
Efficient Asymmetric PAKE Compiler
from KEM and AE

You Lyu1,2 , Shengli Liu1,2(�) , and Shuai Han2,3

1 Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
{vergil,slliu,dalen17}@sjtu.edu.cn

Abstract. Password Authenticated Key Exchange (PAKE) allows two
parties to establish a secure session key with a shared low-entropy pass-
word pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-
server setting, and the server only stores a password file instead of the
plain password so as to provide additional security guarantee when the
server is compromised.

In this paper, we propose a novel generic compiler from PAKE to
aPAKE in the Universal Composable (UC) framework by making use of
Key Encapsulation Mechanism (KEM) and Authenticated Encryption
(AE).

– Our compiler admits efficient instantiations from lattice to yield
lattice-based post-quantum secure aPAKE protocols. When instan-
tiated with Kyber (the standardized KEM algorithm by the NIST),
the performances of our compiler outperform other lattice-based
compilers (Gentry et al. CRYPTO 2006) in all aspects, hence yield-
ing the most efficient aPAKE compiler from lattice. In particular,
when applying our compiler to the UC-secure PAKE schemes (San-
tos et al. EUROCRYPT 2023, Beguinet et al. ACNS 2023), we obtain
the most efficient UC-secure aPAKE schemes from lattice.

– Moreover, the instantiation of our compiler from the tightly-secure
matrix DDH (MDDH)-based KEM (Pan et al. CRYPTO 2023) can
compile the tightly-secure PAKE scheme (Liu et al. PKC 2023) to a
tightly-secure MDDH-based aPAKE, which serves as the first tightly
UC-secure aPAKE scheme.

Keywords: Password authenticated key exchange; asymmetric password au-
thenticated key exchange; lattice; post-quantum security

1 Introduction

Password Authenticated Key Exchange (PAKE) facilitates a secure establish-
ment of session keys between two parties, say a client and a server, over a public

https://orcid.org/0000-0002-8148-3643
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-8156-7089

network using a low entropy password pw. These session keys can then be used
to set up secure communication channels for the client and server. In contrast
to Authenticated Key Exchange (AKE) protocols, PAKE operates with easily
memorable passwords and eliminates the need for reliance on Public Key Infras-
tructure (PKI), hence offering a more convenient deployments of secure channels.

Note that the adversary can always implement online invocations of the
PAKE protocol with guessing passwords. The low entropy of the passwords might
make such online attacks succeed with non-negligible probability. So the security
of PAKE requires these online attacks be the only efficient attacks.

For PAKE, a password must be shared between the client and server. Gen-
erally, the password is memorable so it is not necessary for the client to store
it. However, the server has to store passwords for all the clients. If the server
is compromised, the adversary can snatch the password pw from the server so
as to impersonate the client. To address this vulnerability, asymmetric PAKE
(aPAKE) [15] was proposed. With an aPAKE, the server only has to store a
password file, which is a one-way function value H(pw) of the password pw.
Now if the server is compromised, the adversary only obtains the password file
instead of the plain password. Therefore, aPAKE is deemed preferable to PAKE
in the client-server setting. In this paper, we focus on aPAKE.

For aPAKE, if the adversary obtains H(pw), it is possible for him/her to
implement a so-called offline attack: compute or pre-compute (pw′,H(pw′))
pairs to check the correctness of guessing password pw′ by testing whether
H(pw′) = H(pw). Clearly, offline attack is inevitable after H(pw) is obtained by
the adversary. As such, the security of aPAKE requires these offline attacks on
H(pw) be the only efficient attacks that may work (beyond the online attacks).
Security Models for aPAKE. There are two types of security notions for
aPAKE, the game-based security in the Indistinguishability model (IND secu-
rity) [3,4] and the simulation-based security under the Universally Composable
framework (UC security) [15]. The UC framework is preferable to the IND model
in the following important aspects.

– The UC framework permits arbitrary correlations and distributions for pass-
words, while the IND model typically assumes passwords uniformly dis-
tributed over a dictionary for the sake of security proofs.

– Protocols that are proven secure in the UC framework enable a smooth and
secure composition with other UC-secure protocols, thanks to the universal
composition theorem [8].

Therefore, UC framework offers a more robust security guarantee and facil-
itates modular design of complex protocols, making it a better security model
than the IND model.
aPAKE from Post-Quantum Assumptions. Now there is a trend to migrate
cryptographic algorithms to post-quantum ones. In fact, NIST has already deter-
mined Kyber [7] as the Post-Quantum Cryptography (PQC) winner for Key En-
capsulation Mechanism (KEM), and Dilithium [11], Falcon [14], Sphincs+[5] for
digital signature schemes. Recently, the Crypto Forum Research Group (CFRG)

2

in IETF [31] initiated a selection process for both PAKE and aPAKE proto-
cols. As far as we know, none of existing candidates are based on post-quantum
assumptions.

There do exist a few aPAKE compilers instantiable from post-quantum as-
sumptions. One compiler is the Ω-method proposed by Gentry et al. [15], which
can compile any UC-secure PAKE protocol into a UC-secure aPAKE protocol
with the help of a signature scheme. Accordingly, the existing UC-secure PAKE
protocol from lattices [29,2] and post-quantum secure signature schemes (like
Dilithium [11], Falcon [14], Sphincs+ [5]) admit UC-secure aPAKE protocols.
Another compiler is due to McQuoid and Xu [24], which can compile any UC-
secure PAKE protocol into a strong aPAKE protocol. This strong aPAKE is
secure against pre-computation attacks (in idealized generic group action model
[12]), but their compiler can only be instantiable from group actions (e.g. isogeny-
based CSIDH) rather than lattices. Note that there also exists an aPAKE com-
piler from UC-secure Key-Hiding AKE protocols [17,30,29]. However, no such
key-hiding AKE protocols is instantiable from post-quantum assumptions. So
up to now this compiler does not lead to post-quantum secure aPAKE yet.

In summary, the two UC-secure aPAKE compilers in [15,24] seem to be the
only available approaches to aPAKE achieving post-quantum security. However,
either compiler has its own limitations.

– The compiler in [24] can only be instantiated from isogeny-based assump-
tions, rather than the mainstream lattice-based assumptions. Besides, the
isogeny-based group action does not offer good computational efficiency un-
der the current parameter configuration.

– The compiler in [15] can be instantiated from lattice-based assumptions with
the help of lattice-based signature schemes. However, it is not very efficient
since current lattice-based signature schemes (like Dilithium [11] in the NIST
PQC winner) will lead to much higher computational overhead compared to
their KEM counterparts (like Kyber [7] in the NIST PQC winner) under the
same security level. Technically speaking, this might be mainly due to the
time-consuming process of trapdoor sampling or rejection sampling involved
in most lattice-based signature schemes, dating back to the seminal works
of [16,23].

This motivates us to seek a new aPAKE compiler instantiable from lattice
to answer the following question:

How to construct an efficient UC-secure aPAKE protocol
from lattices, without using signatures?

Our Contribution. In this paper, we address the aforementioned question
through the following contributions.

• UC-secure aPAKE compiler without using signatures. We propose
a novel generic compiler that can compile any UC-secure PAKE protocol to
a UC-secure aPAKE protocol, with the help of weak primitives of KEM and

3

Authenticated Encryption (AE). KEM is only required to have One-Wayness
under Plaintext-Checkable Attacks (OW-PCA)[25], weaker than the stan-
dard Indistinguishability under Chosen-Ciphertext Attacks (IND-CCA). AE
is only required to have one-time CCA security and one-time authenticity,
which has efficient information-theoretical instantiations. In particular, our
compiler does not rely on signature schemes.

• Mutual explicit authentication & good round efficiency. In addition
to its excellent efficiency, our compiler enjoys other desirable features. By
using our compiler, the resulting aPAKE enjoys mutual explicit authentica-
tion even if the underlying PAKE does not. This is similar to the compiler in
[15] but in sharp contrast to [24], which completely relies on the underlying
PAKE to achieve mutual explicit authentication.

Moreover, our compiler only augments two additional rounds to the
underlying PAKE. If the last round message of PAKE is sent from the server,
then the first additional round of our compiler can be merged to the last
round of PAKE, and hence only one additional round is needed for aPAKE.
This is also similar to the compiler in [15] and comparable to [24].4

• The most efficient UC-secure aPAKE from lattice. By instantiating
the KEM in our compiler with Kyber, the NIST PQC KEM winner, we
obtain a lattice-based compiler. The performance evaluations show that our
Kyber-based compiler outperforms the signature-based compiler in [15] from
lattice in all aspects: ours save at least 61.1%-63.8% computing time and
41.5%-84.3% communication cost. Our Kyber-based compiler turns out to
be the most efficient aPAKE compiler from lattice, and also results in the
most efficient UC-secure aPAKE schemes from lattice when applying to the
UC-secure PAKE schemes in [29,2].

• The first tightly UC-secure aPAKE. By instantiating the KEM in our
compiler with the tightly-secure matrix DDH (MDDH)-based KEM scheme
proposed in [26], we obtain a tightness-preserving compiler, which yields the
first tightly UC-secure aPAKE scheme when applying the compiler to the
tightly-secure PAKE scheme in [22].

Technique Overview. Our aPAKE compiler mainly relies on a KEM with
OW-PCA security to compile a PAKE to an aPAKE protocol. Here OW-PCA
[25] is weaker than IND-CCA security and asks one-wayness of ciphertext even
if the adversary has access to a “plaintext-checking” oracle which on input a
ciphertext-key pair (c,K) determines whether c is an encapsulation of K.

Our compiler also requires a one-time secure Authenticated Encryption (AE)
and five hash function H0, · · · ,H4. Here one-time security of AE includes one-
time authenticity and one-time CCA security. We note that one-time secure AE
has very efficient information-theoretical instantiations, e.g., from one-time pad
and one-time secure message authentication code (MAC). On the other hand,
4 More precisely, the compiler in [24] incurs an additional round from server to client

before PAKE. Since it is usually the client who starts the protocol, actually two
additional rounds are needed before PAKE in [24].

4

the hash functions will be modelled as Random Oracles (RO) during the security
proof.

We refer to Fig. 1 for a high-level description of our compiler. More precisely,
our compiler works as follows.

Setup: rw ← H0(pw); (pk, sk)← KeyGen(H1(pw)); PwFile = (rw, pk)

Client(pw): Server(rw, pk):
rw := H0(pw) −→

(Trans,K0) ←−
PAKE

←− rw

−→ (Trans,K0)

c← AE.Dec(H2(K0), ψ)
If c = ⊥: Abort
(pk, sk)← KeyGen(H1(pw))
K1 ← Decap(sk, c)
σ := H3(K0,K1, T rans|ψ)
sKey := H4(K0)

ψ
←−−−−−−−

σ−−−−−−−→

(c,K1)← Encap(pk)
ψ ← AE.Enc(H2(K0), c)

If σ ̸= H3(K0,K1, T rans|ψ) :
Abort

sKey := H4(K0)

Fig. 1: High level description of our aPAKE compiler from KEM and AE.

The server’s password file contains a hash value H0(pw) of the password pw
and a KEM public key pk, which is derived from the password pw by using
H1(pw) as the randomness of key generation, i.e., (pk, sk)← KeyGen(H1(pw)).

To establish a session key sKey, the client and server equip the underlying
PAKE with password rw = H0(pw), and run the PAKE protocol to derive a
PAKE session key K0.

Next, the server will use KEM to distribute a key K1 to the client with the
help of pk (retrieved from its password file): it first invokes (c,K1)← Encap(pk)
but it does not send c directly to the client. Instead, the server will use the
PAKE session key K0 to derive a key H2(K0) for AE. Then with the help of AE,
the server further encrypts the encapsulation c to obtain an AE ciphertext ψ via
ψ ← AE.Enc(H2(K0), c), and sends ψ to the client. In this way, the (one-time)
authenticity of AE helps the server authenticate itself to the client since only
the server and client can compute K0 via PAKE and generate valid ciphertext ψ
(i.e., the decryption of which does not lead to rejection) under AE key H2(K0).

After receiving ψ, the client checks the validity of ψ with the AE key H2(K0).
If ψ is valid, i.e., AE.Dec(H2(K0), ψ) ̸= ⊥, the client will set the session key
sKey := H4(K0). It also recovers the KEM secret key sk from pw via (pk, sk)←
KeyGen(H1(pw)), and then double decrypts ψ with AE key H2(K0) and KEM
secret key sk to obtain K1. Finally, the client computes an authenticator σ :=
H3(K0,K1, T rans|ψ) where Trans is the transcription of PAKE, and sends σ to
the server. Note that only the server and client can compute K0 and K1. In this
way, the confidentiality of KEM and AE (i.e., OW-PCA of KEM and one-time
CCA of AE) help the client authenticate itself to the server.

5

Finally, the server checks the validity of σ with (K0,K1) by testing whether
σ = H3(K0,K1, T rans|ψ), where Trans, ψ, σ constitute the transcription seen
by the server. If σ is valid, the server’s session key is set to sKey := H4(K0).

Roughly speaking, our aPAKE compiler is designed in a “PAKE plus password-
based mutual authentication” manner. PAKE helps the client and server share
an AE key H2(K0) and then AE helps the authentication of the server. Mean-
while, the server’s message ψ can be viewed as a “challenge” to the client. Only
the client knowing the correct password pw is able to derive the KEM secret key
sk to recover K1 and generate the correct “response” σ with (K0,K1). Putting
differently, σ can be viewed as a proof of knowledge of pw for the client. As long
as adversary A does not obtain pw through offline or online attacks, A cannot
impersonate the client even if A compromises the server and obtains (rw, pk).

UC security in RO model. To prove the UC security for our aPAKE compiler
in the random oracle (RO) model, we have to construct a simulator Sim to
simulate all the interaction transcripts and session keys for both passive and
active attacks implemented by A, without the knowledge of password pw but
accessing to the ideal functionality Fapake for aPAKE (see Fig. 4 in Sect. 2.3).

The aPAKE protocol has two parts: the PAKE part in which rw = H0(pw)
is used to generate PAKE key K0, and the last two rounds in which K0 and
(pk, sk, rw) are used to generate ψ, σ and the session keys sKey. Recall that
PAKE has UC security, so the PAKE part can emulate the ideal functionality
Fpake (see Fig. 3 in Sect. 2.3 for the description of Fpake).

Firstly, let us consider A’s attacks on the PAKE part. The task of Sim is
to simulate the correctly distributed PAKE key K0 without password pw. Note
that if A did not use the correct PAKE password rw := H0(pw) in the PAKE
part, A’s active attack on the PAKE part hardly succeeds, due to the ideal
functionality Fpake of PAKE. We consider the following three cases.

Case I: A’s successful active attacks on the PAKE part with the cor-
rect password pw. In this case, A successful implements either an online
attack or an offline attack, in both of which A must have queried H0(pw)
to obtain rw. For A’s such an attack with rw, Sim can search the hash list
to find pw′ such that rw = H0(pw

′), and then justify the correctness of pw′

with the help of Testpw interface of Fapake. In this way, Sim is able to extract
the correct password pw from A’s successful active attacks. Then with pw,
it can simulate the PAKE part to generate PAKE key K0 for A.

Case II: A’s successful active attacks on the PAKE part with the
stolen PAKE password rw. In this case, A must have stolen the pass-
word file (rw, pk) and can use rw to impersonate client or server in the
PAKE part of the aPAKE protocol. Sim can simulate the generation of pass-
word file for A with random elements. More precisely, Sim picks rw and r
randomly, sets H0(?) := rw and H1(?) := r respectively with pw =? un-
determined, and generates (pk, sk) ← KeyGen(r). If later A attacks with
correct pw, Sim can extract it (see Case I) and then re-program the hash
function with H0(pw) := rw and H1(pw) := r. With the knowledge of rw,

6

it can simulate Fpake to generate PAKE key K0 for A. We stress that Sim
generates (pk, sk, rw) without pw in this case.

Case III: the other cases. If neither Case I nor Case II happens, then either
A’s active attack fails or A implements a passive attack.
Case III.1: Failed active attack on the PAKE part. In this case, ei-

ther the PAKE part outputs ⊥ to abort the protocol (PAKE with ex-
plicit authentication), or the PAKE part outputs different PAKE session
keys K0 and K ′

0 for Client and Server respectively (PAKE with implicit
authentication), where K0 and K ′

0 must be uniform to A according to
the UC security of PAKE.

Case III.2: Passive attack on the PAKE part. In this case, the PAKE
part generates the shared PAKE session key K0 for Client and Server.
According to the UC security, K0 must be uniform to A.

In this case, Sim can simulate K0 (also K ′
0) with a randomly chosen one.

Next, let us consider A’s attacks on the last two rounds of the aPAKE pro-
tocol. We follow the above three cases.

Case I happened. In this case, Sim has extracted the correct password pw and
also knows PAKE key K0. With the knowledge of pw and K0, Sim can give
a perfect simulation for A’s active attacks (here passive attack is impossible
due to the previous active attack on the PAKE part) with round message ψ′

or σ′. Note that Sim can use the correct pw to invoke Fapake to assign the
session key sKey determined by A to both client and server.

Case II happened. In this case, Sim has the knowledge of (pk, sk, rw) itself
(generated without pw) and the PAKE key K0. also uniformly distributed.

– For A’s active attack with ψ′, Sim can determine the validity of ψ′ with
K0. It rejects ψ′ and aborts the protocol for invalid ψ′, and for valid ψ′

it invokes Fapake to assign the session key sKey determined by A to both
client and server (dealing with the case that A stole the file (pk, rw) and
successfully impersonated server to accomplish the aPAKE protocol).

– For A’s active attack with σ′, Sim can determine the validity of σ′ with
K0 and K1. If σ′ is valid and A has obtained the correct password pw
via an offline attack, it invokes Fapake to assign the session key sKey
determined by A to both client and server. If σ′ is invalid, it rejects σ′

and aborts the protocol. Define Bad as the event that σ′ is valid but
A did not obtain pw from offline attack. If Bad happens, it rejects σ′

as well. However in the real experiment, in case of Bad, σ′ should be
accepted. This imperfect simulation does not annoy us since Bad can
hardly happen, which is guaranteed by the OW-PCA security of KEM.
The reason is as follows. Without pw, A cannot derive sk, then A cannot
obtain K1 due to the OW-PCA security, hence H3(K0,K1, T rans|ψ) is
uniform to A and σ′ = H3(K0,K1, T rans|ψ) hardly holds.

Case III happened. In this case, Sim has the knowledge of K0 which is uni-
formly distributed inA’s view. Then toA, the hash values ofH2(K0),H3(K0,
K1, T rans|ψ),H4(K0) are also uniformly distributed.

7

– For A’s passive attacks on server or client, Sim can simulate ψ with
ψ ← AE.Enc(H2(K0), dummy message) and simulate σ with a uniform
string, and invoke Fapake to generate random session key sKey for server
or client. Given uniform AE key H2(K0), AE encryption of a dummy
message is indistinguishable from AE encryption of the real message c,
due to the one-time CCA security of AE. Meanwhile random oracles
guarantee the uniformity of σ := H3(K0, K1, T rans|ψ) and sKey :=
H4(K0). Moreover, Sim invokes Fapake to generate a uniform session key
sKey for both client and server. Therefore, Sim’s simulation is perfect for
these passive attacks.

– For A’s active attacks on client with ψ′, Sim directly rejects and aborts
the protocol. Without the knowledge of AE key H2(K0),A’s forgery of ψ′

will result in AE.Dec(H2(K0), ψ
′) = ⊥, due to the one-time authenticity

of AE. So Sim’s simulation of dealing with ψ′ is perfect (except with
negligible probability).

– For A’s active attacks on client with σ′, Sim directly rejects and aborts
the protocol. Without the knowledge of KEM’s secret key sk, K0, A’s
forgery of σ′ can hardly collide with the valid σ := H3(K0,K1, T rans|ψ),
due to uniformity of the RO outputs. So Sim’s simulation of dealing with
ψ′ is perfect (except with negligible probability).

Comparison. In Table 1, we instantiate our aPAKE compiler with the NIST
PQC KEM winner algorithm Kyber, and compare it with the signature-based
compiler [15], which is the only known aPAKE compiler instantiable from lattices
prior to our work. The performance results in Table 1 is obtained by running
experiments on Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz with 4 cores
under macOS 13.3.1. When the compiler [15] is instantiated with the NIST PQC
lattice-based signature scheme Dilithium or Falcon, our compiler significantly
outperforms theirs in all aspects including registration time, computing time,
server storage size, and communication cost. This suggests that our compiler is
the most efficient aPAKE compiler from lattices. As far as we know, there is
no UC-secure aPAKE scheme constructed directly from lattices, and the only
approach to UC-secure aPAKE from lattices is via compiling a PAKE scheme to
an aPAKE. Therefore, the good efficiency of our compiler suggests that applying
our compiler to the available UC-secure PAKE schemes from lattices will yield
the most efficient UC-secure aPAKE schemes from lattices.

We also compare our compiler with known aPAKE compilers [15,24] instan-
tiated from other post-quantum assumptions (see Table 3 in Appendix D). The
comparison shows that our compiler overwhelms these compilers in terms of
registration time and computing time, and has comparable server storage and
communication cost.

In Table 2, we also compare the resulting MDDH-based aPAKE scheme (from
our MDDH-based compiler) with other aPAKE schemes in terms of tight UC
security. The tight security of aPAKE in [22,30,32,19,24] is eliminated by the
impossibility result in [22], which essentially said that tightly UC-security is
impossible to achieve if the secret derived from password by client is uniquely

8

Table 1: Efficiency comparison of our Kyber-based compiler with the other
aPAKE compilers [15] from lattices, where Kyber is in its version of NIST
security level 3. For computing and communication cost, we use the mode of
“Client + Server = Total” to reflect the seperation of client/server com-
putation/communication. The aPAKE compiler in [15] has two lattice-based
instantiations, one is instantiated with Dilithium in its version of NIST security
level 3, and the other is instantiated with Falcon in its version of NIST security
level 1 (due to its lack of level 3).

aPAKE
Compiler

Registration
Time (ms)

Computing
Time (ms)

Server
Storage (KB)

Communication
Cost (KB)

Assumption
Type

[15] (Dilithium) 0.096 0.245 + 0.126 = 0.371 5.875 3.215 + 3.938 = 7.153 Lattice-based
[15] (Falcon) 7.003 0.271 + 0.074 = 0.345 2.189 0.642 + 1.282 = 1.924 Lattice-based

Ours (Kyber) 0.017 0.051 + 0.083 = 0.134 1.188 0.031 + 1.094 = 1.125 Lattice-based

Table 2: Comparison of our MDDH-based aPAKE scheme with other UC-secure
aPAKE scheme in terms of tight UC security, where our aPAKE scheme is re-
sulted from compiling the PAKE protocol [22] with our MDDH-based compiler.
“?” denotes its tight UC security is unknown.

aPAKE scheme Our MDDH-based aPAKE [22] [30] [32] [19] [24] [15] [17]
Tight UC Security? ✓ × × × × × ? ?

determined by the password file and moreover the relation between the secret and
file can be efficiently determined. In contrast to their schemes, the client secret
(rw, sk) in our MDDH-based aPAKE evades the impossibility result since the
key generation of MDDH-based KEM makes sure that multiple sk correspond to
one pk and hence to one password file. On the other hand, the aPAKE schemes
[15,17] in Table 2 are obtained by compiling PAKE + signature in [15] and AKE
+ ideal cipher in [17] respectively, but the security reduction is not tight, so it
is unknown whether tight UC security can be achieved.

The Necessity of AE in Our Compiler. Note that AE plays an important
role in our compiler for aPAKE to achieve explicit authentication. Moreover,
AE is especially necessary in our compiler when the underlying KEM has no
anonymity under secret key leakage. No anonymity under secret key leakage
means that given sk, one can efficiently decide whether a KEM ciphertext c is
generated under pk. If we take off AE from the round messge ψ, the server will
send the KEM ciphertext c directly, and then the resulting aPAKE will suffer
from an offline attack: the adversary sees the encapsulation c, tries different
password pw, generates (pk, sk)← KeyGen(H1(pw)), and tests whether c is the
KEM ciphertext generated under key pair (pk, sk).

As far as we know, many lattice-based KEMs have no anonymity under secret
key leakage. Let us take Regev’s encryption scheme [28] as an example. For a
ciphertext c generated under pk, the decryption of c using sk will result in a value
which is either very close to 0 or close to q/2 with q the modulus. However, for c

9

generated under another public key pk′, the decryption of c using sk may result in
a value far from both 0 and q/2. In this way, one can in fact efficiently tell whether
c is generated under pk (at least with noticeable probability). Consequently, AE
is necessary for our lattice-based compiler.

On the other hand, if the underlying KEM does have anonymity under secret
key, which means the adversary cannot distinguish a given ciphertext c is gen-
erated under (pk1, sk1) or (pk2, sk2), the above offline attack fails. However, the
price of getting rid of AE from our compiler is that we lose the explicit authen-
tication of server-side. Actually, the CDH-based aPAKE compiler [19] can be
seen as an instantiation of our compiler from ElGamal KEM without AE, and of
course the CDH-based aPAKE does not achieve explicit mutual authentication.
Hardness on Achieving UC-Secure aPAKE in QROM. Note that our
aPAKE compiler is proved under ROM instead of Quantum Random Oracle
Model (QROM) [6]. QROM allows adversary A to perform superposition queries
to random oracles, making it hard for simulator to extract preimages or repro-
gram random oracles. It is especially hard to give UC-secure aPAKE protocols
in QROM since reprogrammable random oracles are unavoidable for the con-
struction of UC-secure aPAKE protocols, as demonstrated in [18]. Therefore, it
is a big challenge to construct UC-secure aPAKE in QROM, and we leave it as
an interesting open problem.

2 Preliminary

Let λ ∈ N denote the security parameter throughout the paper. If x is defined
by y or the value of y is assigned to x, we write x := y. For µ ∈ N, define
[µ] := {1, 2, . . . , µ}. Denote by x ←$ X the procedure of sampling x from set
X uniformly at random. Let |X | denote the number of elements in X . All our
algorithms are probabilistic unless stated otherwise. We use y ← A(x) to define
the random variable y obtained by executing algorithm A on input x. We also
use y ← A(x; r) to make explicit the random coins r used in the probabilistic
computation. The notation “≈s” represents statistical indistinguishability, while
“≈c” denotes computational indistinguishability. “PPT” abbreviates probabilis-
tic polynomial-time. Denote by negl some negligible function.

In Subsect. 2.1, we recall the definitions of Key Encapsulation Mechanism
(KEM), Authentication Encryption (AE) and their security notions. In Subsect.
2.2 and Subsect. 2.3, we present the ideal functionalities of random oracle and
(a)PAKE, respectively.

2.1 KEM and AE

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KeyGen,Encap,Decap) consists of three algorithms:

- KeyGen(r) : Taking as input a randomness r ∈ R , the key generation algo-
rithm outputs a pair of public key and secret key (pk, sk).

10

- Encap(pk) : Taking as input a public key pk, the encapsulation algorithm
outputs a pair of ciphertext c ∈ CT and encapsulated key K ∈ K.

- Decap(sk, c) : Taking as input a secret key sk and a ciphertext c, the decap-
sulation algorithm outputs K ∈ K.

The correctness of KEM requires that

Pr

[
r ←$ R, (pk, sk)← KeyGen(r)

(c,K)← Encap(pk)
: Decap(sk, c) = K

]
= 1− negl(λ).

Definition 2 (OW-PCA security for KEM). For a KEM scheme KEM =
(KeyGen,Encap,Decap), the advantage function of an adversary A is defined by

Advow-pca
KEM (A) := Pr

 r ←$ R, (pk, sk)← KeyGen(r),
(c,K)← Encap(pk)

K ′ ← ACheck(sk,·,·)(pk, c)
: K = K ′

 ,
where the oracle Check takes as input a ciphertext-key pair (c,K) and returns
whether Decap(sk, c) = K or not. The OW-PCA security for KEM requires
Advow-pca

KEM (A) = negl(λ) for all PPT A.

Definition 3 (AE). An authenticated encryption (AE) scheme AE = (Enc,Dec)
consists of two algorithms:

- Enc(k,m) : Taking as input a key k ∈ K and a message m ∈M, the encryp-
tion algorithm outputs a ciphertext c.

- Dec(k, c) : Taking as input a key k ∈ K and a ciphertext c, the decryption
algorithm outputs a message m ∈M or a symbol ⊥.

The correctness of AE requires that Dec(k,Enc(k,m)) = m holds for all k ∈ K
and all m ∈M.

Definition 4 (One-time authenticity for AE). For an AE scheme AE =
(Enc,Dec), the advantage function of an adversary A for one-time authentic-
ity is defined by Advot-authAE (A) := Pr

[
k ←$ K, c ← AEnc(k,·) : Dec(k, c) ̸= ⊥ ∧

c is not the output of oracle Enc(k, ·)
]
. The one-time authenticity for AE requires

Advot-authAE (A) = negl(λ) for all PPT A that query the oracle Enc(k, ·) at most
once.

Definition 5 (One-time IND-CCA security for AE). For an AE scheme
AE = (Enc,Dec), the advantage function of an adversary A for one-time CCA se-
curity is defined by Advot-ccaAE (A) :=

∣∣Pr [k ←$ K, b ←$ {0, 1}, (m0,m1)← ADec(k,·),

cb ← Enc(k,mb), b
′ ← ADec(k,·)(cb) : b = b′

]
− 1/2

∣∣. The one-time IND-CCA
security requires Advot-ccaAE (A) = negl(λ) for all PPT A that query the oracle
Dec(k, ·) at most once for a ciphertext different from cb.

Such an AE can be easily constructed from one-time pad and one-time se-
cure Message Authentication Code (MAC), and hence it has a very efficient
information-theoretical instantiation. See Sect. 4 for the detailed construction.

11

2.2 Idealized Random Oracle Model

The idealized functionality of random oracle is shown in Fig. 2. The idealized
functionality of random oracle can be perfectly simulated by a PPT simulator
Sim: Sim maintains a list L (initialized to be empty) to store the records. Upon
receiving a query (Eval, x) from P , Sim checks whether there exists (x, y) ∈ L.
If yes, Sim returns y. Otherwise, Sim randomly samples y ←$ Y, records (x, y)
in the list L, and returns y.

Ideal Functionality FRO

The ideal functionality FRO is parameterized by a random map H : {0, 1}∗ → Y.
Upon receiving a query (Eval, x) from P :

If H(x) is defined: return H(x).
Else: y ←$ Y, H(x) := y, return H(x).

Fig. 2: The ideal functionality FRO for random oracle H.

2.3 (Asymmetric) PAKE under UC Framework

In Fig. 3 and Fig. 4, we show the ideal functionalities of PAKE and aPAKE
respectively. Here the functionalities mainly follows from [15] along with some
modifications as did in [32]. The ideal functionality of aPAKE is extended from
that of PAKE, so we only explain aPAKE below.

Functionality Fpake

The functionality Fpake is parameterized by a security parameter λ. It interacts with an adversary A
and a set of parties via the following queries:
Upon receiving a query (NewClient, C(i), iid, S(j), pw) from C(i):

Send (NewClient, C(i), iid, S(j)) to A. Record (C(i), iid, S(j), pw) and mark it as fresh.
Upon receiving a query (NewServer, S(j), iid′, C(i), pw) from S(j):

Send (NewServer, S(j), iid′, C(i)) to A. Record (S(j), iid′, C(i), pw) and mark it as fresh.
Upon receiving a query (Testpw, P, iid, pw′) from A:

If there is a fresh record (P, iid, ·, pw):
If pw′ = pw, mark the record compromised and reply to A with “correct guess”.
If pw′ ̸= pw, mark the record interrupted and reply A with “wrong guess”.

Upon receiving a query (NewKey, P, iid, sid,Key∗) from A:
If there is a compromised record (P, iid,Q, pw), send (sid,Key∗) to P .
If there is a fresh record (P, iid,Q, pw), there is a completed record (Q, iid′, P, pw′) with pw = pw′,
Fpake has sent (sid,Key′) to Q, and (Q, iid′, P, pw′) was fresh when (sid,Key′) was sent, then
output (sid,Key′) to P .
In any other case, pick a new random key Key ←$ {0, 1}λ and send (sid,Key) to P .
In all cases, mark the record (P, iid,Q, pw) as completed.

Fig. 3: The ideal functionality Fpake for PAKE.

Security guarantees in the ideal world. Fapake in Fig. 4 formalizes the
ideal functionality of asymmetric PAKE with mutual explicit authentication.

12

Functionality Fapake

The functionality Fapake is parameterized by a security parameter λ. It interacts with an adversary A
and a set of parties via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), pw) from S(j):
Record (file,C(i), S(j), pw), mark it as fresh, and send (StorePWFile,C(i), S(j)) to A.

Stealing Password File
Upon receiving a query (StealPWFile,C(i), S(j)) from A:

Mark record (file,C(i), S(j), pw) as compromised, and send (StealPWFile,C(i), S(j)) to A.
If there is a record (offline,C(i), S(j), pw′) with pw′ = pw: send pw and “correct guess” to A.

Upon receiving a query (OfflineTestPW,C(i), S(j), pw′) from A:
If there exists a record (file,C(i), S(j), pw) marked compromised:

If pw′ = pw, return “correct guess”, else return “wrong guess” .
Else: Store (offline,C(i), S(j), pw′).

Sessions
Upon receiving a query (NewClient,C(i), iid, S(j)) from C(i):

Retrieve the record (file,C(i), S(j), pw).
Send (NewClient,C(i), iid, S(j)) to A. Record (C(i), iid, S(j), pw) and mark it as fresh.

Upon receiving a query (NewServer, S(j), iid′,C(i)) from S(j):
Retrieve the record (file,C(i), S(j), pw). Send (NewServer, S(j), iid′,C(i)) to A.
Record (S(j), iid,C(i), pw) and mark it as fresh.

Active Session Attacks
Upon receiving a query (Testpw, P, iid, pw′) from A:

If there is a fresh record (P, iid, ·, pw):
If pw′ = pw, mark the record compromised and reply to A with “correct guess”.
If pw′ ̸= pw, mark the record interrupted and reply to A with “wrong guess”.

Upon receiving a query (Impersonate,C(i), iid) from A:
If there exists a record (file,C(i), S(j), pw) marked compromised and a record (C(i), iid, S(j), pw)
marked fresh:

mark the record (C(i), iid, S(j), pw) compromised and return “correct guess” to A.
Otherwise, mark the record (C(i), iid, S(j), pw) interrupted and return “wrong guess” to A.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from A:

If there is a fresh record (P, iid,Q, pw) and sid has never been assigned to P ’s any other instance:
Pick sKey ←$ {0, 1}λ, mark the record (P, iid,Q, pw) as completed, return (sid, sKey) to P , and
record (P,Q, sid, sKey).

Upon receiving a query (CopyKey, P, iid, sid) from A:
If there is a fresh record (P, iid,Q, pw), a completed record (Q, iid′, P, pw) and sid has never
been assigned to P ’s any other instance:

If there exists record (Q,P, sid, sKey) and the record (Q, iid′, P, pw) was fresh when Q receives
(sid, sKey): Mark the record (P, iid,Q, pw) as completed, and return (sid, sKey) to P .

Upon receiving a query (CorruptKey, P, iid, sid, sKey) from A:
If there is a compromised record (P, iid,Q, pw) and sid has never been assigned to P ’s any other
instance: Mark the record (P, iid,Q, pw) as completed, and return (sid, sKey) to P .

Upon receiving a query (Abort, P, iid) from A:
Mark the record (P, iid, ·, pw) as abort, and return (⊥,⊥) to P .

Fig. 4: The ideal functionality Fapake for aPAKE.

13

Roughly speaking, the ideal functionally Fapake in the UC model captures the
following security guarantees in the ideal world.

– Passive attack and forward security. For a passive attacker A, the
session key is uniformly distributed (which is modeled by the FreshKey and
CopyKey query), even if the adversary is given the password.

– Online guessing password attack. In this case, the adversary A guesses
a password pw′ once for a session and tests whether his guess is correct,
which is modeled by the Testpw query. This means that any active attack
implemented by a real-world adversary A to the protocol can be translated
to a single Testpw query in the ideal world. If the password-guess is correct,
then the adversary can control the session key at its will (which is modeled by
the CorruptKey query). Otherwise, the attacked party can detect the active
attack and reject this session directly (which modeled by the Abort query).

– Online impersonation attack on server after stealing the password
file. In this case, the adversaryA has obtained the password file stored in the
server. Without loss of generality, we write the password file as H(pw). With
H(pw), A can impersonate a server perfectly to communicate with a client,
which is modeled by the Impersonate query. Besides online attack, A can also
implement offline attacks by choosing a password pw′ and checking whether
H(pw′) = H(pw), which is modeled by the OfflineTestPW query. Moreover,
before A obtains the password file H(pw), A can precompute a table of
possible pairs (pw′,H(pw′)). WhenA obtains the password file, he can search
pw in the table quickly by comparing H(pw′) = H(pw). This is also captured
by the OfflineTestPW. Note that in this case, A cannot impersonate a client
unless A makes a correct online password guess, or A obtains the password
via offline attacks, i.e. A gets a pw′ s.t. H(pw′) = H(pw).

UC security for aPAKE. In the real world, the environment Z has all pass-
words for all users, controls the adversary A , and sees all the interactions over
the channel and session keys derived from the protocol. In UC framework, we
will construct a PPT simulator Sim which has access to the ideal functional-
ity Fapake and interacts with the environment Z. If the view simulated by Sim
for environment Z is indistinguishable to Z’s view in the real world, then UC
security is achieved.
Difference between our Fpake/Fapake and the original Fpake /Fapake.
The original ideal functionality Fpake for PAKE was proposed in [9]. The ideal
functionality Fapake for aPAKE in [15] was built upon [9]. Shoup [32] improved
and optimized both Fpake and Fapake in several ways.

- In the original ideal functionality Fpake and Fapake, each protocol instance
must be identified by a globally unique session identifier and the PAKE
participants can successfully establish a joint session key only if they use
the same session identifier sid. The requirements on sid are problematic for
an implementer, as pointed out by [1]. Shoup’s modified Fpake addresses
this issue by replacing globally unique session identifiers with locally unique

14

instance identifiers (iid), and session identifiers (sid) are seen as protocol
outputs.

- The Fapake in [15] is flawed, as pointed out by [18]. In fact, Shoup also
pointed it out, and he fixed these flaws with a modified Fapake.

- Fapake in [32] models the explicit authentication (via fresh-key, copy-key,
corrupt-key and abort interfaces), while the formulation of explicit authen-
tication in [15] is flawed, as pointed out by Remark 10 in [32].

In our paper, we adopt the optimized Fpake and Fapake provided in [32].

Remark 1. In this paper, we assume that each instance of a party (client or
server) is initialized with the different instance ID iid. This is reasonable and
also taken in [32] (see Sect. 4.3). Another notation is that for simplicity, our ideal
functionality Fapake does not model the case that client mistypes its password,
but this can be easily taken into account with the same approach in [32] (See
Remark 3 and Remark 4 in [32] for more details).

3 Our aPAKE Compiler from KEM and AE

In this section, we propose an aPAKE compiler from KEM and AE, and show
how to construct aPAKE from UC-secure PAKE with the help of our compiler in
the UC framework. The detailed compiler (as well as the aPAKE construction) is
shown in Fig. 5. Due to its UC security, PAKE can emulate its ideal functionality
Fpake, so we replace PAKE with Fpake in the aPAKE construction.

Clearly, the resulting aPAKE scheme from our compiler is correct if the
underlying PAKE, KEM and AE scheme are correct. If the underlying KEM
has OW-PCA security and AE has one-time authenticity and one-time CCA
security, then our compiler is able to compile a UC-secure PAKE to a UC-secure
aPAKE, as shown in the following theorem.

Theorem 1. If KEM is a key encapsulation mechanism with OW-PCA security,
AE is an authenticated encryption scheme with one-time authenticity and one-
time CCA security, H0,H1,H2,H3,H4 work as random oracles, then the aPAKE
scheme in Fig. 5 securely emulates Fapake, hence achieving UC security in the
{Fpake,FRO}-hybrid model. More precisely, suppose there are at most N parties,
ℓ sessions and q random oracle queries, then there exists a simulator Sim s.t.

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤N2ℓ · Advow-pca
KEM (BKEM) +

q2 + q + 1

2λ

+ℓ · Advot-authAE (BAE) + ℓ · Advot-ccaAE (BAE).

Proof. The main objective of the proof is constructing a PPT simulator Sim
to simulate an indistinguishable view for the environment Z. Sim is designed to
have access to the ideal functionality Fapake and interact with the environment
Z, thereby emulating the real-world aPAKE protocol interactions involving the
adversary A, the parties, and the environment Z. It is important to note that
Sim does not possess any password.

15

Setup:
Choose hash functions: H0 : {0, 1}∗ → {0, 1}λ, H1 : {0, 1}∗ →R, H2 : {0, 1}∗ → {0, 1}λ,
H3 : {0, 1}∗ → {0, 1}λ, H4 : {0, 1}∗ → {0, 1}λ // R is the randomness space of KeyGen
pp← PAKE.Setup, output crs = (pp, H0, H1, H2, H3, H4)

Client C(i): Server S(j):
- Registration -

on input pw:
rw ← H0(pw,C

(i), S(j));
(pk, sk)← KeyGen(H1(pw,C

(i), S(j)))
rw, pk

−−−−−−−−−−−→
store (rw, pk)

- Login -
on input pw: on input (rw, pk):

rw := H0(pw,C
(i), S(j)) −→

(sid,K0) ←−
Fpake

←− rw

−→ (sid,K0)

(pk, sk)← KeyGen(H1(pw,C
(i), S(j)))

c← AE.Dec(H2(K0), ψ)
If c = ⊥: Reject by setting sKey := ⊥
K1 ← Decap(sk, c)
σ := H3(K0,K1, sid|ψ)
sKey := H4(K0)

ψ
←−−−−−−−

σ−−−−−−−→

(c,K1)← Encap(pk)
ψ ← AE.Enc(H2(K0), c)

If σ ̸= H3(K0,K1, sid|ψ) :
Reject by setting sKey := ⊥

sKey := H4(K0)

Fig. 5: Construction of UC-secure aPAKE from UC-secure PAKE with our compiler.

Let RealZ,A represent the real-world experiment where the environment Z
interacts with the parties and adversary A who can access ideal functionality
Fpake via Testpw and NewKey. Let IdealZ,Sim represents the ideal experiment
where Z interacts with “dummy” parties and simulator Sim. By RealZ,A ⇒ 1,
we mean Z outputs 1 in RealZ,A, and IdealZ,Sim ⇒ 1 is similarly defined.

Our goal is to show that |Pr [RealZ,A ⇒ 1]− Pr [IdealZ,Sim ⇒ 1]| is negligi-
ble by employing a series of games, denoted as Game G0-G7. In this sequence, G0

corresponds to RealZ,A, while G7 corresponds to IdealZ,Sim. We aim to show
that these adjacent games are indistinguishable from the view of Z. For simplic-
ity, we write H0(pw,C

(i), S(j)) and H1(pw,C
(i), S(j)) as H0(pw) and H1(pw) in

the security proof.
Game G0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers, ideal functionality Fpake and adversary A, and also obtains the corre-
sponding session keys of protocol instances. During the execution, Fpake may
be invoked to create records like “(P, iid,Q, rw)” which we call inner records so
as to distinguish them from the records created by Fapake. Here A may imple-
ment attacks like view, modify, insert, or drop messages over the network. In G0,
H0,H1,H2,H3,H4 works as random oracles. Each party will do the following.

– For a server S(j) on input (StorePWFile,C(i), S(j), pw) from Z, it computes
rw := H0(pw) and (pk, sk) ← KeyGen(H1(pw)) and then stores (C(i), S(j),
rw, pk) locally.

16

– For a server S(j) on input (StealPWFile,C(i), S(j)) from A, it retrieves (C(i),

S(j), rw, pk) from local storage, and returns (rw, pk) to A.
– For a client instance (C(i), iid) on input (NewClient,C(i), iid, S(j), pw) from
Z, it computes rw := H0(pw) and issues “(NewClient, C(i), iid, S(j) , rw)”
query to ideal functionality Fpake. According to the specification of Fpake,
it will create a fresh inner record “(NewClient,C(i), iid, S(j), rw)”, and send
“(NewClient,C(i), iid, S(j))” to A.
IfA issues “(NewKey,C(i), iid, sid,Key∗)” to Fpake, then the instance (C(i), iid)
may receive “(sid,Key = K0)” from Fpake.

– For a server instance (S(j), iid′) on input (NewServer, S(j), iid′,C(i)) from Z,
it retrieves (C(i), S(j), rw, pk) from its storage, and sends “(NewServer, S(j),
iid′,C(i), rw)” to Fpake. According to the specification of Fpake, it will cre-
ate a fresh inner record “(S(j), iid′,C(i), rw)”, and send “(NewServer, S(j),
iid′,C(i))” to A.
IfA issues “(NewKey, S(j), iid′, sid,Key∗)” to Fpake, then the instance (S(j), iid′)
may receive “(sid,Key = K0)” from Fpake.

– A can access Fpake via two interfaces (Testpw, P, iid, pw) and (NewKey, P,
iid, sid,Key∗).
• Upon Fpake receiving “(NewKey, P, iid, sid,Key∗)” from A, Fpake may

create “(sid,Key = K0)” according to the specification in Fig. 3, mark
the inner record “(P, iid,Q, rw)” as completed, and send “(sid,Key =
K0)” to the instance “(P, iid)”.

• Upon Fpake receiving “(Testpw, P, iid, rw′)” query from A, it checks
whether rw′ = H0(pw). If yes, Fpake returns “correct guess” to A. Oth-
erwise, Fpake returns “wrong guess” to A. Meanwhile, Fpake marks the
inner record “(P, iid,Q, rw)” as compromised or interrupted accordingly
(See Fig. 3).

– Upon a server instance (S(j), iid′) receiving message (sid,K0) from Fpake,
it retrieves “(C(i), S(j), rw, pk)” from its storage, and computes (c,K1) ←
Encap(pk). Then it computes ψ ← AE.Enc(H2(K0), c) and sends ψ to A.

– Upon a client instance (C(i), iid) receiving message “(sid,K0)” from Fpake

and message ψ from A, it first decrypts c ← AE.Dec(H2(K0), ψ). If c =
⊥, then it rejects and sends ⊥ to Z. Otherwise, it computes (pk, sk) ←
KeyGen(H1(pw)) and decrypts K1 ← Decap(sk, c). Finally, it computes σ :=
H3(K0,K1, sid|ψ), sends σ to A, sets sKey := H4(K0) and returns sKey to
Z.

– Upon a server instance (S(j), iid′) receiving message σ from A, if σ ̸= H3(K0,
K1, sid|ψ), then it rejects and sends ⊥ to Z. Otherwise, it sets sKey :=
H4(K0) and returns sKey to Z.

We have
Pr [RealZ,A ⇒ 1] = Pr [G0 ⇒ 1].

Game G1 (simulations for clients and servers with pw). In this game,
we introduce a simulator Sim who additional knows passwords and has access

17

to the ideal functionality Fapake. Now in Game G1, the client and server be-
come “dummy party” and directly forward their inputs to the ideal functionality
Fapake defined in Fig. 4. Then Sim simulates the behaviors of clients and servers
with the help of pw as follows.

– For a dummy server S(j) on input (StorePWFile,C(i), S(j), pw) from Z, it di-
rectly sends this query to Fapake. Then Fapake sends (StorePWFile,C(i), S(j))
to Sim. Then Sim simulates the password file (rw, pk) with rw := H0(pw),
(pk, sk)← KeyGen(H1(pw)). Sim also stores a trapdoor record (C(i), S(j), rw,
pk, sk,H1(pw)) in its local storage.

– For a dummy server S(j) on input (StealPWFile,C(i), S(j)) from A, Sim di-
rectly sends this query to Fapake. Then Fapake functions as described in Fig.
4 and sends (StealPWFile,C(i), S(j)) to Sim. Then Sim returns the password
file (rw, pk) to A.

– For a dummy client instance (C(i), iid) on input (NewClient, C(i), iid, S(j), pw),
it directly sends this query to Fapake. Then Fapake sends (NewClient,C(i), iid,

S(j)) to Sim and Sim simulates the behavior of the client instance (C(i), iid)
with the password pw, just like G0.

– For a dummy server instance (S(j), iid′) on input (NewServer, S(j), iid,C(i)),
it directly sends this query to Fapake. Then Fapake sends (NewServer, S(j), iid′,
C(i)) to Sim and Sim simulates the behavior of the server instance (S(j), iid′)
with the PAKE password rw, just like G0.

– For dummy client and server instances, the generations of ψ, σ and sKey are
all simulated by Sim with the password pw, just like G0.

With the knowledge of passwords, the simulations of the behaviors of all
clients and servers are perfect.

Moreover, Sim also simulates random oracles Hi (i ∈ [0, 4]) maintaining sep-
arate lists, namely LHi

. For a query x on Hi(·), if (x, y) ∈ LHi
, then Sim will

return y as the reply. Otherwise, Sim will choose a random element y, record
(x, y) in LHi

, and return y as the reply.
During the simulation, Sim additionally checks a bad event: if there exists

two different random oracle queries to Hi such that Hi(pw) = Hi(pw
′), then

Sim will abort the game. By the ideal functionality of random oracles, Sim’s
simulations for oracles Hi are perfect except a collision occurs in the simulation
of Hi. Suppose that the adversary issues q random oracle queries totally, by the
union bound, we have

|Pr [G1 ⇒ 1]− Pr [G0 ⇒ 1]| ≤ q2

2λ
.

The following games will change the simulations of Sim step by step in an
indistinguishable way so that Sim can arrive at its final form in Fig. 6 and Fig. 7
in Appendix A, and accomplish the simulations in IdealZ,Sim without passwords
pw.
Game G2 (simulation for ideal functionality Fpake without pw). In G2,
simulator Sim will simulate the ideal functionality Fpake itself, but without the

18

knowledge of pw. More precisely, Sim will maintain some inner records to simu-
late the output of Fpake in the following way.

– Upon receiving (NewClient, C(i), iid, S(j)) from Fapake: Sim sends (NewClient,
C(i), iid, S(j)) to A. Then it stores “(C(i), iid, S(j), ?)” as an inner record and
marks it as fresh.

– Upon receiving input (NewServer, S(j), iid′,C(i)) from Fapake: Sim sends
(NewServer, S(j), iid′,C(i)) to A. Then it stores “(S(j), iid′,C(i), ?)” as an in-
ner record and marks it as fresh.

– Upon receiving a query (Testpw, P, iid, rw) from A: If there exists a
fresh inner record “(P, iid,Q, ?)”, then do the following.
1. If there exists (pw, rw) ∈ LH0

, then Sim sends (Testpw, P, iid, pw) to
Fapake and forwards Fapake’s reply (“correct guess” or “wrong guess”)
to A.

2. If A ever issued (StealPWFile,C(i), S(j)) query before and Sim returned
(rw′, pk′) to A with rw′ = rw, and (P, iid) is an instance among the
interaction of C(i) and S(j), then Sim returns “correct guess” to A.

3. In other cases, return “wrong guess”.
4. If Sim returns “correct guess” to A, it also replaces “(P, iid,Q, ?)” with

“(P, iid,Q, rw)” and marks it as a compromised inner record. Other-
wise, it marks “(P, iid,Q, ?)” as an interrupted inner record.

– Upon receiving a query (NewKey, P, iid, sid,Key∗) from A: The simula-
tor replies the query just like Fpake.
1. If sid has been assigned to P ’s any other instance (P, iid′), return ⊥.
2. If there exists a compromised inner record “(P, iid,Q, rw)”, then out-

put (sid,Key∗) to P .
3. If there exists a fresh inner record “(P, iid,Q, ?)” and a completed

inner record “(Q, iid′, P, ?)”, “(sid,Key′)” was sent toQ and (Q, iid′, P, ?)
was fresh at the time, then output “(sid,Key′)” to P .

4. In any other case, pick a new random key Key ←$ {0, 1}λ and send
“(sid,Key)” to P .

Finally, mark the inner record “(P, iid,Q, ·)” as completed.

It is easy to see the simulation of NewClient,NewServer,NewKey query is
perfect. The only difference in G1 and G2 occurs in the simulation of Testpw
query.

Note that in G1, (Testpw, P, iid, rw) returns “correct guess” if and only if
rw is the PAKE password used in the instance (P, iid), which is the case that
rw = H0(pw) for the input pw to party P . Therefore, G2 and G1 differs only
when A issues a (Testpw, P, iid, rw) query to Fpake, rw = H0(pw) but A does not
query H0(pw). By the ideal functionality of random oracle, H0(pw) is uniformly
distributed to A if A does not query it. So we have

|Pr [G2 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 1

2λ
.

Game G3 (replace hash values of K0 with uniform ones unless A im-
plements a successful on-line active attacks on Fpake). We consider the

19

following three cases, where Case I and Case II cover A’s successful on-line active
attacks on Fpake, and Case III covers the rest.

Case I. A implements a (successful) on-line attack on Fpake with the correct
password pw. That is, A issues “(Testpw, P, iid, rw = H(pw))” query, and
then Sim obtains “correct guess” from Fapake for its query “(Testpw, P, iid, pw)”
to Fapake. In this case, Sim is able to extract the correct password pw.

Case II. A implements a (successful) on-line attack on Fpake by impersonat-
ing a party with the stolen PAKE password rw. That is A first issues a query
(StealPWFile, P , Q), then issues “(Testpw, P, iid, rw)” or “(Testpw, Q, iid, rw)”
query. In this case, A has stolen the PAKE password rw and successfully
implements an on-line impersonation attack.

Case III. Neither Case I nor Case II occurs.

If Case I or Case II happens, G3 is the same as G2. But if Case III happens in
G3, whenA issues a “(NewKey, P, iid,Key∗)” query resulting in K0, then the hash
values of H2(K0),H3(K0,K1, c) and H4(K0) are replaced with independently
and uniformly chosen elements, no matter whether A has ever queried any of
them or not.

It is easy to see that G3 is the same as G2 unless A has ever queried H2(K0),
H3(K0,K1, c) or H4(K0) in Case III.

Note that Case III means that either there is no on-line attacks from A or
the on-line attack does not succeed. Upon A issuing a “(NewKey, P, iid,Key∗)”
query to Fpake in Case III, then the resulting key K0 simulated by Sim is uni-
formly distributed to A (according to the specification of the simulation of ideal
functionality Fpake, the session key K0 should be uniform). Suppose the ad-
versary totally issues q random oracle queries, then A ever issues hash query
H2(K0),H3(K0,K1, c) or H4(K0) with correct K0 with probability at most q/2λ.
So we have

|Pr [G3 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ q

2λ
.

Now in Case III, the AE key H2(K0), the authenticator σ = H3(K0,K1, c)
and the session key sKey = H4(K0) will be uniformly distributed to A. Jumping
ahead, the uniform AE key H2(K0) in Case III paves the way for the security
reduction to the security of AE in G4 and G5.

Now in G3, Sim does not need pw to simulate the generation of PAKE session
key K0: upon A’s (NewKey, P, iid,Key∗) query, Sim just sets K0 := Key∗ in Case
I and Case II, and can choose K0 uniformly in Case III. But Sim still needs rw to
identify Case II and needs password pw to generate password file. Moreover, the
generations of ψ and σ also needs pw: (pk, sk) ← KeyGen(H1(pw)), (c,K1) ←
Encap(pk), ψ ← AE.Enc(H2(K0), c), and σ = H3(K0,K1 = Decap(sk, c), sid|ψ).
Game G4 (Simulation of generating server’s message ψ without pw).
In G4, Sim is the same as in G3, except for Sim’s generation of ψ for the server
instance (S(j), iid′). We describe Sim’s simulations in the three cases (which are
defined in G3) in G4.

20

– If Case I occurs to (S(j), iid′), then Sim does not need to know pw beforehand.
Instead, Sim can extract the true password pw of server S(j) from Fapake.
Then Sim can use pw to generate (pk, sk) ← KeyGen(H1(pw)), (c,K1) ←
Encap(pk) and ψ ← AE.Enc(H2(K0), c), exactly like G3.

– If Case II occurs to (S(j), iid′), then Sim does not need the knowledge of
pw to generate ψ. In this case, Sim directly retrieves pk from its trapdoor
record (C(i), S(j), rw, pk, sk, r), and then compute (c,K1) ← Encap(pk) and
generates ψ ← AE.Enc(H2(K0), c). Simulation of ψ is exactly the same as
G3.

– If neither Case I nor Case II occurs to (S(j), iid′), then Sim does not need
the knowledge of pw to generate ψ either. In this case, Sim directly re-
trieves pk from its trapdoor record (C(i), S(j), rw, pk, sk, r) and then com-
putes (c,K1)← Encap(pk) and ψ ← AE.Enc(H2(K0), 0). Accordingly, when
its partnered client instance (C(i), iid) receives this specific ψ (passive attack
with ψ), it directly uses K1 corresponding to ψ (for consistence) and com-
putes σ := H3(K0,K1, sid|ψ). Recall that in G3, ψ ← AE.Enc(H2(K0), c)
rather than ψ ← AE.Enc(H2(K0), 0).

Finally, simulator Sim records (S(j), iid′,K1) in Case I and Case II and records
(S(j), iid′,⊥) in Case III.

The difference between G3 and G4 lies in the generation of ψ in Case III:
ψ ← AE.Enc(H2(K0), c) in G3 but ψ ← AE.Enc(H2(K0), 0) in G4. In Case III,
H2(K0) is uniformly distributed and independent of A’s view, as shown in G3.
According to the one-time IND-CCA security of AE and hybrid arguments over
the (at most) ℓ ciphertexts of AE, we have

|Pr [G4 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ ℓ · Advot-ccaAE (BAE).

Note that the reduction needs to query the decryption oracle once to simulate
the message σ when it receives ψ generated by A. This is why we need AK have
one-time IND-CCA security.

Now in G4, Sim only needs rw to distinguish Case II and pk to simulate the
generation of ψ in Case II. Besides Sim also uses pk to generate c,K1 in Case II,
III, and uses sk to generate σ in Case II, III. But it still needs pw to generate
(rw, pk, sk).
Game G5 (Simulation of client’s message σ and session key sKey without
pw). In G5, Sim is the same as in G4, except for Sim’s generation of σ and sKey

for the client instance (C(i), iid) when receiving ψ. We describe Sim’s simulations
in the three cases in G5.

– Case I occurs to (C(i), iid): A successfully guesses pw by issuing
“(Testpw,C(i), iid, rw = H0(pw))” query to Fpake. In this case, Sim can
extract the true password pw from Fapake and simulate the generation of σ in
the same way as G4. More precisely, Sim first decrypts c← AE.Dec(H2(K0), ψ).
– If c = ⊥, then Sim issues (Abort,C(i), iid) query to Fapake. As a result,
Fapake returns (⊥,⊥) to (C(i), iid) to reject the session. In this case the
session is rejected in both G4 and G5.

21

– Otherwise, Sim generates (pk, sk) ← KeyGen(H1(pw)), decrypts K1 ←
Decap(sk, c) and computes σ := H3(K0,K1, sid|ψ). Finally, Sim issues
(CorruptKey,C(i), iid, sid|ψ|σ,H4(K0)) query to Fapake and Fapake returns
(sid|ψ|σ, sKey = H4(K0)) to (C(i), iid). In this case sKey = H4(K0) and
σ = H3(K0,K1, sid|ψ) in both G4 and G5.

– Case II occurs to (C(i), iid): A must have stolen server’s password
file and then impersonates party S(j). In this case, Sim first decrypts
c← AE.Dec(H2(K0), ψ).
– If c = ⊥, then Sim issues (Abort,C(i), iid) query to Fapake. As a result,
Fapake returns (⊥,⊥) to (C(i), iid) to reject the session. In this case the
session is rejected in both G4 and G5.
– If c ̸= ⊥, then Sim retrieves sk from its trapdoor record (C(i), S(j), rw, pk, sk,
r) to decrypt K1 ← Decap(sk, c) and computes σ := H3(K0,K1, sid|ψ).
Then Sim issues (Impersonate,C(i), iid) query to Fapake, which indicates that
Sim impersonates S(j) to attack (C(i), iid). Finally, Sim issues (CorruptKey,C(i),
iid, sid|ψ|σ,H4(K0)) query to Fapake and then Fapake must return (sid|ψ|σ,
sKey = H4(K0)) to (C(i), iid). In this case the session key is sKey = H4(K0)
and σ = H3(K0,K1, sid|ψ) in both G4 and G5.

– Case III: neither Case I nor Case II occurs to (C(i), iid). In this case,
K0, H2(K0), H3(K0,K1, c) and H4(K0) are all simulated with uniform ones
by Sim. We further consider the following two subcases according to passive
or active attacks.

– Passive Attack with ψ: In this case, (C(i), iid) and (S(j), iid′) must
have shared the same PAKE session key K0 and ψ must be generated by Sim
for some instance (S(j), iid′). Sim randomly chosen σ ←$ {0, 1}λ and issues
(FreshKey, C(i), iid, sid|ψ|σ) query to Fapake. Then Fapake returns a uniform
session key sKey ←$ {0, 1}λ to (C(i), iid). Later if the server session (S(j), iid′)

receives the same σ later, Sim will issue (CopyKey, S(j), iid′, sid|ψ|σ) query to
Fapake directly. In this case, (C(i), iid) and (S(j), iid′) share a same uniform
session key chosen by Fapake.

– Active Attack with ψ: In this case ψ is not generated by Sim or
instance (S(j), iid′) and (C(i), iid) do not share a same PAKE session key. Sim
issues (Abort,C(i), iid) query to Fapake. As a result, Fapake returns (⊥,⊥) to
(C(i), iid) to reject the session.

In both sub-cases, Sim does not need to retrieve pk to generate c via
(c,K1)← Encap(pk) for the server instance (S(j), iid′), and it does not need
to retrieve sk to decrypt c for client instance (C(i), iid) any more.

If Case I or Case II occurs, G4 and G5 are the same, as analysed above. The
difference lies in Case III.

Recall in G4, if neither Case I nor Case II occurs, then K0 is uniform and
independent of A’s view. Consequently, H3(K0,K1, sid|ψ), H4(K0),H2(K0) are
all uniform to A and independent of A’s view. In the case of passive attack
where ψ is generated by Sim, the client message σ := H3(K0,K1, sid|ψ) and

22

the client session key sKey := H4(K0) are uniform to A. In G5, σ and sKey are
uniformly chosen. Therefore, σ and sKey have the same distribution in G4 and
G5. In the case of active attack with ψ, Sim directly rejects ψ in G5. But in G4,
Sim accepts if ψ is valid and rejects otherwise. G5 and G4 are the same unless
the event BadAuth happens, where BadAuth is defined as
BadAuth: Active attack with ψ results in AE.Dec(H2(K0), ψ) ̸= ⊥ in Case III.

With difference lemma, we know that |Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [BadAuth].
Recall that H2(K0) is uniformly distributed in Case III. Thanks to the au-

thenticity of AE,A only has negligible probability of generating a valid ciphertext
ψ without the knowledge of H2(K0).

Hence, ψ will always be rejected by (C(i), iid) except with a negligible proba-
bility. Given at most ℓ sessions, we know that Pr [BadAuth] ≤ ℓ ·Advot-authAE (BAE).
Consequently, we have

|Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ ℓ · Advot-authAE (BAE).

Note that A may additionally see a valid ciphertext ψ generated by Sim. This
is why we need a one-time secure authenticity AE scheme.

Now in G5, Sim only needs rw to distinguish Case II, needs pk to simulate
the generation of ψ for server instances in Case II, and needs sk to decrypt c so
as to compute σ for client instances in Case II. But it still needs pw to generate
(rw, pk, sk).
Game G6 (simulation for password file without pw). In G6, Sim behaves
the same as G5 except for the simulation of generating the password file (rw, pk).

Recall that in G5, Sim uses password pw to generate the password file (rw, pk)
upon A’s StorePWFile query, but reveals the file to A upon A’s StealPWFile
query. Sim also generates the trapdoor record along with the file but only uses the
record for Case II in which StealPWFile must have happened. This fact suggests
that Sim can delay the generation of password file (rw, pk) and the trapdoor
record (C(i), S(j), rw, pk, sk,H1(pw)) until StealPWFile query. This is exactly Sim
does without pw in G6, but with the help of re-programming technique of ROs.

In G6, Sim will keep the password file and the trapdoor record empty until
StealPWFile query from A. We consider three phases of the game.

– Before receiving (StealPWFile,C(i), S(j)) from A: In this phase, the sim-
ulations by Sim is exactly the same as that in G5. Besides, Sim also does
the following. For any random oracle query to H0(x) or H1(x) from A, Sim
will also issue a query (OfflineTestPW, C(i), S(j), x) to Fapake and Fapake will
store an offline-guess record.
Recall that only Case I or Case III happens in this phase. But neither pw
nor the trapdoor record is needed by Sim for Case I and Case III in G5. So
the simulation without pw in G6 is sound in this phase.

– When receiving (StealPWFile,C(i), S(j)) from A: It must happen that A
has issued a StealPWFile query to a dummy server S(j) and then Sim issues
a StealPWFile query to Fapake. According to the specification of Fapake in
Fig. 4, Fapake sends (StealPWFile, C(i), S(j)) to Sim.

23

Upon the output (StealPWFile,C(i), S(j)) from Fapake,
(1) If Sim ever issued a (OfflineTestPW,C(i), S(j), x) query before such that
x = pw, Fapake must have additionally output pw and “correct guess” to Sim.
In this case, Sim obtains the correct password pw, and then it can invoke
(pk, sk) ← KeyGen(H1(pw)), set rw := H0(pw), return (rw, pk) to A, and
set the trapdoor record as (C(i), S(j), rw, pk, sk,H1(pw)). The simulations of
password file and trapdoor record are exactly like G5.
(2) Otherwise, Sim randomly samples rw ←$ {0, 1}λ and r ←$ R, invokes
(pk, sk) ← KeyGen(r), returns (rw, pk) to A, and stores record (C(i), S(j),
rw, pk, sk, r). In this case, A did not ever query H0(pw) or H1(pw), so these
hash values are uniform to A. Though Sim does not know the value of pw,
it implicitly set H0(pw) := rw and H1(pw) = r. Therefore, in this case, the
simulations of password file and trapdoor record are exactly the same from
A’s view no matter in in G6 or G5.

– After receiving (StealPWFile,C(i), S(j)) from A: In this phase, Sim will
use the trapdoor record for the simulations, exactly like in G5. Besides, Sim
also keeps an eye on random oracle queries: For each new random oracle
query for H0(x) or H1(x), Sim will issue a query (OfflineTestPW,C(i), S(j),
x) to Fapake and check the reply. If Fapake returns “correct guess”, Sim will
retrieve the record (C(i), S(j), rw, pk, sk, r) and reprogram H0(x = pw) := rw
and H1(x = pw) := r by storing (x, rw) in list LH0

and (x, r) in list LH1
.

As long as A issues oracle queries on pw, Sim will detect it and obtains
the correct password pw. In this way, Sim keeps the consistence between pw
and the trapdoor record. Even if A’s offline-attack succeeds, Sim still give a
perfect simulation for A, just like G5.

Due to the simulation strategy and reprogramming technique, the distri-
bution of trapdoor record (C(i), S(j), rw, pk, sk, r = H1(pw)) in G6 and G5 are
exactly the same. Therefore, we have

Pr [G6 ⇒ 1] = Pr [G5 ⇒ 1].

Game G7 (Simulation of dealing with σ for server instances without
pw). In G7, Sim is the same as in G6, except for the simulation of the server
instance (S(j), iid′) when receiving σ. We still consider Sim’s simulations in the
three cases in G7.

First, Sim retrieves record (S(j), iid′,K1) (that was stored when ψ is simulated
for (S(j), iid′)) and the corresponding PAKE key K0.

Case I occurs to (S(j), iid′). If σ ̸= H3(K0,K1, sid|ψ), then Sim sends (Abort,
S(j), iid′) to Fapake. As a result, Fapake returns (⊥,⊥) to (S(j), iid′) to reject
the session. If σ = H3(K0,K1, sid|ψ), then Sim sends (CorruptKey, S(j), iid′,

sid|ψ|σ,H4(K0)) to Fapake. Then Fapake returns H4(K0) to (S(j), iid′).
Recall in G6, sKey = ⊥ if σ is invalid and sKey = H4(K0) if σ is valid.
Therefore, G6 and G7 are the same in this case.

24

Case II occurs to (S(j), iid′). If σ ̸= H3(K0,K1, sid|ψ) or σ = H3(K0,K1, sid|ψ)
but Fapake did not return “correct guess” to any of Sim’s (OfflineTestPW,

C(i), S(j), pw′) queries, then Sim sends (Abort, S(j), iid′) to Fapake. As a re-
sult, Fapake returns (⊥,⊥) to (S(j), iid′) to reject the session.
If σ = H3(K0,K1, sid|ψ) and Fapake returned “correct guess” to one of Sim’s
(OfflineTestPW, C(i), S(j), pw′) queries, then Sim sends (CorruptKey, S(j), iid′,
sid|ψ|σ,H4(K0)) to Fapake. Accordingly Fapake returns (sid|ψ|σ, sKey :=

H4(K0)) to (S(j), iid′).
Recall in G6, as long as Case II occurs, the simulator will set the session
key sKey := H4(K0) if σ = H3(K0,K1, sid|ψ), and set sKey := ⊥ if σ ̸=
H3(K0,K1, sid|ψ).

Case III occurs to (S(j), iid′). We further consider whether σ is from A’ pas-
sive attack or active attack.

– Passive Attack with σ: In this case, there must exist some instance
(C(i), iid) which has agreed PAKE key K0 with (S(j), iid′), and σ must
be generated by Sim for (C(i), iid). Moreover, Sim must also have issued
(FreshKey, C(i), iid, sid|ψ|σ) query to Fapake and Fapake returns a uniform
session key sKey to (C(i), iid). Now Sim issues (CopyKey, S(j), iid′, sid|ψ|σ)
query to Fapake directly. In this case, (C(i), iid) and (S(j), iid′) share a same
uniform session key sKey chosen by Fapake and the session key sKey is simu-
lated with the help of Fapake, without the knowledge of pw or the trapdoor
record, just like G6.

– Active Attack with ψ: Sim sends (Abort, S(j), iid′) to Fapake, and
accordingly Fapake returns (⊥, sKey := ⊥) to (S(j), iid′) to reject the session.
Recall that in Case III of G6, H4(K0,K1, sid|ψ) is uniformly distributed
and independent of A’s view, the simulator will reject the session by setting
sKey := ⊥ except with negligible probability.

Therefore, G6 and G7 are the same in Case III except with negligible
probability.

According to the above analyses, G7 and G6 are the same except a bad event
Bad happens, where

Bad: Case II occurs to some (S(j), iid′), σ = H3(K0,K1, sid|ψ), but until then
none of the Sim’s (OfflineTestPW,C(i), S(j), pw′) queries results in “correct
guess”.

With difference lemma, we know that |Pr [G7 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Pr [Bad].
Next we show a reduction algorithm BKEM and prove Pr [Bad] ≤ N2ℓ·Advow-pca

KEM (BKEM).
BKEM obtains a public key pk∗, a key encapsulation c∗, and has access to

oracle Check(·, ·) which on input (c,K) returns 1 iff Decap(sk∗, c) = K. BKEM
aims to find K∗ s.t. Decap(sk∗, c∗) = K∗.

In the reduction, BKEM plays the role of the simulator Sim in G7. It first
randomly choose (C(∗), S(∗), iid′) ←$ [N]× [N]× [ℓ]. BKEM sets (S(∗), iid′) as the
target instance. Suppose that (C(∗), iid) is the partnered instance. BKEM will
detect whether Bad happen on (S(∗), iid′).

25

– For any other instances, BKEM behaves just like Sim does in G7.
– For the instances (C(∗), iid) and (S(∗), iid′), BKEM does the simulations as

follows.
• Before receiving (StealPWFile,C(∗), S(∗)) from A: BKEM behaves just

like Sim does in G7.
• Upon receiving (StealPWFile,C(∗), S(∗)) from A: BKEM issues a

StealPWFile query to Fapake. If Fapake replies with pw and “correct
guess”, then Bad does not happen on (S(∗), iid′), and BKEM aborts the
game. Otherwise, BKEM randomly samples rw ←$ {0, 1}λ, sets the trap-
door record as (C(∗), S(∗), rw, pk∗, sk =?, r =?), and returns the password
file (rw, pk∗) to A.

• After receiving (StealPWFile,C(∗), S(∗)) from A: During this phase, for
any offline attack from A, if the corresponding (OfflineTestPW,C(∗), S(∗),
pw′) query to Fapake results in “correct guess”, then Bad does not hap-
pen on (S(∗), iid′) and BKEM aborts the game.
For the session between instances (C(∗), iid) and (S(∗), iid′), BKEM first
simulates the generation of PAKE key K0 without pw and trapdoor
record, just like Sim. If Case II does not happen, then Bad does not
happen on (S(∗), iid′) and BKEM aborts the game.
Next, for server instance (S(∗), iid′), BKEM can simulate the generation of
ψ, BKEM invokes ψ ← AE.Enc(H2(K0), c

∗). Since c∗ is an encapsulation
under pk∗, we know BKEM’s simulation is perfect, just like Sim.
For client instance (C(∗), iid) to deal with ψ′, recall that Sim may de-
crypt ψ′ with sk∗ to generate K ′

1 and then σ, but BKEM has no sk∗

at all. To deal with this problem, BKEM resorts to ROs and the re-
programming techniques: upon (C(∗), iid) receiving ψ′, BKEM invokes
c ← AE.Dec(H2(K0), ψ

′). If c = ⊥, BKEM behaves just like Sim (no sk∗
involved). If c ̸= ⊥, for all hash queries H3(K0,K

′
1, sid|ψ′), BKEM first

checks whether there exists K ′
1 such that Check(c,K ′

1) = 1. If yes, set
σ := H3(K0,K

′
1, sid|ψ′). Otherwise randomly choose σ ←$ {0, 1}λ, and

set H3(K0,K
′
1 =?, sid|ψ′) := σ with ? denoting the undermined value of

K ′
1. It then returns σ toA and returns sKey := H2(K0) as the session key.

If later A issues any new query H3(K0,K
′
1, sid|ψ′), BKEM checks whether

Check(c,K ′
1) = 1. If yes, BKEM re-programme H3(K0,K

′
1, sid|ψ′) := σ.

Upon (S(∗), iid′) receiving σ′. If there is no H3 query such that σ′ =

H3(K0,K
′
1, sid|ψ), then Bad does not happen on (S(∗), iid′) since σ′ is

hardly valid due to the uniformity of RO, and then BKEM aborts the
game. Otherwise, find A’s hash query such that σ′ = H3(K0,K

′
1, sid|ψ),

BKEM checks whether Check(c,K ′
1) = 1. If no, thenK ′

1 ̸= K∗
1 := Decap(sk∗,

c) so σ′ ̸= H3(K0,K
∗
1 , sid|ψ). Thus Bad does not happen on (S(∗), iid′)

and BKEM aborts the game. If yes, Check(c,K ′
1) = 1 implies K ′

1 = K∗
1 =

Decap(sk∗, c). Now Bad happens, BKEM just replies this K ′
1 as it answer

to its OW-PCA challenger.
The above description and analysis shows that BKEM presents a perfect simu-

lation like Sim. As long as Bad happens on (S(∗), iid′), BKEM wins in its OW-PCA

26

experiment. Consequently, we have

Advow-pca
KEM (BKEM) = Pr

[
Bad on (S(∗), iid′)

]
=

1

N2ℓ
· Pr [Bad].

So,
|Pr [G7 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Pr [Bad] = N2ℓ · Advow-pca

KEM (BKEM).
Finally, by combining all the statements across G0-G7, we get

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤N2ℓ · Advow-pca
KEM (BKEM) +

q2 + q + 1

2λ

+ℓ · Advot-authAE (BAE) + ℓ · Advot-ccaAE (BAE).

⊓⊔

Remark 2 (Tightly secure aPAKE compiler.). Note that in the security proof,
the security loss is due to the guessing strategy in the reduction between G7

and G6, which relies on the OW-PCA security of the KEM scheme. By imposing
stronger security on KEM, it is possible to make the reduction a tight one.
For example, Pan et. al. [26] proposed the OW-ChCCA security for KEM and
presented instantiation of such a KEM with tight OW-ChCCA secuity based on
the (Matrix) DDH assumption. The OW-ChCCA security considers a multi-user
setting, where besides the check oracle, the adversary adaptively corrupt users to
obtain their secret keys, gets multiple challenge ciphertext encapsulations {cj},
adaptively reveals some ciphertexts {c′i} ⊆ {cj} to obtain encapsulation keys,
and adaptively obtains decryption results for {c′k} such that {cj} ∩ {c′k} = ∅,
and it requires that it is still hard for such an adversary to guess correctly an
encapsulation key for any unrevealed ciphertext under public keys of uncorrupted
users.

Theorem 2. Under the same condition as in Theorem 1, if KEM is replaced
with an OW-ChCCA secure one and AE is an information-theoretical AE scheme
with one-time authenticity and one-time CCA security, then we have

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ Adv
(N2,ℓ)-ChCCA
KEM (BKEM) +

2ℓ+ q2 + q + 1

2λ
.

The security proof of Theorem 2 is given in Appendix B. In Appendix B, we recall
the formal definition of OW-ChCCA security for KEM. Then we prove that our
compiler is tightness-preserving when equipped with such a OW-ChCCA secure
KEM. In Fig.10, we review the specific tightly OW-ChCCA secure KEM based
on the Matrix DDH assumption, which was proposed in [26].

4 Instantiations of aPAKE from Our Compiler and
PAKE

Our aPAKE compiler needs an OW-PCA secure KEM scheme and an AE scheme
with one-time authenticity and one-time CCA security. A good candidate for AE
is the canonical information-theoretic construction.

27

Instantiation of one-time secure AE. For one-time secure AE, we present
a concrete information-theoretically secure AE scheme AEit = (AE.Enc,AE.Dec)
from one-time pad and one-time MAC, using the Encrypt-then-MAC approach.
Here the key space is {0, 1}3λ, the message space is {0, 1}λ, and the ciphertext
space is {0, 1}2λ. All operations are over field F2λ .

– AE.Enc(k,m) : Parse k := (k1, k2, k3) ∈ F2λ × F2λ × F2λ and m ∈ F2λ .
Compute c1 := k1 +m and c2 = k2 × c1 + k3.

– AE.Dec(k, c) : Parse k := (k1, k2, k3) ∈ F2λ × F2λ × F2λ and c = (c1, c2). If
c2 ̸= k2 × c1 + k3: return ⊥. Otherwise return c1 − k1.

Lemma 1. For the above AE, we have

Advot-authAE (A) ≤ 1/2λ, Advot-ccaAE (A) ≤ 1/2λ.

for any (even all-powerful) adversaries.

The security proof of Lemma 1 is shown in Appendix C.
The OW-PCA security is a security notion weaker the CCA security, which

admits flexible choices for the underling KEM in our compiler. Next we show how
to instantiate our compiler according to the PAKE scheme so as the resulting
aPAKE scheme enjoying good features.

4.1 Most Efficient aPAKE from Lattice

Recall that there exists efficient UC-secure PAKE protocols [29,2,20] from lattice,
where the PAKE protocol in [2,20] is based on Kyber [7] and that in [29] is based
on Saber [10]. Kyber [7] is the NIST PQC winner for KEM, and its CCA security
is based on the module-LWE assumption [21], so we choose the Kyber-based UC-
secure PAKE scheme [2].

Now we also take Kyber (whose CCA security naturally implies OW-PCA
security) as the KEM in our compiler. Then together with the information-
theoretically secure AEit, we obtain a Kyber-based aPAKE scheme (see Fig. 9 in
Appendix E for a more detailed description of the scheme).

Note that the second to last round of our compiler can be merged in the
last round of PAKE, resulting in a 3-round Kyber-based aPAKE scheme with
UC-security.
Comparison to other lattice-based aPAKEs. Up to now, the only approach
to lattice-based UC-secure aPAKE is via the signature-aided compiler proposed
in [15]. However, signature schemes from lattice, like Dilithium or Falcon, are far
less efficient than their KEM counterpart like Kyber. We compare our Kyber-
based compiler to the Dilithium-based Compiler in [15] and the Falcon-based
Compiler in [15] in terms of the computing and communication efficiency in
Table 1.

The comparison in Table 1 suggests that our Kyber-based compiler is the
most efficient one, and hence the resulting Kyber-based aPAKE scheme (=Kyber-
based compiler + Kyber-based PAKE) is the most efficient aPAKE scheme with
UC-security from lattice up to now.

28

Corollary 1. Under the same condition as in Theorem 1, suppose that KEM is
instantiated with the CCA secure KEM scheme Kyber [7] and AE is an information-
theoretical AE scheme with one-time authenticity and one-time CCA security in
our compiler. If the underlying PAKE is instantiated with the UC-secure Kyber-
based PAKE protocol in [2], then the resulting aPAKE has UC-security s.t.

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ (5q + 2qℓ+ 2N2ℓ) · Advmlwe
k+1,k,χ(A) + 2−Ω(λ),

where Advmlwe
k+1,k,χ(A) is the advantage function for the Module-LWE problem [21].

4.2 Tightly Secure aPAKE Scheme from Matrix DDH

For the underlying PAKE protocol, there exist tightly UC-secure PAKE proto-
cols from the CDH assumption [22,27]. Accordingly, our compiler also has tightly
secure OW-ChCCA secure KEM [26] from the (Matrix) DDH assumption as can-
didate.

Now we take the MDDH-based KEM [26] with tight OW-ChCCA security
as the KEM in our compiler. Then together with the information-theoretically
secure AEit, our compiler can compile the CDH-based tightly UC-secure PAKE
scheme to a MDDH-based aPAKE scheme, which serves as the first tightly UC-
secure aPAKE scheme up to now (See Fig. 9 in Appendix E for the tightly
UC-secure aPAKE scheme).

Corollary 2. Under the same condition as in Theorem 2, suppose that KEM
is instantiated with the tightly OW-ChCCA secure MDDH-based KEM in [26]
and AE is an information-theoretical AE scheme with one-time authenticity and
one-time CCA security in our compiler. If the underlying PAKE is instantiated
with the tightly UC-secure CDH-based PAKE protocol in [22], then the resulting
aPAKE has tight UC-security such that

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ 12 · AdvMDDH(A) + 2 · AdvCDH(A) + 2−Ω(λ),

where AdvMDDH(A) and AdvCDH(A) are the advantage function for the MDDH
problem [13] and the CDH problem.

Acknowledgements. We would like to thank the reviewers for their valuable
comments. This work was partially supported by Guangdong Major Project of
Basic and Applied Basic Research (2019B030302008), National Natural Science
Foundation of China under Grant 61925207 and Grant 62372292, and the Na-
tional Key R&D Program of China under Grant 2022YFB2701500.

References

1. Barbosa, M., Gellert, K., Hesse, J., Jarecki, S.: Bare PAKE: universally composable
key exchange from just passwords. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024,
Part II. LNCS, vol. 14921, pp. 183–217. Springer (2024), https://doi.org/10.
1007/978-3-031-68379-4_6

29

https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-68379-4_6

2. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a
CAKE: Generic transformations from key encaspulation mechanisms to pass-
word authenticated key exchanges. In: Tibouchi, M., Wang, X. (eds.) ACNS
23, Part II. LNCS, vol. 13906, pp. 516–538. Springer, Heidelberg (Jun 2023).
https://doi.org/10.1007/978-3-031-33491-7_19

3. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In: Den-
ning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93.
pp. 244–250. ACM Press (Nov 1993). https://doi.org/10.1145/168588.168618

4. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key ex-
change: New models and constructions. Cryptology ePrint Archive, Report
2013/833 (2013), https://eprint.iacr.org/2013/833

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2129–2146. ACM Press (Nov 2019). https:
//doi.org/10.1145/3319535.3363229

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_3

7. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (May 2005). https://doi.
org/10.1007/11426639_24

10. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-
LWR based key exchange, CPA-secure encryption and CCA-secure KEM.
In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol.
10831, pp. 282–305. Springer, Heidelberg (May 2018). https://doi.org/10.1007/
978-3-319-89339-6_16

11. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

12. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Generic models for group actions. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 406–435. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4_15

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013). https:
//doi.org/10.1007/978-3-642-40084-1_8

14. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest,
T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier

30

https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1145/168588.168618
https://eprint.iacr.org/2013/833
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-031-31368-4_15
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8

lattice-based compact signatures over ntru. Submission to the NISTs post-quantum
cryptography standardization process 36(5), 1–75 (2018)

15. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (Aug 2006). https://doi.
org/10.1007/11818175_9

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC. pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/
1374376.1374407

17. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: Asymmetric PAKE from key-hiding
key exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS,
vol. 12828, pp. 701–730. Springer, Heidelberg, Virtual Event (Aug 2021). https:
//doi.org/10.1007/978-3-030-84259-8_24

18. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238,
pp. 579–599. Springer, Heidelberg (Sep 2020). https://doi.org/10.1007/
978-3-030-57990-6_29

19. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 485–504. Springer,
Heidelberg (Sep 2018). https://doi.org/10.1007/978-3-319-98113-0_26

20. Januzelli, J., Roy, L., Xu, J.: Under what conditions is encrypted key exchange
actually secure? Cryptology ePrint Archive, Paper 2024/324 (2024), https://
eprint.iacr.org/2024/324

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
DCC 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-9938-4

22. Liu, X., Liu, S., Han, S., Gu, D.: EKE meets tight security in the Universally
Composable framework. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I.
LNCS, vol. 13940, pp. 685–713. Springer, Heidelberg (May 2023). https://doi.
org/10.1007/978-3-031-31368-4_24

23. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_43

24. McQuoid, I., Xu, J.: An efficient strong asymmetric pake compiler instantiable
from group actions. In: ASIACRYPT 2023. pp. 176–207. Springer (2023), https:
//eprint.iacr.org/2023/1434

25. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmet-
ric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 159–175. Springer, Heidelberg (Apr 2001). https://doi.org/10.
1007/3-540-45353-9_13

26. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Heidelberg (Aug 2023). https://doi.org/10.
1007/978-3-031-38554-4_20

27. Pan, J., Zeng, R.: A generic construction of tightly secure password-based au-
thenticated key exchange. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part VIII. LNCS, vol. 14445, pp. 143–175. Springer, Heidelberg (Dec 2023).
https://doi.org/10.1007/978-981-99-8742-9_5

31

https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-319-98113-0_26
https://eprint.iacr.org/2024/324
https://eprint.iacr.org/2024/324
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/978-3-642-29011-4_43
https://eprint.iacr.org/2023/1434
https://eprint.iacr.org/2023/1434
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8742-9_5

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

29. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 128–156. Springer, Heidelberg (Apr 2023). https:
//doi.org/10.1007/978-3-031-30589-4_5

30. Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: Dunkelman, O., Dziembowski, S. (eds.) EU-
ROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 127–156. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-07085-3_5

31. Schmidt, J.: Requirements for password-authenticated key agreement (pake)
schemes. Tech. rep. (2017), https://tools.ietf.org/html/rfc8125

32. Shoup, V.: Security analysis of itSPAKE2+. In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part III. LNCS, vol. 12552, pp. 31–60. Springer, Heidelberg (Nov 2020).
https://doi.org/10.1007/978-3-030-64381-2_2

32

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://tools.ietf.org/html/rfc8125
https://doi.org/10.1007/978-3-030-64381-2_2

Appendix

A Full Descriptions of Simulator Sim

The simulator Sim in G7 is presented in Fig. 6 and Fig. 7.

Initialization
Sim maintains lists LH0 ,LH1 ,LH2 ,LH3 ,LH4 , sent, recv (all initialized to be empty) in the simulation
• LH0 ,LH1 ,LH2 ,LH3 ,LH4 : store records to simulate random oracles H0, H1, H2, H3 and H4

• sent : store messages sent by client/server instances
• recv : store messages received by client/server instances

Sim outputs crs := (H0, H1, H2, H3, H4)
Stealing Password Data
on (StealPWFile, C(i), S(j)) from Fapake:

If Fapake additionally returns pw, set rw := H0(pw) and r := H1(pw), record (C(i), S(j), pw, rw, r).
Otherwise, set rw ←$ {0, 1}λ, r ←$ R, record (C(i), S(j), ?, rw, r).
Generate (pk, sk)← KeyGen(r), and mark the record (C(i), S(j), ·, rw, r) as stolen, return (rw, pk) to A.

Ideal PAKE Sessions
on (NewClient, C(i), iid, S(j)) from Fapake:

Record (C(i), iid, S(j), ?) and mark it as fresh, send (NewClient,C(i), iid, S(j)) from Fpake to A.
on (NewServer, S(j), iid′, C(i)) from Fapake:

Record (S(j), iid′,C(i), ?) and mark it as fresh, send (NewServer, S(j), iid′,C(i)) from Fpake to A.
on (Testpw, P, iid, rw′) from A:

If there exists (pw′, rw′) ∈ LH0 , send (Testpw, P, iid, pw′) to Fapake, and forward Fapake’s answer to A.
If Fapake returns “correct guess”, frecord (C(i), S(j), pw′, H0(pw

′), H1(pw
′)).

If there exists a record (NewClient/NewServer, P, iid,Q) and a stolen record (P,Q, ·, rw, r) or (Q,P, ·, rw, r) with
rw = rw′, then return “correct guess” to A.
In any other cases, return “wrong guess” to A.
If Sim returns “correct guess”, mark record (P, iid,Q, (H0(pw)/rw,H1(pw)/r)) as compromised.
Otherwise, mark record (P, iid,Q, ?) as interrupted.

on (NewKey, P, iid, sid,Key∗) from A:
If there is a compromised record (P, iid,Q, (rw, r)), send (sid,Key := Key∗) to P .
If there exists a fresh record (P, iid,Q, ·) and a completed record (Q, iid′, P, ·), (sid,Key′) was sent
to Q and (Q, iid′, P, ·) was fresh at the time, then return (sid,Key := Key′) to P .
In any other cases, pick a random key Key ←$ {0, 1}λ, send (sid,Key) to P .
Finally, mark the record (P, iid,Q, ·) as completed and record (P, iid, sid,Key).

Fig. 6: Simulator Sim part I.

33

Additional aPAKE operations
Generating ψ for server instance (S(j), iid′):

Retrieve record (S(j), iid′, sid,Key).
If there exists a compromised record (S(j), iid′,C(i), (rw, r)), then compute (pk, sk)← KeyGen(r),
(c,K1)← Encap(pk), and ψ ← AE.Enc(H2(Key), c). Otherwise, compute ψ ← AE.Enc(H2(Key), 0) and set K1 := ⊥.
Return ψ from S(j) to A, sent := sent ∪ {S(j), iid′, sid, ψ,K1}.

on ψ from A as a server message from S(j) to (C(i), iid):
recv := recv ∪ {C(i), iid, sid, ψ}
Retrieve record (C(i), iid, sid,Key).
If there are no compromised records (C(i), iid, S(j), (rw, r)):

If there exists record (S(j), iid′, sid, ψ,K1) ∈ sent:
Generate σ ←$ {0, 1}λ, send (FreshKey,C(i), iid, sid|ψ|σ) to Fapake, and return σ from C(i) to A.

If there are no records (S(j), iid′, sid, ψ) ∈ sent:
Reject the session by sending (Abort,C(i), iid) to Fapake.

Else there exists compromised records (C(i), iid, S(j), (rw, r)):
Compute c← AE.Dec(H2(Key), ψ).
If c = ⊥: reject the session by sending (Abort,C(i), iid) to Fapake.
Else:

If there exists a stolen record (C(i), S(j), ·, rw, r), send (Impersonate,C(i), iid) to Fapake.
Generate (pk, sk)← KeyGen(r), decrypt K1 ← Decap(sk, c), compute σ := H3(Key,K1, sid|ψ),
send (CorruptKey,C(i), iid, sid|ψ|σ,H4(Key)) to Fapake, return σ from C(i) to A.

on σ from A as a client message from C(i) to (S(j), iid′):
Retrieve record (S(j), iid′, sid,Key).
If ∃(S(j), iid′, sid, ψ,K1) ∈ sent ∧ (C(i), iid, sid, ψ) ∈ recv ∧ (C(i), iid, sid, σ) ∈ sent:

Send (FreshKey, S(j), iid′, sid|ψ|σ) to Fapake.
Retrieve K1 from record (S(j), iid′, sid, ψ,K1)

If Sim queried (Testpw, S(j), iid′, pw) to Fapake before and obtained “correct guess”:
If σ = H3(Key,K1, sid|ψ): send (CorruptKey, S(j), iid′, sid|ψ|σ,H4(Key)) to Fapake.

If Sim queried (OfflineTestPW,C(i), S(j), pw) before and obtained “correct guess”:
If σ = H3(Key,K1, sid|ψ): send (CorruptKey, S(j), iid′, sid|ψ|σ,H4(Key)) to Fapake.

In any other cases: send (Abort, S(j), iid′) to Fapake.
Random Oracles
on H0(pw,C

(i), S(j)) from A:
If ∃(pw,C(i), S(j), Y) ∈ LH0 : return Y

Else send (OfflineTestPW,C(i), S(j), pw) to Fapake and if it returns “correct guess”:
Update the stolen record with (C(i), S(j), pw, rw, r), LH0 := LH0 ∪ {(pw, rw)}, LH1 := LH1 ∪ {(pw, r)}, return rw.

In any other cases: Y ←$ {0, 1}λ, LH0 := LH0 ∪ {(pw,C(i), S(j), Y)}, and return Y .
on H1(pw,C

(i), S(j)) from A:
If ∃(pw, ,C(i), S(j), Y) ∈ LH1 : return Y

Else send (OfflineTestPW,C(i), S(j), pw) to Fapake and if it returns “correct guess”:
Update the stolen record with (C(i), S(j), pw, rw, r), LH0 := LH0 ∪ {(pw, rw)}, LH1 := LH1 ∪ {(pw, r)}, return r.

In any other cases: Y ←$ R, LH1 := LH1 ∪ {(pw,C(i), S(j), Y)}, and return Y .
on Hi(X) from A for i ∈ {2, 3, 4}:

If ∃(X,Y) ∈ LHi : return Y

Else: Y ←$ {0, 1}λ, LHi := LHi ∪ {(X,Y)}, and return Y .

Fig. 7: Simulator Sim part II.

34

B Proof of Theorem 2: Tight Reduction for Our aPAKE
Compiler from OW-ChCCA Secure KEM

If the underlying KEM in our compiler has OW-ChCCA security, then our our
compiler becomes a tightness-preserving one, as shown in Theorem 2. In this
section, we will present the proof for Theorem 2.

We first recall the OW-ChCCA security [26] for KEM.

Definition 6 (OW-ChCCA security for KEM [26]). For a KEM scheme
KEM = (KeyGen,Encap,Decap), the advantage function of an adversary A for N
users and ℓ challenges is defined by Adv

(N,ℓ)-ChCCA
KEM (A) := Pr

[
OW-ChCCAA

KEM ⇒ 1
]
,

where experiment OW-ChCCAA
KEM is defined in Fig. 8. The OW-ChCCA security

for KEM requires Adv
(N,ℓ)-ChCCA
KEM (A) = negl(λ) for all PPT A.

OW-ChCCAA
KEM(λ) :

pp← Setup(1λ)
For i ∈ [N]:
ri ←$ R
(pki, ski = ri)← Gen(pp; ri)

O := {Enc,Dec,Reveal,Corr,Check}
(i∗, c∗,K∗)← AO(pp, (pki)i∈[N])
If (i∗, c∗,K∗) /∈ LENC: return 0
If i∗ ∈ LCORR: return 0
If (i∗, c∗) ∈ LREVEAL : return 0
If Check(i∗, c∗,K∗) = 1: return 1

Oracle Reveal(i, c):
If ∃K s.t. (i, c,K) ∈ LENC:
LREVEAL := LREVEAL ∪ {(i, c)}
return K

return ⊥

Oracle Corr(i)
LCORR := LCORR ∪ {i}
return ri

Oracle Dec(i, c′)
If ∃K′ s.t. (i, c′,K′) ∈ LENC: return ⊥
return K′ := Decap(ski, c

′)

Oracle Enc(i):
If |LENC| ≥ ℓ: return ⊥
(c,K)← Encap(pki)
LENC := LENC ∪ {(i, c,K)}
return c

Oracle Check(i, c,K)

If Decap(ski, c) = K:
return 1

return 0

Fig. 8: The OW-ChCCA security experiment for KEM.

Note that we take KEM as a canonical one, where the randomness ri used in
Gen is taken as the secret key ski. That is reflected in the OW-ChCCA security
experiment, where the CORR oracle outputs the randomness ri which is used
to derive the key pair (pki, ski).

In [26], Pan et. al proposed a specific tightly OW-ChCCA secure KEM based
on the Matrix DDH assumption in the RO model. We review their KEM in
Fig.10.

Next we recall Theorem 2 and present its proof.

35

Theorem 2. If KEM is a KEM with OW-ChCCA security, AE is the information-
theoretically secure AE (shown in Sect. 4) with one-time authenticity and one-
time CCA security, H0,H1,H2,H3,H4 work as random oracles, then the aPAKE
scheme in Fig. 5 securely emulates Fapake, hence achieving UC security in the
{Fpake,FRO}-hybrid model. More precisely, suppose there are at most N par-
ties and ℓ sessions, and A issues q random oracle queries, then there exists a
simulator Sim such that

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ Adv
(N2,ℓ)-ChCCA
KEM (BKEM) +

2ℓ+ q2 + q + 1

2λ
.

(1)

Proof. Recall that if we use the information-theoretically secure AE scheme AEit

in our compiler, then Advot-authAE (BAE) = Advot-ccaAE (BAE) = 1/2λ. Consequently, the
security loss in the proof of Theorem 1 owes to the reduction between G7 and
G6, which is based on the OW-PCA security of KEM. Now we show that if KEM
has OW-ChCCA security, then the reduction between G7 and G6 can be a tight
one, and our compiler becomes a tightness-preserving one captured by (1).

Below we will give a tight reduction between G7 and G6 based on the OW-
ChCCA security of KEM.

Recall that G7 and G6 differ only when event Bad happens.

Bad: Case II occurs to some (S(j), iid′), σ = H3(K0,K1, sid|ψ), but until then
none of the Sim’s (OfflineTestPW,C(i), S(j), pw′) queries results in “correct
guess”.

With difference lemma, we know that |Pr [G7 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Pr [Bad in G7].

Next we show a reduction algorithm BKEM and prove Pr [Bad in G7] ≤ Adv
(N2,ℓ)-ChCCA
KEM .

BKEM obtains at most N2 public keys pkS(j)

C(i) for each pair of (C(i), S(j)) and
has access to oracles defined in Fig. 8.

In the reduction, BKEM plays the role of the simulator Sim in G7. BKEM does
the simulations as follows.

– Before receiving (StealPWFile,C(i), S(j)) from A: BKEM behaves just like
Sim does in G7.

– Upon receiving (StealPWFile,C(i), S(j)) from A: BKEM issues a StealPWFile
query to Fapake. If Fapake replies with pw and “correct guess”, then BKEM
behaves just like Sim does in G7. More precisely, BKEM computes rw :=
H0(pw), sets the trapdoor record as (C(i), S(j), rw, pk, sk,H1(pw)) where
(pk, sk) ← KeyGen(H1(pw)), and returns the password file (rw, pk). Oth-
erwise, BKEM randomly samples rw ←$ {0, 1}λ, sets the trapdoor record as
(C(i), S(j), rw, pkS

(j)

C(i) , sk =?, r =?), and returns the password file (rw, pkS
(j)

C(i))
to A.

– After receiving (StealPWFile,C(i), S(j)) from A: During this phase, for
any offline attack from A, if the corresponding (OfflineTestPW,C(i), S(j), pw′)
query to Fapake results in “correct guess”, then Bad does not happen on any

36

session between instances (C(i), iid) and (S(j), iid′). In this case, BKEM queries
CORR(C(i), S(j)) from its OW-ChCCA challenger to obtain the randomness
r and then re-programmes H0(pw,C

(i), S(j)) := rw and H1(pw,C
(i), S(j)) :=

r. Then BKEM updates its trapdoor record to (C(i), S(j), rw, pkS
(j)

C(i) , sk
S(j)

C(i) , r).

For the session between instances (C(i), iid) and (S(j), iid′), BKEM first simu-
lates the generation of PAKE key K0 without pw and trapdoor record, just like
Sim. If Case II does not happen to instance (C(i), iid) or (S(j), iid′), then Bad

event cannot happen to (S(j), iid′) and BKEM can simulate them without neither
password pw nor the trapdoor record just like Sim does in G7. We show how
BKEM simulates instances (C(i), iid) and (S(j), iid′) in Case II below.

For server instance (S(j), iid′), BKEM can simulate the generation of ψ. If
Fapake returned pw and “correct guess” before, then BKEM generates ψ just
like Sim does in G7. Otherwise, BKEM queries its challenge oracle to obtain
c∗ ← Enc(C(i), S(j)) to obtain a challenge ciphertext c∗. Then BKEM invokes
ψ ← AE.Enc(H2(K0), c

∗). Since c∗ is an encapsulation under pkS(j)

C(i) , BKEM’s sim-
ulation of ψ is perfect.

For client instance (C(i), iid), if BKEM has the trapdoor record (C(i), S(j), rw, pk, sk ̸=
?, r), then BKEM can use sk to simulate σ and the session key just like Sim does in
G7. Otherwise, BKEM has no sk = skS

(j)

C(i) now. To simulate σ and the session key,
BKEM resorts to ROs and the re-programming techniques: upon (C(i), iid) receiv-
ing ψ′, BKEM invokes c← AE.Dec(H2(K0), ψ

′). If c = ⊥, BKEM behaves just like
Sim (no skS(j)

C(i) involved). If c ̸= ⊥, for all hash queries H3(K0,K1, sid|ψ′), BKEM
first checks whether there exists K1 such that Check(C(i), S(j), c,K1) = 1, if
yes, set σ := H3(K0,K1, sid|ψ′). Otherwise, randomly choose σ ←$ {0, 1}λ, and
set H3(K0, ?, sid|ψ′) := σ with ? denoting the undermined value of K1. It then
returns σ to A and returns sKey := H2(K0) as the session key. If later A issues
any new query H3(K0,K

′
1, sid|ψ′), BKEM checks whether Check(c,K ′

1) = 1. If
yes, BKEM re-programme H3(K0,K

′
1, sid|ψ′) := σ.

Upon (S(j), iid′) receiving σ′. If there is noH3 query such that σ′ = H3(K0,K
′
1, sid|ψ),

then σ′ = H3(K0,K1, sid|ψ) with negligible probability. BKEM sends (Abort, S(j), iid′)
to Fapake, and accordingly Fapake returns ⊥, sKey := ⊥ to (S(j), iid′) to reject
the session. Otherwise, from A hash query such that σ′ = H3(K0,K

′
1, sid|ψ),

BKEM checks whether Check(C(i), S(j), c,K ′
1) = 1. If no, then σ′ ̸= H3(K0,K1 =

Decap(skS
(j)

C(i) , c
∗), sid|ψ) and BKEM sends (Abort, S(j), iid′) to Fapake. If yes, Check(C(i), S(j), c∗,K ′

1) =

1 impliesK ′
1 = Decap(skS

(j)

C(i) , c
∗). Then BKEM sends (CorruptKey, S(j), iid′, sid|ψ|σ′,H4(K0)

to Fapake. Then Fapake returns H4(K0) to (S(j), iid′).
Note that during the whole simulation, BKEM never queries DEC oracle and

REVEAL oracle. BKEM only queries CORR oracle if Fapake returns pw and “cor-
rect guess” corresponding to some OfflineTestPW query. Therefore, if Bad event
happens, BKEM does not query CORR oracle or REVEAL oracle correspond-
ing to the challenge ciphertext c∗ but successfully obtains the encapsulated key
K1 = Decap(skS

(j)

C(i) , c
∗). Finally, BKEM submits (C(i), S(j),K1) and wins the OW-

37

ChCCA game. So we have

|Pr [G7 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Pr [Bad in G7] ≤ Adv
(N2,ℓ)-ChCCA
KEM .

Collecting the statistical loss 2ℓ+q2+q+1
2λ

, we obtain (1). ⊓⊔

C Proof of Lemma 1: Security Proof for the
Information-Theoretic AE Scheme

Recall that our AE construction works as follows.
– AE.Enc(k = (k1, k2, k3),m) : it generates a ciphertext c = (c1 = k1+m, c2 =
k2 × c1 + k3).

– AE.Dec(k = (k1, k2, k3), c = (c1, c2)) : it first checks whether c2 = k2×c1+k3.
If yes, it outpus c1 − k1. Otherwise, it outputs ⊥.

Next we present the proof of the one-time authenticity and one-time CCA
security of our AE.
Proof of one-time authenticity. The one-time authenticity considers an adver-
sary A who obtains an honestly generated challenge ciphertext of message m∗

chosen by A, i.e.,

c∗ = (c∗1 = k1 +m∗, c∗2 = c∗1 × k2 + k3),

and requires that A can hardly generate a new and valid ciphertext c = (c1, c2)
such that c ̸= c∗ but AE.Dec(k, c) ̸= ⊥, i.e., c2 = c1 × k2 + k3.

We consider the following two cases.
Case 1: c1 ̸= c∗1. In this case, c2 = c1×k2+k3 implies that k2 = (c2−c∗2)/(c1−

c∗1). Due to the uniformity of key k3, c∗ = (c∗1, c
∗
2) leaks no information of k2.

With the uniformity of key k2, the event k2 = (c2 − c∗2)/(c1 − c∗1) happens
only with 1

2λ
.

Case 2: c1 = c∗1 but c2 ̸= c∗2. In this case, the ciphertext c submitted by A
must be invalid since c2 = c1 × k2 + k3 = c∗1 × k2 + k3 = c∗2 ̸= c2.

Overall,A can hardly generate a new valid ciphertext, except with probability
at most 1/2λ, and the one-time authenticity follows.
Proof of one-time CCA security. The one-time CCA security asks A to deter-
mine whether a challenge ciphertext c∗ = (c∗1 = k1 + mb, c

∗
2 = k2 × c∗1 + k3)

encrypts m0 or m1, where m0 and m1 are chosen by A itself, even if A has
one-time access to the Dec oracle, which decrypts ciphertexts different from c∗.

Due to the one-time authenticity of AE (as we shown above), the adversary
can hardly generate a new valid ciphertext, so the Dec oracle would always return
⊥ (except with probability at most 1/2λ).

As such, only the challenge ciphertext c∗ = (c∗1 = k1 +mb, c
∗
2 = c∗1 × k2 + k3)

might be useful for A to learn the challenge bit b. However, by the uniformity
of k1, c∗1 = k1 +mb perfectly hides mb. Consequently, mb is hidden in c∗ so that
A can hardly guess b correctly, except with advantage at most 1/2λ, and the
one-time CCA security follows. ⊓⊔

38

D Comparison with Other aPAKE Compilers from
Post-quantum Assumptions

Table 3: Efficiency comparison with aPAKE compilers [15] and [24]. For com-
puting and communication cost, we use the mode of “Client + Server =
Total” to reflect the separation of client/server computation/communication.
Efficiency comparison with post-quantum aPAKE compilers in [15] instantiated
from NIST PQC winner signature schemes and in [24] instantiated from CSIDH.
All algorithms except Falcon are used in their versions of NIST security level 3
(i.e., security comparable to breaking AES-192). As for Falcon, we use its level
1 version, due to its lack of level 3.

aPAKE
Compiler

Registration
Time (ms)

Computing
Time (ms)

Server
Storage (KB)

Communication
Cost (KB)

Assumption
Type

[15] (Dilithium) 0.096 0.245 + 0.126 = 0.371 5.875 3.215 + 3.938 = 7.153 Lattice-based
[15] (Falcon) 7.003 0.271 + 0.074 = 0.345 2.189 0.642 + 1.282 = 1.924 Lattice-based

[15] (Sphincs+-s) 23.505 230 + 0.4 = 230.4 0.203 15.86 + 0.12 = 15.98 Hash-based
[15] (Sphincs+-f) 0.385 10.4 + 0.8 = 11.2 0.203 34.83 + 0.12 = 34.95 Hash-based
[24] (CSIDH) 2514.011 3008 + 971 = 3979 0.25 0 + 0.125 = 0.125 Isogeny-based
Ours (Kyber) 0.017 0.051 + 0.083 = 0.134 1.188 0.031 + 1.094 = 1.125 Lattice-based

In Table 3, we compare our compiler with known aPAKE compilers instanti-
ated from other post-quantum assumptions, including the signature-based com-
piler [15] and the isogeny-based compiler [24]. When [15] is instantiated with the
NIST PQC hash-based signature scheme Sphincs+, they have smaller storage
than ours, but their communication cost is dozens of times larger than ours and
their registration time and computing time are dozens of times slower than ours.
When the isogeny-based compiler [24] is instantiated with CSIDH, their server
storage and communication cost are smaller than ours, but their registration
time and computing time are ten thousands times slower than ours. This shows
that our compiler overwhelms these compilers in terms of registration time and
computing time, and has comparable server storage and communication cost.

E Concrete aPAKE Schemes

E.1 Kyber-Based aPAKE Scheme from Lattices

By applying our Kyber-based compiler to the UC-secure Kyber-based PAKE
scheme [2], we obtain A Kyber-based aPAKE scheme, which is shown in Fig. 9.

E.2 Tightly UC-Secure aPAKE Scheme from MDDH

By applying our MDDH-based compiler to the UC-secure CDH-based PAKE
scheme [22], we obtain a tightly UC secure aPAKE scheme based on the MDDH
assumption, which is shown in Fig. 11.

39

• Kyber = (Kyber.KeyGen,Kyber.Encap,Kyber.Decap).
• Ideal ciphers IC1 on domain PK and IC2 on domain CT ,

where PK and CT are public key space and ciphertext space of Kyber.
• Hash functions H0, H2, H3, G : {0, 1}∗ → {0, 1}λ,
H1 : {0, 1}∗ →R // R is the randomness space of Kyber.KeyGen

Client C(i): Server S(j):
- Registration -
on input pw:
rw := H0(pw,C

(i), S(j));
r := H1(pw,C

(i), S(j))
(pk, sk)← Kyber.KeyGen(r)

rw, pk
−−−−−−−−−−−→

store (rw, pk)

- Login -
on input pw: on input (rw, pk):
(p̂k, ŝk)← Kyber.KeyGen

C1 := IC1.Enc(H0(pw), p̂k)

ĉ := IC2.Dec(H0(pw), C2)

K̂ ← Kyber.Decap(ŝk, ĉ)

K0 := G(C(i), S(j), C1, C2, K̂)

c← AEit.Dec(H2(K0), ψ)
Abort if c = ⊥
r := H1(pw,C

(i), S(j))
(pk, sk)← Kyber.KeyGen(r)
K1 ← Kyber.Decap(sk, c)
sid := C1|C2

σ := H3(K0,K1, sid|ψ)
sKey := H4(K0)

C1−−−−−−−−→

C2, ψ
←−−−−−−−−−−−

σ−−−−−−−−→

p̂k := IC1.Dec(rw,C1)

(ĉ, K̂)← Kyber.Encap(p̂k)
C2 := IC2.Enc(rw, ĉ)

K0 := G(C(i), S(j), C1, C2, K̂)

(c,K1)← Kyber.Encap(pk)
ψ ← AEit.Enc(H2(K0), c)

sid := C1|C2

Abort if σ ̸= H3(K0,K1, sid|ψ)
sKey := H4(K0)

Fig. 9: The Kyber-based aPAKE scheme resulting from compiling the Kyber-based
PAKE in [2] with our Kyber-based compiler. The dashed part is our Kyber-based
compiler. Kyber = (Kyber.KeyGen,Kyber.Encap,Kyber.Decap) denotes the CCA-secure
Kyber.

In the following, we also recall the definition of the MDDH assumption and
present the MDDH-based OW-ChCCA KEM scheme proposed in [26] in Fig.
10. In the MDDH-based KEM scheme, we use [a] to represent a group element
ga and naturally extend to vectors [v] and matrices [A]. The UC-security of the
CDH-based PAKE scheme in [22] is recalled in Lemma 2.

Definition 7 (Matrix DDH Assumption [13]). Let k ∈ N and GGen is
a group generation algorithm that outputs (G, g, p) on input 1λ. The k-MDDH
assumption holds, if for any PPT A, we have

AdvMDDH(A) :=
∣∣∣Pr [A(G, g, p, [A], [b])⇒ 1]− Pr [A(G, g, p, [A], [u])⇒ 1]

∣∣∣ = negl(λ),

where (G, g, p)← GGen,A ←$ Z(k+1)×k
p ,x ←$ Zk

p,b := Ax,u ←$ Zk+1
p .

Lemma 2 ([26], Theorem 4). The KEM scheme in Fig. 10 is tightly OW-
ChCCA secure. Concretely, for any PPT adversary A, for any N = poly(λ) and

40

ℓ = poly(λ), there exists a PPT algorithm B such that

Adv
(N,ℓ)-ChCCA
KEM ≤ 12 · AdvMDDH(B) + 2−Ω(λ).

Lemma 3 ([22], Theorem 2). The PAKE scheme in Fig. 11 securely emulates
Fpake. Concretely, we have

|Pr [RealZ,A]− Pr [IdealZ,Sim]| ≤ 2 · AdvCDH(B) + 2−Ω(λ).

Finally, when applying our MDDH-based compiler to the tightly UC-secure
PAKE scheme [22], we obtain the first tightly UC-secure aPAKE scheme, as
shown in Fig. 11.

Setup(1λ) :

(G, p, g)← GGen(1λ)
[A] ←$ G3×3

Return pp := (G, p, g, [A])

KeyGen(pp)
b ←$ {0, 1}, zb ←$ Z3

p

[ub] := [Azb], [u1−b] ←$ G3

pk := ([u0], [u1]), sk := (zb, b)

Encap(pk) :

R ←$ {0, 1}λ, (s, h0, h1) := G(R)
[x] := [A⊤s] ∈ G3

ĥ0 := [s⊤u0]⊕ h0 ∈ {0, 1}log p

ĥ1 := [s⊤u1]⊕ h1 ∈ {0, 1}log p

K̂0 := H([x, ĥ0, h0]), C0 := K̂0 ⊕R
K̂1 := H([x, ĥ1, h1]), C1 := K̂1 ⊕R
c := (C0, C1, [x], ĥ0, ĥ1)
return (c,K := R)

Decap(sk, c) :

Parse c = (C0, C1, [x], ĥ0, ĥ1))
Parse sk = (zb, b)

h′b := ĥb ⊕ [z⊤bx] ∈ {0, 1}log p

K̂b := H([x], ĥb, h
′
b)

R := Cb ⊕ K̂b

(s, h0, h1) := G(R)

ĥ′1−b := [s⊤u1−b]⊕ h1
K̂1−b := H([x], ĥ′1−b, h1−b)
If x ̸= [A⊤s]: return ⊥
If K̂1−b ⊕R ̸= C1−b : return ⊥
If h′b ̸= hb : return ⊥
If ĥ′1−b ̸= ĥ1−b : return ⊥
return K := R

Fig. 10: The MDDH based OW-ChCCA secure KEM scheme in [26].

41

• KEMMDDH := (KEMMDDH.KeyGen,KEMMDDH.Encap,KEMMDDH.Decap)
• A group (G, g, p).
• Two ideal ciphers IC1 on domain G×G and IC2 on domain G.
• Hash functions H0, H2, H3, G : {0, 1}∗ → {0, 1}λ,
H1 : {0, 1}∗ →R // R is the randomness space of KEMMDDH.KeyGen

Client C(i): Server S(j):
- Registration -

on input pw:
rw := H0(pw,C

(i), S(j));
r := H1(pw,C

(i), S(j))
(pk, sk)← KEMMDDH.KeyGen(r)

rw, pk
−−−−−−−−−−−→

store (rw, pk)

- Login -
on input pw: on input (rw, pk):
x1, x2 ←$ Zp, X1 := gx1 , X2 := gx2

e1 ← IC1.Enc(H0(pw), X1|X2)

Y ← IC2.Dec(H0(pw), e2)
sid := C|S|e1|e2
K0 := G(sid, Y x1 , Y x2 , pw)

c← AEit.Dec(H2(K0), ψ)
Abort if c = ⊥
r := H1(pw,C

(i), S(j))
(pk, sk)← KEMMDDH.KeyGen(r)
K1 ← KEMMDDH.Decap(sk, c)
σ := H3(K0,K1, sid|ψ)
sKey := H4(K0)

e1−−−−−−−−→

e2, ψ
←−−−−−−−−−−

σ−−−−−−−−→

y ←$ Zp, Y := gy

e2 ← IC2.Enc(rw, Y)
X1|X2 ← IC1.Dec(rw, e1)
sid := C|S|e1|e2
K0 := G(sid,Xy

1 , X
y
2 , pw)

(c,K1)← KEMMDDH.Encap(pk)
ψ ← AEit.Enc(H2(K0), c)

Abort if σ := H3(K0,K1, sid|ψ)
sKey := H4(K0)

Fig. 11: The tightly secure MDDH-based aPAKE scheme resulting from
compiling the CDH-based PAKE in [22] with our KEM-based compiler.
The dashed part is our KEM-based compiler installed with KEMMDDH =
(KEMMDDH.KeyGen,KEMMDDH.Encap,KEMMDDH.Decap) shown in Fig. 10, which
is a tightly secure OW-ChCCA secure KEM scheme in [26].

42

Table of Contents

Efficient Asymmetric PAKE Compiler from KEM and AE 1
You Lyu , Shengli Liu(�) , and Shuai Han

1 Introduction . 1
2 Preliminary . 10

2.1 KEM and AE . 10
2.2 Idealized Random Oracle Model . 12
2.3 (Asymmetric) PAKE under UC Framework 12

3 Our aPAKE Compiler from KEM and AE. 15
4 Instantiations of aPAKE from Our Compiler and PAKE 27

4.1 Most Efficient aPAKE from Lattice . 28
4.2 Tightly Secure aPAKE Scheme from Matrix DDH 29

A Full Descriptions of Simulator Sim . 33
B Proof of Theorem 2: Tight Reduction for Our aPAKE Compiler

from OW-ChCCA Secure KEM . 35
C Proof of Lemma 1: Security Proof for the Information-Theoretic AE

Scheme . 38
D Comparison with Other aPAKE Compilers from Post-quantum

Assumptions . 39
E Concrete aPAKE Schemes . 39

E.1 Kyber-Based aPAKE Scheme from Lattices 39
E.2 Tightly UC-Secure aPAKE Scheme from MDDH 39

	Efficient Asymmetric PAKE Compiler from KEM and AE
	Introduction
	Preliminary
	KEM and AE
	Idealized Random Oracle Model
	(Asymmetric) PAKE under UC Framework

	Our aPAKE Compiler from KEM and AE
	Instantiations of aPAKE from Our Compiler and PAKE
	Most Efficient aPAKE from Lattice
	Tightly Secure aPAKE Scheme from Matrix DDH

	Full Descriptions of Simulator Sim
	Proof of Theorem 2: Tight Reduction for Our aPAKE Compiler from OW-ChCCA Secure KEM
	Proof of Lemma 1: Security Proof for the Information-Theoretic AE Scheme
	Comparison with Other aPAKE Compilers from Post-quantum Assumptions
	Concrete aPAKE Schemes
	Kyber-Based aPAKE Scheme from Lattices
	Tightly UC-Secure aPAKE Scheme from MDDH

