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Abstract. Digital signatures ensure authenticity and secure communication. They are used
to verify the integrity and authenticity of signed documents and are widely utilized in various
fields such as information technologies, finance, education, and law. They are crucial in secur-
ing servers against cyberattacks and authenticating connections between clients and servers.
Additionally, encryption is used in many areas, such as secure communication, cloud, server
and database security to ensure data confidentiality. Performing batch encryption, signature
generation, and signature verification simultaneously and efficiently is highlighted as a ben-
eficial approach for many systems. This work is the extended version of a conference paper
that focuses on efficient batch signature generation with Dilithium, presented in 2024 at the
International Workshop on the Arithmetic of Finite Fields (WAIFI 2024). We add efficient
matrix multiplication methods for batch verifications of signatures from a single user using
Crystals Dilithium (NIST’s post-quantum digital signature standard) and batch encryption
to a single receiver with Crystals Kyber (NIST’s post-quantum encryption/KEM standard).
One of the main operations of Dilithium and Kyber is the matrix-vector product with poly-
nomial entries. So, the naive approach to generate/verify m signatures with Dilithium (or
encrypt m messages with Kyber) where m > 1 is to perform m such multiplications. In this
paper, we propose to use efficient matrix multiplications of sizes greater than four to gen-
erate/verify m signatures with Dilithium and greater than two to encrypt m messages with
Kyber. To this end, batch algorithms that transform the polynomial matrix-vector multipli-
cation in Dilithium’s and Kyber’s structures into polynomial matrix-matrix multiplication
are designed. The batch numbers and the sizes of the matrices to be multiplied based on
the number of repetitions of Dilithium’s signature algorithm are determined. Also, batch
versions of Dilithium verification and Kyber encryption algorithms are proposed. Moreover,
many efficient matrix-matrix multiplication algorithms, such as Strassen-like multiplications
and commutative matrix multiplications, are analyzed to design the best algorithms that are
compatible with the specified dimensions and yield improvements. Various multiplication for-
mulas are derived for different security levels of Dilithium signature generation, verification,
and Kyber encryption. Improvements up to 28.1%, 33.3%, and 31.5% in the arithmetic com-
plexities are observed at three different security levels of Dilithium’s signature, respectively.
The proposed batch Dilithium signature algorithm and the efficient multiplication algorithms
are also implemented, and 34.22%, 17.40%, and 10.15% improvements on CPU cycle counts
for three security levels are obtained. The multiplication formulas used for batch Dilithium
signature generation are also applied for batch Dilithium verification. At three different levels
of security, improvements in the arithmetic complexity are observed of up to 28.13%, 33.33%,
and 31.25%. Furthermore, 49.88%, 56.60%, and 61.08% improvements on CPU cycle counts
for three security levels are achieved, respectively. As a result of implementing Kyber Batch
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Encryption with efficient multiplication algorithms, 12.50%, 22.22%, and 28.13% improve-
ments on arithmetic complexity, as well as 22.34%, 24.07%, and 30.83% improvements on
CPU cycle counts, are observed for three security levels.

Keywords: Batch Digital Signature Generation · Post-Quantum Cryptography · Commuta-
tive Matrix Multiplication · Crystals Dilithium · Digital Signature · Batch Digital Signature
Verification · Crystals Kyber · Batch Encryption.

1 Introduction

Digital signatures are essential to provide data integrity, authenticity, and security. Digital sig-
natures are widely used in instant messaging applications, financial transactions, education, legal
documents, and many other digital documents. Moreover, they are crucial for TLS (Transport Layer
Security) servers. The servers often face cyber attacks. To prevent unauthorized access, using dig-
ital signatures for both the server and user to authenticate each other is essential. RSA [16] and
ECDSA [14] are used as digital signing algorithms on many major servers, such as TLS servers.
Servers use digital signatures whenever a secure connection between a client and the server is set.
So, it can be said that digital signatures are used thousands or even millions of times daily on a
busy server. For example, TLS servers can establish multiple connections per second. The processes
need to be fast so that the system’s flow is not disrupted. For this reason, performing multiple
signing operations at once is faster and more advantageous for systems. Benjamin [4] has developed
a system based on ECDSA and RSA that provides multiple signings for TLS. Techniques such as
ElGamal [9], ECDSA, Crystals Dilithium [8] and Falcon [12] have implemented multiple signing
in previous studies ([6], [13], [1]). Fiat [11] and Tanwar et al. [27] present a batch algorithm that
depends on the RSA system. Pavlovski et al. [20] propose an efficient batch signature generation
via binary tree structures.

In addition to batch digital signature generation, batch verifications of signatures signed by
a single user may also have many uses in daily life, especially for high-traffic messaging systems,
SSL/TLS certificate chains, and legal or financial settings. In high-traffic messaging applications,
validating multiple messages simultaneously will reduce processing time and improve performance
with the help of batch verification strategies. By applying batch verification in SSL/TLS certificate
chains, it is possible to validate the entire chain of certificates at once. This improves website load
times and accelerates the handshake procedure. Also, in legal or financial settings, there could be
multiple documents (e.g., an agreement, a contract, etc.) signed by a single user. The receiver (e.g.,
a lawyer) could use batch verification to check the signatures easily. A practical method of batch
verification of short signatures is described in [10]. [15] includes analyses of batch verification with
DSS, ECDSA, and RSA.

Encryption algorithms are another type of cryptosystem used for data security. Encryption is
used to protect information from unauthorized users. It is utilized in numerous areas, including
banking, cloud data storage, communication, and securing private and sensitive data. RSA and
AES are two of the most commonly used encryption schemes available worldwide. Cloud systems,
IoT communication, databases, and secure communication systems are systems that have intensive
encryption traffic. It is essential to make encryptions in these systems more efficient so that the flow
can continue safely and fast. In this sense, it is advantageous to use batch encryption structures in
these systems. Fiat [11] has introduced a system where RSA is used in batch encryption. In [7], a
fully homomorphic encryption scheme over the integers of van Dijk et al. [28] is extended into its
batch version.
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High-capacity quantum computers can be used to break many of the cryptographic algorithms
in use today, as demonstrated in 1994 by P. Shor [24]. Since then, a lot of work has been done,
and many developments have been achieved. For this reason, the National Institute of Standards
and Technology (NIST) has organized a contest to standardize algorithms that provide security
against attacks via quantum computers. As a result of the third round of evaluations [2], CRYS-
TALS Dilithium is selected as the digital signing standard (NIST FIPS 204-Module-Lattice-Based
Digital Signature Standard [17]), while CRYSTALS Kyber [3] is chosen as the encryption/key encap-
sulation standard (NIST FIPS 203-Module-Lattice-Based Key-Encapsulation Mechanism Standard
[18]). Following this process, Dilithium’s integrability into TLS 1.3 is demonstrated in [25]. However,
research has shown that using post-quantum in the TLS server will cause performance degradation
[19]. On the encryption side, Kyber is replacing the current encryption methods after it has been
selected as the encryption/KEM standard. In [22], the Kyber Key Encapsulation Mechanism is in-
tegrated into the cloud architecture to improve security. Moreover, [23] suggests an effective method
for securing the device-to-device connection with the use of Crystals Kyber for data transmission.

In this work, Dilithium’s and Kyber’s structures are examined to increase performance, and
the operations with the highest arithmetic complexity are identified. The security of Dilithium
and Kyber is based on the Module-Learning with Error (M-LWE) problem. In Dilithium’s signing
algorithm, if y is a column vector that is computed using the secret key, the column vector w
is obtained as w = A · y, where A is the matrix that the signer and the verifier can compute.
The entries of the column vectors and the matrix are the elements of the selected commutative
polynomial ring. Similarly, Kyber’s encryption algorithm includes the Â · r̂ matrix-vector operation,
where Â is the public matrix, and r̂ is the polynomial vector generated by using the random coins.
The highlight is that in Dilithium and Kyber, matrix-vector multiplication is the operation with
the highest arithmetic complexity and forms the skeleton of the algorithms.

This work focuses on efficient batch post-quantum digital signature generation, batch verification
of signatures from the same user using Dilithium, and batch encryption to the same recipient with
Kyber. Instead of multiplying a matrix and a column vector, it is possible to multiply the matrix
A by another matrix whose columns are column vectors formed for each message or signature.
In this way, transforming the matrix-vector multiplication of Dilithium and Kyber into matrix-
matrix multiplications for multiple signing, verifying, or encrypting is the main purpose of this
work. Therefore, matrix-matrix multiplication algorithms using the least number of multiplications,
such as [26], [30], [5], and [21], in multiple signing can increase efficiency. Note that since the
entries are large-size polynomials, reducing the number of multiplications contributes significantly
to complexity.

This study proposes a design of batch signature generation and verification algorithms for
Dilithium’s various security levels (i.e., Dilithium 2, Dilithium 3, and Dilithium 5) and batch en-
cryption algorithm for Kyber’s different security levels (i.e., Kyber512, Kyber768, and Kyber1024).
Matrix-vector multiplication in Dilithium’s and Kyber’s structure is converted to matrix-matrix
multiplication using the batch technique. Batch numbers for Dilithium are determined separately
for each security level, according to the number of repetitions in the signing and the probability that
the signature produced is valid. Suitable matrix-matrix multiplication techniques are chosen for the
selected batch numbers (4, 5, and 4 for Batch Dilithium 2, Batch Dilithium 3, and Batch Dilithium
5, respectively). Batch numbers (2, 4, and 4) are chosen as an example of Kyber’s three security lev-
els due to their ease of implementation. Since Dilithium’s matrix and vector entries are polynomials
from the ring Rq = Z8380417[x]/(x

256 +1) and Kyber’s are from R′
q = Z3329[x]/(x

256 +1), multipli-
cation is much more expensive than addition. Reducing the number of multiplications is a priority
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to increase efficiency when selecting these algorithms. Therefore, matrix multiplication algorithms
are chosen based on the cost metric minimizing multiplications. It is observed that using [21] for
Dilithium 2, Dilithium 3, Dilithium 5, Kyber768 and Kyber1024 is more functional, while [26] and
[29] are useful for Kyber512. Since Batch Dilithium 2 and Kyber1024 contain the multiplication of
two square matrices of size (2d × 2d), it is possible to apply [5], [26], [30] to it recursively. However,
note that multiplication in [21] cannot be used recursively since it requires entries to be commuta-
tive, and matrix multiplications are non-commutative. The multiplication formulas are derived from
the most efficient matrix-matrix multiplication techniques based on batch numbers, which determine
the size of the matrices to be multiplied. At three distinct security levels of Dilithium’s signature,
improvements in the arithmetic complexities are observed as 28.1%, 33.3%, and 31.5%, respectively.
By implementing the proposed batch Dilithium signature algorithm and the efficient matrix mul-
tiplication algorithms, CPU cycle counts for three security levels are improved by 34.22%, 17.40%,
and 10.15%, respectively. Batch Dilithium verification uses the same multiplication formulas as
batch Dilithium signature generation. Improvements in the arithmetic complexity are observed up
to 28.13%, 33.33%, and 31.25% at three distinct security levels. Moreover, improvements in CPU
cycle counts for the three security levels are 49.88

The organization of the remainder of the paper is as follows: In Section 2, related notations
and functions are described, and the Crystals Dilithium and Crystals Kyber algorithms are in-
troduced. Sections 3, 4, and 5 cover the presentation of the new batch algorithms of Dilithium
signature generation, verification and Kyber encryption, as well as their arithmetic complexity and
implementation analyses. Section 6 summarizes this research’s accomplishments. Finally, formulas
derived using some efficient matrix-matrix multiplication methods in the literature are explained
in Appendices A, B, C, D, and E.
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2 Preliminaries

2.1 Notations and Subfunctions

Notations and functions that are used in the remaining sections are given in Table 1 and Table 2.

Notation Definition
A Matrix (Bold Upper Case Letter)
A[i][j] The entry in the ith row and jth column of A
v Column vector (Bold Lower Case Letter)
v[i] ith entry of v
R Commutative ring Z[X]/(xn + 1)

Rq Commutative ring Zq[x]/(x
n + 1)

Rk×l
q k × l matrices whose entries are from Rq

Rk
q Column vectors of length k whose entries are from Rq

← Uniform sampling
Bk Set of byte arrays of length k

KEM Key Encapsulation Mechanism
CCA Chosen Ciphertext Attack
CPA Chosen Plaintext Attack

Table 1. Notations and their definitions

Function Definition
NTT Number Theoretic Transform described in [8]
NTT−1 Inverse operation of Number Theoretic Transform
H Hash Function (SHAKE-256)
H ′ Hash Function (SHA3-256)
G Hash Function (SHA3-512)
HighBits and LowBits Decomposing operations defined in [8]
∥z∥∞ |z mod ±q| defined in [8]
∥ Concatenation Operation
SampleInBall 256-bit array generator using a seed
CBD Centered Binomial Distribution
PRF (s, b) Pseudorandom Function (SHAKE-256(s∥b))
XOF Extendable Output Function (SHAKE-128)
Encode Function that converts a byte array to a polynomial
Decode Function that converts a polynomial to a byte array
Parse A function to sample elements in Rq defined in [3]
Compress Compression function defined in [3]
Decompress Decompression function defined in [3]

Table 2. Functions and their definitions
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2.2 Crystals Dilithium

In the NIST standardization process, the digital signature algorithm Crystals Dilithium, which is
based on Module-Learning with Errors, has been selected as a post-quantum signing standard.
Dilithium’s algorithms for key generation, signing, and verification are given in Algorithm 1, Algo-
rithm 2, and Algorithm 3, respectively.

The mechanism for generating keys in Dilithium is described in Algorithm 1. Using the 256-bit
long ζ value, ρ, ρ′, and K are formed in the first stage. The public polynomial matrix Â is generated
through the parameter ρ, while the hidden polynomial vectors s1 and s2 are produced by the same
value. Step 5 involves calculating t using the generated polynomial vectors and matrix. In the end,
the hash and sub-functions are used to create the key pair.

Algorithm 1 Dilithium Key Generation [8]
Output: Public key pk, Secret key sk

1: ζ ← {0, 1}256
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)
3: Â ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated in NTT representation as Â
4: (s1, s2) ∈ Sl

η × Sk
η := ExpandS(ρ′)

5: t := NTT−1(Â ·NTT (s1)) + s2

6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ∥t1)
8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Algorithm 2 Dilithium Signing [8]
Input: Secret key sk = (ρ,K, tr, s1, s2, t0), message M
Output: Signature σ

1: Â ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

2: µ ∈ {0, 1}512 := H(tr∥M)
3: κ := 0, (z,h) =⊥
4: ρ′ ∈ {0, 1}512 := H(K∥µ)
5: ŝ1 := NTT (s1)
6: ŝ2 := NTT (s2)
7: t̂0 := NTT (t0)
8: while (z,h) =⊥ do
9: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

10: w := NTT−1(Â ·NTT (y))
11: w1 := HighBitsq(w, 2γw)
12: c̃ ∈ {0, 1}256 := H(µ∥w1)
13: c ∈ Bτ := SampleInBall(c̃)
14: z := y +NTT−1(ĉŝ1) ▷ ĉ = NTT (c)
15: r0 := LowBitsq(w −NTT−1(ĉ · ŝ2), 2γ2)
16: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
17: (z,h) :=⊥
18: else
19: h := MakeHintq(−NTT−1(ĉ · t̂0),w − cs2 +NTT−1(ĉ · t̂0), 2γ2)
20: if ∥ct0∥∞ ≥ γ2 or the # of 1’s in h is greater than ω then
21: (z,h) :=⊥
22: κ := κ+ l

23: return σ = (c̃,z,h)
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Algorithm 2 provides a description of the Dilithium signature algorithm. The ρ generated during
the signature process is used to obtain the public polynomial matrix Â. With NTT’s help, the
message is signed using the private key and Â. The correctness of the signature phase is checked. If
the requirements fail to be fulfilled, this process must be repeated. The probability that the signature
occurs correctly is explained in detail in Dilithium’s official document [8], and the probability that
the entire signature will be correct is computed as e−256·β·k/γ2 .

Using the public key, the signature’s validity is verified in Algorithm 3.

Algorithm 3 Dilithium Verification [8]
Input: Public key pk = (ρ, t1), message M, signature σ
Output: Valid or Not
1: Â ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated in NTT representation as Â
2: µ ∈ {0, 1}512 := H(H(ρ∥t1)∥M)
3: c := SampleInBall(c̃)
4: w′

1 := UseHintq(h, NTT−1(Â ·NTT (z)−NTT (c) ·NTT (t1 · 2d)))
5: return [∥ z ∥∞< γ1 − β] and [c̃ = H(µ ∥ w′

1)] and [# of 1’s in h is ≤ ω]

Table 3 displays the parameters of Dilithium, where (k, l) represents the dimensions of the public
matrix Âk×l. Â is a matrix whose entries are polynomials from the ring Rq = Zq[x]/(x

n + 1).

Security Level Algorithm n (k, l) q

2 Dilithium 2 256 (4,4) 8380417
3 Dilithium 3 256 (6,5) 8380417
5 Dilithium 5 256 (8,7) 8380417

Table 3. Parameter Sets for Dilithium [8]

Since all of the elements in the matrices and column vectors are polynomials from the com-
mutative ring Zq[X]/(x256 + 1), where q is in Table 3, the matrix-vector multiplications in the
5th step of the Algorithm 1, the 10th step of the Algorithm 2, and the 4th step of the Algorithm
3 are one of the most expensive operations of Dilithium. Consider an example where A belongs
to R6×5

q and s′ belongs to R5
q to illustrate this operation. Thirty polynomial multiplications are

required to obtain A · s′ where all of the polynomials come from Zq[X]/(x256 + 1). In order to
sign six distinct messages for six distinct users, 180 polynomial multiplications would be needed.
Reducing the amount of multiplications is an efficient way to sign multiple messages. In Section ??,
the proposed algorithm, which guarantees that several messages can be signed simultaneously and
more efficiently, is described.

2.3 Crystals Kyber

Crystals Kyber is an M-LWE (Module-Learning with Errors) based encryption/key encapsulation
algorithm selected as a post-quantum standard in the NIST’s standardization process. It includes
CPAPKE key generation, CCAKEM key generation, CPAPKE encryption, CCAKEM encapsu-
lation, CPAPKE decryption, and CCAKEM decapsulation algorithms. CPAPKE encryption and
CCAKEM encapsulation phases are given in Algorithm 4 and Algorithm 5, respectively.
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Kyber CPAPKE encryption details are given in Algorithm 4. The algorithm creates the cipher-
text c after receiving as inputs the random coin r, the message m, and the public key pk. The
nonce N is fixed to zero at the beginning of the process. Then, polynomial vector t̂ and ρ value are
extracted by using the public key pk. Using ρ value, Parse, and XOF , the public matrix ÂT is
generated in NTT domain. Then, using random coin r and nonce N ; r, e1, and e2 are sampled with
the help of the CBD and PRF . u and v are calculated using the public matrix and the polynomial
vectors produced in the previous steps. Finally, Encode and Compress functions are used to obtain
the ciphertext c.

Algorithm 5 provides the details of the Kyber CCAKEM encapsulation mechanism. The algo-
rithm takes pk as an input and generates the ciphertext c and the secret shared key K. It starts
with generating the byte array m of length 32. Then, it is updated using the hash function H ′. pk
and m are sent as input to the H ′ and G hash functions, yielding K̄ and r as a result. Next, pk is
given as the public key, m as the message, and r as a random coin to Algorithm 5, and thus, the
ciphertext c is obtained. The secret shared key K is determined through KDF , H ′ hash functions,
and K̄, c inputs.

The parameters of Kyber are shown in Table 4, where k is the size of the public matrix Â(k×k).
The entries of the matrix Â are the polynomials from the ring R′

q = Zq[x]/(x
n + 1). η1, η2, and

(du, dv) are the parameters chosen to ensure the balance between ciphertext size and security.

Algorithm 4 Kyber CPAPKE Encryption [3]
Input: Public key pk, message m, random coin r
Output: Ciphertext c

1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12 · k · n/8
4: for i = 0, 1, . . . , k − 1 do ▷ A is generated in NTT representation as Â
5: for j = 0, 1, . . . , k − 1 do
6: ÂT [i][j] := Parse(XOF (ρ, i, j))

7: for i = 0, 1, . . . , k − 1 do
8: r[i] := CBDη1(PRF (r,N))
9: N := N + 1

10: for i = 0, 1, . . . , k − 1 do
11: e1[i] := CBDη2(PRF (r,N))
12: N := N + 1

13: e2 := CBDη2(PRF (r,N))
14: r̂ := NTT (r)
15: u := NTT−1(Â · r̂) + e1

16: v := NTT−1(t̂T · r̂) + e2 +Decompressq(Decode1(m), 1)
17: c1 := Encodedu(Compressq(u, du))
18: c2 := Encodedv (Compressq(v, dv))
19: return c = (c1∥c2)
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Algorithm 5 Kyber CCAKEM Encapsulation [3]
Input: Public key pk
Output: Ciphertext c, Shared Key K

1: m← B32

2: m← H ′(m)
3: (K̄, r) := G(m∥H ′(pk))
4: c := KY BER.CPAPKE.Enc(pk,m, r)
5: K := KDF (K̄∥H ′(c))
6: return c = (c,K)

Security Level Algorithm n k q η1 η2 (du, dv)

2 Kyber512 256 2 3329 3 2 (10,4)
3 Kyber768 256 3 3329 2 2 (10,4)
5 Kyber1024 256 4 3329 2 2 (11,5)

Table 4. Parameter sets for Kyber

The matrix-vector multiplication in the 15th step of the Algorithm 4 is one of the most costly
operations in Kyber Encryption. Similar to the Dilithium algorithm, the entries of the matrices
and the vectors are polynomials. Although the matrix and vector sizes are small, many polynomial
multiplications are required to encrypt messages. Reducing the number of multiplications required
to encrypt multiple messages can be very beneficial in terms of performance. The system that
provides efficient batch encryption using the Kyber algorithm is described in Section 5.

3 Efficient Batch Dilithium Signing

This section explains the proposed batch version of Dilithium’s signing algorithm. Algorithm 6
describes the batch Dilithium Signature Algorithm, which is based on the Dilithium Signature
Algorithm given in Algorithm 2 and enables signing multiple messages at once. As an example,
the suggested strategy chooses batch numbers 4, 5, and 4 for Dilithium 2, 3, and 5, respectively. A
detailed explanation of batch number selection is provided in Section 3.2.

The user’s secret key sk = (ρ,K, tr, s1, s2, t0) and m distinct messages are the inputs of the
batch signing algorithm. The indices for these messages are M0,M1, . . . ,Mm−1. First, ρ is used to
create the matrix Â, using Algorithm 2. The values of µi, κi, and ρ′i for each message Mi are then
calculated. The starting value of (z′

i,h
′
i) is set to ⊥, and κi values begin at 0. There is defined

a waitList = 0, 1, 2, . . . ,m− 1 list that contains the indices of messages that are awaiting to be
signed. The messages that are simultaneously in the signing phase are indicated by the first p indices
in the list. The indices of the messages with the proper signatures are removed from this list at the
end of the while loop. The secret key elements, s1, s2, and t0, are converted to their NTT formats,
ŝ2, ŝ2, and t̂0, just before the signature phase begins. The signing loop starts after the preliminary



10 N. D. Türe and M. Cenk

setup is finished. The signature candidates that are generated need to fulfill specific requirements.
statusi determines the status of these requirements.

Algorithm 6 Batch Dilithium Signing for m Different Messages
Input: Secret key sk = (ρ,K, tr, s1, s2, t0), messages Mi, where i = 0, 1, . . . ,m− 1
Output: Signatures σi, where i = 0, 1, . . . ,m− 1

1: Â ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

2: for i = 0, 1, . . . ,m− 1 do
3: µi ∈ {0, 1}512 := H(tr∥Mi)
4: κi := 0, (z′

i,h
′
i) =⊥

5: ρ′i ∈ {0, 1}512 := H(K∥µi)

6: waitListi = i ∀i = 0, 1, 2, . . . ,m− 1
7: ŝ1 := NTT (s1)
8: ŝ2 := NTT (s2)
9: t̂0 := NTT (t0)
10: while Length of waitList ≥ p do ▷ Batch numbers p = 4, 5, 4 for Dilithium 2, 3, 5.
11: statusi = 0 ∀i = 0, 1, 2, . . . ,m− 1
12: for i = 0, 1, . . . , p− 1 do
13: yi ∈ S̃l

γ1
:= ExpandMask(ρ′waitListi

, κwaitListi)

14: Ŷ := (l × p) matrix, whose columns are NTT (yi)’s, where i = 0, 1, 2, . . . , p− 1
15: Ŵ := Â · Ŷ , Ŵ : (k × p) matrix, whose columns are ŵi’s, where i = 0, 1, 2, . . . , p− 1
16: W := (k × p) matrix, whose columns are NTT−1(ŵi)’s, where i = 0, 1, 2, . . . , p− 1
17: for i = 0, 1, . . . , p− 1 do
18: w′

i := HighBitsq(i, 2γ2)
19: c̃waitListi ∈ {0, 1}256 := H(µwaitListi∥w′

i)
20: cwaitListi ∈ Bτ := SampleInBall(c̃waitListi)
21: ĉwaitListi = NTT (cwaitListi)
22: z′

i := yi +NTT−1(ĉwaitListi · ŝ1)
23: ri := LowBitsq(wi −NTT−1(ĉwaitListi · ŝ2), 2γ2)
24: if ∥z′

i∥∞ ≥ γ1 − β then
25: statusi = statusi + 1

26: if ∥ri∥∞ ≥ γ2 − β then
27: statusi = statusi + 1

28: h′
i := MakeHintq(−NTT−1(ĉwaitListi · t̂0),wi − cwaitListi · s2 +NTT−1(ĉwaitListi · t̂0), 2γ2)

29: if ∥ct0∥∞ ≥ γ2 then
30: statusi = statusi + 1

31: if The # of 1’s in h′
i is greater than ω then

32: statusi = statusi + 1

33: κwaitListi = κwaitListi + l

34: for i = 0, 1, . . . , p− 1 do
35: if !statusi then
36: zwaitListi = z′

i

37: hwaitListi = h′
i

38: Delete waitListi from the list
39: return σi = (c̃i,zi,hi) where i = 0, 1, . . . ,m− 1

The user’s secret key sk = (ρ,K, tr, s1, s2, t0) and m distinct messages are the inputs of the
batch signing algorithm. The indices for these messages are M0,M1, . . . ,Mm−1. First, ρ is used to
create the matrix Â, using Algorithm 2. The values of µi, κi, and ρ′i for each message Mi are then
calculated. The starting value of (z′

i,h
′
i) is set to ⊥, and κi values begin at 0. There is defined

a waitList = 0, 1, 2, . . . ,m− 1 list that contains the indices of messages that are awaiting to be
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signed. The messages that are simultaneously in the signing phase are indicated by the first p indices
in the list. The indices of the messages with the proper signatures are removed from this list at the
end of the while loop. The secret key elements, s1, s2, and t0, are converted to their NTT formats,
ŝ2, ŝ2, and t̂0, just before the signature phase begins. The signing loop starts after the preliminary
setup is finished. The signature candidates that are generated need to fulfill specific requirements.
statusi determines the status of these requirements.

Note that the yi values are calculated and converted to their NTT format utilizing the ρ′i and κi

values of the relevant messages. The columns of the Ŷ matrix are formed by the generated ŷi. In the
15th step, the algorithm performs its batch operation. Matrix-matrix multiplication is used in place
of the matrix-vector multiplication in this phase. NTT−1 is used to transform each column of the
matrix Ŵ , that is obtained from multiplication, into its normal form. In the signing phase, these
are used for p messages and are referred to as wi’s. The operations carried out for a single message
in the original method are applied to p messages in Steps 17–33. The statusi’s are updated after
"if" statements are used to check the candidate signatures produced for every message. In steps 34
through 38, candidate signatures that satisfy all requirements are recognized as valid signatures,
and the waitList is cleared of the indices of correctly signed messages. With new κi values (which
are updated in step 33), p messages that are in the queue in the waitList enter the loop. Until less
than p elements remain in the waitList, the loop is repeated. The messages that are not able to
be signed using Algorithm 6 are signed individually using Algorithm 2. Therefore, all messages are
signed correctly.

Example: Let m = 8, the messages M0, M1, M2, M3, M4, M5, M6, M7 to be signed using
Dilithium 2 and let κ = [κ0, κ1, κ2, κ3, κ4, κ5, κ6, κ7] = [0, 0, 0, 0, 0, 0, 0] and the batch number p is
set to be 4 in Algorithm 6, step 4. In the while loop, the signatures are created and examined to
see if they fulfill the necessary requirements. Assume that the following generated signatures are
valid in the correct order: (c̃3, z3,h3), (c̃1, z1,h1), (c̃5, z5,h5), (c̃6, z6,h6), and (c̃0, z0,h0). Table
5, for instance, illustrates the change of κ and waitList based on the number of loops and valid
signatures produced.

# of Loop Valid κ = [κ0, κ1, κ2, κ3, κ4, κ5, κ6, κ7] waitList

0 (start) - [0,0,0,0,0,0,0,0] [0,1,2,3,4,5,6,7]
1 (c̃3,z3,h3) [4,4,4,4,0,0,0,0] [0,1,2,4,5,6,7]
2 (c̃1,z1,h1) [8,8,8,4,4,0,0,0] [0,2,4,5,6,7]
3 (c̃5,z5,h5) [12,8,12,4,8,4,0,0] [0,2,4,6,7]
4 (c̃6,z6,h6) [16,8,16,4,12,4,4,0] [0,2,4,7]
5 (c̃0,z0,h0) [20,8,20,4,16,4,4,4] [2,4,7]

Table 5. Change of κ and waitList according to the number of loops and valid signatures generated.

First, Algorithm 6 generates the matrix Â, and for i = 0, 1, 2, . . . , 7, µi and ρ′i are computed.
Since p = 4, four messages are handled simultaneously. The first four elements of waitList determine
which four messages are processed. waitList = [0, 1, 2, 3, 4, 5, 6, 7] at the beginning. The first while
loop attempts to generate signatures for the messages M0, M1, M2, and M3 since the first four
components of the waitList are [0, 1, 2, 3]. The signature candidates generated by the first loop are
(c̃0, z0,h0), (c̃1, z1,h1), (c̃2, z2,h2), and (c̃3, z3,h3), as shown by Table 5. Of these four signature
candidates, only σ3 = (c̃3, z3,h3) satisfies the requirements and is considered to be valid. The
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κ values are adjusted to [4,4,4,4,0,0,0,0]. Three is eliminated from the waitList and waitList =
[0, 1, 2, 4, 5, 6, 7] since the signature created for M3 is valid. In the second loop, signature candidates
are generated for M0, M1, M2, and M4. Consider that among the four signatures produced at the
end of the second round, only (c̃1, z1,h1) is correct. The list then becomes waitList = [0, 2, 4, 5, 6, 7]
after 1 is removed from the list and κ = [8, 8, 8, 4, 4, 0, 0, 0]. The process repeats until waitList has
fewer elements than p. This implies that σ3, σ1, σ5, σ7, and σ0 are generated, in that order, at the
end of the Batch Dilithium 2 Signing algorithm.

When the batch algorithm is unable to sign the messages M2, M4, and M7, each of them is
signed separately using the Dilithium 2 Signing Algorithm (Algorithm 2). Going a step further,
since some κ values are tried for these messages and no proper results are obtained, it is possible
to initialize κ values of the original Dilithium 2 signature method to the values obtained at the end
of the batch algorithm. Finally, all messages are signed by combining the batch and the classical
Dilithium signing algorithms.

3.1 Making the Batch Algorithm More Efficient Compared to the Naive Approach

To make sure that the batch method is more efficient than the naive one, some techniques should be
applied to the operation in step 15 of Algorithm 6. The operation becomes matrix-matrix multipli-
cation instead of matrix-vector multiplication, which is performed independently for every message
in the classical algorithm. The elements of these matrices are polynomials of degree 255 rather than
integers because of the structure of Dilithium. Due to this, the multiplication of these matrices is
one of the most costly phases of the algorithm, even though the matrix sizes are small. The batch
version does not appear to offer an advantage over the original version if these multiplications are
performed using the schoolbook approach. However, depending on the dimensions and character-
istics of the matrices, there are several types of matrix-matrix multiplication algorithms in the
literature that can be applied. The number of polynomial multiplications needed for this process
can be decreased by selecting proper methods, and generating several signatures at once is more
efficient than producing each one separately.

The Importance of Commutativity Property and Choosing The Proper Efficient Matrix-
Matrix Multiplication Algorithms Table 6 shows the dimensions of the matrices to be multi-
plied in the 15th step of Algorithm 6 based on the determined batch numbers and various security
levels of Dilithium signing.

Security Level Algorithm Batch Number Size of Â Size of Ŷ Size of Ŵ

2 Dilithium 2 4 (4× 4) (4× 4) (4× 4)

3 Dilithium 3 5 (6× 5) (5× 5) (6× 5)

5 Dilithium 5 4 (8× 7) (7× 4) (8× 4)
Table 6. Batch numbers and matrix sizes according to different security levels.
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Many matrix-matrix multiplication techniques can be applied when taking Dilithium’s matrix
dimensions and structure into account. Dilithium’s ring, R = Z8380417[X]/(X256 + 1), is com-
mutative.Therefore, the multiplication of polynomials, which constitute the entries of matrices, is
commutative. This characteristic yields the equality aij · ykl = ykl · aij for any product of two
entries, aij and ykl. A fast commutative matrix-matrix multiplication technique described in [21]
can be applied for all security levels by utilizing this property. Compared to the non-commutative
approaches in the literature or the Strassen [26] method, this algorithm works more efficiently. For
larger-size matrices, non-commutative approaches may also be chosen when matrix multiplication
is done recursively.

The most effective recursive matrix-matrix multiplications are known to be Strassen-like multi-
plications, such as the Strassen technique, Cenk&Hassan’s approach [5], and Winograd’s Multipli-
cation [30].

In this work, the Batch Dilithium 2 algorithm is constructed, and Strassen’s approach and
the fast commutative approach are used to obtain (4 × 4) · (4 × 4) matrix-matrix multiplication
formulas. Using the fast commutative approach, matrix multiplication formulas for (6× 5) · (5× 5)
and (8× 7) · (7× 4) are obtained for Batch Dilithium 3 and Dilithium 5.

3.2 Probability Computations and Choosing the Batch Sizes

Signature candidates have to satisfy certain requirements in order to be accepted by Dilithium’s
signing algorithm. "If statements" are used by the signature algorithm to confirm these require-
ments. These requirements are included in lines 16 and 20 in the classical algorithm (Algorithm 2)
and in lines 24, 26, 29, and 31 in the batch algorithm (Algorithm 6). In Algorithm 2, Step 16 is
more dominant in the condition checks. As a result, for step 13, the following formula—which is
defined in the [8]—is utilized to calculate the probability that the generated signature is proper:

≈ e−256·β(l/γ1+k/γ2). (1)

Table 7 provides the values of the variables used in the formula along with the probability that a
generated signature candidate fulfills the requirements depending on the different Dilithium security
levels. The while loop reproduces signatures that don’t meet the requirements.

Variable Dilithium 2 Dilithium 3 Dilithium 5
γ1 217 219 219

γ2 95232 261888 261888
(k, l) (4,4) (6,5) (8,7)
β 78 196 120

Probability ≈ 0.24 ≈ 0.196 ≈ 0.26
Table 7. Variables required to compute the probability

The probability that at least one of the p signatures generated by Dilithium 2, Dilithium 3, and
Dilithium 5 is proper is determined by the batch number and is 1 − (1 − 0.24)p, 1 − (1 − 0.196)p,
and 1− (1− 0.26)p, respectively.

As the batch number increases, the probability that at least one of the p signatures is correct
also increases. Two scenarios must be considered in order to determine the batch number p. The
first is the probability that at least one of the signatures of p messages is correct when they are
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all signed. The second is the improvement rate that the selected p provides. The user can choose
a suitable batch number and decide the priority based on these two circumstances. Furthermore,
the formulas to be derived based on the matrix sizes and potential matrix-matrix multiplication
algorithms should be taken into account while selecting the batch number.

The probability that at least one of the p signatures is proper based on certain eligible batch
numbers (p) is given for Dilithium 2, 3, and 5 in Table 8.

Probability
p (#of batch) Dilithium 2 Dilithium 3 Dilithium 5

3 0.561 0.480 0.595
4 0.666 0.582 0.700
5 0.746 0.664 0.778
6 0.807 0.730 0.836
7 0.854 0.783 0.878
8 0.889 0.825 0.910
9 0.915 0.860 0.933
10 0.936 0.887 0.951
11 0.951 0.909 0.964
12 0.963 0.927 0.973
13 0.972 0.941 0.980
14 0.979 0.953 0.985
15 0.984 0.962 0.989
16 0.988 0.970 0.992
17 0.991 0.975 0.994
18 0.993 0.980 0.996
19 0.995 0.984 0.997
20 0.996 0.987 0.998

Table 8. Probabilities of at least one of p signatures being correct according to batch number (p) for
Dilithium 2, 3, and 5.

For Dilithium 2, 3, and 5, the probability of at least one of the p signatures being correct
according to the batch number p is displayed in Figures 1, 2, and 3, respectively. The probability
converges to 1 as the number of batches increases, as demonstrated by Table 8 and Figures 1, 2,
and 3.

Fig. 1. Change in probability of at
least one of p signatures generated
with Dilithium 2 being correct ac-
cording to batch number (p).

Fig. 2. Change in probability of at
least one of p signatures generated
with Dilithium 3 being correct ac-
cording to batch number (p).

Fig. 3. Change in probability of at
least one of p signatures generated
with Dilithium 5 being correct ac-
cording to batch number (p).
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Table 9 lists the number of polynomial multiplication operations that must be performed based
on the batch number that has been chosen. [21] is selected as the efficient matrix-matrix multipli-
cation method for the batch method.

Using [21], the number of multiplication operations needed to multiply the matrices Âk×l and
Ŷ l×p can be computed as l(kp+k+ p− 1)/2, where k = 4 and l = 4. Similarly, for Dilithium 3 and
5, where k = 6, l = 5 for Dilithium 3, and k = 8, l = 7 for Dilithium 5, the number of multiplication
operations needed can be found as (l(kp+ k+ p− 1) + k− 1)/2 if p is even and l(kp+ k+ p− 1)/2
for p is odd.

Dilithium 2 Dilithium 3 Dilithium 5
p (# of Batch) Batch Classical Batch Classical Batch Classical

3 36 48 65 90 119 168
4 46 64 85 120 154 224
5 56 80 100 150 182 280
6 66 96 120 180 217 336
7 76 112 135 210 245 392
8 86 128 155 240 280 448
9 96 144 170 270 308 504
10 106 160 190 300 343 560
11 116 176 205 330 371 616
12 126 192 225 360 406 672
13 136 208 240 390 434 728
14 146 224 260 420 469 784
15 156 240 275 450 497 840
16 166 256 295 480 532 896
17 176 272 310 510 560 952
18 186 288 330 540 595 1008
19 196 304 345 570 623 1064
20 206 320 365 600 658 1120

Table 9. Required number of multiplications for a single signature
assuming one of the p signatures is correct

Dilithium 2 Dilithium 3 Dilithium 5
p (#of Batch) Impr (%) Impr (%) Impr (%)

3 22.50 25.00 26.25
4 23.91 24.79 26.56
5 24.00 26.67 28.00
6 23.44 25.00 26.56
7 22.50 25.00 26.25
8 21.33 23.02 24.38
9 20.00 22.22 23.33
10 18.56 20.17 21.31
11 17.05 18.94 19.89
12 15.47 16.88 17.81
13 13.85 15.38 16.15
14 12.19 13.33 14.06
15 10.50 11.67 12.25
16 8.79 9.64 10.16
17 7.06 7.84 8.24
18 5.31 5.83 6.15
19 3.55 3.95 4.14
20 1.78 1.96 2.06

Table 10. Improvement Rates (%) for 20 Signatures

For illustration, suppose that Batch Dilithium is used to sign 20 messages. Table 10 provides
the improvement rates that will be attained by reducing the number of multiplications. As the
table shows, choosing p equal to 5 yields the best improvement rate. Based on probability estimates
and improvement percentages, p can be chosen by considering the available effective matrix-matrix
multiplication methods. Let m be the number of messages to be signed, p be the number of batches,
C be the number of multiplications needed for the classical technique, and B be the number of
multiplications needed for the effective matrix-matrix multiplication algorithm used in the batch
method. The following formula is used to determine the improvement rate:

(C ·m− [B · (m− (p− 1)) + C · (p− 1)])100/(C ·m) (2)

The probability of a signature being valid for Dilithium 2, 3, and 5 are approximately 1/4, 1/5,
and 1/4, respectively, as shown in Table 7. Therefore, there is a high probability that one of the
four signatures generated by Dilithium 2, one of the five for Dilithium 3, and one of the four for
Dilithium 5 will be correct. Consequently, 1 − (1 − 0.24)4 ≈ 0.67 = 67% is the probability that at
least one of the four signatures generated by Dilithium 2 is correct.
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3.3 Results for Batch Dilithium Signing

The results of the batch application are examined in two sections: Improvements in the arithmetic
complexity and improvements observed via the implementations.

Matrix Multiplications and Arithmetic Complexity Analysis For the batch method to be
efficient, it needs to be combined with effective matrix-matrix multiplication algorithms. For this
reason, the method outlined in Section 3.2 is utilized to identify the batch numbers to be used
in the Batch Dilithium Algorithm for each security level. Table 6 provides the dimensions of the
matrices in the 15th step of Algorithm 6 for each security level of Dilithium. Reducing the number
of multiplications is the goal since the matrices’ entries are polynomials, and their multiplications
are far more expensive than their additions. Recursively applying the Strassen-like matrix-matrix
multiplications yields the smallest number of multiplications. However, the technique described in
this work does not require recursions since the matrices are small in size. Since the entries are
polynomials from the commutative ring Rq, the commutative matrix multiplication techniques that
have better multiplicative complexity than the non-commutative multiplication algorithms can also
be used for our purposes. For this reason, applying the commutative matrix-matrix multiplication
approach as presented in [21] is recommended.

Let the product of a matrix of size (n1 × n2) and (n2 × n3) be (n1, n2, n3).(4, 4, 4), (6, 5, 5) and,
(8, 7, 4) efficient matrix multiplication methods are required, for Dilithium2, 3, and 5, respectively.
The commutative matrix multiplication method by [21] with 46 multiplications (Appendix A.2)
and the Strassen-like recursive multiplications [26], [30], [5] with 49 multiplications (Appendix A.1)
appear to be the best options for the (4, 4, 4) multiplications. [21] may be used to do (6, 5, 5) matrix
multiplication in batch Dilithium 3 with 100 multiplications (Appendix B) and (8, 7, 4) matrix
multiplication in batch Dilithium 5 with 154 multiplications (Appendix C). All explicit formulas
are derived for this work to implement efficient batch algorithms.

Batch Dilithium 2 Signing: Assume that the classical method is used to sign m messages inde-
pendently using Dilithium 2. It takes 16 multiplications for each message. Nonetheless, 16 · 4 = 64
multiplications are required on average to sign the message because of the algorithm’s failure prob-
ability. For m messages, a total of 64m multiplications must be performed.

Step 15 is performed for four signatures in Algorithm 6’s batch approach. Considering that there
is a 0.24 probability that a signature candidate for Dilithium 2 is valid, one of the four signatures
can be taken as proper. When m − (p − 1) messages are signed, this procedure ends. As a result,
46 · (m − (p − 1)) = 46 · (m − 3) multiplication operations are needed for the batch operation.
Using classical Dilithium 2, each of the remaining p − 1 = 3 messages from the batch procedure
is signed separately. To sign each message, step 7 of the Algorithm 2 needs 16 multiplications.
The amount of multiplications needed for a message is 16 · 4 = 64 if we assume that the loop is
repeated four times in order to produce a valid signature. Therefore, 3 · 64 = 192 is the number
of multiplications needed for three messages, and approximately 46 · (m − 3) + 192 = 46m + 54
is the number of multiplications needed for batch Dilithium 2. Table 11 shows the number of
multiplications required for the batch and classical approaches, as well as the improvement rates
attained with batch Dilithium 2 for the chosen number of messages up to 100. The improvement
rate is obtained as (64m − (46m + 54)) · 100/64m, and it converges to 28.1% as the number of
messages increases.
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Fig. 4. Variation of the number of multiplications
required according to the number of messages for
Batch Dilithium 2 and Classical Dilithium 2

Fig. 5. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Dilithium 2

Figure 4 illustrates how the number of multiplications needed varies based on the number of
messages in Batch Dilithium 2 and Classical Dilithium 2. Figure 5 demonstrates how the improve-
ment rate (%) offered by the batch algorithm changes based on the number of messages when
compared to the classical version.

# of Messages Batch (p = 4) Classic Improvement (%)
m 46m+ 54 64m

4 238 256 7.0
5 284 320 11.25
6 330 384 14.1
7 376 448 16.1
8 422 512 17.58
9 468 576 18.85
10 514 640 19.69
20 974 1280 23.91
40 1894 2560 26.02
80 3734 5120 27.07
100 4654 6400 27.28

Table 11. Variation of the number of multiplications required for batch and classical use of Dilithium 2
signing, and the improvement rates provided by batch method according to the number of messages

Batch Dilithium 3 Signing: m message requires 30 multiplications to be signed using classical
Dilithium 3. The average number of multiplications is 30 · 5 = 150 due to the failure rate. A total
of 150m multiplications are expected for m messages.

In Algorithm 6, step 15, the batch signature generation is carried out for five signatures. With
a probability of approximately 0.196 for a signature candidate to be correct for Dilithium 3, it is
assumed that at least one of the five signatures is valid. A total of 100 · (m − 4) multiplication
operations are needed for the batch operation as a result of computations similar to those in batch
Dilithium 2. In order to sign the final four messages using the standard method, a total of 100m+200
multiplications are needed for batch Dilithium 3. Table 12 provides details about the number
of messages, the number of multiplications needed for the batch or classical technique, and the
improvement rates achieved with batch Dilithium 3. The formula for calculating the improvement
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rate is (150m− (100m+200)) · 100/150m. This rate converges to 33.3% as the number of messages
increases. Figure 6 illustrates how the number of multiplications needed varies based on the number
of messages in Batch Dilithium 3 and Classical Dilithium 3. Figure 7 illustrates how the improvement
rate (%) offered by the batch algorithm differs based on the number of messages when compared
to the classical version.

Fig. 6. Variation of the number of multiplications
required according to the number of messages for
Batch Dilithium 3 and Classical Dilithium 3

Fig. 7. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Dilithium 3

# of Messages Batch (p = 5) Classic Improvement (%)
m 100m+ 200 150m

5 700 750 6.7
6 800 900 11.11
7 900 1050 14.29
8 1000 1200 16.67
9 1100 1350 18.52
10 1200 1500 20.0
20 2200 3000 26.67
40 4200 6000 30.0
80 8200 12000 31.67
100 10200 15000 32.0

Table 12. Variation of the number of multiplications required for batch and classical use of Dilithium 3
signing, and the improvement rates provided by batch method according to the number of messages

Batch Dilithium 5 Signing: Assume that Dilithium 5 is used to sign m messages individually using
the standard approach. 56 multiplications are required to sing for each message. 56 · 4 = 224
multiplications are carried out with the assumption that a valid signature needs four repetitions.
There are 224m multiplications needed for m messages.

The 15th phase of Algorithm 6 is carried out for four signatures, the same as in Batch Dilithium
2. At least one of the four signatures is expected to be valid because the probability that a signature
candidate is valid for Dilithium 5 is roughly 0.26. 154 · (m−3) multiplication operations are needed
for the batch operation as a result of computations equivalent to those in batch Dilithium 2 and
3. In order to sign all three remaining messages using the standard method, 154m + 210 multipli-
cations are required for batch Dilithium 5. Table 13 shows the number of messages, the number
of multiplications needed for the batch or classical technique, and the improvement rates attained
with batch Dilithium 5.
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# of Messages Batch (p = 4) Classic Improvement (%)
m 154m+ 210 224m

4 826 896 7.81
5 980 1120 12.5
6 1134 1344 15.63
7 1288 1568 17.86
8 1442 1792 19.53
9 1596 2016 20.83
10 1750 2240 21.86
20 3290 4480 26.56
40 6370 8960 28.91
80 12530 17920 30.08
100 15610 22400 30.31

Table 13. Variation of the number of multiplications required for batch and classical use of Dilithium 5
signing, and the improvement rates provided by batch method according to the number of messages

The formula for calculating the improvement rate is (224m − (154m + 210)) · 100/224m. This
rate converges to 31.5% as the number of messages increases. Figure 8 illustrates how the number
of multiplications required changes according to the number of messages in Batch Dilithium 5
and Classical Dilithium 5. Figure 9 displays how the improvement rate (%) offered by the batch
algorithm differs depending on the number of messages when compared to the classical version.

Fig. 8. Variation of the number of multiplications
required according to the number of messages for
Batch Dilithium 5 and Classical Dilithium 5

Fig. 9. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Dilithium 5

Implementation Results In order to compare the batch implementations with the reference,
twenty random messages are generated. The CPU cycle counting reference implementation is used
to sign each message separately. Following that, similar speed tests are performed, and the same
messages are signed using the batch method. Cycle counts are collected using the single core of the
Intel Core i7-8700 processor.

The cycle counts for only the multiplication operation of signing 20 random messages using
Classical Dilithium and Batch Dilithium are provided in Table 14. 17 messages are signed using
Batch Dilithium, and the amount of the CPU cycles is obtained. Classical Dilithium is used to sign
the remaining three messages. Classical Dilithium is also used to sign the same 20 messages. The
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cycle counts of signing 17 messages for Classical Dilithium are measured in order to provide an
exact comparison.

The test results for Dilithium’s three security levels are displayed in Table 15. Strassen’s al-
gorithm and Rosowski’s commutative algorithm are used in the implementation of Dilithium 2.
The latter produces better results because of its better multiplicative complexity. Only Rosowski’s
approach is used in the implementation of Dilithium 3 and Dilithium 5.

Dilithium Signature Generation (Only the Multiplication Stage)
Algorithm Batch Size Reference Batch Improvement (%)
Dilithium 2 4 2555202 1532297 (via [21]) 40.03
Dilithium 2 4 2555202 1809040 (via [26]) 29.20
Dilithium 3 5 4723348 3331311 (via [21]) 29.47
Dilithium 5 4 5715468 4914677 (via [21]) 14.01

Table 14. CPU Cycle counts of the multiplication stage obtained by signing 17 random messages (m =
20−3) with reference and batch implementations of Dilithium 2, Dilithium 3, and Dilithium 5. Cycle counts
are obtained on one core of Intel Core i7-8700.

Dilithium Signature Generation
Algorithm Batch Size Reference Batch Improvement (%)
Dilithium 2 4 31382991 20645253 (via [21]) 34.22
Dilithium 2 4 31382991 20991482 (via [26]) 33.11
Dilithium 3 5 50128969 41407391 (via [21]) 17.40
Dilithium 5 4 46078440 41833217 (via [21]) 10.15

Table 15. CPU Cycle counts obtained by signing 20 random messages (m = 20) with reference and batch
implementations of Dilithium 2, Dilithium 3, and Dilithium 5. Cycle counts are obtained on one core of
Intel Core i7-8700.

4 Efficient Batch Dilithium Verification From a Single User

This section explains the proposed batch version of the Dilithium verification scheme for signatures
from the same signer.

Algorithm 7 provides the specifics of the Batch Dilithium Verification algorithm, which is based
on Algorithm 3. The goal of the batch verification algorithm is to validate multiple signatures in
groups coming from the same user. Its input consists of signed messages, corresponding signatures,
and the public key of the signer. As a result, it calculates whether the signatures are valid or not.
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Algorithm 7 Batch Dilithium Verification for m Different Signatures from a Single User
Input: Public key pk = (ρ, t1), messages Mi, signatures σi = (c̃i,zi,hi), where i = 0, 1, . . . ,m− 1
Output: Signatures σi are valid or not, where i = 0, 1, . . . ,m− 1

1: Â ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

2: for i = 0, 1, . . . ,m− 1 do
3: µi ∈ {0, 1}512 := H(H(ρ∥t1)∥Mi)
4: ci := SampleInBall(c̃i)

5: for i = 0, 1, . . . , ⌊m/p⌋ − 1 do
6: Ẑi := (l × p) matrix whose columns are NTT (zpi), NTT (zpi+1) . . . , NTT (zpi+(p−1))

7: K̂i = Â · Ẑi whose columns are k̂pi, k̂pi+1, . . . , k̂pi+(p−1)

8: for i = ⌊m/p⌋, . . . ,m− 1 do ▷ If 0 ̸≡ (m mod p)
9: k̂i = Â · ẑi

10: statusi = 1 where i = 0, 1, . . . ,m− 1
11: for i = 0, 1, . . . ,m− 1 do
12: w′

i := UseHintq(hi, NTT−1(k̂i −NTT (ci) ·NTT (t1 · 2d)), 2γ2)
13: statusi = [∥ zi ∥∞< γ1 − β] and [c̃i = H(µi ∥ w′

i)] and [# of 1’s in hi is ≤ ω]
14: return statusi where i = 0, 1, . . . ,m− 1

At the beginning of the batch verification algorithm, the public matrix Â is generated in the NTT
domain using ρ, which is part of the public key. Then, µi and ci that are specific to each message are
calculated. Since Mis and c̃is are used, µis and cis are unique for each message. The most important
step of the batch verification algorithm is to convert the matrix-vector multiplication Â ·NTT (z)
contained in Algorithm 3 into matrix-matrix multiplication as seen in step 7 of Algorithm 7. m, the
number of messages (or signatures), may not be divided by p, which is the number of batches. In this
case, the messages are inserted into the matrix-matrix multiplication process in groups of p. This
means that there are m/p many matrix-matrix multiplications are performed. For the remaining
messages, matrix-vector multiplication is performed as in the original algorithm. Thus, the k̂?is
are obtained. Then, w′

is and statusis, which are unique for each signature, are calculated. Finally,
the statusis are given as output. They contain information about whether the signatures of each
message are valid or not.

4.1 Making the Batch Algorithm More Efficient Compared to the Naive Approach

The sizes of the public matrix Â, which are determined for different security levels of the Dilithium
verification algorithm, are the same as the sizes of the public matrix of the Dilithium signature algo-
rithm. As explained in detail in section 3.1, in order for the matrix-matrix multiplication contained
in the batch algorithm to be efficient, this operation must be performed with efficient multiplication
algorithms. In order to make a sample implementation, batch sizes are selected to be the same as
those used in the batch signature algorithm. In Table 6, the dimensions given for the matrices Â,
Ŷ , and Ŵ in the batch signature algorithm are assigned to the matrices Â, Ẑi and K̂i in the
batch verification algorithm, respectively. Similarly, the efficient matrix multiplication algorithms
[21] and [26] are used for efficient matrix-matrix multiplications. Since the entries of the matrices are
polynomial, the decrease in the number of multiplications increases the efficiency of the algorithm.

Depending on the efficiency wanted to be achieved, different p values and also suitable, efficient
matrix-matrix multiplication algorithms can be preferred in Algorithm 7. Let the number of mul-
tiplications required by the selected efficient matrix-matrix multiplication algorithm be B, and the
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number of multiplications required by the matrix-vector multiplication performed while verifying
a message be C. When the m signatures are verified with the classical Dilithium verification al-
gorithm, C · m multiplications are required. If the signatures are verified by batch method, then
[B · ⌊m/p⌋ + C · (m − ⌊m/p⌋ · p)] multiplications are needed. The improvement rate (%) provided
by batch verification is calculated using the following formula:

(C ·m− [B · ⌊m/p⌋+ C · (m− ⌊m/p⌋ · p)]) · 100/(C ·m) (3)

Table 16 shows the improvement rates provided by the batch version (%) and the number of
multiplications required for the verification of 20 signatures using classical and batch Dilithium 2,
3, and 5 according to the selected p.

Dilithium 2 Dilithium 3 Dilithium 5
p (# of Batch) Batch Classical Imprv (%) Batch Classical Imprv (%) Batch Classical Imprv (%)

3 248 320 22.50 450 600 25.00 826 1120 26.25
4 230 320 28.13 425 600 29.17 770 1120 31.25
5 224 320 30.00 400 600 33.33 728 1120 35.00
6 230 320 28.13 420 600 30.00 763 1120 31.88
7 248 320 22.50 450 600 25.00 826 1120 26.25
8 236 320 26.25 430 600 28.33 784 1120 30.00
9 224 320 30.00 400 600 33.33 728 1120 35.00
10 212 320 33.75 380 600 36.67 686 1120 38.75
11 260 320 18.75 475 600 20.83 875 1120 21.88
12 254 320 20.63 465 600 22.50 854 1120 23.75
13 248 320 22.50 450 600 25.00 826 1120 26.25
14 242 320 24.38 440 600 26.67 805 1120 28.13
15 236 320 26.25 425 600 29.17 777 1120 30.63
16 230 320 28.13 415 600 30.83 756 1120 32.50
17 224 320 30.00 400 600 33.33 728 1120 35.00
18 218 320 31.88 390 600 35.00 707 1120 36.88
19 212 320 33.75 375 600 37.50 679 1120 39.38
20 206 320 35.63 365 600 39.17 658 1120 41.25

Table 16. Required number of multiplications and improvement rates (%) for 20 signatures.

4.2 Results for Batch Dilithium Verification

The results of the batch approach for Dilithium verification are explained in this section.

Matrix Multiplications and Arithmetic Complexity Analysis Due to the fact that they
have similar matrix sizes and ring properties, the approach described in Section 3.3 for the batch
Dilithium signing algorithm is also applied for batch Dilithium verification.

Batch Dilithium 2 Verification: Batch number p is selected as 4 for Batch Dilithium 2 as an example.
In this case, in Algorithm 7 step 7, Â(4×4) · Ẑ(4×4) matrix multiplication occurs. This operation
requires 46 multiplication if Rosowski’s method [21] is used as an efficient matrix multiplication
algorithm. To verify m signatures with this method, Â ·Ẑ matrix multiplication is computed ⌊m/p⌋
times while Ẑ changes according to the different signature groups of 4. The signatures that are left



Efficient Batch Algorithms for PQ Dilithium Sign. and Kyber Enc. Scheme 23

are verified by using classical matrix-vector multiplication, and each requires 16 multiplications.
Therefore, while p = 4, the number of multiplications required to verify m signatures with Batch
Dilithium 2 is calculated with the following formula:

46 · ⌊m/p⌋+ 16 · (m− ⌊m/p⌋ · p) (4)

The number of multiplications required to verify m signature with classical Dilithium 2 is 16m.
The variance in the number of multiplications required for batch and classical use of Dilithium 2
verification, as well as the improvement rates provided by the batch method based on the number
of messages, are shown in Table 17.

# of Signatures Batch (p = 4) Classic Improvement (%)
4 46 64 28.13
5 62 80 22.50
6 78 96 18.75
7 94 112 16.07
8 92 128 28.13
9 108 144 25.00
10 124 160 22.50
20 230 320 28.13
40 460 640 28.13
70 814 1120 27.32
80 920 1280 28.13
90 1044 1440 27.50
100 1150 1600 28.13

Table 17. Variation of the number of multiplications required for batch and classical use of Dilithium 2
verification (Kyber1024 encryption), and the improvement rates provided by batch method according to
the number of signatures (messages)

As it can be observed in Table 17, if m ≡ 0 mod p, then the improvement rate is equal to 28.13%.
While number of signatures m increases and m ̸≡ 0 mod p, the rate converges to 28.13%. Figure
10 illustrates how the number of multiplications needed varies based on the number of signatures in
Batch Dilithium 2 and Classical Dilithium 2. Figure 11 illustrates how the improvement rate (%)
provided by the batch algorithm varies based on the number of signatures when compared to the
classical version.

Fig. 10. Variation of the number of multiplications
required according to the number of signatures for
Batch Dilithium 2 and Classical Dilithium 2 Verifi-
cation

Fig. 11. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of signatures
for Dilithium 2 Verification
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Batch Dilithium 3 Verification: As a demonstration, let the batch number p = 5 for Batch Dilithium
3 Verification. This time, Â(6×5) · Ẑ(5×5) matrix multiplication is performed. Similar to Batch
Dilithium 2 Verification, [21] is used as an efficient method, and it requires 100 multiplications for
each matrix-matrix multiplication. If the remaining signatures are verified using the matrix-vector
multiplication, 30 multiplications occur for each message. When Batch Dilithium 3 Verification is
used for m signatures, the total number of multiplications needed is calculated by the following
formula:

100 · ⌊m/p⌋+ 30 · (m− ⌊m/p⌋ · p) (5)

30m multiplications are needed to validate a m signature using classical Dilithium 3. Table
18 illustrates the variation in the number of multiplications needed for batch and classical use of
Dilithium 3 verification, together with the improvement rates provided by the batch approach based
on the number of messages.

Table 18 illustrates that the improvement rate is equivalent to 33.33% if m ≡ 0 mod p. The
rate converges to 33.33% as long as the number of signatures increases and m ̸≡ 0 mod p. Figure
12 shows how the number of multiplications required in Batch Dilithium 3 and Classical Dilithium
3 differs according to the number of signatures. When compared to the classical version, Figure 13
shows how the improvement rate (%) obtainable via the batch algorithm changes depending on the
number of signatures.

# of Signatures Batch (p = 5) Classic Improvement (%)
5 100 150 33.33
6 130 180 27.78
7 160 210 23.81
8 190 240 20.83
9 220 270 18.52
10 200 300 33.33
33 690 990 30.30
47 960 1410 31.91
75 1500 2250 33.33
88 1790 2640 32.20
99 2020 2970 31.99
100 2000 3000 33.33

Table 18. Variation of the number of multiplications required for batch and classical use of Dilithium 3
verification, and the improvement rates provided by batch method according to the number of signatures

Fig. 12. Variation of the number of multiplications
required according to the number of signatures for
Batch Dilithium 3 and Classical Dilithium 3 Verifi-
cation

Fig. 13. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of signatures
for Dilithium 3 Verification
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Table 18 illustrates that the improvement rate is equivalent to 33.33% if m ≡ 0 mod p. The
rate converges to 33.33% as long as the number of signatures increases and m ̸≡ 0 mod p. Figure
12 shows how the number of multiplications required in Batch Dilithium 3 and Classical Dilithium
3 differs according to the number of signatures. When compared to the classical version, Figure 13
shows how the improvement rate (%) obtainable via the batch algorithm changes depending on the
number of signatures.

Batch Dilithium 5 Verification: The batch number p is selected as 4 for Batch Dilithium 5 Ver-
ification. Each matrix-matrix multiplication requires 154 multiplications if the fast commutative
approach [21] is used for the Â(8×7) · Ẑ(7×4) operations. It takes 56 multiplications to perform
the matrix-vector multiplication for each of the remaining messages. The following formula can be
used to determine the total number of multiplications needed to verify m signatures with Batch
Dilithium 5 Verification:

154 · ⌊m/p⌋+ 56 · (m− ⌊m/p⌋ · p) (6)

Using classical Dilithium 5, 56m multiplications must be done to validate m signatures. The
difference in the number of multiplications required for batch and classical use of Dilithium 5
verification, as well as the improvement rates offered by the batch technique dependent on the
number of messages, are shown in Table 19.

# of Signatures Batch (p = 4) Classic Improvement (%)
4 154 224 31.25
5 210 280 25.00
6 266 336 20.83
7 322 392 17.86
8 308 448 31.25
9 364 504 27.78
10 420 560 25.00
20 770 1120 31.25
40 1540 2240 31.25
70 2730 3920 30.36
80 3080 4480 31.25
90 3500 5040 30.56
100 3850 5600 31.25

Table 19. Variation of the number of multiplications required for batch and classical use of Dilithium 5
verification, and the improvement rates provided by batch method according to the number of signatures

The improvement rate is equal to 31.25% if m ≡ 0 mod p, as Table 19 illustrates. As m increases
and m ̸≡ 0 mod p, the rate converges to 31.25%. The relationship between the number of signatures
in Batch Dilithium 5 and Classical Dilithium 5 and the number of multiplications required is shown
in Figure 14. Comparing the batch algorithm to the classical version, Figure 15 shows how the
improvement rate (%) changes depending on the number of signatures.
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Fig. 14. Variation of the number of multiplications
required according to the number of signatures for
Batch Dilithium 5 and Classical Dilithium 5 Verifi-
cation

Fig. 15. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of signatures
for Dilithium 5 Verification

Implementation Results Using the Dilithium 2 signature algorithm, twenty random messages
are signed, yielding twenty signatures. The reference and batch Dilithium 2, 3, and 5 are performed
to validate these signatures. In Table 20, the CPU cycle counts obtained as a result of speed tests
performed for different security levels of Dilithium, and also the improvement rates provided by
batch implementation are given. In the batch implementation of Dilithium 2, Strassen’s method
[26] and Rostowski’s method [21] are used as efficient matrix-matrix multiplication algorithms. For
Dilithium 3 and 5, only Rosowski’s method is performed.

Dilithium Signature Verification from a Single User
Algorithm Batch Size Reference Batch Improvement (%)
Dilithium 2 4 5549265 2781154 (using [21]) 49.88
Dilithium 2 4 5549265 2850412 (using [26]) 48.63
Dilithium 3 5 8935674 3877687 (using [21]) 56.60
Dilithium 5 4 14988354 5833909 (using [21]) 61.08

Table 20. CPU Cycle counts obtained by verifying 20 signatures (m = 20) with reference and batch
implementations of Dilithium 2, Dilithium 3, and Dilithium 5. Cycle counts are obtained on one core of
Intel Core i7-8700.

5 Efficient Batch Kyber Encryption to a Single User

This section explains the proposed batch version of Kybers’s encryption and encapsulation for a
single user.

Let m messages are wanted to be encrypted and sent to a user. The batch Kyber Encryption
algorithm that allows it to be performed efficiently is described in Algorithm 8. The public key pk
of the receiver, messages wanted to be encrypted Mi, and random coins ri are taken as inputs where
i = 0, 1, . . . ,m − 1. First, t̂ is obtained via the Decode function and the public key pk. Then, ρ is
derived from pk and used to generate the public matrix ÂT in the NTT domain. Next, with the
help of the CBD and PRF functions, rj , e′j , and e′′j are computed to be specific to each message
Mj , thanks to the unique random coins of the messages.
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The matrix-vector multiplication Â · r̂ in step 15 of Algorithm 4 is converted to matrix-matrix
multiplication, as seen in step 17 of Algorithm 8. The matrix R̂i, which is formed by groups of p of
r̂j ’s generated uniquely for each message, is multiplied by the matrix Â. This process is repeated
⌊m/p⌋ times.

Algorithm 8 Batch Kyber Encryption for m Different Messages for a Single User
Input: Public key pk, messages Mi, random coins ri where i = 0, 1, . . . ,m− 1
Output: Ciphertexts ci

1: t̂ := Decode12(pk)
2: ρ = pk + 12 · k · n/8
3: for i = 0, 1, . . . ,m− 1 do
4: for j = 0, 1, . . . ,m− 1 do
5: ÂT [i][j] := Parse(XOF (ρ, i, j)) ▷ Generate Â ∈ Rk×k

q in NTT domain.

6: for j = 0, 1, . . . ,m− 1 do
7: N = 0
8: for i = 0, 1, . . . , k − 1 do
9: rj [i] := CBDη1(PRF (rj , N))
10: N = N + 1

11: for i = 0, 1, . . . , k − 1 do
12: e′

j [i] := CBDη2(PRF (rj , N)) N = N + 1

13: e′′
j := CBDη2(PRF (rj , N))

14: r̂j := NTT (rj)

15: for i = 0, 1, . . . , ⌊m/p⌋ − 1 do
16: R̂i := (k × p) matrix whose columns are NTT (rpi), NTT (rpi+1) . . . , NTT (rpi+(p−1))

17: K̂i = Â · R̂i whose columns are k̂pi, k̂pi+1, . . . , k̂pi+(p−1)

18: for i = ⌊m/p⌋ · p, . . . ,m− 1 do ▷ If 0 ̸≡ (m mod p)
19: k̂i = Â · r̂i

20: for i = 0, 1, . . . ,m− 1 do
21: ui := NTT−1(k̂i) + e′

i

22: v := NTT−1(t̂T · r̂i) + e′′i +Decompressq(Decode1(Mi), 1)
23: c′ := Encodedu(Compressq(ui, du))
24: c′′ := Encodedv (Compressq(vi, dv))
25: ci = (c′i∥c′′i )
26: return ci for all i = 0, 1 . . .m− 1

Example: To encrypt messages Mi where i = 0, 1, . . . , 21 and p = 4. K̂i’s are computed:

K̂0 = [k̂0 k̂1 k̂2 k̂3] = Â · [r̂0 r̂1 r̂2 r̂3]

K̂1 = [k̂4 k̂5 k̂6 k̂7] = Â · [r̂4 r̂5 r̂6 r̂7]

K̂2 = [k̂8 k̂9 k̂10 k̂11] = Â · [r̂8 r̂9 r̂10 r̂11]

K̂3 = [k̂12 k̂13 k̂14 k̂15] = Â · [r̂12 r̂13 r̂14 r̂15]

K̂4 = [k̂16 k̂17 k̂18 k̂19] = Â · [r̂16 r̂17 r̂18 r̂19]

For the r̂i’s of the remaining messages, matrix-vector multiplication is performed as in the
original algorithm:
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k̂20 = Â · r̂20
k̂21 = Â · r̂21

Finally, the ciphertext ci’s unique to each message Mi’s are obtained through the Encode,
Decode, Compress, and Decompress functions.

5.1 Making the Batch Algorithm More Efficient Compared to the Naive Approach

Kyber’s public matrix Â’s sizes change according to the security level and are shown in Table 4.
Similar to the Batch Dilithium Signing and Verification algorithms, the Batch Kyber Encryption
algorithm contains matrix-matrix multiplication operation on a different ring R′

q = Z3329[x]/(x
256+

1), and it can be performed efficiently with an appropriate matrix multiplication algorithm. To
demonstrate it, the selected batch number and the sizes of the matrices K̂i, Â, and R̂i are given
in Table 21. [26] is used in Kyber512, [21] in Kyber768. Also, both [21] and [26] algorithms are
applied on Kyber 1024. Moreover, similar to the batch Dilithium algorithms, different p values and
appropriate, efficient matrix-matrix multiplication algorithms might be preferred in the Algorithm
8, depending on the efficiency that is needed.

Let A be the number of multiplications needed by an efficient matrix-matrix multiplication
algorithm, and C be the number of multiplications needed by the matrix-vector multiplication
that is done during message encryption. C · m multiplications are needed when the m messages
are encrypted using the classical Kyber encryption technique. [B · ⌊m/p⌋ + C · (m − ⌊m/p⌋ · p)]
multiplications are required if the messages are encrypted using the batch technique. 3 provides the
improvement rate (%) that batch verification yields, similarly.

The improvement rates (%) provided by the batch version and the number of multiplications
needed for 20 messages to be encrypted using classical and batch Kyber512, Kyber768, and Ky-
ber1024 are displayed in Table 22 based on the chosen p. [29] or [26] are used in Kyber512 calcula-
tions with batch number p = 2. For p > 2, the number of multiplications for the batch method are
obtained via [29].

Security Level Algorithm Batch Number Size of Â Size of R̂i Size of K̂i

2 Kyber512 2 (2× 2) (2× 2) (2× 2)

3 Kyber768 4 (3× 3) (3× 4) (3× 4)

5 Kyber1024 4 (4× 4) (4× 4) (4× 4)
Table 21. Batch numbers and matrix sizes according to different security levels.
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Kyber512 Kyber768 Kyber1024
p (# of Batch) Batch Classical Imprv (%) Batch Classical Imprv (%) Batch Classical Imprv (%)

2 70 80 12.50 - - - 260 320 18.75
3 74 80 7.50 144 180 20.00 248 320 22.50
4 70 80 12.50 140 180 22.22 230 320 28.13
5 68 80 15.00 132 180 26.67 224 320 30.00
6 68 80 15.00 138 180 23.33 230 320 28.13
7 70 80 12.50 144 180 20.00 248 320 22.50
8 68 80 15.00 140 180 22.22 236 320 26.25
9 66 80 17.50 132 180 26.67 224 320 30.00
10 64 80 20.00 128 180 28.89 212 320 33.75
11 71 80 11.25 150 180 16.67 260 320 18.75
12 70 80 12.50 148 180 17.78 254 320 20.63
13 69 80 13.75 144 180 20.00 248 320 22.50
14 68 80 15.00 142 180 21.11 242 320 24.38
15 67 80 16.25 138 180 23.33 236 320 26.25
16 66 80 17.50 136 180 24.44 230 320 28.13
17 65 80 18.75 132 180 26.67 224 320 30.00
18 64 80 20.00 130 180 27.78 218 320 31.88
19 63 80 21.25 126 180 30.00 212 320 33.75
20 62 80 22.50 124 180 31.11 206 320 35.63
Table 22. Required number of multiplications and improvement rates (%) for 20 messages.

5.2 Results for Batch Kyber Encryption

Matrix Multiplications and Arithmetic Complexity Analysis Although the operations
Dilithium and Kyber occur in different rings, R and R′, they contain the same operations, such
as matrix-vector multiplication defined on the polynomial ring, and are based on the same mathe-
matical problem. Therefore, for batch Kyber encryption, the method outlined in Section 3.3 is also
applicable.

Batch Kyber512 Encryption: As an example, the batch number p for batch Kyber512 encryption is
set to 2. In this case, the matrix multiplication Â(2×2) · R̂i(2×2) occurs in step 17 of Algorithm 8.
As an efficient matrix multiplication technique, this operation requires 7 multiplications (Appendix
D) using Strassen’s approach [26]. With this method, Â · R̂i matrix multiplication is performed
⌊m/p⌋ times in order to encrypt m messages, whereas R̂i varies based on the distinct message
groups of 2. The remaining messages require 4 multiplications each to be encrypted using classical
matrix-vector multiplication. As a result, when p = 2, the following formula is used to determine
how many multiplications are needed to encrypt m messages using Batch Kyber512:

7 · ⌊m/p⌋+ 4 · (m− ⌊m/p⌋ · p) (7)

4m multiplications are needed to encrypt m messages using classical Kyber512. Table 23 illus-
trates the variation in the number of multiplications needed for batch and classical use of Kyber512
encryption, together with the improvement rates offered by the batch approach based on the number
of messages.
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# of Messages Batch (p = 2) Classic Improvement (%)
2 7 8 12.50
3 11 12 8.33
4 14 16 12.50
5 18 20 10.00
6 21 24 12.50
7 25 28 10.71
8 28 32 12.50
9 32 36 11.11
10 35 40 12.50
20 70 80 12.50
40 140 160 12.50
71 249 284 12.32
85 298 340 12.35
93 326 372 12.37
100 350 400 12.50

Table 23. Variation of the number of multiplications required for batch and classical use of Kyber512
encryption, and the improvement rates provided by batch method according to the number of messages

If m ≡ 0 mod p, then the improvement rate is equal to 12.50%, as Table 23 illustrates. The
rate converges to 12.50% as long as m, the number of messages, increases and m ̸≡ 0 mod p.
The relationship between the number of messages in Batch Kyber512 and Classical Kyber512
and the number of multiplications required is shown in Figure 16. In comparison with the classical
version, Figure 17 shows how the improvement rate (%) available through the batch method changes
depending on the number of messages.

Fig. 16. Variation of the number of multiplications
required according to the number of messages for
Batch Kyber512 and Classical Kyber512 Encryption

Fig. 17. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Kyber512 Encryption

Batch Kyber768 Encryption: In this case, for batch Kyber768 encryption, batch number p is assigned
to 4, and matrix multiplication in Algorithm 8 becomes Â(3×3) ·R̂i(3×4). With Rosowski’s approach
[21], this operation involves 28 multiplications (Appendix E). This method encrypts m messages
by doing ⌊m/p⌋ matrix multiplications of Â · R̂i, while R̂i changes due to the distinct message
groups of 4. To encrypt the rest of the messages, standard matrix-vector multiplication requires 9
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multiplications for each message. Hence, for p = 4, the number of multiplications needed to encrypt
m messages using Batch Kyber768 is determined using the equation as follows:

28 · ⌊m/p⌋+ 9 · (m− ⌊m/p⌋ · p) (8)

For standard Kyber768, to encrypt m messages, 9m multiplications are required. The difference
between the total number of multiplications required for batch and standard Kyber768 encryption,
as well as the improvement rates provided by the batch technique depending on the number of
messages, are summarized in Table 24.

# of Messages Batch (p = 4) Classic Improvement (%)
4 28 36 22.22
5 37 45 17.78
6 46 54 14.81
7 55 63 12.70
8 56 72 22.22
9 65 81 19.75
10 74 90 17.78
20 140 180 22.22
40 280 360 22.22
70 494 630 21.59
80 560 720 22.22
90 634 810 21.73
100 700 900 22.22

Table 24. Variation of the number of multiplications required for batch and classical use of Kyber768
encryption, and the improvement rates provided by batch method according to the number of messages

Fig. 18. Variation of the number of multiplications
required according to the number of messages for
Batch Kyber512 and Classical Kyber768 Encryption

Fig. 19. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Kyber768 Encryption

Table 24 indicates that the improvement rate is equivalent to 22.22% if m ≡ 0 mod p. As long
as m, the number of messages, increases and m ̸≡ 0 mod p, the rate converges to 22.22%. Figure 18
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illustrates the relationship between the number of messages in the batch and the classical Kyber768
and the number of multiplications needed. Figure 19 illustrates how the improvement rate (%)
made possible by the batch approach varies based on the number of messages when compared to
the classical structure.

Batch Kyber1024 Encryption: The batch number p is also set to 4 when using batch Kyber1024
encryption. With respect to batch Kyber1024, the required number of multiplications to encrypt
m messages can be determined via the Formula (4) since the matrix sizes and message grouping
procedure used in the for loop are identical to the batch Dilithium2 verification. Table 17 displays the
variance of the number of multiplications needed for batch and standard applications of Kyber2024
encryption, together with the improvement rates that the batch technique enables based on the
number of messages.

The batch Kyber1024 encryption algorithm has graphs similar to those of the batch Dilithium2
verification algorithm. Figure 20 shows how the number of multiplications required in the batch and
classical Kyber1024 differs according to the number of messages. When compared to the classical
version, Figure 21 illustrates how the improvement rate (%) offered by the batch algorithm changes
depending on the number of messages.

Fig. 20. Variation of the number of multiplications
required according to the number of messages for
Batch Kyber512 and Classical Kyber1024 Encryp-
tion

Fig. 21. Variation of the improvement rate (%) pro-
vided by the batch algorithm compared to the clas-
sical version depending on the number of messages
for Kyber1024 Encryption

Implementation Results Twenty random messages are encrypted using the batch and the clas-
sical Kyber512, 768, and 1024 encryption algorithms. The CPU cycle counts derived from speed
tests made for various Kyber security levels, along with the improvement rates offered by batch
implementation, are given in Table 26. Table 25 gives the cycle counts of only the multiplication
process of encrypting 20 random messages with the classical and the batch Kyber. Two efficient
matrix-matrix multiplication algorithms are utilized in the batch implementation of Kyber1024:
Rostowski’s approach [21] and Strassen’s method [26]. While [29] is preferred for Kyber512, [21] is
used in Kyber768.
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Kyber Encryption (Only the Multiplication Stage)
Algorithm Batch Size Reference Batch Improvement (%)
Kyber 512 2 322509 249408 (via [29]) 22.67
Kyber 768 4 614922 443653 (via [21]) 27.85
Kyber 1024 4 1069849 737093 (via [21]) 31.10
Kyber 1024 4 1069849 830175 (via [26]) 22.40

Table 25. CPU Cycle counts of the multiplication stage obtained by encrypting 20 random messages
(m = 20) with reference and batch implementations of Kyber512, Kyber768, and Kyber1024. Cycle counts
are obtained on one core of Intel Core i7-8700.

Kyber Encryption
Algorithm Batch Size Reference Batch Improvement (%)
Kyber512 2 2706716 2102105 (via [26]) 22.34
Kyber768 4 3941892 2992896 (via [21]) 24.07
Kyber1024 4 5766383 4102297 (via [26]) 28.86
Kyber1024 4 5766383 3988733 (via [21]) 30.83

Table 26. CPU Cycle counts obtained by encrypting 20 random messages (m = 20) with reference and
batch implementations of Kyber512, Kyber768, and Kyber1024. Cycle counts are obtained on one core of
Intel Core i7-8700.

6 Conclusion

This study proposes efficient batch signature generation and verification with the Dilithium al-
gorithm, as well as batch encryption for a single user with Kyber. The batch Dilithium signing
algorithm is designed to enable many messages to be signed simultaneously. According to the rep-
etition numbers of Dilithium 2, Dilithium 3, and Dilithium 5 signing algorithms, the column sizes
of the first matrix (i.e., batch numbers) are determined as 4, 5, and 4, respectively. The Batch
Dilithium algorithm allows users to efficiently and simultaneously verify multiple signatures from
a single user. The same batch numbers with the batch Dilithium signature are preferred for the
implementation of batch Dilithium verification. Batch Kyber encryption is another method that is
proposed in this paper, and it is used to encrypt several messages in groups for a user. Batch num-
bers are chosen as 2, 4, and 4, for illustration, in batch Kyber encryption. Dilithium’s and Kyber’s
matrix-vector multiplications have been converted to matrix-matrix multiplications. These transfor-
mations allow us to employ efficient matrix-matrix multiplications for many signature generation,
signature verification, and message encryption. The matrix dimensions that provide improvements
are determined, and efficient multiplication methods, such as commutative matrix multiplication
by Rosowski and Strassen’s multiplication algorithms, are integrated into Dilithium and Kyber.
As a result of those multiplications, the arithmetic complexities of generating many signatures are
enhanced up to 28.1% for Dilithium 2, 33.3% while verifying multiple signatures with this method
provides 28.13%, 33.33%, and 31.25% for Dilithium 3, and 31.5% for Dilithium 5. Moreover, we im-
plement the proposed batch signature generation by signing 20 messages using the efficient matrix-
matrix multiplication algorithms for three security levels and obtain improvements in terms of CPU
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cycle counts, which are 34.22% for Dilithium 2, 17.40% for Dilithium 3, and 10.15% for Dilithium
5. Using batch Dilithium, these 20 signatures are verified, and 49.88%, 56.60%, and 61.08% im-
provements are observed regarding CPU cycle counts. Improvements in arithmetic complexity of
12.50%, 22.22%, and 28.13%, as well as improvements in CPU cycle counts of 22.34%, 24.07%, and
30.83%, are noted for three security levels when Kyber Batch Encryption is implemented using
efficient multiplication algorithms.

The full matrix is represented rather than just one vector since the batch method employs
matrix-matrix multiplication rather than matrix-vector multiplication. The amount of stack mem-
ory used is increased while calculating and storing the linear combinations contained in the multi-
plication method’s structure and when extracting the matrix elements through addition and sub-
traction. With proper implementation strategies (calculating linear combinations with loops, par-
allelization techniques, etc.), it can be minimized. Using matrices for the multiplication operations
instead of vectors requires dynamic memory allocations for the operations to be calculated prop-
erly in the algorithm represented by the entire function. As expected, this results in a trade-off
between time and memory. Our calculations indicate that it is not significant since the matrix is
generated by including a few extra vectors. Also, the proposed method can be implemented using
SIMD instructions such as AVX2. As expected, this results in a trade-off between time and memory.
Our calculations indicate that it is not significant since the matrix is generated by including a few
extra vectors. It should be mentioned that SIMD instructions such as AVX2 can be used to achieve
the suggested strategy. This method can significantly enhance performance. Therefore, it might be
considered for future work.

Availability of the software: All source codes are available at https://github.com/denizzzture/Efficient-
Batch-Dilithium and https://github.com/denizzzture/Efficient-Batch-Kyber.
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A Efficient Multiplication Formulas for Dilithium 2 and Kyber1024

Let m ≥ 4 messages be signed (or encrypted) with Dilithium 2 (Kyber1024). Then, A,B ∈ R4×4
q

and A ·B = C ∈ R4×4
q . The elements of the matrices A4×4 ·B4×4 = C4×4 are described as follows:


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


︸ ︷︷ ︸

A


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


︸ ︷︷ ︸

B

=


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44


︸ ︷︷ ︸

C

A.1 Strassen-Method

To compute the matrix C, applying any Strassen-like [26] matrix multiplication method would
provide efficiency. To obtain the matrix C, firstly, unique multiplications pi are computed as follows:

p1 = (a11 + a33 + a22 + a44) · (b11 + b33 + b22 + b44)

p2 = (a21 + a43 + a22 + a44) · (b11 + b33)

p3 = (a11 + a33) · (b12 + b34 − b22 − b44)

p4 = (a22 + a44) · (b21 + b43 − b11 − b33)

p5 = (a11 + a33 + a12 + a34) · (b22 + b44)

p6 = (a21 + a43 − a11 − a33) · (b11 + b33 + b12 + b34)

p7 = (a12 + a34 − a22 − a44) · (b21 + b43 + b22 + b44)

p8 = (a31 + a33 + a42 + a44) · (b11 + b22)

p9 = (a41 + a43 + a42 + a44) · (b11)
p10 = (a31 + a33) · (b12 − b22)

p11 = (a42 + a44) · (b21 − b11)

p12 = (a31 + a33 + a32 + a34) · (b22)
p13 = (a41 + a43 − a31 − a33) · (b11 + b12)

p14 = (a32 + a34 − a42 − a44) · (b21 + b22)
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p15 = (a11 + a22) · (b13 − b33 + b24 − b44)

p16 = (a21 + a22) · (b13 − b33)

p17 = (a11) · (b14 − b34 − b24 + b44)

p18 = (a22) · (b23 − b43 − b13 + b33)

p19 = (a11 + a12) · (b24 − b44)

p20 = (a21 − a11) · (b13 − b33 + b14 − b34)

p21 = (a12 − a22) · (b23 − b43 + b24 − b44)

p22 = (a33 + a44) · (b31 − b11 + b42 − b22)

p23 = (a43 + a44) · (b31 − b11)

p24 = (a33) · (b32 − b12 − b42 + b22)

p25 = (a44) · (b41 − b21 − b31 + b11)

p26 = (a33 + a34) · (b42 − b22)

p27 = (a43 − a33) · (b31 − b11 + b32 − b12)

p28 = (a34 − a44) · (b41 − b21 + b42 − b22)

p29 = (a11 + a13 + a22 + a24) · (b33 + b44)

p30 = (a21 + a23 + a22 + a24) · (b33)
p31 = (a11 + a13) · (b34 − b44)

p32 = (a22 + a24) · (b43 − b33)

p33 = (a11 + a13 + a12 + a14) · (b44)
p34 = (a21 + a23 − a11 − a13) · (b33 + b34)

p35 = (a12 + a14 − a22 − a24) · (b43 + b44)

p36 = (a31 − a11 + a42 − a22) · (b11 + b13 + b22 + b24)

p37 = (a41 − a21 + a42 − a22) · (b11 + b13)

p38 = (a31 − a11) · (b12 + b14 − b22 − b24)

p39 = (a42 − a22) · (b21 + b23 − b11 − b13)

p40 = (a31 − a11 + a32 − a12) · (b22 + b24)

p41 = (a41 − a21 − a31 + a11) · (b11 + b13 + b12 + b14)

p42 = (a32 − a12 − a42 + a22) · (b21 + b23 + b22 + b24)

p43 = (a13 − a33 + a24 − a44) · (b31 + b33 + b42 + b44)

p44 = (a23 − a43 + a24 − a44) · (b31 + b33)

p45 = (a13 − a33) · (b32 + b34 − b42 − b44)

p46 = (a24 − a44) · (b41 + b43 − b31 − b33)

p47 = (a13 − a33 + a14 − a34) · (b42 + b44)

p48 = (a23 − a43 − a13 + a33) · (b31 + b33 + b32 + b34)

p49 = (a14 − a34 − a24 + a44) · (b41 + b43 + b42 + b44)
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After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p4 − p5 + p7 + p22 + p25 − p26 + p28 − p29 − p32 + p33 − p35 + p43 + p46 − p47 + p49

c12 = p3 + p5 + p24 + p26 − p31 − p33 + p45 + p47

c13 = p15 + p18 − p19 + p21 + p29 + p32 − p33 + p35

c14 = p17 + p19 + p31 + p33

c21 = p2 + p4 + p23 + p25 − p30 − p32 + p44 + p46

c22 = p1 − p2 + p3 + p6 + p22 − p23 + p24 + p27 − p29 + p30 − p31 − p34 + p43 − p44 + p45 + p48

c23 = p16 + p18 + p30 + p32

c24 = p15 − p16 + p17 + p20 + p29 − p30 + p31 + p34

c31 = p8 + p11 − p12 + p14 + p22 + p25 − p26 + p28

c32 = p10 + p12 + p24 + p26

c33 = p1 + p4 − p5 + p7 − p8 − p11 + p12 − p14 + p15 + p18 − p19 + p21 + p36 + p39 − p40 + p42

c34 = p3 + p5 − p10 − p12 + p17 + p19 + p38 + p40

c41 = p9 + p11 + p23 + p25

c42 = p8 − p9 + p10 + p13 + p22 − p23 + p24 + p27

c43 = p2 + p4 − p9 − p11 + p16 + p18 + p37 + p39

c44 = p1 − p2 + p3 + p6 − p8 + p9 − p10 − p13 + p15 − p16 + p17 + p20 + p36 − p37 + p38 + p41

Finally, the matrix C can be obtained via 49 unique multiplications instead of 64. This method
saves 15 multiplications. This means a 23.4% improvement in terms of the number of multiplications.

A.2 Fast Commutative Method

Besides the Strassen method, different efficient matrix multiplication methods can also be applied.
The elements of the matrices in Dilithium and Kyber belong to different commutative rings. There-
fore, we derive the following by using [21] to obtain the matrix C.

Firstly, unique multiplications pi are obtained as follows:

p1 = a11 · (b11 + a12)

p2 = a13 · (b31 + a14)

p3 = a21 · (b11 + a22)

p4 = a23 · (b31 + a24)

p5 = a31 · (b11 + a32)

p6 = a33 · (b31 + a34)

p7 = a41 · (b11 + a42)

p8 = a43 · (b31 + a44)

p9 = b22 · (b11 + b12)

p10 = b42 · (b31 + b32)

p11 = b23 · (b11 + b13)

p12 = b43 · (b31 + b33)

p13 = b24 · (b11 + b14)

p14 = b44 · (b31 + b34)

p15 = a12 · (b21 − a11)

p16 = a14 · (b41 − a13)

p17 = a22 · (b21 − a21)

p18 = a24 · (b41 − a23)

p19 = a32 · (b21 − a31)

p20 = a34 · (b41 − a33)
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p21 = a42 · (b21 − a41)

p22 = a44 · (b41 − a43)

p23 = (a11 + b22) · (a12 + b11 + b12)

p25 = (a13 + b42) · (a14 + b31 + b32)

p24 = (a11 + b23) · (a12 + b11 + b13)

p26 = (a13 + b43) · (a14 + b31 + b33)

p27 = (a11 + b24) · (a12 + b11 + b14)

p28 = (a13 + b44) · (a14 + b31 + b34)

p29 = (a21 + b22) · (a22 + b11 + b12)

p30 = (a23 + b42) · (a24 + b31 + b32)

p31 = (a21 + b23) · (a22 + b11 + b13)

p32 = (a23 + b43) · (a24 + b31 + b33)

p33 = (a21 + b24) · (a22 + b11 + b14)

p34 = (a23 + b44) · (a24 + b31 + b34)

p35 = (a31 + b22) · (a32 + b11 + b12)

p36 = (a33 + b42) · (a34 + b31 + b32)

p37 = (a31 + b23) · (a32 + b11 + b13)

p38 = (a33 + b43) · (a34 + b31 + b33)

p39 = (a31 + b24) · (a32 + b11 + b14)

p40 = (a33 + b44) · (a34 + b31 + b34)

p41 = (a41 + b22) · (a42 + b11 + b12)

p42 = (a43 + b42) · (a44 + b31 + b32)

p43 = (a41 + b23) · (a42 + b11 + b13)

p44 = (a43 + b43) · (a44 + b31 + b33)

p45 = (a41 + b24) · (a42 + b11 + b14)

p46 = (a43 + b44) · (a44 + b31 + b34)

After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p2 + p15 + p16

c12 = p23 + p24 − p1 − p2 − p9 − p10

c13 = p25 + p26 − p1 − p2 − p11 − p12

c14 = p27 + p28 − p1 − p2 − p13 − p14

c21 = p3 + p4 + p17 + p18

c22 = p29 + p30 − p3 − p4 − p9 − p10

c23 = p31 + p32 − p3 − p4 − p11 − p12

c24 = p33 + p34 − p3 − p4 − p13 − p14

c31 = p5 + p6 + p19 + p20

c32 = p35 + p36 − p5 − p6 − p9 − p10

c33 = p37 + p38 − p5 − p6 − p11 − p12

c34 = p39 + p40 − p5 − p6 − p13 − p14

c41 = p7 + p8 + p21 + p22

c42 = p41 + p42 − p7 − p8 − p9 − p10

c43 = p43 + p44 − p7 − p8 − p11 − p12

c44 = p45 + p46 − p7 − p8 − p13 − p14

Finally, the matrix C can be obtained via 46 unique multiplications instead of 64. This method
saves 18 multiplications. This means a 28.1% improvement in terms of the number of multiplications.
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B Efficient Multiplication Formula for Dilithium 3

Let m ≥ 5 messages are needed to be signed with Dilithium 3. Then, A ∈ R6×5
q , B ∈ R5×5

q and
A ·B = C ∈ R6×5

q . The elements of the matrices A6×5 ·B5×5 = C6×5 are described as follows:
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
a61 a62 a63 a64 a65


︸ ︷︷ ︸

A


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55


︸ ︷︷ ︸

B

=


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55
c61 c62 c63 c64 c65


︸ ︷︷ ︸

C

By [21], the matrix C can be

obtained as follows:

p1 = (a11 + b21) · (a12 + b12)

p2 = (a21 + b21) · (a22 + b12)

p3 = (a31 + b21) · (a32 + b12)

p4 = (a41 + b21) · (a42 + b12)

p5 = (a51 + b21) · (a52 + b12)

p6 = (a61 + b21) · (a62 + b12)

p7 = (a11 + b31) · (a13 + b13)

p8 = (a21 + b31) · (a23 + b13)

p9 = (a31 + b31) · (a33 + b13)

p10 = (a41 + b31) · (a43 + b13)

p11 = (a51 + b31) · (a53 + b13)

p12 = (a61 + b31) · (a63 + b13)

p13 = (a12 + b32) · (a13 + b23)

p14 = (a22 + b32) · (a23 + b23)

p15 = (a32 + b32) · (a33 + b23)

p16 = (a42 + b32) · (a43 + b23)

p17 = (a52 + b32) · (a53 + b23)

p18 = (a62 + b32) · (a63 + b23)

p19 = a11 · (b11 − b12 − b13 − a12 − a13)

p20 = a21 · (b11 − b12 − b13 − a22 − a23)

p21 = a31 · (b11 − b12 − b13 − a32 − a33)

p22 = a41 · (b11 − b12 − b13 − a42 − a43)

p23 = a51 · (b11 − b12 − b13 − a52 − a53)

p24 = a61 · (b11 − b12 − b13 − a62 − a63)

p25 = a12 · (b22 − b21 − b23 − a11 − a13)

p26 = a22 · (b22 − b21 − b23 − a21 − a23)

p27 = a32 · (b22 − b21 − b23 − a31 − a33)

p28 = a42 · (b22 − b21 − b23 − a41 − a43)

p29 = a52 · (b22 − b21 − b23 − a51 − a53)

p30 = a62 · (b22 − b21 − b23 − a61 − a63)

p31 = a13 · (b33 − b31 − b32 − a11 − a12)

p32 = a23 · (b33 − b31 − b32 − a21 − a22)

p33 = a33 · (b33 − b31 − b32 − a31 − a32)

p34 = a43 · (b33 − b31 − b32 − a41 − a42)

p35 = a53 · (b33 − b31 − b32 − a51 − a52)

p36 = a63 · (b33 − b31 − b32 − a61 − a62)

p37 = b12 · b21
p38 = b13 · b31
p39 = b23 · b32
p40 = (a11 + b21 − b24) · (−a12 − b12 + b14 − b15)

p41 = (a21 + b21 − b24) · (−a22 − b12 + b14 − b15)

p42 = (a31 + b21 − b24) · (−a32 − b12 + b14 − b15)

p43 = (a41 + b21 − b24) · (−a42 − b12 + b14 − b15)

p44 = (a51 + b21 − b24) · (−a52 − b12 + b14 − b15)

p45 = (a61 + b21 − b24) · (−a62 − b12 + b14 − b15)

p46 = (a12 + b32 + b34 − b35) · (−a13 − b23 + b25)

p47 = (a22 + b32 + b34 − b35) · (−a23 − b23 + b25)

p48 = (a32 + b32 + b34 − b35) · (−a33 − b23 + b25)

p49 = (a42 + b32 + b34 − b35) · (−a43 − b23 + b25)

p50 = (a52 + b32 + b34 − b35) · (−a53 − b23 + b25)

p51 = (a62 + b32 + b34 − b35) · (−a63 − b23 + b25)

p52 = (a11 + b31 − b34) · (−a13 − b13 + b15)

p53 = (a21 + b31 − b34) · (−a23 − b13 + b15)

p54 = (a31 + b31 − b34) · (−a33 − b13 + b15)

p55 = (a41 + b31 − b34) · (−a43 − b13 + b15)

p56 = (a51 + b31 − b34) · (−a53 − b13 + b15)

p57 = (a61 + b31 − b34) · (−a63 − b13 + b15)

p58 = (b21 − b24) · (−b12 + b14 − b15)

p59 = (b31 − b34) · (−b13 + b15)

p60 = (b32 + b34 − b35) · (−b23 + b25)
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p61 = a14 · (b41 + a15)

p62 = a24 · (b41 + a25)

p63 = a34 · (b41 + a35)

p64 = a44 · (b41 + a45)

p65 = a54 · (b41 + a55)

p66 = a64 · (b41 + a65)

p67 = a15 · (b51 − a14)

p68 = a25 · (b51 − a24)

p69 = a35 · (b51 − a34)

p70 = a45 · (b51 − a44)

p71 = a55 · (b51 − a54)

p72 = a65 · (b51 − a64)

p73 = (a14 + b52) · (a15 + b41 + b42)

p74 = (a24 + b52) · (a25 + b41 + b42)

p75 = (a34 + b52) · (a35 + b41 + b42)

p76 = (a44 + b52) · (a45 + b41 + b42)

p77 = (a54 + b52) · (a55 + b41 + b42)

p78 = (a64 + b52) · (a65 + b41 + b42)

p79 = (a14 + b53) · (a15 + b41 + b43)

p80 = (a24 + b53) · (a25 + b41 + b43)

p81 = (a34 + b53) · (a35 + b41 + b43)

p82 = (a44 + b53) · (a45 + b41 + b43)

p83 = (a54 + b53) · (a55 + b41 + b43)

p84 = (a64 + b53) · (a65 + b41 + b43)

p85 = (a14 + b54) · (a15 + b41 + b44)

p86 = (a24 + b54) · (a25 + b41 + b44)

p87 = (a34 + b54) · (a35 + b41 + b44)

p88 = (a44 + b54) · (a45 + b41 + b44)

p89 = (a54 + b54) · (a55 + b41 + b44)

p90 = (a64 + b54) · (a65 + b41 + b44)

p91 = (a14 + b55) · (a15 + b41 + b45)

p92 = (a24 + b55) · (a25 + b41 + b45)

p93 = (a34 + b55) · (a35 + b41 + b45)

p94 = (a44 + b55) · (a45 + b41 + b45)

p95 = (a54 + b55) · (a55 + b41 + b45)

p96 = (a64 + b55) · (a65 + b41 + b45)

p97 = b52 · (b41 + b42)

p98 = b53 · (b41 + b43)

p99 = b54 · (b41 + b44)

p100 = b55 · (b41 + b45)

After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p7 + p19 − p37 − p38 + p61 + p67

c21 = p2 + p8 + p20 − p37 − p38 + p62 + p68

c31 = p3 + p9 + p21 − p37 − p38 + p63 + p69

c41 = p4 + p10 + p22 − p37 − p38 + p64 + p70

c51 = p5 + p11 + p23 − p37 − p38 + p65 + p71

c61 = p6 + p12 + p24 − p37 − p38 + p66 + p72
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c12 = p1 + p13 + p25 − p37 − p39 + p73 − p61 − p97

c22 = p2 + p14 + p26 − p37 − p39 + p74 − p62 − p97

c32 = p3 + p15 + p27 − p37 − p39 + p75 − p63 − p97

c42 = p4 + p16 + p28 − p37 − p39 + p76 − p64 − p97

c52 = p5 + p17 + p29 − p37 − p39 + p77 − p65 − p97

c62 = p6 + p18 + p30 − p37 − p39 + p78 − p66 − p97

c13 = p7 + p13 + p31 − p38 − p39 + p79 − p61 − p98

c23 = p8 + p14 + p32 − p38 − p39 + p80 − p62 − p98

c33 = p9 + p15 + p33 − p38 − p39 + p81 − p63 − p98

c43 = p10 + p16 + p34 − p38 − p39 + p82 − p64 − p98

c53 = p11 + p17 + p35 − p38 − p39 + p83 − p65 − p98

c63 = p12 + p18 + p36 − p38 − p39 + p84 − p66 − p98

c14 = p1 + p7 + p40 + p52 − p37 − p38 − p58 − p59 + p85 − p61 − p99

c24 = p2 + p8 + p41 + p53 − p37 − p38 − p58 − p59 + p86 − p62 − p99

c34 = p3 + p9 + p42 + p54 − p37 − p38 − p58 − p59 + p87 − p63 − p99

c44 = p4 + p10 + p43 + p55 − p37 − p38 − p58 − p59 + p88 − p64 − p99

c54 = p5 + p11 + p44 + p56 − p37 − p38 − p58 − p59 + p89 − p65 − p99

c64 = p6 + p12 + p45 + p57 − p37 − p38 − p58 − p59 + p90 − p66 − p99

c15 = p7 + p13 + p46 + p52 − p38 − p39 − p59 − p60 + p91 − p61 − p100

c25 = p8 + p14 + p47 + p53 − p38 − p39 − p59 − p60 + p92 − p62 − p100

c35 = p9 + p15 + p48 + p54 − p38 − p39 − p59 − p60 + p93 − p63 − p100

c45 = p10 + p16 + p49 + p55 − p38 − p39 − p59 − p60 + p94 − p64 − p100

c55 = p11 + p17 + p50 + p56 − p38 − p39 − p59 − p60 + p95 − p65 − p100

c65 = p12 + p18 + p51 + p57 − p38 − p39 − p59 − p60 + p96 − p66 − p100
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C Efficient Multiplication Formula for Dilithium 5

Let m ≥ 4 messages be signed with Dilithium 5. Then, A ∈ R8×7
q , B ∈ R7×4

q and A ·B = C ∈ R8×4
q .

The elements of the matrices A8×7 ·B7×4 = C8×4 are described as follows:

a11 a12 a13 a14 a15 a16 a17
a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 a55 a56 a57
a61 a62 a63 a64 a65 a66 a67
a71 a72 a73 a74 a75 a76 a77
a81 a82 a83 a84 a85 a86 a87


︸ ︷︷ ︸

A



b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44
b51 b52 b53 b54
b61 b62 b63 b64
b71 b72 b73 b74


︸ ︷︷ ︸

B

=



c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44
c51 c52 c53 c54
c61 c62 c63 c64
c71 c72 c73 c74
c81 c82 c83 c84


︸ ︷︷ ︸

C

By [21], the matrix C can be obtained as follows:

p1 = (a11 + b21) · (a12 + b12)

p2 = (a21 + b21) · (a22 + b12)

p3 = (a31 + b21) · (a32 + b12)

p4 = (a41 + b21) · (a42 + b12)

p5 = (a51 + b21) · (a52 + b12)

p6 = (a61 + b21) · (a62 + b12)

p7 = (a71 + b21) · (a72 + b12)

p8 = (a81 + b21) · (a82 + b12)

p9 = (a11 + b31) · (a13 + b13)

p10 = (a21 + b31) · (a23 + b13)

p11 = (a31 + b31) · (a33 + b13)

p12 = (a41 + b31) · (a43 + b13)

p13 = (a51 + b31) · (a53 + b13)

p14 = (a61 + b31) · (a63 + b13)

p15 = (a71 + b31) · (a73 + b13)

p16 = (a81 + b31) · (a83 + b13)

p17 = (a12 + b32) · (a13 + b23)

p18 = (a22 + b32) · (a23 + b23)

p19 = (a32 + b32) · (a33 + b23)

p20 = (a42 + b32) · (a43 + b23)

p21 = (a52 + b32) · (a53 + b23)

p22 = (a62 + b32) · (a63 + b23)

p23 = (a72 + b32) · (a73 + b23)

p24 = (a82 + b32) · (a83 + b23)

p25 = b12 · b21
p26 = b13 · b31
p27 = b23 · b32
p28 = (b21 − b24) · (−b12 + b14)

p29 = a11 · (b11 − b12 − b13 − a12 − a13)

p30 = a21 · (b11 − b12 − b13 − a22 − a23)

p31 = a31 · (b11 − b12 − b13 − a32 − a33)

p32 = a41 · (b11 − b12 − b13 − a42 − a43)

p33 = a51 · (b11 − b12 − b13 − a52 − a53)

p34 = a61 · (b11 − b12 − b13 − a62 − a63)

p35 = a71 · (b11 − b12 − b13 − a72 − a73)

p36 = a81 · (b11 − b12 − b13 − a82 − a83)

p37 = a12 · (b22 − b21 − b23 − a11 − a13)

p38 = a22 · (b22 − b21 − b23 − a21 − a23)

p39 = a32 · (b22 − b21 − b23 − a31 − a33)

p40 = a42 · (b22 − b21 − b23 − a41 − a43)

p41 = a52 · (b22 − b21 − b23 − a51 − a53)

p42 = a62 · (b22 − b21 − b23 − a61 − a63)

p43 = a72 · (b22 − b21 − b23 − a71 − a73)

p44 = a82 · (b22 − b21 − b23 − a81 − a83)

p45 = a13 · (b33 − b31 − b32 − a11 − a12)

p46 = a23 · (b33 − b31 − b32 − a21 − a22)

p47 = a33 · (b33 − b31 − b32 − a31 − a32)

p48 = a43 · (b33 − b31 − b32 − a41 − a42)

p49 = a53 · (b33 − b31 − b32 − a51 − a52)

p50 = a63 · (b33 − b31 − b32 − a61 − a62)

p51 = a73 · (b33 − b31 − b32 − a71 − a72)

p52 = a83 · (b33 − b31 − b32 − a81 − a82)

p53 = (a11 + b21 − b24) · (−a12 − b12 + b14)

p54 = (a21 + b21 − b24) · (−a22 − b12 + b14)

p55 = (a31 + b21 − b24) · (−a32 − b12 + b14)

p56 = (a41 + b21 − b24) · (−a42 − b12 + b14)
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p57 = (a51 + b21 − b24) · (−a52 − b12 + b14)

p58 = (a61 + b21 − b24) · (−a62 − b12 + b14)

p59 = (a71 + b21 − b24) · (−a72 − b12 + b14)

p60 = (a81 + b21 − b24) · (−a82 − b12 + b14)

p61 = a13 · b34
p62 = a23 · b34
p63 = a33 · b34
p64 = a43 · b34
p65 = a53 · b34
p66 = a63 · b34
p67 = a73 · b34
p68 = a83 · b34
p69 = a14 · (b41 + a15)

p70 = a24 · (b41 + a25)

p71 = a34 · (b41 + a35)

p72 = a44 · (b41 + a45)

p73 = a54 · (b41 + a55)

p74 = a64 · (b41 + a65)

p75 = a74 · (b41 + a75)

p76 = a84 · (b41 + a85)

p77 = a16 · (b61 + a17)

p78 = a26 · (b61 + a27)

p79 = a36 · (b61 + a37)

p80 = a46 · (b61 + a47)

p81 = a56 · (b61 + a57)

p82 = a66 · (b61 + a67)

p83 = a76 · (b61 + a77)

p84 = a86 · (b61 + a87)

p85 = b52 · (b41 + b42)

p86 = b72 · (b61 + b62)

p87 = b53 · (b41 + b43)

p88 = b73 · (b61 + b63)

p89 = b54 · (b41 + b44)

p90 = b74 · (b61 + b64)

p91 = a15 · (b51 − a14)

p92 = a25 · (b51 − a24)

p93 = a35 · (b51 − a34)

p94 = a45 · (b51 − a44)

p95 = a55 · (b51 − a54)

p96 = a65 · (b51 − a64)

p97 = a75 · (b51 − a74)

p98 = a85 · (b51 − a84)

p99 = a17 · (b71 − a16)

p100 = a27 · (b71 − a26)

p101 = a37 · (b71 − a36)

p102 = a47 · (b71 − a46)

p103 = a57 · (b71 − a56)

p104 = a67 · (b71 − a66)

p105 = a77 · (b71 − a76)

p106 = a87 · (b71 − a86)

p107 = (a14 + b52) · (a15 + b41 + b42)

p108 = (a24 + b52) · (a25 + b41 + b42)

p109 = (a34 + b52) · (a35 + b41 + b42)

p110 = (a44 + b52) · (a45 + b41 + b42)

p111 = (a54 + b52) · (a55 + b41 + b42)

p112 = (a64 + b52) · (a65 + b41 + b42)

p113 = (a74 + b52) · (a75 + b41 + b42)

p114 = (a84 + b52) · (a85 + b41 + b42)

p115 = (a16 + b72) · (a17 + b61 + b62)

p116 = (a26 + b72) · (a27 + b61 + b62)

p117 = (a36 + b72) · (a37 + b61 + b62)

p118 = (a46 + b72) · (a47 + b61 + b62)

p119 = (a56 + b72) · (a57 + b61 + b62)

p120 = (a66 + b72) · (a67 + b61 + b62)

p121 = (a76 + b72) · (a77 + b61 + b62)

p122 = (a86 + b72) · (a87 + b61 + b62)

p123 = (a14 + b53) · (a15 + b41 + b43)

p124 = (a24 + b53) · (a25 + b41 + b43)

p125 = (a34 + b53) · (a35 + b41 + b43)

p126 = (a44 + b53) · (a45 + b41 + b43)

p127 = (a54 + b53) · (a55 + b41 + b43)

p128 = (a64 + b53) · (a65 + b41 + b43)

p129 = (a74 + b53) · (a75 + b41 + b43)

p130 = (a84 + b53) · (a85 + b41 + b43)

p131 = (a16 + b73) · (a17 + b61 + b63)

p132 = (a26 + b73) · (a27 + b61 + b63)

p133 = (a36 + b73) · (a37 + b61 + b63)

p134 = (a46 + b73) · (a47 + b61 + b63)

p135 = (a56 + b73) · (a57 + b61 + b63)

p136 = (a66 + b73) · (a67 + b61 + b63)
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p137 = (a76 + b73) · (a77 + b61 + b63)

p138 = (a86 + b73) · (a87 + b61 + b63)

p139 = (a14 + b54) · (a15 + b41 + b44)

p140 = (a24 + b54) · (a25 + b41 + b44)

p141 = (a34 + b54) · (a35 + b41 + b44)

p142 = (a44 + b54) · (a45 + b41 + b44)

p143 = (a54 + b54) · (a55 + b41 + b44)

p144 = (a64 + b54) · (a65 + b41 + b44)

p145 = (a74 + b54) · (a75 + b41 + b44)

p146 = (a84 + b54) · (a85 + b41 + b44)

p147 = (a16 + b74) · (a17 + b61 + b64)

p148 = (a26 + b74) · (a27 + b61 + b64)

p149 = (a36 + b74) · (a37 + b61 + b64)

p150 = (a46 + b74) · (a47 + b61 + b64)

p151 = (a56 + b74) · (a57 + b61 + b64)

p152 = (a66 + b74) · (a67 + b61 + b64)

p153 = (a76 + b74) · (a77 + b61 + b64)

p154 = (a86 + b74) · (a87 + b61 + b64)

After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p9 + p29 − p25 − p26 + p69 + p77 + p91 + p99

c21 = p2 + p10 + p30 − p25 − p26 + p70 + p78 + p92 + p100

c31 = p3 + p11 + p31 − p25 − p26 + p71 + p79 + p93 + p101

c41 = p4 + p12 + p32 − p25 − p26 + p72 + p80 + p94 + p102

c51 = p5 + p13 + p33 − p25 − p26 + p73 + p81 + p95 + p103

c61 = p6 + p14 + p34 − p25 − p26 + p74 + p82 + p96 + p104

c71 = p7 + p15 + p35 − p25 − p26 + p75 + p83 + p97 + p105

c81 = p8 + p16 + p36 − p25 − p26 + p76 + p84 + p98 + p106

c12 = p1 + p17 + p37 − p25 − p27 + p107 + p115 − p69 − p77 − p85 − p86

c22 = p2 + p18 + p38 − p25 − p27 + p108 + p116 − p70 − p78 − p85 − p86

c32 = p3 + p19 + p39 − p25 − p27 + p109 + p117 − p71 − p79 − p85 − p86

c42 = p4 + p20 + p40 − p25 − p27 + p110 + p118 − p72 − p80 − p85 − p86

c52 = p5 + p21 + p41 − p25 − p27 + p111 + p119 − p73 − p81 − p85 − p86

c62 = p6 + p22 + p42 − p25 − p27 + p112 + p120 − p74 − p82 − p85 − p86

c72 = p7 + p23 + p43 − p25 − p27 + p113 + p121 − p75 − p83 − p85 − p86

c82 = p8 + p24 + p44 − p25 − p27 + p114 + p122 − p76 − p84 − p85 − p86
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c13 = p9 + p17 + p45 − p26 − p27 + p123 + p131 − p69 − p77 − p87 − p88

c23 = p10 + p18 + p46 − p26 − p27 + p124 + p132 − p70 − p78 − p87 − p88

c33 = p11 + p19 + p47 − p26 − p27 + p125 + p133 − p71 − p79 − p87 − p88

c43 = p12 + p20 + p48 − p26 − p27 + p126 + p134 − p72 − p80 − p87 − p88

c53 = p13 + p21 + p49 − p26 − p27 + p127 + p135 − p73 − p81 − p87 − p88

c63 = p14 + p22 + p50 − p26 − p27 + p128 + p136 − p74 − p82 − p87 − p88

c73 = p15 + p23 + p51 − p26 − p27 + p129 + p137 − p75 − p83 − p87 − p88

c83 = p16 + p24 + p52 − p26 − p27 + p130 + p138 − p76 − p84 − p87 − p88

c14 = p1 + p53 + p61 − p25 − p28 + p139 + p147 − p69 − p77 − p89 − p90

c24 = p2 + p54 + p62 − p25 − p28 + p140 + p148 − p70 − p78 − p89 − p90

c34 = p3 + p55 + p63 − p25 − p28 + p141 + p149 − p71 − p79 − p89 − p90

c44 = p4 + p56 + p64 − p25 − p28 + p142 + p150 − p72 − p80 − p89 − p90

c54 = p5 + p57 + p65 − p25 − p28 + p143 + p151 − p73 − p81 − p89 − p90

c64 = p6 + p58 + p66 − p25 − p28 + p144 + p152 − p74 − p82 − p89 − p90

c74 = p7 + p59 + p67 − p25 − p28 + p145 + p153 − p75 − p83 − p89 − p90

c84 = p8 + p60 + p68 − p25 − p28 + p146 + p154 − p76 − p84 − p89 − p90
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D Efficient Multiplication Formula for Kyber512

Let m ≥ 2 messages are needed to be encrypted with Kyber512. Then, A ∈ R2×2
q , B ∈ R2×2

q and
A ·B = C ∈ R2×2

q . The elements of the matrices A2×2 ·B2×2 = C2×2 are described as follows:

By Strassen (1969 Gaussian), the matrix C can be obtained as follows:

p1 = (a11 + a22) · (b11 + b22)

p2 = (a21 + a22) · b11
p3 = a11 · (b12 − b22)

p4 = a22 · (−b11 + b21)

p5 = (a11 + a12) · b22
p6 = (−a11 + a21) · (b11 + b12)

p7 = (a12 − a22) · (b21 + b22)

After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p4 − p5 + p7

c12 = p3 + p5

c21 = p2 + p4

c22 = p1 − p2 + p3 + p6
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E Efficient Multiplication Formula for Kyber768

Let m ≥ 4 messages are needed to be encrypted with Kyber768. Then, A ∈ R3×3
q , B ∈ R3×4

q and
A ·B = C ∈ R3×4

q . The elements of the matrices A3×3 ·B3×4 = C3×4 are described as follows:

a11 a12 a13
a21 a22 a23
a31 a32 a33


︸ ︷︷ ︸

A


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


︸ ︷︷ ︸

B

=


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44
c51 c52 c53 c54


︸ ︷︷ ︸

C

By [21], the matrix C can be obtained as follows:

p1 = (a11 + b21) · (a12 − b12)

p2 = (a21 + b21) · (a22 − b12)

p3 = (a31 + b21) · (a32 − b12)

p4 = (a11 + b31) · (a13 − b13)

p5 = (a21 + b31) · (a23 − b13)

p6 = (a31 + b31) · (a33 − b13)

p7 = b12 · b21
p8 = b13 · b31
p9 = b23 · b32
p10 = (a12 + b32) · (a13 + b23)

p11 = (a22 + b32) · (a23 + b23)

p12 = (a32 + b32) · (a33 + b23)

p13 = (b21 − b24) · (−b12 + b14)

p14 = a11 · (b11 − b12 − b13 − a12 − a13

p15 = a21 · (b11 − b12 − b13 − a22 − a23

p16 = a31 · (b11 − b12 − b13 − a32 − a33

p17 = a12 · (b22 − b21 − b23 − a11 − a13

p18 = a22 · (b22 − b21 − b23 − a21 − a23

p19 = a32 · (b22 − b21 − b23 − a31 − a33

p20 = a13 · (b33 − b31 − b32 − a11 − a12
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p21 = a23 · (b33 − b31 − b32 − a21 − a22

p22 = a33 · (b33 − b31 − b32 − a31 − a32

p23 = (a11 + b21 − b24) · (−a12 − b12 + b14

p24 = (a21 + b21 − b24) · (−a22 − b12 + b14

p25 = (a31 + b21 − b24) · (−a32 − b12 + b14

p26 = a13 · b34
p27 = a23 · b34
p28 = a33 · b34

After computing all of the linear combinations, one can obtain the element of the matrix C as
follows:

c11 = p1 + p4 + p14 − p7 − p8

c12 = p1 + p10 + p17 − p7 − p9

c13 = p4 + p10 + p20 − p8 − p9

c14 = p1 + p23 + p26 − p7 − p13

c21 = p2 + p5 + p15 − p7 − p8

c22 = p2 + p11 + p18 − p7 − p9

c23 = p5 + p11 + p21 − p8 − p9

c24 = p2 + p24 + p27 − p7 − p13

c31 = p3 + p6 + p16 − p7 − p8

c32 = p3 + p12 + p19 − p7 − p9

c33 = p6 + p12 + p22 − p8 − p9

c34 = p3 + p25 + p28 − p7 − p13


