
EvalRound+ Bootstrapping
and its Rigorous Analysis for CKKS Scheme

Hyewon Sung1, Sieun Seo1, Taekyung Kim2, and Chohong Min1

1 Department of Mathematics, Ewha Womans University, South Korea
hyewonsung@ewha.ac.kr, sieun1114@ewha.ac.kr, chohong@ewha.ac.kr

2 CryptoLab. Inc., South Korea
taekyung.kim@cryptolab.co.kr

Abstract. Bootstrapping stands as a fundamental component of fully
homomorphic encryption (FHE) schemes, facilitating an infinite num-
ber of operations by recovering the ciphertext modulus. This work is
aimed to significantly reduce the consumption of modulus in bootstrap-
ping, thereby enhancing the efficiency of FHE performance, specifically
for Cheon–Kim–Kim–Song (CKKS) scheme [8]. Building on EvalRound
bootstrapping [14], which includes the steps of ModRaise, CoeffToSlot,
EvalRound and SlotToCoeff, we introduce EvalRound+ bootstrapping.
This bootstrapping inherits the advantage of EvalRound bootstrapping
in CoeffToSlot and resolves its disadvantage in SlotToCoeff. Furthermore,
we conduct a set of rigorous and comprehensive analyses to precisely de-
termine the optimal choices of the parameters. The implementation of
EvalRound+ bootstrapping, along with optimal choices, has achieved a
reduction in modulus consumption by over 40% for CoeffToSlot and Slot-
ToCoeff. Additionally, it has increased the number of levels for general
multiplication by 2-4 in the most widely used bootstrapping parameter
sets.

1 Introduction

The Cheon–Kim–Kim–Song (CKKS) scheme [8] is one of the fully homomorphic
encryption (FHE) schemes enabling arithmetic computation over encrypted real
or complex number data. Other FHE schemes also have their own special com-
puting capabilities, but the CKKS scheme has been distinguished because of its
adaptability for real world applications as it deals with real/complex numbers
and vectors. The original CKKS scheme as described in [8] only deals with a
finite number of multiplications; after each multiplication, the size of the noise
in the encrypted message is doubled, and the subsequent rescaling process for
removing such noise growth causes loss of certain amount of available modulus
bits in the ciphertext.

To remedy this phenomenon, an algorithm called (approximated) bootstrapping
has been proposed for refreshing any such “deteriorated” ciphertexts into nearly
fresh ones, and one can keep doing further multiplication on them. Bootstrap-
ping is an algorithm originally from Gentry’s groundbreaking paper [9] that

opens up the new world of fully homomorphic encryption (FHE). In [6], the au-
thors invented the algorithm of approximated bootstrapping to make the orig-
inal CKKS scheme into a FHE scheme. Since then, many suggestions and new
methods based on the approximated bootstrapping have appeared to improve
its performance by several orders of magnitude. The adoption of the residue
number system (RNS) [7], baby-step giant-step algorithm in the linear trans-
formation steps in the bootstrapping [10], efficient use of gadget decomposition
[12] and FFT-matrix grouping [5, 11] are some of noticeable achievements. Fur-
ther improvements include optimal minimax polynomial approximation [15] and
direct polynomial approximation for the modular reduction step for minimizing
error variance [16], sine-series approximation [13], and Meta-BTS for enhancing
bootstrapping precision by repeating the algorithm in a clever way [1].

Since the invention of the CKKS bootstrapping, its many major improvement
techniques were well utilized and culminated in the work of Bossuat et al. [4],
which is thus chosen as a reference algorithm to compare performances, and
referred to as the conventional bootstrapping algorithm throughout this work.
Especially, this conventional bootstrapping algorithm follows the well-received
blueprint of the CKKS bootstrapping originated from [6], consisting of Mod-
Raise, CoeffToSlot (CTS), EvalMod (EM) and SlotToCoeff (STC) in this very
order.

Kim et al. [14] proposed EvalRound bootstrapping which is an addition of
two shortcuts as outlined in Figure 3. The shortcuts connect four step of the
conventional bootstrapping via subtractions, thus no significant additional com-
putation cost is needed. The first subtraction leads to canceling the error of CTS,
allowing for a significant reduction of modulus consumption in CTS. However,
STC in the EvalRound algorithm is required to operate on qI, unlike STC of
conventional operating on pt. Since ∥qI∥ is much larger than ∥pt∥, the error of
STC of the EvalRound becomes as much larger than that of the conventional
algorithm and consumes more modulus bits in STC. Therefore, depending on the
parameter set, modulus consumption can be higher for EvalRound bootstrap-
ping compared to the conventional one. In other words, EvalRound bootstrap-
ping sometimes outperforms the conventional bootstrapping, while other times
it performs worse. This difference is determined by the ratio of the size of the
base prime and the scale factor ∆. For instance, parameter set P2 in [14] offers
savings on modulus usage compared to the conventional one. On the other hand,
with parameter set I in [4], it ends up consuming more modulus bits than the
conventional bootstrapping, as illustrated in Figure 1.

We endeavored to enhance EvalRound bootstrapping for keeping its efficiency
in CTS and removing its deficiency in STC. Our proposal also consists of two
shortcuts. The first shortcut is exactly same as that of EvalRound, but the
second one is different in its destination that is placed before STC, not after.
Secondly, we did a thorough, rigorous mathematical error analysis for each step
CTS, STC and EvalMod of the bootstrapping algorithm, elaborated upon in
Section 4. As a result, we observe there is a certain threshold value for the size
of the CTS error so that the total error starts to grow if the CTS error exceeds

2

the threshold. This allows us to fine-tune parameters under the theme of error
balancing. Lastly, in Section 7, we introduce a novel discovery regarding the
sparsity patterns, stemming from encoding FFT matrices. This discovery allows
for the extra conservation of modulus bits in both CTS and STC.

1.1 Our Contribution

This work is aimed at reducing the consumption of modulus in bootstrapping
and thus enhancing the efficiency of FHE performance. We make four contribu-
tions towards the aim. The first one is to introduce EvalRound+ bootstrapping
that keeps the advantage of EvalRound bootstrapping in CTS and resolves its
deficiency in STC. As shown in Figure 1, EvalRound+ and EvalRound spend less
modulus in CTS than the conventional bootstrapping, and EvalRound consumes
very large modulus in STC, while EvalRound+ and the conventional bootstrap-
pings do not.

In both of EvalRound and EvalRound+ , the error size of CTS is allowed to be
much larger than the conventional, because the error cancels out. The error size,
however, can not be unboundedly large. There exists a certain threshold value
beyond which the overall error starts to grow rapidly. To seek for a moderate
size of the error, an empirical analysis with ad hoc parameter was introduced in
[14]. Our second contribution is to build up a rigorous and comprehensive
analysis to determine a precise estimate of the threshold value. Figure 4 shows
that out estimate precisely hits the threshold value, while the earlier work does
not. The difference in the estimates leads to the large difference in modulus
consumption in CTS, as shown in Figure 1.

Our analysis decompose the overall error into three errors. In many of widely
used bootstrapping parameter sets, we observed that the error of STC is notice-
ably smaller than the other two. The modulus consumption in the sets can be
said to be unnecessarily excessive in STC. Our third contribution is to propose
proper parameters that fix the imbalance in error sizes. The error balancing
leads to a saving of large modulus in STC, depicted in Figure 1.

A homomorphic evaluation of linear transformation results in error whose size
is, in general, linearly proportional the size of data. In the case of FFT matrices,
we observed that the general estimation does not precisely hold. A thorough
investigation on the observation revealed that there exists a special feature on the
homomorphic evaluation of FFT matrix multiplications. Each diagonal vector
of FFT matrices exhibits a sparsity pattern, when it is encoded. Taking the
sparsity into consideration, the estimation, which is our fourth contribution,
becomes precise. The widely used bootstrapping sets turn out to be somewhat
excessive both in CTS and STC. The removal of the excessive consumption
results in saving modulus in CTS and STC, as shown in Figure 1.

FHE developers usually choose optimal parameters empirically using exhaus-
tive search over parameter space. Our error analysis and parameter design are
based on rigorous mathematical theory, providing developers with a practical
benefit by eleminating the need for the exhaustive search. The entire process
of modulus reduction in CTS and STC, achieved through the implementation

3

of EvalRound+, error balancing, and sparsity pattern applied to conventional
bootstrapping, has been experimentally validated using our C language imple-
mentation. The code will be made publicly accessible on GitHub, allowing
anyone to independently verify all the results presented in this paper.

Parameter h N ∆ log (QP) L log pj

I 192 216 240 1546 25 5 ∗ 61
II 192 216 230 1552 25 5 ∗ 61
III 192 216 242 1555 25 3 ∗ 59 + 2 ∗ 60

Parameter log qi
q0 Mult STC EvalMod CTS

I 60 9 ∗ 40 3 ∗ 39 8 ∗ 60 4 ∗ 56
II 55 5 ∗ 60 + 5 ∗ 30 2 ∗ 45 8 ∗ 55 4 ∗ 53
III 58 9 ∗ 42 3 ∗ 42 9 ∗ 58 3 ∗ 58

Table 1. Three conventional parameter sets I and II from [4] and III from [2]

1.2 Technical Overview

EvalRound+ Bootstrapping : Our first contribution, that is referred to as
EvalRound+ bootstrapping, resolves the deficiency of EvalRound bootstrapping
in STC, while it keeps the efficiency of EvalRound bootstrapping in CTS. Like
its predecessor, EvalRound+ consists of two skip connections. The first skip
connection is exactly same in both bootstrappings, but the second one differs
in its terminal position: one is before STC and the other is after. As illustrated
in Figure 3, STC of EvalRound+ operates on pt and that of EvalRound on
qI. A homomorphic evaluation of linear transformations requires an amount of
modulus that is proportional to the size of data. Since ∥pt∥ is much smaller that
∥qI∥, EvalRound+ spends much less modulus in STC than EvalRound.

Threshold value : The work of EvalRound argued that the error in bootstrap-
ping out is small, although the error of CTS is quite large. An experimental result
in Figure 4 indicates that the total error is independent of the error of CTS, con-
firming the argument when the error is small. However the total error starts to
grow beyond a certain threshold value. To seek for a moderate size of the error,
an empirical analysis with ad hoc parameters was introduced in [14]. Our second
contribution is an introduction of rigorous mathematical analysis that explains
why the threshold exists and precisely estimates its value.

Error Balancing : Note that the total error is just a sum of eCTS, eSTC and
eEM in both of conventional and EvalRound+ bootstrappings, as depicted in
Figure 3. Significantly, imbalances among these errors are observed across all

4

Fig. 1. Modulus consumption in CTS, STC and EvalMod for the conventional [4],
EvalRound [14], and the three proposed bootstrappings under Parameter set I in Table
1. Considering the three proposed methods within the given parameter set results in a
total savings of 150 bits compared to the conventional [4].

Fig. 2. Schematics of the conventional bootstrapping. The left one is a full diagram
illustrating the state changes in both the slot side and coefficient side for each step.
The plaintext pt emerges in one of the two sides during each step. The right one is
a summary diagram tracking the side containing pt. We distinguish between the two
sides by using []slot for the slot side. Consecutive states with the same encoding factor
are merged and depicted as a unified region with up-down arrows.

5

Fig. 3. Schematics of the EvalRound bootstrapping and the proposal. Each schematic
is a summary diagram following the styles and notations outlined in Figure 2. Both
bootstrappings add two skip connections to the conventional bootstrapping. The first
skip connection leads to canceling eCTS∗ and saving the modulus consumption in CTS∗

in both. However, the two bootstrappings differ in the terminal position of the second
skip connection: it is after STC in EvalRound and before STC in the proposal.

6

Fig. 4. The plot of the total error ∥etotal∥ in bootstrapping with respect to ∥eCTS∗∥
under the setting of Parameter set I in Table 1. However, there exists a certain threshold
value of ∥eCTS∗∥ beyond which ∥etotal∥ starts to grow. The threshold is revealed by
our analysis and the exact proper ∥eCTS∗∥ occur in EvalRound+ while unnecessarily
excessive small ∥eCTS∗∥ occurs in EvalRound. Our analysis uncovers this threshold,
indicating that the exact and suitable ∥eCTS∗∥ occurs in EvalRound+, while excessively
small values of ∥eCTS∗∥ occur in EvalRound.

7

parameter sets, as illustrated in Figure 5. This observation highlights that the
currently widely used parameters allocate unnecessarily excessive modulus in
STC. In this regard, there is a potential for reducing the excessive allocation
while keeping total error. Here arises the question about the size of the reduction.
Retaining the total accuracy, eSTC is allowed to grow up to the level that is the
maximum of the other errors, that is referred to as error balancing. Precisely,
our error analysis determine the optimal parameter to reach the level. As a
result, modulus consumption in STC is reduced by 27.6% and 52.1% from that
of conventional and EvalRound bootstrappings, respectively.

Fig. 5. Magnitude of etotal, eEM and eSTC with Parameter I, II and III. Notably, eSTC is
smaller to the other errors. This suggests that there is a potential for modular reduction
of the scale factor in STC.

Sparsity Patterns : To homomorphically perform linear transformations, it is
necessary to undergo the inverse fast Fourier Transform (iFFT) for the diagonal
vectors of a matrix. When a diagonal vector of general matrices undergoes iFFT,
the output vector is usually dense, not sparse. However, in the case of FFT
matrices, the output vector of each diagonal vector is sparse. Note that the
iFFT output of each column vector of FFT matrices is trivially sparse, but that
of each diagonal is not.

Figure 6 shows two examples. One example is a general matrix and the
other is a FFT matrix. Furthermore, the output vector of FFT matrices is not
only sparse, but also periodic in the emergence of nonzero values, which we
refer to as ’Sparsity Patterns’. The error of homomorphic linear transform is
well-known to be inversely proportional to modulus consumption in general.
However, our rigorous analysis reveals that the well-known estimation does not
hold in the presence of sparsity pattern, leading to inordinate amount of modulus.

8

Our rigorous analysis introduces a new and acute estimation of error, taking
into consideration of sparsity pattern. This enables us to reduce the inordinate
amount of modulus to the optimal amount in both of CTS and STC.

Fig. 6. This figure illustrates the phenomenon of the sparsity pattern. Specifically, it
compares the results of applying iFFT to a general data vector and to a diagonal
vector of the FFT matrix when N = 32. In the former case, there is no apparent
sparsity pattern, while in the latter case, the existence of a sparsity pattern can be
confirmed.

2 Preliminaries

2.1 CKKS homomorphic encryption scheme

We first recap the CKKS leveled homomorphic encryption scheme [8] in this
section and the ones that follow. It will also serve us to fix notations for the rest
of the paper.

Notation : For a power-of-two N , denote by R = Z[x]/(xN + 1), the ring of
integers of the 2N -th cyclotomic field, which is a fundamental ring for the CKKS
scheme and the RLWE problem the CKKS scheme is based on. For a positive
q, let Rq = R/qR = Zq[x]/(x

N + 1). Here N is determined at the parameter
selection step of the CKKS scheme. A CKKS ciphertext can encrypt a complex
vector of a power-of-two length which is maximally N/2. This vector is called a
(complex) message. Here for the ease of description, we assume every message
has an exact length of N/2. We denote by ∥ · ∥ L2 norm and when the input is
a polynomial, this denotes the norm of coefficient vector.

9

Encoding and Decoding : Let ζ be a primitive 2N -th root of unity contained
in C, e.g., ζ = exp(π

√
−1/N), where

√
−1 is a complex imaginary unit. For

integers i, write ζi := ζ5
i

. The map

DFTN : R[x]/(xN + 1) → CN/2, m(x) 7→ (m(ζ0),m(ζ1), · · · ,m(ζN/2−1)) (1)

is known to be an isomorphism, with inverse iDFTN . When the dimension N
is understood, we also omit the subscript N so we write DFT = DFTN and
iDFT = iDFTN . With these algebraic maps, we can encode a complex message
z ∈ CN/2 to a plaintext pt ∈ R and in reverse decode from pt to z.

– Encode(z;∆). For an N/2-dimensional vector z of complex numbers and a
scale factor ∆, the encoding process first transforms z to a polynomial in
R[x]/(xN + 1) and quantize it into an element of R. It returns

pt = Encode(z;∆) = ⌊∆ · iDFT(z)⌉ , (2)

where ⌊·⌉ is the coefficient-wise rounding to the nearest integers.
– Decode(pt;∆). For a plaintext pt and its scale factor ∆, the decoding process

returns
z = Decode(pt;∆) = DFT(pt/∆). (3)

Here the polynomial pt/∆ is computed in R[x]/(xN + 1).

2.2 CKKS homomorphic encryption scheme

Bootstrapping in the CKKS scheme : A ciphertext ct is called of level ℓ
if it has moduli Qℓ = q0 · · · qℓ. After a single multiplication of ct with another
ciphertext or a plaintext, ct is at the same level ℓ but it has its internal scale
factor effectively squared. In order to make the scale factor normal, we do the
rescale operation, which brings ct’s scale factor to a normal one but drops its
level by one. After certain such multiplication and rescaling, ct reaches at the
bottom level and we cannot do any further multiplication because it can cause
decryption failure.

Bootstrapping can resolve this problem by recovering the ciphertext mod-
ulus, thereby allowing us to perform further homomorphic operations on the
ciphertext. The conventional bootstrapping of Cheon et al. [6] consists of the
following four steps: ModRaise, CoeffToSlot, EvalMod, and SlotToCoeff.

– ModRaise. It can be seen as the main operation of the bootstrapping algo-
rithm conceptually, as it lifts the input ciphertext with near-bottom modulus
q to one with the maximal modulus QL. As a side effect, it also alters the
plaintext m encrypted in the ciphertext, by adding additional term qI with
a polynomial with small coefficients I, resulting the encrypted plaintext to
be m + qI. The sole purpose of the remaining stages of the bootstrapping
algorithm is to remove this qI part from the plaintext.

10

– CoeffToSlot (CTS). Since the removal of qI, which is essentially a modular
reduction operation(modular q), can only take place at the slot side, i.e. at
the messages the ciphertext encrypts. Hence we need to transfer the plaintext
m + qI to the slot side, which is exactly what CTS is doing. The plaintext
is an integer-valued vector and the transfer is to multiply the vector by
the iDFT matrix. The entries of the matrix are multiplied by a so-called
scale factor ∆CTS and rounded to integers. The matrix multiplication is
notoriously slow in computation, because it is a dense matrix. In practice,
the matrix is decomposed into dCTS number of sparse matrices and the
matrix multiplication is replaced by fast successive multiplications by the
sparse matrices.

– EvalMod. It is the modular reduction modular q operation. This can be
achieved by evaluating a polynomial approximating the modular reduction
function.

– SlotToCoeff (STC). It transfers the content in the slot side to the coefficient
side, hence restoring the original plaintext. The transfer is the multiplication
of DFT matrix. As in CTS, the matrix’s entries are multiplied by a ∆STC
and rounded to integers, and the matrix is decomposed into dSTC number
of sparse matrices.

Homomorphic Linear Transform : In CKKS bootstrapping, there are
two major computations: linear transformation and polynomial evaluation. Since
the part of CKKS bootstrapping that our paper aims to improve is implemented
through linear transformations, we review linear transformation. Let A ∈ CN

2 ×N
2

be a matrix with diagonals v1, · · · , vk, and z be a data. Then, the result of
multiplying A with z can be expressed as

Az = v1 ⊙ z1 + · · ·+ vk ⊙ zk ,

where each zi is a rotation of z ∈ CN
2 with shift si. Assume that A and z are

encoded into plaintexts by scale factor ∆. We denote the encoded forms of each
vi and zi as ptvi and rotsi(ptz), respectively. Then, a homomorphic evaluation
of Az is given as below. See the details in [11].

ptv1 ∗ rots1(ptz) + · · ·+ ptvk ∗ rotsk(ptz)

FFT decomposition in CTS and STC : CTS multiplies the iDFT matrix
2
N DFT

T
to the message slots, in order to convert the polynomial coefficient rep-

resentation into the slot representation. Since there are N
2 diagonals in iDFT

matrix, it requires O(N) to multiply one single iDFT matrix homomorphically.
To address this computational cost issue, Han et al. [12] proposed utilizing the
FFT decomposition technique of the iDFT matrix. As a result of the decompo-
sition, logN −1 number of FFT matrices are generated. In practice, considering
the multiplicative depth, the multiplication is performed by grouping several
FFT matrices together, and let us say d (e.g. d = 3 or 4), of matrices

DFT = E1E2 · · ·ElogN−1

= A1A2 · · ·Ad.

11

If d is assumed to divide the number of the FFT matrices for simplicity, each Ai is
a product of logN−1

d number of FFT matrices. Since each FFT matrix has three
diagonals and its matrix norm is

√
2, each Ai has up to k = 2

log N−1
d diagonals

and matrix norm
√
2

log N−1
d . Actually it holds that ∥Aix∥ =

√
2

log N−1
d ∥x∥ for any

x. Let Bi = Ai
T
/∥Ai∥2 for each i, then we have a decomposition of the iDFT

matrix into L2−isometric matrices
2

N
DFT

T
= Bd · · ·B2B1.

By directly applying the error analysis of linear transformation to the case of
CTS, we can deduce the error of CTS. By adopting L2-isometry relation, our
error estimation of CTS expressed as equality rather than inequality expressions,
allowing us to precisely analyze and estimate the error.

The STC step is exactly the inverse procedure of CTS. Here, we multiply
the DFT matrix to the message slots, so to covert slot representation back
into the polynomial’s coefficient representation. In STC, there is also a com-
putation cost issue based on the number of diagonal vectors in the multiplied
matrices. To address this, the same decomposition technique used in CTS is
applied to decompose a single DFT matrix into logN − 1 FFT matrices. Sim-
ilarly, in order to reduce the multiplicative depth in STC, the FFT matri-
ces are grouped together, resulting in a total of d matrix multiplications as
DFT = E1E2 · · ·ElogN−1 = A1A2 · · ·Ad. Since STC involves series of matrix
multiplications, the error of STC can be derived by employing the error analysis
of linear transformation. This error estimation can also give the exact error value
rather than analyzing the range of errors using inequalities.

3 EvalRound+ : reducing ∆CTS and ∆STC∗

Our main goal in this work is to significantly lessen the amount of modulus
and levels spent in bootstrapping by reducing ∆CTS and ∆STC, while remaining
the same precision. This section introduces a novel bootstrapping, referred to
as EvalRound+, that keeps the efficiency of EvalRound in CTS and resolves its
deficiency in STC. EvalRound+ consists of two skip connections, as described in
the schematics in Figure 3.

A homomorphic linear transform on a data is required to convert its real/complex
elements into integers. The conversion consists of scaling the elements by a large
number, called scale factor and rounding them to their nearest integers. The
error of the linear transform is inversely proportional to the scale factor and
proportional to the size of the data. CTS is the homomorphic linear transform
with iDFT matrix, and STC is that with DFT matrix. In the schematics, eCTS,
eEM and eSTC denote the errors of CTS, EvalMod and STC, respectively. The
total error of each bootstrapping is described in the schematics as follows.

Conventional : etotal = q · eCTS + q · eEM + [eSTC]slot
EvalRound : etotal = q · eEM − [eSTC∗]slot
EvalRound+ : etotal = q · eCTS + q · eEM + [eSTC]slot

12

In conventional bootstrapping, eCTS is directly included in etotal . Thus, keep-
ing the total precision severely restricts the scale factor of CTS, or the consump-
tion of modulus in CTS. However, in EvalRound, the error of CTS is canceled
out, owing to the first skip connection. This allows much larger magnitude of
the error and enables the use of much smaller consumption of modulus, while
keeping the total precision. Since the scale factors of two CTSs are quite differ-
ent, CTS∗ in the schematics denote the CTS with the economic consumption
in EvalRound. EvalRound+ inherits EvalRound up to the first skip connection.
The scale factors of CTS, that are indicators of modulus consumption, can be
compared as follows.

Conventional : ∆CTS
EvalRound : ∆CTS∗ ≪ ∆CTS
EvalRound+ : ∆CTS∗ ≪ ∆CTS

EvalRound has the aforementioned advantage in CTS, but there exists price
to pay for it. STC operates on iDFT (qI), instead of iDFT (pt). Since ∥qI∥ is
much larger than ∥pt∥ and iDFT is an isometry map, EvalRound should take
a larger scale factor in STC than conventional bootstrapping, resulting in the
deficiency in STC. EvalRound+ is devised to resolve this deficiency. It locates
the terminal position of the second skip connection before STC, not after. As
a consequence, STC now operates on iDFT (pt) to resolve the deficiency. The
scale factors of STC are compared in the below.

Conventional : ∆STC
EvalRound : ∆STC∗ ≫ ∆STC
EvalRound+ : ∆STC

In overall, EvalRound+ is as effective as EvalRound in CTS, and resolves
its deficiency in STC. Its implementation does not need to build any new pro-
grammings, but just adding two connections to the existing programming calls is
enough. In putting parameters in the implementation, ∆STC is taken as same as
in conventional and ∆CTS∗ is taken much smaller than ∆CTS. Here comes a main
question for the criteria of the smallness. The experiment in Figure 4 suggests
that there is a threshold on the decrease of ∆CTS∗ . The error size commences to
grow beyond the threshold, so that the optimal choice of ∆CTS∗ turns out to be
the threshold. The cause of the threshold will be explained with details and its
value will be estimated sharply in subsequent sections.

4 Rigorous Analysis of the threshold value

The first skip connection in both of EvalRound and EvalRound∗ leads to the
vanishing of large error eCTS∗ and opens a room to save much modulus while
retaining the overall accuracy. However, there exists a certain threshold value of
∥eCTS∗∥ beyond which the overall accuracy is not retained any more. Kim et al.

13

[14] introduced a criteria estimating the threshold as follows.

∆CTS∗ ≃ 1
ϵ
√
N

C2
− 1

· C1 ·N1+ 1
2d · q

∆

The criteria is based on an empirical estimate with ad hoc parameters C1, C2 and
ϵ. The error of successive matrix multiplications was roughly estimated through
a series of inequality. This section aims at presenting the precise estimate of the
threshold value, not an empirical one through a set of rigorous and comprehensive
analyses.

4.1 Causality Tracing

The total error consists of three errors that are eCTS, eEM and eSTC, as shown in
the schematics of Figure 3. The error of a linear transform is determined solely
by the size of data and the scale factor associated with the transformation. STC
acts on data pt

q with scale factor ∆STC, and CTS on pt+ qI with ∆CTS. Thus,
eSTC and eCTS are independent of eCTS∗ , having no relation. Since the total
error is a sum of eCTS, eSTC and eEM, the link between the total error and eCTS∗

should be involved in eEM. Thus, we can narrow down the causality from eCTS∗

to etotal as follows.

Causality : eCTS∗ =⇒ eEM =⇒ threshold

Let EvalMod(t) refer the homomorphic evaluation of polynomial p (t) that
approximates the modular function [t]1 with period one. The discontinuity of
[t]1 hinders the approximation from being accurate. Using the fact that t in
bootstrapping is close to its nearest integer, the hindrance is circumvented by
the use of smooth analytic function sin(2πt)

2π ≃ [t]1. Thus, there exists the following
series of approximations from EvalMod(t) to [t]1.

EvalMod(t) ≃ p (t) ≃ sin (2πt)

2π
≃ [t]1 .

The error of the first approximation results from the homomorphic evaluation
of the polynomial, and is denoted by ePoly. The polynomial p (t) is the minmax
approximation of sin(2πt)

2π calculated by the Remez algorithm [17], and denoted
by eRemez. The sine function accurately approximates [t]1 for each integer, so
that the error of the third approximation is given from the Taylor series

sin (2πt)

2π
= [t]1 −

(2π)
2

6
[t]

3
1 +

(2π)
4

120
[t]

5
1 − · · · .

Since it is an alternating series, the first nonzero term becomes the dominant
error of the Taylor series, denoted by eTaylor. Thus, eEM = EvalMod(t)− [t]1 is
decomposed as

eEM = ePoly + eRemez + eTaylor. (4)

14

The input variable t is given in the schematics of Figure 3. Since I is an integer
variable and [t]1 is the modular reduction with period one, eTaylor is formulated
as below.

t = I + pt
q + eCTS∗

eTaylor =
(2π)2

6 [t]
3
1 = (2π)2

6

(
pt
q + eCTS∗

)3
We pointed out the causality from eCTS∗ to eEM = ePoly + eRemez + eTaylor.

Now, let us take a closer investigation on each decomposition of eEM. The magni-
tude of error in homomorphic multiplications is proportional to the size of data.
Hence ∥ePoly∥ is primarily determined by ∥t∥ ≃ ∥I∥. In the usual setting, the
size of I dominates those of pt

q and eCTS∗ , unless ∆CTS∗ is unreasonably small.
Thus, ePoly can be removed in the causality tracing. On the other hand, eRemez
arises from the minmax polynomial approximation of the sine function, having
no relation with eCTS∗ . From these reasons, the causality between the threshold
and eCTS∗ lies on just eTaylor and nothing else.

Causality : eCTS∗ =⇒ eTaylor =⇒ threshold

4.2 Estimating ∥eTaylor∥2 through ∥eCTS∗∥2

We traced the causality of the threshold and reached at eTaylor =
(2π)2

6

[
pt
q + eCTS∗

]3
whose expansion is a weighted sum of momemts of the random variable eCTS∗ .
To begin with, we introduce a precise L2 estimate of ∥eCTS∗∥2 and the statistical
features of eCTS∗ .

Theorem 1. (Error of a homomorphic linear transformation) Let Homo (Az)
denote the homomorphic evaluation of Az and e = Homo(Az)−Az be its error.
Then we have

E
[
∥e∥2

]
=

kN

12∆2
∥z∥2 ,

where k is the number of diagonal vectors of A ∈ CN
2 ×N

2 and ∆ is the encod-
ing scale factor of the diagonal vectors. Furthermore, each ei follows the normal
distribution with mean zero and variance ≤ kN

12∆2 ∥z∥2.

Proof. given in Appendix.

Theorem 2. (a series of conformal matrices) Let Homoseq (Ad · · ·A1z) be the
sequential homomorphic evaluation of Ad · · ·A1z, where A1,· · · , Ad are confor-
mal matrices, and let k1, · · · , kd be the number of the diagonals of A1, · · · , Ad,
respectively. Then the error e = Homoseq (Ad · · ·A1z)−Ad · · ·A1z satisfies

E
[
∥e∥2

]
=

N ∥z∥2

12∆2
∥Ad∥2 · · · ∥A1∥2

(
kd

∥Ad∥2
+ · · ·+ k1

∥A1∥2

)
.

Furthermore, each coordinate ei follows a normal distribution with mean zero.

15

Proof. given in Appendix.

Let CTS∗ be conducted by a series of matrix multiplications that are from a
FFT decomposition DFT = Ad · · ·A1 with scale factor ∆CTS∗ . Each FFT block
is conformal and the above general theorem estimates ∥eCTS∗∥2. Furthermore,
it will be shown in later section that there exists a special feature with FFT
matrices, so called ’Sparsity pattern’ to refine the inaccurate estimate to be the
precise one. For each i, Si denotes the sparsity gap of the matrix Ai, which will
be explained in details later.

E
[
∥eCTS∗∥2

]
≃ N

12 (∆CTS∗)
2 ∥Ad∥2 · · · ∥A1∥2

(
kd

∥Ad∥2
+ · · ·+ k1

∥A1∥2

)∥∥∥∥DFT
(
I +

pt

q

)∥∥∥∥2
E
[
∥eCTS∗∥2

]
=

N

12 (∆CTS∗)
2 ∥Ad∥2 · · · ∥A1∥2

(
kd

∥Ad∥2 Sd

+ · · ·+ k1

∥A1∥2 S1

)∥∥∥∥DFT
(
I +

pt

q

)∥∥∥∥2
∥eCTS∗∥2 ≃ N

12 (∆CTS∗)
2 ∥Ad∥2 · · · ∥A1∥2

(
kd

∥Ad∥2 Sd

+ · · ·+ k1

∥A1∥2 S1

)
h+ 1

24
N2

Here, we used the estimate
∥∥∥I + pt

q

∥∥∥2 = h+1
12 N in [4] and the fact that the

variance of random variable ∥eCTS∗∥2 becomes barely noticeable as N increases,
e.g. 216. Thus we may omit the expectation symbol whenever dealing with macro
quantities such as ∥eCTS∗∥2.

Now, we intend to estimate ∥eTaylor∥2 through ∥eCTS∗∥2. Utilizing the bino-

mial expansion on eTaylor =
(2π)2

6

[
pt
q + eCTS∗

]3
, we obtain

E
[
(eTaylor [i])

2
]
= E

[
(2π)

4

36

6∑
m=0

(
6
m

)(
pt[i]

q

)6−m

(eCTS∗ [i])
m

]

=
(2π)

4

36

6∑
m=0

(
6
m

)(
pt[i]

q

)6−m

E [(eCTS∗ [i])
m
]

=
(2π)

4

36

3∑
m=0

(
6
2m

)(
pt[i]

q

)6−2m

E
[
(eCTS∗ [i])

2m
]
.

According to Theorem 2, each eCTS∗ [i] follows a normal distribution with
mean zero. In the above, we used the fact that every odd moment of the normal
distribution is zero. The even moment is readily given [18] by its variance that
is denoted by σ2

i to obtain

16

E
[
(eTaylor [i])

2
]
=

(2π)
4

36

[(
pt[i]

q

)6

+

3∑
m=1

(
6
2m

)(
pt[i]

q

)6−2m

σ2m
i (2m− 1)!!

]

≤ (2π)
4

36

[(
∆

q

)6

+

3∑
m=1

(
6
2m

)(
∆

q

)6−2m

σ2m
i (2m− 1)!!

]

E
[
∥eTaylor∥2

]
≤ (2π)

4

36

N
2

(
∆

q

)6

+

3∑
m=1

(
6
2m

)(
∆

q

)6−2m

(2m− 1)!!

N/2∑
i=1

σ2m
i

=

3∑
m=1

N/2∑
i=1

σ2m
i

[(2π)4
36

(
6
2m

)(
∆

q

)6−2m

(2m− 1)!!

]
+

(2π)
4

36

N

2

(
∆

q

)6

.

Here, we use the usual assumption |pt [i]| ≤ ∆. The estimation of each indi-
vidual σi is cumbersome, but the sum of their squares equals ∥eCTS∗∥2. Based
on empirical observations, we note that most of σ2

i lie between a half of their
average 2

N ∥eCTS∗∥2 and one and a half , and postulate the following estimation.

N/2∑
i=1

σ2m
i ≤

(
3

2

)m(
2

N
∥eCTS∗∥2

)m

Combining the postulate with the precise estimation of ∥eCTS∗∥2, the overall
estimation of ∥eTaylor∥2 is given as

∥eTaylor∥2 ≤
3∑

m=1

N/2∑
i=1

σ2m
i

[(6
2m

)
(2π)

4

36

(
∆

q

)6−2m

(2m− 1)!!

]
+

(2π)
4

36

N

2

(
∆

q

)6

≤
3∑

m=1

(
3

2

)m(
2

N
∥eCTS∗∥2

)m
[(

6
2m

)
(2π)

4

36

(
∆

q

)6−2m

(2m− 1)!!

]

+
(2π)

4

36

N

2

(
∆

q

)6

.

4.3 Putting all together : optimal ∆CTS∗

From the previous subsection, we analyzed eTaylor in order to find its dependency
on ∆CTS∗ . Continuing from here, in this section, we will utilize all the previous
analyses and identify the relationship between eEM and ∆CTS∗ to accurately
determine the optimal ∆CTS∗ , the threshold value.

Taking into consideration the overall estimation of ∥eTaylor∥2, ∆CTS∗ only
influences on eCTS∗ , and the magnitude of ∥eCTS∗∥2 is proportional to 1

∆2
CTS∗

.

17

By expanding the estimation with respect to ∆CTS∗ , we can yield the following
inequality for some c0,c1, c2, c3 ∈ R+.

∥eTaylor∥2 ≤ c0 +
c1

(∆CTS∗)
2 +

c2

(∆CTS∗)
4 +

c3

(∆CTS∗)
6 (5)

In the decomposition (4), the three errors in the right-hand-side differ from one
another when and where they arise, and can be assumed to be independent
to each other. Thus, their variances are additive and we have the following
formulation.

∥eEM (∆CTS∗)∥2 ≤ ∥ePoly∥2+∥eRemez∥2+c0+
c1

(∆CTS∗)
2 +

c2

(∆CTS∗)
4 +

c3

(∆CTS∗)
6

Note that the last three terms are monotonically increasing as ∆CTS∗ is
increasing. They are unnoticeable small when ∆CTS∗ is large, but becomes no-
ticeable when their sum is equivalent to the magnitudes of the first three terms.
From these reasons, the threshold for ∆CTS∗ can be determined by solving the
following algebraic equation for ∆CTS∗ .

Max
(
∥ePoly∥2 , ∥eRemez∥2 , c0

)
=

c1

(∆CTS∗)
2 +

c2

(∆CTS∗)
4 +

c3

(∆CTS∗)
6 (6)

The above equation has a unique solution, since the right hand side is a
monotonically decreasing function. Moreover, it can be easily solvable by many
efficient root finding algorithms such as bijection method.

Example 1. This example compares the difference between the CTS error es-
timations obtained using the EvalRound method [14] and our error estimation
derived from Theorem 2, and demonstrates that our estimation yields much more
accurate results. Additionally, this example ultimately shows that utilizing our
estimation to determine ∆CTS∗ results in saving approximately twice as many
modulus bits in CTS compared to the method proposed by EvalRound.

The table below compares the observed CTS errors for each parameter set
from Table 1 with the CTS error estimations from EvalRound and our error
estimation derived from Theorem 2. The comparison clearly shows that our es-
timation formula yields significantly more accurate predictions than the formula
[14]. When considering the sparsity pattern in our estimation, it enables even
more accurate predictions and a detailed explanation of this will be provided in
Section 7.

observation EvalRound our estimation our estimation
by Theorem 2 with sparsity pattern

I 5.26× 10−15 2.85× 10−14 1.30× 10−14 5.99× 10−15

II 4.19× 10−14 7.48× 10−9 1.04× 10−13 4.26× 10−14

III 3.52× 10−15 1.36× 10−16 2.80× 10−14 6.78× 10−15

The table below compares the precise ∆CTS∗ value determined by EvalRound
with it derived through our rigorous analysis for each parameter set. Comparing

18

the modulus bits used in CTS, EvalRound+ allows for approximately half the
number of modulus bits to be saved compared to the conventional bootstrapping
method.

log (∆CTS∗) conventional EvalRound EvalRound+

I 56 42.75 29.85
II 53 48 27.98
III 58 39 30.51

5 Error Balancing: optimizing ∆STC

The total error is a sum of three errors, as shown in the schematics of Figure 3.
The error [eSTC]slot was observed to be notably smaller than the others in the
widely used parameter sets. This observation implies that it is allowed to increase
its bound while retaining the overall accuracy. The error bound is decided by
∆STC through the estimation given in Theorem 2.

CTS performed in the beginning and affects the order routines in the se-
quential process of bootstrapping. From this reason, ∆CTS not only affects eCTS
but also eEM, as discussed in Section 4. However, STC is performed in the last
and ∆STC affects only eSTC. Thus, the smallest ∆STC that maintains the overall
accuracy can be calculated by the following relation.

∥[eSTC]slot∥
2
=

N

2
· ∥eSTC (∆STC)∥2 = max

(
∥eCTS∥2 , ∥eEM∥2

)
Example 2. Figure 5 shows that the error of STC is much smaller than the other
errors in all the parameter sets. ∆STC is reduced by the above relation up to the
limit that keeps the overall accuracy. The table below reports the exact value of
∆STC in EvalRound+ with the error balancing on and off.

before error balancing after error balancing
log (∆STC) ∥etotal∥ log (∆STC) ∥etotal∥

I 39 7.16× 10−5 28.3 6.32× 10−5

II 45 5.36× 10−2 25.7 5.76× 10−2

III 42 1.41× 10−5 28.0 1.40× 10−5

When comparing the modulus consumption of STC before and after error
balancing, it is observed that there is a reduction of 32 bits, 58 bits and 42 bits
for Parameter I,II and III, respectively. Through this result, we can verify that
error balancing allows for a reduction in the excessive consumption of modulus
bits in STC while maintaining the overall accuracy, and furthermore enables to
choose an optimal ∆STC.

6 Efficient implementation of the additional CTS

EvalRound+ offers advantages in saving modulus and levels, yet it requires an
additional iteration of CTS. As depicted in Figure 7, the additional CTS is

19

configured in parallel with the CTS∗+EvalMod. Therefore, it can be executed in
parallel within the computation time of CTS∗+EvalMod. However, if sequential
execution is preferred, it would incur some overhead. Fortunately, this overhead is
not significant due to our design for the efficient implementation of the additional
CTS. The parallelism facilitates the execution of the additional CTS within the
extensive levels designated for CTS∗ and EvalMod. In this section, we detail
the implementation of the additional CTS to achieve the fast implementation of
EvalRound+ by leveraging these reserved levels.

Fig. 7. Level consumption in the conventional bootstrapping(left) and the proposed
EvalRound+ (right). The two processes of EvalRound+ can be executed independently
and thus in parallel. Furthermore, CTS can utilize much larger levels lCTS∗ + lEM than
lCTS and lCTS∗ to minimize its calculation time. As a result, an optimal level lCTS+ is
decided in Section 6 and the remaining levels lCTS∗ + lEM − lCTS+ are ModDowned for
its further speed-up.

For the sake of clarity in subsequent discussions, we will refer to this addi-
tional CTS as CTS+ exclusively in this section. Since CTS+ is essentially equal
to CTS, it is also represented through the product of FFT matrices as [11]. How-
ever, in contrast to CTS, levels lCTS∗ + lEM are given for CTS+, where lCTS∗

and lEM are the levels for CTS∗ and EvalMod, respectively. Thus the number
of matrix groups in CTS+ significantly exceeds that in CTS∗, offering greater
flexibility in grouping the FFT matrices. We note that, as represented in [11],
each FFT matrix Ei has only three diagonal vectors and each r consecutive mul-
tiplication of FFT matrices has at most 2r− 1 diagonal vectors. Therefore, they
discussed a trade-off between the depth and the number of diagonal vectors.
However, the design of CTS+ possesses substantial number of available levels
lCTS∗ + lEM. Thus, we will opt for a strategy that emphasizes reducing the total
number of diagonal vectors over decreasing depth.

Counting the number of diagonals in [11, 4] misses the fact that E0 has ac-
tually two diagonals, not three. Based on the fact, r consecutive multiplication
has exactly 2r diagonals if the first factor is E0 and 2r+1 − 1, otherwise.

20

Number of diagonals Ei EiEi+1 EiEi+1Ei+2 EiEi+1Ei+2Ei+3

i = 0
split 2 5 8 11

consecutive 2 4 8 16

i > 0
split 3 6 9 12

consecutive 3 7 15 31

The above table compares the number of diagonals when consecutive matri-
ces are pre-multiplied to the number when the matrices are just split and not
pre-multiplied. An optimal number of consecutive multiplication deduced from
the table is three for E0 and two for Ei with Ei with i > 0. For the data in
CN

2 , there are log N
2 number of FFT factors of DFT, and an optimal number

of decomposition is
⌈
log N

2 −3

2

⌉
+ 1 =

⌈
log N

2

⌉
− 1. When the available levels

lCTS∗ + lEM for CTS+ is bigger than the optimal number, the modulus in ci-
phertext is reduced via ModDown by their difference before the multiplication
of FFT matrices. This allows us to decrease the remaining levels and speed up
computations.

Now, we can determine the computational cost of CTS+ in comparison to
CTS∗. It’s important to note that the computational complexity of a linear
transformation is proportional to both the total number of diagonal vectors and
the starting level. With these considerations in mind, the computational cost
ratio of CTS+ to CTS∗ is given by

of diagonals in CTS+

of diagonals in CTS∗ × the starting level in CTS+

the starting level in CTS∗ . (7)

Given our efficient design of CTS+, the computational cost ratio of CTS+ to
CTS∗ should not result in a significant increase in computational cost.

Remark : To enhance the speed of CTS+, our primary focus was on minimizing
the number of diagonals. Additionally, we could have explored the approach of
minimizing its starting level. Determining the optimal strategy between mini-
mizing the number of diagonals and minimizing the starting level requires ex-
haustive trials and careful consideration of various factors, akin to the discussion
presented in [11]. As depicted in Figure 7, CTS+ is configured in parallel with
the CTS∗ + EvalMod. The circuits of CTS+ and CTS∗ are independent of each
other and can be executed in parallel. Therefore, if the running time of CTS+

is shorter than that of CTS∗, it does not affect the overall running time. By
focusing solely on reducing the number of diagonals, CTS+ achieves a running
time of less than half of CTS∗. Hence, we can omit the complex and additional
discussions mentioned above.

Example 3. In this example, we utilize Parameter I in Table 1. In this parameter
set, the depth of CTS∗ with ∆CTS∗ is 2, and the depth of EvalMod is 8, so we
can utilize CTS+ with ∆CTS with 10 multiplicative depths. Since N = 216, there
are 15 number of FFT matrices. Among 15 matrices, the first three matrices
multiplied together to form one group, and then subsequent groups are formed

21

by sequentially multiplying two matrices. This grouping method is summarized
in the below table, resulting in a total of 7 groups.

Therefore, CTS+ utilizes 7 =
⌈
logN

2

⌉
− 1 out of 10 available multiplicative

depths, while the remaining 3 are consumed by ModDown before the multipli-
cations. Let us determine the computational cost of CTS+. Initially, when con-
sidering the total number of diagonal vectors, the matrices multiplied in CTS+

comprise a total of 50 diagonal vectors, in contrast to the 93 in CTS∗. Subse-
quently, in terms of starting level, CTS+ starts at level 22 due to ModDown,
while CTS∗ starts at level 25. Utilizing Equation (7), the computational cost
ratio of CTS+ to CTS∗ is given below. This implies that the computational cost
of CTS+ is less than half of that of CTS∗.

of diagonals in CTS+

of diagonals in CTS∗ × the starting level in CTS+

the starting level in CTS∗ =
50

93
· 22
25

= 0.47 . . .

The table below presents a comparison of the running time of CTS+ with that of
CTS∗. The experiments were conducted using our GitHub code with parameter
set I, repeated 10 times and averaged. The ratio of 0.44 closely matches the
analytical result of 0.47. This alignment between the experimental and analytical
results suggests consistency and reliability in our findings.

CTS∗ CTS+ CTS+/CTS∗

running time 247s 109s 0.44

7 Tailoring scale factors with sparsity patterns

In Example 1, observed outcomes diverged from estimations. Upon closer exam-
ination, this discrepancy stems from the recurring presence of sparsity pattern
in diagonal vectors. In this section, we introduce the two terms called "sparsity
pattern" and "sparsity gap" . To the best of our knowledge, the identification of
this sparsity pattern is unique to our research. Recognizing these patterns has
significantly improved the precision of our error analysis. Furthermore, by tak-
ing into account these sparsity patterns, we can refine the ciphertext modulus
by adjusting scale factors in CTS and STC. This section delves deeper into the
emergence of the sparsity pattern and its implications.

Definition 1. Sparsity pattern is a phenomenon where zero elements appear
periodically when the diagonal vectors of a matrix undergo iFFT. The period
of sparsity pattern in matrix A will be denoted as S(A) and it is the period of
nonzero element appearance within diagonal vector.

22

The sparsity pattern is characterized by the presence of consecutive zeros in
the encoded diagonal vectors. Through experimentation, we have confirmed that
this sparsity pattern is consistently observed across all diagonal vectors. While
the underlying cause of this sparsity pattern remains elusive, our observations
have led us to glean the following insights.

Conjecture 1. Let N be the RLWE dimension. Denote E0, · · · , ElogN−2 as de-
composed FFT matrices. Then S

(
Ei · Ei+1 · · · Ei+(d−1)

)
= S (Ei) = 2i for any

i and d.

The forthcoming Example 4 elucidates the observations derived from exper-
imentation that correspond to Conjecture 1.

Example 4. Let N = 25 and scale factor ∆ = 240. Denote E0, E1, E2 and E3

be the decomposed FFT matrices. Each Ei has 32 diagonal vectors. We encode
all 32 diagonal vectors with scale factor ∆, and note that the scale factor does
not have any impact on the sparsity pattern. We observe the sparsity pattern by
encoding the diagonal vectors of the matrices obtained by multiplying groups of
two, three and four consecutive FFT matrices together and compute the sparsity
gap. This results is summarized in Table 2. Experiment results allow us to verify
the Conjecture 1, empirically.

Multiplication of FFT matrices Sparsity Gap Densest Matrix
E0E1 1 E0

E1E2 2 E1

E2E3 4 E2

E0E1E2 1 E0

E1E2E3 2 E1

E0E1E2E4 1 E0

Table 2. The resulting sparsity pattern resulting when multiple FFT matrices are
sequentially multiplied. The results indicate that the sparsity gap of a multiplication
of FFT matrices follows the sparsity gap of the densest matrix among them.

The sparsity pattern can be applied to our error analysis of linear trans-
formations. With the incorporation of the sparsity pattern, slight adjustments
are made to the error estimation formula. The new error estimation formula
ensures precise prediction of experimental observations. When applied, it ac-
curately computes the estimated values for Example 1, aligning exactly with
the observed values. The forthcoming lemma demonstrates how error estima-
tion with the consideration of the sparsity pattern emerges when a single matrix
multiplication is performed.

23

Theorem 3. For a matrix A ∈ CN
2 ×N

2 and a vector z ∈ CN
2 , let Homo (Az) be

the homomorphic evaluation of their product Az. Then its error is given as

∥Homo (Az)−Az∥2 =
kN ∥z∥2

12∆2
· 1

S (A)
,

where k is the number of diagonal vectors of the matrix and ∆ is the scale factor
in the homomorphic evaluation.

Proof. Az =
k∑

i=1

vi ⊙ roti (z), where vi is the ith diagonal vector. In the ho-

momorphic evaluation, vi is converted to a plaintext pti = DFT (vi ·∆) and
rounded to p̃ti = ⌊pti⌉, generating truncation error τi [j] = pti [j] − p̃ti [j] for
each j = 0, · · · , N − 1. Without the sparsity pattern, each τi [j] can be treated
as a random variable with the uniform distribution U

[
− 1

2 ,
1
2

]
. With the pattern,

τi [j] = 0 unless j is a integer multiple of S (A), since there is no truncation error
of zero.

Let ptzi be the plaintext corresponding to roti (z), then

Homo (Az)−Az =
k∑

i=1

DFT
(

pti
∆ · ptzi

∆

)
− DFT

(
p̃ti
∆ · ptzi

∆

)
=

k∑
i=1

DFT
(

τi
∆ · ptzi

∆

)
.

Each component
(

τi
∆ · ptzi

∆

)
[j] is a sum of N

S(A) number of random variables.

(
τi
∆ · ptzi

∆

)
[j] =

N−1∑
l=0

± τi[l]
∆ · ptzi

∆ [mod (j − l, N)]

=
∑

S(A)| l
± τi[l]

∆ · ptzi
∆ [mod (j − l, N)] .

By Lyapunov’s Central limit theorem, the sum follows a normal distribution.
Since N is large enough, we have

∥Homo (Az)−Az∥2 =
k∑

i=1

N
2

∥∥∥ τi
∆ · ptzi

∆

∥∥∥2
= k · N

2

∑
S(A)| l

N−1∑
j =0

1
12∆2

∣∣∣ ptzi∆ [mod (j − l, N)]
∣∣∣2

= k · N
2 · N

S(A) ·
1

12∆2 ·
∥∥∥ ptzi

∆

∥∥∥2
= kN∥z∥2

12∆2 · 1
S(A) .

Here we used the L2−isometry, ∥z∥2 = N
2 ·
∥∥∥ ptzi

∆

∥∥∥2 for each i.

When a series of matrices are multiplied, the above Theorem is recursively ap-
plied in the same way as in Theorem 2. We report the following Theorem and
skip its proof, since it is a straightforward repeat of its proof.

24

Theorem 4. For matrices A1, · · · , Ad ∈ CN
2 ×N

2 and a vector z ∈ CN
2 , let

Homoseq (Ad · · ·A1z) be the homomorphic evaluation of their product A1, · · · , Adz.
Then its error is given as

∥Homoseq (Ad · · ·A1z)−Ad · · ·A1z∥2 =
N ∥z∥2

12∆2
∥A1∥2 · · · ∥Ad∥2

·

(
kA1

∥A1∥2 · S (A1)
+ · · ·+ kAd

∥Ad∥2 · S (Ad)

)
,

where kAi
is the number of diagonal vectors of each matrix Ai for all i and ∆ is

the scale factor in the homomorphic evaluation.

The above Theorem assumed the same scale factor. When the terms kAi

S(Ai)

are not uniform, it is advantageous to take different scale factor ∆i for each i.
The error analysis is not much different with the different scale factors. For the
latter case, we transform the error equation as follows.

∥Homoseq (Ad · · ·A1z)−Ad · · ·A1z∥2 =
N ∥z∥2

12
∥A1∥2 · · · ∥Ad∥2

·

(
kA1

∥A1∥2 · S (A1) ·∆2
1

+ · · ·+ kAd

∥Ad∥2 · S (Ad) ·∆2
d

)
.

Then, uniform scale factor ∆ and adaptive scale factors {∆i}di=1 are related as
below when the error sizes are equal.

1

∆2

(
kA1

∥A1∥2 · S (A1)
+ · · ·+ kAd

∥Ad∥2 · S (Ad)

)
=

kA1

∥A1∥2 · S (A1) ·∆2
1

+

· · ·+ kAd

∥Ad∥2 · S (Ad) ·∆2
d

.

From the relation, we suggest selecting adaptive scale factors as follows.

∆i = ∆ ·

d · ∥Ai∥2· k(Ai)/ S(Ai)
d∑

j =1
∥Aj∥2· k(Aj)/ S(Aj)

1/2

, for each i. (8)

Example 5. In Example 1, the table comparing the observed and estimated
eCTS∗ shows a slight discrepancy, with our estimations slightly exceeding the
observed values. This example illustrates that the discrepancy can be removed
by applying new error estimation formula derived from Theorem 4 and this new
formula allows for much more accurate error prediction. The table below com-
pares the observed errors of each FFT matrix multiplication in CTS with those
of sparsity-applied error estimations, based on Parameter I from Table 1.

25

Parameter I observation new estimations
∥eA1

∥ 4.21× 10−12 4.21× 10−12

∥eA2A1∥ 4.19× 10−13 4.37× 10−13

∥eA3A2A1
∥ 3.96× 10−14 4.31× 10−14

∥eA4A3A2A1
∥ 5.26× 10−15 5.99× 10−15

For the design of CTS with Parameter I, the sparsity gaps for A1, A2, A3 and
A4 are 1, 16, 256 and 4096 , respectively. Using these sparsity gaps in Equation (8)
enables the adaptive selection of scale factors for each matrix in CTS. Similarly,
the scale factors of FFT matrices multiplied within STC can also be adaptively
chosen. The table compares the modulus bits used in CTS and STC before and
after tailoring the scale factors for the matrices multiplied in both CTS and
STC, and the maintenance of overall accuracy despite the utilization of these
tailored scale factors.

Parameter I modulus bits ∥etotal∥CTS STC
EvalRound++ Error Balancing 118.2 84.9 6.32× 10−5

EvalRound++ Error Balancing + Sparsity 111.6 80.4 6.34× 10−5

The table reveals that tailoring the scale factors for each matrix allows for
approximately 7 and 4 bits reduction in CTS and STC, respectively, totaling
around 11 bits saved compared to the non-tailored scenario while keeps the
overall accuracy.

8 Conclusion

In this work, we introduced three methods to reduce the substantial modulus
and levels consumed in conventional bootstrapping while maintaining the same
precision. These methods are referred to as EvalRound+, error balancing, and
tailoring scale factors. They are independent of each other, allowing individual
utilization. When all of them are applied in conventional settings, a significant
reduction in the modulus and levels spent in CTS and STC is achieved. The
saved modulus and levels are then reallocated to general-purpose multiplications
(Mult). Table 3 presents the modified parameter sets I∗, II∗, and III∗ obtained
by applying the proposed three methods to the conventional parameter sets I, II,
and III, respectively. The modulus spent in CTS and STC is reduced by approx-
imately 43.8%, 40.9%, and 42.4% in Parameter set I, II, and III, respectively.

By reducing the modulus and levels consumed in CTS and STC, we increase
the capacity for general ciphertext multiplications (Mult) following bootstrap-
ping. The increase in the number of Mult is proportional to the achieved re-
duction. For each set of parameters I, II, and III, we observe a gain of 33%,
20% and 44%, respectively, in the number of Mult compare to the conventional
bootstrapping.

Note that the results are based on the assumption that the additional CTS
in EvalRound+ is executed independently and in parallel. Therefore, if executed

26

Parameter log qj
q0 Mult STC EvalMod CTS

I 60 9× 40 3× 39 8× 60 4× 56

I∗ 60 12× 40 2× 40.2 8× 60 2× 55.8

II 55 5× 60 + 5× 30 2× 45 8× 55 4× 53

II∗ 55 6× 60 + 6× 30 2× 36.8 8× 55 2× 52.3

III 58 9× 42 3× 42 9× 58 3× 58

III∗ 58 13× 42 2× 39.8 9× 58 2× 46.4
Table 3. Parameter sets modified by the proposed three methods

sequentially, the efficiency is somewhat reduced. However, with the efficient im-
plementation demonstrated in Section 6, the latency amount of the additional
CTS is at most 50% of the usual CTS. Though it heavily depends on each com-
putation environment, CTS would take about 30% charge of the total cost. With
this regard, the latency of the sequential implementation would be just about
15% of the total cost. About 15% loss is bearable due to the aforementioned
advantages.

From the above results, our improvements are significant for most commonly
used parameter sets. Importantly, we achieved these improvements while main-
taining accuracy and running time at a closely similar level to those of the con-
ventional bootstrapping. All these experimental results are summarized in Table
4. All experiments were conducted using our self-implemented code, which will
be publicly available on GitHub.

Due to the limited time available and pages allowed, we consider only CTS
and STC to improve, leaving out EvalMod. Recently, there have been some
noticeable enhancements of EvalMod, such as modified Remez [15] and variance
minimization [16]. Our optimizations in CTS and STC can be combined with
an optimization in EvalMod. We put off to future work the discussion of what
other optimizations to combine with ours and how to modify the presented error
analysis to these combinations.

27

Parameter I Modulus General Bootstrapping Running
consumption multiplications accuracy time

Conventional 821 9 7.16× 10−5 602

EvalRound 828 10 5.00× 10−5 600

ours 671 12 6.34× 10−5 631 (parallel)
733 (serial)

Parameter II Modulus General Bootstrapping Running
consumption multiplications accuracy time

Conventional 742 10 5.36× 10−2 692

EvalRound 752 10 4.81× 10−2 700

ours 617 12 7.59× 10−2 647 (parallel)
750 (serial)

Parameter III Modulus General Bootstrapping Running
consumption multiplications accuracy time

Conventional 822 9 1.41× 10−5 1075

EvalRound 813 10 1.32× 10−5 1068

ours 693 13 1.40× 10−5 1070 (parallel)
1167 (serial)

Table 4. When comparing our proposal, which is obtained by applying the proposed
three methods, to conventional and EvalRound bootstrappings, ours exhibits the least
bit consumption of modulus and the highest number of general multiplications per
bootstrapping. However, the accuracy and runtime (in seconds) of bootstrapping are
similar among the three methods. Accuracy refers to ∥etotal∥ in Section 5.

28

References

1. Bae, Y., Cheon, J.H., Cho, W., Kim, J., Kim, T.: Meta-bts: Boot-
strapping precision beyond the limit. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Secu-
rity. pp. 223–234. CCS ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560696,
https://doi.org/10.1145/3548606.3560696

2. Bae, Y., Cheon, J.H., Kim, J., Park, J.H., Stehlé, D.: Hermes: Efficient ring packing
using mlwe ciphertexts and application to transciphering. In: Annual International
Cryptology Conference. pp. 37–69. Springer (2023)

3. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Statistics,
Wiley (2012), https://books.google.co.kr/books?id=a3gavZbxyJcC

4. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In: Ad-
vances in Cryptology–EUROCRYPT 2021: 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17–21, 2021, Proceedings, Part I. pp. 587–617. Springer (2021)

5. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approxi-
mate homomorphic encryption. In: IACR Cryptology ePrint Archive (2019),
https://api.semanticscholar.org/CorpusID:53240997

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Advances in Cryptology–EUROCRYPT 2018: 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I 37. pp. 360–
384. Springer (2018)

7. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of
approximate homomorphic encryption. Selected areas in cryptography : an-
nual international workshop, SAC proceedings. SAC 11349, 347–368 (2018),
https://api.semanticscholar.org/CorpusID:52977564

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting. pp. 169–178. STOC ’09, Association for Computing Machin-
ery, New York, NY, USA (2009). https://doi.org/10.1145/1536414.1536440,
https://doi.org/10.1145/1536414.1536440

10. Halevi, S., Shoup, V.: Bootstrapping for helib. J. Cryptol. 34(1) (jan 2021).
https://doi.org/10.1007/s00145-020-09368-7, https://doi.org/10.1007/s00145-020-
09368-7

11. Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete fourier
transforms and fhe bootstrapping. IEEE Access 7, 57361–57370 (2019).
https://doi.org/10.1109/ACCESS.2019.2913850

12. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. pp. 364–390. Springer
International Publishing, Cham (2020)

29

13. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate he. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022. pp. 491–520. Springer International Publish-
ing, Cham (2022)

14. Kim, S., Park, M., Kim, J., Kim, T., Min, C.: Evalround algorithm in ckks boot-
strapping. In: Advances in Cryptology–ASIACRYPT 2022: 28th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5–9, 2022, Proceedings, Part II. pp. 161–187. Springer
(2023)

15. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of
rns-ckks homomorphic encryption using optimal minimax polynomial approxima-
tion and inverse sine function. In: Canteaut, A., Standaert, F.X. (eds.) Advances in
Cryptology – EUROCRYPT 2021. pp. 618–647. Springer International Publishing,
Cham (2021)

16. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision boot-
strapping for approximate homomorphic encryption by error variance minimiza-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EURO-
CRYPT 2022. pp. 551–580. Springer International Publishing, Cham (2022)

17. Remez, E.Y.: Sur la determination des polynomes d’approximation de degre don-
nee. Comm. Soc. Math. Kharkov 10(196), 41–63 (1934)

18. Winkelbauer, A.: Moments and absolute moments of the normal distribution. arXiv
preprint arXiv:1209.4340 (2012)

30

Appendix

Lemma 1. Let τ ∈ RN be an i.i.d. random vector with mean 0 and variance σ2

and z ∈ CN/2 be a given vector. Then we have

E

N/2∑
i=1

[DFT (τ)⊙ z]
2
i

 = Nσ2 ∥z∥2 .

Furthermore, each [DFT (τ)⊙ z]i follows the normal distribution N
(
0, Nσ2 |zi|2

)
.

Proof. Let ptz = iDFT (z) ∈ R [x] /xN + 1. Then,

DFT (τ)⊙ z = DFT (τ · ptz)

Each component (τ · ptz) [j] is a weighted sum of i.i.d. random variables.

(τ · ptz) [j] =
N−1∑
l=0

±τ [l] · ptz [mod (j − l, N)]

By Lyapunov’s Central limit theorem [3], the sum follows a normal distribu-
tion with mean zero. The variance of the distribution is given as

E
[
∥(τ · ptz) [j]∥2

]
= σ2

N−1∑
l=0

|ptz [l]|2 = σ2 ∥ptz∥2

E
[
∥(τ · ptz)∥2

]
= σ2N ∥ptz∥2

Using the L2−isometry, we obtain

E

N/2∑
i=1

[DFT (τ)⊙ z]
2
i

 =
N

2
E
[
∥τ · ptz∥2

]
=

N

2
σ2N ∥ptz∥2

= σ2N ∥z∥2 .

Proof of Theorem 1 :

Proof. Let v1, · · · , vk be the diagonal vectors of A so that Az =
∑k

j=1 vj ⊙ zj ,
where zj is a rotation of z. Let ptj = ∆ · iDFT (vj), then the encoding vector of
vjequals

⌊
ptj
⌉

and τj =
⌊
ptj
⌉
− ptj follows the uniform distribution U

[
− 1

2 ,
1
2

]
,

for each j. Then we have

31

e =
1

∆

k∑
j=1

DFT
(⌊
ptj
⌉)

⊙ zj −
k∑

j=1

vj ⊙ zj

=
1

∆

k∑
j=1

DFT
(⌊
ptj
⌉)

⊙ zj −
1

∆

k∑
j=1

DFT
(
ptj
)
⊙ zj

=
1

∆

k∑
j=1

DFT (τ j)⊙ zj .

Let wj denote DFT (τ j) ⊙ zj , then E
[
∥wj∥2

]
= N

12 ∥z∥
2 for each j. Since

the rounding errors τ1, · · · , τk are independent to each other, so are w1, · · · , wk.
Using the independence, we can use the additivity of variance to get E

[
∥e∥2

]
=

1
∆2

∑k
j=1 E

[
∥wj∥2

]
= kN

12∆2 ∥z∥2. By the above lemma, the ith coordinate of wj ,

denoted by wj,i, follows the normal distribution N
(
0, N

12 |zj,i|
2
)

and their sum

ei follows the normal distribution N
(
0, N

12∆2

∑k
j=1 |zj,i|

2
)
. The variance is at

most N
12∆2 k ∥z∥2∞.

Proof of Theorem 2 :

Proof. Let us enumerate the errors of single matrix multiplications.

e1 = Homo (A1z)−A1z

...
ed−1 = Homo (Ad−1Homoseq (Ad−2 · · ·A1z))−Ad−1Homoseq (Ad−2 · · ·A1z)

ed = Homo (AdHomoseq (Ad−1 · · ·A1z))−AdHomoseq (Ad−1 · · ·A1z)

The magnitude of each error is estimated by the previous theorem.

E
[
∥e1∥2

]
=

k1N

12∆2
∥z∥2

...

E
[
∥ed−1∥2

]
=

kd−1N

12∆2
∥Homoseq (Ad−2 · · ·A1z)∥2

...

E
[
∥ed∥2

]
=

kdN

12∆2
∥Homoseq (Ad−1 · · ·A1z)∥2

Note that the first term of e and ed cancels out and e− ed has the common
factor Ad as follows.

32

e− ed =AdHomoseq (Ad−1 · · ·A1z)−AdAd−1 · · ·A1z

=Ad [Homoseq (Ad−1 · · ·A1z)−Ad−1 · · ·A1z]

Likewisely, the first term of e−ed and Aded−1 cancels out and e−ed−Aded−1

has the common factor AdAd−1 as follows.

e− ed −Aded−1 =AdAd−1Homoseq (Ad−2 · · ·A1z)−AdAd−1Ad−2 · · ·A1z

=AdAd−1 [Homoseq (Ad−2 · · ·A1z)−Ad−2 · · ·A1z]

Continuing this approach leads to the following decomposition of e.

e = ed +Aded−1 +AdAd−1ed−2 + · · ·+AdAd−1 · · ·A2e1

Since the truncation errors are independent to each other, the decomposition
is a sum of independent random variables. Using the independence and the
conformality, we get

E
[
∥e∥2

]
=E

[
∥ed∥2

]
+ E

[
∥Aded−1∥2

]
+ · · ·+ E

[
∥AdAd−1 · · ·A2e1∥2

]
=E

[
∥ed∥2

]
+ ∥Ad∥2 E

[
∥ed−1∥2

]
+ · · ·+ ∥Ad∥2 · · · ∥A2∥2 E

[
∥e1∥2

]
=

kdN

12∆2
∥Ad−1 · · ·A1z∥2

+ ∥Ad∥2
kd−1N

12∆2
∥Ad−2 · · ·A1z∥2

+ · · ·

+ ∥Ad∥2 · · · ∥A2∥2
k1N

12∆2
∥z∥2

=
N ∥z∥2

12∆2
∥Ad∥2 · · · ∥A1∥2

(
kd

∥Ad∥2
+ · · ·+ k1

∥A1∥2

)
.

33

