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Abstract. Recently, there has been a lot of interest in improving the
understanding of the practical hardness of the 3-Tensor Isomorphism (3-
TI) problem, which, given two 3-tensors, asks for an isometry between
the two. The current state-of-the-art for solving this problem is the al-
gebraic algorithm of Ran et al. ’23 and the graph-theoretic algorithm
of Narayanan et al. ’24 that have both slightly reduced the security of
the signature schemes MEDS and ALTEQ, based on variants of the 3-
TI problem (Matrix Code Equivalence (MCE) and Alternating Trilinear
Form Equivalence (ATFE) respectively).
In this paper, we propose a new combined technique for solving the 3-TI
problem. Our algorithm, as typically done in graph-based algorithms,
looks for an invariant in the graphs of the isomorphic tensors that can
be used to recover the secret isometry. However, contrary to usual com-
binatorial approaches, our approach is purely algebraic. We model the
invariant as a system of non-linear equations and solve it. Using this
modelling we are able to find very rare invariant objects in the graphs
of the tensors — cycles of length 3 (triangles) — that exist with proba-
bility approximately 1/q. For solving the system of non-linear equations
we use Gröbner-basis techniques adapted to tri-graded polynomial rings.
We analyze the algorithm theoretically, and we provide lower and upper
bounds on its complexity. We further provide experimental support for
our complexity claims. Finally, we describe two dedicated versions of our
algorithm tailored to the specifics of the MCE and the ATFE problems.
The implications of our algorithm are improved cryptanalysis of both
MEDS and ALTEQ for the cases when a triangle exists, i.e. in approxi-
mately 1/q of the cases. While for MEDS, we only marginally reduce the
security compared to previous work, for ALTEQ our results are much
more significant with at least 60 bits improvement compared to previous
work for all security levels. For Level I parameters, our attack is practi-
cal, and we are able to recover the secret key in only 1501 seconds. The
code is available for testing and verification of our results.
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1 Introduction

In recent years, all main standardization bodies around the world (NIST [31],
ISO [25], IETF [24]) have initiated processes for standardization of post-quantum
cryptography as the most solid solution for securing our digital world against the
quantum computer menace. Post-quantum cryptography is the common name
for cryptography based on hard mathematical problems believed to be hard even
for quantum computers. NIST’s standardization process already produced drafts
for standards — the winners Kyber [39], Dilithium [29], and SPHINCS+ [23] are
well on the way to be standardized under the names of ML-KEM, ML-DSA,
and SLH-DSA. The situation for Falcon [36] is not even close to this phase,
and we have only recently seen some activity towards a draft standard. On top
of this slow progress, NIST reopened the call for digital signatures in search
for alternatives not based on structured lattices that additionally have short
signatures and fast verification [1].

In the additional round that has been running for a year, we see an abun-
dance of UOV variants, MPC-in-the-head Fiat-Shamir signatures and a few Fiat-
Shamir signatures based on equivalence problems. In particular, MEDS [13, 12]
and ALTEQ [40, 8] are based on problems equivalent to the 3-tensor isomor-
phism problem (TI) and LESS [3] on a problem at most as difficult as 3-TI [15].
Informally speaking, given two 3-tensors, the 3-TI problem asks for the isomor-
phism, i.e. isometry, between them. The shape of the isometry depends on the
specific types of tensors in question. In the case of MEDS, these are general
3-tensors, and the isometry is given as a triple of the general linear group. The
objects in MEDS can also be seen as matrix codes and the corresponding prob-
lem as Matrix Code Equivalence (MCE), which is actually the definition used
in the original description of MEDS. In the case of ALTEQ, the objects can be
seen as alternating trilinear forms (they can also be represented as matrix codes
of skew-symmetric matrices with additional structure) and the isometry can be
described using a single element of the general linear group. In this form, the
problem is known as Alternating Trilinear Form Equivalence (ATFE).

Both of these schemes follow the well-known construction of GMW [20] first
defined for graph isomorphism. Interestingly, already in ’96, it was instantiated
by Patarin [33] for isomorphism of polynomials (Cubic-IP) whose version for
homogeneous polynomials QMLE is also polynomial time equivalent to 3-TI,
and thus also to MCE and ATFE [38]. Initially, the scheme did not get too
much attention because of signature size inefficiency, but this changed due to
an array of optimization techniques [16, 6, 7, 3] that were developed before the
additional round submission deadline and resulted in the proposals of MEDS and
ALTEQ. The question of practical hardness of these problems became interesting
again, and the understanding of it significantly advanced as a result of these two
submissions.

Related work. The first works analyzing problems from the TI class, con-
sidered the Isomorphism of polynomials. As one of the problems intrinsically
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related to the security of ad-hoc multivariate schemes, it was analyzed in sev-
eral works including [34, 19, 10]. An important observation from [19] is that the
inhomogeneous version of the problem can be solved heuristically in polynomial
time. Another one is that knowing a single (point, image) of the isomorphism is
enough to solve the homogeneous version of the problem. Indeed, this pair can
be used to transform the instance of the problem to an inhomogeneous one that
can then be solved efficiently. Bouillaguet et al. [10] gave a nice graph-theoretic
interpretation of this observation as a matching point between the graphs of the
two sets of polynomials which was utilized in a collision based algorithm.

The algorithm of [10] remained the best known for the TI class for a long time
(note that the term ‘TI class’ was coined only recently in [21]). With the involve-
ment of MEDS and ALTEQ in the NIST standardization process a significant
advancement in the understanding of the asymptotic and practical hardness of
the related underlying problems was made. We have witnessed basically the de-
velopment of two types of algorithms — graph-based and purely algebraic. We
say ‘purely algebraic’ because even the graph-based algorithms can employ an
algebraic step for collecting low-rank points. This is especially beneficial for the
case of large fields where the enumeration of points is expensive.

The graph-based algorithms build upon the earlier mentioned work of Bouil-
laguet et al. [10]. The first improvement was given by Beullens [5] for ATFE
and by Chou et al. [13] for MCE. In both cases, the improvement follows the
Leon’s algorithm for the Hamming metric [28, 4]. Currently, the state-of-the-art
in graph-based algorithms is the work of Narayanan, Qiao and Tang [30], which
presents two different algorithms for MCE and ATFE. The algorithm for ATFE
is the one used for choosing the ALTEQ parameters from the specs. The one for
MCE uses graph-walking techniques and notably, breaks the MEDS parameters
submitted to NIST. As a result of this attack, very recently, at the NIST stan-
dardization conference [32], the MEDS team announced new parameters for all
security levels.

The basic algebraic modeling for the MCE problem is somewhat of a folk-
lore modeling known also from QMLE. The first non-trivial model was devel-
oped in [13] where coding theory relations were exploited. Later, in the MEDS
specs [12] the modeling was improved by exploiting that 3-tensors give rise to
3 different matrix codes. The same approach was used in [37] but adapted to
ATFE effectively reducing the security of the ALTEQ parameters. At the time
of writing, the ALTEQ team has not announced new parameters as a reaction
to the attack.

Our contribution. In this work, we propose a new graph-based algebraic tech-
nique for solving Tensor Isomorphism (TI) problems. In particular, we alge-
braically find a rare invariant in the graph of the two isomorphic tensors and use
it to find the isometry between the tensors. By an invariant, we mean a property
or an object that is a characteristic of the graph of the tensor, and that is not
destroyed by an isometric transformation, i.e. it is an invariant with respect to
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isometries. Previous graph-theoretic algorithms use invariants like vertex degree
or long paths to recover the isometry, and they typically consist of two parts:

1. Searching for occurrences of the invariant property within the two graphs
of the two isomorphic tensors and forming two lists L1 and L2 containing
corresponding points.

2. Testing each pair (a, b) ∈ L1 × L2 whether b is an image of a for some
isometry. If this is the case, we have found the isometry.

Typically, for this to work, the testing needs to be efficient, often, polynomial
of low degree. Since the graphs of the tensors are large, enumerating the entire
graphs is typically not feasible, so the algorithms rely on invariants that are
abundant and easy to find. Using a birthday argument, it can then be estimated
how big the lists need to be in order to have a high likelihood of finding a collision
in the lists.

The first contribution of our work is that we take a different approach to
finding invariants — namely, an algebraic one. We model the invariant as a
system of non-linear equations — once we solve the system, we get the invariant.
Using this modelling, we are able to find very rare, (almost) unique objects in
the entire graph that would otherwise take an exponential amount of time to find
by enumeration, which is particularly prohibitive in big fields. In contrast, an
algebraic approach is oblivious to the field size up to the cost of the arithmetic
which scales only logarithmically.

An important step in the approach is determining the right invariant object
to look for. Indeed, we need one that is rare and can be described using a
relatively small number of variables, but at the same time, we can impose enough
restrictions in the form of algebraic relations. We show that with probability
of approximately 1/q, where q is the field size, there exist in the graphs of the
tensors (almost) unique invariant objects. These objects are small cycles of length
3, i.e. triangles. This is reminiscent of Beullens’ attack [5] that exploits the fact
that with probability ≈ 1/q, there exists a unique point of rank 4 in the graph
of an alternating trilinear form in dimension n = 10.

Our second contribution is developing an algorithm for exploiting the exis-
tence of triangles. Our algorithm consists of two parts:

– First, we find the triangles in the graphs of the tensors. Once we have the
algebraic model of the triangles, we solve the system using Gröbner basis
techniques. The system we obtain has a specific structure and in order to
solve it we develop a solving algorithm and a machinery for estimating the
costs by extending known techniques for bigraded polynomial rings to tri-
graded polynomial rings. We identify the syzygies characteristic of the mod-
eling and conjecture the Hilbert series. We are able to precisely estimate the
first degree fall of the system which we take as an indicator of the solving
costs or lower bound of our algorithm. As usual, we take the solving degree
as an upper bound.

– Using the found pair of matching triangles we find the secret isometry. For
the second part of the algorithm, we show that from the pair of triangles
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we can obtain linear relations in the algebraic modelling of [37, 12] which
are enough to heuristically find the isometry in polynomial time. Thus, this
second part is significantly cheaper than the first part.

We have fully implemented the algorithm in MAGMA [9] which is publicly avail-
able at:

https://github.com/LarsMath/tensor-triangles

For the ATFE problem, our code can be used to demonstrate practicality. The
git further contains the MAGMA source code for all experiments which we per-
formed to verify our theoretical claims and confirm our conjectures. All the
numbers in this paper can be reproduced using the code in the git.

Our third contribution is applying our new algorithm to the two digital signa-
ture schemes MEDS and ALTEQ whose security relies on problems equivalent
to 3-TI. For the submitted parameter of MEDS we only marginally improve
upon [30] for keys exhibiting a triangle. Recently, the MEDS team increased the
parameters as a result of the attack from [30], which, due to the small difference,
are also secure from our attack. The results are shown in Table 6 and Table 7.

The impact for ALTEQ is much more dramatic as can be seen from Table 1.
We improve the best previous attack by at least ≈ 60 bits. Even more, we are
able to practically break Level I parameters (provided a triangle exists, which
happens with a probability of ≈ 1/q). The attack takes merely 1501 seconds. The
implementation of the full attack is also available in the git repository above.

Table 1. The log2 complexity for solving ATFE (with probability 1/q) in field opera-
tions. The parameters are taken from the ALTEQ specifications [8]

[8] [37] This work

n Specs Best previous Upper bound First degree fall practical

Level I 13 143 120 62 51 1501 s
Level III 20 219 165 108 96
Level V 25 276 203 141 128

Organization. The paper is organized as follows. Section 2 introduces the
necessary preliminaries including an analysis of the tri-graded XL that we will
use in our analysis. In Section 3 we recall the state-of-the-art algorithms for
solving the TI problem. Our new algorithm is developed in Section 4 in which
we also directly estimate the impact on MCE and MEDS. We apply our approach
to ATFE and ALTEQ in Section 5. We conclude with a discussion on potential
generalizations and future work in Section 6.

https://github.com/LarsMath/tensor-triangles
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2 Preliminaries

Let us first establish some notation. We denote by Fq the finite field of q elements.
By GL(V ) we denote the general linear group on the vector space V . The space
of n × m matrices over Fq are denoted by Mn,m(Fq). We use bold letters to
denote vectors a, c,x, . . . , and capital bold letters to denote matrices A,B, . . . .
The entries of a vector a are denoted by ai and the entries of a matrix A are
denoted by aij . We denote by e1, . . . , en the vectors of the canonical basis of
Fn
q . By P(V ) we denote the projective space associated to a vector space V .

To distinguish between vectors from V and elements from P(V ), we denote the
latter by v̂. All the vector spaces that we consider are finite-dimensional.

2.1 The Tensor Isomorphism Problem (TI) and related problems.

Among cryptographic hardness assumptions based on equivalence, quite a few of
them can be stated as a TI problem and especially as a 3-TI problem. For exam-
ple, Matrix Code Equivalence (MCE), Alternating Trilinear Form Equivalence
(ATFE), Quadratic Maps Linear Equivalence (QMLE) and Cubic Isomorphism
of Polynomials (Cubic-IP) are all some form of 3-TI in disguise. In order to define
3-TI, we first need to define tensor isomorphisms.

Definition 1. Given vector spaces U, V , and W over a field Fq, a 3-tensor C
over U, V,W is a trilinear map:

C : U × V ×W → Fq.

We denote the space of tensors over U, V,W as (U ⊗ V ⊗W )∗.

Note that, by tri-linearity, a 3-tensor C is completely determined by its values
on the basis vectors of U, V,W , i.e. by C(eUi , e

V
j , e

W
k ) where eUi , 1 ≤ i ≤ dim(U),

eVj , 1 ≤ j ≤ dim(V ), and eWk , 1 ≤ k ≤ dim(W ) are basis vectors of U, V and W
respectively. With this definition, we are ready to define the 3-TI problem.

Problem 1 (3-TI). Let U, V , and W be vector spaces over a field Fq and let
C,D ∈ (U ⊗ V ⊗W )∗ be two given 3-tensors. The 3-TI problem asks to find, if
any exists, a triplet of matrices A,B,C ∈ GL(U)×GL(V )×GL(W ) such that:

C(Au,Bv,Cw) = D(u,v,w) ∀ u ∈ U,v ∈ V,w ∈W.

Let us compare this to MCE.

Problem 2 (MCE). Let n,m, k ≥ 2. Given matrices C1, . . . , Ck, D1, . . . , Dk ∈
Mn,m(Fq) the MCE problem asks to find, if any exists, a pair of matrices A,B ∈
GL(Fn

q ) × GL(Fm
q ) such that:

⟨A⊤C1B, . . . ,A
⊤CkB⟩ = ⟨D1, . . . , Dk⟩.
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Note the similarity between 3-TI and MCE. In fact, these problems are equiva-
lent [22] and C in 3-TI is exactly the change of basis from ⟨A⊤C1B, . . . ,A

⊤CkB⟩
to ⟨D1, . . . , Dk⟩. Other variants of 3-TI can be obtained by limiting the space of
tensors (U ⊗ V ⊗W )∗. For example, taking U = V = W , we can impose that
the tensors from (V ⊗ V ⊗ V )∗ must be alternating, i.e. we ask:

C(v,v,w) = C(v,w,v) = C(w,v,v) = 0 for all v,w ∈ V.

We denote the space of tensors that satisfy this constraint by (
∧3

V )∗. Now we
can state the ATFE problem similarly as 3-TI:

Problem 3 (ATFE). Let V be a vector space over a field Fq and let ϕ, ψ ∈ (
∧3

V )∗

be two given alternating 3-tensors. The ATFE problem asks to find, if it exists,
a matrix A ∈ GL(V ) such that:

ϕ(Au,Av,Aw) = ψ(u,v,w) ∀ u,v,w ∈ V.

An immediate consequence of the alternating property is that compared to 3-
TI we now need A = B = C. The other two problems, QMLE and Cubic-IP,
come from considering partly symmetric and fully symmetric 3-tensors.

Remark 1. The two signature schemes MEDS and ALTEQ do not assume any
further structure on the codes (alternating forms) and isometries they use. Hence,
we too, will be interested in unstructured (random) variants of these problems.

2.2 Graphs associated with tensors

A strong invariant of a 3-tensor is the graph associated with it. The points of this
graph are given by elements in the disjoint union of the projective vector spaces.
Its edges consist of the pairs of points on which the tensor completely vanishes.
To define this we will use the following shorthand notation. Given a tensor
C : U × V ×W → Fq, the statement C(u,v,−) = 0 denotes that C(u,v,x) = 0
for all x ∈W . We define C(u,−,w) = 0 and C(−,v,w) = 0 similarly. Note that
the statement C(u,v,−) = 0 is independent of scaling of u and v, so we will use
the notation C(û, v̂,−) = 0 as well.

Definition 2. Let C : U × V ×W → Fq be a tensor. The graph G(C) = (VC , EC)
is defined as follows:

VC = P(U) ⊎ P(V ) ⊎ P(W )

EC = {(û, v̂) ∈ P(U) × P(V ) | C(û, v̂,−) = 0}
∪ {(û, ŵ) ∈ P(U) × P(W ) | C(û,−, ŵ) = 0}
∪ {(v̂, ŵ) ∈ P(V ) × P(W ) | C(−, v̂, ŵ) = 0}

From the definition, we can immediately see that these graphs are tripartite with
vertex partition (P(U),P(V ),P(W )). A particularly useful feature about these
associated graphs is that this construction is functorial. In other words, suppose
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we have two 3-tensors C : U × V ×W → Fq and D : U ′ × V ′ ×W ′ → Fq and
a transformation A : U ′ → U , B : V ′ → V , C : W ′ → W between them, such
that:

D = C ◦ (A,B,C)

Then we obtain a map on graphs by applying the matrices A,B, and C on the
vertices. It is then easy to check that this map indeed maps edges to edges. The
map (A,B,C) : G(D) → G(C) is given by:

(A,B,C) : v 7→


Av if v ∈ P(V ′)

Bv if v ∈ P(W ′)

Cv if v ∈ P(U ′).

The important takeaway here is that isomorphisms of 3-tensors, elements of
GL(U) × GL(V ) × GL(W ), induce isomorphisms on the associated graphs.

Graphs associated with structured tensors When there is a structure
present in the tensor, for example, (anti-)symmetry, then the above construction
has a lot of superfluous points and edges. For example, consider the alternating
trilinear form ϕ : V × V × V → Fq, and two elements v,v′ ∈ P(V ) such that
ϕ(v,v′,−) = 0. Then by anti-symmetry we also have ϕ(v,−,v′) = 0, and simi-
larly for any other permutation of v,v′, and −. In other words, without labels,
it is impossible to distinguish whether v lies in the first, second or third term of
P(V )⊎P(V )⊎P(V ). More precisely, there are 6 graph automorphisms permuting
the terms in the disjoint union. Therefore, instead, we consider the vertex set of
the graph to be Vϕ = P(V ). For other types of symmetries, we consider similar
quotient graphs.

2.3 Gröbner basis algorithms

To obtain solutions to the polynomial systems we encounter below, we will use
Gröbner basis algorithms [11, 27, 18, 14, 2, 26]. These algorithms come in all
kinds of variants, but they all share the same underlying idea. The goal is to
gather enough algebraic combinations of the initial polynomials such that linear
combinations of these reduce the problem to a linear system. Generally, it is
hard to say how many algebraic combinations one needs to do this. However,
heuristically, we can make some approximations based on assumptions about
(structured) random systems.

Macaulay matrices Let us consider a polynomial system F = (f1, . . . , fm) ⊂
Fq[x1, . . . , xn] = R. We are interested in the spaces of algebraic combinations of
F up to a certain degree:

I≤d := spanFq
{u · f | u ∈ R, f ∈ F , deg(uf) ≤ d}.
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If I≤d contains n linear independent linear elements, we reduced our problem
to a linear system. If it contains the element 1R then we know that our system
does not have a solution.

Algorithmically, to find the solution, we build the Macaulay matrix Md of
degree d. This matrix has its columns labeled by the monomials up to degree d
in R. The rows are given by the products ufi where deg(u) ≤ d − deg(f). The
entry at (ufi,m) is then the coefficient of the monomial m in the product ufi.

Note that this is generally a sparse matrix, as multiplying with a monomial
does not change the amount of terms. Also note that the rowspace of Md is
isomorphic to I≤d. Therefore, to check that I≤d contains linear relations we can
echolonize Md and see if we end up with rows having only linear monomials.

The question now is how high d needs to be for this to happen. To estimate
this we need to assume that we can exactly predict the amount of linear depen-
dencies, called syzygies, among the rows of Md. Even though this assumption
might look strong, in practice, for random systems, the rank of Md neatly fol-
lows a pattern for different n,m, d. Then, we will obtain a solution exactly when
we predict Md to be of corank 1. We will call the degree in which this happens
the solving degree dsolv. To then extract the linear system we need to echelonize
this matrix which has

(
n+dsolv

dsolv

)
columns. Since this matrix is sparse we can use

the Block-Wiedemann algorithm to obtain a complexity of:

ρ ·
(
n+ dsolv
dsolv

)2

where ρ is the density of the matrix and is equal to the maximum number of
terms among the polynomials in F .

Degree falls Instead of choosing d such that we can completely linearize, some
algorithms, like F4 and MutantXL, take a different strategy. In these cases we
are looking for degree falls which happen when the vector space

Id := spanFq
{u · f | u ∈ R, f ∈ F , deg(uf) = d}

has elements of degree smaller than d. The degree at which this happens is
called the first fall degree dff . Note that this can only happen in inhomogeneous
systems. Then, we can extend the Macaulay matrix in degree dff by adding
these elements multiplied by linear monomials. In this way, the system might be
solved in lower degree.

The complexity analysis of these algorithms and how they behave after find-
ing degree falls is much more complex. Still, it is not uncommon to take the

complexity of finding degree falls, ρ ·
(
n+dff−1

dff

)2
, as an estimator for the com-

plexity of solving the system.

Tri-graded XL Due to the structure of the polynomial systems that we will
consider, a tri-graded polynomial ring is often a better fit. These are rings

R = Fq[x1, . . . , xn, y1, . . . , ym, z1, . . . , zk]
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where the grading is determined by the degree in each of the three variables
sets {x1, . . . , xn}, {y1, . . . , ym}, {z1, . . . , zk}. In this ring, we index monomials by
α ∈ Zn

≥0, β ∈ Zm
≥0, γ ∈ Zk

≥0 and we use the following notation:

xαyβzγ =

n∏
i=1

xαi
i

m∏
i=1

yβi

i

k∏
i=1

zγi

i

for a monomial of tri-degree (
∑

i αi,
∑

i βi,
∑

i γi).

A polynomial is tri-homogeneous of tri-degree (dx, dy, dz) if all its terms share
the same tri-degree. As an example, a tri-homogeneous polynomial in degree
(1, 1, 1) is exactly a trilinear form! We sometimes drop the tri prefix and use
homogeneous and degree if it is clear from the context what is meant.

Given two tri-degrees d = (dx, dy, dz) and d′ = (d′x, d
′
y, d

′
z), we define the

partial order d ⪰ d′ if (dx ≥ dx) ∧ (dy ≥ d′y) ∧ (dz ≥ d′z). If, among the degrees
of the monomials of a polynomial f , there is a greatest tri-degree, then we call
this degree the top degree of f .

Just as for singly graded systems, we can define

I⪯d := spanFq
{u · f | u ∈ R, f ∈ F , deg(uf) ⪯ d}

and corresponding Macaulay matrices. Then, instead of a single lowest degree for
which this is linearizable, we may have multiple “lowest” tri-degrees. Let us call
a tri-degree admissible if I⪯d contains n+m+ k linear relations or the element
1. Let us denote by Dsolv the set of all admissible tri-degrees for F . Then the
complexity of linearizing can be given by:

ρ · min
d∈Dsolv

((
n+ dx
dx

)(
m+ dy
dy

)(
k + dz
dz

))2

.

Just as before we can define the first fall degree. However, since, again, there
might be multiple tri-degrees for which this is the case, we write the complexity
as:

ρ · min
d∈Dff

((
n+ dx − 1

dx

)(
m+ dy − 1

dy

)(
k + dz − 1

dz

))2

.

Remark 2. Estimating the impact of degree falls in tri-graded systems is even
more complex than in singly-graded systems. The resulting polynomials do not
have a unique top degree anymore hence usual counting strategies fail. However,
it is still clear that degree falls can only speed up computation.

3 Algorithms for solving TI

The algorithms against TI build upon relatively old algorithms against the Iso-
morphism of polynomials [35, 10]. Here we review the state-of-the-art.
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3.1 Graph-theoretic algorithm of Narayanan et al. [30]

The work of Narayanan, Qiao and Tang [30] builds on top of the works of [10, 5]
and presents two different algorithms for MCE and ATFE. On a high level, both
algorithms follow the structure of the graph-theoretic algorithm of [10] and can
be described as follows:

– Form the graphs of the two isomorphic tensors C and D (matrix codes or
alternating trilinear forms) as described in Section 2.2.

– Collect points from the two graphs into two lists LC and LD such that the
bilinear forms obtained by fixing the tensor at the given point is of specific
rank R. Due to the birthday paradox, the size of the lists needs to be only
a square root of all points satisfying the rank R property.

– For each element in LC and LD apply some sort of distinguishing function
f constructed in such a way that f(a) = f(b) only if (a, b) is a collision pair
for the unknown isometry

– Use the collision pair (a, b) for which f(a) = f(b) to recover the isometry

The difference from [10] which is also the main novelty of this approach, is
the formulation of the distinguishing function. Previously this function was just
solving an inhomogeneous QMLE for every possible pair in LC × LD. With this
approach, there is no need to test each pair, but one can make full use of the
birthday paradox and just look for a collision in the lists.

Besides this novel global invariant (as called in [30]), there are also some new
interesting techniques introduced. For example in the algorithm for MCE, in
order to construct the distinguishing function, the authors use a graph walking
technique to efficiently find a path of length 3n. Until this work, it was an open
question of how to use graph walking techniques to solve MCE. Previously, graph
walking has been efficiently used against ATFE by Beullens in [5].

In some sense, looking for distinguishing cycles in the two graphs was an
inspiration for our work. However, we take one more shortcut, and look for a
unique cycle in the two graphs.

3.2 Purely algebraic algorithms for solving TI

The described graph-theoretic algorithms in the previous subsection crucially
rely on algebraic techniques. For example, the inhomogeneous efficient solver
is purely algebraic, and most likely, can’t be replaced by an equally efficient
combinatorial procedure. Also, the enumeration part of low-rank codewords can
be done much more efficiently by solving the MinRank problem algebraically.

There are, however, also purely algebraic approaches developed in [13, 12]
for MCE and [40, 8, 37] for the related ATFE. Here the solution is modelled as
part of a solution to a system of equations.
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Taking the coefficients of the matrices A,A′, B,B′, and C,C′ as unknowns,
we can build the following system of equations:

AA′ = In = A′A

BB′ = Im = B′B

CC′ = Ik = C′C

(1)


C(Ax,By, z) = D(x,y,C′z)

C(Ax,y,Cz) = D(x,B′y, z)

C(x,By,Cz) = D(A′x,y, z)

∀ x ∈ Fn
q ,y ∈ Fm

q , z ∈ Fk
q (2)


C(Ax,y, z) = D(x,B′y,C′z)

C(x,By, z) = D(A′x,y,C′z)

C(x,y,Cz) = D(A′x,B′y, z)

∀ x ∈ Fn
q ,y ∈ Fm

q , z ∈ Fk
q (3)

This is an immense quadratic system of 6nmk + 2(n2 + m2 + k2) equations in
2(n2 +m2 + k2) variables. However, there is a lot of superfluity in this system.
By construction, the syzygy module in degree 3 is quite big.

Solving the system “as is” has a high complexity, the number one reason
being that it has a huge amount of variables. So instead, the current best purely
algebraic algorithm from [12] looks at a subsystem generated as follows.

Consider the equations in (2). Here the left-hand side is quadratic in A,B,C
and the right-hand side is linear in A′,B′,C′. This means we can take lin-
ear combinations to eliminate A′,B′,C′. Then we end up with a system of
3nmk− (n2 +m2 + k2) equations, quadratic in n2 +m2 + k2 variables, A,B,C.
These equations are tri-homogeneous and hence the following Hilbert series is
conjectured:

H(r, s, t) =
(1 − rs)nmk−k2

(1 − rt)nmk−m2

(1 − st)nmk−n2

(1 − rst)−α

(1 − r)n2(1 − s)m2(1 − t)k2 .

Here α = 2nmk − n2 −m2 − k2 + 1 is the dimension of the syzygy module in
tri-degree (1, 1, 1).

Specializing to ATFE For ATFE a similar system is obtained in the unknown
A and A′: 

AA′ = In = A′A

ϕ(Ax,Ay, z) = ψ(x,y,A′z)

ϕ(Ax,y, z) = ψ(x,A′y,A′z)

∀ x ∈ Fn
q

This is a system of 2n
(
n
2

)
+ 2n2 quadratic equations in 2n2 variables. However,

the same trick of eliminating A′ can be applied to obtain a system of n
((

n
2

)
− n

)
quadratic equations in n2 variables. The following Hilbert series is conjectured
for this system:

H(t) =
(1 − t2)n((n

2)−n)(1 − t3)−β

(1 − t)n2 .
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Here β = n
((

n
2

)
− n

)
−
(
n
3

)
+ 1 is the dimension of the syzygy module in degree

3. This Hilbert series was experimentally verified for small n and d in [37] and
seems to hold for n not too small.

4 A hybrid algorithm for solving TI

As described in Section 2 and seen in Section 3 a strong invariant of a tensor is
its graph. Most notably, any isometry between two tensors maps substructures
in one graph to substructures in the second that have some common property.
These can be, for example, points of a certain degree or an edge between two
points of certain degrees. Identifying the substructures that are mapped one
onto another (we will call them “collisions”) can be turned into an algorithm for
finding the isometry.

However, two costly factors arise in such algorithms. The first is finding all
(or a fraction of) such substructures in the graphs and the second is testing
for collisions in some enumerative way. This generally involves a balancing act.
Often, substructures of which there are few are hard to find and substructures
that are easy to find are far from unique. The latter case becomes particularly
prohibitive for big fields, since usually, the amount of substructures is highly
dependent on the field size. So even though finding is easy, enumerating all
candidates becomes the bottleneck. In contrast, when a substructure appears
only once in a graph, finding it in both graphs immediately leads to a collision.

Our attack follows this general approach, but instead of exploiting abundant
substructures, we strive to find such that are rare or unique in a graph. While
we were not able to find a substructure that occurs exactly once, we found a
substructure that occurs exactly once with sufficiently large probability of ≈ 1/q
— we call this substructure a triangle. Then, if a triangle appears in the graph
of a specific tensor, by invariance, it occurs in every graph of tensors in its
orbit. Also, given that a triangle consists of three points, whenever we find such
triangles, we get a three-point collision. As we will see, this three-point collision
is enough to solve the corresponding TI problem efficiently.

4.1 Triangles

The rare structure that we consider is a triplet of points that form a triangle in
the graph associated to the tensor. To define it formally, denote the set of all
triplets of points in the graph by T(U, V,W ) = P(U)× P(V )× P(W ). We have:

Definition 3. Let C : U×V ×W → Fq be a 3-tensor. We call a triplet of points
(û, v̂, ŵ) ∈ T(U, V,W ) a triangle for C if it holds that:

C(û, v̂,−) = 0, C(û,−, ŵ) = 0, C(−, v̂, ŵ) = 0.

Initially, it might seem that such a simple structure should be abundant in the
graphs. However, it turns out that this is not the case at all.
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Lemma 1. Let U , V and W be vector spaces over Fq. Then the expectation
value for the amount of triangles is equal to:

EC∈(U⊗V⊗W )∗(|{T ∈ T(U, V,W ) | T is a triangle for C}|) = q−1.

Proof. We follow a proof technique similar to [5]. We first find the probability
that an arbitrary triplet (û, v̂, ŵ) ∈ T(U, V,W ) is a triangle, then, we use linear-
ity of the expectation value to get the desired result. Given a point T = (û, v̂, ŵ)
we pick a non-zero representative (u,v,w) and extend it to a base. We obtain
U = ⟨u,u2, . . . ,un⟩, V = ⟨v,v2, . . . ,vm⟩, and W = ⟨w,w2, . . . ,wk⟩.

When we consider a tensor C with respect to this basis we obtain a tensor
C′. If we pick C uniformly at random then C′ will be uniformly random as well.
Then, the condition that T is a triangle for C is equivalent to the condition that
(eU1 , e

V
1 , e

W
1 ) is a triangle for C′. This latter condition can be reformulated as

C(eUi1 , e
V
1 , e

W
1 ) = C(eU1 , e

V
i2 , e

W
1 ) = C(eU1 , e

V
1 , e

W
i3 ) = 0

for all 1 ≤ i1 ≤ n, 1 ≤ i2 ≤ m, 1 ≤ i3 ≤ k. See Figure 1 for a depiction. Since

Fig. 1. For a 3-tensor C, the coefficients in the light gray positions should be zero in
order for (eU

1 , e
V
1 , eW

1 ) to be a triangle.

these values are all independently uniform in Fq we obtain that:

PC∈(U⊗V⊗W )∗(T is a triangle for C) = q−(n+m+k−2).

Now by simple linearity of the expectation value we obtain:

EC∈(U⊗V⊗W )∗(|{T ∈ T(U, V,W ) | T is a triangle for C}|)
= PC∈(U⊗V⊗W )∗,T∈T(U,V,W )(T is a triangle) · |T(U, V,W )|
= q−(n+m+k−2) · qn−1 · qm−1 · qk−1

= q−1.

Of course, the expectation value does not directly give us the probability that a
triangle occurs, let alone a unique one. Therefore, we also show a lower bound
for this probability.

Corollary 1. Given vector spaces U , V , and W over Fq of dimensions n, m,
and k such that n ≥ m ≥ k ≥ 3 and m+ k − 2 ≥ n. Then:

PC∈(U⊗V⊗W )∗(C has a unique triangle) ≥ q−1 −O(q−2).
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Proof. See Appendix A.1.

To support this result we did a Monte-Carlo simulation of the amount of tensors
with (unique) triangles using MAGMA’s VarietySize, the results can be found
in Table 2. For practical reasons, triangles of which the first u,v, or w coordinate
is 0 were not found, so actual numbers might be higher.

Table 2. Fraction of tensors where a triangle was found on 10000 experiments. We
also report the times the triangle was unique.

q (n,m, k) Predicted Found Unique

13
(5,5,5) 769 739 713
(6,5,5) 769 755 725
(6,6,6) 769 692 676

31
(5,5,5) 323 301 196
(6,5,5) 323 306 303
(6,6,6) 323 298 290

251
(5,5,5) 40 46 46
(6,5,5) 40 33 33
(6,6,6) 40 43 43

Remark 3. The constraint m + k − 2 ≥ n is not limiting. The probability that
a tensors graph has any (V,W ) edge, which is necessary for a triangle, is upper
bounded by q(m−1)+(k−1)−n. So if instead m + k − 1 ≤ n, this probability is
upper bounded by q−1. If such an edge would exist it would serve as a better
invariant of the tensor than a triangle. Even more, it would be easier to find.

4.2 Finding triangles

A major reason why previous algorithms do not exploit rare or unique graph
structures is the difficulty of finding them. Searching the whole graph is pro-
hibitively expensive and birthday-based techniques can not be used since the
structures are extremely rare.

To overcome this difficulty, we propose to look for these algebraically. For
the triangles we defined above, the problem can be modeled as a system of
quadratic equations in R = Fq[x2, . . . , xn, y2, . . . , ym, z2, . . . , zk]. Let us denote
x = [1, x2, . . . , xn], y = [1, y2, . . . , ym] and z = [1, z2, . . . , zk]. Indeed, we can
consider the following system:

C(x,y, eWi ) = 0 for 1 ≤ i ≤ k

C(x, eVi , z) = 0 for 1 ≤ i ≤ m

C(eUi ,y, z) = 0 for 1 ≤ i ≤ n.
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Table 3. These indicate the experimental nullities in each tri-degree. All values that
were predicted wrong are formatted (predicted/actual).

Parameters Tri-degree

(n,m, k) (1, 1, 1) (2, 1, 1) (3, 1, 1) (2, 2, 1) (4, 1, 1) (3, 2, 1) (2, 2, 2)

(7,7,7) 2 61 336 772 1141 — —
(8,8,8) 2 78 504 1174 1960 6356 11601
(9,9,9) 2 97 720 1694 3156 10512 DNF

(8,7,7) 2 63 399 882 1540 4599/4620 7969/8064
(9,8,8) 2 80 584 1316 2544 7896 13907

Then, if we find a solution to the system, the point (x,y, z) is a representative
of the triangle. The attentive reader might find that we are not able to find
all triangles in this way. Whenever the first coordinate of u,v, or w is zero.
However, we simply ignore this issue, since one can rerandomize by applying a
random transformation to the given tensor.

Looking at our system we see that we found n+m+ k quadratic equations
in n+m+ k − 3 variables. We can now go and use our favorite system-solving
technique to find all such solutions. The technique that we will use to compute
the complexity is tri-homogeneous XL, see Section 2.3.

We consider the system in the following three sets of variables {x2, . . . , xn},
{y2, . . . , ym}, and {z2, . . . , zk}. Then the system described above consists of n
equations in each of the tri-degrees (1, 1, 0), (1, 0, 1), and (0, 1, 1). Furthermore,
if we set x1 = y1 = z1 = 1 we have the following 2 syzygies in tri-degree (1, 1, 1):

k∑
i=1

C(x,y, eUi ) · zi =

m∑
i=1

C(x, eWi , z) · yi =

n∑
i=1

C(eVi ,y, z) · xi.

Therefore, we conjecture the following Hilbert series:

H(r, s, t) =
(1 − rs)n(1 − rt)n(1 − st)n(1 − rst)−2

(1 − r)n−1(1 − s)m−1(1 − t)k−1
.

We confirmed the predicted number of syzygies in all tri-degrees (dx, dy, dz) for
several n,m, k. For simplicity, we only checked parameters that are in use in
cryptography, so n = m = k and n = m+1 = k+1. For the (8, 7, 7) case we find
some wrong predictions. This could be due to extra structure for small n. The
results are summarized in Table 3. In Table 4, one can find the results of running
MAGMA’s GroebnerBasis on the described system for some small values of
n,m, and k. As we can see the solving degree neatly matches the predicted first
fall degree, indicating that this is a valid estimator for the complexity. Note that
GroebnerBasis does not take the specialized tri-graded structure into account.
Hence, specialized implementations, like some form of Tri-XL, could speed up
computation even more.
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Table 4. Finding triangles in 3-TI.

Actual Predicted

(n,m, k) Time Memory dsolv dsolv dff

(6,6,6) 4 s 32 MB 5 (4,3,1) (3,1,1)
(7,7,7) 163 s 288 MB 6 (6,3,1) (3,2,1)
(8,8,8) 7 h 10 GB 7 (6,4,1) (3,3,1)

(7,6,6) 7 s 64 MB 5 (4,3,1) (3,1,1)
(8,7,7) 450 s 626 MB 6 (6,3,1) (3,2,1)

4.3 From matching triangles to isometry

Now let us see what we can do with such a triangle. Recall our problem state-
ment, we need to find the isometry (A,B,C) : C → D. As stated before, if C
(and thus D) has no triangle, then this attack is impossible. If the triangles do
exist but are not unique, then we iterate over the combinations. So let us assume
that C and D have unique triangles TC and TD. By applying suitable basis trans-
formations we can transform these triangles to lie in any position. Therefore,
without loss of generality we assume TC = (eU1 , e

V
1 , e

W
1 ) = TD. Afterwards we

just compose the solution with the inverse of the chosen basis transformations.

Since the isometry maps TC to TD, we have that A,B, and C have the
following form:

A =

[
λ A12

0(n−1)×1 A22

]
B =

[
µ B12

0(m−1)×1 B22

]
C =

[
ν C12

0(k−1)×1 C22

]
(4)

For the inverses of the matrices, we have the form

A′ = λ−1

[
1 A12A

−1
22

0 λA−1
22

]
B′ = µ−1

[
1 B12B

−1
22

0 µB−1
22

]
C′ = ν−1

[
1 C12C

−1
22

0 νC−1
22

]
. (5)

Here λ, µ, ν are some scalars in Fq that come from the fact that our triangles
live in projective space. However, we can freely rescale B and C by scaling A
accordingly, so without loss of generality we assume µ = ν = 1. Under these
assumptions, we get that the triangle vectors are eigenvectors of the isometry
matrices, more concretely, Ae1 = λe1, Be1 = e1, Ce1 = e1. Plugging these
relations into the equations in (2) and (3), part of them become linear, i.e. we
obtain: {

C(Ax, eV1 , z) = D(x, eV1 ,C
′z)

C(x, eV1 ,Cz) = D(A′x, eV1 , z)
∀ x ∈ Fn

q , z ∈ Fk
q (6){

C(Ax,y, eW1 ) = D(x,B′y, eW1 )

C(x,By, eW1 ) = D(A′x,y, eW1 )
∀ x ∈ Fn

q ,y ∈ Fm
q (7)
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Table 5. Running times for the post-collision algorithm. We also report the linear
independent equations in the system presented in Equations (6), (7) and (8).

(n,m, k) Variables Linear equations Quadratic equations Time dsolv

(8,8,8) 238 196 2802 2 s 2
(14,14,14) 1094 674 15962 245 s 2
(20,20,20) 2282 1444 47042 3 h 2

(9,8,8) 370 224 3156 68 s 2
(16,15,15) 1322 840 13566 536 s 2
(21,20,20) 2362 1520 49364 3 h 2

Notice that these correspond exactly to the top and front slices of the tensor.
Furthermore, we also get the following, almost linear, equations (recall that λ is
unknown): {

C(λeU1 ,By, z) = D(eU1 ,y,C
′z)

C(λeU1 ,y,Cz) = D(eU1 ,B
′y, z)

∀ y ∈ Fm
q , z ∈ Fk

q (8)

Since the matrices C(x, eV1 , z) are not full rank by construction, we know
that not all the linear relations in Equation (6) are independent. Similarly, for
the Equation (7) and Equation (8). As we can see, a big chunk of the variables
can already be eliminated by linear equations. On top of that, there is a sub-
stantial amount of quadratic equations that the solution has to satisfy. Instead
of analyzing whether there are any algebraic dependencies between those linear
and quadratic equations, we went with a more practical approach and ran a
Gröbner basis algorithm on the resulting system. For all experiments, the sys-
tem terminated in degree 2 so we conjecture that this is the solving degree for

such systems. This would lead to a complexity of O(
(
n2+1

2

)ω
) = O(n4ω). Here ω

is the linear algebra constant. In any case, as can be seen from the experimental
results in Table 5, this part of the algorithm is practical for all values of n for
which we can hope to find a triangle.

4.4 Putting it all together

As we saw above, the cost of finding the triangle is the most dominating. If we
take into account the search for an attack then we get the following complexity
for the original MEDS parameters (Table 6):

Recently, as a result of the attack from [30], the MEDS team updated the
parameters [32]. In Table 7, we show the complexity results for the new param-
eters. As we can see, the new parameters are secure against this attack, even up
to the first fall degree.
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Table 6. The log2 complexity estimates for the original MEDS parameters. All com-
plexities are in field operations. We use the solving degree as an estimator here.

[12] [30] This work

n q Specs Best previous incl. search prob. 1/q

Level I 14 4093 147 95 102 90
Level III 22 4093 217 145 155 143
Level V 30 2039 276 180 208 197

Table 7. Complexity estimations log2 for newest MEDS parameter set. As [30] was
only shown to work for balanced parameters we estimate its complexity for the nearest
balanced parameters.

First fall degree Solving degree [30]

n m k q dff compl. dsolv compl. compl.

Level I 26 25 25 4093 (11, 18, 1) 151 (13, 20, 1) 165 164*
Level III 35 34 34 4093 (16, 25, 1) 210 (18, 27, 1) 224 219*
Level V 45 44 44 4093 (23, 31, 1) 275 (25, 33, 1) 289 280*

5 Application to ATFE

Having seen the above algorithm, a natural question is to ask whether it can also
be applied to more structured tensors, like alternating tensors. It turns out, that
indeed it does, and that after taking care of some technicalities, we can even use
the extra structure in our advantage.

First, let us try the same as before, but now in the reduced graph. We look
at triplets of points (v̂1, v̂2, v̂3) ∈ T(V, V, V ) for which

ϕ(v̂1, v̂2,−) = ϕ(v̂1,−, v̂3) = ϕ(−, v̂2, v̂3) = 0.

Now by anti-symmetry and tri-linearity this means that ϕ(v̂1, v̂2+v̂3,−) = 0 and
also ϕ(v̂1, v̂1,−) = 0. In other words, let ŵ1, ŵ2, ŵ3 be any linear combinations
of v̂1, v̂2, v̂3, then (ŵ1, ŵ2, ŵ3) is a triangle as well. Even more, (v̂, v̂, v̂) is a
triangle for any v̂ ∈ P(V ).

This structure points us to look at a modified definition of a “triangle”. Let
T(V ) = {W ⊂ V | dim(W ) = 3} be the set of all 3-dimensional subspaces of V .

Definition 4. Let ϕ :
∧3

V → Fq be an alternating trilinear form. We call a
3-dimensional subspace T ∈ T(V ) a triangle for ϕ if

ϕ(v,w,−) = 0 ∀ v,w ∈ T.

This definition has been considered before in [17] in the pursuit of classifying
alternating trilinear forms. There they were called 3-dimensional 2-singular sub-
spaces. Just as in the unstructured case, we have the following:
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Lemma 2. The expectation value for the number of such constructions in a
random alternating trilinear form is equal to q−1, i.e:

Eϕ∈(
∧3 V )∗(|{T ∈ T(V ) | T is a triangle for ϕ}|) = q−1.

Proof. We follow a similar structure as in Lemma 1. We extend ⟨v1,v2,v3⟩ =
T ∈ T(V ) to a basis V = ⟨v1,v2,v3, . . . ,vn⟩. Applying a basis transformation
keeps the coefficients of ϕ uniformly random. So we need to compute the proba-
bility that (eV1 , e

V
2 , e

V
3 ) is a triangle for a random ϕ. This latter condition can be

reformulated as ϕ123 = ϕ12i = ϕ13i = ϕ23i = 0 for all 4 ≤ i ≤ n. (See Figure 2.)

Fig. 2. For an ATF ϕ, the coefficients in the light gray positions should be zero for
⟨e1, e2, e3⟩ to be a triangle. The coefficients corresponding to the dark gray positions
are zero by alternatingness.

Taking symmetries into account these are exactly 3(n−3)+1 relations. Since
the coefficients are all uniform in Fq and using simple linearity of the expectation
value, we obtain:

Eϕ∈(
∧3 V )∗(|{T ∈ T(V ) | T is a triangle for ϕ}|)

= Pϕ∈(
∧3 V )∗,T∈T(V )(T is a triangle for ϕ) · |T(V )|

= q−(3(n−3)+1) · q3(n−3)

= q−1.

To say something about how reliably our new algorithm can be used, we need
a stronger result, i.e., not only the expectation, but the probability of having a
unique triangle. Fortunately, we have the following corollary:

Corollary 2. Given a vector space V over Fq of dimension n = dim(V ) ≥ 9:

Pϕ∈(
∧3 V )∗(ϕ has a unique triangle) ≥ q−1 −O(q−2).

Proof. See Appendix A.2.

We verify this experimentally using the polynomial system described be-
low. The results, which are in line with our corollary, are given in Table 8.
For practical reasons, we assume that the triangle does not intersect with the
x1 = x2 = x3 = 0 hyperplane. This allows us to fix variables to make solving
computable. Again, MAGMA’s VarietySize is used on the system described in
the next section.
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Table 8. Fraction of tensors where a triangle was found on 10000 experiments. We
also report the times the triangle was unique.

q n Predicted Found Unique

13
9 769 720 665
10 769 716 694
11 769 759 740

31
9 323 266 259
10 323 311 308
11 323 319 314

251
9 40 33 33
10 40 33 33
11 40 40 40

5.1 Finding triangles

To find these triangles we are going to use algebraic methods again. In this case
we will be working over the ring R = Fq[x4, . . . , xn, y4, . . . , yn, z4, . . . , zn]. We
use a shorthand notation for the following vectors in Rn:

x = [1, 0, 0, x4, . . . , xn], y = [0, 1, 0, y4, . . . , yn], z = [0, 0, 1, z4, . . . , zn].

Now, given an alternating trilinear form ϕ, our system for finding a triangle looks
as follows: 

f
(i)
xy := ϕ(x,y, ei) = 0

f
(i)
yz := ϕ(y, z, ei) = 0 ∀1 ≤ i ≤ n

f
(i)
zx := ϕ(z,x, ei) = 0

(9)

It is clear that when we have found a solution (x4, . . . , xn, y4, . . . , yn, z4, . . . , zn)
we indeed have also found a triangle.

We consider solving this system using Gröbner basis methods. To make the
analysis precise we are going to conjecture a Hilbert series, but first, we find a
class of structural syzygies. In tri-degree (1, 1, 1), just as in the MCE case, we
have the following 2 linear independent syzygies appearing:

n∑
i=1

ϕ(x,y, ei) · zi =

n∑
i=1

ϕ(y, z, ei) · xi =

n∑
i=1

ϕ(z,x, ei) · yi.

However, in the ATFE case, there are 6 more syzygies, in tri-degrees that are a
permutation of (2, 1, 0). They are due to the alternating properties:

n∑
i=1

ϕ(x,y, ei) · xi = ϕ(x,y,x) = 0
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Taking everything together we conjecture the Hilbert series. For reasons that
become apparent in Section 5.3 we consider the tri-homogenized version instead:

S(r, s, t) = (1 − r2s)(1 − rs2)(1 − s2t)(1 − st2)(1 − t2r)(1 − tr2)(1 − rst)2

H(r, s, t) =
(1 − rs)n(1 − rt)n(1 − st)n

(1 − r)n−2(1 − s)n−2(1 − t)n−2
· S−1.

We created the Macaulay matrix for different values of n, dx, dy, and dz and
computed their rank. With this, we verified the amount of linear independent
syzygies predicted by the Hilbert series. The results are summarized in Table 9.

Table 9. Experimental syzygies in each tri-degree (q = 29). All values that were
predicted wrong are formatted (predicted/actual).

Tri-degree

n (2, 2, 0) (2, 1, 1) (4, 1, 0) (3, 2, 0) (3, 1, 1) (2, 2, 1) (5, 1, 0) (4, 2, 0) (3, 3, 0)

12 86 184 55 803 1726 4002 220/221 4281/4282 7241/7242
13 100 213 66 1032 2207 5140 286/287 6018/6019 10319/10320
14 115 244 78 1300 2768 6472 364 8231 14277
15 131 277 91 1610 3415 8013 455 10999
16 148 312 105 1965 4154 9778 560
17 166 349 120 2368 4991
18 185 388 136 2822 5932
19 205 429 153 3330
20 226 472 171 3895

Now, let us see what this means in practice. In Table 10, we report the
running time of MAGMA’s GroebnerBasis on this system. As we can see, both
dsolv and dff largely overestimate the actual solving degree. Given that the
experimental results on the Hilbert series are so affirmative, this might seem
odd. What happens in practice is that there are quite some structural degree
falls. We will see more on these in Section 5.3. For now, the main takeaway is
that for n = 13 and n = 14, finding triangles is practical.

5.2 Post-collision

Now, following the same line of argumentation as in Section 4.3, assume that ϕ
and ψ both have a unique triangle in general position ⟨e1, e2, e3⟩. This places
the following limit on any transformation A : ϕ→ ψ between them:

A =

(
A11 A12

0(n−3)×3 A22

)
A−1 =

(
A−1

11 −A−1
11 A12A

−1
22

0(n−3)×3 A−1
22

)
These restrictions unfortunately do not generate linear equations. However, in-
stead, we consider this system as a tri-graded system in variable sets

{A11,A
′
11}, {A12,A

′
12}, {A22,A

′
22}.
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Table 10. Finding triangles in ATFE, experimental results (q = 29).

Actual Predicted

n Time Memory dsolv dsolv dff

12 29 s 96 MB 4 (7, 3, 1) (5, 2, 1)
13 490 s 850 MB 4 (7, 4, 1) (5, 3, 1)
14 30 h 29 GB 5 (7, 5, 1) (5, 4, 1)
15 ≥ 14 d ≥ 260 GB ≥ 6 (7, 6, 1) (5, 5, 1)

Table 11. Practical runtimes of the post-collision algorithm, q = 232 − 5

n Time (s) Memory (MB) (wt11, wt12, wt22) weighted dsolv

13 102 864 (1, 3, 3) 6
20 2317 8287 (1, 3, 3) 6
25 8736 21750 (1, 3, 3) 6

Inspired by an unverified Hilbert series (not shown here) we use degree weights to
put more emphasis on the {A11,A

′
11} variables. Now running GroebnerBasis

yields the desired results, these can be found in Table 11 below. Given the
efficiency of solving n = 25, we do not optimize beyond this.

Given that the complexity of the post-collision is negligible we provide the
complexities for the complete algorithm in Table 12. These hold for the 1/q
amount of ATFE problems that have a triangle.

5.3 A peculiar set of degree falls

The results in Table 10 indicate that there is something more going on than our
Hilbert series predicts. This has to do with the fact that there are additional
degree falls present. In F4-like algorithms, these degree falls immediately speed
up computation. In this section, we show some structural degree falls that hap-
pen for all values of n. First, we need to extend the definition of alternating
multilinear forms to multivariate polynomials:

Definition 5. Let f ∈ Fq[x,y, z], where x = (x1, . . . , xn), y = (y1, . . . , yn), z =
(z1, . . . , zn). We call f alternating if

f(x,y, z) = −f(y,x, z) = −f(z,y,x).

Remark 4. Just as in the case of alternating trilinear forms, one can show that,
in finite fields, this is equivalent to putting constraints on the coefficients of such
polynomials. The polynomial f =

∑
α,β,γ∈Zn

≥0
cαβγx

αyβzγ is alternating if and

only if

cαβγ = −cβαγ = −cγβα ∀α, β, γ ∈ Zn
≥0.
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Table 12. The log2 complexity for solving ATFE (with probability 1/q) in field oper-
ations. The parameters are taken from the ALTEQ specifications [8].

[8] [37] This work

n Specs Best previous dsolv compl. dff compl. Time

Level I 13 143 120 62 51 1501 s
Level III 20 219 165 108 96
Level V 25 276 203 141 128

As an example, the alternating tri-homogeneous polynomials living in tri-
degree (1, 1, 1) are exactly the alternating trilinear forms. A simple counting
argument tells us that the dimension of tri-homogeneous alternating elements in
tri-degree (d, d, d) is exactly

(
Mn,d

3

)
. HereMn,d =

(
n+d−1

d

)
is the amount of degree

d monomials in n variables. For d = 1 we then indeed get
(
n
3

)
. Furthermore,

we find that there are no tri-homogeneous alternating elements in tri-degree
(dx, dy, dz) if dx ̸= dy or dx ̸= dz.

Now back to the degree falls. A degree fall happens when there is a syzygy
among the homogeneous top parts of elements which is not a full syzygy. Recall
our system Equation (9). We can write the top-degree part of our system using
the following substitutes

x = [0, 0, 0, x4, . . . , xn], y = [0, 0, 0, y4, . . . , yn], z = [0, 0, 0, z4, . . . , zn].

Then we can easily write down the top-degree parts of our system:

f
(i)
xy = f (i)xy(x,y, z)

To construct syzygies among these, we will build alternating functions using
symmetry. We will use the following lemma.

Lemma 3. Let f ∈ Fq[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] such that f is alternat-
ing in its first two arguments, i.e. f(x,y, z) = −f(y,x, z). Then,

S(f)(x,y, z) := f(x,y, z) + f(z,x,y) + f(y, z,x)

is alternating.

In our system, the polynomials f
(i)
xy are indeed alternating in the first two ar-

guments and hence the polynomials f
(i)
xy are too. Furthermore, for the top-degree

parts we have f
(i)
xy(y, z,x) = f

(i)
yz (x,y, z). Therefore, the polynomial function

S(f
(i)
xy) = f

(i)
xy + f

(i)
yz + f

(i)
zx

is alternating and a linear combination of the top degrees of polynomials in our

system. We can take this a step further and consider S(f
(i)
xy · g(z)) for a linear
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Table 13. Structural degree falls in tri-degree (1, 1, 1), experimentally verified.

n degree falls

10 35
11 32
12 24
13 10

Table 14. Structural degree falls in tri-degree (2, 2, 2) and (3, 3, 3).

degree falls (2, 2, 2)

n predicted actual

14 15224 18941
15 15184 22337
16 11011

degree falls (3, 3, 3)

n predicted

17 23866080
20 77142736
25 245964576

polynomial g. The result lies in degree (1, 1, 1) and is, in fact, an alternating
trilinear form. More generally, we can look at the subspace of the Macaulay

space in (1, 1, 1) generated by S(f
(i)
xy · zj) for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 3.

We know that this space is contained in (
∧3 Fn−3

q )∗. Hence, by the rank nullity

theorem, we can conclude that there are at least n(n − 3) −
(
n−3
3

)
syzygies in

the top-degree parts. For n ≤ 13 this turns out to be more than 0. This explains
why n = 13 runs so much faster than anticipated. With experiments, we were
able to verify that these are indeed degree falls and not complete syzygies and
that the number is correct. The results are given in Table 13.

For n ≥ 14 these degree falls do not appear anymore, but there are others.
Let g ∈ R be a homogeneous polynomial in tri-degree (d−1, d−1, d) such that it
is symmetric in the first two arguments, i.e. g(x,y, z) = g(y,x, z). Now, due to

the symmetry of g, f
(i)
xy · g is still alternating in its first two elements. Therefore,

S(f
(i)
xy · g) is again alternating and in the degree (d, d, d) Macaulay space. We

can apply rank-nullity again for the subspace generated by such g and find that
the amount of top-degree syzygies appearing is(

Mn−3,d−1 + 1

2

)
·Mn−3,d · n−

(
Mn−3,d

3

)
.

We did experiments to verify these numbers but found that there are even more
degree falls appearing than predicted by the formula above. All of those were
indeed degree falls and not full syzygies. Due to the size of the matrices involved
only a part of the predictions could be verified, see Table 14.

Even after identifying these (2, 2, 2) degree falls for n = 15 and adding those
to the system, unfortunately, the system was still not solvable in total degree
5. So while these syzygies likely contribute to a lower solving degree than 11 =
5 + 5 + 1 (as in Table 10), we do not (yet) know by how much.
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6 Potential generalizations and future work

Given the success of these small graph invariants on 3-TI and its structured
variant, the question arises as to how this generalizes to other structures on
tensors. A quick back-of-the-envelope calculation tells us the expectation value
for similar structures in QMLE and Cubic-IP should be 1/q too. However, as
we saw already in Remark 3, experimental evidence is needed before drawing
conclusions.

Another interesting generalization might be to see how well this applies for k-
tensors with k ≥ 4. While these tensors are not (yet) cryptographically relevant,
this might still provide insights into general invariants of tensors. One obvious
hurdle in this case is that simple graphs might not be sufficient anymore.

Next to these generalizations, there are also two other open questions re-
maining after this work. It would be interesting to know how extra degree falls
that we found contribute to the solving degree. Being able to make better pre-
dictions for the solving degree would give us more precise security estimates.
Secondly, those degree falls also seem to exist, albeit fewer, in general systems
of skew-symmetric bilinear equations. These might be used to speed up solving
such systems as well.

A Lower bounds on probabilities of triangles

The purpose of this section is to prove Corollary 1 and Corollary 2. To lower
bound the probability of triangles we are going to use the following lemma.

Lemma 4. Let X be a discrete distribution with values in Z≥0. Then:

P(X = 1) ≥ 2E(X) − E(X2).

Proof. Using that probabilities are non-negative:

P(X = 1) ≥
∑
i≥0

(2i− i2)P(X = i) = 2E(X) − E(X2).

Now, using this lemma, the task at hand is to compute E(X2) for MCE and
ATFE. Let us denote T△C (resp. T△ϕ) if T is a triangle for C (resp. ϕ).

A.1 MCE

Lemma 5. Suppose we have vector spaces U , V , and W over Fq of dimensions
n, m, and k, then:

EC∈(U⊗V⊗W )∗(|{T ∈ T(U, V,W ) | T△C}|2)

≈ q−1 + q−2 + q−(n−1) + q−(m−1) + q−(k−1)

+ q−(n+m−k) + q−(m+k−n) + q−(k+n−m).
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Table 15. Sizes and indices that should be zero for the different sets in the partition.

Set Size (logq) Zeroes Set of indices

T∅ 2n+ 2m+ 2k − 6 2n+ 2m+ 2k − 4 (1, 1, ⋆), (1, ⋆, 1), (⋆, 1, 1), (2, 2, ⋆), (2, ⋆, 2), (⋆, 2, 2)
Tu n+ 2m+ 2k − 5 2n+ 2m+ 2k − 6 (1, 1, ⋆), (1, ⋆, 1), (⋆, 1, 1), (1, 2, ⋆), (1, ⋆, 2), (⋆, 2, 2)
Tuv n+m+ 2k − 4 2n+ 2m+ k − 4 (1, 1, ⋆), (1, ⋆, 1), (⋆, 1, 1), (1, ⋆, 2), (⋆, 1, 2)
Tuvw n+m+ k − 3 n+m+ k − 2 (1, 1, ⋆), (1, ⋆, 1), (⋆, 1, 1)

Proof. We start with the observation that, for a given tensor C, we have:

|{T ∈ T | T△C}|2 = |{(T1, T2) ∈ T2 | T1△C, T2△C}|.

We are going to calculate the probability that both T1 = (u, v, w) and T2 =
(u′, v′, w′) are triangles for a random C. To do this, we need to distinguish some
cases. We define the following partition of T2:

T∅ = {(T1, T2) ∈ T2|u ̸= u′, v ̸= v′, w ̸= w′}
Tu = {(T1, T2) ∈ T2|u = u′, v ̸= v′, w ̸= w′} (resp. Tv,Tw)

Tuv = {(T1, T2) ∈ T2|u = u′, v = v′, w ̸= w′} (resp. Tvw,Twu)

Tuvw = {(T1, T2) ∈ T2|u = u′, v = v′, w = w′}.

For each of these sets, the probability that an element is a pair of triangles
for a random C is constant. To see this we are going to consider the tensor in the
extended basis ⟨u, u2, . . . , un⟩ if u = u′ and ⟨u, u′, u3 . . . , un⟩ if u ̸= u′ (similarly
for v and w). Then, the coefficients of these tensors are again uniformly random.
We count the amount of indices (i, j, l) which should have a 0 so that T1 and T2
are triangles in Table 15.

Then, by linearity we can compute the expectation value:

E(|{T1, T2 ∈ T | T1△C, T2△C}|) = q−(2n+2m+2k−4)|T∅|
+ q−(2n+2m+2k−6) (|Tu| + |Tv| + |Tw|)
+ q−(2n+2m+k−4)|Tuv| + q−(n+2m+2k−4)|Tvw|
+ q−(2n+m+2k−4)|Twu| + q−(n+m+k−2)|Tuvw|
= q−1 + q−2 + q−(n−1) + q−(m−1) + q−(k−1)

+ q−(n+m−k) + q−(m+k−n) + q−(k+n−m).

Corollary 3. Given vector spaces U , V , and W over Fq of dimensions n, m,
and k, then:

PC∈(U⊗V⊗W )∗(C has unique triangle) ≥ q−1 − q−2 − q−(n−1) − q−(m−1) − q−(k−1)

− q−(n+m−k) − q−(m+k−n) − q−(k+n−m).

Now Corollary 1 follows immediately.
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Table 16. Sizes and indices that should be zero for the different sets in the partition.

Set Size (logq) Zeroes Set of index sets

T0 6n− 18 6n− 16 {1, 2, ⋆}, {1, 3, ⋆}, {2, 3, ⋆}, {4, 5, ⋆}, {4, 6, ⋆}, {5, 6, ⋆}
T1 5n− 13 6n− 20 {1, 2, ⋆}, {1, 3, ⋆}, {2, 3, ⋆}, {1, 4, ⋆}, {1, 5, ⋆}, {4, 5, ⋆}
T2 4n− 10 5n− 14 {1, 2, ⋆}, {1, 3, ⋆}, {2, 3, ⋆}, {1, 4, ⋆}, {2, 4, ⋆}
T3 3n− 9 3n− 8 {1, 2, ⋆}, {1, 3, ⋆}, {2, 3, ⋆}

A.2 ATFE

Lemma 6. Suppose we have a vector space V over Fq of dimension n then:

Eϕ∈(
∧3 V )∗(|{T ∈ T(V ) | T△ϕ}|2) ≈ q−1 + q−2 + q−(n−4) + q−(n−7).

Proof. The proof is structured similarly. This time, we partition T2 in the fol-
lowing sets:

Ti = {(T1, T2) ∈ T2|dim(T1 ∩ T2) = i} for i = 0, 1, 2, 3

The probability is again constant on these sets for random ϕ. Given a pair of
triangles (T1, T2) ∈ Ti we pick a basis ⟨u1, . . . , un⟩ such that, T1 = ⟨u1, u2, u3⟩
and

T2 =


⟨u4, u5, u6⟩ if i = 0,

⟨u1, u4, u5⟩ if i = 1,

⟨u1, u2, u4⟩ if i = 2,

⟨u1, u2, u3⟩ if i = 3.

Note that this is possible by first picking a basis of T1 ∩ T2 by definition of Ti.
Then, the coefficients of these ATFs are again uniformly random. Now we count
the number of index sets {i, j, k} such that ϕijk must be zero in order for T1 and
T2 to be a triangle. These results are in table Table 16

Then, again by linearity, we can compute the expectation value:

E(|{T1,T2 ∈ T | T1△ϕ, T2△ϕ}|)
= q−(6n−16)|T0| + q−(6n−20)|T1| + q−(5n−14)|T2| + q−(3n−8)|T3|
= q−1 + q−2 + q−(n−7) + q−(n−4).

Corollary 4. Given a vector space V over Fq of dimension n = dim(V ) then:

Pϕ∈(
∧3 V )∗(ϕ has a unique triangle) ≥ q−1 − q−2 − q−(n−7) − q−(n−4).

Now Corollary 2 follows immediately.
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