
Problems and New Approaches for Crypto-Agility
in Operational Technology

Tobias Frauenschläger and Jürgen Mottok
Laboratory for Safe and Secure Systems (LaS³)

Technical University of Applied Sciences Regensburg
93053 Regensburg, Germany

{tobias.frauenschlaeger, juergen.mottok}@oth-regensburg.de

Abstract—In recent years, cybersecurity has also become rel-
evant for Operational Technology (OT). Critical systems like in-
dustrial automation systems or transportation systems are faced
with new threats, and therefore require the implementation of
thorough security measures. Regulations further mandate the
deployment and regular verification of these security measures.
However, OT systems differ from well-known systems of classic
Information Technology (IT), such as mission times spanning
decades, infrequent updates only during on-site maintenance,
or diverse devices with varying support for security measures.

The growing field of crypto-agility examines approaches to
integrate security measures in an agile and flexible way, making
updates easier and, therefore, encouraging a more frequent
deployment of them. This paper contributes to this research
field in the context of secure communication in two ways. We
first examine the current state of crypto-agility by providing
an overview of existing measures for OT systems. Then, we
propose a new architecture concept with different deployment
approaches to integrate security measures in a crypto-agile
way. Based on a security library with a generic interface and
a flexible proxy application, our architecture is capable of
securing both new OT systems and existing ones via retrofit.

Keywords—Security, Crypto-Agility, Automation, Industrial
Control Systems, SCADA, Transportation, Real Time, Commu-
nication Systems, Cryptography, Proxy, Gateway, Retrofit

I. INTRODUCTION

Cybersecurity is an emerging topic in the field of Opera-
tional Technology (OT). Nowadays, automation and control
systems like Industrial Control Systems (ICS) are threatened
by cyberattacks just like enterprise systems. This is especially
important for automation systems within industrial processes
or critical infrastructures, such as transportation or supply
systems. Due to these increasing threats, various new regula-
tions have been passed [1], [2] to improve resilience against
cyber threats. Among various topics, operators of critical
infrastructures in Germany have to prove the effectiveness
of the implemented security measures to the Federal Office
for Information Security (BSI) on a periodic basis. Due to
the limited expected lifetime of cryptographic algorithms
published by regulation bodies, e. g. by the BSI [3], and
the vast amount of potential vulnerabilities [4] within these
systems, deployed security measures have to be updated and
maintained continuously.

Compared to IT enterprise systems, however, OT systems
differ greatly in terms of updates and maintenance operations.
Typical OT systems are designed with a mission time of up
to 25 years, until the equipment is replaced on schedule.
Software updates are installed only when strictly necessary
during infrequent on-site maintenance (based on the common

”never change a running system“ mentality). Hence, security
measures can barely be updated or newly integrated after
initial deployment. This inertial technological enhancement is
aggravated by the systems consisting of devices from numer-
ous manufacturers with vastly differing security capabilities.

As a result, the effort to create a secure system based on a
common set of state-of-the-art measures and best-practices is
complicated and expensive, if at all possible.

To overcome this problem, the arising research field of
crypto-agility examines solutions to simplify the maintain-
ability of security measures. Especially for the considered
OT systems with their long service life, thorough measures
of crypto-agility are key to future-proof the systems against
cyberattacks and to increase the expected lifetime of the se-
curity features, and, hence, of the overall systems. In the first
part of this work, we provide an overview of the current state-
of-the-art regarding crypto-agility in OT systems, focusing
on secure communication within OT systems. We analyze
existing security measures for OT communication and then
identify problems and limitations thereof, which could be
improved by thorough crypto-agility capabilities. Based on
the identified state-of-the-art, we propose a new solution
concept to increase the level of crypto-agility in OT systems.
A key aspect of our concept is to create a fast migration
path for existing systems to retrofit security features with
agility capabilities to counteract the described inertia. Lastly,
we verify the viability of our concept in a case study to
examine the impact on overall system performance metrics.

In summary, the paper makes the following contributions:
1) We give an overview of the current state of security

measures within OT communication systems, elabo-
rating on problems and limitations regarding crypto-
agility capabilities.

2) Then, we present our concept to add crypto-agility
capabilities into both existing and new OT systems with
its various deployment approaches.

3) In a case study, we verify the viability of the concept
and compare the different deployment approaches, with
a focus on retrofitting existing systems.

The remaining paper is structured as follows. In Section II,
the current state-of-the-art regarding crypto-agility in OT
communication systems is presented. Based on a general
overview of OT security and a definition of crypto-agility,
current problems from both a software and a hardware
perspective are discussed. Section III presents related work
that already approaches the identified problems of current
systems, and introduces approaches to improve crypto-agility
comparable to ours. In Section IV, we present our concept
and explore different approaches to actually deploy the
concept within real OT systems. To verify the concept, the
results of our case study are discussed in Section V. Finally,
Section VI draws a conclusion and hints at future work.

II. CURRENT STATE-OF-THE-ART

In this chapter, we give an overview of security measures
in OT communication systems and elaborate on problems



and limitations regarding crypto-agility. Initially, we briefly
introduce OT communication systems (Part II-A) and present
currently available security measures (Part II-B). Thereafter,
we provide a definition of crypto-agility and elaborate the
different branches of this research field for our work in
Part II-C. Lastly, we analyze the identified problems and
limitations of current measures from a software (Part II-D)
and hardware perspective (Part II-E).

A. OT Communication Systems

Before we dive into the research field of crypto-agility,
an overview of current OT communication systems is given.
In general, an enterprise system can be split into multiple
layers based on the Purdue Enterprise Reference Archi-
tecture (PERA) model [5], covering both its IT and OT
domain. Makrakis et al. presented a modern adaptation of
this model [6], depicted in Figure 1.

Enterprise Network

Business/Planning Logistics Systems

Process

Intelligent Devices

Manufacturing/Site Operations

DMZ

Control Systems

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5 IT Domain

OT Domain

Figure 1. Modern adaptation of the Purdue Enterprise Reference Archi-
tecture (PERA) model, based on [6]. The layers are divided into IT and
OT domain, separated by the DMZ (demilitarized zone) to secure the
communication between the two domains.

Figure 1 shows the separation of IT and OT domains
with their respective layers. Each layer implements a specific
functionality of the overall system and further abstracts
the underlying layers (e. g., a manufacturing process, or a
complex transportation system). As the IT layers typically
contain functionality that requires external communication
(e. g. customer access or cloud services over the public inter-
net), there is a strict isolation of the IT from the OT domain
to protect the OT from malicious actors. Only absolutely
necessary connections between IT and OT are allowed for the
overall system to work, which are supervised and controlled
by a special DMZ layer that integrates thorough security
measures (indicated by the two firewall icons in Figure 1).

This separation and isolation of the OT domain with only
very limited access from the IT is a key security aspect
of current systems, as cyberattackers have to gain access
to the OT before they can attack it. However, current de-
velopments regarding IT/OT-Convergence weaken this strict
separation, and more connections are allowed to enable new
and innovative functionality within the overall system (e. g.
live monitoring of a process from the IT domain, predictive
maintenance). Furthermore, OT systems grow more and more
complex, resulting in a larger potential for configuration
errors that ultimately lead to an increased number of entry
points for attackers. On top of this, in many systems, cellular
connections over public networks are used nowadays in
addition to the wired network, breaking the isolation between
the IT and OT domain. In total, the attack surface for the
OT domain is growing. As a result, more thorough security
measures have been created and deployed in OT systems,
primarily derived from established IT security solutions.

Within the OT domain, each layer consists of different
components connected by a communication system, au-
tonomously handling a part of the system or process to
abstract it to the next higher layer. This leads to a tree-
like structure, with each layer being connected to the one
above and below. Communication happens both vertically
and horizontally. Vertical communication is primarily used
by an upper layer for supervising and managing tasks of
a lower layer. For tasks that are split onto multiple com-
ponents, horizontal communication enables coordination and
synchronization. Typically, the lower the layer, the greater
the requirements for real-time behavior and reliability.

Within the OT layers, there exist both unicast point-to-
point and multipoint communication flows, using various
application protocols. Point-to-point connections are typically
based on the client-server model, whereas the multipoint
flows use a publish-subscribe model over a multicast system
(also often referred to as producer-consumer). In both cat-
egories, application protocols building upon different layers
of the OSI reference model can be found. Protocols building
directly upon layer 2 (“L2” in the following) are used for
time-critical communication, typically using Ethernet links.
Application protocols building upon layer 4 (“L4” in the
following) are rather used for less demanding connections
regarding timing requirements. Among the most common
point-to-point protocols are (non-exhaustive):

• OPC UA Client-Server (L4: TCP/IP)
• IEC 61850 MMS (L4: TCP/IP)
• Modbus TCP (L4: TCP/IP)
• Siemens S7 Comm (L4: TCP/IP)
• PROFINET RT (L2: Ethernet)

In the multipoint category, widely used protocols are (non-
exhaustive):

• OPC UA Publish-Subscribe (L4: UDP/IP)
• MQTT (L4: TCP/IP)
• IEC 61850 GOOSE (L2: Ethernet)

Many of the application protocol specifications consist
of multiple actual protocols with different characteristics
for different use cases (e. g., an L2-based publish-subscribe
protocol for real-time traffic together with an L4-based client-
server protocol for supervisory functionality).

B. OT Security

A key security aspect of OT systems is the strict separation
from the IT domain, with only very limited flows in between.
The approach of separating subsystems where possible is
further adapted within the OT domain by thoroughly utilizing
network segmentation. Both within a layer of the PERA
model and also across multiple layers, separated functional
islands are formed with only very limited and properly
secured connections between them. This approach is often
further improved by adding virtual private network (VPN)
technologies into the systems. These segmented system ar-
chitectures limit the attack surface to a minimum, as lateral
movement of a malicious actor is considerably restricted.

From a cryptographic perspective, most protocols have
been adapted to support security measures to protect commu-
nication flows from malicious actors. Within the OT domain,
common security goals to be achieved are:

• Availability (no malicious actor can prevent access to a
system service for a legitimate entity)

• Integrity (transmitted data is protected against malicious
modification)



• Entity Authenticity (a malicious actor cannot imperson-
ate a legitimate entity)

• Data Authenticity (transmitted data originates from an
authentic source)

• Confidentiality (a malicious actor is unable to eavesdrop
sensitive information from the system)

Most of the protocols build upon well-established stan-
dards to achieve these goals. For example, L4-based protocols
typically recommend using the Transport Layer Security
(TLS) protocol to integrate security measures without a direct
modification of the actual application protocol (e. g., for
IEC 61850 MMS [7], for Modbus TCP [8], and also for the
multipoint protocol MQTT for connections to a central mes-
sage broker [9]). One notable L4-based exception is OPC UA,
which does not build upon TLS, but rather integrates security
measures directly into the application protocol [10]. Con-
ceptually, however, the integrated cryptographic measures
are very similar to the ones in TLS (same cryptographic
algorithms, similar authentication mechanisms using digital
certificates).

Multipoint protocols, however, cannot integrate typical
security protocols like TLS, as those are designed for ex-
actly two peers that perform a handshake during connection
establishment. Within a multipoint group, however, there
are typically more than two peers (one or more publishers,
various subscribers), which all require the same cryptographic
keys to apply the security measures. Hence, a key distri-
bution mechanism is required, typically implemented using
an additional node in the system. Each participating node
in a specific multipoint group first contacts this key server
to obtain the current group keys. This initial point-to-point
connection between the node and the key server is secured
using mechanisms already described above, both protecting
the exchanged group keys and properly verifying the peer’s
legitimacy to join the group. For example, such mecha-
nisms are specified for OPC UA [10] and for IEC 61850
GOOSE [7].

For L2-based protocols with real-time requirements, how-
ever, security measures are only cautiously specified and
recommended, as the overhead of cryptographic operations
may break the strict timing requirements. For instance, no
cryptographic measures are officially specified or recom-
mended for the PROFINET RT protocol by standard bodies
due to this reason. However, research in this direction already
proposed technically viable solutions to achieve both security
and real-time behavior (e. g. in [11]).

In general, there are standardized security measures for
various protocols available. Together with a properly de-
signed, segmented system architecture, secure OT systems
can be created and deployed today. However, to properly
integrate the described security measures, all participating
devices have to support the specific features. As already
indicated in the introduction, OT systems and their devices
are typically designed for mission times of up to a few
decades, resulting in a slow deployment and adoption of
new (security) features in existing systems. Furthermore,
even if a completely secure OT system is newly deployed
today, the ongoing development in the area of crypto-analysis
and the increasing number and capabilities of cyberattackers
necessitate ongoing effort to keep the initially achieved level
of security over the long mission time. Hence, update capa-
bilities and fast migration concepts are required to change
and adapt security measures easily within deployed systems.

C. Crypto-agility Definition

Based on the literature works by Alnahawi et al. [12]
and Mehrez & Omri [13], the following general definition
of the term crypto-agility is derived: crypto-agility describes
the capability of updating and replacing security measures
during the lifetime of a component. Specifically, this means:

• Update the implementation of existing security measures
(e. g. to fix a vulnerability)

• Update the list of supported cryptographic algorithms
and their security parameters (e. g., add new algorithms,
remove old ones, increase the key size)

• Incorporate and adapt to new functionality transparently
(e. g. use hardware acceleration instead of a software
implementation)

• Incorporate regional security regulations and comply
with regional peculiarities (e. g. ShangMi ciphers for the
Chinese market)

• Create transition mechanisms to enable safe and secure
migrations to new security measures

The research field of crypto-agility is boosted by the
ongoing effort to define and integrate new, quantum-resistant
cryptographic algorithms into systems to protect them against
the threat of quantum computers, known as Post-Quantum
Cryptography (PQC) [14]. As elaborated, for example, by
Ott & Peikert [15] or Paul [16], the migration to PQC
demonstrates the necessity of crypto-agility, especially for OT
systems. However, it is also a perfect opportunity to create
and implement appropriate capabilities to achieve long-term
security. Furthermore, proper transition mechanisms are a
key aspect for OT systems, as the long mission times and
the scarce update capabilities of equipment complicate the
deployment of new security functionality on a system-wide
level. Hence, crypto-agility must also consider retrofit options
for already deployed systems.

Another important aspect of crypto-agility is further elab-
orated on by Sikeridis et al. [17]. They state that crypto-
agility should not only be considered as a capability of a
single instance within a system (e. g., a software library, a
used protocol, or a single device), but also as an attribute
of a complete enterprise system. Hence, all layers of the
PERA model (see Figure 1) have to be considered. Their

”enterprise-level“ view of crypto-agility considers the overall
system and infrastructure, with all devices and the integrated
security measures. Furthermore, they added key aspects like
central control and maintenance, and overall documentation
of deployed measures to their view. Paul and Niethammer
also identified that an expanded view of crypto-agility is
required in automation systems to provide a real benefit for
long-term security [18].

For the remainder of our work, we define two dimensions
of crypto-agility, between which we differentiate in the
following analysis parts and in the presentation of our con-
cept. On the one hand, there is Implementation-Agility. This
dimension considers ways to easily update, extend or replace
the implementation of security measures without adapting or
changing the higher-level application using it. Hence, this
dimension covers the list of supported security measures of
equipment within a system, as well as the retrofit of security
measures into devices and systems without prior support of
those. On the other hand, we define Configuration-Agility,
which encompasses all aspects regarding the configuration of
the currently used set of security measures within a device
or system from the list of supported ones. This covers the



maintenance and coordination of events like migrating a
system to a new algorithm once all nodes support it.

In the next two parts, we take a more detailed look
at the current state of crypto-agility capabilities within the
presented security measures for OT communication systems
and identify problems from both a software and hardware
perspective.

D. Software-related Problems

Analyzing crypto-agility capabilities of secure OT com-
munication from a software perspective, we identified prob-
lems in both of our defined dimensions. The main problem
regarding implementation-agility is the tight coupling of
security features to specific applications. To integrate security
measures into an application, developers have to use common
software libraries like OpenSSL, Botan, or WolfSSL directly
from within the application itself. Those libraries commonly
offer an extensive Application Programming Interface (API)
for specific features (e. g., to establish TLS connections or
to verify signatures). This setup results in various problems
regarding crypto-agility that are already elaborated on in the
literature, e. g., by Green and Smith [19] or by Georgiev et
al. [20]. Available APIs are commonly very complex, espe-
cially for software developers without profound knowledge
of security. In addition, proper and thorough documentation
of the APIs is oftentimes lacking. Hence, using the libraries is
very error-prone, leading to potential security vulnerabilities.

Furthermore, the resulting tight coupling between applica-
tion and security functionality complicates an update of the
security library (e. g. with support for a new algorithm) or a
configuration adjustment (e. g. key length of an algorithm or
logic to verify a peer). When a library update changes the
API, updating the application is necessary, too. This increases
the effort associated with an update for both the manufacturer
of the component and the operator of the system, resulting in
a slower deployment of fixes and new features. Ultimately,
this leads to many systems being vulnerable to existing at-
tacks and using older, potentially insecure implementations or
measures. To improve implementation-agility, the application
and the security implementation needs to be decoupled to
enable independent changes to the security features without
modifications to the application.

Regarding configuration-agility, the biggest problem is the
static integration of a fixed set of security measures into
the application without a way for external configuration of
important parameters (e. g., algorithm selection, key length).
The application manufacturer is solely responsible for the
selection of supported functionality and its configuration in
their individual product. This means that operators have
no means of adapting the security measures running on
their equipment to their needs without the manufacturer’s
support. Furthermore, the user-facing interfaces to configure
security measures typically offer only limited options, and
are typically integrated into the general maintenance interface
of the application. Hence, each individual device must be
configured individually in case of a security configuration
change, drastically increasing effort and also coupling se-
curity maintenance to application maintenance. In typical
systems with equipment from multiple manufacturers and of
different releases (i. e. older and newer devices), this ends up
in a ”best-possible“ security configuration using the common
set of supported measures. The result is unlikely to follow
the current state-of-the-art, considering the slow deployment
of new equipment within OT systems and the dependency on

all manufacturers of used equipment to provide updates with
new features for their products.

To improve configuration-agility, a centralized and easy
way for operators to configure and manage the used security
measures is necessary, independent of the application and
with a manufacture-independent interface. This allows for a
uniform, system-wide selection and an easier-to-coordinate
migration process.

E. Hardware-related Problems

The hardware capabilities of deployed equipment also
influences the achievable level of crypto-agility. This is
especially important in OT systems, as the devices are of-
tentimes based on resource-constrained embedded hardware
rather than powerful enterprise hardware. Furthermore, de-
pendability and functional safety regulations, and the possibly
rough environmental conditions of these systems further limit
the options regarding hardware designs. We identified two
hardware-related problems, both within the dimension of
implementation-agility.

Firstly, the constrained processing resources of the de-
vices limit the possibilities of software updates with newer
cryptographic algorithms. This is especially relevant in the
context of PQC, as the new algorithms have significantly
greater requirements regarding CPU processing power and
memory usage. For example, on a medium-sized microcon-
troller with 192 kB of available RAM, a TLS handshake
using PQC algorithms alone occupies around 35 % of RAM,
compared to around 1 % using classical elliptic-curve-based
algorithms [21]. Even if a software update is possible to inte-
grate these algorithms into deployed devices, the remaining
available resources could be insufficient to make the new
setup work properly. Hence, available hardware resources can
impose restrictions on software-based implementation-agility.

Secondly, next to the hardware implications on software,
there also arise problems due to hardware-assisted cryptog-
raphy. In more recent microcontrollers and microprocessors,
hardware peripherals are available to accelerate the calcula-
tions of cryptographic algorithms. This hardware acceleration
greatly improves performance and sometimes enables the in-
tegration of security into these kinds of resource-constrained
devices in the first place, as timing requirements could be
achieved that are otherwise infeasible. Those peripherals,
however, only support a defined static set of algorithms
without a way to update them once a newer algorithm should
be deployed. Furthermore, in case a vulnerability within the
hardware implementation is identified, deployed chips cannot
be upgraded, and fixing the flaw in the chip design is also
very costly for the manufacturer. Hence, once the algorithms
supported by an accelerator within a device are considered
insecure or outdated, the device loses the hardware accelera-
tion and has to fall back to software implementations, which
suffer from the earlier described resource limitations.

Therefore, hardware-assisted cryptography needs to be
upgradable after deployment. This enables integrating hard-
ware acceleration of new cryptographic algorithms or fixing
identified vulnerabilities in the design.

Next to the processor-internal hardware acceleration, there
also exist external hardware modules that can be integrated
into a device to add security measures with hardware assis-
tance. These modules are commonly referred to as Secure
Elements or Trusted Platform Modules (TPM) and are com-
monly available as either solder-down chips, small pluggable
PCBs, or exchangeable plastic chip cards. Generally, those
modules are used to store long-term keys related to the



cryptographic identity of the connected host device. The
viability of this approach for OT systems has already been
verified in different experimental investigations [22]–[24].
When soldered on the devices’ PCB, those modules, however,
suffer from the same problem as the internal peripherals
because their fixed functionality cannot be upgraded once
deployed. The exchangeable modules, on the other hand, sig-
nificantly improve crypto-agility, as both hardware capabil-
ities (implementation-agility) and also stored cryptographic
keys with different parameters (configuration-agility) could
be upgraded after deployment. Depending on the flexibility
of the API that is used on the host application to access
the module’s functionality, crypto-agility could be further
improved, as it is possible to swap the pluggable module
without the need for updating the host application.

Such architectures, however, posses their own specific at-
tack surface. As the communication interface between such a
module and the host using it is typically not cryptographically
secured, a malicious actor could tamper with the transmitted
data and bypass the security features. Furthermore, as there is
no cryptographic coupling between the module and the host,
theft of a module results in a malicious actor taking over
the valid cryptographic identity stored on the module. This
opens the door for impersonation attacks. There are measures
available for some types of external modules to protect
the setups from the threats described above (e. g. [25]).
However, to the best of our knowledge, there is currently no
adaption of such protective measures that is suitable for OT
systems, as these are typically based on human interaction
with the setup when the module is used. In OT systems with
no on-site human presence besides infrequent maintenance
work, those measures are, therefore, not feasible. With those
shortcomings addressed in the future, however, such modular
setups would greatly benefit crypto-agility, as they would
enable easy upgrades of hardware-based cryptography.

Based on the identified problems of current security
measures for OT communication regarding both software-
and hardware-based crypto-agility, the next section presents
related work that already addresses those shortcomings.

III. RELATED WORK

Before we introduce our concept to improve crypto-agility
within OT systems, related work regarding the identified
problems is presented. We split the presentation into solutions
for the development of new equipment (Part III-A) and
solutions for retrofitting existing systems (Part III-B).

A. Proposed Solutions for New Developments

To address the tight coupling between an application and
security features, there are publications to provide simpler
and more generic interfaces between the two to achieve better
separation. For example, O’Neill et al. have two publications
to outsource security functionality from applications to the
operating system. In [26], they introduce the Secure Sockets
API that enables applications to establish TLS connections
using the common POSIX socket API. All configuration of
the TLS connections is done on the device-level using a
configuration file independent of the individual application.
In [27], they propose the same idea for authentication func-
tionality as an operating system service. Hence, applications
pass certificates to the OS via a generic API to verify them.
Both presented separation approaches simplify updating the
underlying security functionality independent of the applica-
tion (implementation-agility) and enable central management

of the actual used cryptographic algorithms (configuration-
agility).

The already mentioned architecture by Sikeridis et al. [17]
also features a novel Crypto Provider software component
that provides a flexible and abstract API for the application
to isolate security from it, thereby facilitating independent
updates (implementation-agility). Another central aspect of
their presented software module is an additional control-plane
interface for service and management that enables an operator
to centrally configure all Crypto Providers within a system
at once (configuration-agility).

Regarding improvements to implementation-agility from
a hardware perspective, there is literature on integrating
Field Programmable Gate Arrays (FPGAs) into devices and
synthesize security functionality on them (e. g. for VPN
functionality [28]). This would enable both fast hardware
acceleration of algorithms and future update capabilities, as
the FPGA could be reprogrammed in the field through a
software update of the device. Furthermore, work within
the enterprise context currently moves security functionality
away from a server onto an attached programmable network
interface card (NIC), so-called SmartNICs (e. g., [29], [30]).
This modularization improves crypto-agility, as the Smart-
NICs are independent hardware modules connected to the
server via generic hardware and software interfaces, enabling
partial hardware upgrades in case of a new security measure
that requires an updated SmartNIC, without affecting the
main server.

B. Retrofitting Existing Deployments

All presented approaches to address the problems of cur-
rent systems require substantial modifications of the applica-
tions or even of the whole device to integrate the proposed
Crypto-agile security measures. In many currently deployed
systems, however, it is not possible to update the applica-
tions or devices in such a fundamental way. Hence, retrofit
approaches are necessary to provide a fast migration path for
existing systems. This means that crypto-agility capabilities
have to be integrated transparent to the application.

In the context of secure communication, a very promising
approach for this integration is a design based on proxies
that are integrated into the existing communication paths.
They then intercept the traffic from the existing devices and
apply the desired security measures. Such proxy designs
have already been demonstrated in the OT context within the
literature [31]–[34]. The traffic is typically intercepted either
on the underlying transport layer (OSI layer 4) or directly
on the application layer (OSI layer 7). The proxy is either
deployed within the existing device as a software service
(if that is possible, for example within an Embedded Linux
system) or within an additional Bump-in-the-Wire (BitW) de-
vice that is integrated into the physical communication path.
This integration of security measures, which is completely
independent of the existing application or device, enables
a retrofit of existing systems, but also generally achieves
independence of the manufacturers of actual OT equipment.
This final advantage of the proxy approach is a key aspect
of our concept, as it results in a faster deployment of crypto-
agility compared to the dependency on various manufacturers
to integrate said features into their devices.

Each presented related work addresses some identified
problems and limitations of security measures for OT com-
munication regarding their crypto-agility capabilities and,
thus, creating a solid foundation for our concept to build
upon.



IV. PROPOSED ARCHITECTURE

In this section, we present our architecture concept to
improve crypto-agility within OT systems. Our concept is
similar to the work of Sikeridis et al. [17], however, adapted
to meet the requirements of OT systems not considered in
their enterprise-focused work. Our design-goal is to create
a solution that improves crypto-agility both for new devices
and also existing ones via a retrofit approach. The retrofit
aspect is a key feature, as already deployed OT systems and
devices need agile security measures to create a fast migra-
tion path to long-term security. For this process, however,
new developments have to be considered simultaneously to
create a reusable solution that can be widely adopted. We
have designed various software modules to provide security
measures for OT devices, which contain capabilities for both
implementation-agility and configuration-agility to improve
the achieved level of crypto-agility. In the following, we first
present the detailed integration into actual devices, separated
into deployment in new applications (Part IV-A) and retrofit
for existing ones (Part IV-B). Afterwards, Part IV-C contains
a discussion of the concept and its various approaches.

A. Deployment in new Applications

We created the Agile Security Library (ASL) to provide
common features for secure communication behind a small,
generic API for applications to use, similar to the Crypto
Provider in [17]. The deployment approach is depicted in
Figure 2. Newly developed applications simply use the
generic interface to communicate with external peers. All
functionality of the library is based on well-established stan-
dards and protocols to guarantee interoperability with other
implementations. The small, generic API is the key feature to
improve implementation-agility, as more functionality can be
changed and upgraded within the library without modifying
the interface for the application. Hence, it is easier to update
the library independent of the application.

Device

Agile Security Library

Crypto
Library

N
et
w
or
k

G
en
er
ic

A
P
I

Management
Interface

Application

Figure 2. Deployment of agile security measures as a software library that
can be used by applications. This approach requires the application to use
the new small, generic API.

Along the interfaces for actual data processing, the library
contains an additional management interface for the configu-
ration of all security related functionalities. On the one hand,
this moves security configuration away from the application
onto the device-level, further improving their mutual indepen-
dence. On the other hand, a distinct management interface
simplifies the configuration for an operator as well as the
implementation of a centralized control and management
platform (i. e. fleet management). Those measures improve
configuration-agility for devices incorporating the ASL.

The actual configuration of endpoints for applications is
based on profiles. A profile contains all relevant parameters
for an endpoint related to secure communication. For ex-
ample, an endpoint profile describes the configuration of a
TLS server with its supported cipher suites and its certificate
chain. Via the management interface, profiles can be created

and modified. The profiles and their associated data (e. g.
certificates or private keys) are stored in an isolated and
secured location within the device. On application startup, a
specific profile is loaded with an API call to get an endpoint
context. If no profile is specified, a default profile is used.
This behavior makes sure that safe defaults are implemented.
Using the obtained context, secure sessions can be created
within the application for connections with peers.

Due to the generic API of the library, security functionality
can be provided for communication systems on different OSI
layers. Depending on the profile configuration, the desired
security features are applied transparently to the application
data without considering other OSI layers. The library further
supports both synchronous and asynchronous program flows
to provide flexibility for application developers.

Finally, the library is optimized for deployment in OT de-
vices by focusing on aspects like minimal resource footprints
and minimal dependencies on other libraries. Furthermore, it
is designed to be used within various operating systems to
offer flexibility and increase deployment possibilities.

B. Retrofit Deployment

To retrofit the crypto-agility capabilities of the ASL
into already deployed OT systems without modifications to
applications, we created an architecture design using the
aforementioned transparent proxies. The proxies are placed
within the communication path to intercept the application
traffic and integrate security measures transparently for the
existing peers. Within a proxy, the ASL is used to incor-
porate the improvements regarding implementation-agility
and configuration-agility. Due to the transparent deployment
of the proxy next to the application without any direct
coupling, both dimensions of crypto-agility are even further
improved compared to the direct integration of the ASL into
applications. We elaborated on two integration approaches
for the proxy, as described below.

The first approach is to deploy the proxy within the existing
device as an additional software service. Depending on the
particular device, this integration may require assistance from
the manufacturer (for the installation of the supplementary
application) or may be accomplished by the operator them-
selves, provided that the device is not locked down (i. e.
the operator can install the supplementary services indepen-
dently). As the proxy is a standalone service running besides
the application, independent updates and configuration are
straightforward.

The internal design of the proxy within the device is
shown in Figure 3. The proxy application uses the ASL
to incorporate both implementation-agility and configuration-
agility. To manage the proxy itself, an additional management
interface is present.

Device

Proxy
Agile Security Library

Crypto
Library

N
et
w
or
k

G
en

er
ic

A
P
I

Management
Interface

Application Localhost
Network

Proxy
Application

Management
Interface

Figure 3. Deployment of the agile security measures within a proxy
application deployed on the device itself. In this setup, the application does
not need any modifications, but the proxy must be deployed on the device
and be transparently integrated into the network path.



To implement the transparent integration into the commu-
nication path, the proxy intercepts the network traffic on the
desired OSI layer from within the networking infrastructure
of the operating system. This deployment results in the mes-
sages already wrapped within a suitable transport protocol
(e. g., TCP, UDP, or a Layer 2 Ethernet frame). There are then
two strategies for the proxy to handle the messages received
from the application.

The first strategy is to extract the upper layer payload
from these messages, secure them with the configured cryp-
tographic measures, and finally pack them in a new message
of a transport protocol. This results in the proxy terminating
the connection with the application, requiring it to simulta-
neously establish a second connection with the remote peer.
This setup breaks the end-to-end connection between the two
applications and, therefore, influences protocol functionality
like flow control. However, this strategy is otherwise fully
transparent for both existing peers, providing maximum com-
patibility.

The alternative strategy is to wrap the complete received
message including the metadata of the transport protocol
within a secure message and send it to the peer. This mode of
operation does not influence the end-to-end flow control of
the existing connection between the peers, as each message is
tunneled over the secure connection. Such tunnel behavior is
default in regular VPN systems. However, both peers have to
support the tunnel functionality (either by deploying a proxy
or by processing the tunnel messages themselves), limiting
interoperability and increasing the deployment effort.

Adding proxies to a system to intercept network traffic
and add functionality this way is well-established within
the cloud infrastructure domain. There exist various proxy
applications for cloud servers to act as load-balancers or
as security endpoints (e. g. NGINX or Envoy). However,
those applications are optimized for cloud environments
with their specific protocols and are built upon various
technologies common for these systems (e. g. containerized
applications and powerful enterprise hardware). Hence, using
these available proxy applications in OT systems is not
viable, especially considering the retrofit of existing devices.

Consequently, we created our own proxy application
specifically for OT systems. This application can work both
as a forward proxy (actively establishing connections to a
peer) and as a reverse proxy (waiting for incoming connec-
tions). Furthermore, it has minimal software dependencies
and its memory footprint is optimized to be as small as
possible to maximize portability onto existing devices while
simultaneously delivering the highest possible performance
to limit interference with the communication flow.

Some available, more powerful commercial devices for OT
systems nowadays also already feature application designs
based on containers (e. g. using Docker) to increase the
flexibility of application development and deployment. For
such systems, the proxy could also be deployed as a container
to be integrated into the containerized application complex.

For cases where an existing device is locked down or
has not enough resources available to deploy the proxy as
a service directly, we created an alternative approach based
on a Bump-in-the-Wire device. In this scenario, depicted in
Figure 4, the BitW device is integrated into a communication
path as an interceptor. On this additional device, our proxy
application is deployed to provide the same overall function-
ality for the system as the approach above.

This deployment approach further increases the achieved

Legacy Device Bump-in-the-Wire Device

Proxy
Agile Security Library

Crypto
Library

N
et
w
or
k

G
en

er
ic

A
P
I

Management
Interface

N
et
w
or
k

Proxy
Application

Management
Interface

Application

N
et
w
or
k

Figure 4. Deployment of the agile security measures within a standalone
BitW device within the network path. In this setup, the legacy does not
need any modifications. Only the additional device must be transparently
integrated into the network path.

level of crypto-agility, as both hardware and software are
independent of the existing device. Furthermore, basically
any system can be retrofitted by deploying BitW devices.
In one of our previous work, a BitW security gateway has
already been presented for a very specific use case within
energy supply systems [34], which served as the foundation
for the more general and flexible BitW proxy approach in
this work.

Besides using a standalone external device to deploy the
proxy application, other already existing devices within the
OT systems could also be considered to host the proxy.
For example, modern network equipment like switches or
firewalls feature powerful processors and are typically based
on common operating systems. Hence, it would also be pos-
sible to deploy the proxy on those devices. This setup would
result in equal crypto-agility capabilities, while avoiding the
additional BitW devices within the system.

C. Discussion

The presented concept to integrate crypto-agility capabili-
ties for both new and existing devices with its different de-
ployment approaches covers all use cases within OT systems.
However, each approach has its individual advantages and
disadvantages. For that reason, we present a discussion of
the three approaches in the following.

1) Achieved level of crypto-agility: Comparing the three
deployment approaches regarding the achieved level of
implementation-agility, the BitW proxy deployment wins. It
offers the most extensive separation of security measures
from an application and enables both independent hardware
and software updates without any modification of the ap-
plication. Deploying the proxy within an existing device,
we achieve a high degree of software independence, but
the proxy is still bound to the available hardware resources
on the device. Finally, the direct integration of the ASL
within a newly created application offers the least amount
of implementation-agility, as we still have a direct coupling
between application and security functionality via the small,
generic API. Considering configuration-agility, all three ap-
proaches feature the same management interface, resulting in
the same capabilities.

2) Impact on Communication behavior: When consider-
ing the impact of the deployment approaches on the commu-
nication behavior of a single device and of the overall system,
the sole usage of the ASL is to be preferred. Due to the direct
integration into an application, the overhead for each message
is kept minimal, resulting in the smallest latency increase and
the smallest bandwidth reduction. Comparing the two proxy
deployments, the resulting system influence depends on the
hardware and software environment. In case the existing
device has enough resources available to deploy the proxy
directly, the resulting influence can be small (however, still



larger than the direct library integration due to networking
overhead). When resources are limited, the influence can
grow larger, negatively impacting the communication be-
havior. The same applies to the BitW deployment: when
powerful hardware is used, the influence can be quite low.
With less resources available, the negative impact on system
performance increases.

3) Costs and Deployment Effort: In this category, we have
to clearly differentiate between new developments and retrofit
deployments. For newly developed devices, the integration
of the ASL directly into the application is the most viable
approach, as it limits costs and effort for the manufacturer and
also requires no additional integration steps or maintenance
overhead for the operator after installing a new device with
these capabilities. Considering the retrofit of existing devices,
the two proxy approaches score differently, depending on
the perspective of the manufacturer or the operator. For the
manufacturer, the BitW deployment is more attractive, as it
involves no work regarding existing devices. Furthermore,
new devices can be sold to customers, even in case they use
existing devices from other manufacturers. For operators, on
the other hand, the direct integration into existing devices
is better suited, as additional hardware costs are avoided.
The deployment effort for both proxy approaches from a
maintenance-perspective of the operator is comparable.

4) Safety and Reliability: Finally, the influence of the
three deployment approaches regarding the overall safety and
reliability of the system is considered. Assuming that all
newly created devices incorporate measures for secure com-
munication and, hence, a software library to implement those,
anyway, the direct integration of the ASL performs best of all
three approaches. The small, generic API for the application
decreases the effort for developers to safely and securely
integrate the security measures into their applications and
devices. For an operator, a common management interface for
various devices also decreases the effort to properly configure
the security measures, resulting in less errors.

Both proxy deployment approaches for retrofit add addi-
tional software and possibly also additional hardware (BitW
approach) directly into the main communication paths within
the OT systems. As a result, both the hardware and software
of the proxy have to be developed with a high level of
assurance regarding safety and reliability to not negatively
influence the overall system (e. g. a significant increase of the
Mean-Time-to-Failure). Due to the limited scope and com-
plexity of the proxy application and the possibly dedicated
hardware development for exactly the desired use case, those
requirements could be met with moderate effort, however.

In summary, the presented concept with its three deploy-
ment approaches enables the integration of agile security
capabilities into both existing and new devices. With the
key focus on the retrofit aspect of existing systems, a fast
migration path is created until all deployed devices are
capable of crypto-agility themselves. Using the dedicated
management interface, an operator can configure the system
based on the individual threat model and security goals,
independent of the actual OT application.

V. CASE STUDY: SECURING IEC 61850 MMS
COMMUNICATION

To demonstrate the viability of our concept, we created
reference implementations for both the ASL and the proxy
application. Using these, we conducted a case study securing
a test environment based on the IEC 61850 MMS protocol to
evaluate the performance and system influence of our designs.

In the following, we first present more details about the
reference implementations in Part V-A. As indicated in the
discussion above (see Part IV-C), the direct integration of the
ASL into new applications should behave very similarly to an
integration of a ”classical“ security library, as only the API
differs. Hence, we use the performance of this integration as a
reference for the comparison of our proxy approaches within
the case study. At first, we focus on the proxy application
and measure its resource consumption (Part V-B) as well as
the achievable bandwidth (Part V-C). Thereafter, we present
various measurements to validate the timing influence of the
proxy integration on system behavior compared to the ASL
in Part V-D.

A. Reference Implementations

To maximize compatibility and portability of our approach,
and also to demonstrate the viability in a broad device
spectrum, we created our reference implementations for both
Embedded Linux and the bare-metal Zephyr RTOS. Thus,
we can demonstrate our approaches for both microcontroller-
based and also more powerful microprocessor-based systems.
For the underlying cryptographic library, we use WolfSSL,
as this library supports a broad spectrum of different archi-
tectures and scales well from small microcontrollers up to
powerful processors. For our agile security library, we created
a wrapper around WolfSSL with our small, generic API and
the additional management interface. Currently, the profiles
with the endpoint configuration are implemented as JSON
files which are loaded during initialization. A thorough user-
facing interface with remote access is not yet implemented,
however.

Our proxy application is implemented in C and runs on
both Linux and Zephyr. It is currently limited to TCP/TLS
functionality, acting as both a TLS forward and a reverse
proxy. Thus, TCP connections can be intercepted and up-
graded to TLS. The forward proxy waits for incoming TCP
connections and upgrades them to TLS. The reverse proxy,
on the other hand, waits for incoming TLS connections and
forwards all traffic to a TCP connection. We only allow TLS
in version 1.3 and only support mutual authentication, so
both server and client have to authenticate using a valid
certificate chain. Once all connections are established, data
transmission is possible in both directions. The proxy can
handle multiple parallel connections to multiple different
hosts. The configuration is also done using a JSON file,
with a proper management interface on the roadmap for
future extension. Furthermore, other protocols are planned
to be integrated in the future, e. g. UDP/DTLS or support for
OPC UA Secure Channels.

For our case study, we created a setup using the IEC 61850
MMS protocol, as it is based on TCP and its security
recommendations are built upon TLS (see Part II-B). The
complete setup is depicted in Figure 5. We created both
an MMS server and client using the open-source library
libiec61850. The server contains a data model with various
variables. After connection establishment (TCP handshake
and MMS handshake), the client periodically reads single
data objects to track value changes. The IEC 61850 library
also offers optional support for TLS encryption directly
integrated into the code, based on the library mbedTLS. This
existing interface has been the basis for our integration of the
ASL directly into the application.

To represent a realistic and reproducible test system in the
laboratory, we deployed both the MMS server and client on
two Raspberry Pi 4 with the Raspberry Pi OS lite, as this



Control Center
(Raspberry Pi 4)

IEC 61850
MMS Client

TLS Forward
Proxy

Field Device
(Raspberry Pi 4)

IEC 61850
MMS Server

TLS Reverse
Proxy

Bump-in-the-Wire
Device

(Raspberry Pi 4 /
STM32H573)

TLS Reverse
Proxy

Figure 5. Test setup for our case study based on the IEC 61850 MMS
protocol. Dashed lines indicate that the device or software module is only
present in a subset of the performed tests.

hardware should roughly be on an equal performance level
as typical commercial devices for OT systems and is widely
available for validation of our measurements. The network
between the devices is based on a single Gigabit Ethernet
switch to minimize the influence of network latency.

For deployment of our proxy application on an external
device, we limit the case study to a BitW proxy only for
the server side in front of the Raspberry Pi to minimize
the number of test cases. The BitW device in the test
setup is based on either another Raspberry Pi 4 running
Raspberry Pi OS lite or a microcontroller system based on
the STM32H573i evaluation board from STMicroelectronics
(Cortex-M33 with 250 MHz) running Zephyr RTOS.

B. Resource Consumption

The resource consumption of the proxy application is
measured to estimate the overhead that is loaded onto a
device when the proxy is deployed as an additional service
besides the application. As this deployment approach is much
more likely for Embedded Linux systems due to their better
extensibility, we focus our measurements on this OS. To
obtain the size of the executable, we compiled the proxy
with statically linked dependencies. The resulting executable
is roughly 2.3 MB in size. The proxy application for the
Zephyr RTOS could not be measured in isolation, as it is
embedded into a complete firmware image for the microcon-
troller. But the current firmware, containing the proxy and all
supplementary code, fits onto a microcontroller with 1 MB of
flash space.

To obtain the RAM footprint of the proxy during execution,
the tool Valgrind with its heap profiler massif has been
used. As stack space of Linux processes is also dynamically
allocated, this measurement can obtain both Heap and Stack
usage of a process. The peak memory usage of the proxy
occurs during the TLS handshake, when the peer certificate
chain is parsed. When only a single TLS handshake is
performed using certificates based on the ECC secp521r1
algorithm, the peak memory usage reaches 117.6 kB. In
a synthetic scenario with 10 simultaneous handshakes, the
setup peaks at 389.6 kB. This footprint is considered to be
small enough to make the proxy deployable on a typical
Embedded Linux device. For microcontroller-based systems,
the footprint is approximately the same, as the same code
is used. On those systems, however, the number of parallel
connections must probably be constrained to sustain viable
RAM footprints.

Regarding CPU resources, the proxy application follows
the best-effort principle. Hence, in case of limited free
processing resources, the data processing performance of
the proxy simply decreases. This effect, however, has to be
validated on a per-device basis.

C. Bandwidth

To measure the achievable bandwidth, we used the well-
known tool iPerf. Each of the two Raspberry Pi 4 run one
instance of the tool, either as a client or as a server. We
tested both the setup with the proxy deployed on the Pi itself
and the one with the proxy on another Pi acting as a BitW
device. Two test cases have been defined, one with a single
connection for the bandwidth measurement and one with four
parallel connections to use all CPU cores of the Raspberry
Pis.

For both deployment approaches, we achieved nearly iden-
tical measurements. In the test case with only a single con-
nection and transmission in one direction, both approaches
achieve a bandwidth of around 180 MBit/s. When looking at
the CPU resource consumption, only a single CPU core of
the Pis is used, running at 100 %. The test case with four
parallel connections utilizes all four CPU cores to 100 %
each, as the proxy application creates a new thread for each
connection, achieving a bandwidth of around 620 MBit/s (in
both deployment approaches). Based on these results for
both deployment approaches, we conclude that the AES
implementation within the TLS library is the limiting factor
regarding bandwidth. In the case of a test setup with full-
duplex data transmission over the same connections, the
achievable bandwidth per thread of around 180 MBit/s is split
onto the two directions, cutting the total bandwidth roughly
in half for each direction.

We also measured the setup with the STM32 microcon-
troller as BitW device. However, we identified the network
stack on Zephyr to be a limiting factor regarding net-
work bandwidth, achieving poor performance of only around
13 MBit/s in total using iPerf. Hence, those numbers are only
a limited indication of the proxy performance running on the
microcontroller.

In summary, the achieved bandwidth values show that the
proxy approach is generally viable and reaches acceptable
data rates. When deployed on a hardware platform with
hardware acceleration for AES, the bandwidth should also
reach the Ethernet link limit of 1 GBit/s.

D. Timing Influence

Finally, we measured the influence of the proxy integration
on key timing parameters within the test setup compared
to the direct integration of the ASL. The test setup from
above leads to multiple test cases in which we obtained the
timing parameters: insecure TCP connection between client
and server, direct integration of the ASL into the application,
proxy deployment directly on both devices as a software
service and server-side BitW proxy deployment (Raspberry
Pi and STM32 microcontroller). All TLS implementations
use ECC secp384r1 certificate chains with one intermediate
certificate, and only mutual authentication is enabled. For
each timing parameter and test case, we took 10000 measure-
ments and calculated the mean value and the 99th percentile.

The first measurement is the time to establish an IEC 61850
MMS connection. This includes TCP connection establish-
ment, TLS handshake (if present in the test case) and
MMS handshake. The results are depicted in Figure 6.
The microcontroller-based values are omitted, as the TLS
handshake takes around 300 ms on average, which would
impede the visualization in the violin plot.

As can be seen, the integration of TLS into the handshake
massively increases the connection establishment time in
general, compared to the plain TCP setup. Considering the



No TLS Direct integration Software Proxy External Proxy (RPi)

Measurement configuration

0

5

10

15

20

25
Du

ra
tio

n 
in

 m
s

1.78 ms

20.79 ms

15.88 ms 15.49 ms

2.02 ms

21.98 ms

17.39 ms 17.16 ms

Connection Establishment time

Figure 6. Violin plots of the connection establishment time for the different
test cases (excluding the microcontroller-based BitW proxy). The written
values indicate the mean value and 99th percentiles for each measurement.

amount of data that is exchanged, and the cryptographic
calculations performed during a TLS handshake with mu-
tual authentication, however, such an increase is expected.
Surprisingly, the measurements show that the two proxy
deployments are even a bit faster than the direct integration
of the ASL into the MMS application. This worse result of
the direct integration is probably due to unoptimized data
flows and worse event handling within the MMS application
compared to the optimized proxy application, as the crypto-
graphic code and the TLS configuration are identical in all
deployments. The two proxy deployments show no noticeable
difference, indicating that both approaches are viable. In total,
the achieved handshake times with both proxies demonstrate
that the proxy approach in general is a viable alternative
to a direct integration. The much larger values from the
microcontroller-based setup generally are not ideal. However,
within OT systems, the connection is typically kept open for
a long period, decreasing the negative impact of the longer
connection establishment time. Hence, we also consider the
proxy deployment on a microcontroller a viable approach
regarding the connection establishment time.

The second measurement captures the time to read a single
data object from the server. In this test, the connections are
already fully established. Hence, we only measure the time
overhead of the data processing and the resulting latency
caused by the proxy. Figure 7 shows the results as violin
plots.

The direct integration of the ASL only marginally increases
the measured time to read a singe data object compared to
the plain TCP setup. This results from the minor overhead
of the TLS record protocol, mainly the AES encryption and
decryption, running on a powerful processor of the Rasp-
berry Pi. The two Raspberry Pi-based proxy deployments
add only a minor latency overhead of 0.15 ms and 0.2 ms,
showing that a proxy on a powerful hardware platform only
marginally influences timing parameters. The minor latency
increase in the case of an external deployment compared to
a software deployment is probably caused by the additional
physical network transmission over Ethernet compared to the
in-memory-transmission over localhost within the software
deployment.

The hardware of the STM32 microcontroller features a
hardware accelerator for the AES algorithm. Hence, we cre-
ated two versions of the Zephyr-based BitW proxy firmware:
one with and one without utilizing this accelerator. As

No TLS Direct integration Software Proxy External P. (RPi) External P. (uC) External P. (uC, AES)

Measurement configuration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Du
ra

tio
n 

in
 m

s

0.28 ms 0.30 ms

0.45 ms
0.50 ms

1.37 ms

1.14 ms

0.34 ms 0.36 ms

0.52 ms
0.57 ms

1.47 ms

1.21 ms

Single Data-object reading time

Figure 7. Violin plots of the time to read a single data object. The written
values indicate the mean value and 99th percentiles for each measurement.
The right-most measurement of the microcontroller-based deployment uti-
lized the AES hardware acceleration of the microcontroller.

can be seen in the two right-most plots of Figure 7, both
measurements add a noticeable amount of additional latency
compared to the Raspberry Pi-based proxies. However, the
measured values are still small compared to typical values of
real-world network latency in Ethernet networks without hard
real-time requirements, hence not causing a large additional
delay. The hardware acceleration of the AES algorithm
decreases the latency by around 0.2 ms. However, the value
is still more than double the value of the Raspberry Pi
based BitW proxy. This indicates that the software processing
overhead of the TLS protocol is bigger than the required time
to actually encrypt and decrypt the messages. Considering the
much lower price and the much simpler hardware design of
a microcontroller-based system compared to a Raspberry Pi,
the deployment of the proxy on a microcontroller is definitely
a viable approach in case the timing requirements of the
system allow it.

To conclude, the results of the presented case study show
the general viability of our proxy approach to retrofit agile
security measures into existing systems, both within an
existing device as a software service as well as within a BitW
device with various hardware capabilities.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented an analysis of the current state
of crypto-agility in OT systems regarding secure communi-
cation and identified problems and possible improvements.
Furthermore, we proposed a new architecture concept to in-
tegrate security measures into both current and future systems
while improving crypto-agility. Finally, we demonstrated the
viability of our concept with its deployment approaches and
conducted a thorough analysis of the influence of the new
setup onto system behavior.

In the future, we plan to further improve our reference
implementations with support for more protocols (e. g. UDP
and DTLS, OPC UA, IPsec, MACsec) and use cases (e. g.
multicast communication). Furthermore, we want to examine
the influence of the concept on systems with real-time
requirements. Finally, we want to elaborate on further en-
hancements to our agile security library, both in terms of the
coupling to the application (e. g. integration into the secure
sockets API) and more thorough internal implementation
agility (e. g. internal modularization).



ACKNOWLEDGEMENT

The presented work is part of the research project KRITIS
Scalable Safe and Secure Modules (KRITIS³M), which is
funded by the Project Management Jülich (PtJ) and the
German Federal Ministry for Economic Affairs and Climate
Action (BMWK) under funding code 03EI6089A.

REFERENCES

[1] Bundesamt für Sicherheit in der Informationstechnik. (2021, May)
Zweites Gesetz zur Erhöhung der Sicherheit informationstechnischer
Systeme (IT-Sicherheitsgesetz 2.0). Publication.

[2] C. Singh, “European cyber security law in 2023: A review
of the advances in the Network and Information Security 2
Directive 2022/2555,” Cyber Security: A Peer-Reviewed Journal,
vol. 7, no. 1, pp. 82–92, September 2023. [Online]. Available:
https://ideas.repec.org/a/aza/csj000/y2023v7i1p82-92.html

[3] Bundesamt für Sicherheit in der Informationstechnik. (2024, Febru-
ary) Technische Richtlinie TR-02102 - Kryptographische Verfahren:
Empfehlungen und Schlüssellängen. Publication.

[4] S. D. D. Anton, D. Fraunholz, D. Krohmer, D. Reti, D. Schneider, and
H. D. Schotten, “The Global State of Security in Industrial Control
Systems: An Empirical Analysis of Vulnerabilities around the World,”
IEEE Internet of Things Journal, pp. 1–16, 2021.

[5] T. Williams, “The Purdue Enterprise Reference Architecture,” IFAC
Proceedings Volumes, vol. 26, no. 2, Part 4, pp. 559–564, 1993, 12th
Triennal Wold Congress of the International Federation of Automatic
control. Volume 4 Applications II, Sydney, Australia, 18-23 July.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667017485326

[6] G. M. Makrakis, C. Kolias, G. Kambourakis, C. Rieger, and
J. Benjamin, “Industrial and Critical Infrastructure Security: Technical
Analysis of Real-Life Security Incidents,” IEEE Access, vol. 9, p.
165295–165325, 2021. [Online]. Available: http://dx.doi.org/10.1109/
ACCESS.2021.3133348

[7] IEC 62351: Power systems management and associated information
exchange – Data and communications security, International Elec-
trotechnical Commission Std.

[8] Modbus Organization, “MODBUS/TCP Security Protocol Spec-
ification,” 2018. [Online]. Available: https://modbus.org/docs/
MB-TCP-Security-v21 2018-07-24.pdf

[9] OASIS MQTT Technical Committee, “MQTT Version 5.0
Specification,” 2019. [Online]. Available: https://docs.oasis-open.
org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

[10] OPC Foundation, “OPC 10000-2 UA Part 2: Security,” 2023. [Online].
Available: https://opcfoundation.org/developer-tools/documents/view/
159

[11] T. Müller and H. D. Doran, “PROFINET Real-Time Protection Layer:
Performance Analysis of Cryptographic and Protocol Processing Over-
head,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2018, pp. 258–
265.

[12] N. Alnahawi, N. Schmitt, A. Wiesmaier, A. Heinemann, and
T. Graßmeyer, “On the State of Crypto Agility,” in 18. Deutscher IT-
Sicherheitskongress. SecuMedia Verlags-GmbH, February 2022, pp.
103 – 126.

[13] H. A. Mehrez and O. E. Omri, “The Crypto-Agility Properties,” in
Proceedings of the 12th International Multi-Conference on Society,
Cybernetics and Informatics (IMSCI 2018), 2018. [Online]. Available:
https://www.iiis.org/cds2018/cd2018summer/papers/ha536vg.pdf

[14] National Institute for Standards and Technology. Post-Quantum
Cryptography. NIST. Accessed: March 27th, 2024. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography

[15] D. Ott and C. Peikert, “Identifying Research Challenges in Post
Quantum Cryptography Migration and Cryptographic Agility,” 9
2019. [Online]. Available: http://arxiv.org/abs/1909.07353

[16] S. Paul, “On the Transition to Post-Quantum Cryptography in
the Industrial Internet of Things,” Ph.D. dissertation, Technische
Universität Darmstadt, Darmstadt, 2022. [Online]. Available: http:
//tuprints.ulb.tu-darmstadt.de/21368/

[17] D. Sikeridis, D. Ott, S. Huntley, S. Sharma, V. K. Dhanasekar,
M. Bansal, A. Kumar, A. U. N, D. Beveridge, and S. Veeraswamy,
“ELCA: Introducing Enterprise-level Cryptographic Agility for a
Post-Quantum Era,” 2023. [Online]. Available: https://ia.cr/2023/1539

[18] S. Paul and M. Niethammer, “On the importance of cryptographic
agility for industrial automation: Preparing industrial systems for the
quantum computing era,” At-Automatisierungstechnik, vol. 67, pp.
402–416, 2019, crypto Agilität braucht:* Agile APIs* Secure Software
Update* Dokumentation über Crypto Einsatz (welche Algos an welcher
Stelle für welche Funktion).

[19] M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security and Privacy, vol. 14, pp.
40–46, 2016.

[20] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The Most Dangerous Code in the World: Validating
SSL Certificates in Non-Browser Software,” Proceedings of the 2012
ACM conference on Computer and communications security, pp. 38–
49, 2012.

[21] G. Tasopoulos, J. Li, A. P. Fournaris, R. K. Zhao, A. Sakzad, and
R. Steinfeld, “Performance Evaluation of Post-Quantum TLS 1.3 on
Resource-Constrained Embedded Systems,” in Information Security
Practice and Experience, C. Su, D. Gritzalis, and V. Piuri, Eds. Cham:
Springer International Publishing, 2022, pp. 432–451.

[22] O. Kehret, A. Walz, and A. Sikora, “INTEGRATION OF HARD-
WARE SECURITY MODULES INTO A DEEPLY EMBEDDED TLS
STACK,” International Journal of Computing, vol. 15, pp. 22–30,
2016.

[23] R. Matischek and B. Bara, “Application Study of Hardware-Based Se-
curity for Future Industrial IoT,” in 2019 22nd Euromicro Conference
on Digital System Design (DSD), 2019, pp. 246–252.

[24] O. Gilles, D. G. Pérez, P. A. Brameret, and V. Lacroix, “Securing
IIoT communications using OPC UA PubSub and Trusted Platform
Modules,” Journal of Systems Architecture, vol. 134, p. 102797,
1 2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S138376212200282X

[25] M. Talamo, M. Galinium, C. H. Schunck, and F. Arcieri, “Secure Mes-
saging Implementation in OpenSC,” Journal of Information Security,
vol. 03, pp. 251–258, 2012.

[26] M. O’Neill, S. Heidbrink, J. Whitehead, T. Perdue, L. Dickinson,
T. Collett, N. Bonner, K. Seamons, and D. Zappala, “The
Secure Socket API: TLS as an Operating System Service,”
in 27th USENIX Security Symposium, 2018. [Online]. Available:
www.usenix.org/conference/usenixsecurity18/presentation/oneill

[27] M. ONeill, S. Heidbrink, S. Ruoti, J. Whitehead, D. Bunker,
L. Dickinson, T. Hendershot, J. Reynolds, K. Seamons, and
D. Zappala, “TrustBase: An Architecture to Repair and Strengthen
Certificate-based Authentication,” in 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 8 2017, pp.
609–624. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/oneill

[28] A. Salman, M. Rogawski, and J. P. Kaps, “Efficient hardware accel-
erator for IPSec based on partial reconfiguration on Xilinx FPGAs,”
Proceedings - 2011 International Conference on Reconfigurable Com-
puting and FPGAs, ReConFig 2011, pp. 242–248, 2011.

[29] D. Kim, S. Lee, and K. Park, “A Case for SmartNIC-accelerated
Private Communication,” in 4th Asia-Pacific Workshop on Networking.
ACM, 8 2020, pp. 30–35. [Online]. Available: https://dl.acm.org/doi/
10.1145/3411029.3411034

[30] B. Pismenny, H. Eran, A. Morrison, D. Tsafrir, A. Yehezkel, and
L. Liss, “Autonomous NIC Offloads,” ASPLOS ’21: Proceedings of
the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, vol. 18, 2021.
[Online]. Available: https://doi.org/10.1145/3445814.

[31] T. A. Rizzetti, P. Wessel, A. S. Rodrigues, B. M. D. Silva, R. Milbradt,
and L. N. Canha, “Cyber security and communications network on
SCADA systems in the context of Smart Grids,” Proceedings of the
Universities Power Engineering Conference, vol. 2015-November, 11
2015.

[32] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo, “Interop-
erability for industrial cyber-physical systems: An approach for legacy
systems,” IEEE Transactions on Industrial Informatics, vol. 13, pp.
3370–3378, 12 2017.

[33] W. Hupp, A. Hasandka, R. S. D. Carvalho, and D. Saleem, “Module-
OT: A hardware security module for operational technology,” 2020
IEEE Texas Power and Energy Conference, TPEC 2020, pp. 1–6, 2020.

[34] T. Frauenschläger and J. Mottok, “Security-Gateway for SCADA-
Systems in Critical Infrastructures,” in 2022 International Conference
on Applied Electronics (AE), 2022.

https://ideas.repec.org/a/aza/csj000/y2023v7i1p82-92.html
https://www.sciencedirect.com/science/article/pii/S1474667017485326
https://www.sciencedirect.com/science/article/pii/S1474667017485326
http://dx.doi.org/10.1109/ACCESS.2021.3133348
http://dx.doi.org/10.1109/ACCESS.2021.3133348
https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://opcfoundation.org/developer-tools/documents/view/159
https://opcfoundation.org/developer-tools/documents/view/159
https://www.iiis.org/cds2018/cd2018summer/papers/ha536vg.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
http://arxiv.org/abs/1909.07353
http://tuprints.ulb.tu-darmstadt.de/21368/
http://tuprints.ulb.tu-darmstadt.de/21368/
https://ia.cr/2023/1539
https://www.sciencedirect.com/science/article/pii/S138376212200282X
https://www.sciencedirect.com/science/article/pii/S138376212200282X
www.usenix.org/conference/usenixsecurity18/presentation/oneill
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/oneill
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/oneill
https://dl.acm.org/doi/10.1145/3411029.3411034
https://dl.acm.org/doi/10.1145/3411029.3411034
https://doi.org/10.1145/3445814.

	Introduction
	Current state-of-the-art
	OT Communication Systems
	OT Security
	Crypto-agility Definition
	Software-related Problems
	Hardware-related Problems

	Related Work
	Proposed Solutions for New Developments
	Retrofitting Existing Deployments

	Proposed architecture
	Deployment in new Applications
	Retrofit Deployment
	Discussion
	Achieved level of crypto-agility
	Impact on Communication behavior
	Costs and Deployment Effort
	Safety and Reliability


	Case Study: Securing IEC 61850 MMS Communication
	Reference Implementations
	Resource Consumption
	Bandwidth
	Timing Influence

	Conclusion and Outlook
	References

