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Abstract—Payment channel networks (PCNs) are a leading
method to scale the transaction throughput in cryptocurrencies.
Two participants can use a bidirectional payment channel for
making multiple mutual payments without committing them to
the blockchain. Opening a payment channel is a slow operation
that involves an on-chain transaction locking a certain amount
of funds. These aspects limit the number of channels that can
be opened or maintained. Users may route payments through a
multi-hop path and thus avoid opening and maintaining a channel
for each new destination. Unlike regular networks, in PCNs
capacity depends on the usage patterns and, moreover, channels
may become unidirectional. Since payments often fail due to
channel depletion, a protection scheme to overcome failures is of
interest. We define the stopping time of a payment channel as
the time at which the channel becomes depleted. We analyze
the mean stopping time of a channel as well as that of a
network with a set of channels and examine the stopping time
of channels in particular topologies. We then propose a scheme
for optimizing the capacity distribution among the channels in
order to increase the minimal stopping time in the network. We
conduct experiments and demonstrate the accuracy of our model
and the efficiency of the proposed optimization scheme.

Index Terms—Blockchain, Payment Channels, Network Algo-
rithms.

I. INTRODUCTION

A. Background

Blockchain cryptocurrency networks such as Bitcoin and
Ethereum replace a trusted third party with a network of
mutually mistrusting peers by aiming to achieve a global
consensus between all participants [1]. Payments are recorded
on a public ledger providing decentralization, transparency and
immutability [1]. Yet this comes at the cost of poor scalability,
high transaction fees and large computational overhead. Such
consensus-based protocols do not scale well because of limited
block size and constant block addition rate. While Visa and
Mastercard can handle thousands of payments per second,
Bitcoin and Ethereum allow rates of just tens of transactions
per second [2].

Offchain networks are a leading solution for the scalability
problem [2]. Lightning [3] is an available second layer net-
work for Bitcoin. Offchain networks typically share the same
concept, namely: the ability to take payment operations outside
of the blockchain in a secure way by backing them up by the
blockchain.

Payment Channel. A payment channel provides a way for
two users to transfer funds to each other back and forth repeat-
edly without relying on frequent blockchain interactions. In
fact, the users only need to interact with the blockchain when
opening, closing or settling disagreements on the channel. The
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security of the payment channel stems from the collateral
funds (namely, the capacity of the channel C) that are locked
in a joint blockchain account. In case of dishonest behavior
of one party, the counterpart can claim the entire locked
collateral as compensation for the breach [3]. Thus, by making
it economically irrational for either party to breach the agreed-
upon terms, we obtain a powerful deterrent against attempting
to cheat the system. The process of making a payment on
the channel can be visualized as the transfer of coins from
one side of the channel to the other. For example, imagine a
payment channel between Alice and Bob, where Alice has 3
coins and Bob has 2 coins, as illustrated in Fig. 1a. If Alice
transfers a coin to Bob, a coin from Alice’s side of the channel
is moved to Bob’s side, resulting in the balance illustrated in
Fig. 1b. If Bob decides to transfer a coin back to Alice, the
coin is simply moved back to Alice’s side. Note that, while
transactions between Alice and Bob occur by transferring
coins back and forth within the payment channel, the total
capacity of the channel remains constant [3]. This process can
continue indefinitely, as long as there are enough coins at the
originating side of the channel.

Alice Bob

(a) Before the transaction Alice has
3 coins and Bob has 2 coins.

Alice Bob

(b) After the transaction Alice has
2 coins and Bob has 3 coins.

Fig. 1: Illustration of the influence of a transaction of one coin from Alice to
Bob.

Payment Channel Network. While payment channels are
great for frequent transactions between two users, in many
cases, transactions to a certain destination are a one-time
occurrence, hence opening a channel for every new payment
destination defeats the purpose of avoiding on-chain transac-
tions, because the very act of opening a new payment channel
requires interaction with the blockchain. Luckily, transactions
can be performed on a multi-hop path securely [3]. That
way, existing channels can be utilized to facilitate transactions
between users that do not share a direct payment channel.

Channel Depletion. A payment channel becomes unidi-
rectional if all the funds accumulate at one of its sides.
This may happen even if the expected transaction value in
the two directions are equal. In this case, an expensive on-
chain transaction may be needed to replenish the funds [4]. A
depleted channel may lead to transaction failures if an unaware
node tries to use it as one of the intermediate links on a
multi-hop path. Thus, balancing out the channels is of great
importance for providing appealing quality of service to end
users.



B. Contributions

As mentioned in Subsection I-A, payment channels can
facilitate transactions only when there are enough funds on
the originating side of the channel. When a channel reaches
a balance of zero on one of its sides it is said to be depleted.
Depleted channels can cause transaction failures and expensive
on-chain fees for replenishing the balance on the depleted side.
The goal of this work is to increase the success ratio of trans-
actions in Payment channel networks (PCNs) by increasing the
survivability level of the network. We refer to survivability in
the sense of the first channel failure in the network. We aim to
reduce the likelihood of network disconnection by prolonging
the time until disconnection occurs.

We distinguish between payment channels according to the
distribution of the size of the transactions performed on them.
More specifically, we distinguish between balanced channels
and channels with drift, and we focus mainly on balanced
channels. We define the stopping time of a channel to be the
time it takes until the channel becomes depleted. We establish
a lower bound on its expected value and attempt to optimize
it by redistributing the funds in the network.

The paper is organized as follows. We begin by introducing
some useful concepts, definitions and identities that will be
used throughout the paper (Subsection II-A). Then, we derive
a lower bound on the expected stopping time of a single
balanced payment channel with a known transaction variance
(Subsection II-B). Next, we calculate and optimize the stop-
ping time for a channel with drift for a fixed-size payment
distribution, draw general conclusions about the optimization
results, and propose a mapping from a general payment
distribution to the distribution we examined (Subsection II-C).
Then, we present an approach for calculating the stopping
time of a set of channels, assuming uniform capacities and
known transition probabilities (Section III). Next, we proceed
to optimize the distribution of funds over a set of balanced
channels so as to maximize the minimal expected stopping
time of a channel in the set using the results of Subsection II-A
(Section IV). We evaluate our findings on a few synthetic
topologies and on a 2022 snapshot of the Lightning network.
We also examine a (more realistic) distributed approach for
optimization (Section V). Then, we derive lower bounds for
the expected stopping time of a channel in various topologies
such as chains and cycles (Section VI). Finally, we present
related work on the subject of payment channel networks
(Section VII).

II. THE STOPPING TIME OF A PAYMENT CHANNEL

A. Motivation and Definitions

In this section, we examine under which conditions and
how often a payment channel becomes depleted. A payment
channel has a constant amount of funds that are distributed
between its two sides. When a user wants to perform a
transaction over the channel, the desired amount of funds is
simply moved from one side to the other. If a transaction
exceeds the balance on the originating side then we assume it
is performed partially and the remaining amount is canceled.
If a payment channel has a balance of zero on one of its sides

then it becomes depleted in one direction and no transaction
can be performed in that direction. Since a depleted channel
may result in transaction failures or necessitate a costly on-
chain transaction to replenish it, it is of interest to extend the
time until depletion occurred.

α β
Bn

βBn
α

Fig. 2: A Payment Channel connecting node α and β. The balance on the
side of each node is written next to it.

Definitions. Consider a payment channel in discrete-time
between some nodes α and β, as illustrated in Fig. 2. We
divide time into equal duration time steps and accumulate all
the transaction requests over that time period. The accuracy of
this representation may be increased to the desired extent by
choosing sufficiently short time steps. In addition, transaction
success rate is defined as the fraction of successful transactions
out of the total attempted transactions, that is, it is not affected
by the length of the time intervals between each attempt.
Denote the balances on nodes α and β at the end of time step
n as Bn

α and Bn
β , respectively. Denote the random variable that

represents the total required balance change on β’s side at time
n as Xn; note that, due to the nature of payment channels,
the corresponding balance change on α’s side is −Xn. As was
stated before, transactions that go over the balance limit are
partially performed:

Bn
β = min(max(Xn +Bn−1

β , 0), B0
β +B0

α)

Definition 1 (Stopping Time of a Payment Channel). It is the
first time step n, for which Bn

β = 0 or Bn
β = B0

β +B0
α

When a payment channel in a PCN becomes depleted, it
will become impossible to perform certain transfers, and often
there will be a need for a costly on-chain transaction to re-
balance the channel. Thus, exploring what affects the stopping
time of a payment channel is of interest.

Definition 2 (Stochastic (Random) Process). It is a collection
of random variables indexed by some set T , often interpreted
as time.

Definition 3 (Stochastic (Random) Discrete Process). It is a
random process for which the set T is a discrete set.

Definition 4 (Stopping Time). Let W = {Wn}n≥1 be a
stochastic process. A random time, T , is said to be a stopping
time with respect to W , if for each n ≥ 1, the event {T = n}
is completely determined by (at most) the total information
{W 1, ...,Wn} known up to time n.

In this work, T denotes the index set over which the
stochastic process is defined. In contrast, T denotes a stopping
time, which is a random variable. In other words, T is the
entire set of possible times, and T is a particular random time
within that set.

To calculate the expected stopping time of a given channel,
we define a discrete-time random walk Sn for which the
stopping time coincides with the stopping time of the channel.
Sn ≜ B0

β +
∑n

i=0 X
n is a random walk with increments Xn
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and initial value S0 = B0
β which satisfies this condition for a

stopping time defined as T = inf{n ≥ 0 | Sn ≤ 0 or Sn ≥
B0

α +B0
β}.

To evaluate the expected stopping time, we use Wald’s
identities. Notice that the distribution of the stopping time of
the random walk that we defined is identical to the distribution
of a stopping time of a shifted random walk, S̃n = Sn − S0,
with correspondingly shifted stopping criteria −a ≜ −B0

β and
b ≜ B0

α. Wald’s identities are defined for a random walk with
an initial value 0, thus we will use S̃n from now on.

We shall employ Wald’s identities, stated as follows. Let
{Xi}i∈N be a sequence of independent identically distributed
random variables with a common expected value µ and
variance σ2. Let n be a stopping time with respect to Sk =∑k

i=1 X
i for which the expectation is finite. The following

properties have been shown in [5] as Theorem 7.1 and a
special case of Theorem 7.2. Those properties might seem
intuitive, but their proof is nontrivial, since the number of
random variables in the sum is itself a random variable, and
moreover, it depends on {Xi}i∈N. A detailed explanation that
includes a counter-example can be found in [6].

Property 1 (Wald’s First Identity). If µ is finite, then E(Sn) =
E(n) · µ.

Property 2 (Wald’s Second Identity). If σ2 is finite and µ = 0,
then V ar(Sn) = σ2 · E(n).

B. Stopping Time of a Balanced Payment Channel

We begin by exploring a balanced channel. A network of
balanced channels may be obtained, for example by correctly
routing transactions on a circulation network, a concept which
was explored in [4], and also occurs naturally in particular
topologies by employing symmetry considerations, some of
which we explored in Section VI. We shall address the case
of imbalanced channels later, in Subsection II-C.

Lemma 1. The expected stopping time of a channel for
which {Xn}n∈N are identically randomly distributed with
expectation µ = 0 variance σ2 satisfies:

E[T ] ≥
min(B0

α, B
0
β)

2

σ2
(1)

Proof. Applying Chebyshev’s inequality to S̃T with a con-
stant K implies:

P [|S̃T − E[S̃T ]| ≥ K] ≤ V ar(S̃T )

K2

By Property 1:

E[S̃T ] = E[Xi]E[T ] = 0 · E[T ]

Thus:

P [|S̃T | ≥ K] ≤ E[(S̃T )2]

K2
.

By choosing K = min(B0
α, B

0
β) we obtain P [|(S̃T )2| ≥

K] = 1 by the definition of S̃T .

1 ≤ E[(S̃T )2]

min(B0
α, B

0
β)

2

E[(S̃T )2] ≥ min(B0
α, B

0
β)

2

Combining this result with Property 2 implies:

min(B0
α, B

0
β)

2 ≤ E[(S̃T )2] = σ2 · E[T ]

E[T ] ≥
min(B0

α, B
0
β)

2

σ2

The expected stopping time of any channel in any graph
can be bounded from below using Eq. 1 if its expectation is
0 and its variance is known. We see that by Eq. 1, the lower
bound on the expected stopping time becomes larger when
min(B0

C , B
0
A) increases or σ2 decreases.

The exact expected stopping time can be calculated for
certain distributions of Xi. We provide an example in the
following lemma.

Lemma 2. Consider a payment channel where the payment
distribution satisfies P (XT = 1) = p = 0.5 and P (XT =
−1) = q = 0.5. If the initial balances on the nodes are a and
b, then the expected stopping time E[T ] is given by:

E[T ] = a · b.

Proof. We choose to examine the side of the channel with an
initial balance of a. The channel becomes depleted when the
balance shifts by −a or by b from the initial balance. The
stopping time coincides with the stopping time of Sn where
Sn = S0 +

∑n
i=1 Xi, where S0 = 0 and the stopping criteria

are Sn = −a or Sn = b.
We apply Wald’s identities to find E[T ]. By Property 1,

−a · P (ST = a) + b · P (ST = b) = E[ST ] = 0 · E[T ] = 0.

By substituting P (ST = b) = 1 − P (ST = a) we obtain an
expression for P (ST = a):

P (ST = a) =
b

a+ b
,

and in a similar way for P (ST = b):

P (ST = b) =
a

a+ b
.

By using Property 2:

a2 · P (ST = a) + b2 · P (ST = b) = V ar(Sn) = E[T ].

Combining those results we obtain:

E[T ] = a2
b

a+ b
+ b2 · a

a+ b
= a · b.
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C. Stopping Time for Fixed Size Payment Distribution with
Drift

We examine two special cases of payment distribution over a
single channel, namely the distribution of the transfers in each
direction of the channel. In the first case, there is a transaction
of one unit in some direction at each time step. In the second
case, there may be no transactions at all.

Lemma 3. The stopping time of a channel for which the
payment distribution satisfies P (XT = 1) = p ̸= 0.5 and
P (XT = −1) = q = 1 − p and the initial balances on the
nodes are a and b, is:

E[T ] =
1

p− q
·
(
−a· 1− (q/p)b

(q/p)−a − (q/p)b
+b· (q/p)−a − 1

(q/p)−a − (q/p)b

)
The proof can be obtained by recursively expressing the ex-

pected stopping time starting from the initial channel balance
using the expected stopping time starting from the possible
balances at the next step. Note that the lemma does not hold
for p = 1−q = 0.5 because the expression 1

p−q is not defined
for these values. The case where p = q = 0.5 falls under the
category of a balanced payment channel and is discussed in
length in Subsection II-B. The exact expression for E[T ] for
the specific case discussed here is provided in Lemma 2.

Lemma 4. Consider a discrete random process W̃ with
independent identically distributed values and stopping time
T̃ that is completely determined by the sum of values of W̃
up to time T̃ 1. Let W be a discrete random process defined
by:

W i =

{
W̃ i with probability p

0 with probability 1− p

with independent sampling for each index i. Let the stopping
time T of W be defined as the first time when W̃ would stop
for the series of values of W up to that point.
Then, the expected stopping time of W is:

E[T ] = E[T̃ ]/p.

Proof. Define the following process:

Ii =

{
1 in case W i is sampled from W̃ i

0 otherwise

T , the stopping time of W , is also a valid stopping time with
respect to I . In other words, it is valid to define the stopping
time of I as the time when the underlying process W stops.
By applying Property 1 to Sn =

∑n
i=1 Ii and T , we obtain

that:
E[ST ] = E[T ] · E[I1].

The sub-series that consists of the values from W̃ that are
chosen in W has the same expected stopping time as W̃ since
{W̃ i} are i.i.d.. ST counts the number of steps sampled from
this subseries until the stopping time of W . Since by definition
this event occurs when W̃ would stop for the subseries of

1An example of such a stopping time may be the first time the sum of
values up to that time reaches a certain threshold.

values from W̃ in W , this sum is equal to the stopping time
of the aforementioned subseries. Thus, we obtain that:

E[ST ] = E[T̃ ].

In addition, note that T is the stopping time of W and E[I1] =
p. Given those assignments of E[ST ] and E[I1], we deduce
that:

E[T ] = E[T̃ ]/p.

Lemma 5. Consider a channel with initial balances C1, C2

and a payment distribution satisfying:

Xn =


1 with probability p1 · (1− p2)

0 with probability p1 · p2 + (1− p1) · (1− p2)

−1 with probability p2 · (1− p1)
(2)

Then the stopping time of the channel is:

E[T ] =
1

(p̃− q̃) · (p1 · (1− p2) + p2 · (1− p1))
·(

− C1 ·
1− (q̃/p̃)C2

(q̃/p̃)−C1 − (q̃/p̃)C2
+ C2 ·

(q̃/p̃)−C1 − 1

(q̃/p̃)−C1 − (q̃/p̃)C2

)
(3)

where:

p̃ = p1 · (1− p2)/(p1 · (1− p2) + p2 · (1− p1))

q̃ = p2 · (1− p1)/(p1 · (1− p2) + p2 · (1− p1))

and the optimal capacity distribution is:

C1 =
ln( (q̃/p̃)

C−1
C·ln(q̃/p̃) )

ln(q̃/p̃)
, C2 = C − C1 (4)

Recall that the channel capacity refers to the total amount of
funds available in the channel, which is distributed between
its sides.

Proof. The distribution of Xn is equivalent to sampling
from a Bernoulli distribution with p = p̃ with probability
p1 · (1− p2) + p2 · (1− p1) and 0 otherwise. Thus, according
to Lemma 4, the stopping time can be obtained by dividing
the corresponding stopping time of the Bernoulli distribution,
computed using Lemma 3, by p1 · (1 − p2) + p2 · (1 − p1).
The optimal capacity distribution is obtained by comparing the
derivative of the stopping time to 0.

Capacity Distribution Optimization for a Fixed Size
Demand Distribution. In order to come up with a heuristic
for distributing the total capacity in a channel with drift, we
consider the specific distribution of Xn defined in Lemma 5.

Definition 5 (Capacity Distribution Skew). It is the distance
of a given capacity distribution from the balanced capacity
distribution with the same total capacity.

Definition 6 (Payment Drift Factor). It indicates the level of
drift in the channel payments, i.e., the probability of ∆B > 0
given ∆B ̸= 0.

We use the above definitions to simplify the discussion
about the effect of the tendency of transactions to transfer
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funds in one direction over the other on the initial distribution
of funds within the channel. We focus on the payment drift
factor rather than on the probability of a transaction in a certain
direction in order to account for payment distributions that
include a nonzero probability of no transaction at all. Referring
to capacity distribution skew instead of simply the balance is
more expressive because it directly shows how far the capacity
distribution is from the balanced state in which the capacity
is split equally between the two sides of the channel.

Fig. 3: Optimal stopping time as a function of transfer probabilities p1 and
p2 as calculated using Eq. 3

Fig. 4: Optimal capacity distribution skew for stopping time as a function of
transfer probabilities p1 and p2 as calculated using Eq. 4

For example, in the examined private case, the Payment
Drift Factor is given by p1·(1−p2)

p1·(1−p2)+p2·(1−p1)
. Here, p1 is the

probability of a transaction in the direction that increases ∆B
and p2 refers to the other direction.

We present the optimal capacity distribution calculated
using Eq. 4 in Fig. 4, and the corresponding stopping times
calculated using Eq. 3 in Fig. 3.

Fig. 3 is a heat map in which the x-axis, namely p1, is the
probability of a transaction in one direction, and the y-axis,
namely p2, is the respective probability in the other direction.
The color depicts the optimal stopping time for a given total
capacity C. The symmetry around y = x is due to the
arbitrary choice of labeling p1 and p2, which does not affect

the stopping time. The symmetry around y = 1 − x is less
obvious, yet it becomes clearer by describing the transferred
amount in each direction as a constant transfer of one unit
and a negative transfer of one unit with the complementary
probability. The constant transfer of one unit in each direction
is canceled out and the results are complementary probabilities
in the opposite directions. One can verify from Fig. 5 that the
total effect on the channel is the same.

Fig. 4 represents the absolute value of the shift of the
capacity of each side of the channel from the balanced capacity
distribution for which the best stopping time is achieved.

Fig. 6 presents the optimal normalized capacity distribution
skew as a function of the payment drift factor for different
values of total capacity C. As can be seen, the steepness of
the curve increases with C. We thus conclude that as the total
capacity of the channel increases, so does the sensitivity of the
optimal capacity distribution to changes in the payment drift
factor. In other words, larger capacity channels benefit more
from the proposed optimization of their capacity distribution
skew.

Capacity Distribution Optimization for General Distri-
butions. Since it is overly complex to obtain an analytical
solution for every payment distribution and it is not feasible
to obtain the entire payment distribution from the data, we
propose to use the results presented in Subsection II-C by
mapping the actual payment distribution on the distribution
referred to in Lemma 5.

First, we empirically calculate the probability of transfer
in any direction, namely p. Then, we filter out the steps in
which no transfer happened and present a mapping from the
first and second moments of the remaining transfers, namely
m1 ≜ E[X] and m2 ≜ E[X2], to a normalization factor,
namely x, and a transfer probability in a certain direction,
namely q.

To that end, we express the moments using q and x:

m1 = x · (2 · q − 1) (5)

m2 = x2 (6)

From Eq. 6, we obtain x =
√
m2. By employing this in Eq. 5

we obtain q = 0.5 · ( m1√
m2

+ 1). Note that q ≤ 1 because
m2

1 ≤ m2 since m2 −m2
1 = σ2 ≥ 0.

III. EXPECTED MINIMAL STOPPING TIME OF A SET OF
CHANNELS

Till now we considered the stopping time of a single
channel. In this section, we consider the expected time of the
first channel failure in a set of channels. In a tree topology,
this event coincides with the topology becoming disconnected,
i.e., the event of having at least one pair of nodes with no
connecting path. In other topologies, a single failure might
not affect the connectivity; however, users are not aware of the
exact balance of channels that they do not maintain, thus even
when a transaction has a path on which it will succeed, the
user may unknowingly choose a path that includes a depleted
channel, which would lead to failure and in turn affect the
success rate. Therefore, it is of interest to postpone the first
failure even when it does not render the topology disconnected.
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0 i − 1

p1

p2

(a) original channel

0 i − 1

1 − p1

1

1 − p2

1

(b) each direction divided into a deterministic trans-
fer and a transfer with the complimentary probabil-
ity in the opposite direction

0 i − 1

1 − p1

1 − p2

(c) equivalent transfer after determinis-
tic transfers cancel each other

Fig. 5: Illustration of the equivalence between a channel and its complementary channel.
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Fig. 6: Optimal capacity distribution skew as a function of payment drift factor
for different values of total channel capacity C

Denote the stopping times of the channels {Ti}M1 where i
represents the index of the channel. The expected minimal
stopping time can be expressed as follows:

T = mini({Ti}M1 )

We cannot easily use the results on the expected stopping
time of a single channel because the order of the expectation
and the minimum operators cannot be swapped. Therefore we
seek to analyze the stopping times of all channels jointly. [7]
presents a way to calculate the joint (minimal) stopping time
of several different irreducible Markov chains. We can make
use of these results by associating a Markov chain with each
of the channels.

Lemma 6. The joint (minimal) stopping time of N indepen-
dent channels with discrete capacity distribution options, ini-
tial balances j1, ..., jN and capacity C, is given by mj1...jN ,C

where M is obtained by:

vec(M) = (ICN+1 − (IC ⊗ P (1) ⊗ · · · ⊗ P (N))

· (ICN+1 − E))−1 · 1CN+1 (7)

where P (i) is the transition matrix of channel i such that C is
the failure state and E = diag[δ] where δ = vec([δj1...jN ,i]).
The parameters used in Eq. 7 are summarized in Table I.

Proof. A channel can be associated with a Markov chain
representing its balance distribution, or more specifically the
balance at one of its ends. The states of the chain will consist
of all the possible balances of the channel when it is not
depleted and a special failure state that is associated with
zero and full capacity. The transaction probabilities will be the
probabilities to go from a certain channel balance to another
balance or failure state. Failure state leads to all other states
with a certain probability to keep the Markov chain irreducible.
The exact probabilities of leaving the failure state do not affect

TABLE I: Summary of main notations (Section III)

Term Meaning

vec(M) The vectorization of matrix M by concatenating the columns
of M

mh1...hN ,j The mean first time node j is reached when each channel i
starts from node hi

C The capacity of each channel

[δj1...jN ,i] A matrix of zeros and ones of the same size as M in which
an element is equal to 1 in case its first index includes the

second index

E A diagonal matrix where the diagonal is the vectorization of
δj1...jN ,i]

P (i) The transition matrix associated with channel i

1n vector of ones of size n

In Identity matrix of size n

⊗ Kronecker product

the joint stopping time since we are not interested in what
happens after the failure state is reached for the first time.
The initial state of the Markov chain is the initial balance of
the channel. The state transition graph for the case of a single
channel is presented in Fig. 7.

1 i − 1 i C − 1

Failure

Fig. 7: transition diagram for a single channel with total capacity of C in case
the balance can only increase or decrease by 1. Transitions from the Failure
state are not included

M is a two-dimensional matrix where the height index
h1...hN represents the initial state of each of the N channels,
and the width index j represents the target state. Accordingly,
the last column of M holds the stopping times for each
combination of initial states. An example of M for two
channels with capacity 2 is:

m11,1 m11,2

m12,1 m12,2

m21,1 m21,2

m22,1 m22,2

 =


0 3
0 0
0 0
1 0


In the example above we can see that the expected time of
reaching the failure state, 2, when both channels start at state
1, is stored in m11,2 and is equal to 3.

We verified the validity of Lemma 6 by empirically eval-
uating the stopping time of two independent channels with
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Fig. 8: The expected time until the first channel failure in a set of two channels
with capacity 20 as a function of the transfer probability in one direction.

capacity 20 where in each time step a transaction of size 1
is transferred with a given probability p in one direction and
with probability 1 − p in the other direction. We compared
the results for various transfer probabilities to the theoretical
value obtained by Eq. 7 in Fig. 8.

Although M gives us all the information we need, in prac-
tice, it is not feasible to calculate M for even moderately large
PCNs because Eq. 7 includes matrices of size CN+1×CN+1

a figure that becomes fairly large pretty quickly. For example
for 10 channels of capacity 10 each, CN+1 = 1011. In
addition, it is difficult to calculate the transition probability
matrix accurately if there is not sufficient data. In addition
to the computational limitations related to M , we assumed
that the channels are not correlated, which is not a reasonable
assumption since transactions are often performed using a
multi-hop path that influences a few channels at the same time.
Furthermore, this approach requires the assumption that all the
channels have the same capacity.

Another interesting observation is that this method can be
used to accurately calculate the stopping time of a single
channel with or without drift in case the channel has a discrete
set of possible capacity distributions.

IV. MINIMAL EXPECTED CHANNEL STOPPING TIME
OPTIMIZATION

Motivation. When a payment channel becomes discon-
nected, certain transfers cannot be performed, and in many
cases there is a need for a costly on-chain transaction to re-
balance the channel. As mentioned, users do not know the
exact balance of channels that they do not maintain; thus,
even when a transaction has a path on which it will succeed,
the user may unknowingly choose a path that includes a
depleted channel, which would lead to failure. Therefore, it
is of interest to postpone the first failure even when it does
not render the topology disconnected. Since we saw that the
expected stopping time of a channel may depend on the
distribution of transfers over it as well as its initial balance,
it is possible to increase the time until the first failure by re-
distributing the funds over the channels. It is not clear how
to use the results of Section III for this task since the model
we used there does not sustain different channel capacities
and has some major drawbacks regarding accuracy and space
complexity. Therefore, we propose to consider a simpler metric
for maximization towards increasing the expected minimal
stopping time.

TABLE II: Summary of main notations (Section IV)

Symbol Meaning

K The sum of funds of all the channels in the topology

Ci The total capacity of channel i

bi maximum value of min(B2
A, B2

B) given BA + BB = Ci

Consider the set of edges {Ei}Mi=1 composing a given
network, and assume that each edge Ei has a total capacity
of Ci and a variance of balance change of σ2

i . Our aim is
to re-distribute the funds in order to maximize the smallest
lower bound on the expected stopping time given that the total
amount of funds in all the channels is K.

Definition 7 (Minimal Expected Channel Stopping Time).
Given a set of channels {Ei}Mi=1 with corresponding stopping
times {Ti}Mi=1, the minimal expected channel stopping time is
the smallest expected stopping time of all the expected times
of all the channels in the set, namely, mini∈(1,M) E[Ti].

Lemma 7. The minimal expected channel stopping time
of a set of balanced channels {Ei}Mi=1 with corresponding
transaction variances, {σ2

i }Mi=1, and balances {B0
αi
, Bβ0

i
}Mi=1,

is bounded from below by

min
i∈(1,M)

min(B0
αi
, B0

βi
)2

σ2
i

.

Proof. The lemma is established by assigning the lower
bounds on the stopping time of each channel (Eq. 1) into the
definition of the minimal expected stopping time.

First, note that, given the capacity of a channel Ei, in
order to maximize the lower bound on its stopping time we
need to maximize min(Bαi , Bβi)

2. We thus denote bi =
maxmin(Bαi

, Bβi
)2 = maxBαi

min(Bαi
, (Ci − Bαi

))2 =
0.25 · C2

i and formulate the following optimization problem:

maxbi mini
bi
σ2
i

s.t.
∑

i Ci =
∑

i 2 ·
√
bi = K

Lemma 8. The minimal lower bound on the expected stopping
time of a set of balanced channels with a constant total
capacity is maximized when all lower bounds are equal.

Proof. Assume by way of contradiction that the distribution
of funds over the channels is optimal but the lower bounds on
the average stopping times are not equal. Since not all lower
bounds are equal, there must exist a channel Ei for which the
lower bound is larger than the minimal lower bound across
the channels. Due to the continuity of the lower bound with
respect to bi, there is some ∆b > 0 that can be deducted from
Ei’s total balance and still maintain the above property. The
minimal lower bound can be improved by re-distributing ∆b
among all other channels for which the lower bound is minimal
and Ei equally because the lower bound on the stopping time
of a channel Ej is a strictly increasing function of bj .

With Lemma 8 at hand, instead of an optimization problem
we get a set of equations, as follows:

bi
σ2
i
=

bj
σ2
j

∀i, j∑
i Ci =

∑
i 2 ·

√
bi = K

(8)
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By comparing every channel Ei to E1 we have bi
σ2
i
= b1

σ2
1

. We
can then express bi in terms of b1:

bi =
σ2
i

σ2
1

· b1 (9)

Now, we are left with only one unknown variable, namely b1.
We can write the following total capacity condition equation:∑

i

2 ·
√

bi =
2 ·

√
b1

σ1
·
∑
j

σj = K

Isolating b1 and assigning to Eq. 9, we get:

b1 =
K2 · σ2

1

4 ·
(∑

j σj

)2
bi =

K2 · σ2
1

4 ·
(∑

j σj

)2 · σ
2
i

σ2
1

=
K2 · σ2

i

4 ·
(∑

j σj

)2
Finally, we obtain the following lower bound on E(Ti):

E[Ti] ≥
bi
σ2
i

=
1

σ2
i

· K2 · σ2
i

4 ·
(∑

j σj

)2 =
K2

4 ·
(∑

j σj

)2 (10)

as well as the following expression for Ci:

Ci = 2 ·
√
bi = 2 ·

√√√√ K2 · σ2
i

4 ·
(∑

j σj

)2 = K · σi∑
j σj

(11)

0 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

Channel Payment Value Variance

E
xp

ec
te

d
St

op
pi

ng
Ti

m
e Optimized

Optimized Lower Bound
Not Optimized

Not Optimized Lower Bound

Fig. 9: Chain of 50 nodes: Average expected stopping time of a channel
as a function of the edge transaction value variance. The minimal expected
stopping time is the smallest point in the graph, which happens to be on the
right side.
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Fig. 10: Random tree of 50 nodes: Average expected stopping time of a
channel as a function of the edge transaction value variance. The minimal
expected stopping time is the smallest point in the graph, which happens to
be on the right side.

As can be seen, the capacity of a channel depends on its
variance, while the optimized lower bounds of the stopping

time do not. The redistribution of funds cancels out the
differences in the lower bounds of the stopping time, as
expected. To evaluate how accurate the above lower bound
is in practice and to evaluate how effective the optimization
is, we simulated a series of random transactions of 5 tokens
over a chain, as well as a random tree of 50 nodes, where each
channel had a capacity of 100 split equally between its sides.
We ran each simulation for 106 time steps. For each channel
in the topology, we calculated the average time until depletion
by dividing the number of simulation time steps by the number
of channel depletion events encountered during the simulation.
When a channel depletion occurred during the simulation, we
immediately replenished the funds to the original state of the
channel. In the tree and chain topologies there is only one
simple path between every two nodes, hence the routing in this
case is trivial. The results are presented in Fig. 9 and Fig. 10
respectively. Both figures depict the expected stopping time of
each channel in the respective topology based on its variance
before and after optimization, as well as the corresponding
lower bounds. As can be seen, the optimization goal, namely
the minimal expected stopping time, which is the lowest value
in the graph, improved by several folds (more so in the tree
topology). Moreover, the stopping time of channels, with a
variance higher than 8 in the case of the chain and 3 in the case
of the random tree, was improved by the optimization. The
optimized stopping times are uniformly spread with respect to
the variance and the lower bound is close to the actual stopping
time. The improvement is more noticeable in the case of the
random tree and the resulting stopping time is twice as high.
Since the number of channels in a tree is always n − 1, the
sum of all the capacities is the same in both cases, hence we
conclude that a chain is not an efficient topology.

Fig. 11 is a histogram of channels based on the transaction
value variances of channels in both the chain and random tree
topologies. The chain topology has a higher number of edges
with low variance, while the random tree topology has a higher
number of edges with high variance. The higher occurrence of
channels with high variance in the tree topology allows for a
more effective redistribution of funds during the optimization
process. In contrast, the chain topology, which predominantly
consists of channels with low variance, has a limited potential
for capacity redistribution and subsequent improvement in
stopping time. Hence we conclude that topologies that facili-
tate higher variance of the transaction values are preferred.

In addition, we evaluated the average time until a certain
number of failures occurs in a random tree topology in Fig. 12.
As can be seen, the average time improved by at least 50% for
any number of failures, and the duration between consecutive
failures increased as well.

Lightning evaluation. In addition, we evaluated the channel
stopping time with and without optimization on the real
topology of the Lightning network taken in December 2022.
Lightning is the payment channel network of Bitcoin. The
topology had 11268 nodes and 61966 edges. The transfer
probabilities we used were derived from a traffic simulator
from 2019 described in [8]. The simulator provides a series of
transactions for a given topology. The size of each transaction
was chosen to be 60000. For each channel in the topology,
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Fig. 12: Average of 20 Random trees of 50 nodes: Average expected time
until x failures as a function of x.

we calculated the average time until depletion by dividing the
number of simulation time steps by the number of channel
depletion events encountered during the simulation. When a
channel depletion occurred during the simulation, we immedi-
ately replenished the funds to the original state of the channel.
We routed each transaction on the shortest path in terms of hop
count. Since channels in Lightning have different capacities,
and the stopping time is influenced both by the capacity
and the channel variance, we chose to present the expected
stopping time as a function of the lower bound instead of the
variance. We present the expected stopping time and its lower
bound before optimization in Fig. 13a. Moreover, we present
the effect of the optimization on the expected stopping time
and the lower bound in Fig. 13b. We averaged the acquired
data over 30 equal-sized bins. As expected for points above the
lower bound samples the average stopping time is larger than
the lower bound. Since we ran the experiment for 107 steps,
we focused on the channels where the lower bound is up to
105, to obtain a sufficiently accurate estimate of the expected
stopping time and to avoid sampling bias due to the 107 limit.
We can see that the empirical evaluation follows the lower
bound closely and similarly to what we saw in the synthetic
topologies: here too, after the optimization, the stopping times
and the lower bound are evenly spread. The minimal expected
stopping time (lowest point in the graph) improved by about
4 · 105 time steps.

V. MINIMAL EXPECTED CHANNEL STOPPING TIME
OPTIMIZATION: DISTRIBUTED VERSION

Although distributing the total amount of funds between the
channels seems like a reasonable approach, it might not be
practical or easy to implement it, because usually each user
decides how much to invest in opening payment channels,
hence we cannot guarantee that users will comply with the

optimized proposal. Furthermore, although the total amount of
funds in the network should stay the same in order to guarantee
that each user will invest the sought amount, just fulfilling
this requirement is not enough. Accordingly, we would like to
explore what each user can do in order to increase the stopping
time of the channels that it operates.

We start by reformulating the optimization problem in order
to account for a predetermined investment by each user in the
network:

maxBi,Bj
min(i,j)∈E

min(Bi,Bj)
2

σ2
i,j

s.t.
∑

j∈N(i) Bj = Ki∀i
Even though the reformulated problem has stricter con-

straints on the funds distribution among channels than the
global version, it elevates an implicit constraint on the balance
distribution within each channel. Indeed, till now we assumed
that we could impose on each channel to split the capacity
equally between its ends, however in the distributed version
each end determines its investment independently, hence we
can no longer make that assumption. Therefore, while in the
global version there was a single (closed-form) solution, now
there might be multiple optimal solutions.

Since the lower bound we found in Eq. 1 depends on
both ends of the edge, it may seem hard to find an optimal
solution for each node separately. However, we can decouple
the problem by presenting the following reformulation of the
lower bound. Note that Bα and Bβ are non-negative.

E[T ] ≥
min(B0

α, B
0
β)

2

σ2
= min(

B2
α

σ2
,
B2

β

σ2
)

The minimal lower bound on the expected stopping time in
the network can be expressed as:

min
(i,j)∈E

min(
B2

i,j

σ2
i,j

,
B2

j,i

σ2
i,j

) = min
n∈Nodes

minj∈N(n)(
B2

n,j

σ2
n,j

)

Where N(i) is the neighborhood of node i. Note that
{B2

n,j

σ2
n,j

}j∈N(n) don’t overlap, thus the minimum can be maxi-
mized by maximizing the minimum of each subset.

Lemma 9. Under the condition that the total investment of
each node is kept constant, the minimal expected channel
stopping time of a set of balanced channels is maximized when
each node n maximizes the minimum value of

B2
n,j

σ2
n,j

for all
neighboring nodes j ∈ N(n).

The capacity distribution proposed in Lemma 9 is optimal
with respect to the minimal expected stopping time. However,
it is not the only solution and there is room for further
optimization with respect to other optimization goals. For
example, since every node sets its balance on each edge
independently of the balance at the other end of the channel,
some edges may have different balances at their ends. Since
the lower bound on the stopping time depends on the minimum
of the balances, the extra balance on the larger end can be
used to increase the stopping time of another channel without
detrimenting the lower bound on the first channel.

We examined the practical impact of the optimization pro-
posed in Lemma 9 on the minimal expected stopping time,
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(a) Lightning Network: Average expected stopping time of channels with
similar non-optimized lower bounds.
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Fig. 13: Lightning Network: Expected Stopping time before and after capacity optimization as the function of the lower bound on the expected stopping time
before optimization. The minimal expected stopping time is the smallest point in each of the graphs.
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Fig. 14: Lightning Network: Expected stopping time before optimization, after
global optimization and after distributed optimization, as the function of the
lower bound on the expected stopping time before optimization percentile
group.
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Fig. 15: The number of edges that possess a given expected stopping time in
a random tree of 50 nodes before optimization, after global optimization and
after distributed optimization.

as well as the overall effect on the network, in the topology
of the Lightning network (as of December 2022). Here again,
for each channel in the topology, we calculated the average
time until depletion by dividing the number of simulation time
steps by the number of channel depletion events encountered
during the simulation. When a channel depletion occurred
during the simulation, we immediately replenished the funds
to the original state of the channel. We routed each transaction
on the shortest path in terms of hop counts. Fig. 14 displays
the average expected stopping time as a function of the lower
bound before optimization in the Lightning network percentile
group. As can be seen, the expected stopping time consistently
improved in the lower percentiles but not as prominently

as in the global case and, accordingly, the detriment to the
higher percentiles was less substantial. We thus conclude that,
even though our optimization focused on the minimal expected
stopping time, it has a positive effect on other channels with
relatively low stopping time. Fig. 15 presents a histogram
of the expected stopping times without optimization, under
global optimization and under distributed optimization, in a
random tree of 50 nodes. Here again, we see that the effect of
the distributed optimization on the minimal expected stopping
time is smaller than in the case of global optimization. In
addition, we see that the distributed optimization does not
equalize the expected stopping times across the network but
rather performs small local improvements.

VI. STOPPING TIME OF A CHANNEL IN PARTICULAR
TOPOLOGIES

Let us examine the stopping time of a channel in various
topologies. The topology along with the routing scheme de-
termine the transactions on each channel. That is, different
topologies may lead to different stopping times given the same
payments. In this section we examine a few basic topologies,
including two that were previously examined for PCNs (in [9]
and [10]), namely the star and the ring.

Denote the balance of node i on the channel connecting
i and j at time n as Bn

i→j and the corresponding requested
increment from time n − 1 to time n as ∆Bn

i→j . Denote the
random variable representing the payment from node i to node
j at time n as Y n

i→j . Across all following examples, we assume
that the distribution of transfers from a user to every other
user does not change over time and we denote its expectation
and variance by µYi→j and σ2

Yi→j
correspondingly. If, in

addition, the distribution of the payments is the same across
all users, we use µY and σ2

Y to refer to the common variance
and expectation. This assumption is useful in the sense that
it allows us to compare various topologies without further
knowledge about the transaction distribution. Note that the
lower bound that we developed in Eq. 1 does not require this
assumption and it depends on the transaction value variance,
which can be estimated empirically. Notations are summarized
in Table III.
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TABLE III: Summary of main notations (Section VI)

Symbol Meaning

Y n
i→j Random variable which represents the transferred amount from

node i to node j at time n

σ2
Yi→j

The variance of Y n
i→j

µ2
Yi→j

The expectation of Y n
i→j

Bn
i→j The balance of node i on the channel connecting i and j at time n

∆Bn
i→j The requested increment to Bn

i→j from time n − 1 to time n

A. Topology I: Tree

Consider a payment channel i ↔ j in a tree topology, an
illustration of the channel is presented in Fig. 16. In a tree
structure, there is only one simple path between a pair of
nodes. The edge i ↔ j partitions the tree into two sub-trees,

i jTi Tj

Bn
i→j Bn

j→i

Fig. 16: An edge between node i and j in a tree. The edge divides the tree
into two sub-trees: A subtree with node i marked as Ti and a subtree with
node j marked as Tj . Balances of the channel between i and j appear near
each of the two nodes.

Ti and Tj correspondingly. All possible transactions can be
divided into 4 groups, namely: transactions within Ti and Tj ,
and transactions from nodes in Ti to nodes in Tj and vice
versa. Transactions within a sub-tree do not pass through the
examined edge, transactions from Ti to Tj pass on i ↔ j in
the direction from i to j and vice versa. Let us examine the
distribution of the change in the balance of channel i ↔ j at
time n on the side of node i:

∆Bn
i→j ≜ Bn

i→j −Bn−1
i→j =

∑
k∈Ti

∑
l∈Tj

Y n
k→l −

∑
k∈Tj

∑
l∈Ti

Y n
k→l

Due to linearity of expectation:

E[∆Bn
i→j ] =

∑
k∈Ti

∑
l∈Tj

E[Y n
k→l]−

∑
k∈Tj

∑
l∈Ti

E[Y n
k→l]

=
∑
k∈Ti

∑
l∈Tj

µY −
∑
k∈Tj

∑
l∈Ti

µY

Since Y n
k→l are independent, the variance of ∆Bn

i→j is the
sum of the variances of Y n

k→l.

V ar[∆Bn
i→j ] =

∑
k∈Ti

∑
l∈Tj

V ar[Y n
k→l] +

∑
k∈Tj

∑
l∈Ti

V ar[Y n
k→l]

In case all Yk→l are identically randomly distributed, we
denote the number of nodes on the first sub-tree Ti as Mi

and the number of nodes on the second sub-tree Tj as Mj .
Since the number of potential transfers from Tj to Ti is equal
to the number of potential transfers from Ti to Tj and they
all have the same distribution, the expectation of ∆Bn

i→j is 0
even though µY is not necessarily 0.

E[∆Bn
i→j ] =

∑
k∈Ti

∑
l∈Tj

µY −
∑
k∈Tj

∑
l∈Ti

µY = 0

The variance of ∆Bn
i→j is:

V ar[∆Bn
i→j ] = 2 ·Mi ·Mj · σ2

Y (12)

Since the expectation of ∆Bn
i−1→i is 0, we can use Eq. 1 to

bound the expectation of the stopping time of a channel in a
tree from below:

E[T ] ≥
min2(B0

i→j , B
0
j→i)

2 ·Mi ·Mj · σ2
Y

(13)

B. Topology II: Chain

Consider a chain of M nodes connected by M−1 payment
channels, as illustrated in Fig. 17.

0 i − 1 i M − 1

Bi−1→i Bi→i−1

Fig. 17: A Chain of M nodes numbered from 0 to M − 1. The balances on
the channel between i− 1 and i are written next to the corresponding nodes

A chain is a tree, therefore we can use Eq. 13. The channel
i ↔ i− 1 divides the chain into two sub-chains of size Mi =
M − i and Mi−1 = i, assigning those into Eq. 13 we get:

E[T ] ≥
min2(B0

i→i−1, B
0
i−1→i)

2 · σ2
Y · i · (M − i)

(14)

In a chain, the stopping time of a channel depends on the
location inside the chain. Channels closer to the middle of
the chain are more frequently used as intermediate channels
and therefore are more likely to fail. This opens up room for
optimization, as we saw in Section IV.

C. Topology III: Star

Consider a star of M nodes connected by M − 1 payment
channels, as illustrated in Fig. 18.

0

1

M − 1

i

Bn
i→0Bn

0→i

Fig. 18: A Star composed of an inner node 0 and M−1 leaf nodes numbered
from 1 to M − 1 (such that i ∈ [1,M − 1]). The balances on the channel
between i and 0 are written next to the corresponding nodes.

A star is a tree, thus we use Eq. 13. The channel i ↔ 0 divides
the star into a sub-tree of size Mi = 1 which contains the leaf
node i, and a sub-tree that contains the remaining M0 = M−1
nodes. Together with Eq. 13 we get:

E[T ] ≥ min2(B0
i , B

0
0)

2 · (M − 1) · σ2
Y

(15)
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D. Topology IV: Clique

Consider a clique of M nodes connected by M2 payment
channels. In a clique, the shortest path between any two nodes
consists of a single edge. Assuming all transfers are performed
on the shortest path, the variance and expectation of the
balance change, is identical to the corresponding parameters
in a chain of two nodes. Thus, by assigning to Eq. 14, we get:

E[T ] ≥
min2(B0

i→j , B
0
j→i)

2 · σ2
Y

(16)

E. Topology V: Cycle

Consider a cycle of M nodes labeled from 0 to M − 1 as
illustrated in Fig. 19.

0 i − 1 i M − 1

B
n
0→

M
−1

B n
M−1→

0

Fig. 19: A cycle of M nodes

Since there are two paths between each pair of nodes, the
transfers are not well-defined by the payments. We thus
assume that the source node chooses a path randomly with
a probability of 0.5.

Since the cycle of nodes is symmetric, we examine a single
channel and extend the conclusions to the rest of the channels.
For simplicity, we look at M − 1 ↔ 0. First, we define
Zk→l to be a random variable that is equal to the value of
the transferred amount from node k to node l in case the
transfer is performed in the direction that includes the channel
0 ↔ M − 1, and it is equal to 0 otherwise. The change to the
balance of 0 ↔ M − 1 can be expressed using Zk→l as:

∆BM−1→0 =
∑
k<l

Zn
k→l −

∑
k>l

Zn
k→l

The above holds because between each pair of nodes k and
l, k < l, there is only one path that includes the channel
0 ↔ M − 1. If the transfer is done from k to l then it is
passed from 0 to M − 1 and therefore increases ∆BM−1→0;
else, it is passed in the opposite direction and it decreases that
value. If the chosen transfer direction does not include the
channel 0 ↔ M − 1, it does not affect it. An illustration of
the effect of the transfer direction on the examined channel
can be seen in Fig. 20.

Since we assume that the direction of a transfer does not
depend on its amount, E[Zn

k→l] = 0.5·E[Y n
k→l]. From linearity

of expectation:

E[∆BM−1→0] =
∑
k<l

0.5 · E[Y n
k→l]−

∑
k>l

0.5 · E[Y n
k→l] = 0.

The variance of Zn
k→l can be calculated using the law of total

variance. Note that Zn
k→l given the transfer direction equals

0

k l

M − 1

Zk→l = 0

Zk→l = Yk→l

(a) transfer from k to l

0

k l

M − 1

Zk→l = 0

Zk→l = Yk→l

(b) transfer from l to k

Fig. 20: Illustration of the influence of the transfer direction on ∆BM−1→0.
There are two possible directions of transfer between each pair of nodes.
Clockwise path is marked in red, counter clockwise path in blue. As can be
seen, in each subfigure only one direction influences the 0 ↔ M−1 channel.

Yk→l if the transfer direction includes 0 ↔ M − 1 and equals
0 otherwise.

V ar(Zn
k→l) = E[V ar(Zn

k→l| transfer direction)]
+ (E[Zn

k→l| transfer direction])
= 0.5 · V ar(0) + 0.5 · V ar(Y n

k→l)

+ 0.5 · E[0]2 + 0.5 · E[Y n
k→l]

2

= 0.5 · V ar(Y n
k→l)

Since Zn
k→l are independent of each other, the variance of

∆BM−1→0 is the sum of the relevant Zn
k→l:

V ar[∆BM−1→0] =
∑
k<l

V ar[Zn
k→l] +

∑
k>l

V ar[Zn
k→l]

=
∑
k<l

0.5 · V ar[Y n
k→l] +

∑
k>l

0.5 · V ar[Y n
k→l]

= 0.5 · 0.5 ·M · (M − 1) · σ2

= 0.25 ·M · (M − 1) · σ2

Since the expectation of the increment is 0 and its variance
is known, we can calculate the expected failure time of the
channel using Eq. 1:

E[T ] ≥
4 ·min2(B0

i→i−1, B
0
i−1→i)

σ2 ·M · (M − 1)
(17)

As expected, the lower bound on E[T ] does not depend on
the location inside the cycle.

VII. RELATED WORK

Offchain Payment Channels. Layer two protocols, built
on top of (layer one) blockchains, have been implemented for
major blockchain networks, such as Lightning [3] for Bitcoin.
In most offchain networks, transactions between users that
are not connected by a payment channel are performed by
intermediate transactions through other nodes on a multi-hop
path; however, other approaches exist.

Virtual Payment Channels. Virtual payment channels are
payment channels that are built on top of regular payment
channels and use them as arbitrators, similar to how regular
payment channels utilize the blockchain. Virtual payment
channels alleviate some shortcomings of regular payment
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channels, such as reliance on intermediary nodes being con-
stantly online, and they improve the speed and privacy of
the transaction confirmation. However, they do not solve the
issue of channel depletion. For our purposes, we treat virtual
channels as regular channels.

Payment channel virtualization was introduced by Dziem-
bowski et al. [11] for blockchain architectures that provide a
Turing-complete scripting language, such as Ethereum, mak-
ing it unsuitable for blockchain architectures with limited
scripting capabilities, such as Bitcoin. Jourenko et al. [12]
and Aumayr et al. [13] further optimized the construction
of virtual payment channels by providing an implementation
that does not have this limitation, enabling virtual payment
channels on a broader range of blockchain systems. Xie et
al. [14] used a bidirectional locking mechanism to lock the
collateral on payment channels to increase the capacity of the
virtual channel. Jia et al. [15] presented a cross-chain virtual
payment channel scheme implemented a blockchain system
that supports Turing-complete scripting language.

Routing Schemes. Several studies focused on routing
schemes. Sivaraman et al. [4] optimized success ratio and
volume by packetizing transactions and spreading packets
across time and routes, using conjecture control. Mazumdar
and Ruj [16] introduced a secure and privacy-preserving
atomic multipath payment protocol, allowing to securely split
transactions into smaller parts to increase the success rate.
Mazumdar et al. [17] proposed an efficient privacy preserving
routing algorithm while maintaining a high success ratio.
Wang et al. [18] optimized the success volume by dividing
transactions into “mice” and “elephants” and routing elephant
transactions using a modified max-flow algorithm. Bagaria et
al. [19] and Rahimpour et al. [20] proposed techniques to
safely construct redundant payment paths to improve latency
and throughput, while Awathare et al. [21] proposed to do
so by re-routing transactions from intermediate nodes around
a unidirectional channel to avoid failure. Hong et al. [22]
optimized multi-path payment routing using limited capacity
information. Xie et al. [23] proposed a multi-path routing
algorithm based on the Ant Colony Optimization (ACO).

Topology and Demand. Khamis et al. [9] optimized the
topology given the demand matrix by assigning nodes from the
demand matrix to nodes in a given topology or by constructing
a new topology with a limited number of edges. Khamis et
al. [24] optimized the demand matrix itself by finding an
equivalent matrix with the same user impact using fewer trans-
actions, thus reducing the number of performed transactions.
Lange et al. [25] and Davis et al. [26] explored the question of
which connection point is preferred for joining the network.
Sivaraman et al. [27] studied the role of network topology
and channel imbalance on credit network throughput. Wu et
al. [28] proposed to partition the nodes of the network into
interconnected clusters surrounding supernodes such that each
supernode pools and manages all funds within its cluster thus
increasing scalability and liquidity. Rohrer et al. [29] proposed
an algorithm that enables a distributed and concurrent execu-
tion of transactions without violating capacity constraints. To
this end, they introduced the concept of capacity locking and
used it in an extended push-relabel algorithm.

Rebalancing Schemes. Some studies focused on actively
rebalancing the channels by performing transactions with the
sole purpose of increasing the future success rate. Pickhardt et
al. [30] defined an imbalance measure and proposed a greedy
rebalancing algorithm. Khalil et al. [31] proposed a leader-
based rebalancing scheme. Sahoo et al. [32] introduced a
secure rebalancing model that maintains the safe state of every
honest participant. Even so, a rebalancing action does not
come for free as it is usually done via additional transactions
that may carry additional fees. Recently, Kotzer et al. [33]
showed the occurrence of the Braess paradox in payment
channel networks with regards to routing fees. Sometimes,
establishing new payment channels increases the expected fees
despite the higher routing flexibility they allow.

VIII. CONCLUSIONS AND DISCUSSION

Overview. We examined the stopping time of payment
channels. An overview of our contributions is summarized in
Table IV. First, we looked at one channel in isolation and
established a lower bound that depends on the initial channel
balance and the variance of the payments over it for the case
of a balanced channel, and calculated it for various topologies.
Then we explored a private case for a channel with drift,
calculated and maximized its stopping time, and analyzed the
results in order to draw conclusions for the general case.

Next, we explored an approach for calculating the expected
first failure time of a set of channels. For future work,
we believe it should be possible to extend the results of
Section III by expanding the model to incorporate channels
with different capacities. This extension is feasible because
[7] claims to provide a result for multiple random walks on
different subgraphs.

Next, we attempted to optimize the lower bounds of a set
of channels by increasing the smallest lower bond on the
expected stopping time. We observed that the stopping time of
a channel depends on its capacity as well as on its transaction
variance. Since the latter highly depends on the location of the
channel and the topology, by redistributing the total capacity
the minimal expected stopping time of the channels in the
network can be improved.

Through experiments, we indicated that this approach has a
positive effect on channels with relatively low stopping times
as well, and not only on the minimal expected stopping time in
the network. First, we examined a global approach: although
this is not very feasible to implement due to the distributed
nature of the network, it indicates the extent to which capacity
redistribution can improve the minimal expected stopping
time. Next, we introduced a (more realistic) distributed ap-
proach, in which each node redistributes the funds available
to it among the channel ends it is connected to. In both
cases, we focused on balanced channels (transaction-wise).
Although this assumption does not always hold, it arises in
several topologies, some of which we explored in Section VI,
due to basic symmetry assumptions; moreover, it holds in
circulation networks (explored in [4]) given proper routing.
Both approaches rely on the knowledge of the transaction size
variance on the edges. This information can be obtained by
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TABLE IV: Contributions overview

Target

Expected Expected Expected Minimal expected Expected minimal
stopping time stopping time stopping time stopping time stopping time

of a single of a single channel of a single channel of a set of of a set of
balanced channel with drift in a topology channels channels

A
ct

io
n

Calculation Lower bound Fixed size Lower bounds Lower bound Assuming channels
[Eq. 1] payment distribution Tree [Eq. 13] [Lemma 7] are independent:

[Lemma 5] Chain [Eq. 14] exact but costly
Star [Eq. 15] [Lemma 6]

Clique [Eq. 16]
Cycle [Eq. 17]

Capacity Optimal Optimized
distribution - [Eq. 4] - lower bound -
optimization [Eq. 10]

Distributed strategy
[Lemma 9]

monitoring the transactions on each edge and keeping a run-
ning average of the square values of the passing transactions.

Discussion and Future Work. Throughout this work, we
have focused on survivability in the sense of the first channel
failure in the network. However, other definitions exist. For
example, it can be of interest to explore the first time the
network becomes disconnected as opposed to the first channel
depletion. Even though a single depleted channel may still
lead to transaction failures, the existence of multiple depleted
channels may more severely affect the transaction failure rate.

In addition, our proposed optimization may be undermined
by malicious attacks by enforcing a very unbalanced transac-
tion distribution on certain channels. Overcoming such vulner-
abilities is an interesting topic for future work.

Furthermore, our approach can be integrated into a broader
research landscape by complementing existing routing and
rebalancing strategies. Indeed, it can be applied alongside any
routing scheme and thus be easily combined with the routing
strategy of choice. Additionally, our method can enhance
rebalancing schemes by reducing the frequency of rebalancing
operations and the entailed overhead. Exploring such inte-
grations and their impacts is another interesting direction for
future research.

Other directions for future work may include to further
explore imbalanced channels and extend the context to a set
of channels. In addition, the distributed approach that we
considered is not the only approach that can achieve the
goal of maximizing the minimal expected stopping time in
the network, and we believe that the exploration of further
approaches is a worthy topic for future work.
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