log ℓ⌉ ≥ 𝑛 ⌈log𝑞⌉ ⌈log ℓ⌉, by Theorem 3.10, we have

(B − uT
𝑖 ⊗ G) · HB,u𝑗 ,u𝑖 = Bu𝑗

− 𝛿u𝑗
(u𝑖 ) · G =

{
Bu𝑗
− G 𝑖 = 𝑗

Bu𝑗
𝑖 ≠ 𝑗 .

Correspondingly, Eq. (4.2) holds. Again by Theorem 3.10, for all 𝑖, 𝑗 ∈ [ℓ], we have that HB,u𝑖 ,u𝑗
∈ {−1, 0, 1}𝑡×𝑚 .

Moreover G−1 (Bu𝑖 ) ∈ {0, 1}𝑚×𝑚 , so it follows that ∥T∥ = 1. □

Shifted multi-preimage trapdoor syntax. At a high-level, a shifted multi-preimage trapdoor sampler provides a

way to sample a set of matricesA1, . . . ,Aℓ together with a trapdoor td that allows us to efficiently solve the shiftedmulti-

preimage sampling problem with respect to A1, . . . ,Aℓ . Formally, the sampler consists of aGen algorithm that samples

a common reference string crs, an Expand algorithm that expands crs into the matrices A1, . . . ,Aℓ and the trapdoor

td, and a shifted multi-preimage sampler algorithm SampleMultPre. The main properties we require are as follows:

• Correctness: Given the trapdoor td and any set of target vectors t1, . . . , tℓ , the shifted multi-preimage sampler

SampleMultPre(td, t1, . . . , tℓ ) outputs a solution (𝝅1, . . . , 𝝅 ℓ , c) where for all 𝑖 ∈ [ℓ], A𝑖𝝅 𝑖 = t𝑖 + c.

• Preimage distribution: We require that the solutions output by SampleMultPre to have a “nice” distribu-

tion. Formally, we require that the joint distribution of the solution (𝝅1, . . . , 𝝅 ℓ , c) output by the sampler

SampleMultPre(td, t1, . . . , tℓ ) to be statistically close to sampling c r← Z𝑛𝑞 and 𝝅 𝑖 ← A−1𝑖 (t𝑖 + c). In other words,

the distribution of each 𝝅 𝑖 should be statistically close to an independent discrete Gaussian 𝝅 𝑖 conditioned on

A𝑖𝝅 𝑖 = t𝑖 + c. We use this property to argue hiding for our dual-mode hidden-bits generator (Theorem 5.10)

and for our vector commitment scheme (Theorem 6.8).

• Somewhere programmable: We also require that SIS and LWE are hard with respect to anyA𝑖 givenA1, . . . ,Aℓ

and the trapdoor td. We model this by defining a “somewhere programmable” property which stipulates that

there is an auxiliary sampling algorithm GenProg that takes as input an index 𝑖 and a (random) matrix A𝑖 and

outputs a common reference string c̃rs that is indistinguishable from the common reference string output by

Gen. Moreover, the 𝑖th matrix associated with c̃rs is precisely the programmed matrix A𝑖 . This property ensures

that the marginal distribution of any individual A𝑖 associated with an honestly-generated crs is statistically
close to uniform, and in addition, that problems like SIS or LWE remain hard with respect to any individual

A𝑖 even given the common reference string. We use this property to argue mode indistinguishability for our

dual-mode hidden-bits generator (Theorem 5.5) and binding for our vector commitment scheme (Theorem 6.4).

We now give the formal definition and construction.

Definition 4.2 (Shifted Multi-Preimage Trapdoor Sampler). Let _ be a security parameter and ℓ be a dimension. Let

𝑛, 𝑡, 𝑞, 𝑠 be parameters that are functions of _ and ℓ . An (𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage trapdoor sampler is a tuple

of efficient algorithms Πsamp = (Gen, Expand, SampleMultPre) with the following syntax:

• Gen(1_, 1ℓ ) → crs: On input the security parameter _ and the dimension ℓ , the generator algorithm outputs

a common reference string crs.

• Expand(1_, 1ℓ , crs) → (A1, . . . ,Aℓ , td): On input the security parameter _, the dimension ℓ , and the common

reference string crs, the expand algorithm outputs matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑡𝑞 and a trapdoor td. This algorithm
is deterministic.
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• SampleMultPre(td, t1, . . . , tℓ ) → (𝝅1, . . . , 𝝅 ℓ , c): On input a trapdoor td and a collection of preimages t1, . . . , tℓ ,
the shifted multi-preimage sampling algorithm outputs a shift c ∈ Z𝑛𝑞 together with preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑡𝑞 .

The shifted multi-preimage trapdoor sampler should satisfy the following properties:

• Correctness: For all _, ℓ ∈ N, all crs in the support of Gen(1_, 1ℓ ), all target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , and setting

(A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs), it holds that

Pr[A𝑖𝝅 𝑖 = t𝑖 + c for all 𝑖 ∈ [ℓ] : (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ )] = 1

• Preimage distribution: For all polynomials ℓ = ℓ (_), there exists a negligible function negl(·) such that with

overwhelming probability over the choice of crs← Gen(1_, 1ℓ ), letting (A1, . . . ,Aℓ , td) = Expand(1_, crs), and
for all targets t1, . . . , tℓ ∈ Z𝑛𝑞 and all _ ∈ N, the statistical distance between the following distributions is negl(_):

– D0: Output (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ ).
– D1: Sample c r← Z𝑛𝑞 and 𝝅 𝑖 ← (A𝑖 )−1𝑠 (t𝑖 + c) for each 𝑖 ∈ [ℓ]. Output (𝝅1, . . . , 𝝅 ℓ , c).

• Somewhere programmable: There exists an efficient algorithm GenProg such that for all polynomials

ℓ = ℓ (_), the following hold:

– For all _ ∈ N, all indices 𝑖 ∈ [ℓ], and all matrices A𝑖 ∈ Z𝑛×𝑡𝑞 , it holds that

Pr

[
A𝑖 = Ã𝑖 :

c̃rs← GenProg(1_, 1ℓ , 𝑖,A𝑖 )
(Ã1, . . . , Ãℓ , td) = Expand(1_, 1ℓ , c̃rs)

]
= 1.

– There exists a negligible function negl(·) such that for all _ ∈ N and all 𝑖 ∈ [ℓ], the statistical distance
between the following distributions is negl(_):{

crs : crs← Gen(1_, 1ℓ )
}

and

{
c̃rs :

A𝑖
r← Z𝑛×𝑡𝑞

c̃rs← GenProg(1_, 1ℓ , 𝑖,A𝑖 )

}
.

When these distributions are identical, we say the shifted multi-preimage trapdoor sampler satisfies perfect
somewhere programmability.

Definition 4.3 (Transparent Setup). A shifted multi-preimage trapdoor sampler (Gen, Expand, SampleMultPre)
supports transparent setup if the common reference string crs output by Gen just consists of the random coins used

to sample crs. Otherwise, we say the common reference string is a structured reference string (i.e., sampled using

private randomness).

Local expansion. The Expand algorithm in Definition 4.2 outputs a collection of ℓ matrices A1, . . . ,Aℓ along with

a trapdoor T. Consequently, this necessarily takes poly(_, ℓ) time. In some applications (e.g., to vector commitments),

we require the shifted multi-preimage trapdoor sampler to support a more fine-grained algorithm ExpandLocal that
takes as input a single index 𝑖 ∈ [ℓ] and outputs A𝑖 . In particular, the local expansion algorithm only needs to read

poly(_, log ℓ) bits of the CRS and runs in time poly(_, log ℓ). We give the formal definition below:

Definition 4.4 (Local Expansion). A shifted multi-preimage trapdoor sampler (Gen, Expand, SampleMultPre) sup-
ports local expansion if there exists an efficient algorithm ExpandLocal that takes as input crs together with an index

𝑖 ∈ [ℓ] and outputs A𝑖 :

• ExpandLocal(1_, crs, 𝑖): On input the security parameter _, the common reference string crs, and an index 𝑖 ,

the local expand algorithm outputs a matrix A𝑖 ∈ Z𝑛×𝑡𝑞 . This algorithm is deterministic.

The requirement for ExpandLocal is that for all _, ℓ ∈ N and all crs, if Expand(1_, 1ℓ , crs) = (A1, . . . ,Aℓ ,T), then for

all 𝑖 ∈ [ℓ], ExpandLocal(1_, crs, 𝑖) = A𝑖 . In addition, ExpandLocal(1_, crs, 𝑖) only needs to read poly(_, log ℓ) bits of
crs, and moreover, runs in time poly(_, log ℓ) given these bits.
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Simulatable openings. In some applications (e.g., to statistically-hiding vector commitments; see Section 6), we

require a stronger requirement where we can sample a common reference string crs (that is indistinguishable from
a real CRS) together with trapdoors T1, . . . ,Tℓ for each of the matrices A1, . . . ,Aℓ associated with crs. Notably, the
trapdoor T𝑖 can be used to efficiently sample from A−1𝑖 (c) for any vector c in the column-space of A𝑖 . We give the

formal definition below:

Definition 4.5 (Simulatable Openings). An (𝑛, 𝑡, 𝑞, 𝑠)-shiftedmulti-preimage trapdoor samplerΠsamp = (Gen, Expand,
SampleMultPre) has simulatable openings if there exists an efficient algorithm GenTD with the following syntax:

• GenTD(1_, 1ℓ ) → (crs,T1, . . . ,Tℓ ): On input the security parameter _ and the dimension ℓ , the trapdoor

generator algorithm outputs a common reference string crs together with trapdoors T1, . . . ,Tℓ .

Moreover, the GenTD algorithm should satisfy the following properties:

• Mode indistinguishability: There exists a negligible function negl(·) such that for all _ ∈ N, the statistical
distance between the following distributions is negl(_):{

crs : crs← Gen(1_, 1ℓ )
}

and

{
crs : (crs,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ )

}
.

• Trapdoor generation: For all _, ℓ ∈ N, and all (crs,T1, . . . ,Tℓ ) in the support of GenTD(1_, 1ℓ ), and setting

(A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs), we have that

∀𝑖 ∈ [ℓ] : A𝑖T𝑖 = G and ∥T𝑖 ∥ ≤ 𝑠/(𝑡 log𝑛).

Shifted multi-preimage trapdoor sampler construction. We now give our shifted multi-preimage trapdoor

sampler and analysis. The construction critically leverages Lemma 4.1. We refer to Section 2 for an overview of our

construction.

Construction 4.6 (Shifted Multi-Preimage Trapdoor Sampler). Let _ be a security parameter and ℓ be a dimension.

Let 𝑛 = 𝑛(_, ℓ), 𝑞 = 𝑞(_, ℓ), and 𝑠 = 𝑠 (_, ℓ) be lattice parameters. Let𝑚 = 3𝑛 ⌈log𝑞⌉ and 𝑡 = 𝑚(⌈log ℓ⌉ + 1). In the

following construction, we associate each index 𝑖 ∈ [ℓ] with a distinct canonical bit-vector u𝑖 ∈ {0, 1}⌈log ℓ ⌉ (e.g.,
the bit-vector associated with the binary representation of 𝑖 − 1). We construct an (𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage

trapdoor sampler as follows:

• Gen(1_, 1ℓ ): On input the security parameter _ and the dimension ℓ , the generator algorithm samples [A | B] r←
Z𝑛×𝑡𝑞 and outputs crs = [A | B].

• Expand(1_, 1ℓ , crs): On input the security parameter _, the dimension ℓ , and the common reference string

crs = [A | B], where A ∈ Z𝑛×𝑚𝑞 and B ∈ Z𝑛×𝑚⌈log ℓ ⌉𝑞 . Then, the expand algorithm proceeds as follows:

– For each 𝑖 ∈ [ℓ], let B𝑖 = B − uT
𝑖 ⊗ G. Then, define

A𝑖 = [A | B − uT
𝑖 ⊗ G] = [A | B𝑖 ] ∈ Z𝑛×𝑡𝑞 .

Let Dℓ = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G] ∈ Zℓ𝑛×(ℓ𝑡+𝑚)𝑞 .

– Let 𝚷 ∈ {0, 1} (ℓ𝑡+𝑚)×(ℓ𝑡+𝑚) be the permutation matrix where

Dℓ =


A B1 G

A B2 G
. . .

...

A Bℓ G


=


A B1 G

. . .
. . .

...

A Bℓ G

 𝚷. (4.3)
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– Compute T′ ← StructTrapGen(B, u1, . . . , uℓ ) ∈ Z(ℓ𝑚⌈log ℓ ⌉+𝑚)×ℓ𝑚𝑞 where StructTrapGen is the algorithm

from Lemma 4.1. Define the trapdoor T ∈ Z(ℓ𝑡+𝑚)×ℓ𝑚𝑞 where

T = 𝚷
−1

[
0ℓ𝑚×ℓ𝑚

T′

]
∈ Z(ℓ𝑡+𝑚)×ℓ𝑚𝑞 . (4.4)

The algorithm sets td = (Dℓ ,T) and outputs (A1, . . . ,Aℓ , td).

• SampleMultPre(td, t1, . . . , tℓ ): On input the trapdoor td = (Dℓ , T) and target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , the shifted
multi-preimage sampler defines the vector t ∈ Zℓ𝑛𝑞 to be the vertical concatenation of t1, . . . , tℓ and outputs

(𝝅1, . . . , 𝝅 ℓ ,−Gĉ) where 
𝝅1

...

𝝅 ℓ

ĉ


← SamplePre(Dℓ ,T, t, 𝑠).

Theorem 4.7 (Shifted Multi-Preimage Trapdoor Sampler). Let 𝑛 = 𝑛(_, ℓ), 𝑞 = 𝑞(_, ℓ) be arbitrary non-negative
functions where 𝑛 ≥ _. Let𝑚 = 3𝑛 ⌈log𝑞⌉ and 𝑡 =𝑚(⌈log ℓ⌉ +1). Then for all 𝑠 ≥ (ℓ𝑡 +𝑚) log(ℓ𝑛), Construction 4.6 is an
(𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage trapdoor sampler with perfect somewhere programmability. Moreover, Construction 4.6
is transparent (Definition 4.3), supports local expansion (Definition 4.4) and has simulatable openings (Definition 4.5).
The size of the CRS output by Gen(1_, 1ℓ ) is 𝑛𝑡 log𝑞.

Proof. Take any polynomial ℓ = ℓ (_) and any _ ∈ N. Take any crs = [A | B] ∈ Z𝑛×𝑡𝑞 where A ∈ Z𝑛×𝑚𝑞 and

B ∈ Z𝑛×𝑚⌈log𝑞⌉𝑞 . Let (A1, . . . ,Aℓ , td) = Expand(crs). Then, td = (Dℓ , T) where Dℓ = [diag(A1, . . . ,Aℓ ) | 1ℓ ⊗ G] and T
is defined as in Eq. (4.4). By construction,A𝑖 = [A | B−uT

𝑖 ⊗G] = [A | B𝑖 ]. By Eqs. (4.3) and (4.4) and Lemma 4.1, we have

DℓT =


A B1 G

. . .
. . .

...

A Bℓ G

 · 𝚷 · 𝚷
−1 ·

[
0ℓ𝑚×ℓ𝑚

T′

]

=


B − uT

1
⊗ G G

. . .
...

B − uT
ℓ ⊗ G G

 T
′ =


G

. . .

G

 .
Thus, T is a gadget trapdoor for Dℓ . Again by Lemma 4.1, ∥T′∥ = 1, so ∥T∥ = 1. We now show Construction 4.6

satisfies each of the required properties.

Correctness. Take any set of target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 and any (𝝅1, . . . , 𝝅 ℓ , c) in the support of the sampler

SampleMultPre(td, t1, . . . , tℓ ). By construction, SampleMultPre first constructs t ∈ Zℓ𝑛𝑞 to be the vertical concatena-

tion of t1, . . . , tℓ . Then it samples 
𝝅1

...

𝝅 ℓ

ĉ


← SamplePre(Dℓ ,T, t, 𝑠)

and sets c = −Gĉ. Since DℓT = Iℓ ⊗ G, the columns of Dℓ span Z
ℓ𝑛
𝑞 . By Theorem 3.9, this means that for all 𝑖 ∈ [ℓ],

A𝑖𝝅 𝑖 + Gĉ = t𝑖 =⇒ A𝑖𝝅 𝑖 = t𝑖 − Gĉ = t𝑖 + c.

16



Preimage distribution. Take any set of target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 and let t ∈ Zℓ𝑛𝑞 be the vertical concatenation

of t1, . . . , tℓ . We now define a sequence of intermediate distributions:

• D0: Output (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ ). Specifically, sample (𝝅1, . . . , 𝝅 ℓ , ĉ) according to

SamplePre(Dℓ ,T, t, 𝑠) and set c = −Gĉ.

• D1: Sample (𝝅1, . . . , 𝝅 ℓ , ĉ) from (Dℓ )−1𝑠 (t). Set c = −Gĉ and output (𝝅1, . . . , 𝝅 ℓ , c).

• D2: Sample ĉ← 𝐷𝑚
Z,𝑠 , set c = −Gĉ, and sample 𝝅 𝑖 ← (A𝑖 )−1𝑠 (t𝑖 + c) for each 𝑖 ∈ [ℓ]. Output (𝝅1, . . . , 𝝅 ℓ , c).

• D3: Sample c r← Z𝑛𝑞 and 𝝅 𝑖 ← (A𝑖 )−1𝑠 (t𝑖 + c) for each 𝑖 ∈ [ℓ]. Output (𝝅1, . . . , 𝝅 ℓ , c).

By definition, D0 and D3 corresponds to the two distributions in the preimage distribution property. We analyze

each adjacent pair of distributions:

• First, D0 and D1 are statistically indistinguishable by Theorem 3.9. As argued above, T is a gadget trapdoor for

Dℓ and ∥T∥ = 1. Since 𝑡 = 3𝑛 ⌈log𝑞⌉, 𝑠 ≥ (ℓ𝑡 +𝑚) log(ℓ𝑛) = (ℓ𝑡 +𝑚)∥T∥ · log(ℓ𝑛), we appeal to Theorem 3.9

to conclude that the statistical distance between the distribution SamplePre(Dℓ , T, t, 𝑠) and (Dℓ )−1𝑠 (t) is at most

2
−ℓ𝑛 = negl(_). Thus, D0 and D′0 are statistically indistinguishable.

• Next,D1 andD2 are statistically indistinguishable by Lemma 3.6. To argue this, we show that with overwhelm-

ing probability over the choice of crs, all of the matrices A𝑖 output by (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs)
are full rank and satisfy _∞

1
(A𝑖 ) ≥ 𝑞/4. Consider the marginal distribution of each A𝑖 . By construction,

A𝑖 = [A | B − uT
𝑖 ⊗ G] where [A | B]

r← Z𝑛×𝑡𝑞 . Thus, the marginal distribution of A𝑖 is uniform over Z𝑛×𝑡𝑞 . By

Lemmas 3.1 and 3.5, all but a negligible fraction of matrices A ∈ Z𝑛×𝑡𝑞 are full rank and satisfy _∞
1
(Λ(A)) ≥ 𝑞/4.

Thus, for each 𝑖 ∈ [ℓ], with overwhelming probability over the choice of crs, the associated matrixA𝑖 is full rank.

Since ℓ = poly(_), we use a union bound to argue that with overwhelming probability over the choice of crs, for
all 𝑖 ∈ [ℓ], it holds that A𝑖 is full rank and _

∞
1
(A𝑖 ) ≥ 𝑞/4. As long as 𝑠 ≥ 4 log(ℓ𝑡), the claim holds by Lemma 3.6.

• Finally, D2 and D3 are statistically indistinguishable by Lemma 3.3. In particular, when 𝑠 ≥ log𝑚, the

distribution of c = −Gĉ when ĉ← 𝐷𝑚
Z,𝑠 is statistically close to uniform.

By a hybrid argument, we conclude that with overwhelming probability over the choice of crs ← Gen(1_, 1ℓ ),
distributions D0 and D3 are statistically indistinguishable, as required.

Somewhere programmable. We define the GenProg algorithm as follows:

• GenProg(1_, 1ℓ , 𝑖,A𝑖 ): On input the security parameter _, the dimension ℓ , the index 𝑖 ∈ [ℓ] and a matrix

A𝑖 = [A | B] where A ∈ Z𝑛×𝑚𝑞 and B ∈ Z𝑛×𝑚⌈log ℓ ⌉𝑞 , output c̃rs = [A | B + uT
𝑖 ⊗ G].

We now show that GenProg satisfies the required properties. Take any polynomial ℓ = ℓ (_) and index 𝑖 ∈ [ℓ]. We

consider each property individually:

• Take any _ ∈ N and any matrix A𝑖 = [A | B] ∈ Z𝑛×𝑡𝑞 . Let c̃rs ← GenProg(1_, 1ℓ , 𝑖,A𝑖 ) and consider

(Ã1, . . . , Ãℓ , td) = Expand(c̃rs). Then c̃rs = [A | B + uT
𝑖 ⊗ G]. By definition of Expand, we now have

Ã𝑖 = [A | (B + uT
𝑖 ⊗ G) − uT

𝑖 ⊗ G] = [A | B] = A𝑖 .

• Suppose [A | B] ← Gen(1_, 1ℓ ). By construction, the Gen algorithm samples [A | B] r← Z𝑛×𝑡𝑞 . We claim

that this matches the distribution output by GenProg(1_, 1ℓ , 𝑖,A𝑖 ) when A𝑖
r← Z𝑛×𝑡𝑞 . If A𝑖 = [A′ | B′], then

GenProg(1_, 1ℓ , 𝑖,A𝑖 ) outputs [A′ | B′ + uT
𝑖 ⊗ G], which is still distributed uniformly over Z𝑛×𝑡𝑞 . Thus, these

two distributions are identical.

We conclude that Construction 4.6 satisfies perfect somewhere programmability.
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Transparent setup. The common reference string output by Gen consists of a uniform random matrix [A | B] r←
Z𝑛×𝑡𝑞 , so the scheme has a transparent setup by construction.

Local expansion. The local expansion property follows by construction of Expand. Namely, we can define

ExpandLocal(1_, crs, 𝑖) to output A𝑖 = [A | B − uT
𝑖 ⊗ G] ∈ Z𝑛×𝑡𝑞 , where crs = [A | B].

Simulatable openings. We define the GenTD algorithm as follows:

• GenTD(1_, 1ℓ ): On input the security parameter _ and the dimension ℓ , the trapdoor generator algorithm

samples (A,T) ← TrapGen(1_, 𝑞,𝑚) and B r← Z𝑛×𝑚⌈log ℓ ⌉𝑞 . It sets crs = [A | B] and for each 𝑖 ∈ [ℓ], it sets
T𝑖 =

[
T
0
]
∈ Z𝑡×𝑚𝑞 . Finally, it outputs (crs,T1, . . . ,Tℓ ).

We now show that GenTD satisfies mode indistinguishability and the trapdoor generation properties:

• Mode indistinguishability: Consider the distribution of (crs,T1, . . . ,Tℓ ) output by GenTD(1_, 1ℓ ). By con-

struction, crs = [A | B] where (A, T) ← TrapGen(1_, 𝑞,𝑚) andB r← Z𝑚⌈log ℓ ⌉×𝑚𝑞 . Since𝑛 ≥ _ and𝑚 = 3𝑛 ⌈log𝑞⌉,
we appeal to Theorem 3.9 to conclude that the distribution ofA is statistically close to uniform. Correspondingly,

this means [A | B] is statistically close to uniform over Z𝑛×𝑡𝑞 . This is the distribution output by Gen(1_, 1ℓ ).

• Trapdoor generation: Take any _, ℓ ∈ N and consider (crs,T1, . . . ,Tℓ ) output by GenTD(1_, 1ℓ ). Let

(A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs). By construction, crs = [A | B] where (A,T) ← TrapGen(1_, 𝑞,𝑚)
and T𝑖 =

[
T
0
]
. Since𝑚 ≥ 3𝑛 ⌈log𝑞⌉, by Theorem 3.9, this means AT = G. Moreover, by definition of Expand,

A𝑖 = [A | B − u𝑖 ⊗ G]. Thus,

A𝑖T𝑖 = [A | B − u𝑖 ⊗ G]
[

T
0𝑚⌈log ℓ ⌉×𝑚

]
= AT = G.

Again by Theorem 3.9, ∥T∥ = 1 so ∥T𝑖 ∥ = 1. Since 𝑠 ≥ (ℓ𝑡 +𝑚) log(ℓ𝑛), we have ∥T𝑖 ∥ = 1 ≤ 𝑠/(𝑡 log𝑛). □

Marginal distribution of matrices output by the shifted multi-preimage trapdoor sampler. The somewhere

programmability requirement of a shifted multi-preimage trapdoor sampler ensures that the marginal distribution

of each A𝑖 obtained by running crs← Gen(1_, 1ℓ ) and (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs) is statistically close to

uniform. This will be useful in our applications, so we give the formal statement below:

Lemma 4.8 (Marginal Distribution of A𝑖 ). Let _ be a security parameter and ℓ be a dimension. Suppose (Gen, Expand,
SampleMultPre) is an (𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage trapdoor sampler. Then, for all polynomials ℓ = ℓ (_), there
exists a negligible function negl(·) such that for all indices 𝑖 ∈ [ℓ] and all _ ∈ N, the statistical distance between the
following distributions is negl(_):{

A𝑖 :
crs← Gen(1_, 1ℓ )

(A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crs)

}
and

{
A𝑖 : A𝑖

r← Z𝑛×𝑡𝑞

}
.

Proof. Follows immediately by somewhere programmability. □

5 Dual-Mode Hidden-Bits Model NIZK from LWE
In this section, we show how to use the shifted multi-preimage trapdoor sampler from Section 4 to construct a

dual-mode hidden-bits generator. Our construction improves upon the previous dual-mode hidden-bits model NIZK

of Waters [Wat24] in several key dimensions: (1) the size of the CRS in our scheme is linear in the length of the

hidden-bits string as opposed to quadratic; (2) in statistically-hiding mode, the CRS in our scheme is a common

random string as opposed to a structured reference string; (3) security relies on the LWE assumption with a polynomial
modulus-to-noise ratio as opposed to a sub-exponential one.
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Dual-mode hidden-bits generator. We start by recalling the notion of a dual-mode hidden-bits generator [QRW19,

LPWW20]. In the definition, we use the statistical single-bit hiding property from [Wat24], which is sufficient for the

application to NIZKs forNP. The single-bit security notion is simpler to analyze, so we focus on it for ease of exposition.

Definition 5.1 (Dual-Mode Hidden-Bits Generator [QRW19, LPWW20, Wat24, adapted]). A dual-mode hidden-bits

generator is a tuple of efficient algorithms ΠHBG = (Setup,GenBits,Verify) with the following syntax:

• Setup(1_, 1ℓ ,mode) → crs: On input the security parameter _, the output length ℓ , andmode ∈ {binding, hiding},
the setup algorithm outputs a common reference string crs.

• GenBits(crs) → (𝜎, r, (𝜋1, . . . , 𝜋ℓ )): On input the common reference string crs, the generator algorithm outputs

a commitment 𝜎 , a bit-string r ∈ {0, 1}ℓ , and a tuple of proofs 𝜋1, . . . , 𝜋ℓ .

• Verify(crs, 𝜎, 𝑖, 𝛽, 𝜋) → 𝑏: On input the common reference string crs, a commitment 𝜎 , an index 𝑖 , a bit 𝛽 ∈ {0, 1},
and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, we require that ΠHBG satisfy the following properties:

• Correctness: For all _, ℓ ∈ N, all modes mode ∈ {binding, hiding}, and all indices 𝑖 ∈ [ℓ], we have that

Pr

[
Verify(crs, 𝜎, 𝑖, 𝑟𝑖 , 𝜋𝑖 ) = 1 :

crs← Setup(1_, 1ℓ ,mode)
(𝜎, r, (𝜋1, . . . , 𝜋ℓ )) ← GenBits(crs)

]
= 1.

• Mode indistinguishability: For an adversary A, an output length ℓ , and a bit 𝑏 ∈ {0, 1}, we define the

mode-indistinguishability game as follows:

1. If 𝑏 = 0, the challenger sets mode = binding. If 𝑏 = 1, the challenger sets mode = hiding. The challenger
samples crs← Setup(1_, 1ℓ ,mode) and gives (1_, 1ℓ , crs) to A.

2. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

The hidden-bits generator satisfies mode indistinguishability if for all efficient adversariesA and all polynomials

ℓ = ℓ (_), there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the mode-indistinguishability game.

• Succinctness: There exists a fixed polynomial 𝑝 (·, ·) such that for all _, ℓ ∈ N, all mode ∈ {binding, hiding},
all crs in the support of Setup(1_, 1ℓ ,mode), and all commitments 𝜎 in the support of GenBits(crs), we have
that |𝜎 | ≤ 𝑝 (_, log ℓ).

• Statistically binding in binding mode: For all polynomials ℓ = ℓ (_), there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr

[
∃(𝜎, 𝑖, 𝜋0, 𝜋1) :

Verify(crs, 𝜎, 𝑖, 0, 𝜋0) = 1 = Verify(crs, 𝜎, 𝑖, 1, 𝜋1)
: crs← Setup(1_, 1ℓ , binding)

]
= negl(_).

• Single-bit statistical hiding in hiding mode: For an adversary A, an output length ℓ , and a bit 𝑏 ∈ {0, 1},
we define the hiding game as follows:

1. On input the security parameter 1
_
and the length parameter 1

ℓ
, algorithm A outputs an index 𝑖∗ ∈ [ℓ].

2. The challenger samples crs← Setup(1_, 1ℓ , hiding) and (𝜎, r, (𝜋1, . . . , 𝜋ℓ )) ← GenBits(crs). If 𝑏 = 0, the

challenger sets 𝛽 = 𝑟𝑖∗ . If 𝑏 = 1, it samples 𝛽
r← {0, 1}.

3. The challenger gives

(
crs, 𝜎, {(𝑖, 𝑟𝑖 , 𝜋𝑖 )}𝑖≠𝑖∗ , 𝛽

)
to A.

4. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.
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The hidden-bits generator satisfies statistical hiding in hiding mode if for all (computationally-unbounded)

adversaries A and all polynomials ℓ = ℓ (_), there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the hiding game.

Theorem 5.2 (NIZKs from Hidden-Bits Generators [FLS90, QRW19, LPWW20, Wat24]). If there exists a dual-mode
hidden-bits generator, then there exists a dual-mode NIZK for NP.

Constructing a dual-mode hidden-bits generator. We now show how to use a shifted multi-preimage trapdoor

sampler to construct a dual-mode hidden-bits model generator (Definition 4.2). We refer to Section 2.2 for an overview

of the construction. As discussed in Section 2.2, our construction shares a similar structure with the scheme of

Waters [Wat24], but differs in a few key respects:

• CRS structure: The [Wat24] construction publish structured preimages in the CRS and the commitment and

the openings are derived by computing short linear combinations of the components in the CRS. Because

the CRS contains structured preimages (in both modes), the [Wat24] construction relied on a (quadratic-size)

structured CRS in both modes. In our scheme, we replace the structured preimages in the CRS with our shifted

multi-preimage trapdoor sampler. This allows us to achieve a linear-size CRS, and moreover in hiding mode,

the CRS is a uniform random string (i.e., supports transparent setup).

• Binding analysis: In the [Wat24] scheme, the verification algorithm checks that the opening does not land

near a “rounding boundary” (and rejects if the opening is too close). This ensures that at every index, a given

commitment can only be opened one way. This is useful for arguing binding. In [Wat24], the modulus 𝑞 is

super-polynomial so the probability that an opening lands near a rounding boundary is negligible. In our

construction, we rely on a polynomial modulus 𝑞, so there is an inverse polynomial probability that GenBits
samples a commitment and a set of openings where one of the opening lands inside the rounding boundary

(and causes the verification algorithm to fail). However, since the verification algorithm is public, the GenBits
algorithm can simply resample a commitment and set of openings whenever this happens. By choosing 𝑞 to be a

sufficiently-large polynomial, we ensure that each sampling attempt succeeds with at least constant probability.

After _ attempts, the algorithm will sample a commitment and a set of valid openings with overwhelming

probability. Thus, we can avoid the super-polynomial modulus 𝑞 in the binding analysis.

• Hiding analysis: The [Wat24] also critically relies on a super-polynomial modulus 𝑞 for the hiding analysis.

Specifically, when the CRS is sampled in hiding mode, [Wat24] first establishes that there exists small perturba-

tions that can be added to a commitment and flip the 𝑖th output bit of the hidden-bits string, while leaving all

remaining bits unchanged. Then, using a noise smudging argument, [Wat24] argues that the adversary cannot

tell whether a commitment is “normal” or “perturbed.” This suffices to show that the 𝑖th bit is statistically

hidden from the view of the adversary. In our work, we take a different approach. To argue hiding, we rely

on the fact that Gaussian preimages have sufficient min-entropy and use this to extract a string of uniform

random bits. This avoids the need for noise smudging and allows us to use a polynomial modulus for the overall

construction. This in turn allows us to prove security from LWE with a polynomial modulus-to-noise ratio.

We now describe our construction.

Construction 5.3 (Dual-Mode Hidden-Bits Generator). Let _ be a security parameter and ℓ be a length parameter.

Let Πsamp = (Gen, Expand, SampleMultPre) be a (𝑛, 𝑡, 𝑞, 𝑠samp)-shifted multi-preimage trapdoor sampler. Let 𝑠LWE =

𝑠LWE (_, ℓ) be a Gaussian width parameter and 𝐵max = 𝐵max (_, ℓ), 𝐵round = 𝐵round (_, ℓ) be bounds. Throughout, we as-
sume that 𝐵round < 𝑞/4. We construct our dual-mode hidden bits generatorΠHBG = (Setup,GenBits,Verify) as follows:

• Setup(1_, 1ℓ ,mode): On input the security parameter _, the output length ℓ , andmode ∈ {binding, hiding}, the
setup algorithm samples crssamp ← Gen(1_, 1ℓ ). Next, it computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp),
where A𝑖 ∈ Z𝑛×𝑡𝑞 . Next, for each 𝑖 ∈ [ℓ], it samples a vector v𝑖 ∈ Z𝑡𝑞 as follows:
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– If mode = binding, it samples s𝑖
r← Z𝑛𝑞 , e𝑖 ← 𝐷𝑡

Z,𝑠LWE
, and sets vT

𝑖 = sT𝑖A𝑖 + eT𝑖 .
– If mode = hiding, it samples v𝑖

r← Z𝑡𝑞 .

It outputs crs = (1_, crssamp, v1, . . . , vℓ ).

• GenBits(crs): On input the common reference string crs = (1_, crssamp, v1, . . . , vℓ ), the generator algorithm first

computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). Then, it repeats the following procedure up to _ times:

– Sample (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, 0𝑛, . . . , 0𝑛).
– For each 𝑖 ∈ [ℓ], if ∥𝝅 𝑖 ∥ > 𝐵max, it sets 𝑟𝑖 = ⊥. Otherwise, compute 𝑢𝑖 = vT

𝑖𝝅 𝑖 and set 𝑟𝑖 as follows:

𝑟𝑖 =


0 𝑢𝑖 ∈ [−𝐵round, 𝐵round]
1 𝑢𝑖 ∈ [⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round]
⊥ otherwise.

Note that the intervals [−𝐵round, 𝐵round] and [⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round] are guaranteed to be disjoint

when 𝐵round < 𝑞/4.
– If 𝑟𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ], then it outputs (c, r, (𝝅1, . . . , 𝝅 ℓ )). Otherwise, if there exists an index 𝑖 ∈ [ℓ]
where 𝑟𝑖 = ⊥, the generator algorithm restarts the sampling procedure.

If the sampling procedure does not succeed after _ attempts, then the generator algorithm sets c = ⊥, r = 0ℓ ,
and 𝝅 𝑖 = ⊥ for all 𝑖 ∈ [ℓ]. It outputs (c, 0ℓ , (𝝅1, . . . , 𝝅 ℓ )).

• Verify(crs, c, 𝑖, 𝛽, 𝝅): On input the common reference string crs = (1_, crssamp, v1, . . . , vℓ ), a commitment c, an
index 𝑖 ∈ [ℓ], a bit 𝛽 ∈ {0, 1}, and a proof 𝝅 , the verification algorithm proceeds as follows:

– If c = ⊥ output 1 if 𝛽 = 0 and 0 otherwise.

– If c ∈ Z𝑛𝑞 and 𝝅 ∈ Z𝑡𝑞 , then compute (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). Output 1 if

∥𝝅 ∥ ≤ 𝐵max and A𝑖𝝅 = c and vT
𝑖𝝅 𝑖 ∈ [⌊𝑞/2⌋ 𝛽 − 𝐵round, ⌊𝑞/2⌋ 𝛽 + 𝐵round]

and 0 otherwise.

In all other cases, output 0.

Theorem 5.4 (Correctness). If Πsamp is correct, then Construction 5.3 is correct.

Proof. Take any _, ℓ ∈ N andmode ∈ {binding, hiding}. Suppose crs← Setup(1_, 1ℓ ,mode) and (c, r, (𝝅1, . . . , 𝝅 ℓ )) ←
GenBits(crs). Then, we can write crs = (1_, crssamp, v1, . . . , vℓ ). Let (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). We

consider two possibilities:

• Suppose c = ⊥. By construction of GenBits, this means r = 0ℓ . Then Verify(crs, c, 𝑖, 0, 𝝅 𝑖 ) outputs 1 by

construction.

• Suppose c ∈ Z𝑛𝑞 . This means the GenBits algorithm sampled (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, 0𝑛, . . . , 0𝑛).
By correctness of Πsamp, this means A𝑖𝝅 𝑖 = c for all 𝑖 ∈ [ℓ]. Finally, GenBits outputs c only if

∥𝝅 𝑖 ∥ ≤ 𝐵max and vT
𝑖𝝅 𝑖 ∈ [⌊𝑞/2⌋ 𝑟𝑖 − 𝐵round, ⌊𝑞/2⌋ 𝑟𝑖 + 𝐵round] .

In this case, all of the verification checks pass and Verify(crs, c, 𝑖, 𝑟𝑖 , 𝝅 𝑖 ) = 1. □

Theorem 5.5 (Mode Indistinguishability). Suppose Πsamp satisfies somewhere programmability. Then, under the
LWE𝑛,𝑡,𝑞,𝑠LWE assumption, Construction 5.3 satisfies mode indistinguishability.

Proof. Let A be an efficient adversary for the mode indistinguishability game. We being by defining a sequence of

hybrid experiments parameterized by an index 𝑖 ∈ {0, . . . , ℓ}:
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• Hyb𝑖 : In this experiment, the challenger samples crssamp ← Gen(1_, 1ℓ ) and computes (A1, . . . ,Aℓ , td) =
Expand(1_, 1ℓ , crssamp). Then, for each 𝑗 ∈ [ℓ], it constructs the vector v𝑗 ∈ Z𝑡𝑞 as follows:

– If 𝑗 > 𝑖 , sample s𝑗
r← Z𝑛𝑞 , e𝑖 ← 𝐷𝑡

Z,𝑠LWE
, and compute vT

𝑗 = sT𝑗A𝑗 + eT𝑗 .
– If 𝑗 ≤ 𝑖 , sample v𝑗

r← Z𝑡𝑞 .

The challenger gives crs = (1_, crssamp, v1, . . . , vℓ ) to A. The output of the experiment is the output of A.

We write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. By construction, Hyb
0
(A) cor-

responds to the experiment where the challenger samples crs← Setup(1_, 1ℓ , binding) while Hybℓ (A) corresponds
to the experiment where the challenger samples crs← Setup(1_, 1ℓ , hiding). To complete the proof, we show that

for all 𝑖 ∈ [ℓ], the output distributions Hyb𝑖−1 (A) and Hyb𝑖 (A) are computationally indistinguishable. To do so,

we introduce two intermediate hybrids:

• Hyb𝑖,1: Same as Hyb𝑖 , except the challenger samples A𝑖
r← Z𝑛×𝑡𝑞 and crssamp ← GenProg(1_, 1ℓ , 𝑖,A𝑖 ).

• Hyb𝑖,2: Same as Hyb𝑖,1, except the challenger samples v𝑗
r← Z𝑡𝑞 .

We now show that each adjacent pair of hybrid distributions are indistinguishable.

Lemma 5.6. If Πsamp is somewhere programmable, then Hyb𝑖 (A)
𝑠≈ Hyb𝑖,1 (A).

Proof. The only difference between Hyb𝑖 and Hyb𝑖,1 is the distribution of crssamp. In Hyb𝑖 , the challenger samples

crssamp ← Gen(1_, 1ℓ ) while in Hyb𝑖,1, the challenger samples A𝑖
r← Z𝑛×𝑡𝑞 and crssamp ← GenProg(1_, 1ℓ , 𝑖,A𝑖 ).

These two distributions are statistically indistinguishable by somewhere programmability. □

Lemma 5.7. Suppose Πsamp is somewhere programmable. Then, under the LWE𝑛,𝑡,𝑞,𝑠LWE assumption, for all 𝑖 ∈ [ℓ],
Hyb𝑖,1 (A)

𝑐≈ Hyb𝑖,2 (A).

Proof. Suppose | Pr[Hyb𝑖,1 (A) = 1] − Pr[Hyb𝑖,2 (A) = 1] | = Y (_) for some non-negligible Y. We use A to construct

an efficient adversary B for the LWE𝑛,𝑡,𝑞,𝑠LWE assumption:

• On input the LWE challenge (A, uT) where A ∈ Z𝑛×𝑡𝑞 and u ∈ Z𝑡𝑞 , algorithm B computes crssamp ←
GenProg(1_, 1ℓ , 𝑖,A). Then, it computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). For each 𝑗 ∈ [ℓ], the
challenger computes the vector v𝑗 as follows:

– If 𝑗 < 𝑖 , sample v𝑗
r← Z𝑡𝑞 .

– If 𝑗 = 𝑖 , set v𝑗 = u.

– If 𝑗 > 𝑖 , sample s𝑗
r← Z𝑛𝑞 , e𝑗 ← 𝐷𝑡

Z,𝑠LWE
, and compute vT

𝑗 = sT𝑗A𝑗 + eT𝑗 .

• Algorithm B gives crs = (1_, crssamp, v1, . . . , vℓ ) to A and outputs whatever A outputs.

We now analyze the advantage of algorithm B. First, the LWE challenger samples A r← Z𝑛×𝑡𝑞 , so the distribution of

crssamp is identical to the distribution in Hyb𝑖,1 and Hyb𝑖,2. By somewhere programmability, we also have that A𝑖 = A.
Consider now the distribution of u:

• Suppose uT = sTA + eT where s r← Z𝑛𝑞 and e ← 𝐷𝑡
Z,𝑠LWE

. Since A𝑖 = A, we have vT
𝑖 = uT = sTA𝑖 + eT, which

matches the distribution in Hyb𝑖,1.

• Suppose u r← Z𝑡𝑞 . Then, v𝑖 is uniform over Z𝑡𝑞 , which matches the distribution in Hyb𝑖,2.

Algorithm B breaks LWE𝑛,𝑡,𝑞,𝑠LWE with the same non-negligible advantage Y and the lemma follows. □

Lemma 5.8. If Πsamp is somewhere programmable, then Hyb𝑖,2 (A)
𝑠≈ Hyb𝑖+1 (A).
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Proof. The only difference between Hyb𝑖,2 and Hyb𝑖+1 is the distribution of crssamp. In Hyb𝑖,2, the challenger samples

A𝑖
r← Z𝑛×𝑡𝑞 and crssamp ← GenProg(1_, 1ℓ , 𝑖,A𝑖 ) whereas in Hyb𝑖 , the challenger samples crs← Gen(1_, 1ℓ ). These

two distributions are statistically indistinguishable by somewhere programmability. □

Mode indistinguishability now follows from Lemmas 5.6 to 5.8. □

Theorem 5.9 (Statistical Binding in Binding Mode). Suppose 𝑞 > 4𝑡
√
_𝑠LWE𝐵max + 4𝐵round. Then, Construction 5.3

is statistically binding in binding mode.

Proof. Take a security parameter _ ∈ N and any polynomial ℓ = ℓ (_). Let crs ← Setup(1_, 1ℓ , binding). We parse

crs = (1_, crssamp, v1, . . . , vℓ ) and let (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). In binding mode, for all 𝑖 ∈ [ℓ],
vT
𝑖 = sT𝑖A𝑖 + eT𝑖 , where e𝑖 ← 𝐷𝑡

Z,𝑠LWE
. By Lemma 3.2, ∥e𝑖 ∥ ≤

√
_𝑠LWE with probability 1 − 𝑡 · 2−_ . By a union bound,

with probability 1 − 𝑡ℓ · 2−_ = 1 − negl(_), the following holds:

∀𝑖 ∈ [ℓ] : ∥e𝑖 ∥ ≤
√
_𝑠LWE. (5.1)

Suppose now that there exists a tuple (c, 𝑖, 𝝅0, 𝝅1) where

Verify(crs, c, 𝑖, 0, 𝝅0) = 1 = Verify(crs, c, 𝑖, 1, 𝝅1). (5.2)

We now consider two possibilities:

• Suppose that c = ⊥. Then, by construction, Verify(crs, c, 𝑖, 1, 𝝅1) outputs 0 which contradicts Eq. (5.2).

• Suppose c ∈ Z𝑛𝑞 . By Eq. (5.2) and construction of Verify, the following conditions also hold:

∥𝝅0∥ , ∥𝝅1∥ ≤ 𝐵max and A𝑖𝝅0 = c = A𝑖𝝅1,

and in addition,

vT
𝑖𝝅0 ∈ [−𝐵round, 𝐵round]
vT
𝑖𝝅1 ∈ [⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round] .

In particular, this means that

|vT
𝑖 (𝝅0 − 𝝅1) | ≥ ⌊𝑞/2⌋ − 2𝐵round. (5.3)

Since A𝑖𝝅0 = A𝑖𝝅1, we have

vT
𝑖 (𝝅0 − 𝝅1) = sT𝑖 (A𝑖𝝅0 − A𝑖𝝅1) + eT𝑖 (𝝅0 − 𝝅1) = eT𝑖 (𝝅0 − 𝝅1).

Since ∥𝝅0∥ , ∥𝝅1∥ ≤ 𝐵max, and ∥e𝑖 ∥ ≤
√
_𝑠LWE from Eq. (5.1), we conclude that

|vT
𝑖 (𝝅0 − 𝝅1) | = |eT𝑖 (𝝅0 − 𝝅1) | ≤ 2𝑡

√
_𝑠LWE𝐵max .

However, this contradicts Eq. (5.3) whenever 𝑞 > 4𝑡
√
_𝑠LWE𝐵max + 4𝐵round.

We conclude that no such tuple (c, 𝑖, 𝝅0, 𝝅1) can exist when Eq. (5.1) holds. Since Eq. (5.1) holds with 1 − negl(_)
over the randomness of Setup, the theorem follows. □

Theorem 5.10 (Single-Bit Statistical Hiding). Suppose Πsamp satisfies the preimage distribution property and 𝑛 ≥
4_ + 2 log𝑞, 𝑡 ≥ 3𝑛 ⌈log𝑞⌉, 𝑞 is prime, 𝑞 ≥ 4𝐵round + 2, 𝑠samp ≥ log 𝑡 , 𝐵max ≥

√
𝑡𝑠samp, and 𝐵round ≥ 𝑞/4 − 𝑞/(8ℓ) + 1/2.

Then, Construction 5.3 satisfies single-bit statistical hiding in hiding mode.

Proof. Let A be a distinguisher for the hiding game. We start by defining a sequence of hybrid experiments:
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• Hyb(𝑏 )
0

: This is the hiding experiment with the bit 𝑏. Specifically, the adversary (on input 1
_
and 1

ℓ
) starts by

outputting an index 𝑖∗ ∈ [ℓ]. The challenger then samples crs← Setup(1_, 1ℓ , hiding). Namely, the challenger

samples crssamp ← Gen(1_, 1ℓ ) and for each 𝑖 ∈ [ℓ], v𝑖 r← Z𝑡𝑞 . It sets crs = (1_, crssamp, v1, . . . , vℓ ). Next, for
each 𝑑 ∈ [_], the challenger proceeds as follows:4

– Sample (𝝅𝑑,1, . . . , 𝝅𝑑,ℓ , c𝑑 ) ← SampleMultPre(td, 0𝑛, . . . , 0𝑛).
– For each 𝑖 ∈ [ℓ], the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 . If ∥𝝅𝑑,𝑖 ∥ > 𝐵max, set 𝑟𝑑,𝑖 = ⊥. Otherwise, set

𝑟𝑑,𝑖 =


0 𝑢𝑑,𝑖 ∈ [−𝐵round, 𝐵round]
1 𝑢𝑑,𝑖 ∈ [⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round]
⊥ otherwise.

(5.4)

The challenger then constructs the challenge as follows:

– Suppose for all 𝑑 ∈ [_], there exists an index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. Then, the challenger sets c = ⊥ and

for all 𝑖 ∈ [ℓ], 𝑟𝑖 = 0 and 𝝅 𝑖 = ⊥.
– Otherwise, let 𝑑∗ ∈ [_] be the first index where 𝑟𝑑∗,𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ]. Then the challenger sets

c = c𝑑∗ and for all 𝑖 ∈ [ℓ], 𝑟𝑖 = 𝑟𝑑∗,𝑖 and 𝝅 𝑖 = 𝝅𝑑∗,𝑖 .

Finally, if 𝑏 = 0, then the challenger sets 𝛽 = 𝑟𝑖∗ . If 𝑏 = 1, the challenger samples 𝛽
r← {0, 1}. The challenger

gives

(
crs, c, {(𝑖, 𝑟𝑖 , 𝝅 𝑖 )}𝑖≠𝑖∗ , 𝛽

)
to A. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is

the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except for all 𝑑 ∈ [_], the challenger changes how it samples c𝑑 and 𝝅𝑑,𝑖 . Specifically,

after sampling crs as in Hyb(𝑏 )
0

, the challenger proceeds as follows for each 𝑑 ∈ [_]:

– Sample c𝑑
r← Z𝑛𝑞 and for each 𝑖 ∈ [ℓ], sample 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).
– For each 𝑖 ∈ [ℓ], the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 . If ∥𝝅𝑑,𝑖 ∥ > 𝐵max, set 𝑟𝑑,𝑖 = ⊥. Otherwise, it sets
𝑟𝑑,𝑖 according to Eq. (5.4).

The rest of the experiment proceeds as in Hyb(𝑏 )
0

.

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

, except the challenger no longer checks the norm constraint on 𝝅𝑑,𝑖 when computing

𝑟𝑑,𝑖 . Specifically, after sampling crs as in Hyb(𝑏 )
0

, the challenger proceeds as follows for each 𝑑 ∈ [_]:

– Sample c𝑑
r← Z𝑛𝑞 and for each 𝑖 ∈ [ℓ], sample 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).
– For each 𝑖 ∈ [ℓ], the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 and sets 𝑟𝑑,𝑖 according to Eq. (5.4). In particular,

the challenger no longer checks if ∥𝝅𝑑,𝑖 ∥ ≤ 𝐵max.

The rest of the experiment proceeds as in Hyb(𝑏 )
0

.

• Hyb(𝑏 )
3

: Same as Hyb(𝑏 )
2

, except for all 𝑑 ∈ [_], the challenger samples 𝑢𝑑,𝑖∗
r← Z𝑞 . Specifically, after sampling

crs as in Hyb(𝑏 )
0

, the challenger proceeds as follows for each 𝑑 ∈ [_]:

– Sample c𝑑
r← Z𝑛𝑞 and for each 𝑖 ∈ [ℓ], sample 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).
– For each 𝑖 ∈ [ℓ] \ {𝑖∗}, the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 . It then samples 𝑢𝑑,𝑖∗
r← Z𝑞 . Finally, the

challenger sets 𝑟𝑑,𝑖 according to Eq. (5.4).

The rest of the experiment proceeds as in Hyb(𝑏 )
0

.

4
In this description, we explicitly unroll the (up to) _ iterations of rejection sampling that the GenBits algorithm performs. Specifically, the

challenger samples _ commitments and openings, and the output is defined to be the first instance that is successful (i.e., the first instance

that GenBits would have accepted). As such, the description here is identical to the procedure in GenBits, but is more convenient to analyze.
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• Hyb(𝑏 )
4

: Same as Hyb(𝑏 )
3

, except for all 𝑑 ∈ [_], the challenger changes how it samples 𝑟𝑑,𝑖∗ . Specifically, after

sampling crs as in Hyb(𝑏 )
0

, the challenger proceeds as follows for each 𝑑 ∈ [_]:

– Sample c𝑑
r← Z𝑛𝑞 and for each 𝑖 ∈ [ℓ], sample 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).
– For each 𝑖 ∈ [ℓ] \ {𝑖∗}, the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 and sets 𝑟𝑑,𝑖 according to Eq. (5.4).

– With probability (4𝐵round + 2)/𝑞, the challenger samples 𝑟𝑑,𝑖∗
r← {0, 1}, and with probability 1− (4𝐵round +

2)/𝑞, the challenger sets 𝑟𝑑,𝑖∗ = ⊥.

The rest of the experiment proceeds as in Hyb(𝑏 )
0

.

• Hyb(𝑏 )
5

: Same as Hyb(𝑏 )
4

, except the challenger samples 𝑟𝑖∗
r← {0, 1} in the case for all 𝑑 ∈ [_], there exists an

index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. Specifically, after sampling crs as in Hyb(𝑏 )
0

, the challenger proceeds as follows

for each 𝑑 ∈ [_]:

– Sample c𝑑
r← Z𝑛𝑞 and for each 𝑖 ∈ [ℓ], sample 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).
– For each 𝑖 ∈ [ℓ] \ {𝑖∗}, the challenger computes 𝑢𝑑,𝑖 = vT

𝑖𝝅𝑑,𝑖 and sets 𝑟𝑑,𝑖 according to Eq. (5.4).

– With probability (4𝐵round + 2)/𝑞, the challenger samples 𝑟𝑑,𝑖∗
r← {0, 1}, and with probability 1− (4𝐵round +

2)/𝑞, the challenger sets 𝑟𝑑,𝑖∗ = ⊥.

The challenger then constructs the challenge as follows:

– Suppose for all 𝑑 ∈ [_], there exists an index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. Then, the challenger sets c = ⊥ and

for all 𝑖 ∈ [ℓ] \ {𝑖∗}, it sets 𝑟𝑖 = 0 and 𝝅 𝑖 = ⊥. The challenger samples 𝑟𝑖∗
r← {0, 1}.

– Otherwise, let 𝑑∗ ∈ [_] be the first index where 𝑟𝑑∗,𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ]. Then the challenger sets

c = c𝑑∗ and for all 𝑖 ∈ [ℓ], 𝑟𝑖 = 𝑟𝑑∗,𝑖 and 𝝅 𝑖 = 𝝅𝑑∗,𝑖 .

Finally, if 𝑏 = 0, then the challenger sets 𝛽 = 𝑟𝑖∗ . If 𝑏 = 1, the challenger samples 𝛽
r← {0, 1}. The challenger

gives

(
crs, c, {(𝑖, 𝑟𝑖 , 𝝅 𝑖 )}𝑖≠𝑖∗ , 𝛽

)
to A. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is

the output of the experiment.

We write Hyb(𝑏 )
𝑖
(A) to denote the random variable corresponding to the output of an execution of hybrid Hyb(𝑏 )

𝑖

with adversary A. We now analyze each adjacent pair of distributions.

Lemma 5.11. Suppose Πsamp satisfies the preimage distribution property. Then, for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
0
(A) 𝑠≈

Hyb(𝑏 )
1
(A).

Proof. For each 𝑗 ∈ {0, . . . , _}, we define an intermediate hybrid as follows:

• Hyb(𝑏 )
0, 𝑗

: Same as Hyb(𝑏 )
0

, except for all 𝑑 ≤ 𝑗 , the challenger samples (𝝅𝑑,1, . . . , 𝝅𝑑,ℓ , c𝑑 ) according to the proce-

dure in Hyb(𝑏 )
1

. For all 𝑑 > 𝑗 , the challenger samples (𝝅𝑑,1, . . . , 𝝅𝑑,ℓ , c𝑑 ) according to the procedure in Hyb(𝑏 )
0

.

By construction, Hyb(𝑏 )
0,0
(A) ≡ Hyb(𝑏 )

0
(A) and Hyb(𝑏 )

0,_
(A) ≡ Hyb(𝑏 )

1
(A). We now argue that for every 𝑗 ∈ [_],

the statistical distance between Hyb(𝑏 )
0, 𝑗−1 (A) and Hyb(𝑏 )

0, 𝑗
(A) is negl(_). The only difference between these two

distributions is the distribution of (𝝅 𝑗,1, . . . , 𝝅 𝑗,ℓ , c𝑗 ). With overwhelming probability over the choice of crssamp, these

two distributions are statistically indistinguishable by the preimage distribution property of Πsamp. □

Lemma 5.12. Suppose 𝑛 ≥ _, 𝑡 ≥ 2𝑛 log𝑞, 𝑠samp ≥ log 𝑡 , and 𝐵max ≥
√
𝑡𝑠samp. Then, for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

1
(A) 𝑠≈

Hyb(𝑏 )
2
(A).
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Proof. These experiments are identical unless in an execution of Hyb(𝑏 )
1

, there exists an index 𝑑 ∈ [_] and 𝑖 ∈ [ℓ]
where ∥𝝅𝑑,𝑖 ∥ > 𝐵max. InHyb

(𝑏 )
1

, the challenger samples 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp
(c𝑑 ). By Lemma 4.8, the marginal distribution

of A𝑖 in Hyb(𝑏 )
1

is statistically close to uniform. Since 𝑡 ≥ 2𝑛 log𝑞, 𝑠samp ≥ log 𝑡 , and 𝐵max ≥
√
𝑡𝑠samp, by Lemma 3.2,

with overwhelming probability over the choice of 𝝅𝑑,𝑖 , it holds that ∥𝝅𝑑,𝑖 ∥ ≤ 𝐵max. By a union bound over all 𝑑 ∈ [_]
and 𝑖 ∈ [ℓ], we conclude that with overwhelming probability, in an execution of Hyb(𝑏 )

1
, it holds that ∥𝝅𝑑,𝑖 ∥ ≤ 𝐵max

for all 𝑑 ∈ [_] and 𝑖 ∈ [ℓ]. In this case, the output of Hyb(𝑏 )
1

and Hyb(𝑏 )
2

is the same. □

Lemma 5.13. Suppose 𝑛 ≥ 4_ + 2 log𝑞, 𝑡 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝑠samp ≥ log 𝑡 . Then, for all 𝑏 ∈ {0, 1},
Hyb(𝑏 )

2
(A) 𝑠≈ Hyb(𝑏 )

3
(A).

Proof. For each 𝑗 ∈ {0, . . . , _}, we define an intermediate hybrid as follows:

• Hyb(𝑏 )
2, 𝑗

: Same as Hyb(𝑏 )
2

, except for all 𝑑 ≤ 𝑗 , the challenger samples 𝑢𝑑,𝑖∗
r← Z𝑞 . For all 𝑑 > 𝑗 , the challenger

sets 𝑢𝑑,𝑖∗ = vT
𝑖∗𝝅𝑑,𝑖∗ as in Hyb(𝑏 )

1
.

By construction, Hyb(𝑏 )
2,0
(A) ≡ Hyb(𝑏 )

2
(A) and Hyb(𝑏 )

2,_
(A) ≡ Hyb(𝑏 )

3
(A). We argue that for all 𝑗 ∈ [_], the statis-

tical distance between Hyb(𝑏 )
2, 𝑗−1 and Hyb(𝑏 )

2, 𝑗
is negl(_). The only difference between these two distributions is the

distribution of 𝑢 𝑗,𝑖∗ . We show that these two distributions are statistically indistinguishable.

• By Lemma 4.8, the marginal distribution of A𝑖∗ inHyb
(𝑏 )
2, 𝑗−1 andHyb

(𝑏 )
2, 𝑗

is statistically close to uniform over Z𝑛×𝑡𝑞 .

• In Hyb(𝑏 )
2, 𝑗−1 and Hyb(𝑏 )

2, 𝑗
, the challenger samples 𝝅 𝑗,𝑖∗ ← (A𝑖∗ )−1𝑠samp

(c𝑑 ). Since 𝑡 ≥ 2𝑛 log𝑞 and 𝑠samp ≥ log 𝑡 , we

appeal to Lemma 3.8 to conclude that with overwhelming probability over the choice of A𝑖∗ ,

H∞ (𝝅 𝑗,𝑖∗ ) ≥ 𝑛/2 ≥ 2_ + log𝑞.

• In Hyb(𝑏 )
2, 𝑗−1 and Hyb(𝑏 )

2, 𝑗
, the challenger samples v𝑖∗

r← Z𝑡𝑞 . By the leftover hash lemma (Lemma 3.7), the

statistical distance between the distributions{
(v𝑖∗ , vT

𝑖∗𝝅 𝑗,𝑖∗ ) : v𝑖∗ r← Z𝑡𝑞
}

and

{
(v𝑖∗ , 𝑢 𝑗,𝑖∗ ) : v𝑖∗ r← Z𝑡𝑞, 𝑢 𝑗,𝑖∗

r← Z𝑞
}

is at most 2
−_ = negl(_). The distribution in the left-hand side corresponds to Hyb(𝑏 )

2, 𝑗−1 while the one on the

right-hand side corresponds to Hyb(𝑏 )
2, 𝑗

.

We conclude that for all 𝑗 ∈ [_], the distributions Hyb(𝑏 )
2, 𝑗−1 (A) and Hyb(𝑏 )

2, 𝑗
are statistically indistinguishable. The

lemma now follows by a hybrid argument. □

Lemma 5.14. If 𝑞 > 4𝐵round + 2, then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
3
(A) ≡ Hyb(𝑏 )

4
(A).

Proof. The distributions Hyb(𝑏 )
3
(A) and Hyb(𝑏 )

4
(A) are identically distributed as long as 𝑞 > 4𝐵round + 2. In this case,

the intervals [−𝐵round, 𝐵round] and [⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round] are disjoint and each has size 2𝐵round + 1. The two
experiments only differ in how they compute 𝑟𝑑,𝑖∗ for 𝑑 ∈ [_]. We show that these two procedures are distributed

identically for each 𝑑 ∈ [_].

• In Hyb(𝑏 )
3

, the challenger samples 𝑢𝑑,𝑖∗
r← Z𝑞 and then sets 𝑟𝑑,𝑖∗ = 0 if 𝑢𝑑,𝑖∗ ∈ [−𝐵round, 𝐵round]. Over the

randomness of 𝑢𝑑,𝑖∗ , this happens with probability (2𝐵round + 1)/𝑞. Alternatively, it sets 𝑟𝑑,𝑖∗ = 1 if 𝑢𝑑,𝑖∗ ∈
[⌊𝑞/2⌋ −𝐵round, ⌊𝑞/2⌋ +𝐵round]. This also happens with probability (2𝐵round + 1)/𝑞 over the randomness of 𝑢𝑑,𝑖∗ .

Finally, if neither event holds, which occurs with probability 1−(4𝐵round+2)/𝑞, then the challenger sets 𝑟𝑑,𝑖∗ = ⊥.

• In Hyb(𝑏 )
4

, 𝑟𝑑,𝑖∗ = 0 with probability (1/2) · (4𝐵round + 2)/𝑞 = (2𝐵round + 1)/𝑞, which matches the probability

in Hyb(𝑏 )
3

. The challenger sets 𝑟𝑑,𝑖∗ = 1 with the same probability. Finally, the challenger sets 𝑟𝑑,𝑖∗ = ⊥ with

probability 1 − (4𝐵round + 2)/𝑞, which is identical to the behavior in Hyb(𝑏 )
3

.
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We conclude that the distribution of 𝑟𝑑,𝑖∗ is identical in the two experiments for all 𝑑 ∈ [_]. Correspondingly, the
outputs of these two experiments are identically distributed. □

Lemma 5.15. Suppose 𝑛 ≥ 4_ + 2 log𝑞, 𝑡 ≥ 2𝑛 log𝑞, 𝑞 is prime, 𝑠samp > log 𝑡 , and 𝐵round ≥ 𝑞/4 − 𝑞/(8ℓ) + 1/2. Then,
for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

4
(A) 𝑠≈ Hyb(𝑏 )

5
(A).

Proof. Hyb(𝑏 )
4

and Hyb(𝑏 )
5

are identical experiments unless for all 𝑑 ∈ [_], there exists an index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥.
We show that this event happens with negligible probability. To analyze the probability of this event, we first define

the following sequence of distributions and argue that each adjacent pair is statistically indistinguishable:

• D0: This is the distribution of 𝑟𝑑,𝑖 inHyb
(𝑏 )
4

andHyb(𝑏 )
5

. Namely, the distribution samples crssamp ← Gen(1_, 1ℓ ),
(A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp), and v1, . . . , vℓ

r← Z𝑡𝑞 . Then for each 𝑑 ∈ [_], it samples c𝑑 ← Z𝑛𝑞 . For
each 𝑑 ∈ [_] and 𝑖 ∈ [ℓ] \ {𝑖∗}, it samples 𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ), sets 𝑢𝑑,𝑖 = vT
𝑖𝝅𝑑,𝑖 , and sets 𝑟𝑑,𝑖 according to

Eq. (5.4). Finally, with probability (4𝐵round + 2)/𝑞, sample 𝑟𝑑,𝑖∗
r← {0, 1} and with probability 1− (4𝐵round + 2)/𝑞,

set 𝑟𝑑,𝑖∗ = ⊥. The output is (𝑟1,1, . . . , 𝑟1,ℓ , . . . , 𝑟_,1, . . . , 𝑟_,ℓ ).

• D1: In this distribution, for all 𝑑 ∈ [_] and 𝑖 ∈ [ℓ] \ {𝑖∗}, sample 𝑢𝑑,𝑖
r← Z𝑞 and set 𝑟𝑑,𝑖 according to Eq. (5.4).

Then, with probability (4𝐵round + 2)/𝑞, sample 𝑟𝑑,𝑖∗
r← {0, 1} and with probability 1 − (4𝐵round + 2)/𝑞, set

𝑟𝑑,𝑖∗ = ⊥. The output is (𝑟1,1, . . . , 𝑟1,ℓ , . . . , 𝑟_,1, . . . , 𝑟_,ℓ ).

• D1: In this distribution, for all 𝑑 ∈ [_] and 𝑖 ∈ [ℓ], sample 𝑟𝑑,𝑖
r← {0, 1} and with probability 1− (4𝐵round + 2)/𝑞,

set 𝑟𝑑,𝑖 = ⊥. The output is (𝑟1,1, . . . , 𝑟1,ℓ , . . . , 𝑟_,1, . . . , 𝑟_,ℓ ).

We start by showing that distributions D0 and D1 are statistically indistinguishable. Formally, we analyze the

distribution D0:

• Since crssamp ← Gen(1_, 1ℓ ) and (A1, . . . ,Aℓ , td) = Expand(crssamp), we appeal to Lemma 4.8 to conclude that

the marginal distribution of each A𝑖 is statistically close to uniform over Z𝑛×𝑡𝑞 . We declare A𝑖 ∈ Z𝑛×𝑡𝑞 to be

“good” if the property in Lemma 3.8 holds: namely, A𝑖 is good if for all y ∈ Z𝑛𝑞 , the distribution (A𝑖 )−1𝑠samp
(y) has

min-entropy at least 𝑛/2. Since 𝑡 ≥ 2𝑛 log𝑞 and 𝑠samp ≥ log 𝑡 , all but a negl(𝑛) fraction of A𝑖 ’s are “good”. Since

the marginal distribution of each A𝑖 is statistically close to uniform over Z𝑛×𝑡𝑞 , it follows that each A𝑖 is good

with probability 1 − negl(𝑛). By a union bound (and since ℓ = poly(_)), we conclude that with overwhelming

probability, all of the A𝑖 are good.

• If A𝑖 is good for all 𝑖 ∈ [ℓ], this means that H∞ (𝝅𝑑,𝑖 ) ≥ 𝑛/2 ≥ 2_ + log𝑞 for all 𝑑 ∈ [_] and 𝑖 ∈ [ℓ], where
𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp

(c𝑑 ).

• By Lemma 3.7, the following pair of distributions are statistically indistinguishable for all 𝑖 ∈ [ℓ]:

– Sample v𝑖
r← Z𝑡𝑞 . For each𝑑 ∈ [_], sample c𝑑

r← Z𝑛𝑞 and𝝅𝑑,𝑖 ← (A𝑖 )−1𝑠samp
(c𝑑 ). Output (v𝑖 , vT

𝑖𝝅1,𝑖 , . . . , vT
𝑖𝝅_,𝑖 ).

– Sample v𝑖
r← Z𝑡𝑞 . For each 𝑑 ∈ [_], sample 𝑢𝑑,𝑖

r← Z𝑞 . Output (v𝑖 , 𝑢1,𝑖 , . . . , 𝑢_,𝑖 ).

Since this holds for all 𝑖 ∈ [ℓ] and ℓ = poly(_), we conclude that the joint distribution of (𝑢𝑑,𝑖 ) (𝑑∈[_],𝑖∈[ℓ ] ) inD0

and D1 is statistically indistinguishable. Since both distributions derive 𝑟𝑑,𝑖 from 𝑢𝑑,𝑖 using the same procedure,

we conclude that D0 and D1 are statistically indistinguishable.

Next, D1 and D2 are identical distributions. Namely, if 𝑢𝑑,𝑖
r← Z𝑞 , then 𝑟𝑑,𝑖 = 0 with probability (2𝐵round + 1)/𝑞,

𝑟𝑑,𝑖 = 1 with probability (2𝐵round + 1)/𝑞, and 𝑟𝑑,𝑖 = ⊥ with probability 1 − (4𝐵round + 2)/𝑞. By a hybrid argument, we

conclude that D0 and D2 are statistically indistinguishable.

Consider now the probability that in an execution of Hyb(𝑏 )
4

and Hyb(𝑏 )
5

, it happens that for all 𝑑 ∈ [_], there
exists an index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. For a tuple (𝑟1,1, . . . , 𝑟1,ℓ , . . . , 𝑟𝑑,1, . . . , 𝑟𝑑,_) and an index 𝑑 ∈ [_], we define the
event Bad𝑑 to be the event that there exists 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. By a union bound, we have for all 𝑑 ∈ [_],

Pr[Bad𝑑 : (𝑟𝑑,𝑖 )𝑑∈[_],𝑖∈[ℓ ] ← D2] ≤
∑︁
𝑖∈[ℓ ]

𝑞 − (4𝐵round + 2)
𝑞

≤
∑︁
𝑖∈[ℓ ]

1

2ℓ
=
1

2

,
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when 𝐵round ≥ 𝑞/4 − 𝑞/(8ℓ) + 1/2. By definition of D2, we moreover have that

Pr


∧

𝑑∈[_]
Bad𝑑 : (𝑢𝑑,𝑖 )𝑑∈[_],𝑖∈[ℓ ] ← D1

 =
∏
𝑑∈[_]

Pr[Bad𝑑 : (𝑢𝑑,𝑖 )𝑑∈[_],𝑖∈[ℓ ] ← D2] =
1

2
_
.

Finally, since D0 and D1 are statistically indistinguishable, there exists a negligible function negl(·) where

Pr


∧

𝑑∈[_]
Bad𝑑 : (𝑢𝑑,𝑖 )𝑑∈[_],𝑖∈[ℓ ] ← D0

 ≤ Pr


∧

𝑑∈[_]
Bad𝑑 : (𝑢𝑑,𝑖 )𝑑∈[_],𝑖∈[ℓ ] ← D2

 + negl(_) =
1

2
_
+ negl(_).

Thus, in an execution of Hyb(𝑏 )
4

and Hyb(𝑏 )
5

, the probability that for all 𝑑 ∈ [_], there exists an index 𝑖 ∈ [ℓ] where
𝑟𝑑,𝑖 = ⊥ is at most 2

−_ + negl(_). Thus, with overwhelming probability, the adversary’s view in Hyb(𝑏 )
4

and Hyb(𝑏 )
5

is identical. The lemma follows. □

Lemma 5.16. It holds that Hyb(0)
5
(A) ≡ Hyb(1)

5
(A).

Proof. In Hyb(0)
5

, the challenger sets 𝛽 = 𝑟𝑖∗ whereas in Hyb(1)
5

, the challenger samples 𝛽
r← {0, 1}. We argue that

the distribution of 𝑟𝑖∗ in Hyb(0)
5

is uniformly random (and independent of all other quantities in the adversary’s view).

Consider an execution of Hyb(0)
5

. We consider two cases:

• Suppose for all 𝑑 ∈ [_], there exists an index 𝑖 ∈ [ℓ] where 𝑟𝑑,𝑖 = ⊥. In this case, the challenger samples

𝑟𝑖∗
r← {0, 1}.

• Otherwise, let 𝑑∗ ∈ [_] be the smallest index where 𝑟𝑑∗,𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ]. Then, the challenger sets
𝑟𝑖∗ = 𝑟𝑑∗,𝑖∗ . In Hyb(0)

5
, the challenger either sets 𝑟𝑑∗,𝑖∗ = ⊥ or samples 𝑟𝑑∗,𝑖∗

r← {0, 1}. Since 𝑟𝑑∗,𝑖∗ ≠ ⊥, this means

the challenger must have sampled 𝑟𝑑∗,𝑖∗
r← {0, 1}.

Finally, none of the other components in the adversary’s view depend on the value of 𝑟𝑑∗,𝑖∗ . As such, we conclude

that the distribution of 𝑟𝑖∗ in Hyb(0)
5

is uniform and independent of all other quantities in the adversary’s view. Thus,

the distribution of 𝛽 in the two experiments is identical. □

Combining Lemmas 5.11 to 5.16, we conclude that Hyb(0)
0

𝑠≈ Hyb(1)
0

, which completes the proof. □

Theorem 5.17 (Succinctness). If 𝑛 log𝑞 = poly(_, log ℓ), then Construction 5.3 is succinct.

Proof. The size of the commitment c output by GenBits in Construction 5.3 is either an element of Z𝑛𝑞 or ⊥. Thus,
we can describe c by a string of length 𝑛 log𝑞 + 1. If 𝑛 log𝑞 = poly(_, log ℓ), then succinctness holds. □

Parameter instantiation. Let _ be a security parameter and let ℓ be the length of the hidden-bits string. We now

provide one possible instantiation of the parameters in Construction 5.3 to satisfy Theorems 5.4, 5.5, 5.9 and 5.10.

In the following, we assume that ℓ ≤ 2
_
, so log ℓ ≤ _.

• When setting parameters, we work under the assumption that 𝑞 ≤ 2
𝑂 (_)

. Our final parameter instantiations

will satisfy this property. In this case, log𝑞 = 𝑂 (_).

• We require that 𝑛 ≥ 4_ + 2 log𝑞, so we can take 𝑛 = 4_ +𝑂 (_) = 𝑂 (_).

• We set 𝑡 = 3𝑛 ⌈log𝑞⌉ · (⌈log ℓ⌉ + 1) = 𝑂 (_3).

• We set 𝑠LWE = _𝛿 for some constant 𝛿 > 0, which we will set later.

• We set 𝑠samp = (ℓ𝑡 + 3𝑛 ⌈log𝑞⌉) log(ℓ𝑛) = 𝑂 (_4ℓ). We take 𝐵max >
√
𝑡𝑠samp = 𝑂 (_11/2ℓ).
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• We choose 𝑞 = poly(_, ℓ) and 𝛿 such that 𝑞 > 8ℓ𝑡
√
_𝑠LWE𝐵max+4ℓ = 𝑂 (_9+𝛿 ℓ2) and the LWE𝑛,𝑡,𝑞,𝑠LWE assumption

holds. In particular, since 𝑞 = poly(_, ℓ) and ℓ < 2
_
, this means 𝑞 ≤ 2

𝑂 (_)
, which satisfies our initial assumption.

• We set 𝐵round = 𝑞/4 − 𝑞/(8ℓ) + 1/2.

• Finally, we instantiate (Gen, Expand, SampleMultPre) with the (𝑛, 𝑡, 𝑞, 𝑠samp)-shifted multi-preimage trapdoor

sampler from Theorem 4.7 (Construction 4.6).

We briefly verify that these parameters satisfy the necessary requirements:

• Theorem 5.9 requires that 𝑞 > 4𝑡
√
_𝑠LWE𝐵max + 4𝐵round. Since 𝐵round = 𝑞/4 − 𝑞/(8ℓ) + 1/2, this is equivalent

to requiring that 𝑞/(2ℓ) > 4𝑡
√
_𝑠LWE𝐵max + 2, or equivalently, that 𝑞 > 8ℓ𝑡

√
_𝑠LWE𝐵max + 4ℓ .

• All of the conditions of Theorem 5.10 are satisfied by construction. In particular, the requirement 𝑞 > 4𝐵round +2
is satisfied whenever 𝑞 > 8ℓ .

With this setting of parameters, we obtain a dual-mode hidden-bits generator with the following properties:

• CRS size: By Theorem 4.7, the size of the CRS is _ + 𝑛𝑡 log𝑞 + ℓ𝑡 log𝑞 = ℓ · poly(_, log ℓ). Moreover, in hiding

mode, the CRS sampling algorithm is transparent.

• Commitment and opening size: The size of a commitment c ∈ Z𝑛𝑞 is 𝑛 log𝑞 = poly(_, log ℓ) bits. The size of
an opening 𝝅 ∈ Z𝑡𝑞 is 𝑡 log𝑞 = poly(_, log ℓ) bits.

Finally, for all ℓ = poly(_), security relies on the LWE𝑛,𝑡,𝑞,𝑠LWE assumption with a polynomial modulus-to-noise ratio

(in this case, 𝑞 = poly(_, ℓ) = poly(_) and 𝑠LWE = _𝛿 for constant 𝛿 > 0). We summarize our instantiation in the

following corollaries:

Corollary 5.18 (Dual-Mode Hidden-Bits Generator from LWE). Let _ be a security parameter. Then, for all polynomials
ℓ = ℓ (_), under the LWE assumption with a polynomial modulus-to-noise ratio, there exists a dual-mode hidden-bits
generator with a CRS of size ℓ · poly(_, log ℓ). Moreover, in (statistically) hiding mode, the common reference string can
be sampled using a transparent setup algorithm.

Corollary 5.19 (Dual-Mode NIZK for NP from LWE). Under the LWE assumption with a polynomial modulus-to-noise
ratio, there exists a dual-mode NIZK forNP. Specifically, we obtain a computational NIZK proof in the structured reference
string model and a statistical NIZK argument in the common random string model.

6 Statistically-Hiding Vector Commitments from SIS
In this section, we show how to use our shifted multi-preimage trapdoor sampler to construct a statistically-hiding

vector commitment from the SIS assumption. Our vector commitment scheme supports transparent setup. Moreover,

the size of the CRS, the commitment, and the opening all scale polylogarithmically with the input dimension. This

improves upon the earlier constructions of de Castro and Peikert [dCP23], which does not support statistically-hiding

openings as well as the construction of Wee and Wu [WW23b], which required a structured common reference string

(with size quadratic in the input dimension). We start by recalling the definition of a vector commitment and then

provide our construction and analysis. We refer to Section 2.1 for a high-level overview of the construction. Our

definitions are adapted from [WW23b]:

Definition 6.1 (Vector Commitment). Let _ be a security parameter and ℓ be a dimension. A vector commitment

scheme with succinct local openings over a message spaceM =
{
M_,ℓ

}
_,ℓ∈N consists of a tuple of efficient algorithms

ΠVC = (Setup,Commit,Open,Verify) with the following properties:

• Setup(1_, 1ℓ ) → crs: On input the security parameter _ and the vector length ℓ , the setup algorithm outputs

a common reference string crs.

• Commit(crs, x) → (𝜎, st): On input the common reference string crs and a vector x, the commit algorithm

outputs a commitment 𝜎 and a state st.
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• Open(st, 𝑖) → 𝜋 : On input a commitment state st and an index 𝑖 , the open algorithm outputs an opening 𝜋 .

Note that the opening algorithm could be randomized.

• Verify(crs, 𝜎, 𝑖, 𝑥, 𝜋) → 𝑏: On input the common reference string crs, a commitment 𝜎 , an index 𝑖 , a message

𝑥 , and an opening 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We now define several standard properties on vector commitment schemes:

• Correctness: For all polynomials ℓ = ℓ (_), there exists a negligible function negl(·) such that for all _ ∈ N
and all inputs x = (𝑥1, . . . , 𝑥ℓ ) ∈ Mℓ

_,ℓ
,

Pr

Verify(crs, 𝜎, 𝑖, 𝑥𝑖 , 𝜋) = 1 :

crs← Setup(1_, 1ℓ )
(𝜎, st) ← Commit(crs, x)

𝜋 ← Open(st, 𝑖)

 = 1 − negl(_).

• Succinctness: The vector commitment scheme is succinct if there exist fixed polynomials 𝑝1, 𝑝2 such that for all

_, ℓ ∈ N, all crs in the support of Setup(1_, 1ℓ ), all vectors x ∈ Mℓ
_,ℓ
, all (𝜎, st) in the support of Commit(crs, x),

and all 𝜋 in the support of Open(st, 𝑖), we have that |𝜎 | = 𝑝1 (_, log ℓ) and |𝜋 | = 𝑝2 (_, log ℓ).

• Computational binding: We say the commitment scheme is computationally binding if for all polynomials

ℓ = ℓ (_) and all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

Pr


Verify(crs, 𝜎, 𝑖, 𝑥, 𝜋) = 1

and 𝑥 ≠ 𝑥 ′ and
Verify(crs, 𝜎, 𝑖, 𝑥 ′, 𝜋 ′) = 1

:

crs← Setup(1_, 1ℓ );(
𝜎, 𝑖, (𝑥, 𝜋), (𝑥 ′, 𝜋 ′)

)
← A(1_, 1ℓ , crs)

 = negl(_).

• Statistical hiding: For a vector dimension ℓ , an adversary A, and a simulator S = (S0,S1), we define two
distributions RealA (_, ℓ) and IdealA,S (_, ℓ) as follows:
RealA (_, ℓ):
1. Sample crs← Setup(1_, 1ℓ ) and give crs to A.

2. Algorithm A outputs an input x ∈ Mℓ
_,ℓ

.

3. Compute (𝜎, st) ← Commit(crs, x) and give 𝜎 to A.

4. Algorithm A can adaptively query for openings. On

each query, it provides an index 𝑖 ∈ [ℓ], and the

challenger replies with 𝜋𝑖 ← Open(st, 𝑖).
5. AlgorithmA outputs a bit 𝑏 ∈ {0, 1} which is the output

of the experiment.

IdealA,S (_, ℓ):

1. Sample (crs, 𝜎, st) ← S0 (1_, 1ℓ ) and give crs to A.

2. Algorithm A outputs an input x ∈ Mℓ
_,ℓ

.

3. Give 𝜎 to A.

4. AlgorithmA can adaptively query for openings. On each

query, it provides an index 𝑖 ∈ [ℓ], and the challenger

computes (𝜋𝑖 , st) ← S1 (st, 𝑖, 𝑥𝑖 ). It replies to A with 𝜋𝑖 .

5. AlgorithmA outputs a bit 𝑏 ∈ {0, 1} which is the output

of the experiment.

We say that the vector commitment scheme is statistically hiding if there exists an efficient simulator S =

(S0,S1) and such that for all polynomials ℓ = ℓ (_) and all (possibly unbounded) adversaries A, there exists

a negligible function negl(·) such that for all _ ∈ N,

| Pr[RealA (_, ℓ) = 1] − Pr[IdealA,S (_, ℓ) = 1] | = negl(_).

Vector commitment scheme. We now describe our vector commitment scheme. As described in Section 2.1, our

construction can be viewed as replacing the CRS in the Wee-Wu vector commitment scheme [WW23b, Construc-

tion 3.9] with the CRS for our shifted multi-preimage trapdoor sampler. Our analysis follows via a similar structure

as the analysis in [WW23b], except we now appeal to the properties of the shifted multi-preimage trapdoor sampler.

We give the full description and analysis below:

Construction 6.2 (Vector Commitment). Let _ be a security parameter and ℓ be an input length parameter. Let

Πsamp = (Gen,GenTD, Expand, ExpandLocal) be a (𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage trapdoor sampler that supports

local expansion (Definition 4.4). Let 𝐵 = 𝐵(_, ℓ) be a bound. We construct a vector commitment ΠVC = (Setup,
Commit,Open,Verify) scheme over the message spaceM = Z𝑞 =

{
Z𝑞 (_,ℓ )

}
_,ℓ∈N as follows:
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• Setup(1_, 1ℓ ): On input the security parameter _ and the vector dimension ℓ , the setup algorithm samples

crssamp ← Gen(1_, 1ℓ ). It outputs the common reference string crs = (1_, ℓ, crssamp).

• Commit(crs, x): On input the common reference string crs = (1_, ℓ, crssamp) and a vector x ∈ Zℓ𝑞 , the
commit algorithm computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). Then it samples (𝝅1, . . . , 𝝅 ℓ , c) ←
SampleMultPre(td, 𝑥1e1, . . . , 𝑥ℓe1) where e1 = [1, 0, . . . , 0]T ∈ Z𝑛𝑞 is the first standard basis vector. It outputs

the commitment c ∈ Z𝑛𝑞 and the state st = (𝝅1, . . . , 𝝅 ℓ ).

• Open(st, 𝑖): On input the state st = (𝝅1, . . . , 𝝅 ℓ ) and the index 𝑖 ∈ [ℓ], the opening algorithm outputs 𝝅 𝑖 ∈ Z𝑡𝑞 .

• Verify(crs, c, 𝑖, 𝑥, 𝝅): On input the common reference string crs = (1_, ℓ, crssamp), a commitment c ∈ Z𝑛𝑞 ,
an index 𝑖 ∈ [ℓ], a message 𝑥 ∈ Z𝑞 , and an opening 𝝅 ∈ Z𝑡𝑞 , the verification algorithm computes A𝑖 =

ExpandLocal(1_, crssamp, 𝑖) and outputs 1 if ∥𝝅 ∥ ≤ 𝐵 and A𝑖𝝅 = c + 𝑥e1.

Theorem 6.3 (Correctness). Suppose Πsamp satisfies correctness and the preimage distribution property. If 𝑠 ≥ log 𝑡

and 𝐵 ≥
√
𝑡𝑠 , then Construction 6.2 is correct.

Proof. Take any polynomial ℓ = ℓ (_) and any x ∈ Zℓ𝑞 . Let crs← Setup(1_, 1ℓ ), (c, st) ← Commit(crs, x), and 𝝅 𝑖 ←
Open(st, 𝑖). Parse crs = (1_, ℓ, crssamp). Let (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). By construction, the commit

algorithm samples (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, 𝑥1e1, . . . , 𝑥ℓe1). Consider the value of Verify(crs, c, 𝑖, 𝑥𝑖 , 𝝅 𝑖 ).

• By correctness of Πsamp, A𝑖𝝅 𝑖 = c + 𝑥𝑖e1. It suffices to argue that ∥𝝅 𝑖 ∥ ≤ 𝐵.

• Since Πsamp satisfies the preimage distribution property, the distribution of (𝝅1, . . . , 𝝅 ℓ , c) is statistically close

to the distribution obtained by sampling c r← Z𝑛𝑞 and 𝝅 𝑖 ← (A𝑖 )−1𝑠 (𝑥𝑖e1 + c) for all 𝑖 ∈ [ℓ].

• By Lemma 4.8, the marginal distribution of A𝑖 is statistically close to uniform. Since 𝑠 ≥ log 𝑡 , by Lemma 3.2,

it holds that ∥𝝅 𝑖 ∥ ≤
√
𝑡𝑠 ≤ 𝐵 with overwhelming probability.

Finally, the local expansion property (Definition 4.4) ensures that ExpandLocal(1_, crssamp, 𝑖) = A𝑖 . The above analysis

shows that A𝑖𝝅 𝑖 = c + 𝑥𝑖e1 and ∥𝝅 𝑖 ∥ ≤ 𝐵, so Verify outputs 1 with overwhelming probability. □

Theorem 6.4 (Computational Binding). Suppose Πsamp satisfies somewhere programmability. Then, under the
SIS𝑛−1,𝑡,𝑞,2𝐵 assumption, Construction 6.2 is computationally binding.

Proof. Take any polynomial ℓ = ℓ (_) and any efficient adversary A for the computational binding game. We begin

by defining a sequence of hybrid experiments:

• Hyb
0
: This is the real binding experiment:

– The challenger begins by sampling crssamp ← Gen(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a commitment c ∈ Z𝑛𝑞 , an index 𝑖 ∈ [ℓ] and two pairs (𝑥, 𝝅) and (𝑥 ′, 𝝅 ′), where
𝑥, 𝑥 ′ ∈ M_,ℓ and 𝝅 , 𝝅 ′ ∈ Z𝑡𝑞 .

– The challenger then computes A𝑖 = ExpandLocal(1_, crssamp, 𝑖) and outputs 1 if 𝑥 ≠ 𝑥 ′, ∥𝝅 ∥ , ∥𝝅 ′∥ ≤ 𝐵,

and c = A𝑖𝝅 − 𝑥e1 = A𝑖𝝅 ′ − 𝑥 ′e1. Otherwise, the challenger outputs 0.

• Hyb
1
: Same as Hyb

0
, except at the beginning of the game, the challenger samples an index 𝑖∗ r← [ℓ]. The

output of the experiment is 1 if the conditions in Hyb
0
hold and 𝑖 = 𝑖∗.

• Hyb
2
: Same as Hyb

1
, except the challenger samples A𝑖∗

r← Z𝑛×𝑡𝑞 and crssamp ← GenProg(1_, 1ℓ , 𝑖∗,A𝑖∗ ).

We write Hyb𝑖 (A) to denote the random variable corresponding to the output of an execution of Hyb𝑖 with adversary

A. We now analyze each pair of adjacent experiments:

Lemma 6.5. It holds that Pr[Hyb
0
(A) = 1] = ℓ · Pr[Hyb

1
(A)].
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Proof. The only difference between these two experiments is the additional condition that 𝑖∗ = 𝑖 in Hyb
1
. Since the

adversary’s view in Hyb
1
is independent of 𝑖∗ (and in fact, the challenger can sample 𝑖∗ after the adversary outputs 𝑖),

the probability that Hyb
1
(A) = 1 is exactly 1/ℓ · Pr[Hyb

0
(A) = 1]. The claim follows. □

Lemma 6.6. If Πsamp is somewhere programmable, then Hyb
1
(A) 𝑠≈ Hyb

2
(A).

Proof. The only difference between these two experiments is the distribution of crs. These two distributions are

statistically indistinguishable by somewhere programmability of Πsamp □

Lemma 6.7. Suppose Πsamp satisfies somewhere programmability and local expansion. Then, under the SIS𝑛−1,𝑡,𝑞,2𝐵
assumption, there exists a negligible function negl(·) such that for all _ ∈ N, Pr[Hyb

2
(A) = 1] = negl(_).

Proof. Suppose Pr[Hyb
2
= 1] ≥ Y (_) for some non-negligible Y. We use A to construct an adversary B for the SIS

assumption:

• On input an SIS challenge matrix A ∈ Z(𝑛−1)×𝑡𝑞 , algorithm B samples 𝑖∗ r← [ℓ] and a r← Z𝑡𝑞 . It sets A𝑖∗ =
[
aT
A

]
∈

Z𝑛×𝑡𝑞 . Next, algorithm B samples crssamp ← GenProg(1_, 1ℓ , 𝑖∗,A𝑖∗ ) and gives crs = (1_, ℓ, crssamp) to A.

• AlgorithmA outputs a commitment c, an index 𝑖 , and two pairs (𝑥, 𝝅) and (𝑥 ′, 𝝅 ′). Algorithm B outputs 𝝅 −𝝅 ′.

Since the SIS challenger samples A r← Z(𝑛−1)×𝑡𝑞 , the distribution of A𝑖∗ is uniform over Z𝑛×𝑡𝑞 . Thus, algorithm B
perfectly simulates an execution of Hyb

2
for A. Thus, with probability Y, algorithm A outputs c ∈ Z𝑛𝑞 , 𝑖 = 𝑖∗,

𝑥, 𝑥 ′ ∈ M_,ℓ , and 𝝅 , 𝝅 ′ ∈ Z𝑡𝑞 where

𝑥 ≠ 𝑥 ′ and ∥𝝅 ∥ , ∥𝝅 ′∥ ≤ 𝐵 and c = A𝑖∗𝝅 − 𝑥e1 = A𝑖∗𝝅
′ − 𝑥 ′e1.

Here, we have implicitly used the fact that the (𝑖∗)th matrix output by ExpandLocal(1_, 𝑖, crs) is A𝑖∗ , which is guar-

anteed by somewhere programmability of Πsamp and the local expansion property (Definition 4.4). This means

A𝑖∗ (𝝅 − 𝝅 ′) = (𝑥 − 𝑥 ′)e1 =
[
𝑥 − 𝑥 ′
0𝑛−1

]
. (6.1)

Since 𝑥 ≠ 𝑥 ′, we conclude that 𝝅 − 𝝅 ′ ≠ 0. Since A𝑖∗ =
[
aT
A

]
, Eq. (6.1) now implies that A(𝝅 − 𝝅 ′) = 0𝑛−1. Thus

𝝅 − 𝝅 ′ is a non-trivial SIS solution. Finally, ∥𝝅 ∥ , ∥𝝅 ′∥ ≤ 𝐵, so ∥𝝅 − 𝝅 ′∥ ≤ 2𝐵 and algorithm B succeeds in breaking

SIS with the same advantage Y. □

Combining Lemmas 6.5 to 6.7, we conclude that Pr[Hyb
0
(A) = 1] ≤ ℓ · negl(_). Since ℓ = poly(_), computational

binding holds. □

Theorem 6.8 (Statistical Hiding). Suppose Πsamp supports simulatable openings (Definition 4.5) and moreover, that
𝑛 ≥ _ and 𝑞 is prime. Then Construction 6.2 satisfies statistical hiding.

Proof. Since Πsamp supports simulatable openings, let GenTD be the trapdoor generator algorithm. We construct an

efficient simulator S = (S0,S1) as follows:

• S0 (1_, 1ℓ ): On input the security parameter 1
_
and the vector dimension 1

ℓ
, the simulator first samples

(crssamp,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ ). Next, it samples c r← Z𝑛𝑞 . The simulator also initializes an empty

dictionary D to keep track of indices and openings. Finally, it outputs the common reference string crs =

(1_, ℓ, crssamp), the commitment c, and the simulation state st = (1_, 1ℓ , crssamp, c,T1, . . . ,Tℓ ,D).

• S(st, 𝑖, 𝑥𝑖 ): On input the simulation state st = (1_, 1ℓ , crssamp, c,T1, . . . ,Tℓ ,D), an index 𝑖 ∈ [ℓ], and an input

𝑥𝑖 ∈ M_,ℓ , the simulator first checks if there is a mapping (𝑖 ↦→ 𝝅 𝑖 ) in D. If so, it replies with 𝝅 𝑖 . Otherwise,

the simulator computes A𝑖 ← ExpandLocal(1_, crssamp, 𝑖) and samples 𝝅 𝑖 ← SamplePre(A𝑖 ,T𝑖 , 𝑥𝑖e1 + c).
It adds the mapping (𝑖 ↦→ 𝝅 𝑖 ) to D and outputs the opening 𝝅 𝑖 together with the updated state st =

(1_, 1ℓ , crssamp, c,T1, . . . ,Tℓ ,D).
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We now show that this simulator S satisfies the statistical hiding definition. Take any (possibly unbounded) adversary

A. We proceed via a hybrid argument:

• Hyb
0
: This is the distribution RealA (_, ℓ). Specifically, in this experiment, the challenger proceeds as follows:

– The challenger samples crssamp ← Gen(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a vector x and the challenger computes (c, st) ← Commit(crs, x). Specifically, the
challenger first computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp). Then it samples (𝝅1, . . . , 𝝅 ℓ , c) ←
SampleMultPre(td, 𝑥1e1, . . . , 𝑥ℓe1). The challenger responds to A with the commitment c.

– Whenever the adversary requests an opening on an index 𝑖 ∈ [ℓ], the challenger replies with 𝝅 𝑖 .

– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
, except the challenger changes how it samples the commitment and the openings:

– The challenger samples crssamp ← Gen(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a vector x. The challenger responds to A with the commitment c r← Z𝑛𝑞 . Then, the
challenger computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp) and for each 𝑖 ∈ [ℓ], 𝝅 𝑖 ← (A𝑖 )−1𝑠 (𝑥𝑖e1+c).

– The rest of the experiment proceeds as in Hyb
0
.

• Hyb
2
: Same as Hyb

1
, except the challenger changes how it samples the common reference string:

– The challenger samples (crssamp,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a vector x. The challenger responds to A with the commitment c r← Z𝑛𝑞 . Then, the
challenger computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp) and for each 𝑖 ∈ [ℓ], 𝝅 𝑖 ← (A𝑖 )−1𝑠 (𝑥𝑖e1+c).

– The rest of the experiment proceeds as in Hyb
0
.

• Hyb
3
: Same as Hyb

2
, except the challenger changes how it constructs the openings:

– The challenger samples (crssamp,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a vector x. The challenger responds to A with the commitment c r← Z𝑛𝑞 . Then,
the challenger computes (A1, . . . ,Aℓ , td) = Expand(1_, 1ℓ , crssamp) and for each 𝑖 ∈ [ℓ], it samples

𝝅 𝑖 ← SamplePre(A𝑖 ,T𝑖 , 𝑥𝑖e1 + c, 𝑠).
– The rest of the experiment proceeds as in Hyb

0
.

• Hyb
4
: Same as Hyb

3
, except the challenger changes how it computes A𝑖 :

– The challenger samples (crssamp,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A.

– Algorithm A outputs a vector x. The challenger responds to A with the commitment c r← Z𝑛𝑞 . For each
𝑖 ∈ [ℓ], the challenger computes A𝑖 = ExpandLocal(1_, crssamp, 𝑖) and 𝝅 𝑖 ← SamplePre(A𝑖 , T𝑖 , 𝑥𝑖e1 + c, 𝑠).

– The rest of the experiment proceeds as in Hyb
0
.

• Hyb
5
: Same as Hyb

4
, except the challenger samples 𝝅 𝑖 only when the adversary requests an opening on index

𝑖 ∈ [ℓ]:

– The challenger samples (crssamp,T1, . . . ,Tℓ ) ← GenTD(1_, 1ℓ ) and gives crs = (1_, ℓ, crssamp) to A. The

challenger also initializes an (empty) dictionary D to keep track of indices and openings.

– Algorithm A outputs a vector x. The challenger responds to A with the commitment c r← Z𝑛𝑞 .
– Whenever the adversary requests an opening on an index 𝑖 ∈ [ℓ], the challenger first checks if there

is a mapping (𝑖 ↦→ 𝝅 𝑖 ) in D. If so, it replies with 𝝅 𝑖 . Otherwise, the challenger computes A𝑖 =

ExpandLocal(1_, crssamp, 𝑖) and samples 𝝅 𝑖 ← SamplePre(A𝑖 , T𝑖 , 𝑥𝑖e1+c, 𝑠). It adds the mapping (𝑖 ↦→ 𝝅 𝑖 )
to D and gives 𝝅 𝑖 to A.
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– At the end of the game, algorithm A outputs a bit 𝑏 ∈ {0, 1} which is the output of the experiment.

This is the experiment IdealA,S (_, ℓ).

We write Hyb𝑖 (A,S) to denote the random variable (indexed implicitly by the security parameter _) corresponding

to the output of Hyb𝑖 with adversary A and simulator S. We now analyze each pair of hybrid experiments:

Lemma 6.9. Suppose Πsamp satisfies the preimage distribution property. Then Hyb
0
(A,S) 𝑠≈ Hyb

1
(A,S).

Proof. By the preimage sampling property, with overwhelming probability over the choice of crssamp, the distribution

of (𝝅1, . . . , 𝝅 ℓ , c) output by SampleMultPre(td, 𝑥1e1, . . . , 𝑥ℓe1) is statistically close to the distribution obtained by

sampling c ← Z𝑛𝑞 and 𝝅 𝑖 ← (A𝑖 )−1𝑠 (𝑥𝑖e1 + c) for all 𝑖 ∈ [ℓ]. Thus, Hyb0 (A,S) and Hyb
1
(A,S) are statistically

indistinguishable. □

Lemma 6.10. Suppose Πsamp has simulatable openings. Then, Hyb
1
(A,S) 𝑠≈ Hyb

2
(A,S).

Proof. By definition of mode indistinguishability (Definition 4.5), the distributions of crssamp output by Gen(1_, 1ℓ )
and GenTD(1_, 1ℓ ) are statistically indistinguishable. □

Lemma 6.11. Suppose Πsamp has simulatable openings. Then, Hyb
2
(A,S) 𝑠≈ Hyb

3
(A,S).

Proof. By the trapdoor generation property (Definition 4.5), we have that A𝑖T𝑖 = G and moreover, that ∥T𝑖 ∥ ≤
𝑠/(𝑡 log𝑛). By Theorem 3.9, this means the distribution of 𝝅 𝑖 ← SamplePre(A𝑖 ,T𝑖 , 𝑥𝑖e1 + c, 𝑠) is statistically close

to sampling 𝝅 𝑖 ← (A𝑖 )−1𝑠 (𝑥𝑖e1 + c). This holds for all 𝑖 ∈ [ℓ]. Since ℓ = poly(_), we conclude that Hyb
2
(A,S) and

Hyb
3
(A,S) are statistically indistinguishable by a hybrid argument. □

Lemma 6.12. Suppose ExpandLocal is a correct local-expansion procedure. Then, Hyb
3
(A,S) ≡ Hyb

4
(A,S).

Proof. Immediate by correctness of the local expansion procedure (Definition 4.4). □

Lemma 6.13. It holds that Hyb
4
(A,S) ≡ Hyb

5
(A,S).

Proof. The only difference between these experiments is the order in which the challenger samples different com-

ponents. As such, the output of these two experiments is identically distributed. □

Statistical hiding now follows by combining Lemmas 6.9 to 6.13. □

Theorem 6.14 (Succinctness). Suppose 𝑛 log𝑞 ≤ poly(_, log ℓ) and 𝑡 log𝑞 ≤ poly(_, log ℓ). Then Construction 6.2 is
succinct.

Proof. This is immediate from the assumptions. Namely, each commitment in Construction 6.2 is an element

c ∈ Z𝑛𝑞 , which has size |c| = 𝑛 log𝑞 ≤ poly(_, log ℓ). Similarly, each opening 𝝅 𝑖 ∈ Z𝑡𝑞 has length at most

𝑡 log𝑞 ≤ poly(_, log ℓ). □

Parameter instantiations. Let _ be a security parameter and ℓ be the vector dimension. We provide one possible

instantiation of the parameters in Construction 6.2 to satisfy Theorems 6.3, 6.4, 6.8 and 6.14. In the following, we

will assume that ℓ is polynomially-bounded in _ (i.e., ℓ ≤ _𝑐 for some constant 𝑐 ∈ N).

• We set the lattice dimension to be 𝑛 = _.

• We set 𝑡 = 3𝑛 ⌈log𝑞⌉ · (⌈log ℓ⌉ +1). When setting parameters, we work under the assumption that log𝑞 ≤ 𝑘 log _

for some constant 𝑘 > 0. It is easy to check that this is satisfied by our final instantiation. In this case,

𝑡 = 𝑂 (_ log ℓ log _) = 𝑂 (_ log2 _) since log ℓ ≤ 𝑐 log _.

• We set 𝑠 = (ℓ𝑡 + 3𝑛 ⌈log𝑞⌉) log(ℓ𝑛) = 𝑂 (ℓ_ log3 _).

• We set 𝐵 =
√
𝑡𝑠 = 𝑂 (ℓ_3/2 log4 _).
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• We choose a prime 𝑞 = 2𝐵 ·poly(𝑛) where the SIS𝑛−1,𝑡,𝑞,2𝐵 assumption holds. In this case, log𝑞 = 𝑂 (log _+ log ℓ).
Since log ℓ ≤ 𝑐 log _, we can bound (log𝑞) by (𝑘 log _) for some sufficiently-large constant 𝑘 > 0, as required.

• We instantiate (Gen,GenTD, Expand, ExpandLocal) with the (𝑛, 𝑡, 𝑞, 𝑠)-shiftedmulti-preimage trapdoor sampler

from Theorem 4.7 (Construction 4.6).

With this setting of parameters, we obtain a vector commitment scheme over Zℓ𝑞 with the following properties:

• CRS size: From Theorem 4.7, Construction 6.2 supports a transparent setup and the size of the CRS is

_ + log ℓ + 𝑛𝑡 log𝑞 = 𝑂 (_2 log3 _).

• Commitment size: A commitment in Construction 6.2 consists of a vector c ∈ Z𝑛𝑞 which has size 𝑛 log𝑞 =

𝑂 (_ log _).

• Opening size: An opening in Construction 6.2 consists of a vector 𝝅 𝑖 ∈ Z𝑡𝑞 , which has size 𝑡 log𝑞 = 𝑂 (_ log3 _).

We summarize the instantiation in the following corollary:

Corollary 6.15 (Vector Commitments from SIS). Let _ be a security parameter. Then, for all polynomials ℓ = ℓ (_),
under the SIS assumption with a polynomial noise bound 𝛽 = poly(_, ℓ) and a polynomial modulus 𝑞 = poly(_, ℓ), there
exists a vector commitment scheme over Zℓ𝑞 with a transparent CRS of size 𝑂 (_2 log3 _) = poly(_), commitments of size
𝑂 (_ log _) and openings of size 𝑂 (_ log3 _). The vector commitment is computationally binding and statistically hiding.

Acknowledgments
Brent Waters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is

supported by NSF CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research

Scholar award.

References
[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

EUROCRYPT, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and

shorter-ciphertext hierarchical IBE. In CRYPTO, 2010.

[ACL
+
22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri AravindaKrishnan

Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively composable.

In CRYPTO, 2022.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, 1996.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In STACS, 2009.

[AR20] Shashank Agrawal and Srinivasan Raghuraman. KVaC: Key-value commitments for blockchains and

beyond. In ASIACRYPT, 2020.

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional commitments

for unbounded-depth circuits. In TCC, 2023.

[BGG
+
14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic

circuit ABE and compact garbled circuits. In EUROCRYPT, 2014.

35



[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs

(and more) from LWE. In TCC, 2017.

[CCH
+
19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and

Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and correlation intractability

from strong kdm-secure encryption. In EUROCRYPT, 2018.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, 2013.

[CFG
+
20] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. Incrementally ag-

gregatable vector commitments and applications to verifiable decentralized storage. In ASIACRYPT, 2020.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM, 51(4),

2004.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In

EUROCRYPT, 2003.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice

basis. In EUROCRYPT, 2010.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from vanishing

polynomials - (extended abstract). In CRYPTO, 2023.

[dCP23] Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent setup

and from SIS. In EUROCRYPT, 2023.

[DHM
+
24] Fangqi Dong, Zihan Hao, Ethan Mook, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation

and ABE for RAMs from (ring-)LWE. In CRYPTO, 2024.

[DJJ24] Quang Dao, Aayush Jain, and Zhengzhong Jin. Non-interactive zero-knowledge from LPN and MQ.

In CRYPTO, pages 321–360, 2024.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on

a single random string (extended abstract). In FOCS, 1990.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In

EUROCRYPT, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3), 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new

cryptographic constructions. In STOC, 2008.

[GRWZ20] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating proofs

for multiple vector commitments. In ACM CCS, 2020.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.

In STOC, 2013.

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from

LWE. In CRYPTO, 2015.

36



[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures

from standard lattices. In STOC, 2015.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM J. Comput., 28(4), 1999.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions (or:

One-way product functions and their applications). In FOCS, 2018.

[HLOV11] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption: Constructions

from general assumptions and efficient selective opening chosen ciphertext security. In ASIACRYPT, 2011.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH. In

EUROCRYPT, pages 3–32, 2021.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of

fiat-shamir for proofs. In CRYPTO, 2017.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials

and their applications. In ASIACRYPT, 2010.

[LLNW16] Benoît Libert, San Ling, Khoa Nguyen, and HuaxiongWang. Zero-knowledge arguments for lattice-based

accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In EUROCRYPT,
2016.

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct arguments.

In CRYPTO, 2019.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:

Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From polynomial

commitments to pairing-based accumulators from simple assumptions. In ICALP, 2016.

[LY10] Benoît Libert and Moti Yung. Concise mercurial vector commitments and independent zero-knowledge

sets with short proofs. In TCC, 2010.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, 1987.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In

EUROCRYPT, 2012.

[PPS21] Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional commitments from lattices. In

TCC, 2021.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on

cyclic lattices. In TCC, 2006.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with

errors. In CRYPTO, 2019.

[PSTY13] Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. Streaming authenticated data

structures. In EUROCRYPT, 2013.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC, 2008.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for all NP from

CDH. In EUROCRYPT, 2019.

37



[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

[TAB
+
20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich.

Aggregatable subvector commitments for stateless cryptocurrencies. In SCN, 2020.

[TXN20] Alin Tomescu, Yu Xia, and Zachary Newman. Authenticated dictionaries with cross-incremental proof

(dis)aggregation. IACR Cryptol. ePrint Arch., 2020.

[Wat24] Brent Waters. A new approach for non-interactive zero-knowledge from learning with errors. In STOC,
2024.

[WW23a] HoeteckWee and David J. Wu. Lattice-based functional commitments: Fast verification and cryptanalysis.

In ASIACRYPT, 2023.

[WW23b] Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from lattices.

In EUROCRYPT, 2023.

38


	Introduction
	Technical Overview
	Application to Vector Commitments
	Application to Dual-Mode NIZKs for NP
	Related Work

	Preliminaries
	Shifted Multi-Preimage Trapdoor Sampler
	Dual-Mode Hidden-Bits Model NIZK from LWE
	Statistically-Hiding Vector Commitments from SIS

