
SLAMP-FSS: Two-Party Multi-Point Function
Secret Sharing from Simple Linear Algebra

Erki Külaots1, Toomas Krips1[0000−0003−0981−3553], Hendrik
Eerikson1,2[0009−0009−9298−074X], and Pille
Pullonen-Raudvere2[0000−0002−3255−7001]

1 University of Tartu, Estonia
{erki.kulaots, toomas.krips}@ut.ee

2 Cybernetica AS, Estonia
{hendrik.eerikson, pille.pullonen-raudvere}@cyber.ee

Abstract. Multiparty computation (MPC) is an important field of cryp-
tography that deals with protecting the privacy of data, while allowing to
do computation on that data. A key part of MPC is the parties involved
having correlated randomness that they can use to make the compu-
tation or the communication between themselves more efficient, while
still preserving the privacy of the data. Examples of these correlations
include random oblivious transfer (OT) correlations, oblivious linear-
function evaluation (OLE) correlations, multiplication triples (also known
as Beaver triples) and one-time truth tables. Multi-point function secret
sharing (FSS) has been shown to be a great building block for pseudo-
random correlation generators. The main question is how to construct
fast and efficient multi-point FSS schemes. Here we propose a natural
generalization of the scheme of Boyle et al [BGI16] using a tree structure,
a pseudorandom generator and systems of linear equations. Our schemes
SLAMP-FSS and SLAMPR-FSS are more efficient in the evaluation phase
than other previously proposed multi-point FSS schemes while being also
more flexible and being similar in other efficiency parameters.

Keywords: Function secret sharing · secure computation · distributed
point functions.

1 Introduction

A two party function secret sharing scheme allows the parties to jointly evaluate
a parameterized function on common inputs such that the parties separately
do not learn anything about the output or the parameters nor do they need to
communicate during such evaluation.

Point functions are functions that evaluate to a predetermined value b at the
predetermined special point a and evaluate to 0 everywhere else. Multi-point
functions have some constant number of such special points.

Multi-point function secret sharing is part of the broader topic of secure mul-
tiparty computation (MPC), which is prevalent in all areas of life, where private



2 Erki Külaots, Toomas Krips, Hendrik Eerikson, and Pille Pullonen-Raudvere

information needs to be processed. If private information has to be processed
and no single party can be trusted with the whole data, then the computation
can be shared between multiple parties such that no single party learns any
significant part of the private data. Examples of this include: medical information
for research, handling private financial data or keys for cryptocurrencies [IEE].

Function secret sharing (FSS) was proposed to be useful in the setting of
querying and updating distributed databases (private information retrieval –
PIR) [BGI15] and it has also been used to construct ORAM [DS17]. In addition
to that, multi-point FSS has seen some success in the constructions of other
primitives such as vector oblivious linear-function evaluation (VOLE) [BCGI18]
and random oblivious transfer [BCG+19] The common denominator is that
the FSS schemes can be used to construct efficient pseudorandom correlation
generators (PCGs) and then the PCG can provide correlated randomness to the
parties involved. Correlated randomness is a precious resource in cryptographic
applications. For example, identical random strings distributed among the parties
can be used for perfectly secure encryption by using one-time pad encryption.
Other examples of more useful types of random correlation in respect to MPC are
random oblivious transfer (OT) correlations, oblivious linear-function correlations
(OLE), multiplication triples (also known as Beaver triples [Bea91]) and one-time
truth tables [BCGI18,BCG+19].

We propose two new schemes for multipoint FSS. We call our main scheme
Simple Linear Algebra MultiPoint Function Secret Sharing, or SLAMP-FSS for
short. Previous schemes rely on many pseudorandom generator (PRG) evaluations
that are by far the most expensive part of the protocol and a large number of
PRG calls are needed in the protocol. Therefore, our goal was to bring down the
number of required PRG calls in the evaluation step. SLAMP-FSS has similar
key size and time complexity to other multi-point function secret sharing schemes
and its advantages are a simple mathematical constructions and efficiency of
evaluating the shared function at some small constant number of points.

For constructing PCGs, commonly, t (where t is in the approximate order of
magnitude of 25 − 210) applications of a distributed point functions are needed,
and often it is necessary to evaluate the function at all points. We refer to
evaluating the function on all points as full evaluation. So far, the most common
approach has been using the distributed point function from [BGI16] as a black
box and using various approaches for example, using combinatorial objects such
as batch codes [BCGI18] and probabilistic batch codes [ACLS18,SGRR19] to
reduce the total evaluation cost. However, batch codes are technically complicated
and obtaining good specific parameters is difficult, and modifications such as
probabilistic batch codes have their own tradeoffs.

We propose a natural generalization of the [BGI16] for t points. The scheme
uses simple linear algebra and is conceptually simple. Like [BGI16], our construc-
tion will be based on a binary tree with n levels, with the leaves corresponding
naturally with the domain of the DPF. The tree has t leaves where the function
will evaluate to non-zero, we will think of these leaves and nodes on the paths
leading to them from the root as alive nodes, the other nodes we will consider to
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be dead nodes. Evaluating the DPF at a point x corresponds to travelling down
to the leaf corresponding to x. The parties will have a secret-shared value with
the invariant that the value of this is zero if and only if we are currently at a
dead node. Thus it is important to construct the DPF in such a way that if a
node is dead, its children will automatically be dead. For alive nodes, at each
level of the tree, there can be at most t of them. They will have twice the amount
of children some of which will be alive and some will be dead. We will use simple
linear algebra to achieve that this property will be satisfied at all levels.

We also propose a variation of the scheme that is more effective for full
evaluation, but outputs random values at the predetermined points. We call this
scheme Simple Linear Algebra MultiPoint Random Function Secret Sharing, or
SLAMPR-FSS for short. The scheme differs from SLAMP-FSS only slightly but
leads to twice as effective full evaluation.

We note that unlike batch-code based attempts, which can only be used for
full evaluation, our schemes can be used to evaluate on any number of points. For
full evaluation, they are up to several times more efficient than previous works
while having a key size that is approximately similar.

We currently leave the secure instantiation of the setup as a future work.
However, note that while at first glance there may seem to be two large roadblocks
that are hard to instantiate securely, namely, evaluating a PRG and solving a
system of t linear equations, it is plausible that these problems can be solved
much more efficiently than the naive approach. First, note that the PRG is not
evaluated on shared values but on shares. Hence, it is possible that a solution
like the setup algorithm by Doerner and shelat [DS17] could also be adapted to
our case to evaluate all PRG-s locally. Secondly, if we wish to solve a system of
linear equations [A]x = [b] over a large field where A has t rows and v columns
with t < v, then there exists the following approach. One can fix the first v − t
values of x, in which case solving the rest of the system is equivalent to solving
a related system [A′]x′ = [b′] where A′ is with an overwhelming probability a
random square matrix, and [A′] and [b′] can be computed with no communication
(i.e quickly). This can be solved by computing [A′

−1
] and computing [A′

−1
][b′].

Computing [A′
−1

] can in turn be solved by a two secure matrix multiplications
[BB89].

The outline of this work is as follows. In Section 2, we give a short description
of prior work. In Section 3, the preliminary knowledge that the reader needs
for understanding the paper is given. In Section 4, algorithms are introduced
and explained. In Section 5, the properties of SLAMP-FSS are presented and
rigorously proved. In Section 6, we compare SLAMP-FSS and SLAMPR-FSS
to prior works. Finally, Section 7 concludes this paper. In Appendix A, we give
the missing proofs and games that did not fit into the main body of the paper.
In Appendix B, we give the modified version SLAMPR-FSS and show that it
satisfies the necessary properties. In Appendix C, we calculate the efficiency of
our schemes.
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2 Prior work

Our work expands on the work of Boyle et al. [BGI16] in which the construction
of a single-point DPF is proposed. This construction requires n evaluations of
the PRG to evaluate a single point and 2 · 2n evaluations of the PRG for full
evaluation.

Recently, Guo et al. [GYW+23] improved on the construction of the original
point function, making the full evaluation 1.33 times faster, making it require
1.5 · 2n evaluations of the PRG instead of 2 · 2n evaluations. Note that this still
requires to run the protocol t times to obtain the multipoint DPF, thus the total
cost would be 1.5t · 2n.

In [BCGI18] two approaches were proposed to obtain the goal of t point
functions. The first was to partition the domain of the function into t smaller
sections and to apply the original construction to each section separately. This
construction results in a distribution of the secret points with a much lower
entropy, however, using the stronger Regular Syndrome Decoding (RSD) assump-
tion, one can still build the necessary applications securely using this construction.
In practice this has meant, however that a larger value of t is used for applications,
for example as in [BBMS22] where the t used is larger by the statistical security
parameter.

The second proposal in [BCGI18] was to use combinatorial objects called
batch codes. These do give a full evaluation in O(2n) evaluations of the PRG and
have a setup cost of only O(n), but the concrete estimation requires the coefficient
in O(2n) to be quite high. It also allows to only apply the full evaluation.

In [ACLS18,SGRR19], probabilistic batch codes were used. These do achieve
the full evaluation computation of 3·2n PRG calls. However, they in fact implement
a weaker primitive called Known-Index FSS, where one of the parties learns the
position of the secret point. Although this is sufficient for some applications, it
is not sufficient for all of them. Also, there is a small (≈ 2−40) error probability
and the construction again can be only used for full evaluation.

3 Preliminaries

This section is meant as a guide to return to, if something in later sections
becomes confusing. However, it is recommended to read through sections about
secret sharing, functional secret sharing, distributed point functions and multi-
point functions as these topics are less well known. Most of the definitions given
are classical with some minor changes to fit more tightly with this research paper.

3.1 Notation

Let us list some important notation. For sets X and Y , we denote F(X → Y ) as
the family of all functions φ : X → Y . For n ∈ N, we denote {0, 1}n as bit strings
with length n and {0, 1}∗ as the set of all bit strings. For bit strings x ∈ {0, 1}∗
and integers i ∈ N, we denote xi as the i-th bit of x. For bit strings a, b ∈ {0, 1}∗,
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we denote a||b as the concatenation of a and b. For bits a1, a2 ∈ {0, 1}, we denote
a1a2 as the concatenation of a1 and a2. For bit strings a, x ∈ {0, 1}n, we denote
x1x2 . . . xi = a1a2 . . . ai as the first i bits of x coinciding with the first i bits of
a. For vectors x, y ∈ Fv

2k , we denote ⟨x, y⟩ as the scalar product of the vectors x
and y, defined by

⟨x, y⟩ =
v∑

i=1

xiyi.

For values a, b from some set X, we denote [a
?
= b] as the boolean function

that checks the equality of two elements of X. In other words

[a
?
= b] =

{
0, if a ̸= b,
1, if a = b.

3.2 Cryptography

Probabilistic polynomial time (PPT) algorithm Probabilistic polynomial
time algorithms are algorithms that run for polynomial number of steps and that
can use some internal randomness to make choices. Polynomial number of steps
means that there exists some polynomial tpoly such that for all inputs x ∈ {0, 1}∗
and all internal randomness the time it takes for the algorithm to halt is less
than tpoly(|x|) [Gol01].

Pseudorandom generator (PRG) A pseudorandom generator is a polynomial
time deterministic algorithm that gets a small uniform seed as its input and
outputs a large pseudorandom value [KL08]. Pseudorandom here means that no
bounded adversary can distinguish between this large value and a uniform large
value. More formally,

Definition 1. Let X and Y be sets such that |X| < |Y |. We say that a function
f : X → Y is a εPRG-pseudorandom generator (PRG), if for every PPT
adversary A∣∣∣Pr [A(f(x)) = 1 | x $← X

]
− Pr

[
A(y) = 1 | y $← Y

]∣∣∣ ≤ εPRG.

Secret sharing Secret sharing is the process of sharing a piece of data between
multiple parties such that a malicious subset of parties cannot access the data
without cooperating with at least t parties, where t is a threshold set by the
scheme [Sha79,Bla79,KL23]. A piece of data held by one party is called a secret
share. Let us denote the set of parties with P := {P1, . . . , Pn}.

Definition 2. A perfect secret sharing scheme for a set of secrets S, thresh-
old t and set of parties P consists of a pair of PPT algorithms (share, reconstruct),
where

– share: On input s ∈ S outputs shares σ1, . . . , σn ∈ {0, 1}∗;
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– reconstruct: On inputs (i, σi) from parties Pi ∈ P̂ ⊆ P, outputs the secret
s′ ∈ S or the error symbol ⊥.

This scheme must satisfy the following properties:

– Completeness: For every s ∈ S and every subset of parties P̂ ⊆ P, that
satisfy

∣∣∣P̂∣∣∣ ≥ t

Pr
[
s′ = s | (σ1, . . . , σn)← share(s); s′ ← reconstruct({Pi() : Pi ∈ P̂})

]
= 1,

where Pi() := (i, σi) denotes the output of the i-th party;
– Privacy: For every subset of parties P̂ ⊂ P, that satisfy

∣∣∣P̂∣∣∣ < t, and every
PPT algorithm A

Pr
[
s′ = s | s← S; (σ1, . . . , σn)← share(s); s′ ← A({Pi() : Pi ∈ P̂})

]
≤ ptriv,

where Pi() := (i, σi) denotes the output of the i-th party and ptriv denotes the
trivial probability of guessing the secret or guessing the shares of other parties

ptriv := max{max
s∈S
{Pr [s← S]}, max

Pi∈P\P̂
σi∈{0,1}∗

{Pr [σi ← share(s)]}}.

Definition 3. Let G be an abelian group. Additive secret sharing is a perfect
secret sharing scheme with threshold t = n = |P| and ptriv = maxs∈G{Pr [s← G]},
for which

– share: On input s ∈ G, samples σ1, . . . , σn−1
$← G. Then computes

σn = s−
n−1∑
i=1

σi

and outputs shares σ1, . . . , σn.
– reconstruct: On input of all n shares σ1, . . . , σn, outputs

∑n
i=1 σi. On any

other subset of input shares outputs ⊥.

For secret shared value τ from some abelian group G and a two-party additive
secret sharing scheme, we denote [τ ]1 and [τ ]2 as the secret shares of party 1 and
party 2. That is

[τ ]1 + [τ ]2 = τ.

We denote by [τ ] the tuple ([τ ]1, [τ ]2) and call it a secret-sharing of τ . For an
abelian group G, a function f : G→ G, a value τ ∈ G, and a sharing of τ that is
[τ ] = ([τ ]1, [τ ]2), we use the notation f([τ ]) to denote the tuple (f([τ ]1), f([τ ]2)).
Thus, if in some algorithm we write [z] ← f([τ ]), it means that [z]1 ← f([τ ]1)
and [z]2 ← f([τ ]2).
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Function secret sharing (FSS) Function secret sharing is a type of secret
sharing, where the data shared by the parties is a description of some function φ
from a predefined function family F . This description can be used to calculate
the secret share of φ(x) for any x in the domain of φ [BGI15]. We now will give
the more formal definition.

Definition 4 ([BGI15]). Let p ∈ N. A p-party function secret sharing
(FSS) scheme with respect to function class F(X → Y ) and secret sharing
scheme SS is a pair of PPT algorithms (Gen, Eval), where

– Gen: Gets the description of φ ∈ F as its input and it outputs p keys
k1, . . . , kp ∈ {0, 1}∗.

– Eval: On input (i, ki, x), the algorithm outputs the i-th party’s secret share of
φ(x) with respect to SS , where i ∈ {1, . . . , p}, ki ∈ {0, 1}∗ and x ∈ X.

The scheme must satisfy the following properties:

– Completeness: For all φ ∈ F(X → Y ), x ∈ X,

Pr[reconstruct(Eval(1, k1, x), . . . ,Eval(p, kp, x)) = φ(x)|
k1, . . . , kp ← Gen(φ)] = 1.

– Security: We call an FSS scheme (Q, εFSS)-indistinguishable, if for all cor-
rupted parties T ⊂ {1, . . . , p}, |T | ≤ Q < p and for all PPT algorithms
A:

Pr
[
b = b̄

]
− 1

2
≤ εFSS,

where b and b̄ come from the following experiment:
• The adversary outputs (φ1, φ2, σ)← A(), where φ1, φ2 ∈ F(X → Y ) are

descriptions of two functions from function family F and σ ∈ {0, 1}∗ is
the state of A.
• The challenger selects b← {0, 1} and calculates (k1, . . . , kp)← Gen(φb).
• The adversary gets the corrupted keys and calculates b̄← A({ki}i∈T , σ).

Note that in the following sections we denote Eval(i, ki, x) as Evali(ki, x).

Distributed point functions (DPF)

Definition 5. Let X be a set and let G be an abelian group. For a ∈ X and
b ∈ G the point function Pa,b : X → G is defined by Pa,b(a) = b and Pa,b(x) = 0
for all x ̸= a.

Definition 6 ([BGI15,GI14]). A distributed point function (DPF) is an
FSS scheme with respect to the family of point functions over X = {0, 1}n and
G = {0, 1}m where the group operation is defined to be as the pointwise XOR.

Definition 7 ([BCGI18]). Let X be a set and let G be an abelian group. For
a ∈ Xt and b ∈ Gt the t-multi-point function Pa,b is defined by

Pa,b(x) =

{
bi, if x = ai,
0, otherwise,

where ai is the i-th element of a and bi is the i-th element of b.
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Ideal Cipher Model We will use the Ideal Cipher Model in this paper. This
essentially assumes that the output of a block cipher with a known key is randomly
distributed. Note that we will use the model in only showing the correctness
of the model, that is, we use it in the proofs where there is no adversary who
tries to break the model but we merely use it to assume that the output of a
block cipher is approximately evenly distributed regarding some subspaces. We
consider this a reasonable assumption to make as this assumption is typically
made in this line of work.

Definition 8 ([KL08]). Let γ, κ ∈ N and F : {0, 1}γ × {0, 1}κ → {0, 1}γ be an
efficient function. We call F a keyed permutation or a block cipher if for all
k ∈ {0, 1}κ the function F (·, k) is bijective.

Definition 9 ([CPS08]). The Ideal Cipher Model (ICM) is an idealized
model, where a publicly accessible block cipher exists. This block cipher takes in
κ bit keys and γ bit inputs and returns γ bit outputs and is chosen uniformly
from all such block ciphers. This is equivalent to choosing a function from 2κ

independent random permutations.

Note that in this paper we will use the input to our function as the key to the
PRG that is evaluated at a fixed point, thus achieving that the output will be
longer than the input. This approach was introduced by Guo et al. [GKWY20]
and is commonly used. We will state this in more detail in Section 5.

3.3 Statistical distance and computational distance

In this section statistical distance comes from [Gol01] and computational distance
from [KL08].

Definition 10 (Probability Ensemble). Let I be a countable index set. An
ensemble indexed by I is a sequence of random variables indexed by I. Namely
any X = {Xi}i∈I , where each Xi is a random variable, is an ensemble indexed
by I.

Definition 11. Let X := {Xi}i∈N and Y := {Yi}i∈N be ensembles. The statis-
tical distance between X and Y is defined as

SD(X,Y ) =
1

2
·
∑
α

|Pr [Xn = α]− Pr [Yn = α]| .

Definition 12. Let X := {Xi}i∈N and Y := {Yi}i∈N be ensembles. We say X
and Y are ε-indistinguishable if for every PPT distinguisher D:

|Pr [D(Xn) = 1]− Pr [D(Yn) = 1]| ≤ ε,

where D(Xn) means that x is chosen according to the distribution of Xn and
then D(Xn) is run.
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Definition 13. We call two cryptographic games G0 and G1 ε-close, if for all
PPT algorithms A

|Pr [G0(A) = 1]− Pr [G1(A) = 1]| ≤ ε,

where G0(A) denotes that A is used as a subroutine in G0 and the probability is
taken over the randomness of the games and the randomness of A.
Note: Two ensembles can also be called ε-close, if the statistical distance between
them is less or equal than ε.

Theorem 1 (Bernoulli inequality). [Car00]. Let a ∈ R, n ∈ N. If a > −1
and n ≥ 1, then

(1− a)n ≥ 1− na.

Now let F be a field and m,n ∈ N. The next definitions and theorems come
from [AR91].

Definition 14. Let r ∈ N and v1, . . . , vr be vectors in a vector space V over the
field F. Vector w ∈ V is called a linear combination of the vectors v1, . . . , vr,
if there exist k1, . . . , kr ∈ F such that

w = k1v1 + . . .+ krvr.

Definition 15. Let r ∈ N and v1, . . . , vr be vectors in a vector space V . We
call subspace Ṽ of V the space spanned by v1, . . . , vr if every ṽ ∈ Ṽ can be
expressed as a linear combination of v1, . . . , vr and every linear combination of
v1, . . . , vr is in Ṽ .

Definition 16. If A is a m× n matrix over the field F, then the subspace of Fn

spanned by the row vectors of A is called the row space of A. The subspace of
Fm spanned by the column vectors of A is called the column space of A. The
solution space of a homogeneous system of linear equations Ax = 0 is called the
nullspace or the kernel of A.

Theorem 2. For any matrix A over F, the dimension of the row space and the
dimension of the column space are equal.

Definition 17. The common dimension of the row space and the column space
of matrix A is called the rank of the matrix. It is denoted by rank(A).

Definition 18. The dimension of the nullspace of A is called nullity of A and
is denoted by nullity(A).

Theorem 3. A system of linear equations Ax = b is solvable if and only if the
rank of the coefficient matrix A is the same as the rank of the augmented matrix
(A | b).

Theorem 4 (Dimension theorem of matrices). If A is a matrix with n
columns then

rank(A) + nullity(A) = n.
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4 Algorithms

From now on let k, n, t, v ∈ N, v ≥ t + 1, f : F2k → Fv+1
2k

be a εPRG-PRG,
(a1, . . . , at) ∈ ({0, 1}n)t and (b1, . . . , bt) ∈ Ft

2k . We also assume that f to be in
the ideal cipher model. We require that if i, j ∈ {1, . . . , t} and i ̸= j, then ai ̸= aj
The values aj , bj define a multi-point function φ : {0, 1}n → F2k such that for all
j ∈ {1, . . . , t}

φ(x) =

{
bj , if x = aj ,
0, otherwise.

A function secret sharing scheme consists of two algorithms – the key gen-
eration algorithm (Gen) and the evaluation algorithm (Eval). The following
subsections define these algorithms. The idea is to generalize DPF construction
of Boyle et. al [BGI15,BGI16] to the multi-point function case. This means the
keys returned by the key generation algorithm should define complete binary
trees with k levels.

To evaluate φ on x both parties essentially move bit by bit down the binary
trees defined by the keys given to the parties by Gen. This means if we are at
some node and the next bit is 0, then we move to the left child and if the next
bit is 1, then we move right. If a path from the root node to some leaf node
follows some aj , then we call that path an alive path. Every other path from
root to leaf is called a dead path. We call nodes that lie on some alive path
alive nodes and other nodes dead nodes. The goal is to have a shared secret
of 0 at the dead nodes and non-zero shared secret at alive nodes.

To achieve this we will use linear algebra. Both parties have to apply a linear
function to the values at the leaf nodes to get either a shared secret of 0, if the
last node was dead, or bj , if the alive path followed was aj . Note that every alive
node has to have at least one alive child, but it can have two. Also note that there
are at most t alive nodes at each level of the binary tree. Dead nodes cannot
have any alive children, therefore our construction must preserve the deadness of
nodes. Similarly to [BGI16], the key part we use in accomplishing this goal is
that we are working over a field of characteristic 2. This means the sum of two
equal elements is always zero and if the sum of two elements is zero, then they
are equal. We use a deterministic PRG to guarantee that, if both secret sharings
become the same, then they stay the same.

For example, in Figure 1 alive paths are colored green, alive nodes are colored
green and dead nodes are colored black and the 3-multi-point function from the
function family F({0, 1}4 → F23) is defined by points (0010, 001), (0011, 101)
and (1011, 010). On the left we can see for each input at the corresponding leaf
the values that the parties will obtain by evaluating the algorithm locally and on
the right we see the resulting shared secret on all the leaves. Note that on the
left the parties locally cannot tell which nodes are alive and which are dead.

4.1 Key generation algorithm

The key generation algorithm (formalised in Algorithm 1 and Algorithm 2) works
as follows:
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Fig. 1. Illustration of SLAMP-FSS

1. Sample Xϵ from Fv
2k \ {0} and τϵ from F2k . Sample shares of (Xϵ, τϵ) for

party one and party two. Add ϵ to set R0.
2. Iterate over i ∈ {1, . . . , n} and at each iteration do the following:

(a) Randomly sample two different values wi,0 and wi,1 from F2k . They have
to be different, because this ensures that alive nodes with exactly one
dead child can kill only one child and not both of them.

(b) Iterate over the set Ri−1 (set of alive nodes) and separate its nodes’
children r||b into alive nodes Ri and dead nodes R′i. Here r ∈ {0, 1}i−1
and b ∈ {0, 1}. Collect the nodes from Ri−1 with two alive children into
the set R̂i−1.

(c) For each dead node r||b in R′i, add a constraint ⟨Xr,di−1⟩ = τr ·wi,b to a
system of linear equations. This kills this dead node. We note that here
di−1 denotes the variables in the linear system of equations that we will
obtain.

(d) For each alive node r in R̂i−1 from the previous layer i− 1 that have two
alive children r||0 and r||1, add a constraint ⟨Xr,di−1⟩ = τr · wr,2 to the
system of linear equations, where wr,2 ∈ F2k is not equal to wi,0 nor wi,1.
This ensures with high probability that alive nodes that have an alive
sibling are not killed by accident.

(e) Solve for di−1 ∈ Fv
2k . Since there are at most t rows in the system of

linear equations and v > t variables, then we know there are either no
solutions or a lot of solutions. If the system is not solvable, then return
⊥ and abort. If it is solvable, then sample one of those solutions.

(f) For each alive node r||b in Ri, set as the new secret shared values

([Xr||b]1, [τr||b]1)← f(⟨[Xr]1,di−1⟩+ [τr]1 · wi,b),

([Xr||b]2, [τr||b]2)← f(⟨[Xr]2,di−1⟩+ [τr]2 · wi,b),

(Xr||b, τr||b)← ([Xr||b]1, [τr||b]1) + ([Xr||b]2, [τr||b]2).

Note that we do not have to do this operation for dead nodes, because
at each iteration we are only using the secret shares of the values in the
alive nodes.
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3. Solve linear system of equations, where for every j ∈ {1, . . . , t}〈
Xaj

, g
〉
= bj + τaj

,

and uniformly sample a solution to this. If the system is not solvable, then
return ⊥ and abort.

4. Set ([Xϵ]1, [τϵ]1, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g) as the first key sk1 and send
it to P1.

5. Set ([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g) as the second key sk2 and
send it to P2.

Algorithm 1: Gen – Key generator for the scheme
Input : {(a1, b1), . . . , (at, bt)}, f

1 [Xϵ]1
$← Fv

2k ;

2 [Xϵ]2
$← Fv

2k \ {[Xϵ]1};
3 Xϵ ← [Xϵ]1 + [Xϵ]2;

4 [τϵ]1, [τϵ]2
$← F2k ;

5 τϵ ← [τϵ]1 + [τϵ]2;
6 R0 ← {ϵ}, where ϵ is an empty string;
7 for i = 1 to n do
8 wi,0, wi,1,di−1, Ri ← SubGen();

9 A←

Xa1

...
Xat

 ;

10 B ←

 b1 + τa1

...
bt + τat

;

11 Solve Ag = B and sample g from the solution space ;
12 sk1 ← [Xϵ]1, [τϵ]1, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 , g;
13 sk2 ← [Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 , g;
14 Give to P1 the key sk1;
15 Give to P2 the key sk2;

4.2 Evaluation algorithm

The evaluation algorithm for party P ∈ {1, 2} on input x = x1||x2|| . . . ||xn ∈
{0, 1}n works as follows:

1. Set ([X̄0]P , [τ̄0]P )← ([Xϵ]P , [τϵ]P ).
2. Iterate over i ∈ {1, . . . , n} and do the following:

(a) Calculate zi ←
〈
[X̄i−1]P ,di−1

〉
+ [τ̄i−1]P · wi,xi .



SLAMP-FSS:Two-Party Multi-Point Function Secret Sharing 13

Algorithm 2: SubGen – Subroutine for Gen(Algorithm 1)
Input :The state of Gen
Output :wi,0, wi,1,di−1, Ri

1 wi,0
$← F2k \ {0};

2 wi,1
$← F2k \ {0, wi,0};

3 Ri ← ∅;
4 R′i ← ∅;
5 R̂i−1 ← ∅;
6 for r ∈ Ri−1 do
7 for b ∈ {0, 1} do
8 if ∃aj such that aj starts with r||b then
9 Ri ← Ri ∪ {r||b};

10 else
11 R′i ← R′i ∪ {r||b};

12 if r||0 ∈ Ri and r||1 ∈ Ri then
13 R̂i−1 ← R̂i−1 ∪ {r};

14 Let A be a |Ri−1| × v matrix of zeroes;
15 Let B be a zero column vector of length |Ri−1|;
16 ji ← 1;
17 for r||b ∈ R′i do
18 Set the ji-th row of A to be Xr;
19 Set the ji-th element of B to be τr · wi,b;
20 ji ← ji + 1 ;

21 for r ∈ R̂i−1 do
22 wr,2

$← F2k \ {wi,0, wi,1};
23 Set the ji-th row of A to be Xr;
24 Set the ji-th element of B to be τr · wr,2;
25 ji ← ji + 1 ;

26 Solve Adi−1 = B and sample di−1 from the solution space;
27 for r||b ∈ Ri do
28 ([Xr||b]1, [τr||b]1)← f(⟨[Xr]1,di−1⟩+ [τr]1 · wi,b);
29 ([Xr||b]2, [τr||b]2)← f(⟨[Xr]2,di−1⟩+ [τr]2 · wi,b);
30 Xr||b ← [Xr||b]1 + [Xr||b]2;
31 τr||b ← [τr||b]1 + [τr||b]2;

32 return wi,0, wi,1,di−1, Ri;
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(b) Evaluate ([X̄i]P , [τ̄i]P ) ← f([zi]P ). If r||xi := x1||x2|| . . . ||xi is an alive
node, then we have got ([X̄i]P , [τ̄i]P ) = ([Xr||xi ]P , [τr||xi ]P ). If r||xi is
a dead node, then r is either alive or dead. If r is alive then from
⟨Xr,di−1⟩ = τr · wi,xi , we can deduce that

⟨[Xr]1,di−1⟩+ [τr]1 · wi,xi = ⟨[Xr]2,di−1⟩+ [τr]2 · wi,xi .

This means both parties use the same argument in f and since f is
deterministic, then we know that both parties have the same value as
their secret shares, which means that their shared secret is 0. And since
the evaluation algorithm for both parties continues exactly the same,
we know that both secret shares will stay the same until the end of the
protocol. If r is dead, then we know that for some ancestor of r must be
dead and the same reasoning follows.

3. Calculate z ← ⟨Xn, g⟩+ τn.

We formalise this in Algorithm 4. To make the analysis easier we have separated
the subroutine that is evaluated at each level to a separate Algorithm 3.

Algorithm 3: EvalPi – Subroutine for the evaluator in Algorithm 4
Input : [X̄i−1]P , [τ̄i−1]P , wi,0, wi,1,di−1, f, x

i

1 [zi]P ←
〈
[X̄i−1]P ,di−1

〉
+ [τ̄i−1]P · wi,xi ;

2 ([X̄i]P , [τ̄i]P )← f([zi]P );
3 return (Xi, τi)

Algorithm 4: EvalP – Evaluation algorithm
Input : skP , f, x = x1|| . . . ||xn

1 [Xϵ]P , [τϵ]P , {wi,0}ni=1, {wi,1}ni=1, {di}n−1
i=0 , g ← skP ;

2 ([X̄0]P , [τ̄0]P )← ([Xϵ]P , [τϵ]P );
3 for i = 1 to n do
4 ([X̄i]P , [τ̄i]P )← EvalPi ([X̄i−1]P , [τ̄i−1]P , wi,0, wi,1,di−1, f, x

i);

5 [z]P ←
〈
[X̄n]P , g

〉
+ τn;

6 return z

In Appendix B, we will provide a slightly different version of our algorithm
along with altered security proofs. That version of the algorithm will output
random values instead of predetermined (b1, . . . , bt), but the last evaluation
of the PRG is omitted. In the full evaluation, this will halve the amount of
PRG-evaluations needed, bringing it down from 2 · 2n to 2n.
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5 Properties of SLAMP-FSS

In this paper, we model the PRG f in the Ideal Cipher Model. Let us assume
we have the ideal block cipher F : {0, 1}k(v+1) × {0, 1}k → {0, 1}k(v+1). Sample
x ∈ {0, 1}k(v+1), fix it, and define an ideal PRG f̂ as F (x, ·). Since F is sampled
randomly from all permutations and also x is uniform, then f̂ produces uniformly
random elements from {0, 1}k(v+1). We can interpret these as elements of Fv+1

2k
.

In the following proofs we assume that our PRG f behaves like f̂ in all matters
that are relevant.

We have to prove that the following properties hold, then we can easily reason
that this protocol satisfies the conditions for being an FSS scheme.

1. Algorithm 2 has a low probability of error assuming its inputs are correct.
2. If the secret shared by the parties P1 and P2 is [0], then after one evaluation

cycle by Algorithm 3 the secret is still [0].
3. If (Xi−1, τi−1) ̸= 0, then x1x2 . . . xi−1 = a1ja

2
j . . . a

i−1
j for at least one of the

aj .
4. For all i and all j with high probability

(Xa1
j ||...||ai

j
, τa1

j ||...||ai
j
) ̸= 0.

5. Algorithm 1 has a low probability of error assuming its inputs are correct.
6. If there exists j ∈ {1, . . . , t} such that x = aj , then executing Algorithms 1

and 4 produces a shared secret of bj .
7. If there does not exist j ∈ {1, . . . , t} such that x = aj , then executing

Algorithms 1 and 4 produces a shared secret of 0.
8. It is not possible to tell any information about aj or bj , for any j ∈ {1, . . . , t},

from the viewpoint of one party.

5.1 Error probability of SubGen

The problem with solving systems of linear equations is that they might not be
solvable. Therefore, there is a small chance that Algorithm 2 will terminate with
an error.

Theorem 5. The probability that Algorithm 2 will end with an error provided
that its inputs are correct is

Pr [Algorithm 2 returns ⊥] ≤ t

(2k)v−t+1
.

By correct inputs we mean that the values SubGen uses are correctly defined and
for all alive nodes r of the previous level: (Xr, τr) ̸= 0.

Proof. Let us analyse what is the probability of success and look at the system
of linear equations Ad = B. At first let us assume that A ∈ Ft′×v

2k
is fixed, where

t′ ≤ v. From Theorem 3 we get that Ad = B is solvable iff rank(A) = rank(A | B).
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We know that the rank of a matrix shows the number of independent rows in
the matrix. Thus, there exist rank(A) independent rows of A. The same rows
must be independent in matrix (A | B), because adding elements to independent
vectors cannot make those vectors dependent. For rank(A) = rank(A | B) to
hold, the dependent rows of A must also be dependent in (A | B). Since these
rows are dependent on the independent rows, then there are rank(A) elements of
B that we can choose freely and t′ − rank(A) elements that are determined by
them. Therefore, for a fixed A there are (2k)rank(A) different vectors B for which
rank(A) = rank(A | B) and the probability of getting such vector is thus

Pr
B

$←Ft′
2k

[Ad = B is solvable] =
(2k)rank(A)

(2k)t′
.

However, A is not fixed, it is also uniformly random. Therefore, if we want to
calculate the probability of success we have to sum over all A. Hence

Pr
A

$←Ft′×v

2k

B
$←Ft′

2k

[Ad = B is solvable] =

= Pr
B

$←Ft′
2k

[Ad = B is solvable | rank(A) = 0] · Pr
A

$←Ft′×v

2k

[rank(A) = 0] + . . .+

+ Pr
B

$←Ft′
2k

[Ad = B is solvable | rank(A) = t′] · Pr
A

$←Ft′×v

2k

[rank(A) = t′] =

=

t′∑
j=0

Pr
B

$←Ft′
2k

[Ad = B is solvable | rank(A) = j] · Pr
A

$←Ft′×v

2k

[rank(A) = j] =

=

t′∑
j=0

 (2k)j

(2k)t′
·

∣∣∣{A | A ∈ Ft′×v
2k

∧ rank(A) = j}
∣∣∣

(2k)t′·v

 .

The number of A with rank j is∣∣∣{A | A ∈ Ft′×v
2k

∧ rank(A) = j}
∣∣∣ = (2k)

j(j−1)
2 ·

j−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1

according to [MP13]. Therefore success of a single call of SubGen is

t′∑
j=0

 (2k)j

(2k)t′
·
(2k)

j(j−1)
2 ·

∏j−1
i=0

((2k)v−i−1)((2k)t
′−i−1)

(2k)i+1−1

(2k)t′·v

 =

=
1

(2k)t′(v+1)

t′∑
j=0

(
(2k)

j(j+1)
2 ·

j−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1

)
,

where t′ = |Ri−1|. Let us bound it further to show that this value is close to 1.
Notice that the last element of the sum is also the biggest. Hence

Pr [success] ≥ (2k)
t′(t′+1)

2

(2k)t′(v+1)

t′−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1
.
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In the product we divide with the following elements (2k)1 − 1, (2k)2 − 1, . . . ,
(2k)t

′ − 1 and multiply by (2k)1 − 1, (2k)2 − 1, . . . , (2k)t
′ − 1. Thus, we get

Pr [success] ≥ (2k)
t′(t′+1)

2

(2k)t′(v+1)

t′−1∏
i=0

(
(2k)v−i − 1

)
.

Notice that t′(t′+1)
2 is the sum of an arithmetic series from 1 to t′ with step 1

(see [Gra72] for example). We have

Pr [success] ≥ (2k)1+2+...+t′

(2k)t′v+t′

t′−1∏
i=0

(
(2k)v−i − 1

)
=

=
(2k)0 · . . . · (2k)t′

(2k)t′v(2k)t′

t′−1∏
i=0

(
(2k)v−i − 1

)
=

=

t′−1∏
j=0

(2k)j

(2k)v

t′−1∏
i=0

(
(2k)v−i − 1

)
.

Let us combine the two products and get

Pr [success] ≥
t′−1∏
i=0

(2k)i

(2k)v
(
(2k)v−i − 1

)
=

t′−1∏
i=0

(
1− 1

(2k)v−i

)
.

The smallest term in this product is when i = t′ − 1, thus

Pr [success] ≥
t′−1∏
i=0

(
1− 1

(2k)v−t′+1

)
=

(
1− 1

(2k)v−t′+1

)t′

.

Now from the Bernoulli inequality (1) we get

Pr [success] ≥
(
1− 1

(2k)v−t′+1

)t′

≥ 1− t′

(2k)v−t′+1
.

Since t ≥ t′, then

Pr [success] ≥ 1− t′

(2k)v−t′+1
≥ 1− t

(2k)v−t+1
.

And thus the probability of error is

Pr [Algorithm 2 returns ⊥] ≤ 1− 1 +
t

(2k)v−t+1
=

t

(2k)v−t+1
.
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5.2 Dead nodes’ children stay dead

If the secret shared by the parties P1 and P2 is [0], then after one evaluation
cycle by Algorithm 3 the secret is still [0]. This can be stated more formally as
follows.

Theorem 6. For all i ∈ {1, . . . , n}; xi ∈ {0, 1}; [Xi−1]1, [Xi−1]2 ∈ Fv
2k ; [τi−1]1, [τi−1]2 ∈

F2k and all key pairs generated by Gen: if [Xi−1]1 = [Xi−1]2 and [τi−1]1 = [τi−1]2
and

([Xi]1, [τi]1,[Xi]2, [τi]2)← αi([Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2, wi,0, wi,1,di−1, f, x
i),

then [Xi]1 = [Xi]2 and [τi]1 = [τi]2, where αi is Algorithm 5 and EvalPi is
Algorithm 3.

Algorithm 5: αi – One cycle of multiparty computation
Input : [Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2, wi,0, wi,1,di−1, f, x

i

1 ([Xi−1]1, [τi−1]1)← Eval1i ([Xi−1]1, [τi−1]1, wi,0, wi,1,di−1, f, x
i);

2 ([Xi−1]2, [τi−1]2)← Eval2i ([Xi−1]2, [τi−1]2, wi,0, wi,1,di−1, f, x
i);

3 return ([Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2)

Proof. Let us fix i ∈ {1, . . . , n}, xi ∈ {0, 1} and a key pair generated by Gen.
Assume [Xi−1]1 = [Xi−1]2 and [τi−1]1 = [τi−1]2. Now let us calculate αi

[zi]1 ←⟨[Xi−1]1,di−1⟩+ [τi−1]1 · wi,xi ,

([Xi]1, [τi]1)←f([zi]1),

[zi]2 ←⟨[Xi−1]2,di−1⟩+ [τi−1]2 · wi,xi =

= ⟨[Xi−1]1,di−1⟩+ [τi−1]1 · wi,xi = [zi]1,

([Xi]2, [τi]2)←f([zi]2) = f([zi]1) = ([Xi]1, [τi]1).

Therefore, we get
[Xi]1 = [Xi]2, and [τi]1 = [τi]2,

which is exactly what we wanted to show.

5.3 Node is alive if it is supposed to be alive

This can be stated more formally as follows.

Theorem 7. For all i ∈ {0, . . . , n} if (Xi, τi) ̸= 0, then there exists j ∈ {1, . . . , t}
such that

x1x2 . . . xi = a1ja
2
j . . . a

i
j .
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(Notice that due to the construction of Algorithms 1 and 4, we can be
sure that the shared value in the evaluation phase (X̄i−1, τ̄i−1) is the same as
(Xx1x2...xi−1 , τx1x2...xi−1) in the key generation phase. This is the reason why we
can denote (Xi−1, τi−1) as (Xx1x2...xi−1 , τx1x2...xi−1).)

Proof. Let us prove the claim of the theorem by induction.
Base step: Let i = 0. The statement holds trivially, because there is no 0-th

bit of x, therefore, it coincides with the beginning of every aj .
Induction step: Let us assume for i− 1 the statement holds and denote

r := x1x2 . . . xi−1,

i.e.
(Xr, τr) ̸= 0 ⇒ ∃j ∈ {1, . . . , t} : r = a1ja

2
j . . . a

i−1
j .

Let us show the statement holds for i as well and assume towards contradiction
that

(Xr||xi , τr||xi) ̸= 0 ∧ ∄j ∈ {1, . . . , t} : r||xi = a1ja
2
j . . . a

i
j .

Since (Xr||xi , τr||xi) ̸= 0, then property 2 implies that (Xr, τr) ̸= 0. Now we can
use the induction assumption and get that ∃j ∈ {1, . . . , t} : r = a1ja

2
j . . . a

i−1
j . This

means that during the execution of SubGen r ∈ Ri−1 and since ∄j ∈ {1, . . . , t} :
r||xi = a1ja

2
j . . . a

i
j , then we know that r||xi ∈ R′i. In SubGen lines 17 to 20 the

following equation is enforced:

⟨Xr,di−1⟩ = τr · wi,xi ,

which, because of linearity of the scalar product and the fact that

[Xr]1 + [Xr]2 = Xr and [τr]1 + [τr]2 = τr,

is the same as

⟨[Xr]1,di−1⟩+ ⟨[Xr]2,di−1⟩ = [τr]1 · wi,xi + [τr]2 · wi,xi ,

that is

⟨[Xr]1,di−1⟩ − [τr]1 · wi,xi = −⟨[Xr]2,di−1⟩+ [τr]2 · wi,xi .

Since we are working in F2k , then we get

⟨[Xr]1,di−1⟩+ [τr]1 · wi,xi = ⟨[Xr]2,di−1⟩+ [τr]2 · wi,xi .

Now we can calculate (Xr||xi , τr||xi):

(Xr||xi ,τr||xi) = ([Xr||xi ]1, [τr||xi ]1) + ([Xr||xi ]2, [τr||xi ]2) =

= f
(
⟨[Xr]1,di−1⟩+ [τr]1 · wi,xi

)
+ f

(
⟨[Xr]2,di−1⟩+ [τr]2 · wi,xi

)
=

= f
(
⟨[Xr]1,di−1⟩+ [τr]1 · wi,xi

)
+ f

(
⟨[Xr]1,di−1⟩+ [τr]1 · wi,xi

)
=

= (0, . . . , 0, 0).

This is a contradiction, because we assumed (Xr||xi , τr||xi) ̸= 0. Therefore,
there exists j ∈ {1, . . . , t} : r||xi = a1ja

2
j . . . a

i
j . By the principles of mathematical

induction, the statement holds for any i ∈ {0, . . . , n}.
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5.4 Alive nodes are probably not dead

Theorem 8. Denote by (f(x))k the last k bits of f(x). For all i ∈ {0, . . . , n},
for all j ∈ {1, . . . , t} and for all PRG f : F2k → Fv+1

2k
for which

Pr
[
(f(x))k = (f(x′))k ∧ x ̸= x′ : x, x′

$← F2k

]
≤ εcol,

it holds
Pr
[
τa1

j ||...||ai
j
̸= 0
]
≥
(
psolvable · (1− εcol)

t
)i
,

where the probability is taken over the randomness of Gen and

psolvable := 1− t

(2k)v−t+1
.

Proof. Let us prove this claim by induction over i ∈ {0, . . . , n}.
Base step: Let i = 0. In any case (Xϵ, τϵ) ̸= 0 and thus the probability is 1,

because the construction of Gen ensures that Xϵ is not 0. Therefore the claim
holds trivially.

Induction step: Let us assume that the claim holds for i− 1 and show it
also holds for i. Denote

pi := Pr
[
(τa1

j ||...||ai
j
) ̸= 0

]
,

and rj := a1j || . . . ||a
i−1
j .

The proof follows the scheme seen in Figure 2. Nodes of the scheme represent
different events and edges between them represent the probability of this event
happening on the condition that previous events happened. If there is only one
outgoing edge, then the next event happened with probability 1 given the previous
events. If there are two outgoing edges, then the sum of the probabilities equals 1,
or in other words, the child events of the parent are complements of each other.

Let us start to calculate the probability of the success path from Figure 2. The
first question is, if τrj ̸= 0 for all j ∈ {1, . . . , t}. This happens by the induction
assumption with probability

pi−1 ≥
(
psolvable · (1− εcol)

t
)i−1

.

On the other hand, if there exists j ∈ {1, . . . , t} such that τrj = 0, then it is possi-
ble that (Xrj , τrj ) = 0. Then we know from property 2, that (Xrj ||ai

j
, τrj ||ai

j
) = 0.

Therefore, for easier calculation, we count this path as a failure.
Now let us assume for all j ∈ {1, . . . , t} : τrj ̸= 0. The next question is,

whether Adi−1 = B is solvable during the i-th step. If it is not, then Gen aborts
and we end in failure. We know from Subsection 5.1 that it is solvable with
probability at least

psolvable := 1− t

(2k)v−t+1
.

If Adi−1 = B is solvable, then a random di−1 is picked. Let us fix this value.
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∃j : τrj = 0

∃j : (Xrj ||ai
j
, τrj ||ai

j
) = 0

fail

∀j : τrj ̸= 0

Adi−1 = B is not solvable

algorithm aborts

fail

Adi−1 = B is solvable

∀j:
〈
Xrj

,di−1

〉
̸=τrj ·wi,ai

j

zj,1←
〈
[Xrj

]1,di−1

〉
+[τrj ]1·wi,ai

j

zj,2←
〈
[Xrj

]2,di−1

〉
+[τrj ]2·wi,ai

j

∃j:
(f(zj,1))k=(f(zj,2))k

∃j:
τ
rj ||ai

j
=0

fail

∀j:
(f(zj,1))k ̸=(f(zj,2))k

∀j:
τ
rj ||ai

j
̸=0

success

Fig. 2. Proof scheme for property 4.

Let us fix j ∈ {1, . . . , t}. If r has one alive and one dead child, then we know
that r||aij is alive and r||(1−aij) is dead. Therefore, the system of linear equations
enforces 〈

Xrj ,di−1
〉
= τrj · wi,(1−ai

j)
.

Since wi,(1−ai
j)
̸= wi,ai

j
, then

〈
Xrj ,di−1

〉
̸= τrj · wi,ai

j
, because τrj ̸= 0.

If r has two alive children, then we know that the system of linear equations
enforces 〈

Xrj ,di−1
〉
= τrj · wrj ,2.

Since wrj ,2 ̸= wi,ai
j
, then

〈
Xrj ,di−1

〉
̸= τrj · wi,ai

j
.

Therefore, we know that for all j ∈ {1, . . . , t} it holds
〈
Xrj ,di−1

〉
≠ τrj ·wi,ai

j
.

This also means that〈
[Xrj ]1,di−1

〉
+ [τrj ]1 · wi,ai

j
̸=
〈
[Xrj ]2,di−1

〉
+ [τrj ]2 · wi,ai

j
.

Let us denote

zj,1 :=
〈
[Xrj ]1,di−1

〉
+ [τrj ]1 · wi,ai

j
,

zj,2 :=
〈
[Xrj ]2,di−1

〉
+ [τrj ]2 · wi,ai

j
.

During the execution of Gen, τrj ||ai
j

is calculated as (f(zj,1))k + (f(zj,2))k. Now
there are two possibilities: on the one hand, if for all j ∈ {1, . . . , t} : (f(zj,1))k ̸=
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(f(zj,2))k, which means τrj ||ai
j
≠ 0, then we succeed. Otherwise, if there exists

j ∈ {1, . . . , t} such that (f(zj,1))k = (f(zj,2))k, then for that j the equality
τrj ||ai

j
= 0 holds. This is a failure.

What is the probability that for all j ∈ {1, . . . , t} : (f(zj,1))k ̸= (f(zj,2))k?
By our assumption, if we show that the inputs to f are uniformly random and
different, then we can conclude that for a fixed j this happens with probability
no less than 1− εcol.

Let us thus show that the inputs to f are uniformly random and different.
Let us fix j ∈ {1, . . . , t}. We know that [τrj ]1 and [τrj ]2 are both uniform over
F2k . Therefore, [τrj ]1 · wi,ai

j
and [τrj ]2 · wi,ai

j
are uniform over F2k , because wi,ai

j

is fixed and nonzero. Thus zj,1 and zj,2 are also uniform over F2k . From before
we get zj,1 ̸= zj,2. Thus it follows from our assumption about f that for one
j the probability of (f(zj,1))k ̸= (f(zj,2))k is 1− εcol. Assuming all t instances
of zj,1, zj,2 are independent, the probability that we are looking for is equal or
larger than (1− εcol)

t.
Now let us follow the success path:

pi ≥ pi−1 · psolvable · (1− εcol)
t ≥

≥
(
psolvable · (1− εcol)

t
)i−1 · psolvable · (1− εcol)

t =
(
psolvable · (1− εcol)

t
)i ≥

≥
(
(1− εcol)

t ·
(
1− t

(2k)v−t+1

))i

.

Therefore, by the principles of mathematical induction for all i ∈ {0, . . . , n} the
statement holds.

5.5 The evaluation of an alive path produces correct output

Theorem 9. For all x ∈ {0, 1}n, if there exists j ∈ {1, . . . , t} such that x = aj,
then [bj ]1 + [bj ]2 = bj, where [bj ]1 is the output of Eval1 and [bj ]2 is the output
of Eval2, provided that Gen succeeds.

Proof. Let us fix x ∈ {0, 1}n and assume there exists j ∈ {1, . . . , t} such that
x = aj and that Gen, Eval1 and Eval2 succeed. Let [bj ]1 be the output of Eval1

and [bj ]2 be the output of Eval2.

[bj ]1 = ⟨[Xx]1, g⟩+ [τx]1,

[bj ]2 = ⟨[Xx]2, g⟩+ [τx]2.

Since the scalar product is linear,

bj = ⟨Xx, g⟩+ τx = ⟨[Xx]1 + [Xx]2, g⟩+ [τx]1 + [τx]2 =

= ⟨[Xx]1, g⟩+ [τx]1 + ⟨[Xx]2, g⟩+ [τx]2 = [bj ]1 + [bj ]2.

Therefore, if the protocol succeeds, then P1 and P2 have a shared secret of bj .
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5.6 Error probability of Gen

In the Subsection 5.4, we saw what is the success probability of SubGen in the
sense that it does not kill alive nodes and it does not abort. These are the success
conditions of Gen as well. However, in the end Gen calculates g as well, which
is also a possible point of failure. This subsection captures the entire failure
probability of SLAMP-FSS. At first, let us show that, if during the process an
alive node has been killed, then Gen aborts (unless that alive path is supposed
to evaluate to 0).

Lemma 1. For all j ∈ {1, . . . , t}, if

(Xaj
, τaj

) = 0 and bj ̸= 0,

then Gen aborts.

Proof. Let us fix j ∈ {1, . . . , t} and assume

(Xaj , τaj ) = 0 and bj ̸= 0.

During the execution of Gen at lines 9 to 11, we try to find g ∈ Fv
2k such that〈

Xaj , g
〉
= bj + τaj .

That is

⟨0, g⟩ = bj + 0,

0 = bj .

This is not possible, because bj ̸= 0. Therefore, Gen aborts.

From the previous proof we also get that, if bj = 0, then Gen does not abort,
due to this alive node having been killed. This is not a problem, because the
end result of the protocol is still correct. The evaluation of desired t-multi-point
function on x = aj is bj = 0.

Theorem 10. The probability that Algorithm 1 will end with an error provided
that its inputs are correct is

Pr [Algorithm 1 returns ⊥] ≤ 1− pn+1
solvable · (1− εcol)

tn,

where εcol is defined as in Theorem 8. and

psolvable := 1− t

(2k)v−t+1
.

Proof. From Lemma 1 and Theorem 9 we can conclude that Gen succeeds if Gen
does not abort. By succeeding we mean that Gen does not make any keys that
do not evaluate to the original multi-point function. Aborting can happen during
the executions of SubGen or during the solving of the linear equation Ag = B.
There are three possibilities:
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1. For all j ∈ {1, . . . , t} we have

(Xaj
, τaj

) ̸= 0.

and for all j in the generation as described through the Figure 2, we got no
result fail on all levels i ∈ [1, . . . , n].
This holds with probability

Pr
[
(Xaj , τaj ) ̸= 0

]
≥
(
psolvable · (1− εcol)

t
)n

.

From the ideal cipher model we have that in this case (Xaj , τaj ) are uniformly
random for all j ∈ {1, . . . , t}. The question is what is the probability of solving
Ag = B, if A and B are uniformly random. Thus, we have the same case as
in Subsection 5.1 and the probability not aborting is greater than psolvable.

2. For all j ∈ {1, . . . , t} we have

(Xaj
, τaj

) ̸= 0.

but for at least one j at some level i ∈ [1, . . . , n], we got the result fail. In this
case the algorithm may or may not abort. However, due to it being difficult
to evaluate, we will bound the success with 0.

3. There exists j ∈ {1, . . . , t} such that

(Xaj , τaj ) = 0.

We saw in Lemma 1 that in this case if bj ̸= 0, then the algorithm aborts.
We do not know what is the probability of bj ̸= 0. Thus, it is easier to bound
the success with 0.

From previous three branches we get that the probability of success is

Pr [Gen succeeds] ≥ psolvable
(
psolvable · (1− εcol)

t
)n

+0+0 = pn+1
solvable·(1−εcol)

tn.

Thus the probability of aborting is

Pr [Gen outputs ⊥] ≤ 1− pn+1
solvable · (1− εcol)

tn.

5.7 The evaluation of a dead path produces shared secret of 0

Theorem 11. For all x ∈ {0, 1}n, if there does not exists j ∈ {1, . . . , t} such
that x = aj, then [z]1 + [z]2 = 0, where [z]1 is the output of Eval1 and [z]2 is the
output of Eval2, provided that Gen succeeds.

Proof. Let us fix x ∈ {0, 1}n and assume there does not exists j ∈ {1, . . . , t} such
that x = aj and that Gen, Eval1 and Eval2 succeed. Let [zj ]1 be the output of
Eval1 and [zj ]2 be the output of Eval2. We know from Gen and property 2, that
at some point the shared secret becomes 0 and it stays 0, thus we know that
[Xx]1 = [Xx]2 and [τx]1 = [τx]2. Let us calculate [zj ]1 + [zj ]2:

[zj ]1 + [zj ]2 = ⟨[Xx]1, g⟩+ [τx]1 + ⟨[Xx]2, g⟩+ [τx]2 =

= ⟨[Xx]1, g⟩+ [τx]1 + ⟨[Xx]1, g⟩+ [τx]1 = 0.

This is exactly what we wanted to show.
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5.8 One party cannot evaluate the secret function alone

For readability, the games are moved to Appendix A.2. In the games the notation
P1← denotes the output that is given to P1 and P2← denotes the output that is given
to P2.

It is not possible to tell any information about aj or bj , for any j ∈ {1, . . . , t},
from the viewpoint of one party. We can define a security definition that should
capture property 8.

Definition 19 (FSS real or random indistinguishability). We call a FSS
scheme εFSS-ROR-indistinguishable if for every PPT adversary A it holds

|Pr [Game 1(A) = 1]− Pr [Game 3(A) = 1]| ≤ εFSS,

and
|Pr [Game 2(A) = 1]− Pr [Game 3(A) = 1]| ≤ εFSS.

Theorem 12. For all εPRG-PRG f : F2k → Fv+1
2k

:
SLAMP-FSS is (t · n · εPRG + (n+ 1) · εmat)-ROR-indistinguishable, where

εmat =
t

(2k)v−t+1
.

5.9 Completeness and security

Theorem 13. SLAMP-FSS is complete. That is, for all a ∈ ({0, 1}n)t, b ∈ Ft
2k ,

all input x ∈ {0, 1}n and all PRGs f , if φ is t-multi-point function defined by a
and b, then

Pr
[
Eval1(sk1, x) + Eval2(sk2, x) = φ(c) | sk1, sk2 ← Gen(a, b, f)

]
= 1.

Note that this probability assumes Gen did not abort.

Proof. This follows straight from Theorems 9 and 11.

Theorem 14. SLAMP-FSS is (1, t · n · εPRG + (n+ 1) · εmat)-indistinguishable.
That is, for all εPRG-pseudo random generators f , if Pi is corrupted, i ∈ {1, 2},
and P3−i is not corrupted, then for all PPT algorithms A

Pr [Game 15(A) = 1]− 1

2
≤ t · n · εPRG + (n+ 1) · εmat,

where
εmat =

t

(2k)v−t+1
.

Proof. From Theorem 12 we know that SLAMP-FSS is (t ·n ·εPRG+(n+1) ·εmat)-
ROR indistinguishable. Let us assume towards contradiction that SLAMP-FSS is
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Algorithm 6: B()
1 (a0

1, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 return (ab
1, b

b
1), . . . , (a

b
t , b

b
t);

Algorithm 7: B(ski)
1 b̄← A(ski, σ);
2 return [b̄

?
= b];

not (1, t · n · εPRG + (n + 1) · εmat)-indistinguishable. Thus, there exists PPT
algorithm A such that

Pr [Game 15(A) = 1]− 1

2
> t · n · εPRG + (n+ 1) · εmat.

Let us define a new adversary B against ROR indistinguishably in Algorithms 6
and 7:

Without loss of generality, let us assume i = 1. Now let us inline B into
Game 1 and 3. We get Game 16 and 17. In Game 17, we can delete line 3, because
we do not use these values and move line 2 down. We get Game 18.

Let us calculate |Pr [Game 1(B) = 1]− Pr [Game 3(B) = 1]|. For this notice
that Game 16 ≡ Game 15. Therefore,

Pr [Game 1(B) = 1] = Pr [Game 16(B) = 1] = Pr [Game 15(A) = 1] >

>
1

2
+ t · n · εPRG + (n+ 1) · εmat.

Since in Game 18 b is sampled randomly just before the comparison with b̄, then
the probability that b = b̄ must be 1

2 i.e

Pr [Game 3(B) = 1] = Pr [Game 18(B) = 1] =
1

2
.

That is

|Pr [Game 1(B) = 1]− Pr [Game 3(B) = 1]| > t · n · εPRG + (n+ 1) · εmat.

We have reached a contradiction. Thus, SLAMP-FSS is (1, t·n·εPRG+(n+1)·εmat)-
indistinguishable.

5.10 Efficiency

Here we give results about the efficiency of our schemes. The detailed results can
be found in Appendix C. Let tF denote the time for one field operation over F2k ,
tF vec the time for one operation over vector space Fv

2k and tPRG the time for one
PRG evaluation.
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Proposition 1. Algorithm 1 produces keys with size vnk + 2vk + 2nk + k bits.

Lemma 2. For SubGen to check if a child node r||b of an alive node r is supposed
to be dead or alive, takes O(t ⌈log t⌉) steps per level.

Proposition 2. Algorithm 2 (SubGen) is O(vt2 · tF + t · tF vec + t · tPRG). In fact
it takes at most 2t PRG evaluations.

Proposition 3. Algorithm 1 (Gen) is O(nvt2 · tF + nt · tPRG). In fact it takes at
most 2tn PRG evaluations.

Proposition 4. Algorithm 4 (EvalP ) has time complexity Θ(nvtF + ntPRG). In
fact it takes n PRG evaluations.

Proposition 5. Full evaluation of SLAMP-FSS requires 2 · 2n calls to the PRG.

Proposition 6. Full evaluation of SLAMPR-FSS that is given in Appendix B
requires 2n calls to the PRG.

6 Comparison to prior works

In this section we compare our results with some prior works. In Table 1 we can
see how the three schemes compare to each other. Parameters t, n, k come from
that t-multi-point functions are taken from the function family F({0, 1}n → F2k),
ϵ > 0 is a constant used in the batch-code scheme and v is the security parameter.

We compare mainly the key size and the number of PRG calls in various
stages. We note that the PRG evaluation is by far the most expensive step and
thus we measure that.

We compare our results to the original results of Boyle et al. [BGI16], the
two techniques proposed in Boyle et al. [BCGI18] and to Schoppmann et al.
[SGRR19].

Concerning key size, we note that other schemes tend to have it somewhat
bigger than O(tvn) while our solution is O(vnk) and is in practice dominated by
vnk as can be seen from Proposition 1. Thus our solutions are competitive in
the area of the key size, with the specific most effective scheme depending on the
relations between t, k and other parameters.

We can see that our approach is competitive in the amount of PRG calls in
the generation procedure with the exception of the batch code solution. However,
the full evaluation of the batch code solution is many times as costly as our
solutions, because of the difficulty of finding good batch code parameters.

We note that we estimate the key sizes and the number of PRG calls in the
table with big O notation. This is largely due it being difficult to find more
precise values to various code-based solutions, as those values depend on the code
parametres. We note however, that in those categories, we are not hiding a large
constant in our big O, as the key sizes for SLAMP-FSS and SLAMPR-FSSis
dominated by the term vnk, and the number of PRG calls in Gen is 2tn.
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Number of Number of Number of Known-point
Scheme Key size PRG calls PRG calls PRG calls FSS

in Gen in Eval in FullEval
Simple [BGI16] O(t(vn+ k)) O(tn) tn 2t2n No

[BCGI18], batch codes O(t1+ϵ(v ⌈n− log t⌉+ k)) O(n) - O(2n) No
[BCGI18], RSD 1 O(t(vn+ k)) O(tn) n (1 + ⌈ k

v+2
⌉)2n No

PBC [SGRR19]2 O(t(vn+ k)) O(tn) - 3 · 2n Yes
SLAMP-FSS O(vnk) O(tn) n 2 · 2n No

SLAMPR-FSS3 O(vnk) O(tn) n 2n No
1 The algorithm requires a stronger assumption, thus the t under question should be probably larger,

compared to others.
2 The algorithm has a small ≈ 2−40 error probability.
3 The output values are randomly distributed.

Table 1. Multi-point function secret sharing scheme comparison

We note that an issue with our scheme is that in Gen, we require solving
n systems of linear equations. However, as explained in the introduction, this
boils down to 2n private t× t matrix multiplications and n private matrix-vector
multiplications which is not too expensive.

Compared to the RSD solution of [BCGI18], we note that its amount of
PRG calls in FullEval is at minimum 2 · 2k, thus being tied in this regard with
SLAMP-FSS but being twice as costly as SLAMPR-FSS. In the other parametres,
the results are similar, although the respective value of t should be larger due to
the stronger assumption.

7 Conclusions

We presented a new multi-point function secret sharing schemes SLAMP-FSS and
SLAMPR-FSS and proved that they is complete and secure with a generation
function that passes with overwhelming probability. The scheme has the biggest
advantage over its competitors that in the evaluation process, the number of
PRG evaluations needed is much smaller while keeping the other efficiency
numbers competitive with the other schemes. Moreover, it is built from simple
mathematical constructions, and is conceptually simple. It seems likely that this
approach can be combined with other techniques in the future.
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A Missing proofs

Time complexity of Gaussian elimination

Theorem 15. Let t, v, k ∈ N, v > t, A ∈ Ft×v
2k

and B ∈ Ft
2k . Gaussian elimina-

tion on the matrix equation Ax = B takes O(vt2).

https://digitalprivacy.ieee.org/publications/topics/what-is-multiparty-computation
https://digitalprivacy.ieee.org/publications/topics/what-is-multiparty-computation
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Proof. Let us describe Gaussian elimination [AR91] line by line and bound the
time complexity of each step. Operations on rows are done on the augmented
matrix (A | B).

Start iterating over columns of A from left to right. Let j be the column
index. And S be an empty set at the beginning.

1. Search for a row i ̸∈ S with non-zero element in j-th column. It takes at most
t field operations.

2. If all elements were 0, then move onto the next column and go back to the
previous step.

3. If a non-zero element a was found, find its inverse a−1 and add i to set S.
This takes one field operation and some constant number of steps.

4. Multiply the elements of this row i with a−1 and replace the i-th row with
these values. This takes O(v) field operations.

5. For each row i′ ̸∈ S take the j-th element b. Multiply each element of the
i-th row with b and subtract these values from the elements of the i′-th row
and replace the i′-th row with the result. This takes O(tv) field operations.

6. Repeat for column j + 1 until j = v or |S| = t.

After this the matrix is in the row-echelon form. The worst case scenario is if
first v − t columns are all zero columns and the last t are linearly independent
of each other. In this case, we do O(t(v − t)) = O(tv) field operations to check
the zero columns and O(t(t+ 1 + tv + 1)) = O(vt2) field operations to get the
row-echelon form.

To get to the reduced row-echelon form, we do similar triangular process, but
look at column indices in S. This is similar enough that it also takes O(vt2) field
operations.

A.1 Theorem 12

Theorem 16. For all εPRG-PRG f : F2k → Fv+1
2k

:
SLAMP-FSS is (t · n · εPRG + (n+ 1) · εmat)-ROR-indistinguishable, where

εmat =
t

(2k)v−t+1
.

Proof. In this proof, we color changes in code magenta.
Without loss of generality, let us assume that adversary A is playing as P2. Also,
let us assume we have εPRG-PRG f : F2k → Fv+1

2k
. This means that for every

PPT adversary B

|Pr [Game 4(B) = 1]− Pr [Game 5(B) = 1]| ≤ εPRG.

Now let us look at Game 2 and the first occurrence of the line (1)

([Xr||b]1, [τr||b]1)← f(⟨[Xr]1,di−1⟩+ [τr]1 · wi,b). (1)

Since ϵ ∈ R0, then at least one of the corresponding node’s children must be
in R1. Let us denote this child by b. Now let us look at ⟨[Xϵ]1,d0⟩+ [τϵ]1 · w1,b.
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Since w1,b ̸= 0 and [τϵ]1 is uniform over F2k , then [τϵ]1 · w1,b is also uniform over
F2k . From this we can also conclude that ⟨[Xϵ]1,d0⟩+ [τϵ]1 · w1,b is also uniform
over F2k . Notice that A does not know this value, because they do not know [τϵ]1.
Even if they know all the other parts of this expression [τϵ]1 hides it.

Therefore, we have reached Game 4. We can replace the first occurrence of
line (1) with

([Xr||b]1, [τr||b]1)
$← Fv+1

2k
,

and get a new game called Game 2-1, which differs by only this line and is
εPRG-close to Game 2. Repeating this procedure at every occurrence of line (1)
or in other words at every alive node, we can replace all such lines and reach
Game 2-t′, which is t · n · εPRG-close to Game 2. Let us write out Game 2-t′ and
rename it to Game 6. This can be further simplified, because Xr||b and τr||b on
lines 30 and 31 of SubGen are now also uniformly random. We get the new game
Game 7. We can do the sampling right before we need sampled values and get
Game 8, which turns into Game 9, because the aim of the sampling is to sample
random matrices and vectors. Note that the symbol “. . .” denotes the lines that
have not been changed and are the same as in Game 2.

Since di−1 is not used for calculating Xr||b, τr||b, then we can try to replace
it with a random vector of length v. Let us fix d ∈ Fv

2k . Let us show that the
statistical distance between Game 10 and Game 12 is small. For this let us
consider Game 11. This game is like Game 10, but it returns ⊥, if Ad = B is
not solvable. In fact because of Theorem 3, Game 10 returns ⊥ if and only if
Game 11 returns ⊥. Thus,

SD(Game 10,Game 12) = SD(Game 11,Game 12).

Let us calculate SD(Game 11,Game 12):

SD(Game 11,Game 12) =

=
1

2

∑
α∈Fv

2k
∪{⊥}

|Pr [Game 11 = α]− Pr [Game 12 = α]| =

=
1

2

∑
α∈Fv

2k

∣∣∣∣∣∣∣∣
∑

A∈F|
Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Pr [A] Pr [B | A] ·

· Pr
d

$←solutions to
Ad=B

[d = α | B ∩A]− 1

(2k)v

∣∣∣∣∣+
+

1

2

∑
A∈F|

Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Pr [A] Pr [B | A] Pr
d

$←solutions to
Ad=B

[d = ⊥ | B ∩A] .

Since B is independent of A, then

Pr [A] =
1

(2k)|Ri−1|·v
, Pr [B] =

1

(2k)|Ri−1|
.
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Now we can see that d = ⊥ iff rank(A) < rank(A|B). The analysis for this
probability can be seen in Section 5.1. Therefore, the second summand is

1

2
·

∑
A∈F|

Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Pr [A] Pr [B] Pr
d

$←solutions to
Ad=B

[d = ⊥ | B ∩A] =

=
1

2
·

∑
A∈F|

Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

rank(A)<rank(A|B)

Pr [A] Pr [B] =
1

2
·

# of A and B such that
rank(A)<rank(A|B)

# of A and B
=

=
1

2
Pr [Ad = B is not solvable] .

Let us fix α and look at the first summand. More precisely let us calculate∑
A∈F|

Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Pr [A] Pr [B] Pr
d

$←solutions to
Ad=B

[d = α | B ∩A] .

If Aα ≠ B, then we know that Pr
d

$←solutions to
Ad=B

[d = α | B ∩A] = 0. If Aα = B,

then Ad = B is solvable and there are (2k)v−rank(A) solutions to it. The probability
of uniformly sampling d such that d = α is thus

Pr
d

$←solutions to
Ad=B

[d = α | B ∩A] =
1

(2k)v−rank(A)
.

We get ∑
A∈F|

Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Pr [A] Pr [B] Pr
d

$←solutions to
Ad=B

[d = α | B ∩A] =

=
∑

A∈F|
Ri−1|×v

2k

∑
B∈F|

Ri−1|
2k

Aα=B

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−rank(A)
=

=

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

∑
B∈F|

Ri−1|
2k

Aα=B

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 .

If A and α are fixed, then there is exactly one B for which Aα = B. Therefore,

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

∑
B∈F|

Ri−1|
2k

Aα=B

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 =
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=

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 =

=

|Ri−1|∑
j=0


∣∣∣{A | A ∈ F|Ri−1|×v

2k
∧ rank(A) = j}

∣∣∣
(2k)|Ri−1|(v+1) · (2k)v−j

 =

=
1

(2k)v

|Ri−1|∑
j=0

(2k)j ·

∣∣∣{A | A ∈ F|Ri−1|×v
2k

∧ rank(A) = j}
∣∣∣

(2k)|Ri−1|(v+1)

 =

=
1

(2k)v
Pr [Ad = B is solvable] ,

where the last equality comes from Subsection 5.1. Replacing this result into the
first summand we get

1

2

∑
α∈Fv

2k

∣∣∣∣ 1

(2k)v
Pr [Ad = B is solvable]− 1

(2k)v

∣∣∣∣ =
=

1

2
· 1

(2k)v

∑
α∈Fv

2k

|Pr [Ad = B is solvable]− 1| =

=
1

2
· 1

(2k)v
· (2k)v · (1− Pr [Ad = B is solvable]) =

=
1

2
· (1− Pr [Ad = B is solvable]) .

We can now calculate the statistical distance

SD(Game 11,Game 12) =

=
1

2
(1− Pr [Ad = B is solvable]) +

1

2
Pr [Ad = B is not solvable] =

= 1− Pr [Ad = B is solvable] ≤ t

(2k)v−t+1
.

Thus, the statistical distance between Game 10 and Game 12 is at most

εmat :=
t

(2k)v−t+1
.

Now we can replace the linear equations in Game 9 with random d and get
Game 13 that is k · εmat close to Game 9.

The same analysis can be done for finding g and thus we can replace it as
well and get Game 14 that is εmat close to Game 13. We can also notice that
Game 14 ≡ Game 3. This means we have found the computational distance
between Game 3 and Game 2:

|Pr [Game 2(A) = 1]− Pr [Game 3(A) = 1]| ≤ t · n · εPRG + (n+ 1) · εmat.
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If A plays the role of P1, then the proof is analogous.

A.2 Games

In the following security games Game 1, 2, the notation P1← denotes the output
that is given to P1 and P2← denotes the output that is given to P2.

Game 1:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 sk1

P1← Gen((a1, b1), . . . , (at, bt), f);
3 return A(sk1);

Game 2:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 sk2

P2← Gen((a1, b1), . . . , (at, bt), f);
3 return A(sk2);

Game 3:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 Xϵ

$← Fv
2k ;

3 τϵ
$← F2k ;

4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 di−1

$← Fv
2k ;

8 g
$← Fv

2k ;
9 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g;

10 return A(sk);

Game 4:
Input :B - the adversarial algorithm

1 x
$← F2k ;

2 y ← f(x);
3 return B(y);

Game 5:
Input :B - the adversarial algorithm

1 y
$← Fv+1

2k
;

2 return B(y);
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Game 6:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 · · · ;
3 for r||b ∈ Ri do
4 ([Xr||b]1, [τr||b]1)

$← Fv+1

2k
;

5 ([Xr||b]2, [τr||b]2)← f(⟨[Xr]2,di−1⟩+ [τr]2 · wi,b);
6 Xr||b ← [Xr||b]1 + [Xr||b]2;
7 τr||b ← [τr||b]1 + [τr||b]2;

8 · · · ;
9 return A(sk2);

Game 7:
1 · · · ;
2 for r||b ∈ Ri do
3 (Xr||b, τr||b)

$← Fv+1

2k
;

4 · · · ;

Game 10:
1 A

$← F|Ri−1|×v
2k

;
2 B

$← F|Ri−1|
2k

;
3 Solve Ad = B and choose a d;
4 return d;

Game 11:
1 A

$← F|Ri−1|×v
2k

;
2 B

$← F|Ri−1|
2k

;
3 if rank(A) < rank(A|B) then
4 return ⊥;

5 Solve Ad = B and choose a d;
6 return d;

Game 12:
1 d

$← Fv
2k ;

2 return d;
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Game 8:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k ;

3 [τϵ]2
$← F2k ;

4 R0 ← {ϵ}, where ϵ is an empty string;
5 for i = 1 to n do
6 · · · ;
7 Let A be a |Ri−1| × v matrix of zeroes;
8 Let B be a zero column vector of length |Ri−1|;
9 ji ← 1;

10 for r||b ∈ R′i do
11 (Xr, τr)

$← Fv+1

2k
;

12 Set the ji-th row of A to be Xr;
13 Set the ji-th element of B to be τr · wi,b;
14 ji ← ji + 1 ;

15 for r ∈ R̂i−1 do
16 wr,2

$← F2k \ {wi,0, wi,1};
17 (Xr, τr)

$← Fv+1

2k
;

18 Set the ji-th row of A to be Xr;
19 Set the ji-th element of B to be τr · wr,2;
20 ji ← ji + 1 ;

21 Solve Adi−1 = B and sample di−1 from the solution space;

22 for i = 1 to t do
23 (Xai , τai)

$← Fv+1

2k
;

24 A←

Xa1

...
Xat

;

25 B ← (b1 + τa1 , · · · , bt + τat)
T ;

26 Solve Ag = B and sample g from the solution space;
27 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 , g);
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Game 9:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k ;

3 [τϵ]2
$← F2k ;

4 R0 ← {ϵ}, where ϵ is an empty string;
5 for i = 1 to n do
6 wi,0

$← F2k \ {0};
7 wi,1

$← F2k \ {0, wi,0};
8 Ri ← ∅;
9 R′i ← ∅;

10 R̂i−1 ← ∅;
11 for r ∈ Ri−1 do
12 for b ∈ {0, 1} do
13 if ∃aj such that aj starts with r||b then
14 Ri ← Ri ∪ {r||b};
15 else
16 R′i ← R′i ∪ {r||b};

17 if r||0 ∈ Ri and r||1 ∈ Ri then
18 R̂i−1 ← R̂i−1 ∪ {r};

19 A
$← F|Ri−1|×v

2k
;

20 B
$← F|Ri−1|

2k
;

21 Solve Adi−1 = B and sample di−1 from the solution space;

22 A
$← Ft×v

2k
;

23 B
$← Ft

2k ;
24 Solve Ag = B and sample g from the solution space;
25 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 , g);
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Game 13:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k ;

3 [τϵ]2
$← F2k ;

4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 di−1

$← Fv
2k ;

8 A
$← Ft×v

2k
;

9 B
$← Ft

2k ;
10 Solve Ag = B and sample g from the solution space;
11 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g);

Game 14:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k ;

3 [τϵ]2
$← F2k ;

4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 di−1

$← Fv
2k ;

8 g
$← Fv

2k ;
9 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g);

Game 15:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 sk1, sk2 ← Gen((ab1, b
b
1), . . . , (a

b
t , b

b
t), f);

4 b̄← A(ski, σ);
5 return [b̄

?
= b];

Game 16:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 sk1
P1← Gen((ab1, b

b
1), . . . , (a

b
t , b

b
t), f);

4 b̄← A(sk1, σ);
5 return [b̄

?
= b];
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Game 17:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 (a1, b1), . . . , (at, bt)← (ab1, b
b
1), . . . , (a

b
t , b

b
t);

4 Xϵ
$← Fv

2k ;
5 τϵ

$← F2k ;
6 for i = 1 to n do
7 wi,0

$← F2k \ {0};
8 wi,1

$← F2k \ {0, wi,0};
9 di−1

$← Fv
2k ;

10 g
$← Fv

2k ;
11 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g;
12 b̄← A(sk, σ);
13 return [b̄

?
= b];

Game 18:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 Xϵ
$← Fv

2k ;
3 τϵ

$← F2k ;
4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 di−1

$← Fv
2k ;

8 g
$← Fv

2k ;
9 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {di}n−1i=0 , g;

10 b̄← A(sk, σ);
11 b

$← {0, 1};
12 return [b̄

?
= b];

B SLAMPR-FSS

Here we present another version of our scheme along with its security and
correctness proofs. This is very similar to the algorithm described in the main
body with two differences. First, here the values bi will be random, which is
sufficient for many applications. Secondly, in the iteration, the last evaluation of
SubGen is omitted. This is a small difference when evaluating the scheme just
once, but will make the full evaluation of the scheme twice as fast.

The scheme is presented in the Algorithms 8,9,10 and 11. More precisely,
Algorithm 8 will describe the key generation algorithm. It is very similar to
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Algorithm 8 but solving the last system of equations is omitted, as is the last call
to the PRG. To model this we have defined the algorithm 9 which is identical
to the primitive SubGen, except at the last iteration, it does not call the PRG
on the values ⟨[Xr]P ,di−1⟩+ [τr]P · wi,b and does not output any new [Xr∥b]P
and [τr∥b]P , as these values will not be needed any more. The Algorithm 10 is
similar to Algorithm 4, except that for i = n, we do not call the PRG on the
value ⟨[Xr]P ,di−1⟩+ [τr]P · wi,xn , but simply output it.

We will see that this modified scheme satisfies the necessary properties mutatis
mutandis.

The altered requirements are, roughly speaking that a single evaluating party
still does not know the values of the indices {ai}ti=1, that the function evaluates
to zero on inputs that are not equal to any of the ai and that it evaluates to a
nonzero value at the ai with an overwhelming probability. In addition, we also
will show that the values obtained by evaluating at ai will be pseudorandom.

Algorithm 8: Gen – Key generator for the scheme SLAMPR-FSS
Input : {(a1, . . . , at)}, f

1 [Xϵ]1
$← Fv

2k ;

2 [Xϵ]2
$← Fv

2k \ {[Xϵ]1};
3 Xϵ ← [Xϵ]1 + [Xϵ]2;

4 [τϵ]1, [τϵ]2
$← F2k ;

5 τϵ ← [τϵ]1 + [τϵ]2;
6 R0 ← {ϵ}, where ϵ is an empty string;
7 for i = 1 to n− 1 do
8 wi,0, wi,1,di−1, Ri ← SubGen();

9 wn,0, wn,1,dn−1, Rn ← SubGenPrim();
10 sk1 ← [Xϵ]1, [τϵ]1, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 ;
11 sk2 ← [Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 ;
12 Give to P1 the key sk1;
13 Give to P2 the key sk2;

Let us consider the properties outlined in Section 5. We note that as GenPrim
algorithm coincides with Gen until the calling of SubGenPrim, which in turn
coincides with SubGen, except for not including the last five lines before the
return statement. Thus we can assume that the properties in hand hold until
SubGenPrim is called. Thus we have that for all r ∈ Rn−1, we have that τr ̸= 0
with probability no smaller than(

(1− t

(2k)v−t+1
) · (1− εcol)

t

)n−1

by Theorem 8. We also have that if a path r of length n−1 it holds that r ̸∈ Rn−1,
then (Xr, τr) = 0, by Theorem 7.
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Algorithm 9: SubGenPrim – Subroutine for Gen(Algorithm 1)
Input :The state of Gen
Output :wi,0, wi,1,di−1, Ri

1 wi,0
$← F2k \ {0};

2 wi,1
$← F2k \ {0, wi,0};

3 Ri ← ∅;
4 R′i ← ∅;
5 R̂i−1 ← ∅;
6 for r ∈ Ri−1 do
7 for b ∈ {0, 1} do
8 if ∃aj such that aj starts with r||b then
9 Ri ← Ri ∪ {r||b};

10 else
11 R′i ← R′i ∪ {r||b};

12 if r||0 ∈ Ri and r||1 ∈ Ri then
13 R̂i−1 ← R̂i−1 ∪ {r};

14 Let A be a |Ri−1| × v matrix of zeroes;
15 Let B be a zero column vector of length |Ri−1|;
16 ji ← 1;
17 for r||b ∈ R′i do
18 Set the ji-th row of A to be Xr;
19 Set the ji-th element of B to be τr · wi,b;
20 ji ← ji + 1 ;

21 for r ∈ R̂i−1 do
22 wr,2

$← F2k \ {wi,0, wi,1};
23 Set the ji-th row of A to be Xr;
24 Set the ji-th element of B to be τr · wr,2;
25 ji ← ji + 1 ;

26 Solve Adi−1 = B and sample di−1 from the solution space;
27 return wi,0, wi,1,di−1, Ri;

Algorithm 10: EvalP – Another way to define EvalP

Input : skP , f, x = x1|| . . . ||xn

1 [Xϵ]P , [τϵ]P , {wi,0}ni=1, {wi,1}ni=1, {di}n−1
i=0 , g ← skP ;

2 ([X̄0]P , [τ̄0]P )← ([Xϵ]P , [τϵ]P );
3 for i = 1 to n− 1 do
4 ([X̄i]P , [τ̄i]P )← EvalPi ([X̄i−1]P , [τ̄i−1]P , wi,0, wi,1,di−1, f, x

i);

5 z ←
〈
[X̄n]P ,dn−1

〉
+ [τ̄n−1]Pwn,xn ;

6 return z
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Algorithm 11: EvalPi – Subroutine for the evaluator in Algorithm 10
Input :Xi−1, τi−1, wi,0, wi,1,di−1, f, x

i

1 [zi]P ←
〈
[X̄i−1]P ,di−1

〉
+ [τ̄i−1]P · wi,xi ;

2 ([X̄i]P , [τ̄i]P )← f([zi]P );
3 return ([X̄i]P , [τ̄i]P )

Now, if (Xr, τr) = 0, that is [Xr]1 = [Xr]2 and [τr]1 = [τr]2, then also
⟨Xr,dn−1⟩+ τrwn,0 = ⟨Xr,dn−1⟩+ τrwn,1 = 0. Thus the children of a dead node
are dead also in this case, and thus those nodes will be correctly evaluated.

Now, if r ∈ Rn−1 and also r ∈ R̂n−1, then we have that ⟨Xr,dn−1⟩ = τrwr,2.
Thus the value at r∥0 is set to τrwr,2 + τrwi,0 = τr(wr,2 + wi,0) and the value at
r∥1 is set to τrwr,2 + τrwi,1 = τr(wr,2 + wi,1). These values are 0 only if τr = 0
which happens with probability εcol.

Now, if r ∈ Rn−1 and r ̸∈ R̂n−1, then we have that one of the children of
r is alive and one is dead. Let us denote the dead child by r∥b and the alive
one by r∥b̄. We note that by construction, ⟨Xr,dn−1⟩ = τrwr,b. Thus we have
that the evaluation of z at the dead node r∥b is z ← ⟨Xr,dn−1⟩ + τrwn,b =
τrwn,b + τrwn,b = 0. Thus the evaluation at this point is correct. The evaluation
at the alive node is z ← ⟨Xr,dn−1⟩+ τrwn,b̄ = τrwn,b + τrwn,b̄ = τr(wn,b +wn,b̄).
This is 0 only if τr = 0 which which happens with probability εcol. As the number
of r ∈ Rn−1 can be no greater than t, then we have that the probability that
some ai evaluates to zero is no greater than

(1− εcol)
t

(
(1− t

(2k)v−t+1
) · (1− εcol)

t

)n−1

.

To show the security of our scheme, we will need to redefine the security
games so that they do not contain the (b1, . . . , bn) any more.

Thus our security will be captured by the following proposition.

Proposition 7. We have that

|Pr [Game 19(A) = 1]− Pr [Game 21(A) = 1]| ≤ εFSS,

and
|Pr [Game 20(A) = 1]− Pr [Game 21(A) = 1]| ≤ εFSS,

where P1← denotes the output that is given to P1 and P2← denotes the output that is
given to P2 and where εFSS = (t · n · εPRG + (n+ 1) · t

(2k)v−t+1

We will now show that Game 19 is εFSS-close to Game 21.
To see this, we note that due to the construction of the games 1 and 19, and

games 3 and 21, the values given to A in 19 have the same distribution as the
first five values given to A in 1. Likewisethe values given to A in 21 have the
same distribution as the first five values given to A in 3. Thus, if there existed
an adversary B who was better at distinguishing between games 19 and 21, then
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Game 19:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk1

P1← GenPrim((a1, . . . , at), f);
3 return A(sk1);

Game 20:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk2

P2← GenPrim((a1, . . . , at), f);
3 return A(sk2);

Game 21:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 Xϵ

$← Fv
2k ;

3 τϵ
$← F2k ;

4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 di−1

$← Fv
2k ;

8 g
$← Fv

2k ;
9 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {di}n−1

i=0 ;
10 return A(sk);
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an adversary A whose task it was to distinguish between 1 and 3 could just omit
his last input and give the inputs to B to distinguish. Thus we have that

|Pr [Game 19(A) = 1]− Pr [Game 21(A) = 1]| ≤ εFSS,

We also note that SLAMPR-FSS has the property that the values at the
points {ai} are pseudorandom. More precisely, consider the Games 22 and 23.
We will claim that the difference between these two games is negligible.

For that we will use the following natural assumption about our PRG f .

Assumption 1. Let f : M → N be a function. Fix a one-dimensional subspace
B of N . We say that f is a εsPRG-subspace-PRG if for any PPT adversary A,

|Pr[b = 1|x $←M,y ← f(x), b← A(y)∧y ∈ B]−Pr[b = 1|b← A(y), y $← B]| ≤ εsPRG

Essentially we assume that an adversary cannot distinguish between a random
element of a subspace B or a pseudorandom element on the condition that it is
an element of B.

Game 22:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk1, sk2 ← Gen((a1, . . . , at), f);
3 for i = 1 to t do
4 [bi]1 ← Eval1(sk1, f, ai);
5 [bi]2 ← Eval2(sk2, f, ai);

6 return A(sk1, {[bi]1}ti=1, {[bi]2}ti=1);

Game 23:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk1, sk2 ← Gen((a1, . . . , at), f);
3 for i = 1 to t do
4 [bi]1 ← Eval1(sk1, f, ai);

5 [bi]2
$← Fv

2k ;

6 return A(sk1, {[bi]1}ti=1, {[bi]2}ti=1);

Proposition 8. Suppose that f is a εsPRG-subspace-PRG and εsPRG-PRG.
Then

|Pr [Game 22(A) = 1]− Pr [Game 23(A) = 1]| ≤ tεsPRG,
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Game 24:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk1, sk2 ← Gen((a1, . . . , at), f);
3 For i ∈ [1, . . . , n], compute Ri, R

′
i, R̂i−1 as in SubGenand SubGenPrim;

4 For all r ∈
⋃n

i=1 Ri ∪
⋃n

i=1 R
′
i, compute [Xr]1, [τr]1, using sk1 and the EvalPrim

algorithm ;
5 Using the EvalPrim algorithm, compute the ({[bi]1}ti=1) from the {ai}ti=1 and

the [Xr]1 and the [τr]1;
6 For all r ∈

⋃n
i=1 Ri ∪

⋃n
i=1 R

′
i, compute [Xr]2, [τr]2, using sk2 and the EvalPrim

algorithm ;
7 Using the EvalPrim algorithm, compute the ({[bi]2}ti=1) from the {ai}ti=1 and

the [Xr]2 and the [τr]2;
8 return A(sk1, {[bi]1}ti=1, {[bi]2}ti=1);

Game 25:
Input :A - the adversarial algorithm

1 (a1, . . . , at)← A();
2 sk1, sk2 ← Gen((a1, . . . , at), f);
3 For i ∈ [1, . . . , n], compute Ri, R

′
i, R̂i−1 as in SubGenand SubGenPrim;

4 For all r ∈
⋃n

i=1 Ri ∪
⋃n

i=1 R
′
i, compute [Xr]1, [τr]1, using sk1 and the EvalPrim

algorithm ;
5 Using the EvalPrim algorithm, compute the ({[bi]1}ti=1) from the {ai}ti=1 and

the [Xr]1 and the [τr]1;
6 For all r ∈

⋃n−2
i=1 Ri ∪

⋃n−2
i=1 R′i, compute [Xr]2, [τr]2, using sk2 and the

EvalPrim algorithm ;
7 For all r ∈ Rn−1:
8 if r ̸∈ R̂n−1 then
9 if r||0 ∈ R′n then

10 Sample randomly [Xr]2, [τr]2 on condition
⟨[Xr]2,dn−1⟩+ [τr]2 · wn,0 = ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,0 ;

11 else
12 Sample randomly [Xr]2, [τr]2 on condition

⟨[Xr]2,dn−1⟩+ [τr]2 · wn,1 = ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,1 ;

13 else
14 [Xr]2

$← Fv
2k ;

15 [τr]2
$← F2k

16 for r ∈ Rn−1: do
17 if ∃ai : r||0 = ai then
18 [bi]2 ← ⟨[Xr]2,dn−1⟩+ [τr]2 · wn,0 ;

19 if ∃ai : r||1 = ai then
20 [bi]2 ← ⟨[Xr]2,dn−1⟩+ [τr]2 · wn,1 ;

21 return A(sk1, {[bi]1}ti=1, {[bi]2}ti=1);
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Proof. For syntactic sugar, we restate Game 22 as Game 24.
We will now first argue that Games 24 and 25 are tεsPRG-close.
We note that Game 25 only differs from Game 24 is that here, on lines 7 to

15, instead of using the PRG f with the adversary knowing that the result would
satisfy

〈
[Xr∥b]2,dn−1

〉
+ [τr∥b]2 ·wn−1,b =

〈
[Xr∥b]1,dn−1

〉
+ [τr∥b]1 ·wn−1,b where

r∥b ∈ R′n−1, we sampled a random vector where this property holds, and that for
r ∈ R̂i−1, we sampled a random value instead of using the output of f . By our
assumption that f is a εsPRG-subspace-PRG (this concerns the changes made for
r∥b ∈ R′n−1) and εsPRG-PRG (this concerns the changes made for r ∈ R̂i−1) and
that there are together at most t instances where these two changes are made, no
PPT adversary can distinguish between Games 24 and 25 better than tεsPRG.

Let us now analyze the output values of the [bi]2 in Game 25. We will show
that they are negligibly close to being uniformly randomly distributed.

Let r ∈ Rn−1. If r ∈ R̂n−1, then we note that the distributions of ⟨[Xr]2,dn−1⟩+
[τr]2 ·wn,0 and ⟨[Xr]2,dn−1⟩+ [τr]2 ·wn,1 are uniformly at randomly distributed.
Thus in those cases [bi]2 are indeed uniformly at randomly distributed.

If r ̸∈ R̂n−1, then exactly one of r∥0 and r∥1 is alive and one is dead. Let us
denote the dead child by r∥b and the alive one by r∥b̄. Now we have that the
condition

⟨[Xr]2,dn−1⟩+ [τr]2 · wn,b = ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,b (2)

holds.
Let the last nonzero index of dn−1 be δ that is at position j, denote the vector

of the first j − 1 positions of dn−1 by d̄.
Let the value at jth position in [Xr]2 be xr, denote the vector of the first

j − 1 positions of [Xr]2 by X̄r.
We note that ⟨[Xr]2,dn−1⟩ =

〈
X̄r, d̄

〉
+ δxr.

Denote β := ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,b −
〈
X̄r, d̄

〉
. Thus we can rewrite the

condition 2 as δxr + [τr]2 · wn,b = β.
Note that we have that for every choice of X̄r, we have that the pair (x2, [τr]2)

satisfies condition 2 iff δxr = [τr]2 · wn,b − β.
Note that from the viewpoint of the adversary who knows sk1 and thus

[Xr]1, [τr]1,dn−1 and wn,b, fixing the value of X̄r also fixes the value of β. We
thus have that [τr]2 = (δxr + β)w−1n,b. Note that for every value of xr, the
value of [τr]2 is different, thus each value of [τr]2 is equally likely. Now, by
construction we have that r∥b̄ must be equal to some ai. Thus we have that [bi]2 =
⟨[Xr]2,dn−1⟩+ [τr]2 · wn,b̄. We also have that [bi]1 = ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,b̄.
Thus

bi = [bi]1 + [bi]2 = ⟨[Xr]1,dn−1⟩+ [τr]1 · wn,b̄ + ⟨[Xr]2,dn−1⟩+ [τr]2 · wn,b̄ =

β+[τr]1 ·wn,b̄+ δxr +[τr]2 ·wn,b̄ = β+[τr]1 ·wn,b̄+[τr]2 ·wn,b−β+[τr]2 ·wn,b̄ =

[τr]1 · wn,b̄ + [τr]2 · (wn,b + wn,b̄).

Now note that from the viewpoint of an adversary who knows sk1, the values
[τr]1 · wn,b̄ is fixed. However (wn,b + wn,b̄) is nonzero and possible values of [τr]2
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are uniformly at random over F2k . Thus also the distribution of bi is uniformly
random over F2k , which, due to [bi]1 being known to the adversary, means that
[bi]2 is distributed uniformly random. Thus we have shown that in the output
of Game 25 the values [bi]2 are uniformly random. Hence we can say that the
outputs of Games 25 and 23 are the same. The claim hence follows.

C Efficiency Calculations

Let tF denote the time for one field operation over F2k , tF vec the time for one
operation over vector space Fv

2k and tPRG the time for one PRG evaluation.

Proposition 9. Algorithm 1 produces keys with size Θ(vkn) bits.

Proof. The key for Pi, i ∈ {1, 2} is defined as ([Xϵ]i, [τϵ]i, {wi,0}ni=1, {wi,1}ni=1,
{di}n−1i=0 , g). Element of F2k takes k bits to store. Let us analyze the key size
element wise:

– [Xϵ]i ∈ Fv
2k takes v · k bits.

– [τϵ]i ∈ F2k takes k bits.
– {wi,0}ni=1 ∈ Fn

2k takes n · k bits.
– {wi,1}ni=1 ∈ Fn

2k takes n · k bits.
– {di}n−1i=0 ∈ Fv·n

2k takes v · n · k bits.
– g ∈ Fv

2k takes v · k bits.

Let us sum this together and get

v · k + k + n · k + n · k + v · n · k + v · k = (v · n+ 2v + 2n+ 1) · k = Θ(vkn).

Lemma 3. For SubGen to check, if a child node r||b of an alive node r is supposed
to be dead or alive, takes O(t ⌈log t⌉) steps per level.

Proof. Let us describe a possible algorithm for this operation.

1. For each alive node r keep a list of indices j for which a1j || . . . ||a
|r|
j = r.

Denote it by Lr.
2. During the check, iterate over Lr and check if (|r|+ 1)-th bit of aj is equal

to b. Return this truth value.
3. While iterating, divide indices into two lists Lr||0 and Lr||1.

Each index takes ⌈log t⌉ space and ⌈log t⌉ time steps to be read. On any given
level there are t indices distributed among Lr and since only one bit of each aj
is looked at, the time complexity per level sums up to O(t ⌈log t⌉). This means
that when evaluating for all r ∈ Ri−1, then the total cost is O(t ⌈log t⌉).

Proposition 10. Algorithm 2 (SubGen) is O(vt2 · tF+ t · tF vec+ t · tPRG). In fact
it takes at most 2t PRG evaluations.
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Proof. Let us count the operations made by SubGen.

– Lines 1 to 5 take Θ(tF) steps, because the operations are either over F2k or
constant.

– Lines 6 to 13 take O(t ⌈log t⌉), due to check on line 8 taking O(t ⌈log t⌉) for
all r ∈ Ri−1 and other operations can be done in constant time.

– Lines 14 to 25 take O(t(tF vec + tF)) steps, because there are at most t alive
nodes in R′i ∪ R̂i−1 and for each alive node a constant number of field and
vector space operations are done.

– Line 26 takes O(vt2 · tF + tF vec) steps. We can use Gaussian elimination
on the system of linear equations, which takes O(vt2) field operations (see
Theorem 15 in the Appendix). Choosing di−1 is an operation in the vector
space.

– Lines 27 to 32 take O(t(2tPRG + tF vec + tF)) steps. There are at most t alive
nodes in Ri and for each alive node the PRG is called twice and some constant
number of field operations and vector space operations are done.

Summing these together we get

Θ(tF) +O(t ⌈log t⌉) +O(t(tF vec + tF)) +O(vt2 · tF + tF vec)+

+O(t(2tPRG + tF vec + tF)) = O(vt2 · tF + t · tF vec + t · tPRG).

Proposition 11. Algorithm 1 (Gen) is O(nvt2 · tF + nt · tPRG). In fact it takes
at most 2tn PRG evaluations.

Proof. Let us count the operations made by Gen.

– Line 1 to 6 take Θ(tF vec + tF) steps, because there are constant number of
field operations and vector space operations.

– Line 7 and 8 take O(nt(vt · tF + tF vec + tPRG)) steps, due to n evocations of
SubGen.

– Line 9 and 10 take Θ(tF vec + tF) steps, because there are constant number of
field operations and vector space operations.

– Line 11 takes O(vt2 · tF + tF vec) steps. We can use Gaussian elimination on
the system of linear equations, which takes O(vt2) field operations. Choosing
g is an operation in the vector space.

– Lines 12 to 15 take Θ(vkn) steps, due to the key size.

Summing these together we get

Θ(tF vec + tF) +O(nt(vt · tF + tF vec + tPRG)) +Θ(tF vec + tF)+

+O(vt2 · tF + tF vec) +Θ(vkn) = O(nt(vt · tF + tF vec + tPRG) + vkn).

Let us assume that tF vec ≈ v · tF and tF ≥ k. Then

O(nt(vt · tF + tF vec + tPRG) + vkn) = O(nvt2 · tF + nt · tPRG).
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Proposition 12. Algorithm 4 (EvalP ) has time complexity Θ(nvtF + ntPRG). In
fact it takes n PRG evaluations.

Proof. Let us count the operations made by EvalP .

– Line 1 takes Θ(vkn) steps, due to the key size.
– Lines 2 to 4 take Θ(n(tF vec + tF + tPRG)) steps, because lines 3 and 4 are

repeated n times.
• Lines 3 and 4 take Θ(tF vec+tF+tPRG) steps, because the scalar product is

a vector space operation, addition and multiplication are field operations
and the PRG is called once.

– Line 5 takes Θ(tF vec + tF) steps, because of the scalar product and addition.
– Line 6 takes some constant number of steps.

Let us add these values together and get

Θ(vkn) +Θ(n(tF vec + tF + tPRG)) +Θ(tF vec + tF) +Θ(1) =

= Θ(n(tF vec + tF + tPRG + vk)).

Let us assume that tF vec ≈ v · tF and tF ≥ k. Then

Θ(n(tF vec + tF + tPRG + vk)) = Θ(n(v · tF + tF + tPRG + vk)) = Θ(nvtF + ntPRG).

Proposition 13. Full evaluation of SLAMP-FSS requires 2 ·2n calls to the PRG.

Proof. We note that a full evaluation of the scheme SLAMP-FSS can be obtained
by recursively computing for each level i, for all bitstrings r of length i the values
[Xr]P , [τr]P . Let the parent node of r be r′ with r = r′∥b. We note that we can
compute [Xr]P , [τr]P by computing ⟨[Xr]P ,di−1⟩+ [τr]Pwi,b and then applying
f to the result. Thus, for full evaluation, we need one application of f for every
non-root node in the tree. There are 2 · 2n − 2 non-root nodes in the tree which
we round to 2 · 2n for easier presentation.

Proposition 14. Full evaluation of SLAMPR-FSS requires 2n calls to the PRG.

Proof. The proof of this proposition is analogous to the previous one but with the
difference that we do not need to evaluate f for the leaves. There are 2n − 2 non-
root-non-leaf nodes in the tree which we round to 2n for easier presentation.
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