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Abstract
We present the formal verification of Apple’s iMessage PQ3,
a highly performant, device-to-device messaging protocol
offering strong security guarantees even against an adversary
with quantum computing capabilities. PQ3 leverages Apple’s
identity services together with a custom, post-quantum secure
initialization phase and afterwards it employs a double ratchet
construction in the style of Signal, extended to provide post-
quantum, post-compromise security.

We present a detailed formal model of PQ3, a precise spec-
ification of its fine-grained security properties, and machine-
checked security proofs using the TAMARIN prover. Particu-
larly novel is the integration of post-quantum secure key en-
capsulation into the relevant protocol phases and the detailed
security claims along with their complete formal analysis. Our
analysis covers both key ratchets, including unbounded loops,
which was believed by some to be out of scope of symbolic
provers like TAMARIN (it is not!).

1 Introduction

Research on secure instant messaging goes back over two
decades, with early proposals including Off-the-Record Mes-
saging [1], the Silent Circle Instant Messaging Protocol [2],
iMessage, and Signal [3, 4, 5]. Over time, the security commu-
nity’s understanding of the threat models and security claims
for secure messaging evolved. Modern messaging protocols
now offer strong guarantees and can communicate messages
secretly even in the presence of adversaries who corrupt differ-
ent parties in different ways during the protocol’s execution.
This is befitting given that strong adversaries, like nation
states, are capable of compromising both messaging servers
and the end points sending and receiving messages. More
recently, security against adversaries with quantum comput-
ing capabilities has also become an important concern. This
requires protection against adversaries who can “harvest now
and decrypt later,” namely adversaries who leverage the de-
creasing cost of mass storage to store the encrypted data they

intercept and to decrypt it in the future when quantum com-
puters become sufficiently powerful [6].

In this paper, we present our formal analysis of Apple’s ad-
vanced, widely deployed iMessage PQ3 Messaging Protocol,
or PQ3 for short. PQ3 is used across all of Apple’s devices for
device-to-device messaging and underlies many other Apple
services, e.g., iMessage, FaceTime, HomeKit, and HomePod
hand-off. PQ3 is designed to be performant and to offer strong
guarantees against powerful adversaries, including those who
later possess quantum computers.

PQ3 employs a double-ratchet construction similar to Sig-
nal [3]. The protocol takes a hybrid approach to security
and combines classical cryptographic primitives, like elliptic
curve Diffie-Hellman, and post-quantum primitives, namely
ML-KEM [7], a module-lattice-based key-encapsulation
mechanism. The hybrid construction means that PQ3’s secu-
rity does not solely depend on the security of post-quantum
primitives, which are less well understood than their classic
counterparts. Moreover, PQ3’s integration of hybrid cryptog-
raphy into the double ratchet provides stronger guarantees
than Signal, where a post-quantum Key Encapsulation Mecha-
nism (KEM) is just integrated into the protocol’s setup phase,
but not into its ratcheting (see Section 2).

We analyzed PQ3’s security in detail using the TAMARIN
prover [8, 9], a state-of-the-art security protocol model
checker. Our formal models and proofs are accessible on
GitHub [10]. We report on our model of PQ3, the adversary
assumptions, and the protocol’s desired properties. We use
TAMARIN’s specification language to specify the messaging
protocol and its use of classical and post-quantum cryptog-
raphy. We also specify all forms of adversary compromise,
including the event in which the attacker obtains a sufficiently
powerful quantum computer, allowing them to break all non-
post-quantum-secure cryptographic primitives. Essentially,
the adversary can compromise any key at any time, either
through dedicated key-reveal rules or because they obtained a
quantum computer. Using TAMARIN’s property language, we
formalize and prove both secrecy and authenticity theorems.
These theorems precisely express the protocol’s security guar-



antees capturing fine-grained notions of key compromise.
Our analysis establishes that PQ3 provides strong security

guarantees against an active network adversary that can com-
promise any secret key, unless explicitly stated otherwise. For
example, PQ3 provides forward secrecy, post-compromise
security, and post-quantum security with respect to a “har-
vest now, decrypt later” adversary. In contrast to Signal, PQ3
provides post-compromise security also against active clas-
sical and “harvest now, decrypt later” adversaries and not
only against passive, classical adversaries. Moreover, the fine-
grained analysis of compromise possibilities and their effects
is useful for guiding secure implementations of PQ3. For ex-
ample, the compromise of a participant’s long-term identity
key impacts all security guarantees and thus should be stored
with extra care, for example, in a device’s secure enclave.

Contributions Our first contribution is the formalization
and machine-checked verification of PQ3 to prove all our
security claims. Namely, we use TAMARIN to prove that PQ3
offers strong security guarantees against a powerful adversary
with quantum computing capabilities. These guarantees are
both fine-grained and tight in that omitting any of the many
adversary compromise cases leads to attacks. Our verification
thereby provides a formal, machine-checked proof that PQ3
meets the high expectations for a modern device-to-device
messaging protocol. This high assurance is important given
the prominent role of this protocol, which is used in billions
of devices worldwide, and its limited prior analysis.

Our second contribution is to show that symbolic security
protocol model checkers, in particular TAMARIN, can verify
substantial, real-world protocols with nested loops, in their
full complexity. This is non-trivial as it entails reasoning about
unboundedly many parallel instances of the protocol, where
the runs (two devices sending messages) are themselves un-
bounded. In fact, it was commonly believed that “unbounded
(looping) protocols like Signal, and protocols with mutable re-
cursive data structures [...] are also out of scope for symbolic
provers, without introducing artificial restrictions” [11]. Our
work shows that this is not the case and provides a general
methodology for carrying out such proofs.

Organization In Section 2 we survey related work on mes-
saging protocols and their verification. Afterwards, in Sec-
tions 3 and 4 we describe PQ3’s threat model, requirements,
and the protocol itself. In Section 5 we present our TAMARIN
model of PQ3, the adversary, the protocol’s properties, and
details on our proofs. We draw conclusions in Section 6.

2 Related work

2.1 Messaging Protocols
Over the past decades, hundreds of secure messaging systems
have been proposed [12]. The underlying protocols differ

in how they bootstrap trust to set up initial keys, the prop-
erties they achieve, the adversaries they consider, whether
bilateral or group communication is supported, and usability.
The strongest protocols support message secrecy and authen-
ticity against very strong adversaries. As servers cannot be
trusted, encryption must be carried out end-to-end. Moreover,
it is common to consider adversaries who can compromise
agents’ long-term secrets, and even their session states.

The security bar is now quite high. Modern protocols like
Signal, which is used for example in the Signal app, What-
sApp, and Facebook Secret Conversations, offer security guar-
antees, even when adversaries compromise the devices of the
agents running the protocol. In particular, Signal supports
both forward secrecy and post-compromise security [13, 14]
(also called self-healing or backward secrecy). The former pro-
tects the protocol’s participants against the future compromise
of past sessions, for example, the loss of a long-term secret
should not jeopardize the secrecy of previously exchanged
messages. The latter helps the participants to recover or “self-
heal” from a past compromise to communicate secretly again
in the present and future.

Messaging protocols achieve these strong properties by
using ratcheting, an approach to continually generate new
keys. Ratcheting was first proposed in the Off-the-Record
Messaging [1] protocol where, with each message round
trip, users establish a fresh ephemeral Diffie-Hellman
shared secret. Signal further developed this idea with their
double-ratchet algorithm [3], which nests two ratchets: an
outer public-key ratchet and an inner symmetric-key ratchet.
This mechanism ensures that the symmetric keys used for
encryption and decryption are updated with every message
sent, as opposed to just on every round trip. The protocol can
recover from past compromises on every round-trip due to
a new Diffie-Hellman secret. Forward secrecy is achieved
for the symmetric keys as the ratchet chain does not allow
one to compute the previous keys from the current message
encryption key, but only the future ones.

More recently, researchers have investigated improvements
offering guarantees against adversaries with quantum com-
puting capabilities. The Signal protocol uses the Extended
Triple Diffie-Hellman (X3DH) Key Agreement Protocol [5]
to negotiate the session key used as the ratchet’s initial root
key. The recently developed PQXDH Key Agreement Pro-
tocol [4] strengthens X3DH by additionally incorporating a
post-quantum KEM like Crystals-Kyber [15], and has been
verified using both ProVerif and CryptoVerif [16], as well as
with a pen-and-paper game-based reduction proof [17]. It has
been proven (see Section 2.2) that PQXDH provides forward
secrecy even in the presence of an adversary with quantum
computing capabilities, provided all KEM private keys remain
uncompromised. However, as the post-quantum KEM is only
used in the setup phase, the subsequent use of Signal’s double
ratchet does not provide post-compromise security against an
adversary with quantum computing capabilities, which PQ3



does. Note that both X3DH and PQXDH additionally provide
cryptographic deniability [18], which is not provided by PQ3
and hence out of scope for our work.

2.2 Verification of Messaging Protocols
There has been considerable research on verifying messaging
protocols using sophisticated constructions like the double
ratchet to achieve strong security guarantees. Researchers
have studied Signal and variants of it from both a computa-
tional and a symbolic perspective, using both pen-and-paper
and machine-checked proofs.

Computational proofs A number of pen-and-paper proofs
of messaging protocols involving double ratchets have been
constructed in the computational setting. This means, in con-
trast to the symbolic model (introduced shortly), that proto-
cols are analyzed with respect to computational definitions
of security. Agents manipulate bit strings, the adversary’s ca-
pabilities are modeled by probabilistic polynomial-time Tur-
ing machines, and security definitions are thus probabilistic.
These models support a more detailed analysis of cryptog-
raphy than symbolic abstractions. However, the proofs can
be quite complex and hence they typically involve their own
abstractions or protocol simplifications. Moreover, given that
the proofs are traditional pen-and-paper arguments, they are
more error-prone than proofs checked by computers. There
are exceptions, namely computational proofs constructed with
tools like CryptoVerif [19], but these are usually limited to
the study of relatively simple combinations of primitives, not
complex protocols like the full Signal or PQ3 double ratchet.

In [20], the authors analyze variants of the double ratchet
protocol in the Universal Composability framework. As part
of their analysis, they consider when keys must be deleted
for different properties to hold. Their proofs are game-based
with detailed security definitions. Game-based proofs are also
given by [21, 22, 23]. In particular, [22] presents a formal
analysis of Signal in the random oracle model. Their focus
is on Signal’s key agreement and they reason about loops
using induction. [23] carries out game-based proofs for a
Signal-like protocol; they provide a rational reconstruction of
a generalized protocol that modularly achieves the different
kinds of properties one wants from Signal and the use of
double ratchets. In all these works, security is shown using
pen-and-paper proofs, which are not machine checked, and
post-quantum security is not considered.

Concomitantly to our work, Stebila carried out a computa-
tional analysis of PQ3 [24], providing a reduction argument
for its security. He also formalizes the hybrid cryptography
integrated into both PQ3’s initialization and double ratchet,
and establishes that this provides both forward secrecy and
post-compromise security against both classical and “harvest
now, decrypt later” adversaries. The modeling of cryptogra-
phy is, as is standard for computational formalizations, more

concrete and detailed than in our approach. In contrast, the
security model, and the proofs (which are game-based, fo-
cused on deriving a bound on the adversary’s advantages) are
considerably more complex, and proofs are pen-and-paper
based, rather than machine checked.

We believe, as Apple researchers also do, that there is sub-
stantial benefit to having both kinds of proofs, as they both
have their relative strengths. Computational proofs capture
the detailed cryptographic assumptions on the operators used.
They can also capture the adversary’s advantage in attack-
ing a protocol, by bounding the probability of success for an
adversary with given computational resources. In contrast,
symbolic proofs better support machine-checked proofs, us-
ing different computer-supported proof techniques, like con-
straint solving and mathematical induction. This supports
giving detailed models of protocols’ and adversary’s oper-
ational semantics, considering unboundedly many protocol
participants and interleaved parallel sessions, and verifying
these against detailed, fine-grained security properties.

This value of symbolic proofs is exemplified by our anal-
ysis of injective agreement [25] (Section 5.3.2), which for-
malizes that a protocol provides replay protection. [24] did
not consider replay in its analysis, and during our TAMARIN
proofs, we uncovered that injective agreement can only be
provided under additional assumptions (not present in [24])
on the session-handling layer.

Symbolic proofs In terms of verification, the works closest
to ours use the symbolic model of cryptography. In this
model, messages are represented as terms in a term algebra
(rather than bit-strings) and one uses possibilistic rather
than probabilistic definitions of security. TAMARIN [8, 9]
and ProVerif [26] are examples of tools constructing proofs
in this setting. For example, to show that a key is a secret,
one would use these tools to prove that, no matter how
arbitrarily many protocol runs are interleaved, including runs
where the adversary is active, the adversary cannot possibly
learn the intended secret. Such proofs may be constructed
automatically or interactively, and attempts to prove false
statements generally yield attacks on the specified properties.

[27] analyzes Signal’s session-handling layer Sesame. They
use TAMARIN to show that, when sessions are accounted for,
Signal does not achieve post-compromise security despite the
double ratchet having this property. In this work, we do not
consider PQ3’s session handling layer as its specification was
not made available to us. Analyzing PQ3 in conjunction with
session handling is an interesting line of future work.

[28] use ProVerif and CryptoVerif [19] to analyze a variant
of Signal where they extract the models they analyze from an
implementation in a JavaScript dialect. Their models are sub-
stantially simplified. For example, they lack the inner ratchet
based on symmetric cryptography and only consider a fixed,
finite number of protocol sessions without loops.

As previously explained, Signal uses the X3DH protocol



to agree on a shared key (the initial root key) prior to the
double ratchet’s start. The post-quantum version PQXDH has
been analyzed in [16] both symbolically, using ProVerif, and
computationally, using CryptoVerif. As the authors explain
“Notably, this is the first machine-checked post-quantum secu-
rity proof of a real-world cryptographic protocol.” While this
is indeed the case, they only consider the initialization part
of the Signal protocol. They do not reason about the double
ratchet construction, which is based on classical cryptography
and thus provides no post-quantum security guarantees.

In [11], the authors analyzed Signal based on an F* im-
plementation. They observe: “Notably, Signal has not been
mechanically analyzed for an arbitrary number of rounds be-
fore. The ProVerif analysis of the Signal protocol in [28]
was limited to two messages (three ratcheting rounds), at
which point the analysis already took 29 hours. (With Cryp-
toVerif, the analysis of Signal has to be limited to just one
ratcheting round).” Their own proof is however also limited
and only verifies properties for the outermost ratchet. In con-
trast, our proof uses induction within TAMARIN to machine
check proofs about both ratchets of PQ3. Even in the classical
setting, ignoring our post-quantum extensions, verifying the
inner ratchet allows us to establish security properties against
stronger adversaries who can compromise session state during
the inner ratchet’s execution.

3 Requirements and Threat Model

3.1 Security Requirements
Secrecy PQ3 was designed to provide strong secrecy guar-
antees, namely message secrecy, forward secrecy, and post-
compromise security. Message secrecy means that as long
as neither participants’ session states are revealed, the adver-
sary cannot learn any of their exchanged messages. Forward
secrecy and post-compromise security limit the window in
which an adversary can learn exchanged messages after they
compromise parts of the session state. We discussed forward
secrecy and post-compromise security already in Section 2.1.
In short, forward secrecy protects protocol participants against
the future compromise of past sessions, and post-compromise
security helps to recover or “self-heal” from a past compro-
mise to communicate secretly again in the present and future.

In our security analysis, we define a secrecy lemma that
captures all three notions of secrecy and that addresses the
precise implications of partial session state compromise. De-
scribing this fine-grained secrecy lemma requires a detailed
understanding of the key material used in PQ3, and is thus
deferred to Section 5.3.1.

Authentication and Replay Protection A message recipi-
ent can identify the message’s sender. We formulate this as an
agreement property: the recipient and sender agree on their
view of the message. For any message received, allegedly

originating from the peer at message counter i, the peer must
have actually sent the message using counter i, intending it to
go to the receiver. Moreover, this agreement is injective [25].
Namely, a given message is only accepted once by the recipi-
ent; hence the protocol provides replay protection.

Note that PQ3 is a device-to-device messaging protocol
and group messaging is not in PQ3’s direct scope. Hence, a
security analysis of group aspects (such as members joining
or leaving groups) is not part of our analysis. In practice,
group messaging scenarios, involving groups of devices, are
handled by sending messages via pairwise runs of PQ3 to all
group members, respectively to all of a user’s devices. Thus,
any such functionality is provided by PQ3’s session-handling
layer and outside of our analysis.

3.2 Threat Model

PQ3 seeks to provide the above security properties even when
the protocol is run in the presence of a strong active net-
work adversary who may have access to a powerful quantum
computer in the future. As an active network adversary, the
adversary can read, reorder, intercept, replay, and send any
message to any participant. We assume though that devices
use strong randomness and that, short of possessing a quan-
tum computer, the adversary cannot factor large numbers or
compute discrete logs. Hence, in the pre-quantum era, cryp-
tographic primitives like (elliptic curve) Diffie-Hellman are
secure against the adversary.

Our threat model explicitly accounts for the possibility that
the adversary may at some point possess a quantum com-
puter. The adversary anticipates future developments in quan-
tum computing and stores all messages sent by the protocol
participants. Therefore, they may be able to break classical
cryptographic primitives later and decrypt messages, when
sufficiently powerful quantum computers become available.
For this reason, the adversary is referred to as a “harvest now,
decrypt later” adversary.

We make two assumptions on the adversary’s future
quantum computing capabilities. First, the adversary will
never be able to decapsulate secrets that were encapsulated
with a post-quantum secure KEM like ML-KEM. They can
only break other cryptographic mechanisms using a quantum
computer, in particular elliptic curve Diffie-Hellman. Second,
as soon as the adversary possesses a quantum computer,
no honest participant runs the protocol. In other words, the
adversary is only a passive quantum attacker, which models
that they “harvest now, decrypt later.” PQ3 only protects
past sessions against quantum attackers. To protect active
sessions, PQ3’s relies on an elliptic curve signature scheme,
which can be broken by a quantum computer.

We make no assumptions about the security of the
devices running the protocol. Hence, the adversary can
additionally compromise any key at any time and our security
properties must therefore account for this. When we analyze



our fine-grained security properties, we will consider the
compromise of secret keys individually, e.g., the possibility
that some, but not all keys, are simultaneously compromised.
This reflects that some keys may be in main memory and
relatively easy to compromise, whereas others (like identity
keys) are stored in Apple’s Secure Enclave and are thus much
harder to compromise.

For setup and session establishment, the protocol leverages
Apple’s IDentity Services (IDS) key directory. We assume
that this directory is secure in that it only distributes the partic-
ipants’ authentic public keys. The problem of key authentica-
tion is orthogonal to PQ3 and has recently been addressed by
Apple with their rollout of “Contact Key Verification” [29].

4 PQ3 Messaging Protocol

PQ3 is a device-to-device messaging protocol where either
device can asynchronously exchange messages at any time,
independent of the connection status of their peer’s device.
We first describe PQ3 at a high-level of abstraction, followed
by a more detailed account. The protocol is described in full
in Appendix C.

4.1 High-level Account
In PQ3, communication between two parties, say Alice and
Bob, works roughly as follows. Suppose that Alice wants to
initiate messaging with Bob.

1. Alice queries Apple’s IDentity Service (IDS) for Bob’s
pre-key material and a long-term identity public key.

2. Alice derives an initial root key, chain key, and message key.
Alice encrypts her first message for Bob using the message
key and sends Bob the ciphertext along with a signature
and the key material necessary to derive the initial root
key.

3. Upon receiving this new message, Bob lacks the key to
decrypt the ciphertext, and so he must derive it. Bob first
queries the IDS to verify Alice’s long-term identity public
key and checks the received signature. He uses the key ma-
terial received from Alice to derive the initial root, chain,
and message key and decrypts the initial message. Alice
and Bob have now established a shared session.

4. As long as the session does not change direction (i.e.,
the current sender keeps sending messages), both parties
perform symmetric ratcheting. In the symmetric ratchet,
participants use the old chain key to derive a new chain
and message key.

5. Whenever the session changes direction (i.e., the current
receiver wants to reply), both parties perform public-key
ratcheting. In the public-key ratchet, participants use the
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Figure 1: Dependency between the keys used by PQ3. Ar-
rows denote that one value is used to derive another. The lock
icons denote KEM encapsulation or decapsulation respec-
tively. Sometimes a zero-byte sequence is used instead of a
root key or KEM shared secret.

old root key and newly sampled asymmetric key material
to derive a new root key.

At this high level of abstraction, Steps 2–5 resemble the stan-
dard double-ratchet construction. But there are significant
differences in the concrete details on how the ratchets are per-
formed, in particular how a post-quantum KEM is integrated
into the ratcheting.

4.2 More Detailed Account
We now expand on the above account. Although this account
is more detailed, we still focus on the essential ideas and we
omit some low-level details, like message and key derivation
tags. Moreover, we describe some additional features of PQ3
at the end of this section. We provide a detailed specification,
which includes auxiliary tags and data fields, in Appendix C.

Keys PQ3 specifies many keys. Every participant has a
long-term identity key, a P-256 ECDSA public/private key
pair to authenticate messages and other key material. Long-
term identity public keys are distributed and authenticated
using the IDS. All other keys are used to derive message keys.
Figure 1 depicts the dependencies between these keys.

We start by introducing PQ3’s three types of symmetric
keys. These symmetric keys are always derived with respect
to a given public-key ratchet step (identified by i in Fig. 1).
Message keys (depicted as mki,0) are the message encryption
keys and are derived from chain keys (depicted as cki,0/1).
Chain keys are derived from either previous chain keys or
initially from the same entropy sources as root keys. Root
keys (depicted as rki/i+1) are used in every public-key ratchet
step and, in particular, maintain the entropy from previous
public-key ratchets.
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1 Figure 2: PQ3’s public-key ratchet. Each block 1-4
illustrates a public-key ratchet step. We omit the sym-
metric ratchet; chain and message keys are derived
from the output of the HKDF (denoted by “. . . ”). In
Step 1, Alice initiates a session with Bob and uses
pre-key material (white box) to derive a root key. Al-
ice sends a freshly encapsulated shared KEM secret
(lock icon), and a freshly sampled ECDH public key
to Bob that Bob can use to derive session keys. New
KEM shared secrets are only encapsulated and shared
when a new KEM public key was sent in the previous
public-key ratchet (see block 4). Orange/gray key pairs
denote ML-KEM keys, green/blue key pairs denote
ECDH keys. This figure was inspired by [3].

Root and initial chain keys are derived from three entropy
sources: the session’s previous root key (or a zero-byte se-
quence upon session start; rki in Fig. 1), an ECDH shared
secret (“DH” in Fig. 1), and optionally a KEM shared secret
(replaced with a zero-byte sequence when omitted; “KEM SS”
in Fig. 1). To establish these shared secrets, every client uses
P-256 ECDH public/private key pairs, which we call ECDH
keys, and ML-KEM 768 or 1024 public/private key pairs,
which we call KEM keys. Clients establish the ECDH shared
secret by combining an ECDH public key from their peer with
their own ECDH private key (“ECDH Pub/Priv” in Fig. 1).
Clients establish the KEM shared secret either by encapsulat-
ing it for their peer using their peer’s KEM public key or by
having their peer encapsulate it for them and decapsulating it
with their own KEM private key (“KEM Pub/Priv” in Fig.1).

In general, every client uses distinct, fresh ECDH and KEM
keys for every session, the public part of which they send in
PQ3 messages to their peer. These session-specific keys are
called ephemeral keys. Ephemeral keys are short-lived and
used only for a specific session. To support asynchronous mes-
saging, clients use ECDH and KEM public pre-keys instead
of their ephemeral counterparts upon session start (the ECDH
and KEM keys depicted in Figure 1 could be either ephemeral
or pre-keys). Clients upload their pre-keys to the IDS using
timestamped pre-key bundles, which are signed with their
long-term identity key. Clients can fetch their peers’ pre-keys
from the IDS to start a new session with any of their peers’
clients without requiring that client to be online. Pre-keys can
be reused in multiple sessions, but are only used upon session
start. PQ3 uses ML-KEM 768 key pairs for ephemeral KEM
keys and ML-KEM 1024 key pairs for KEM pre-keys.

Session Establishment In the following, we assume, as be-
fore, that Alice wishes to establish a new session with Bob.
We depict an example run of PQ3 in Figure 2, specifically
showing the key derivations of both parties. The figure shows
four public-key ratchet steps (numbered 1-4). Step 1 illus-

trates session establishment as explained next. Note that all
messages sent between parties include a signature by the
respective sender for authentication purposes using their long-
term identity key. We omit signatures, long-term identity keys,
the steps of the symmetric ratchet, and sent messages from
the figure to avoid clutter and to focus on the key material
used in root key derivation.

Alice’s actions are depicted in the left, blue half of Figure 2.
Alice initiates her session with Bob by performing an IDS
query for Bob’s identity. Alice thereby learns three keys from
the query’s result: Bob’s long-term identity public key, an
ECDH public pre-key, and a KEM public pre-key. Query-
ing and using pre-keys is depicted within the white box in
Figure 2. Alice then generates a fresh ECDH ephemeral pub-
lic/private key pair (“Priv/Pub” in Step 1) and encapsulates
a fresh KEM shared secret with Bob’s public pre-key (lock
icon in Step 1). The encapsulation algorithm provides Alice
with the cleartext KEM shared secret for her use (shown as
“SS” in Step 1), and ciphertext to be given to Bob (the lock
to the right of “SS”, showing that it used the KEM public
pre-key from above). Bob can decapsulate the KEM shared
secret with his KEM private pre-key to receive the same KEM
shared secret. Alice then combines her ECDH ephemeral pri-
vate key with Bob’s ECDH public pre-key to obtain the initial
ECDH shared secret (depicted as “DH”).

Alice now proceeds to derive the initial root key (and the
associated initial chain key) from a zero-byte sequence, which
stands in for the previous root key, together with the ECDH
shared secret and the KEM shared secret, visible on the far left
of Figure 2 as “HKDF” in Step 1. She uses the initial chain key
to derive a message key, which she uses to encrypt her initial
message. She then sends Bob the following: The ciphertext,
her ECDH ephemeral public key, the KEM encapsulation
(with the latter two shown in Figure 2), a hash of Bob’s public
pre-keys used (called the pre-key hash), and her signature on
all these elements.

Bob uses that message to derive the initial root and chain



key. Bob’s actions are depicted in the right, green half of
Figure 2. Bob first performs an IDS query to receive Alice’s
long-term identity public key (not depicted in Figure 2), which
he uses to verify the message signature. Bob then looks up
the private parts of his pre-keys used by Alice, which are
identified by the pre-key hash. Bob decapsulates the KEM
encapsulation to obtain the KEM shared secret (the open
lock symbol in Step 1), and combines Alice’s ECDH public
ephemeral key with his ECDH private pre-key to establish the
ECDH shared secret (“DH” in Step 1). With these two values
(and the zero-byte sequence), Bob computes the initial root
and chain key (illustrated by “HKDF” in Step 1) and derives
a message key from that chain key to decrypt the ciphertext.

Symmetric Ratchet With a shared root key established,
Alice can send any number of additional messages to Bob
without the participants updating the root key. Nevertheless,
each of these messages will be encrypted with a distinct key
derived by symmetric ratcheting. Whenever a participant en-
crypts a message, they use the current chain key to derive a
message key, and then ratchet the chain key forward by deriv-
ing a new chain key from the previous one. PQ3 establishes
per-message forward secrecy as soon as the previous chain
and message keys are deleted, i.e., participants should only
store the latest root and chain key. The symmetric ratchet,
though, is only executed as long as the conversation’s direc-
tion does not change, i.e., as long as the current sender keeps
sending. Whenever the current receiver wishes to respond,
they perform a public-key ratchet instead.

Public-Key Ratchet Suppose, after receiving some mes-
sages from Alice, that Bob wants to reply. This means that
the conversation changes direction, and whenever this hap-
pens clients perform the public-key ratchet. Every public-key
ratchet updates the root key and derives a new, initial chain
key. The steps taken to derive these new keys are similar to
the steps taken during session establishment. Figure 2 illus-
trates (next to session establishment) three further public-key
ratchet steps (numbered 2-4).

To perform the public-key ratchet, Bob first generates a
fresh ECDH ephemeral public/private key pair. Depending
on the conversation’s state, Bob may additionally perform
either of the following two actions: (i) use the encapsulation
algorithm to produce a new KEM shared secret and cipher-
text (for decapsulation by Alice), or (ii) generate a new KEM
ephemeral public/private key pair. Action (i) is performed
whenever Bob’s peer, Alice, performed Action (ii) in the pre-
vious public-key ratchet. To save bandwidth, Action (ii) need
not always be performed. Instead, a custom heuristic deter-
mines when a client refreshes its KEM keys. The heuristic
accounts for the threat environment, performance, and other
requirements. As per iOS 17.4, PQ3 clients send a fresh KEM
public key roughly every 50 messages or whenever they have
not sent a fresh KEM public key within a week [30].

Bob then derives the next root key and the associated initial
chain key. He first combines his freshly generated ECDH
ephemeral private key with Alice’s ECDH ephemeral public
key to obtain the new ECDH shared secret. He then uses the
previous root key, the new ECDH shared secret, and either the
new KEM shared secret or a zero-byte sequence (depending
on whether Bob performed Action (i)) to derive the next root
key and associated initial chain key. He again derives a mes-
sage key from that chain key to encrypt his message and sends
Alice the following values: the ciphertext, his fresh ECDH
ephemeral public key, optionally the new KEM encapsulation
(Action (i)), optionally his new KEM public key (Action (ii)),
and a signature on all the above.

Figure 2 depicts in Step 3 that Alice generates a new
ephemeral KEM public/private key pair and sends the corre-
sponding public key to Bob, i.e., Alice executes Action (ii)
above. This means that Bob will execute Action (i) in Step 4.

Overall, the cryptographic constructions used are hybrid:
all key derivations incorporating a KEM shared secret also
involve classical secrets. This design entails (and we establish
this formally in our proofs) that PQ3’s security is at least as
strong as when using classical cryptography alone. The re-
peated use of the KEM encapsulation in the protocol therefore
strictly strengthens the protocol to provide post-compromise
security even against a “harvest now, decrypt later” adversary
who managed to access some KEM shared secret.

5 Security Proofs

In this section, we describe how we modeled PQ3 and proved
it secure using TAMARIN. In the following, we briefly intro-
duce TAMARIN (Section 5.1), describe our protocol model
(Section 5.2), the formal security properties (Section 5.3),
and our proofs (Section 5.4). Our protocol model covers PQ3
in all of its complexity, i.e., its nested loops, combination of
cryptographic primitives, and the different options modeled
for the adversary to abuse those primitives. We discuss limita-
tions and proof effort in Section 5.5. All our formal models
and proofs are openly accessible on GitHub [10].

5.1 Background on Tamarin
TAMARIN works in the symbolic model of cryptography,
which supports a high degree of automation when construct-
ing proofs. TAMARIN uses labeled multiset rewriting rules to
model setup assumptions and the behavior of protocol partici-
pants. The participants play in so-called roles, where the pos-
sible actions of each role are given by sets of rules. TAMARIN
verifies security properties with respect to an active network
adversary who can read, intercept, reorder, replay, and send
messages. In addition to this built-in adversary, modelers can
give the adversary additional capabilities using explicit rules.

Each rule has a premise and conclusion. These consist
of (potentially persistent) facts, which store the terms that



TAMARIN manipulates and reasons about. The rules together
specify an infinite-state transition system. Each state of this
transition system includes the protocol-state associated with
each role instance, the adversary’s knowledge, all messages
being sent on the network, and more. To apply a rule, the facts
in its premise must be found in the current global state. When
a rule is applied, all non-persistent facts appearing in the
premise of the rule are removed from the state and instances
of all facts in the conclusion of the rule are added.

All rules are labeled and TAMARIN reasons about traces,
which are sequences of the instantiated rules’ labels. For this,
TAMARIN supports a subset of first-order logic to specify
the properties one then proves. Furthermore, formulas in this
logic can also be used to specify restrictions on which traces
TAMARIN should consider when proving theorems. Restric-
tions can be used, for example, to state that a participant
performs a certain check, e.g., signature verification, in which
case traces with failed checks would be excluded.

To model different cryptographic primitives, TAMARIN
supports a number of built-in equational theories, for example,
for symmetric encryption and message signing. The user can
additionally define their own equational theories.

TAMARIN reasons using backwards search. Starting from
the protocol’s specification, it negates the property to be veri-
fied and searches for a trace representing an attack. If there
cannot exist any such trace, this proves the property. Internally,
TAMARIN uses constraint solving, and supports both an auto-
matic mode and an interactive mode. Each step is machine-
checked, using sound and complete proof rules. However, as
the underlying problem is undecidable, there is no guarantee
of termination. Users can help TAMARIN construct proofs in
an interactive mode, where again the prover (soundly) checks
each proof step. Users can also help TAMARIN by specifying
auxiliary properties that can be proven once and for all and
that can be reused in larger proofs.

Finally, TAMARIN also supports a form of induction. This
is essentially an induction on the length of a trace with a
distinguished special last timepoint. Timepoints in general
provide an order on the steps in the protocol. For the special
last timepoint, the property must be proven, with it being
assumed at all previous timepoints. We explain TAMARIN’s
induction scheme more detailed in Appendix A.1.1.

5.2 Protocol Model

We used TAMARIN to comprehensively model PQ3 as de-
scribed in Section 4.2. Our model comprises a set of rules and
restrictions, modelling PQ3 as a state transition system, and
an equational theory, modelling cryptographic primitives. In
this section, we describe the rules and restrictions and refer
to Appendix B for details on our equational theory. The full
protocol model is provided on GitHub [10].

We provide an overview of our model’s protocol rules in
Figure 3. Our formal model has three parts. The first part

models the generation of long-term signing keys and pre-
keys (rule UserKeyGen), and IDS queries (rule QueryIDS).
These are setup rules, which are the same for all participants,
independent of whether they start a session as the sender or
receiver. The second and third part model the adversary’s
capabilities and PQ3’s protocol flow respectively.

In our model of the adversary’s capabilities, we allow the
adversary to compromise every private, root, chain, and mes-
sage key through dedicated reveal-rules, unless our security
lemmas explicitly forbid a certain key to be revealed. Addi-
tionally, we model the “harvest now, decrypt later” capabil-
ity as follows. Whenever participants generate a non-post-
quantum-secure key, like a fresh ephemeral ECDH private
key, our model saves the key in a persistent state fact (i.e., a
fact that is not consumed when it is used in a rule’s premise).
The adversary can then access any secrets stored this way af-
ter the rule PQAttackerStart is applied, but from that point
on, no honest participant runs PQ3.

Our model of PQ3’s protocol flow is depicted as the big
blue box in Figure 3. The left-hand side depicts all sender-
related rules, the right-hand side all receiver-related rules,
and in the center is a Session fact that stores all information
needed to send and receive messages. For example, a Session
fact stores a participant’s most recently generated ECDH and
KEM private keys and the corresponding public keys of their
peer, as well as any derived root and chain keys.

A new session is started by applying one of the rules
SessionStartAsSender or ReceiverStart. These are the
only two rules that only produce and do not consume a
Session fact. Most other rules update a session, i.e., they
consume and produce a Session fact, and they can be ap-
plied arbitrarily many times per session. After a new session
has started, one of two things can happen. Either the conver-
sation does not change direction and then both participants
will apply the symmetric ratchet rules, or the conversation
changes direction and the public-key ratchet rules are applied.

When being the receiver, a participant may non-
deterministically choose to become sender. When they do,
they perform the public-key ratchet. Depending on whether
their peer had sent them a new KEM public key previously,
they may additionally encapsulate a new KEM shared secret.
Also, the new sender may non-deterministically send a new
KEM public key themself to their peer.

A participant changes from the sender to the receiver role
when they receive a new message while being in the sender
state. When a participant becomes the receiver, they perform
the public-key ratchet as well. In one of the two rules, they do
so using a decapsulated KEM shared secret, and in the other
rule they use a zero-byte sequence instead.

Intuitively, one can consider our model as implementing
two nested loops. First, there is the outer, public-key ratchet
loop where participants generate new ephemeral ECDH secret
keys and derive root and chain keys. Second, there is the inner,
symmetric ratchet loop where participants derive message
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Figure 3: Overview of our formal model. Rectangles
denote rules and ellipses denote facts, with their respec-
tive name printed inside. Arrows denote fact consump-
tion and generation or rule transition. The white rect-
angle around Some/NoFreshKemSk denotes that either
of the rules is applied non-deterministically. The rule
PQAttackerStart can be applied at any point. When
this happens, protocol execution halts (modeling a “har-
vest now, decrypt later” adversary) and thereafter the
rule PQAttacker can be applied, which reveals any non-
post-quantum-secure secret to the adversary. This figure
omits rules that reveal key material.

keys and send messages. The symmetric ratchet loop always
runs within one iteration of the public-key ratchet loop.

5.3 Properties Specified
5.3.1 Secrecy

PQ3 aims to satisfy three secrecy properties: message se-
crecy, forward secrecy, and post-compromise security. In our
formalization, we combine all three into a single property.
This property is formulated as a formula, called a lemma in
TAMARIN, as one must prove that it holds for the protocol.

Figure 4 contains our secrecy lemma.1 It states that the
adversary cannot know a message (line 4) that has been previ-
ously sent (line 2), unless the adversary succeeds in at least
one of four kinds of compromise, listed below. The kinds of
compromise are formulated with respect to the keys refer-
enced by the SessionSecrets fact. This fact lists all keys
and shared secrets used by the sender when sending the re-
spective message, e.g., their most recently sampled ephemeral
ECDH public key (myEcdhPk) and the most recently encap-
sulated KEM shared secret (kemSS). We sketch a possible
attack for each kind of compromise to show that our secrecy
lemma is tight. Namely, dropping any but the first disjunct
yields a counterexample. To learn a message sent with PQ3,
the adversary must compromise at least:

• The message key used during encryption from either the
receiver or sender (line 5 in Figure 4). Should the adver-
sary learn the message key, they could simply decrypt the
message themself.

• One of the chain keys used in the symmetric ratchet to
derive the message key from either the receiver or sender
(lines 6-7; a << b denotes that a is a subterm of b [31]).
Should the adversary learn one of these chain keys, they
could simply derive the message key themself.

1In the following, we will sometimes shorten the names of facts in lemmas
when compared to the source files, e.g., RevealIdentityKey may become
RevealIDKey.

• The recipient’s long-term identity key before the message
msg was sent (line 8). In this case, the adversary could gen-
erate a fresh ECDH ephemeral and KEM encapsulation key
and send them to the messaging partner in question. This
attack allows the adversary to carry out all communication
in their victim’s stead.

• One of the ephemeral ECDH secret keys, used to derive
the most recently established ECDH shared secret, and the
KEM shared secret (lines 9-14). This allows the adversary
to perform a public-key ratchet step themself.

The adversary can learn an ECDH secret key either through
direct compromise (lines 10-11) or using a quantum com-
puting attack when a sufficiently powerful quantum com-
puter becomes available (line 9). The compromise of the
sender’s ECDH pre-key has no effect because a sender will
always sample a fresh ECDH ephemeral key upon session
start.

The KEM shared secret can be effectively compromised in
two ways. First, the adversary can compromise the KEM
secret key used for encapsulation (lines 12-13). Second, the
adversary can circumvent the need to directly compromise
the KEM shared secret by compromising a root key derived
after that KEM shared secret was established (line 14). In
the latter case, if the adversary additionally learns an ECDH
secret key used in a subsequent public-key ratchet step, they
can derive the respective initial chain key themself.

In addition to the ECDH and KEM shared secret, the adver-
sary also requires the root key from the previous public-key
ratchet to perform the current public-key ratchet themself.
Our threat model, however, permits this root key to be re-
vealed to the adversary in general.

Our protocol model allows the adversary to access all pri-
vate, message, chain, and root keys unless a lemma explicitly
forbids it. In particular, our secrecy lemma only forbids the
adversary to access key material related to the key material
used for sending the message. All key-reveal assumptions in
lines 5-14 refer to the key material referenced in line 3, which



1 All id me them msg myEcdhPk theirEcdhPk kemSS encapPk chainKey msgKey #t.
2 ( Sent(id,_,me,them ,msg) @ t
3 & SessionSecrets(myEcdhPk ,theirEcdhPk ,kemSS ,encapPk ,chainKey ,msgKey) @ t)
4 ==> (not Ex #x. K(msg) @ x)
5 | (Ex #x. RevealMessageKey(me,msgKey) @ x) | (Ex #x. RevealMessageKey(them ,msgKey) @ x)
6 | (Ex ckC #x. RevealChainKey(me,ckC) @ x & (ckC << chainKey | ckC = chainKey))
7 | (Ex ckC #x. RevealChainKey(them ,ckC) @ x & (ckC << chainKey | ckC = chainKey))
8 | (Ex #x. RevealIDKey(them) @ x & #x < #t)
9 | ( ( (Ex #x. PQAttack() @ x)

10 | (Ex #x. RevealECDHPreKey(them ,theirEcdhPk) @ x)
11 | (Ex #x. RevealECDHKey(id,me,myEcdhPk) @ x) | (Ex #x. RevealECDHKey(_,them ,theirEcdhPk) @ x))
12 & ( (Ex #x. RevealKemKey(me,encapPk) @ x) | (Ex #x. RevealKemKey(them ,encapPk) @ x)
13 | (Ex #x. RevealKemPreKey(me,encapPk) @ x) | (Ex #x. RevealKemPreKey(them ,encapPk) @ x)
14 | (Ex k #x. RevealRootKey(me,kemSS ,k) @ x) | (Ex k #x. RevealRootKey(them ,kemSS ,k) @ x)))

Figure 4: Secrecy lemma. The lemma formalizes that if a message msg was sent using the secret values referenced by
SessionSecrets, then either the message cannot be known by the adversary (line 4) or the adversary compromised a specific
combination of keys (lines 5ff.). Section 5.3.1 explains this lemma, line-by-line, in further details.
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Figure 5: A participant derives four initial chain keys (k1-k4)
over time and the adversary compromises k2 and k3 at times t1
and t2 respectively. No matter at which point in time (compare
t1 with t2), key compromise has similar and limited effect: The
adversary can only learn messages sent before the next initial
chain key is derived (the shaded areas).

in turn is bound to the Sent event in line 2 (by the temporal
variable t). Thus, proving secrecy establishes forward secrecy
and post-compromise security as we explain next.

For long-term identity keys, we show that PQ3 provides
forward secrecy in that all messages exchanged prior to the
compromise of such a key remain secure (see line 8). For most
encryption keys (exceptions and details below), we establish
forward secrecy and post-compromise security in that to com-
promise some given message, the adversary must learn the
respective key used for that message and the compromise of
past or future keys has no effect. Note that “past” and “future”
here refer to the points in time when a key was used, not when
it was compromised. In particular, this allows us to establish
post-compromise security guarantees even after the adver-
sary obtained a quantum computer and participants stopped
running the protocol. Although participants will no longer
rotate keys, as they no longer run the protocol, they will have
self-healed from the compromise of any other key than the
one used most recently. For an illustration, see Figure 5.

For some keys, forward secrecy and post-compromise se-
curity are only established under further constraints. In these
cases, our secrecy lemma precisely defines the point in time
at which forward-secrecy or post-compromise security are
established. We list all forward secrecy and post-compromise

security guarantees entailed by our secrecy lemma below
and, wherever necessary, describe the constraints on these
guarantees. When the adversary does not possess a quantum
computer, PQ3 provides:

• Forward secrecy w.r.t. either peer’s long-term identity keys.

• Forward secrecy and post-compromise security w.r.t. ECDH
ephemeral keys.

• Post-compromise security w.r.t. ECDH pre-keys as soon
as a new ECDH ephemeral key is generated by a session’s
initial recipient.

In practice, PQ3 also provides forward secrecy for ECDH
pre-keys as it requires that participants update their pre-keys
registered at the IDS every 2 weeks. As soon as a client
registers a new pre-key, they establish forward secrecy for all
previous session-start messages sent to them.

Should the adversary at some point break all non-ML-KEM
keys using a quantum computer, PQ3 still provides:

• Post-quantum forward secrecy and post-compromise secu-
rity w.r.t. ML-KEM keys.

• Forward secrecy and post-compromise security w.r.t. chain
and message keys. For chain keys, PQ3 establishes post-
compromise security upon the next public-key ratchet
against chain key compromise. PQ3 establishes both proper-
ties even when the adversary possesses a quantum-computer
because these keys depend on KEM-encapsulated secrets.

Note that working out and rigorously proving such fine-
grained notions of secrecy is nontrivial and one strongly ben-
efits here from a proof assistant. Overall, our TAMARIN proof
of secrecy establishes that, in the absence of the sender or
recipient being compromised, all keys and messages trans-
mitted are secret. The secrecy property is fine-grained in that
compromises can be tolerated in a well-defined sense where



1 All id i s r m #t. Received(id, i, s, r, m) @ #t
2 ==> ( (Ex #x. Sent(_, i, s, r, m) @ #x & #x<#t)
3 | (Ex #x. RevealIDKey(s) @ #x & #x<#t))

Figure 6: Agreement lemma. This formalizes that for ev-
ery message-receive event, there must be a corresponding
message-send event for which the participants agree on the
sender, receiver, and message counter, unless the sender’s
long-term identity key was previously compromised.

1 All s1 s2 r1 r2 m rEcdhPk1 mk1 rEcdhPk2 mk2 #t1 #t2.
2 ( Received(_, _, s1, r1, m) @ #t1
3 & SessionSecrets(rEcdhPk1 , _, _, _, mk1) @ #t1
4 & Received(_, _, s2, r2, m) @ #t2
5 & SessionSecrets(rEcdhPk2 , _, _, _, mk2) @ #t2)
6 ==> ( (#t1 = #t2)
7 | ( rEcdhPk1 = rEcdhPk2 & mk1 = mk2
8 & s1 = s2 & r1 = r2
9 & Ex #x. ECDHPreKeyGen(r1, rEcdhPk1) @ #x)

10 | (Ex #x. RevealIDKey(s1) @ #x & #x < #t1 )
11 | (Ex #x. RevealIDKey(s2) @ #x & #x < #t2))

Figure 7: Injective agreement lemma. It formalizes that for
two message-receive events of the same message m, either
these events must be the same (line 6), or they were sent using
the recipients pre-key (lines 7f.), or one sender’s identity key
was compromised (lines 10ff.).

the effect of the compromise on the secrecy of data is lim-
ited in time and effect as detailed above. Moreover, we show
that PQ3 combines the security of both classical and post-
quantum-secure cryptographic primitives. Hence, to break
PQ3 one must break both.

5.3.2 Agreement

In contrast to secrecy, formalizing agreement is much sim-
pler. This is because PQ3 relies on the participants’ long-term
identity keys’ security to provide agreement. Compromise
of a participant’s long-term identity key is both necessary
and sufficient to break agreement. It is necessary because an
attacker must generate a message signature when trying to
spoof a sender, and it is sufficient because a sender need not
compromise the sender’s encryption keys to send an inau-
thentic message; they can simply generate their own and send
them alongside the faked message.

Our formalization of agreement is split into two TAMARIN
lemmas (Figures 6 and 7). The first lemma formalizes agree-
ment: Whenever a participant r receives a message m, ap-
parently from s and with message counter i, then either s
had previously sent m to r with counter i or that senders’
long-term identity has been compromised in the past.

The second lemma formalizes that the agreement is injec-
tive [25], meaning that there is a one-to-one mapping from
receive-events to send-events. This lemma states that for every

two honest message-receive events of the same message, these
events must either be the same (#t1 = #t2), or a recipient’s
ECDH pre-key rather than an ephemeral key was used to de-
rive the message key (lines 7-9), or either of the senders were
compromised. Compromise of one sender suffices to violate
injective agreement because agreement does not entail secrecy.
The adversary could learn a message by compromising the
ECDH and KEM keys of the session. They could then send the
message again, which requires the compromise of a long-term
identity key, however, to produce the necessary signature.

During our proof efforts, we noticed a trivial violation of
injective agreement, which is covered by lines 7-9. Clearly,
PQ3 cannot provide injective agreement for session-start mes-
sages (and messages sent as part of the symmetric ratchet
directly thereafter) as pre-keys can be reused for session starts.
Thus, recipients will accept session-start messages multiple
times. In practice, this case must be addressed by the session-
handling layer, which defines under which conditions clients
will accept session-start messages from devices they already
have an existing session with. We shared this finding with
Apple researchers who confirmed that their session-handling
layer indeed addresses this case. Put differently, our formal
proofs highlight precisely the assumptions on the session-
handling layer needed to securely deploy PQ3.

5.4 Proofs & Proof Methodology

We describe here our proofs and proof methodology for PQ3.
Our proof methodology applies to theories that include (possi-
bly nested) loops and for which trace formulas like secrecy or
authentication are to be proven. We present our methodology
more generally and with further details in Appendix A.

We encountered two challenges when verifying PQ3. First,
PQ3 employs a nested loop. If not carefully handled, loops
result in prover non-termination as they are unrolled infinitely
often. TAMARIN provides induction to address this prob-
lem, but using induction correctly, especially when loops are
nested, requires postulating nontrivial auxiliary lemmas.

Second, our threat model considers the leakage of “syn-
thetic” key material, derived using a KDF, and our lemmas
naturally must refer to this key material. When proving se-
crecy, we repeatedly encountered cases similar to the follow-
ing. TAMARIN would consider an honest session sending a
message, claiming that the adversary could get the decryption
key for this message (violating secrecy) from a completely
unrelated session. We call such unrelated sessions ghost ses-
sions. In this case, the non-trivial proof goal was to convince
TAMARIN that the ghost session must be the same as the
honest session or the peer’s session. Note that other protocol
models typically only consider the leakage of “atomic” key
material, i.e., key material modelled as a fresh term.

To address these two challenges, our methodology uses
three kinds of auxiliary lemmas.
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Figure 8: Connection of Adversary-Construction Lemmas for
Message Secrecy. Arrows denote logical implication.

Loop-Jump Lemmas These lemmas allow one to skip un-
rolling the steps of a (nested) loop and jump to a “relevant”
point in a loop, for example, its beginning or where a specific
term was introduced.

Variable-Linking Lemmas These lemmas establish that for
two instances of the same fact using two variables a and b, if
both facts have the same value for a, they must have the same
value for b.

Adversary-Construction Lemmas These lemmas formal-
ize how an adversary could construct a term. Typically, the
adversary can either construct it or access it using a dedicated
reveal rule (which in turn typically implies a contradiction
to the threat model). Figure 8 depicts our model’s adversary-
construction lemmas. For example, CkCompromise states that
the adversary can only know a chain key if they know the
value that gets split into the root and chain key (rkCK), or they
compromised this or a previous chain key.

Loop-jump lemmas are the foundation for proving proper-
ties of models including nested loops. Without such lemmas,
TAMARIN’s induction fails to prove even the simplest proper-
ties of an outer loop. The induction hypothesis will not apply
in cases where a step in the outer loop is directly preceded
by a step in an inner loop. Moreover, adversary-construction
lemmas are required to deal with the complicated terms that
are computed in nested loops, and variable-linking lemmas
are required to address ghost sessions.

We proved secrecy for PQ3 using a series of adversary-
construction lemmas, depicted in Figure 8, which in turn
were proven using the loop-jump and variable-linking lem-
mas in Figures 9 and 10. Concretely, when proving secrecy,

msgKey chainKey rootKey

MkCkRel. CkRkRel.

RkFixesEcdhSS

RkFixesKemSS

KemSSOrigin

kemSS

ecdhSS

Figure 9: Loop-Jump (orange) and Variable-Linking Lemmas
(blue) Related to Key Derivation. Black arrows indicate which
variables are used to construct other variables, e.g., a message
key is derived from a chain key.

ecdhSS
theirEcdhPk

myEcdhPk

ECDHSkOrigin

ECDHSkOrigin

kemSS
theirKemPk

myKemPk

encapPk

theirNewKemPk

KemKeyOriginEncap

KemKeyOriginDecap

MyKemKeyOrigin

TheirKemKeyOrigin

MaybeNewKemKeyOrigin

Figure 10: Loop-Jump Lemmas (orange) Related to Establish-
ing Shared Secrets. Black arrows indicate which key material
can be used to establish which shared secret.

TAMARIN first negates the original lemma and tries to con-
struct a trace satisfying the negated lemma, i.e., TAMARIN
tries to construct a trace where a message has been sent and
the adversary knows it. By solving for how the adversary
could learn the message, TAMARIN deduces that the adver-
sary must know the message key used for encryption. This
allows us to apply the first adversary-construction lemma
MkCompromise. This lemma expresses that the adversary
can only know the message key if they either know the re-
spective chain key (allowing us to apply the next adversary-
construction lemma) or if they access a reveal rule (contra-
dicting our threat model assumptions directly). In the case
where the adversary knows a respective smaller term, we can
apply the next adversary-construction lemma, etc. Finally, the
lemmas ECDHSSCompromise and KemSSCompromise directly
contradict the threat model.

We proved these adversary-construction lemma using the
loop-jump and variable-linking lemmas depicted in Fig-
ures 9 and 10. A sequence of variable-linking lemmas (de-
picted in blue) connect message to chain to root keys and
to the respective KEM shared secret and ECDH shared se-
cret (Figure 9). Loop-jump lemmas (depicted in orange)
then connect the shared secrets to the asymmetric key
material used to establish them (Figure 10). This allows
TAMARIN to deduce that access to the shared secret re-
quires access to the respective private key material. Be-
yond the lemmas depicted in Figures 9 and 10, we only use
the three loop-jump lemmas RootKeyConnectionReceive,
RootKeyConnectionSend, and SessionStart, which jump



from an instance of the symmetric ratchet to the most re-
cent public key ratchet (switching from sender to receiver or
receiver to sender respectively) and the session start.

We proved both agreement lemmas much like we proved
secrecy, but proving agreement was much simpler. PQ3 pro-
vides agreement by signing every message. When trying to
prove non-injective agreement, TAMARIN immediately finds
that to violate agreement, the adversary must generate this
signature themself, which in turn requires access to the sign-
ing key. The rule that introduces the signing key, however,
can directly be established using the SessionStart lemma
as signing keys are queried only upon session start.

When attempting to prove injective agreement, TAMARIN
will start by constructing a trace with two honest receive
events for the same message. Using variable-linking lem-
mas, we can establish that these two sessions must use the
same ECDH shared secret, and using the respective loop-
jump lemmas, we can jump to the rule instantiation where
the receiver generated their latest ECDH ephemeral key. This
allows TAMARIN to derive that the two receive events must
have happened in the same session (unless a pre-key was
used; but this case is addressed in the lemma directly).

Finally, we only use six auxiliary lemmas not fitting
the categories defined above. These lemmas simply limit
TAMARIN’s search space to reduce proof construction time.
For example, they show that certain events (like session start)
can only occur once, or establish well-formedness conditions
(for example, that the root key is a subterm of the chain key).

5.5 Discussion

5.5.1 Scope of Analysis

Our analysis covers the protocol design as described in the
documentations we received from Apple. PQ3’s implementa-
tion is not part of our analysis. Furthermore, as our analysis is
based on symbolic models, it abstracts away some details of
the concrete implementation, like message lengths and some
algorithmic details of the ciphers used.

Our model does not consider session management, it does
not consider long-term identity or pre-key rollover, and it only
considers group messaging implicitly. However, PQ3 imple-
ments group messaging using multiple, individual device-to-
device sessions, and our analysis establishes the security of
each such session. We did not model session management as
a specification of iMessage’s session management was not
available to us. Moreover, PQ3 is not limited in its use to
iMessage. Different applications may have different require-
ments on their session handling. Studying PQ3 in isolation
is therefore desirable in its own right. Finally, PQ3 specifies
an authenticated data field for messages, however, puts exact
values as out-of-scope. We did not model this field explicitly
as our model proves agreement on the entire message (thus
subsuming authenticated data).

Beyond the limitations just mentioned, our formal model
incorporates all details that were part of the documentation
provided to us by Apple. In particular, we did not abstract
away any protocol steps that participants would take.

5.5.2 Proof Effort

Our TAMARIN model comprises 32 lemmas in total. Next to
the auxiliary lemmas used to prove secrecy and agreement
(Section 5.4), our model includes a sources lemma, which aids
TAMARIN in precomputation steps, and two executability lem-
mas. Executability lemmas effectively “sanity check” a proto-
col specification by establishing that the participants can run
the protocol without adversary involvement. This enhances
our confidence that the protocol model faithfully represents
the protocol and that its properties do not hold trivially.

All proofs are guided by custom proof heuristics and find-
ing the right heuristics to successfully construct proofs re-
quired substantial efforts for many lemmas. For example,
checking the proof for the lemma formalizing injective agree-
ment (Section 5.3.2) takes around 7 hours and requires 20 GB
of RAM on a server using an Intel Xeon CPU E5-2650 v4
@ 2.20GHz. The proofs of other lemmas require up to 100
GB of RAM to be checked. Overall, we estimate that proving
PQ3 took around 2.5 person-months of work.

6 Conclusions

We have used TAMARIN to formally verify the device-to-
device messaging protocol PQ3. Our analysis is based on
machine-checked proofs of fine-grained secrecy and authenti-
cation properties. This provides a high degree of assurance
that PQ3 functions securely against an active network ad-
versary who can selectively compromise parties, even when
sufficiently powerful quantum computers become available.
Additionally, the properties we prove give a detailed account
of the impact that the compromise of every individual key has.
Lastly, we show that TAMARIN is up to the task of reasoning
about complex protocols with nested loops, and we have given
a general methodology for doing this.

Future work Of particular interest would be the formal
analysis of PQ3’s session handling layer. [27] established that
Signal may not provide post-compromise security in prac-
tice due to its implementation of session handling (see Sec-
tion 2.2). Whether the same applies to PQ3 remains an open
question. Furthermore, our formal model could be extended
to account for IDS key roll-over, i.e., of long-term identity and
pre-keys, and it could be extended to incorporate enhanced
models of cryptographic primitives, such as those suggested
by [32, 33, 34, 35].



Ethics Discussion We have carefully considered the ethics
of the presented work and argue as follows that our work is
inherently ethical. PQ3 will be used by billions of users and
proving its security benefits and protects these users. We have
found no attacks that would warrant responsible disclosure
or could put users at risk. There is the risk that we have over-
looked an attack and that the description of PQ3 in our paper
allows others to find this attack. However, it is well estab-
lished within the security research community that attempting
to provide security by obscurity is a poor option and bound to
fail eventually. Moreover, we believe that our description of
PQ3 facilitates future research on its security. Therefore, the
benefits of making a description of PQ3 publicly available
outweigh the risks.

Open Science Policy All our artifacts are available at [10].
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A Proof Methodology

In Section 5.4, we presented our proof methodology, special-
ized to how we applied it to the PQ3 Messaging Protocol.
In this section, we will describe this methodology in more
detail and in its generality: i.e., how one could apply it to
other protocols with similar structure.

TAMARIN provides general support for handling loops,
based on induction and injective facts, and we begin our ac-
count by explaining them. We afterwards introduce two min-
imal TAMARIN theories that illustrate the issues of nested
loops and ghost sessions (see Section 5.4), but on a smaller
and simpler scale. These theories will also help to illustrate
the reasoning behind loop-jump, adversary-construction and
variable-linking lemmas that we have seen. Finally, we gener-
alize the resulting proof methodology.

A.1 Handling Loops in TAMARIN

A.1.1 Induction

TAMARIN can prove any formula directly by backward search,
as explained in Section 5.1, or by induction. When TAMARIN
proves a formula ϕ by induction, it rewrites it into the form

BC(ϕ)∧ (IH(ϕ) =⇒ ϕ).

The first conjunct, BC(ϕ), is the base case, and it re-
quires proving ϕ on an empty trace. The second conjunct,
IH(ϕ) =⇒ ϕ, is the induction step, which requires proving
ϕ on the last element of the trace with ϕ being assumed on all
previous steps of the trace. BC(ϕ) is defined as ϕ but every
formula of the form f @i is replaced with ⊥. For example, for
a formulation of secrecy such as

∀m, t.Sent(m)@t =⇒ ¬(∃x.K(m)@x)

this replacement results in

∀m, t.⊥ =⇒ ¬(∃x.⊥).

IH(ϕ) is defined as ϕ but every quantified temporal variable
is asserted to not be the last time point. This is done using the

special predicate last, which is true if and only if it is provided
the last time point as argument. For example, the induction
hypothesis of secrecy as defined above would become

∀m, t.Sent(m)@t =⇒ ¬(∃x.K(m)@x∧¬last(x))∨ last(t).

After having translated ϕ into its inductive form, TAMARIN
will attempt to prove it as any other formula. Moreover, it will
attempt to prove the base case and induction step separately,
and the induction hypothesis IH will become available (like
an auxiliary lemma) in the branch proving the induction step.

In practice, induction is used to prove properties of proto-
cols with loops. However, one can only prove properties of
loops by induction where the loops are expressed in terms of
facts that appear repeatedly in the protocol’s trace. Take the
above translation of secrecy as an example. In the induction
step, the induction hypothesis will become effectively vacu-
ous as long as the fact Sent(m) only occurs at a last time point
t. In that case, the second disjunct on the right-hand side of the
implication will apply, whereas one usually requires the first
disjunct to apply to make progress on a proof. Only when we
can introduce a new Sent fact in the trace that does not occur
at the last time point can we use the induction hypothesis.

In particular and applied to loops, this means two things.
(1) Induction can only be applied to formulas that express
invariants of loops, but not to express something that holds
after a loop has stopped. A loop will only end once, which
makes it impossible to introduce a second end of the loop not
occurring at the last time point. (2) Induction cannot be used
to prove properties for outer loops without further auxiliary
lemmas. When we attempt to prove properties of outer loops,
TAMARIN will always also consider the case that a step in
the outer loop was preceded by an inner loop of unbounded
length. Also in these cases, the fact referenced in the induction
hypothesis (the outer loop step) will only occur at the last time
point. For both of these reasons, induction must be applied
with care and cannot be blindly applied to prove arbitrary
formulas of protocols with loops.

A.1.2 Injective Facts

Injective facts are commonly used to model loops in
TAMARIN. They are defined as facts that (for a fixed first
argument) can occur only once in the global state. We call
an injective fact’s first argument its loop identifier. If a fact
satisfies the following constraints, it is automatically detected
as injective by TAMARIN:

• It is not a persistent fact.

• Its loop identifier is a fresh term.

• It never occurs more than once in a rule’s conclusion with
the same loop identifier.
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Figure 11: Illustration of a contradiction from an injective
instance. The solid arrow indicates premise consumption.
Dashed arrows indicate time ordering, i.e., the rule at #j must
be applied after #i but before #k. The order of time points
requires that #j and #i must be unified as #k consumes a
session fact with the matching ID ~i. However, #j must occur
strictly after #i, which contradicts this unification occurence.
There is a symmetric case where #j and #k must be unified
because #j and #i share a premise.
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Figure 12: Nested loop example.

• Whenever it occurs in a rule’s conclusion, either (a) its loop
identifier is freshly generated (the loop has started), or (b) it
occurs in the rule’s premise with the same loop identifier (a
loop step is taken).

Injective facts allow TAMARIN to derive contradictions by
exploiting that all injective facts with a shared loop identifier
must be linearizable. In particular, a loop step can never occur
between two directly connected loop steps (as illustrated in
Figure 11). It is possible to prove properties of loops without
using injective facts, but using injective facts can drastically
simplify proofs, so it is generally advisable to make use of
this heuristic.

A.2 Proof Methodology by Example
In what follows, we illustrate the challenges encountered
when constructing proofs about nested loops using three sim-
ple, minimal theories. We will introduce these theories and
our proof methodology on an intuitive level. For full details,
see our repository that provides all the theory files [10].

Nested Loop Example Figure 12 provides an illustration
of a nested loop from the nested-loop theory in [10]. The
loop models a participant’s key derivation similar to the key
derivation used in PQ3. The inner loop applies a hash function
repeatedly, using non-determinism to leave open how often,
to a value derived from a KDF, which we call the seed. The
outer loop updates the seed. When the outer loop starts, the

seed is derived from a zero-byte sequence and a fresh value.
At every outer-loop iteration, the seed is derived from the
previous seed and either a zero-byte sequence or a fresh value
(determined non-deterministically). The adversary can access
all fresh values used in this loop using a reveal oracle.

The key derivation in this theory is similar to the key deriva-
tion in PQ3 when focussing on KEM shared secrets. The
inner loop abstracts from the chain and message key deriva-
tion, while the outer loop abstracts from establishing new
KEM shared secrets. At the end of this section, we show how
a simpler version of this theory captures the essence of the
double ratchet construction, i.e., repeatedly establishing fresh
Diffie-Hellman shared secrets.

Now consider proving a simple key secrecy lemma: Every
key established in the inner loop either remains confidential,
or the most recently used fresh value in the outer loop was
revealed to the adversary. To prove this lemma, we establish
three auxiliary lemmas:

Outer Loop Step Every step in the inner loop must be pre-
ceded by a step in the outer loop. This lemma can be proven
straightforwardly by induction.

Fresh Seed Source For every step in the outer loop ratchet,
there must be a step in that ratchet deriving the seed that most
recently was derived from a fresh value. We can prove this by
induction using the outer loop step lemma. When proving this
lemma, there is only one case that does not immediately lead
to a contradiction. When the outer-loop step was immediately
preceded by an inner-loop step, there is neither a contradiction
nor does the induction hypothesis apply. In that case, we can
apply the outer loop step to jump to the previous outer-loop
step, which will either have used a fresh value to derive its
seed (direct contradiction) or a zero-byte sequence (but since
it is an outer-loop step, the induction hypothesis applies).

Seed Secrecy When the adversary derived a key established
in the inner loop, they must have used the seed most recently
derived using a fresh value in that derivation. This lemma can
also be proven by induction straightforwardly.

Using these three auxiliary lemmas, Tamarin automatically
proves key secrecy. Note that all auxiliary lemmas above are
proven using induction but the key secrecy lemma is not.

We can describe above lemmas in more general terms.

Outer Loop Step This lemma “jumps to” the most recent
step of the outer loop and allows one to skip unrolling the
inner loop infinitely.

Fresh Seed Source This lemma “jumps to” the step in the
outer loop that introduces the “relevant term” (in our case, the
fresh term used instead of the zero-byte sequence). It allows
one to skip unrolling the outer loop infinitely.

Seed Secrecy This lemma links the adversary’s knowledge
of the final key to adversary’s knowledge of the “relevant
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Figure 13: Revealing loop example.

term,” i.e., the seed most recently established using a fresh
term. It can be proven by induction using the previous two
lemmas.

Note that a lemma that “jumps to” the relevant term in the
outer loop (here fresh seed source) is only required when there
can be unboundedly many outer-loop steps until the relevant
step is reached (the relevant step being the one where the fresh
term is introduced). To illustrate this point, we also provide
a second nested loop theory (nested-loop-simple in [10])
that always uses a fresh value to establish the respective seed
in the outer loop. In this theory, the lemma fresh seed source
is not needed as unrolling the outer loop is sufficient.

This simplified theory is similar to the key derivation of
PQ3 when focussing on the Diffie-Hellman shared secrets
and ignoring the KEM shared secrets. It is also similar to the
double ratchet as used in Signal [3]. This simplified theory
suggests that although the double ratchet construction used in
Signal employs a nested loop, no inductive properties must
be proven about the outer loop.

Revealing Loop Example The revealing-loop theory
provided in [10] illustrates the challenges of proving proper-
ties of PQ3 when considering the reveal of root, chain, and
message keys explicitly and thus illustrates how we addressed
the problem of ghost sessions. This example is much sim-
pler than the previous ones and is illustrated in Figure 13.
A participant starts a loop in which they repeatedly apply a
hash function h to some initial seed ~x. Critically, the model
allows the adversary to access any derived value and ~x using
a reveal oracle.

Again, we show how to prove a simple key secrecy lemma:
Every hash value derived is secret, i.e., not known by the
adversary, unless the adversary compromised any of the pre-
vious, intermediate values. To prove this lemma, we require
two auxiliary lemmas:

Loop Start Every loop that computes a hash based on some
initial seed ~x is started, sampling ~x. This lemma is straight-
forward to prove by induction.

Seeds Match If the computed hashes of two loops are identi-
cal, their seed must be identical too. Conceptually, this lemma
is again simple and can be proven straightforwardly using
induction.

With both these lemmas, TAMARIN can prove key secrecy
of this example theory using induction. The two auxiliary

lemmas help TAMARIN address the case that the adversary
learns the hash in question from a ghost session. Using the
second lemma, TAMARIN can connect the two sessions using
a shared, fresh term. Then, using the first lemma, TAMARIN
can instantiate the start of the loop where this shared, fresh
term was sampled. From that, TAMARIN can deduce that
both sessions must be the same; this enables it to apply the
induction hypothesis and to prove the key secrecy lemma.

Again, we can generalize these auxiliary lemmas.

Loop Start This lemma is conceptually similar to the outer
loop step lemma from the previous example and introduces
no new kinds of lemmas.

Seeds Match This lemma links the computation of a value
in a loop to the inputs to this computation, not determined by
a loop (here, the seed).

Summary With the previous two examples, we showed
how to handle nested loops and ghost sessions in TAMARIN.
All auxiliary lemmas of these two theories match the three
types of lemmas introduced in Section 5.4, which we briefly
recapitulate:

Loop-Jump Lemmas These lemmas allow one to skip un-
rolling the steps of a (nested) loop. Examples: outer loop step,
fresh seed source, loop start.

Adversary-Construction Lemmas These lemmas establish
that for the adversary to construct one term, they must use
another term. Example: seed secrecy.

Variable-Linking Lemmas These lemmas establish that for
two instances of the same fact using two variables a and b, if
both facts have the same value for a, they must have the same
value for b. Example: seeds match.

A.3 Proof Methodology in General
Our proof methodology applies to theories that (i) use asym-
metric cryptography to establish shared secrets, which in turn
are used to derive symmetric encryption keys, (ii) include a
(nested) loop computing these symmetric encryption keys,
and (iii) for which trace formulas are to be proven of the
following form:

∀⃗x.C(⃗x) =⇒ (¬)∃⃗y.P(⃗x; y⃗)∨T (⃗x) .

For all traces that satisfy some context C, there exists (or
does not exist) an instance of P bound to that context (‘;’
denotes vector concatenation), unless T (which specifies the
threat model) applies. For example, for secrecy, C could be
“a message was sent”, P could be “the adversary learned that
message” (in this case, non-existence would be proven), and
T could be “the message encryption keys were revealed to
the adversary.”



We require that the protocol is modelled such that there is a
single fact that models the protocol’s (nested) loop, which we
call the loop fact. This allows us to do two things: (a) exploit
TAMARIN’s heuristics for injective facts (see Section A.1.2),
(b) clearly identify and relate looping variables, which will be
critical to our proof methodology. We identify the loop fact’s
variables by their position in the fact, and there will generally
be two kinds of variables: shared and derived secrets and key
material used for establishing the shared and derived secrets.
We relate the shared and derived secrets by a strict partial
order. That order is defined as the smallest order closed under
transitivity for which one variable a is smaller than another
variable b if there is a state-transition rule that updates b using
a. We say that a loop fact variable can grow unboundedly if
there is no bound on the size of the terms that the variable can
be unified with, for all ground-instantiated traces.

For example, our PQ3 model uses a Session fact to model
the double-ratchet steps performed by a participant. The order
on the shared and derived secrets is depicted in Figure 9 (the
black arrows). For PQ3, the variables msgKey, chainKey, and
rootKey can grow unboundedly.

Overall, our proof methodology has four steps.

1. For each of the loop fact’s (possibly nested) loops, write
a loop-jump lemma that connects a loop instance to its
beginning, i.e., to the beginning of the loop overall or to
the transition from an outer loop to the respective next
inner loop.

2. Identify all the loop fact’s shared and derived secret vari-
ables that can grow unboundedly (e.g., msgKey for PQ3).
For each of these variables, write a variable-linking lemma
that connects them to the variables that are directly smaller
than them (e.g., a message to a chain key). For some of
these unboundedly growing variables, it might additionally
be necessary to write a loop-jump lemma that jumps to
the rule application assigning a new value to the respec-
tive smaller variable. In our experience, this is the case
for variables that are updated non-determinstically (i.e.,
kemSS for PQ3).

3. Identify all the loop fact’s shared and derived secret vari-
ables that do not grow unboundedly. Typically, these vari-
ables will store shared secrets established using asym-
metric cryptography. For each of these variables, write
loop-jump lemmas that link the usage of that variable to
the instantiation of the respective asymmetric key material
used to establish the secret. The details of these loop-jump
lemmas depend on the protocol specification. For example,
the lemmas that link the ECDH shared secret to the respec-
tive ECDH keys substantially differ from the lemmas that
link the KEM shared secret to the respective encapsulation
key.

4. Finally, for all variables connected by variable-linking lem-
mas, write an adversary-construction lemma that states that

1 functions: hkdf/2, suffix/1, prefix/1, concat/2, h/1
2

3 equations: concat(prefix(x), suffix(x)) = x
4

5 functions: pqpk/1, encap/2, decap/2
6 equations: decap(encap(k, pqpk(sk)), sk) = k
7

8 functions: default/2, Just/1, None/0, unjust/1
9 equations: default(Just(v), t) = v,

10 default(None , v) = v,
11 unjust(Just(t)) = t

Figure 14: Custom functions and equations defined in our
formal model.

in order for the adversary to know the contents of the re-
spective larger variable, they must have either violated the
threat model or know the respective smaller variables.

Following these steps, one would write the lemmas
RootKeyConnectionReceive, RootKeyConnectionSend,
and SessionStart in Step 1, the lemmas depicted in
Figure 9 in Step 2, the lemmas depicted in Figure 10 in
Step 3, and the lemmas depicted in Figure 8 in Step 4.

B Equational Theory for Protocol Model

We use TAMARIN’s built-in equational theories for sign-
ing, symmetric encryption, and Diffie-Hellman key exchange.
These respectively model digital signatures, symmetric en-
cryption under message keys, and ECDH key exchanges. We
additionally use TAMARIN’s natural numbers theory to model
message counters.

In addition to these built-in theories, we specify some
custom functions and equations, shown in Figure 14. First,
we specify the functions hkdf, suffix, and prefix for key
derivation. The function hkdf models an HMAC-based key
derivation function [36] and takes two arguments: the first is
the source of entropy and the second is a domain-separating
tag or salt. The prefix and suffix functions are used for
chain and root key derivations, which are derived by split-
ting a bit-string into a prefix and suffix of equal length. The
function concat allows one to recover a value given its prefix
and suffix. We do not need to use concat in the rules mod-
eling the protocol roles of regular parties in our model, but
the adversary can use it to reconstruct a value from the prefix
and suffix. Additionally, we specify the unary function h to
model the pre-key hash used during session establishment,
see Section 4.

The functions pqpk, encap, and decap model KEM encap-
sulation and follow the standard symbolic model for asym-
metric encryption. Finally, we use the wrapper function Just
and the constant None to model optional values. The func-
tion default (together with the accompanying equations)
unpacks an optional value or replaces it with a default. For



example, we use Just and None to wrap values that are only
sent optionally, e.g., the pre-key hash. The function unjust
allows the adversary to access the contents of any Just value
they intercept.

C PQ3 Messaging Protocol Description

In this section, we describe PQ3 in detail using pseudocode.
We base our description upon technical material that we re-
ceived from Apple researchers.

In our formal model, we only abstract from the pseudocode
as presented here in that we operate in the symbolic model.
For example, the root key derivation is actually done using two
extract and one expand calls (see rootAndChainKey later). In
the symbolic model, however, it only matters which entropy
sources and domain separators are used to derive a value.
Additionally, as the extract and expand operations are done by
each party locally and without any interleaving, we faithfully
model root-key derivation using one application of the hkdf
function (see Appendix B).

We exclude the session handling layer, whose descrip-
tion was not available to us. Thus, we will leave two func-
tions in our pseudocode undefined: lookupSession and
storeSession. The effect of these functions should be clear
from context, though. Our pseudocode follows Python syntax,
and the type-definitions follow TypeScript conventions. We
begin by defining some types for session handling. Variables
that are followed by a ? are optional and might have the value
None.

1 type Session = {
2 me: DeviceInfo ,
3 peer: DeviceInfo ,
4 inSenderRole: bool ,
5 messageIndex: uint32 ,
6 expectKemSS: bool ,
7 rk?: byte[],
8 ck?: byte[],
9 ecdhKey?: P256.Key,

10 newKemKey?: MLKEM768.Key,
11 myKemKey?: MLKEM768.Key,
12 }
13

14 type DeviceInfo = {
15 client_uri: byte[],
16 device_id: byte[],
17 ltk: P256.Key ,
18 }
19

20 type PreKeyBundle = {
21 ecdhKey: P256.Key,
22 kemKey: MLKEM1076.Key,
23 signature: byte[],
24 }
25

26 type Message = {
27 ciphertext: byte[],
28 authData: byte[],
29 signature: byte[],
30 ecdhPK: P256.Key,
31 kemPK?: KEM.Key,

32 kemEncap?: byte[],
33 messageIndex: uint32 ,
34 preKeyHash?: byte[],
35 msgKeyIndicator: byte[],
36 }

We next turn to sending messages. The sendMessage func-
tion is called with the message most recently received (op-
tional), and the participants’ device information. It returns a
message to be sent by the session handling layer. Where nec-
essary, it may create a new session or perform the public-key
ratchet.

1 def sendMessage(
2 lastRcvd: Message | None , msg: string ,
3 me: DeviceInfo , peer: DeviceInfo ,
4 ) -> Message:
5 sess = lookupSession(me, peer , lastRcvd)
6 preKeyHash = None
7 if sess is None:
8 pkBundle = getPreKeyBundle(peer)
9 sess = sessionStartSender(me, peer , pkBundle)

10 storeSession(me, peer , sess)
11 preKeyHash = SHA384(
12 repr(pkBundle.ecdhKey)
13 + repr(pkBundle.kemKey)
14 + pkBundle.signature
15 )
16

17 encapResult = None
18 if not sess.inSenderRole:
19 encapResult , newKemKey
20 = pkRatchetToSender(lastRcvd , sess)
21

22 mk = symmetricRatchet(sess)
23 ciphertext , msgKeyIndicator = encrypt(msg, mk)
24

25 signature_body =
26 b’messageSignature ’
27 + b’v1’
28 + len(ciphertext) + ciphertext
29 + msgKeyIndicator
30 + repr(sess.ecdhKey.publicKey())
31 + sess.messageIndex
32 + dstForSession(me, peer)
33 + len(newKemKey)
34 + newKemKey.publicKey()
35 if newKemKey is not None else b’’
36 + len(encapResult)
37 + encapResult
38 if encapResult is not None else b’’
39 + preKeyHash
40 if preKeyHash is not None else b’’
41

42 return {
43 ciphertext: ciphertext ,
44 signature: P256.sign(signature_body , me.ltk),
45 ecdhPK: sess.ecdhKey.publicKey(),
46 kemPK: None if newKemKey is None
47 else newKemKey.publicKey(),
48 kemEncap: encapResult ,
49 messageIndex: sess.messageIndex++,
50 preKeyHash: preKeyHash ,
51 msgKeyIndicator: msgKeyIndicator ,
52 }



The receiveMsg function performs the operations analo-
gous to sendMsg. It starts with a signature verification, and
proceeds to initialize a new session or perform the public-key
ratchet, before it finally decrypts the message received.

1 def receiveMsg(
2 msg: Message , me: DeviceInfo , peer: DeviceInfo ,
3 ) -> byte[]:
4 signature_body =
5 b’messageSignature ’
6 + b’v1’
7 + len(msg.ciphertext) + msg.ciphertext
8 + len(msg.authData) + msg.authData
9 + msg.msgKeyIndicator

10 + msg.ecdhPK
11 + msg.messageIndex
12 + dstForSession(peer , me)
13 + len(msg.kemPK) + msg.kemPK
14 + len(msg.kemEncap) + msg.kemEncap
15 + msg.preKeyHash
16 P256.verify_signature(
17 signature_body ,
18 msg.signature ,
19 peer.ltk,
20 )
21

22 sess = lookupSession(me, peer , msg)
23 if sess is None:
24 sess = sessionStartReceiver(msg, peer , me)
25 storeSession(me, peer , sess)
26

27 if sess.inSenderRole:
28 pkRatchetToReceiver(msg, sess)
29

30 mk = symmetricRatchet(sess)
31 return decrypt(msg, mk)

The next two functions specify the operations performed
upon session start.

1 def sessionStartSender(
2 sender: DeviceInfo , receiver: DeviceInfo ,
3 pkBundle: PreKeyBundle ,
4 ) -> Session:
5 session = {
6 me: sender ,
7 peer: receiver ,
8 inSenderRole: True ,
9 messageIndex: 0,

10 expectKemSS: False ,
11 }
12

13 ecdhKey = P256.new_key()
14 ecdhSS =
15 ecdhKey.shared_secret_with(pkBundle.ecdhKey)
16 kemSS , encapResult = pkBundle.kemKey.encap()
17 dst = dstForSession(me, peer)
18 + b’session_start ’
19 + repr(pkBundle.ecdhKey)
20 + repr(ecdhKey.publicKey())
21 + repr(encapResult)
22 + repr(pkBundle.kemKey.publicKey())
23

24 rk, ck =
25 rootAndChainKey(b’0’ * 32, ecdhSS , kemSS , dst)
26

27 session.ecdhKey = ecdhKey
28 session.rk = rk

29 session.ck = ck
30

31 return session
32

33 def sessionStartReceiver(
34 msg: Message , sender: DeviceInfo ,
35 receiver: DeviceInfo ,
36 ) -> Session:
37 session = {
38 me: receiver ,
39 peer: sender ,
40 inSenderRole: False ,
41 messageIndex: 0,
42 expectKemSS: False ,
43 }
44

45 bundle = getPreKeyBundleFromHash(msg.preKeyHash)
46 ecdhSS =
47 bundle.ecdhKey.shared_secret_with(msg.ecdhPK)
48 kemSS =
49 bundle.kemKey.decapsulate(msg.kemEncap)
50 dst = dstForSession(sender , receiver)
51 + b’session_start ’
52 + repr(pkBundle.ecdhKey.publicKey())
53 + repr(msg.ecdhPk)
54 + repr(msg.kemEncap)
55 + repr(pkBundle.kemKey.publicKey())
56

57 rk, ck =
58 rootAndChainKey(b’0’ * 32, ecdhSS , kemSS , dst)
59

60 session.rk = rk
61 session.ck = ck
62

63 return session

The next two functions specify the operations performed
in the public-key ratchet.

1 def pkRatchetToSender(
2 msg: Message , sess: Session ,
3 ) -> byte[], KEM.Key:
4 ecdhKey = P256.new_key()
5 dst = dstForSession(sess.me, sess.peer)
6 + b’pk_ratchet ’
7 + repr(msg.ecdhPK)
8 + repr(ecdhKey.publicKey())
9

10 ecdhSS = ecdhKey.shared_secret_with(msg.ecdhPK)
11 kemSS = None
12 encapResult = None
13 if sess.newKemKey is not None:
14 kemSS , encapResult = msg.kemKey.Encap()
15 dst += encapResult
16 + repr(msg.kemPK)
17 sess.newKemKey = None
18

19 newKemKey = None
20 if heuristic():
21 newKemKey = KEM.Generate()
22 sess.myKemKey = newKemKey
23 sess.expectKemSS = True
24

25 rk, ck =
26 rootAndChainKey(sess.rk, ecdhSS , kemSS , dst),
27

28 sess.ecdhKey = ecdhKey
29 sess.rk = rk



30 sess.ck = ck
31 sess.inSenderRole = True
32

33 return encapResult , newKemKey
34

35 def pkRatchetToReceiver(msg: Message , sess):
36 dst = dstForSession(sess.peer , sess.me)
37 + b’pk_ratchet ’
38 + repr(ecdhKey.publicKey())
39 + repr(msg.ecdhPK)
40

41 ecdhSS = ecdhKey.shared_secret_with(msg.ecdhPK)
42 kemSS = None
43 if msg.kemEncap is not None:
44 kemSS =
45 sess.myKemKey.decapsulate(msg.kemEncap)
46 dst += repr(msg.kemEncap)
47 + repr(sess.myKemKey.publicKey())
48 sess.expectKemSS = False
49 elif sess.expectKemSS:
50 raise Error()
51

52 rk, ck =
53 rootAndChainKey(rootKey , ecdhSS , kemSS , dst)
54

55 if msg.kemPK is not None:
56 sess.newKemKey = msg.kemPK
57

58 sess.rk = rk
59 sess.ck = ck
60 sess.inSenderRole = False

Finally, we define some auxiliary functions. For example,
they describe how the root and initial chain keys are derived,
or how domain-separating strings are computed.

1 def dstForSession(
2 sender: DeviceInfo , receiver: DeviceInfo ,
3 ) -> byte[]:
4 return sender.client_uri + sender.device_id
5 + repr(sender.ltk) + receiver.client_uri
6 + receiver.device_id + repr(receiver.ltk)
7

8 def rootAndChainKey(
9 oldRk: byte[], ecdhSS: byte[],

10 kemSS: byte[], dst: byte[],
11 ) -> byte[]:
12 extracted = HKDF.SHA384.extract(
13 IKM: ecdhSS ,
14 salt: oldRk
15 )
16 extracted = HKDF.SHA384.extract(
17 IKM: extracted ,
18 salt: kemSS
19 )
20 rkCK = HKDF.SHA384.expand(
21 PRK: extracted ,
22 info: b’rkDerivation -’ + dst,
23 L: 64
24 )
25

26 rootKey = rkCK.prefix(32)
27 chainKey = rkCK.suffix(32)
28 return rootKey , chainKey
29

30 def symmetricRatchet(sess: Session) -> byte[]:
31 mk = HKDF.SHA384.expand(
32 PRK: sess.ck,

33 info: b’msgKeyDerivation ’,
34 L: 32,
35 )
36

37 sess.ck = HKDF.SHA384.expand(
38 PRK: sess.ck,
39 info: b’chainKeyDerivation ’,
40 L: 32,
41 )
42

43 return mk
44

45 def encrypt(
46 msg: string , msgKey: byte[],
47 ) -> byte[]:
48 expanded = HKDF.expand(
49 PRK: msgKey ,
50 info: b’aes-ctr’,
51 L: 48
52 )
53 iv = expanded.prefix(16)
54 key = expanded.suffix(32)
55 msgKeyIndicator = HKDF.SHA.384.expand(
56 PRK: msgKey ,
57 info: b’msg-key-ind’,
58 L: 32,
59 )
60 ciphertext = AES_CTR.encrypt(msg, key, iv)
61 return ciphertext , msgKeyIndicator
62

63 def decrypt(
64 ciphertext: byte[], msgKey: byte[],
65 ) -> string:
66 expanded = HKDF.expand(
67 PRK: msgKey ,
68 info: b’aes-ctr’,
69 L: 48
70 )
71 iv = expanded.prefix(16)
72 key = expanded.suffix(32)
73 return AES_CTR.decrypt(ciphertext , key, iv)


	Introduction
	Related work
	Messaging Protocols
	Verification of Messaging Protocols

	Requirements and Threat Model
	Security Requirements
	Threat Model

	PQ3 Messaging Protocol
	High-level Account
	More Detailed Account

	Security Proofs
	Background on Tamarin
	Protocol Model
	Properties Specified
	Secrecy
	Agreement

	Proofs & Proof Methodology
	Discussion
	Scope of Analysis
	Proof Effort


	Conclusions
	Proof Methodology
	Handling Loops in Tamarin
	Induction
	Injective Facts

	Proof Methodology by Example
	Proof Methodology in General

	Equational Theory for Protocol Model
	PQ3 Messaging Protocol Description

