
Efficient ECDSA-based Adaptor Signature for
Batched Atomic Swaps

Binbin Tu1,2,3[0000−0002−2167−0762], Min Zhang1,2,3[0009−0002−4772−6565], and
Yu Chen1,2,3(B)[0000−0003−2553−1281]

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Qingdao 266237, China
{tubinbin,zm_min}@mail.sdu.edu.cn, yuchen@sdu.edu.cn

Abstract. Adaptor signature is a novel cryptographic primitive which
ties together the signature and the leakage of a secret value. It has be-
come an important tool for solving the scalability and interoperability
problems in the blockchain. Aumayr et al. (Asiacrypt 2021) recently pro-
vide the formalization of the adaptor signature and present a provably
secure ECDSA-based adaptor signature, which requires zero-knowledge
proof in the pre-signing phase to ensure the signer works correctly. How-
ever, the number of zero-knowledge proofs is linear with the number of
participants.
In this paper, we propose efficient ECDSA-based adaptor signature schemes
and give security proofs based on ECDSA. In our schemes, the zero-
knowledge proofs in the pre-signing phase can be generated in a batch
and offline. Meanwhile, the online pre-signing algorithm is similar to the
ECDSA signing algorithm and can enjoy the same efficiency as ECDSA.
In particular, considering specific verification scenarios, such as (batched)
atomic swaps, our schemes can reduce the number of zero-knowledge
proofs in the pre-signing phase to one, independent of the number of
participants. Last, we conduct an experimental evaluation, demonstrat-
ing that the performance of our ECDSA-based adaptor signature reduces
online pre-signing time by about 60% compared with the state-of-the-art
ECDSA-based adaptor signature.

Keywords: Adaptor signature · ECDSA-based adaptor signature · Batched
atomic swaps · Blockchain.

1 Introduction

Adaptor signatures (AS), also known as scriptless scripts, are introduced by
Poelstra [19] and recently formalized by Aumayr et al. [2]. It can be seen as
an extension over a digital signature with respect to leaking a secret to certain
parties. Namely, the signer uses a signing key to compute a pre-signature of a

message and a statement of a hard relation (e.g., the discrete logarithm), such
that the pre-signature can be adapted into a (full) signature by the witness of the
hard relation. Meanwhile, the witness can be extracted from the pre-signature
and the full signature. AS provides the following intuitive properties: (i) Only
the user knowing the signing key can generate a pre-signature; (ii) Only the user
knowing the witness of the hard relation can convert a pre-signature into a full
signature; (iii) Anyone holding a pre-signature and corresponding full signature
can extract the witness.

BlockBlock Block

Locked c0, c1
σ1

c1

σ0

c0

U0 U1

σ̂0, Y, tx0

σ̂1, tx1

σ1

on-chain

off-chain

(Y, y)← GenR(1λ)

σ̂0 ← pSignsk0
(tx0, Y)

σ1 ← Adapt(σ̂1, y)

σ̂1 ← pSignsk1
(tx1, Y)

y ← Ext(σ1, σ̂1, Y)

σ0 ← Adapt(σ̂0, y)

Fig. 1: The atomic swap protocol based on adaptor signature

To demonstrate the idea of AS, we introduce its key application atomic swaps
in Figure 1. An atomic swap [10] can be defined between two users U0 and U1

who want to exchange two different cryptocurrencies c0 and c1. The crucial point
of the exchange is ensuring fairness, i.e., both parties receive their expected
output or nothing. Two parties U0 and U1 first set the time-lock for c0 with
the timeout t0 and c1 with the timeout t1 on-chain4. Then, U0 chooses a hard
relation (Y, y) ∈ R and pre-signing a transaction tx0 for spending the coins c0
to U1, and then sends the pre-signature σ̂0, tx0, Y to U1. U1 can check the
validity of σ̂0 and pre-signing a transaction tx1 for spending the coins c1 to U0

and then sends the pre-signature σ̂1, tx1 to U0. U0 can check the validity of σ̂1

and adapts σ̂1 into the full signature σ1 by the witness y, and then publishes
σ1 on the blockchain to get the coin c1 within t1. U1 can extract the witness y
from σ1 and σ̂1 and adapts σ̂0 into σ0, then publishes σ0 on the blockchain to
get the coin c0 within t0. As we can see, the pre-signature and the cryptographic
condition need not to be published on-chain, compared with using the Hash
Time-Lock Contracts (HTLCs) [20,15], AS reduces the operations on-chain and
weaken scripting restrictions on the underlying blockchain.
4 Both parties use time-lock to lock the exchange coins on-chain, and the timeouts
t1 < t0 to ensure that U1 can have enough time to react.

2

By tying the signing processing to the revelation of a secret value, AS brings
about various advantages as follows: (i) Reducing the operations on-chain; (ii)
Supporting advanced functionality beyond the limitation of the blockchains
scripting language; (iii) Improving fungibility of transactions. To be specific,
the pre-signature is generated and verified off-chain and only the full signature
is published on-chain, so AS reduces the additional storage and verification costs
greatly on-chain, meanwhile, it is not limited by the blockchains scripting lan-
guage. Based on this advantage, Aumayr et al. [2] give a generalized channel
construction by using AS as a key technique, which is compatible with any
blockchain supporting transaction authorization, time-locks, and constant num-
ber of Boolean ∧ and ∨ operations - requirements fulfilled by many (non-Turing-
complete) blockchains including the Bitcoin. The fungibility property is said
that the pre-signature embedded in the cryptographic condition (hard relations)
inside is indistinguishable from a regular signature, and it can be used to hide
payment channel network transactions among any other transactions [16]. Ben-
efiting from above advantages, AS has also been shown highly useful in many
blockchain applications such as payment channels [2,4,7,20,3], payment routing
in payment channel networks [9,16,17,10], and atomic swaps [8,13,10].

Poelstra [19] first gives a Schnorr-based AS that is limited to cryptocur-
rencies using Schnorr signatures [21]. Moreno-Sanchez and Kate [18] present an
ECDSA-based AS and its two-party version without provable security. Malavolta
et al. [16] present two-party AS based on ECDSA [1], but they do not define AS
as a stand-alone primitive and formalize the security definition for the threshold
primitive and hence the security of their schemes has not been analyzed com-
pletely, such as the lack of the witness extractability. Until Aumayr et al. [2] first
formalize AS as a standalone primitive and prove the security of their ECDSA-
based AS based on the strong unforgeability of positive ECDSA in the Universal
Composability (UC) framework [5]. They exquisitely modify the hard relation
in [18], by adding a zero-knowledge proof such that the witness can be extracted
in the random oracle model [12]. For convenience, we name this modification as
“self-proving structure”. However, their ECDSA-based AS is not entirely satis-
factory. In the pre-signing phase, the signer uses the random value as a witness
to compute a pre-signing public parameter and a corresponding zero-knowledge
proof. Especially, in the case of multiple participants, such as (batched) atomic
swaps or multi-hop payments [16,10], the number of zero-knowledge proofs is
linear with the number of participants. Therefore, we consider the following
question in this work:

Is it possible to design an efficient ECDSA-based AS in which the number of
zero-knowledge proofs in the pre-signing phase is independent of the number of
participants?

1.1 Our Contributions

In this paper, we give an affirmative answer to the above question. First, we
propose an ECDSA-based AS (ECDSA-AS) and prove the security based on

3

positive ECDSA in UC framework following [2]. Then, we develop more effi-
cient ECDSA-AS schemes in which the zero-knowledge proofs in the pre-signing
phase can be generated in a batch and offline. In particular, considering specific
verification scenarios5, in which only the participants verify the pre-signatures,
our ECDSA-AS can reduce the number of zero-knowledge proofs in pre-signing
phase to one.

ECDSA-based adaptor signature. ECDSA-AS can be seen as an extension of
ECDSA with a hard relation (IY = (Y = yG, πY), y), where πY ← PY (Y, y), PY

denotes the proving algorithm6. We briefly introduce our ECDSA-AS as follows:
Let (Q = xG, x) denote ECDSA verification key and signing key. The signer
computes a pre-signing public parameter Z = xY and uses x as the witness
to compute πZ ← PZ((G,Q, Y, Z), x)7, then chooses a random value k ← Zq,
computes r = f(kY), ŝ = k−1(h(m)+ rx) mod q, and outputs the pre-signature
σ̂ = (r, ŝ, Z, πZ). The verification algorithm verifies πZ and r

?
= f(ŝ−1 ·h(m) ·Y +

ŝ−1 ·r ·Z). The adaptor algorithm takes the witness y and the pre-signature σ̂ as
inputs to compute s = ŝ · y−1 mod q, and outputs ECDSA signature σ = (r, s).
The extraction algorithm can extract the witness by computing y = ŝ/s.

Following [2], we use “self-proving structure” (IY = (Y, πY), y) to give se-
curity proofs. Intuitively speaking, since the zero-knowledge proof system holds
straight-line extractability, the simulator can extract the witness y from the in-
stance (Y, πY), then it can use ECDSA signing oracle to obtain ECDSA signature
σ = (r, s) and simulates the pre-signing oracle by computing the pre-signature
ŝ = s · y mod q.

Then, we develop two efficient ECDSA-AS schemes called ECDSA-ASsk and
ECDSA-ASwit by computing the pre-signing public parameter and correspond-
ing zero-knowledge proof offline, where ECDSA-ASsk uses signing key x as a
witness to compute (Z = xY, πZ), and ECDSA-ASwit uses the witness y of hard
relation (IY , y) as a witness to compute (Z = yQ, πZ).

Offline/online pre-signing. In ECDSA-AS [2,18], the signer computes the
pre-signing public parameter K = kY and proves the hard relation ((G, K̂ =
kG, Y,K), k) satisfies equality of discrete logarithms πK ← PK((G, K̂, Y,K), k),
that is, there exists a witness k that is the random value used in the pre-signing
algorithm, such that K̂ = kG and K = kY .
5 Common verification scenarios require that everyone can verify signatures. However,

the pre-signature of the adaptor signature is not published on the blockchain, so
it is always used in the specific verification scenarios where only the participants
verify the pre-signatures off-chain and others (such as miners) need not verify pre-
signatures.

6 The zero-knowledge proof system requires straight-line extractor, also namely online
extractor [12]. The straight-line extractability property allows for the extraction of
a witness y for a statement Y from a proof πY in the random oracle model and is
useful for models where the rewinding proof technique is not allowed, such as UC. [2]

7 This zero-knowledge proof system does not require straight-line extractor. Such a
proof can be derived by applying the Fiat-Shamir heuristic [11] to Chaum-Pedersen∑

-protocol [6] for the language comprising valid DDH tuples.

4

In our ECDSA-ASsk, the signer computes Z = xY and proves the hard
relation ((G, Q, Y , Z), x) satisfies equality of discrete logarithms πZ ← PZ((G,
Q, Y , Z), x), that is, there exists a witness x that is the signing key, such that
Q = xG and Z = xY . In our ECDSA-ASwit, the signer8 computes Z = yQ and
proves the hard relation ((G, Y , Q, Z), y) satisfies equality of discrete logarithms
πZ ← PZ((G, Y , Q, Z), y), that is, there exists a witness y that is the witness of
hard relation (IY , y), such that Y = yG and Z = yQ. By using y as the witness,
the signer (hard relation chooser) holding y can generate all pre-signing public
parameters Zi = yQi and zero-knowledge proofs πZi in a batch and offline for
all other participants. Other participants can compute Zi = xiY by using the
signing key xi and the instance Y .

Performance. We show the theoretical and experimental analysis of ECDSA-
AS [2,18] and our ECDSA-ASsk/wit. In the offline phase, all parties in ECDSA-
ASsk/wit generates and checks the hard relation IY = (Y, πY ← PY (Y, y), y). In
the online phase, the signer uses Y and Zi = yQi to run the online pre-signing
algorithm to generate the pre-signature which can be verified by Y and Zi = xiY .
Thus, the online pre-signing algorithm is similar to the original ECDSA signing
algorithm except for modifying parameters by using (Z, Y) as the verification
key and base point instead of (Q,G). To be specific, ECDSA-ASsk/wit only
computes once point multiplication operation online, while ECDSA-AS in [2,18]
need four times point multiplication operation. The experimental results show
that ECDSA-ASwit reduces online pre-signing time by about 60% compared with
the state-of-the-art ECDSA-AS [2] in a two-party case.

Applications. AS can be divided into off-chain and on-chain two phases. In the
off-chain phase, all participants generate and verify the pre-signatures from each
other, and adapt the pre-signatures into full signatures. In the on-chain phase, all
participants use the time-lock to lock their coins and then publish full signatures
to achieve the exchange within the timeouts. Therefore, the pre-signatures are
not published on the blockchain and are only verified by the participants who
satisfy special verification scenarios. Our ECDSA-ASsk/wit can reduce all zero-
knowledge proof in the pre-signing phase, except one zero-knowledge proof of
the hard relation chooser. Since other participants can compute the pre-signing
public parameters Zi = xiY and the hard relation chooser can compute the
pre-signing public parameters Zi = yQi, there is no need to use zero-knowledge
proofs to ensure the correctness of pre-signing public parameters.

To our knowledge, atomic swaps are mostly for two-party exchange scenarios
to ensure fairness. We consider the special batched case in which one party with
many addresses (accounts) or one party with a lot of transactions that need to
be exchanged with many users at once, such as the scenario of the Exchange.
For this scenario, we develop batched atomic swaps, in which all parties first

8 The signer can be seen as a hard relation chooser who is the protocol initiator and
holds the witness y.

5

set the time-lock for the exchange coins on-chain9 and then one user U0 can
exchange its coins with many users (addresses) Ui, i ∈ [n] in a batch. Compared
with running independently n times atomic swaps between U0 and Ui, i ∈ [n],
batched atomic swaps can reduce the number of hard relations (Y, y) from n to
one. In particular, constructing batched atomic swaps based on ECDSA-ASsk/wit

only transmits one zero-knowledge proof, while using ECDSA-AS [2,18] requires
2n zero-knowledge proofs, where n denotes the number of parties in batched
atomic swaps.

2 Preliminaries

2.1 Notations

For n ∈ N, [n] denotes the set {1, 2, · · · , n}, 1λ denotes the string of λ ones.
Throughout, we use λ to denote the security parameter. A function is negligible
in λ, written negl(λ), if it vanishes faster than the inverse of any polynomial in
λ. We denote a probabilistic polynomial-time algorithm by PPT. If S is a set
then s← S denotes the operation of sampling an element s of S at random.

2.2 Hard Relation and Zero-Knowledge Proof

We recall the definition of a hard relation R with statement/witness pairs (stat =
(G, Y = yG), y) [2]. Let LR be the associated language defined as LR = {(G,Y)|∃ y
s.t. ((G,Y), y) ∈ R}. We say that R is a hard relation if the following holds: (i)
There exists a PPT sampling algorithm GenR(1λ) that on input 1λ outputs a
statement/witness pair ((G,Y), y) ∈ R; (ii) The relation is poly-time decidable;
(iii) For all PPT A, the probability of A on input (G,Y) outputting y is negligi-
ble.

We recall the definition of a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK) with straight-line extractors as introduced in [12]. More for-
mally, a pair (P,V) of PPT algorithms is called a NIZKPoK with a straight-
line extractor for a relation R, random oracle H and security parameter λ if
the following holds: (i) Completeness: For any ((G,Y), y) ∈ R, it holds that
V((G,Y), π ← P((G,Y), y)) = 1; (ii) Zero-knowledge: There exists a PPT simu-
lator S, which on input (G,Y) can simulate the proof π for any ((G,Y), y) ∈ R.
(iii) Straight-line extractability: There exists a PPT straight-line extractor K
with access to the sequence of queries to the random oracle and its answers,
such that given ((G,Y), π) , the algorithm K can extract the witness y with
((G,Y), y) ∈ R. For convenience, we omit the parameter G in this paper.

9 All parties use time-lock to lock the exchange coins c0 with the timeouts t0 and ci
with the timeouts ti, and the timeouts ti < t0, i ∈ [n] to ensure that Ui can have
enough time to react.

6

2.3 Adaptor Signature Scheme

An adaptor signature scheme [2] w.r.t. a hard relation R = {Y, y} and a
signature scheme

∑
= (Gen, Sign,Vrfy) consists of four algorithms ΠR,

∑ =
(pSign, pVrfy, Adapt, Ext) defined as:

– pSignsk(m,Y)→ σ̂: On input a signing key sk, an instance Y and a message
m ∈ {0, 1}∗, outputs a pre-signature σ̂.

– pVrfyvk(m,Y, σ̂) → 0/1: On input a verification key vk, a pre-signature σ̂,
an instance Y and a message m ∈ {0, 1}∗, outputs a bit b ∈ {0, 1}.

– Adapt(σ̂, y) → σ: On input a pre-signature σ̂ and a witness y, outputs a
signature σ.

– Ext(σ, σ̂, Y)→ y: On input a signature σ, a pre-signature σ̂ and an instance
Y , outputs a witness y such that (Y, y) ∈ R, or ⊥.

Definition 1 (Pre-signature correctness). An adaptor signature scheme ΠR,
∑

satisfies pre-signature correctness if for every λ, every message m ∈ {0, 1}∗ and
every statement/witness pair (Y, y) ∈ R, the following holds:

Pr

pVrfyvk(m,Y, σ̂)→ 1∧
Vrfyvk(m,σ)→ 1∧

(Y, y′) ∈ R

Gen(1λ)→ (sk, vk)
pSignsk(m,Y)→ σ̂
Adapt(σ̂, y)→ σ
Ext(σ, σ̂, Y)→ y′

 = 1

We review the existential unforgeability under chosen message attack for AS
(aEUF-CMA), pre-signature adaptability, and witness extractability [2].

Definition 2 (aEUF-CMA security). An adaptor signature scheme ΠR,
∑ is

aEUF-CMA secure if for every PPT adversary A there exists a negligible func-
tion negl such that:

Pr[aSigForgeA,ΠR,
∑(λ) = 1] ≤ negl(λ),

where the experiment aSigForgeA,ΠR,
∑ is defined as follows:

aSigForgeA,ΠR,
∑(λ) OSignsk

(m)

Q = ∅ σ ← Signsk(m)
(vk, sk)← Gen(1λ) Q = Q∪ {m}
m← AOSignsk

(·),OpSignsk
(·)(vk) return σ

(Y, y)← GenR(1λ)
σ̂ ← pSignsk(m,Y) OpSignsk

(m,Y)

σ ← AOSignsk
(·),OpSignsk

(·)(σ̂, Y) σ̂ ← pSignsk(m,Y)
return (m /∈ Q ∧ Vrfyvk(m,σ) Q = Q∪ {m}

return σ̂

7

Definition 3 (Pre-signature adaptability). An adaptor signature scheme ΠR,
∑

satisfies pre-signature adaptability if for any λ, any message m ∈ {0, 1}∗ , any
statement/witness pair (Y, y) ∈ R, any key pair (vk, sk) ← Gen(1λ) and any
pre-signature σ̂ with pVrfyvk(m,Y, σ̂)→ 1, we have Vrfyvk(m, Adapt(σ̂, y))→ 1.

The aEUF-CMA security together with the pre-signature adaptability en-
sures that a pre-signature for Y can be transferred into a valid signature if and
only if the corresponding witness y is known [2].

Definition 4 (Witness extractability). An adaptor signature scheme ΠR,
∑ is

witness extractable if for every PPT adversary A, there exists a negligible func-
tion negl such that:

Pr[aWitExtA,ΠR,
∑(λ) = 1] ≤ negl(λ),

where the experiment aWitExtA,ΠR,
∑ is defined as follows

aWitExtA,ΠR,
∑(λ) OSignsk

(m)
Q = ∅ σ ← Signsk(m)
(vk, sk)← Gen(1λ) Q = Q∪ {m}
(m,Y)← AOSignsk

(·),OpSignsk
(·)(vk) return σ

σ̂ ← pSignsk(m,Y)

σ ← AOSignsk
(·),OpSignsk

(·)(σ̂) OpSignsk
(m,Y)

y′ ← Ext(σ, σ̂, Y) σ̂ ← pSignsk(m,Y)
return m /∈ Q ∧ (Y, y′) /∈ R Q = Q∪ {m}
∧Vrfyvk(m,σ) return σ̂

The witness extractability guarantees that a valid signature/pre-signature
pair (σ, σ̂) for message/statement (m,Y) can be used to extract the correspond-
ing witness y. There is one crucial difference between aWitExt and aSigForge:
The adversary is allowed to choose the challenge instance Y . Hence, he knows
a witness for Y and can generate a valid signature on the forgery message m.
However, this is not sufficient to win the experiment aWitExt. The adversary
wins only if the valid signature does not reveal a witness for Y [2].

2.4 ECDSA

We review the ECDSA scheme [1]
∑

ECDSA = (Gen, Sign,Vrfy) on a message
m ∈ {0, 1}∗ as follows. Let G be an Elliptic curve group of order q with base
point (generator) G and let pp = (G, G, q) be the public parameter.

– Gen(pp)→ (Q, x): The key generation algorithm uniformly chooses a secret
signing key x ← Zq, calculates the verification key Q = x · G, and outputs
(sk = x, vk = Q).

– Signsk(m) → (r, s). The signing algorithm chooses k ← Zq randomly and
computes r = f(kG)10 and s = k−1(h(m) + rx), where h is a hash function
and f is defined as the projection to the x-coordinate.

10 The function f is defined as the projection to x-coordinate.

8

– Vrfyvk(m,σ)→ 0/1. The verification algorithm computes r′ = f(s−1 ·(h(m) ·
G+ r ·Q)). If r = r′ mod q, outputs 1, otherwise, outputs 0.

We use the positive ECDSA [14,16,2] which guarantees that if (r, s) is a valid
signature, then |s| ≤ (q − 1)/2, to prove the security of our ECDSA-AS.

3 ECDSA-based Adaptor Signature

In this section, we present a construction of ECDSA-AS ΠR,
∑ = (pSign,

pVrfy, Adapt, Ext) w.r.t. a hard relation R and a ECDSA signature
∑

= (Gen,
Sign, Vrfy). Let (Q = xG, x) be the verification key and signing key of ECDSA.
We define hard relations R = {(IY = (Y, πY ← PY (Y, y)), y)| Y = yG ∧
VY (IY) = 1} and RZ = {(IZ = (G,Q, Y, Z), x)|Q = xG ∧ Z = xY } where
PY and VY denotes the proving and verification algorithm of a NIZKPoK with
straight-line extractability [12], PZ and VZ denotes the proving and verification
algorithm of a NIZK.

– pSign(vk,sk)(m, IY) → σ̂: On input a key-pair (vk, sk) = (Q, x), a message
m and an instance IY = (Y, πY), the algorithm computes the pre-signing
public parameter Z = xY , runs πZ ← PZ(IZ = (G,Q, Y, Z), x), and chooses
k ← Zq, computes r = f(kY), ŝ = k−1(h(m) + rx) mod q and outputs the
pre-signature σ̂ = (r, ŝ, Z, πZ).

– pVrfyvk(m, IY , σ̂) → 0/1: On input the verification key vk = Q, a message
m, an instance IY , and a pre-signature value σ̂, the algorithm outputs 0, if
VZ(IZ) → 0, otherwise, it computes r′ = f(ŝ−1 · (h(m) · Y + r · Z)) mod q,
and if r′ = r, outputs 1, else outputs 0.

– Adapt(y, σ̂)→ σ: On input the witness y, and pre-signature σ̂, the algorithm
computes s = ŝ · y−1 mod q and outputs the signature σ = (r, s).

– Ext(σ, σ̂, IY) → y: On input the signature σ, the pre-signature σ̂ and the
instance IY , it computes y =ŝ/s modq. If (IY ,y) ∈ R, it outputs y, else
outputs ⊥.

Note that in the pre-signing phase, our ECDSA-AS uses the signing key x
as the witness to compute the pre-signing public parameter Z = xY and zero-
knowledge proof πZ , then the later pre-signing operation is similar to original
ECDSA signing algorithm except for modifying some parameters by using (Z, Y)
as the verification key and base point instead of (Q,G).

Theorem 1. Assuming that the positive ECDSA
∑

is SUF-CMA secure, and
R is a hard relation, NIZKPoK and NIZK are secure, above ECDSA-AS ΠR,

∑
is secure in random oracle model.

Following [2], we use self-proving structure in our ECDSA-AS and prove
that our ECDSA-AS scheme satisfies pre-signature adaptability, pre-signature
correctness, aEUF-CMA security, and witness extractability.

9

Lemma 1. (Pre-signature adaptability) Above ECDSA-AS ΠR,
∑ satisfies pre-

signature adaptability.

Proof. For any (IY , y) ∈ R, m ∈ {0, 1}∗, G,Q, Y, Z ∈ G and σ̂ = (r, ŝ, Z, πZ).
For pVrfyvk(m, IY , σ̂) → 1. That is, Y = yG,Z = xyG, K̂ = (h(m) · ŝ−1)Y +
r · ŝ−1Z = kY , r′ = f(K̂) = f(kY) = r. By definition of Adapt, we know that
Adapt(σ̂, y)→ σ, where σ = (r, s), s = ŝ·y−1 = (yk)−1(h(m)+rx) mod q. Hence,
we have

K ′ = (h(m) · s−1)G+ r · s−1Q = kY.

Therefore, r′ = f(K ′) = r. That is, Vrfyvk(m,σ)→ 1.

Lemma 2. (Pre-signature correctness) Above ECDSA-AS ΠR,
∑ satisfies pre-

signature correctness.

Proof. For any x, y ∈ Zq, Q = xG, Y = yG and m ∈ {0, 1}∗. For pSign(vk,sk)(m,
IY) → σ̂ = (r, ŝ, Z, πZ), it holds that Y = yG,Z = xY , ŝ = k−1(h(m) +
rx) mod q for some k ← Zq. Set K̂ = (h(m) · ŝ−1)Y + r · ŝ−1Z = kY. Therefore,
r′ = f(K̂) = f(kY) = r, we have pVrfyvk(m, IY , σ̂) → 1. By Lemma 1, this
implies that Vrfyvk(m,σ) → 1, for Adapt(σ̂, y) → σ = (r, s). By the definition
of Adapt, we know that s = ŝ · y−1 and y′ = Ext(σ, σ̂, IY) = ŝ/s = ŝ/(ŝ/y) = y.
Hence, (IY , y′) ∈ R.

Lemma 3. (aEUF-CMA security) Assuming that the positive ECDSA signature
scheme

∑
is SUF-CMA secure, R is a hard relation, NIZKPoK and NIZK are

secure, above ECDSA-AS ΠR,
∑ is aEUF-CMA secure.

Proof. We prove the aEUF-CMA security by reduction to the strong unforge-
ability of positive ECDSA signatures. Following [2], our ECDSA-AS uses the
same hard relation (IY = (Y, πY), y), where NIZKPoKY satisfies straight-line
extractability, so the simulator can extract the witness from IY . Our proof works
by showing that, for any PPT adversary A breaking aEUF-CMA security of the
ECDSA-AS, we construct a PPT simulator S who breaks the SUF-CMA secu-
rity of ECDSA. S has access to the signing oracle OECDSA-Sign of ECDSA and
the random oracle HECDSA. It needs to simulate oracle for A, namely random
oracle (H), signing oracle (OSign) and pre-signing oracle (OpSign).

The simulator S can use its oracle OECDSA-Sign and HECDSA to simulate
OSign and H. The main challenge is simulating OpSign queries. Because S can
extract the witness from IY , it uses its oracle OECDSA-Sign to get a full signature
on m which is queried by A, and transform the full signature into a pre-signature.
What’s more, S can use the zero-knowledge property of NIZKZ to simulate πZ

for a statement (G,Q, Y, Z) without knowing the corresponding witness x.
We prove security by describing a sequence of games G0, · · · , G4, where G0

is the original aSigForge game. Then we show that for all i = 0, · · · , 3, Gi and
Gi+1 are indistinguishable.

– Game G0: This game corresponds to the original aSigForge game.

10

– Game G1: This game works as G0 with the exception that upon the adversary
outputting a forgery σ∗. It checks that if completing the pre-signature σ̂ using
the secret value y results in σ∗. If yes, it aborts.

– Game G2: This game works as G1 excepting that in OpSign, it extracts a
witness y′ by executor K. It aborts if (IY , y′) /∈ R.

– Game G3: This game works as G2 excepting that it extracts a witness y and
calculates Z = yQ, and simulates a zero-knowledge proof πS .

– Game G4: In this game, upon receiving the challenge message m∗ from A, it
creates a full signature by executing the Sign algorithm and transforms the
resulting signature into a pre-signature in the same way as in the previous
game G3 during the OpSign execution.

There exists a simulator that perfectly simulates G4 and uses A to win a
positive ECDSA strongSigForge game.

– Signing oracle queries: Upon A querying OSign on input m, S forwards m to
its oracle OECDSA-sign and forwards its response to A.

– Random oracle queries: Upon A querying H on input x, if H[x] = ⊥, then
S queries HECDSA(x), otherwise the simulator returns H[x].

– Pre-signing oracle queries: Upon A querying OpSign on input (m, IY), the
simulator extracts y, and forwards m to OECDSA-sign and gets (r, s), then S
computes ŝ = s · y, Z = yQ = xY and simulates a zero-knowledge proof πS ,
and outputs (r, ŝ, Z, πS).

– In the challenge phase: Upon A outputting the challenge message m∗, S
generates (IY , y) ← GenR(1λ), forwards m∗ to OECDSA-sign and gets (r, s).
And then, S generates the pre-signature σ̂∗ in the same way as during OpSign.
Upon A outputting σ∗, the simulator outputs (m∗, σ∗) as its own forgery.

Therefore, the simulator S can simulate the views of A. It remains to show
that the forgery output by A can be used by the simulator to win the positive
ECDSA strongSigForge game.

Claim 1 Let Bad1 be the event that G1 aborts, then Pr[Bad1] ≤ negl1(λ).

Proof. We prove this claim using a reduction to the hardness of the relation
R. The simulator gets a challenge I∗Y , and it generates a key pair (vk, sk) ←
Gen(1λ) to simulate As queries of H, OSign and OpSign. This simulation of the
oracles works as described in G1. Upon receiving challenge message m∗ from
A, S computes a pre-signature σ̂ ← pSign(vk,sk)(m

∗, I∗Y), returns σ̂ to A who
outputs a forgery σ∗.

Assuming that Bad1 happened (i.e. Adapt(σ̂, y) = σ∗), the simulator can
extract y∗ ← Ext(σ∗, σ̂, I∗Y). Since the challenge I∗Y is an instance of the hard
relation R and hence equally distributed to the public output of GenR. Hence the
probability of S breaking the hardness of the relation is equal to the probability
of the Bad1 event.

Claim 2 G0, G1, G2, G3 and G4 are computationally indistinguishable.

11

Proof. Since G1 and G0 are equivalent except if event Bad1 occurs, it holds that
|Pr[G0 = 1]− Pr[G1 = 1]| ≤ negl1(λ).

According to the straight-line extractability of the NIZKPoKY , for a witness
y extracted from a proof πY of the instance IY such that VY (IY , πY) → 1, it
holds that (IY , y) ∈ R except with negligible probability. It holds that |Pr[G2 =
1]− Pr[G1 = 1]| ≤ negl2(λ).

Due to the zero-knowledge property of the NIZKZ , the simulator can com-
pute a proof πS which is computationally indistinguishable from a proof πZ ←
PZ((G,Q, Y, Z), x). Hence, it holds that |Pr[G3 = 1]− Pr[G2 = 1]| ≤ negl3(λ).

Following the above proof, due to the zero-knowledge property of the NIZKZ ,
G4 is indistinguishable from G3 and it holds that |Pr[G4 = 1] − Pr[G3 = 1]| ≤
negl2(λ).

Claim 3 (m∗, σ∗) constitutes a valid forgery in positive ECDSA strongSigForge
game.

Proof. We show that (m∗, σ∗) has not been output by the oracle OECDSA-Sign
before. Note that A has not previously made a query on the challenge message
m∗ to either OSign or OpSign. Hence, OECDSA-Sign is only queried on m∗ during
the challenge phase. As shown in game G1, the adversary outputs a forgery σ∗

which is equal to the signature σ output by OECDSA-Sign during the challenge
phase only with negligible probability. Hence, OECDSA-Sign has never output σ∗

on query m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for
positive ECDSA strongSigForge game.

From the games G0 to G4, we get that |Pr[G0 = 1]−Pr[G4 = 1]| ≤ negl1(λ)+
negl2(λ) + negl3(λ) + negl4(λ) ≤ negl(λ). Since S provides a perfect simulation
of game G4, we obtain:

Pr[aSigForgeA,ΠR,
∑(λ) = 1] = Pr[G0 = 1] ≤ Pr[G4 = 1] + negl(λ)

≤ Pr[sSigForgeA,
∑(λ) = 1] + negl(λ).

Lemma 4. (Witness extractability). Assuming that the positive ECDSA is SUF-
CMA secure, R is a hard relation, NIZKPoK and NIZK are secure, above ECDSA-
AS ΠR,

∑ is witness extractable.

Proof. Our proof is to reduce the witness extractability to the strong unforge-
ability of the positive ECDSA. Following the proof of Lemma 3, the simulator
S can use its oracle OECDSA-Sign and HECDSA to simulate OSign and H of A.

The main challenge in this proof is to simulate the pre-signing oracle OpSign.
The crucial difference between aWitExt and aSigForge is that in the challenge
phase of aSigForge, IY is chosen by a challenger, but in the challenge phase of
aWitExt, IY is chosen by A. That is, S can not choose (IY , y). Following [2],
our ECDSA-AS uses the same hard relation (IY = (Y, πY), y), where NIZKPoKY

satisfies straight-line extractability, so S can extract the witness y from challenge
instance IY = (Y, πY). And then, S forwards m to OECDSA-sign and gets the

12

signature σ = (r, s), then S computes ŝ = s · y, Z = yQ and simulates a zero-
knowledge proof πS , and outputs the pre-signature σ̂ = (r, ŝ, Z, πS).

Therefore, we can construct a simulator S following the proof of Lemma 3
excepting that in the challenge phase, S does not generate the hard relation
(IY , y) to get the witness y, but obtains the witness from the instance IY chosen
by A based on the straight-line extractability. S can simulate the views of A.
The simulator can win the positive ECDSA strongSigForge game if A can break
the witness extractability of ECDSA-AS.

4 Fast ECDSA-based Adaptor Signature Schemes with
Offline/Online Pre-signing

In this section, we show two fast ECDSA-AS schemes called ECDSA-ASsk and
ECDSA-ASwit with offline/online pre-signing, where ECDSA-ASsk uses the sign-
ing key x as the witness to compute Z = xY , and ECDSA-ASwit uses the witness
y of hard relation (IY , y) as the witness to compute Z = yQ.

In our ECDSA-AS, the pre-signing public parameter Z = xY and the zero-
knowledge proof πZ ← PZ(IZ = (G,Q, Y, Z), x) are independent of the message
m and the random value k, so the signer can compute the pre-signing pub-
lic parameter and the zero-knowledge proof offline before getting the message.
ECDSA-ASsk can be designed from our ECDSA-AS directly with offline com-
puting Z = xY and πZ . Refer to the section 3 for specific construction which is
ignored here.

We construct efficient ECDSA-ASwit as follows. Formally, Let (Q = xG, x)
be the verification key and signing key of ECDSA. We define hard relations
R = {(IY = (Y, πY ← PY (Y, y)), y)| Y = yG ∧ VY (IY) = 1}, RZ = {(IZ =
(G,Y,Q,Z), y)|Y = yG ∧ Z = yQ} and I = (IY , IZ).

– pSign(vk,sk)(m, I) → σ̂: On input a key-pair (vk, sk) = (Q, x), a message
m and an instance I, the algorithm chooses k ← Zq, computes r = f(kY),
ŝ = k−1(h(m) + rx) mod q and outputs σ̂ = (r, ŝ).

– pVrfyvk(m, I, σ̂) → 0/1: On input the verification key vk = Q, a message
m, an instance I, and a pre-signature value σ̂, the algorithm computes r′ =
f(ŝ−1 · (h(m) · Y + r · Z)), and if r′ = r, outputs 1, else outputs 0.

– Adapt(y, σ̂)→ σ: On input the witness y, and pre-signature σ̂, the algorithm
computes s = ŝ · y−1 mod q and outputs the signature σ = (r, s).

– Ext(σ, σ̂, I) → y: On input the signature σ, the pre-signature σ̂ and the
instance I, it computes y = ŝ/s mod q. If (I, y) ∈ R, it outputs y, else
outputs ⊥.

Note that ECDSA-ASwit is similar to our ECDSA-AS excepting that the
signer can compute Z = yQ and πZ ← PZ(IZ = (G,Y,Q,Z), y) offline. Before
running the online pre-signing algorithm, the signer should check the validity of
πY and πZ offline to ensure that Y and Z are correct.

13

Correctness. Following the proofs of lemma 1 and lemma 2, our ECDSA-
ASsk/wit schemes also satisfy pre-signature adaptability and pre-signature cor-
rectness.

Security. Our ECDSA-ASsk/wit schemes embed the hard relation (IY = (Y, πY),
y) [2]. In the security proof, the simulator can extract the witness y and simulate
the pre-signing oracle. Following the proofs of lemma 3 and lemma 4, our ECDSA-
ASsk/wit schemes also satisfy aEUF-CMA security and witness extractability.

Comparisons with ECDSA-AS [2]. Our ECDSA-ASwit use y as the witness,
so the signer (hard relation chooser) can help all other participants compute the
pre-signing public parameter Zi = yQi and the zero-knowledge proofs πZi in a
batch and offline. In particular, consider the special verification scenario, such as
(batched) atomic swaps, ECDSA-ASwit only transmits one zero-knowledge proof
πZ0

which is independent of the number of participants, since all participants
can compute the pre-signing public parameter locally.

Our ECDSA-ASsk/wit can be seen as an adaptor signature that specifies the
signer, since the hard relation chooser requires the verification key Qi of other
parties to compute Zi = yQi and πZi , while ECDSA-AS [2] does not restrict
the signer’s verification key. However, this does not affect the application of
ECDSA-ASsk/wit in atomic swaps, because the verification keys are public before
the protocol begins. In addition, consider special verification scenarios, ECDSA-
ASsk/wit can remove the above restriction because the zero-knowledge proofs of
other parties can be removed.

5 Performance and Experimental Results

5.1 Theoretical Analysis

As is shown in Table 1, we give the theoretical analysis of communication cost and
efficiency of ECDSA-AS [2,18] and our schemes, respectively. The first ECDSA-
AS proposed by Moreno-Sanchez et al. [18] does not provide provable security.
Then Aumayr et al. [2] uses self-proving structure (IY = (Y, πY), y) to give a
provably secure ECDSA-AS. But this scheme requires that proving K̂ = kG
and K = kY satisfy equality of discrete logarithms with the witness k. For
each message to be signed, the signer needs to choose new random values and
computes new pre-signing public parameters and zero-knowledge proofs.

Our ECDSA-ASsk/wit can use the witness x or y to prove (Z = xY,Q = xG)
or (Z = yQ, Y = yG) satisfy equality of discrete logarithms offline. The online
pre-signing algorithm is similar to ECDSA signing algorithm and can enjoy the
same efficiency as ECDSA. In ECDSA-ASwit, the hard relation chooser can
compute all pre-signing public parameters Zi = yQi and zero-knowledge proofs
for all other participants in a batch and offline. In particular, consider special
verification scenarios, such as (batched) atomic swaps, ECDSA-ASsk/wit can
reduce the number of zero-knowledge proofs to one, since all parties can compute
public pre-signing parameters locally, but ECDSA-AS [2,18] requires the number
of zero-knowledge proofs is linear with the number of participants.

14

Table 1: Communication cost and efficiency comparison

Schemes PK SK Online The number of The number of Batched pre-signing Provable
size size pre-signature size zk proofs pre-signing parameter parameter security

ECDSA-AS [18] |G| |Zq| |G|+ 4|Zq| 2n 2n × ?

ECDSA-AS [2] |G| |Zq| |G|+ 4|Zq| 2n 2n ×
√

Our ECDSA-ASsk |G| |Zq| 2|Zq| n n+ 1 ×
√

Our ECDSA-ASwit |G| |Zq| 2|Zq| 1 n+ 1
√ √

‡ |G| and |Zq| denotes the size of the element in the group G and Zq , respectively. n denotes the
number of parties in the one-to-n atomic swaps. ? denotes unclear.

5.2 Experimental Analysis

In order to evaluate the practical performance of our schemes, we implement
the ECDSA-AS [2], our ECDSA-AS, and ECDSA-ASwit based on the OpenSSL
library. All experiments are carried out on an Intel Core i5 CPU 2.3 GHz and
8GB RAM running macOS High Sierra 10.13.3 system.

We run ECDSA-AS [2], our ECDSA-AS and ECDSA-ASwit on the stan-
dard NIST curve NID.X9.62.prime256v1. Since the verification algorithm, the
adaptor algorithm, and the extraction algorithm are roughly same, we omit the
comparison. We show the efficiency of the online pre-signing algorithm in Ta-
ble 2. The average running times over 1000 executions of the online pre-signing
operation in ECDSA-AS [2], our ECDSA-AS and ECDSA-ASwit are 173.65 µs,
189.72 µs and 71.64 µs. The experimental results show that our ECDSA-ASwit

reduces online pre-signing time by about 60% compared with the state-of-the-art
ECDSA-AS [2].

Table 2: Runtime of the online pre-signing operation comparing our ECDSA-AS
and ECDSA-ASwit to ECDSA-AS [2]

Schemes ECDSA-AS [2] our ECDSA-AS our ECDSA-ASwit

Runtime (online) 173.65 µs 189.72 µs 71.64 µs

6 Application

6.1 Verification Scenario

According to the definition of AS [2], the verification of pre-signature does not
limit the verifier, so it can be verified by anyone. However, the pre-signature of
AS is generated and verified off-chain and is not published on the blockchain, so
AS does not require such a strong property and the pre-signature satisfies the
specific verification scenario in which it is only verified by the participants.

15

As mentioned in Figure 1, in the atomic swaps, the pre-signatures are only
generated and verified by participants U0 and U1 off-chain. Thus, ECDSA-ASsk/wit

can reduce the number of zero-knowledge proofs. To be specific, the zero-knowledge
proof πZ1 of U1 can be removed, because U0 can use the witness y to compute
Z1 = yQ1. The zero-knowledge proof πZ0

of U0 cannot be removed, since U1 does
not know the signing key x0 and the witness y of U0, and requires πZ0

to ensure
U0 generates Z0 correctly. In particular, even if U0 runs an atomic swap protocol
with many parties Ui, i ∈ [n], it still only needs one zero-knowledge proof πZ0

.
Note that these modifications do not affect correctness or security, since the sim-
ulator can extract the witness y from IY and simulates the pre-signing public
parameter Z1 = yQ1.

6.2 Batched Atomic Swaps

We develop batched atomic swaps from one-to-one atomic swaps: U0 (hard re-
lation chooser) spends c0i (transaction tx0i) to Ui, i ∈ [n] in a batch and Ui

spends each ci (transaction txi) to U0. It can be applied to one party with many
addresses (accounts) or one party with a lot of transactions that need to be ex-
changed with many users once, such as the scenario of the Exchange. Compared
with running independently n times one-to-one atomic swaps between U0 and Ui,
i ∈ [n], batched atomic swaps reduce the number of hard relations (Y, y) from n
to one.

We introduce batched atomic swaps as follows: All parties U0 and Ui, i ∈ [n]
first set the time-lock for c0i and ci on-chain, where the timeouts ti < t0 such that
Ui can have enough time to react. Then, U0 chooses one hard relation (Y, y) ∈ R
and pre-signing the transactions tx0i for spending the coins c0i to Ui in a batch,
and sends the pre-signature σ̂0i, tx0i, Y to U0i. Then, Ui checks the validity of
σ̂0i and pre-signing a transaction txi for spending the coins ci to U0 and sends
the pre-signature σ̂i, txi to U0. U0 can check the validity of all pre-signatures
σ̂i

11 and adapts σ̂i into the full signature σi by the witness y, and publishes all
σi on the blockchain to get the coin ci in a batch. Ui can extract the witness y
from σi and σ̂i and adapts σ̂0i into σ0i, and publishes σ0i on the blockchain to
get the coin c0i before timeouts t0.

Constructions based on ECDSA-AS. Our ECDSA-ASwit is more efficient
for using in batched atomic swaps than ECDSA-AS [2,18]. We show the batched
atomic swap protocol based on ECDSA-ASwit in Figure 2, and give the com-
parison of n times independent ECDSA-based atomic swaps and once ECDSA-
based batched atomic swap in Figure 3. To be specific, in the offline phase, U0

computes Z0 = yQ0, πZ0
← PZ((G,Y,Q0, Z0), y), and n pre-signing public pa-

rameters Zi = yQi in a batch and offline. Ui checks VZ((G,Y,Q0, Z0), πZ0)→ 1
and computes Zi = xiY . In the online phase, U0 runs n times ASwit.pSign
and ASwit.pVrfy and each Ui runs once ASwit.pSign and ASwit.pVrfy, where
11 U0 must check all pre-signatures, because any full signature is published on

blockchain, the witness y can be extracted, and all coins can be taken.

16

U0((Q0, x0), Qi, tx0i), i ∈ [n] Ui((Qi, xi), Q0, txi), i ∈ [n]

Offline phase
GenR(1λ)→ (Y, y), PY (Y, y)→ πY , If VY (IY)→ 0,

Zi = yQi, PZ(IZ = (G,Y,Q0, Z0), y)→ πZ0

IY ,Z0,πZ0−−−−−−−→ or VZ((G,Y,Q0, Z0), πZ0)→ 0, output ⊥
Online phase

σ̂0i ← pSign((Q0, x0), (Y, Z0), tx0i)
σ̂0i,tx0i−−−−−→ If pVrfy(Q0, tx0i, (Y, Z0), σ̂0i)→ 0, output ⊥

If ∃ i ∈ [n], pVrfy(Qi, txi, (Y, Zi), σ̂i)→ 0,
σ̂i,txi←−−−− else, σ̂i ← pSign((Qi, xi), (Y, Zi), txi)

output ⊥,
else, σi ← Adapt(σ̂i, y).

Publish all σi, i ∈ [n] on blockchain σi−→ y ← Ext(σi, σ̂i, (IY , IZ))
σ0i ← Adapt(σ̂0i, y).

Publish σ0i on blockchain

Fig. 2: Batched atomic swap based on ECDSA-ASwit

BlockBlock Block

Locked c0i, ci, i ∈ [n]
σi

ci

σ0i

c0i

U0 Ui,i ∈ [n]

σ̂0i, IYi
, tx0i

σ̂i, txi

σi

on-chain

off-chain

(IYi
, yi)← GenR(1λ)

σ̂0i = (K0i, πK0i
, r0i, σ̂0i)

σi = (ri, si)

σ̂i = (Ki, πKi
, ri, σ̂i)

yi ← Ext(σi, σ̂i, IYi
)

σ0i = (r0i, s0i)

BlockBlock Block

Locked c0i, ci, i ∈ [n]
σi

ci

σ0i

c0i

U0 Ui,i ∈ [n]

IY , Z0, πZ0

offline

σ̂0i, tx0i

σ̂i, txi

σi

on-chain

off-chain

(IY , y)← GenR(1λ)

σ̂0i = (r0i, σ̂0i)

σi = (ri, si)

σ̂i = (ri, σ̂i)

y ← Ext(σi, σ̂i, IY)

σ0i = (r0i, s0i)

Fig. 3: n times independent ECDSA-based atomic swaps (left) and once ECDSA-
based batched atomic swap (right)

Table 3: Comparison of ECDSA-AS [2,18] and our ECDSA-ASsk/wit used in
(batched) atomic swaps

Schemes Users
Atomic swaps (i = 1) Batched atomic swaps (i ∈ [n])

Hard Pre-signing Hard Pre-signing
relation Offline Online relations Offline Online

ECDSA-AS [18] U0 (Yi, yi) — σ̂0 = (K0, πK0 , r0, ŝ0) (Y, y) — σ̂0i = (K0i, πK0i , r0i, ŝ0i)
Ui — — σ̂i = (Ki, πKi , ri, ŝi) — — σ̂i = (Ki, πKi , ri, ŝi)

ECDSA-AS [2] U0 (IYi , yi) — σ̂0 = (K0, πK0 , r0, ŝ0) (IY , y) — σ̂0i = (K0i, πK0i , r0i, ŝ0i)
Ui — — σ̂i = (Ki, πKi , ri, ŝi) — — σ̂i = (Ki, πKi , ri, ŝi)

Our ECDSA-ASsk
U0 (IYi , yi) Z0 = x0Y, πZ0 σ̂0 = (r0, ŝ0) (IY , y) Z0 = x0Y, πZ0 σ̂0i = (r0i, ŝ0i)
Ui — Zi = xiY σ̂i = (ri, ŝi) — Zi = xiY σ̂i = (ri, ŝi)

Our ECDSA-ASwit
U0 (IYi , yi) Z0 = yQ0, Zi = yQi, πZ0 σ̂0 = (r0, ŝ0) (IY , y) Z0 = yQ0, Zi = yQi, πZ0 σ̂0i = (r0i, ŝ0i)
Ui — — σ̂i = (ri, ŝi) — — σ̂i = (ri, ŝi)

‡ — denotes no such operation, Qi denotes the verification key, Zi and Ki denote the pre-signing
public parameters of our ECDSA-ASsk/wit and ECDSA-AS [18,2], πZi

and πKi
denote the zero-

knowledge proofs of proving Zi and Ki are generated correctly. n denotes the number of parties in
batched atomic swaps. Zi = xiY and Zi = yQi, i ∈ [n] don’t need to be transmitted.

ASwit.pSign and ASwit.pVrfy is same as original ECDSA signing and verification
algorithms.

17

In ECDSA-AS [2,18], each user uses the random value k as the witness to
generate the pre-signing public parameter K = kY and zero-knowledge proof
πK . For a batch of transactions, U0 needs to choose n random values to generate
individual pre-signing public parameter K0i = k0iY and zero-knowledge proof
πK0i

← PK(G, K̂0i = k0iG,Y,K0i) for Ui, and Ui uses different random value
ki to compute pre-signing public parameter Ki = kiY and zero-knowledge proof
πKi
← PK(G, K̂i = kiG,Y,Ki). What’s more, U0 needs to check the validity of

all n proofs πKi
, and Ui also needs to check the validity of πK0i

.
As depicted in Table 3, we give a comparison of (batched) atomic swaps

based on ECDSA-AS [2,18] or ECDSA-ASsk/wit. Batched atomic swaps based
on ECDSA-AS [2,18] need to compute 2n pre-signing public parameters and 2n
zero-knowledge proofs. The batched atomic swaps can be seen as specific verifi-
cation scenarios. Since U0 computes all pre-signing public parameters Zi = yQi

and Ui computes each pre-signing public parameter Zi = xiY locally, batched
atomic swaps based on ECDSA-ASwit only requires one zero-knowledge proof
πZ0

. Compared with [2,18], ECDSA-ASwit reduces 2n−1 zero-knowledge proofs.

7 Conclusion

In this paper, we propose an ECDSA-based adaptor signature and give the se-
curity proof based on ECDSA. And then, we develop two ECDSA-AS schemes
called ECDSA-ASsk and ECDSA-ASwit with offline/online pre-signing which
are more efficient than the state-of-the-art ECDSA-AS [2]. In particular, consid-
ering specific verification scenarios, ECDSA-ASwit reduces the number of zero-
knowledge proofs in the pre-signing phase to one, independent of the number of
participants. Furthermore, we develop batched atomic swaps which can reduce
the number of hard relations in a batch compared with independently running
one-to-one atomic swaps. Finally, we use our ECDSA-ASwit to construct the
batched atomic swaps, it can reduce the number of zero-knowledge proofs into
one compared with [2,18].

Acknowledgements. We thank the anonymous reviewers for their helpful feed-
back. This work is supported by the National Key Research and Development
Program of China (Grant No. 2021YFA1000600) and the National Natural Sci-
ence Foundation of China (Grant No. 62272269).

References

1. American National Standards Institute: X9.62: Public key cryptography for the
financial services industry: The elliptic curve digital signature algorithm (ecdsa)
(2005)

2. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostáková, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized channels from limited blockchain scripts and
adaptor signatures. In: ASIACRYPT 2021. pp. 635–664. Springer (2021)

18

3. Aumayr, L., Maffei, M., Ersoy, O., Erwig, A., Faust, S., Riahi, S., Hostáková, K.,
Moreno-Sanchez, P.: Bitcoin-compatible virtual channels. In: 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021. pp. 901–918 (2021)

4. Bitcoin Wiki: Payment channels (2018), https://en.bitcoin.it/wiki/
Paymentchannels

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

6. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) Advances in Cryptology - CRYPTO ’92. Lecture Notes in Computer Science,
vol. 740, pp. 89–105. Springer (1992)

7. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin du-
plex micropayment channels. In: Stabilization, Safety, and Security of Distributed
Systems - 17th International Symposium. pp. 3–18. Springer (2015)

8. Deshpande, A., Herlihy, M.: Privacy-preserving cross-chain atomic swaps. In: Fi-
nancial Cryptography and Data Security - FC 2020 International Workshops. Lec-
ture Notes in Computer Science, vol. 12063, pp. 540–549. Springer (2020)

9. Eckey, L., Faust, S., Hostáková, K., Roos, S.: Splitting payments locally while
routing interdimensionally. IACR Cryptol. ePrint Arch. 2020, 555 (2020)

10. Esgin, M.F., Ersoy, O., Erkin, Z.: Post-quantum adaptor signatures and payment
channel networks. In: Computer Security - ESORICS 2020 - 25th European Sym-
posium on Research in Computer Security. Lecture Notes in Computer Science,
vol. 12309, pp. 378–397. Springer (2020)

11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology - CRYPTO ’86. pp. 186–194
(1986)

12. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO 2005.
Lecture Notes in Computer Science, vol. 3621, pp. 152–168. Springer (2005)

13. Gugger, J.: Bitcoin-monero cross-chain atomic swap. IACR Cryptol. ePrint Arch.
2020, 1126 (2020)

14. Lindell, Y.: Fast secure two-party ECDSA signing. In: Advances in Cryptology -
CRYPTO 2017. pp. 613–644 (2017)

15. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017. pp. 455–471. ACM (2017)

16. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: 26th An-
nual Network and Distributed System Security Symposium, NDSS 2019

17. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Financial Cryptog-
raphy and Data Security - 23rd International Conference, FC 2019. Lecture Notes
in Computer Science, vol. 11598, pp. 508–526. Springer (2019)

18. Moreno-Sanchez, P., Kate, A.: Scriptless scripts with ecdsa. lightning-dev
mailing list https://lists.linuxfoundation.org/pipermail/lightning-dev/
attachments/20180426/fe978423/attachment-0001.pdf

19. Poelstra, A.: Lightning in scriptless scripts. mimblewimble team mailing list (2017),
https://lists.launchpad.net/mimblewimble/msg00086.html

20. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. https://lightning.network/lightning-network-paper.pdf

19

https : / / en . bitcoin . it / wiki/Payment channels
https : / / en . bitcoin . it / wiki/Payment channels
https://lists. linuxfoundation.org/pipermail/lightning- dev/attachments/20180426/fe978423/attachment- 0001.pdf
https://lists. linuxfoundation.org/pipermail/lightning- dev/attachments/20180426/fe978423/attachment- 0001.pdf
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lightning.network/lightning-network-paper.pdf

21. Schnorr, C.: Efficient identification and signatures for smart cards. In: Advances
in Cryptology - CRYPTO ’89. pp. 239–252 (1989)

20

	Efficient ECDSA-based Adaptor Signature for Batched Atomic Swaps

