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Abstract. In this paper, we study the security definitions of various
threshold symmetric primitives. Namely, we analyze the security def-
initions for threshold pseudorandom functions, threshold message au-
thentication codes and threshold symmetric encryption. In each case,
we strengthen the existing security definition, and we present a scheme
that satisfies our stronger notion of security. In particular, we propose
indifferentiability definition and IND-CCA2 definition for a threshold
pseudorandom function and a threshold symmetric encryption scheme,
respectively. Moreover, we show that these definitions are achievable.
Notably, we propose the first IND-CCA2 secure threshold symmetric
encryption scheme.
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1 Introduction

A cryptographic secret key is a piece of information that is used in a crypto-
graphic system as an input to a sub-algorithm whose action remains hidden to
an observer that does not possess this secret-key. That is, the security of the sys-
tem relies on the secrecy of the secret key and if an attacker compromises this
secret key, the whole system renders not-secure. One way to protect the secret-
key is Threshold Cryptography [DF89, SDFY94, NPR99, MPS+02, AMMR18,
BGG+18, CGMS21, LST21, DMV22, ASY22, BS23] in which the secret key is
split among multiple parties in order to protect the key. For a threshold func-
tionality F with the parameters n, t, each party Pi for i ∈ [n] receives its share
of the secret key ski and is able to compute a partial evaluation of F on an input
x (Fi(x)). Then any coalition set S with at least t members is able to compute
the evaluation of F on x using {Fi(x)}i∈S . In addition, any corrupt coalition
set with less than t members should not be able to eventuate F(x). That is, the
adversary needs to compromise at least t parties to gain information.

In contrast to threshold public-key functionalities [DF89], the threshold sym-
metric primitives are proposed recently and they are quite young. Consequently,
their security definitions and constructions are not well-studied yet. An exam-
ple would be a symmetric encryption method introduced in 2018 [AMMR18],

⋆ A discussion about post-quantum security is included in the Appendix A.



lacking any CCA security definition. In this paper, we analyze and strengthen
the existing security definitions for threshold symmetric primitives, and in each
case, we propose a construction to satisfy our security notion. Namely, we an-
alyze the security definitions for threshold pseudorandom functions, threshold
message authentication codes and threshold symmetric encryption. In partic-
ular, we propose indifferentiability definition and IND-CCA2 definition for a
threshold pseudorandom function and a threshold symmetric encryption scheme,
respectively.

To best of our knowledge, there is no threshold symmetric encryption scheme
which satisfies our IND-CCA2 security notion (see Section 5.2), that is, we aim
to propose the first the first IND-CCA2 secure threshold symmetric encryption
scheme.

1.1 Our Contribution

– We propose a stronger security notion for a threshold pseudorandom func-
tion. Our definition is simulation based and it is called indifferentiability.

– We show that our indifferentiability definition is strictly stronger than the
pseudorandomness definition [AMMR18].

– We show that the NPR threshold pseudorandom function [NPR99] satisfies
our definition.

– We strengthen the unforgeability definition for a randomized threshold mes-
sage authentication code.

– We propose an IND-CCA2 security definition for a threshold symmetric en-
cryption which is an improvement of themessage privacy definition proposed
in [AMMR18].

– We show that our IND-CCA2 security definition is achievable.

1.2 Technical Overview

In this subsection we present a technical overview of our work.

1.3 Threshold Pseudorandom Function

Definitional Discussion. We argue that the existing security definition for
a threshold pseudorandom function TPRF in [AMMR18] is not aligned with
our intuitive expectation of the “pseudorandomness” [KL07]. That is, the pseu-
dorandomness definition in [AMMR18] (Definition 9) is reminiscent of the un-
predictability of pseudorandom number generators rather than the “pseudoran-
domness”. In more details, in Definition 9 the adversary may submit a challenge
input x for which he has not collected enough partial information to compute
TPRF(x). Then, the challenger either responds to x with TPRF(x) or with a
random value. Finally, the adversary’s goal is to distinguish between these two
cases. However, in the usual definition of “pseudorandomness” for a function
f , an adversary that has oracle access to either f or a truly random function,
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should not tell the difference.

Our Proposed Definition: Indifferentiability.We strengthen Definition 9 in
this paper. Intuitively, we desire a security definition that guarantees a threshold
pseudorandom function TPRF and its partial evaluations for non-corrupted keys
look like truly random functions. That is, assuming that TPRF is constructed
from the function family {fski}i, TPRF and fski for a non-corrupted key ski
should be indistinguishable from truly random functions F and f , respectively.

We embed this intuition in our indifferentiability definition (Definition 14).
Namely, in the real world the adversary is allowed to query both TPRF and
{fski}i functions. In the ideal world, we require the existence of a stateful sim-
ulator Sim that can simulate the real world interaction without using the non-
corrupted keys with the lazy sampling approach.1 In our convention, the simu-
lator Sim should satisfy the following two conditions:

– Sim is stateful and it starts with empty databases. Whenever the simulator
answers a query, it stores the input/output of this query in its corresponding
database.

– Sim simulates the random functions fi and F with the lazy sampling ap-
proach. That is, the simulator has to return a uniformly random value if
the output of a query is not determined from its database.

Implication and Achievability.We show that our indifferentiability definition
is strictly stronger than the pseudorandomness definition in [AMMR18] (see
Theorem 2):

– Vaguely speaking, when there exists a stateful simulator Sim that using
the lazy sampling approach can simulate the adversarial queries, then the
challenge query x in the pseudorandomness definition (Definition 9) can be
responded by a random value since the adversary does not have enough
information to compute TPRF(x).

– We propose a TPRF which is secure with respect to Definition 9 and it is
insecure with respect to our definition. The high-level idea is to commit to a
value TPRF(x) in the setup phase using a hiding and binding commitment
scheme, in a way that this commitment can only be opened if one learns t
partial evaluation of TPRF on x. The security with respect to Definition 9
holds by the hiding property of the commitment scheme. However, for an
adversary which first queries x to TPRF(x), then it queries t partial eval-
uation of TPRF on x, there is no successful simulator with respect to our
definition. The reason is that the simulator has to return a random value y
to respond to the first query. And the adversary checks if [y = TPRF(x)]
once it has enough information to open the commitment. By the hiding and
binding property of the commitment scheme, the simulator can not bypass
this check.

1 The lazy sampling approach can be seen as an efficient simulation of truly random
functions F and f in our definition.
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We show that our definition is achievable. Specifically, we show that the NPR
threshold pseudorandom function [NPR99] fulfills our indifferentiability defini-
tion if the underlying function family {PRFski}i is pseudorandom. See Theorem 3
for more details.

1.4 Threshold Message Authentication Code

Definitional Discussion. In the computational model of [MPS+02], the chal-
lenger is able to observe all pairs of messages and tags that are queried by the
adversary. Then, the adversary wins the existential forgery game if he is able
to output a new valid pair of message and tag. In other words, in their model
the adversary is not able to actively participate in the forgery game with the
help of a corrupt party. We argue that this is not a realistic restriction, be-
cause the adversary can initiate an evaluation of a tag on a message m with
the help of a corrupt party. Therefore, the resulting tag would not be accessible
by the challenger, specifically, for a randomized threshold message authentica-
tion code. Currently, we are not aware of a threshold message authentication
code that is randomized, though, we present our definition for completeness
and for the prospect of inventing such a construction in the future. (Note that
randomized message authentication codes are well-motivated and constructed
[JJV02, DKPW12].)

Our Existential Unforgeability Definition. We embed this adversarial sce-
nario in our existential unforgeability definition. We use the same idea that
appears in the authenticity definition for a threshold symmetric encryption in
[AMMR18]. That is, for the queries that are initiated by a corrupt party j, the
challenger increments a counter ct by the total number of non-corrupt shares
that j receives. The queries that are initiated by a non-corrupt party can be
stored in a list L by the challenger. The challenger defines g := t − |C| to be
the gap between the threshold value t and the number of corrupt parties. At the
end, the adversary wins if he outputs more than ct/g valid pairs (mi, tagi) not
in L.2 (See Definition 15 for more information.)

A threshold pseudorandom function TPRF immediately gives us a threshold
message authentication code. (See Figure 3.) We show that if TPRF satisfies the
pseudorandomness and correctness (Definition 8), then the protocol in Figure 3
satisfies the existential unforgeability.

1.5 Threshold Symmetric Encryption

Definitional Discussion. Themessage privacy definition ( Definition 12 [AMMR18])
for a threshold symmetric encryption scheme consists of indirect decryption

queries that are allowed to be initiated only by a non-corrupt party and their
outputs are not communicated to the adversary. In other words, the adversary

2 This idea of making q MAC queries and outputting q + 1 valid pairs at the end has
been appeared before in the context of superposition queries [BZ13a, BZ13b].
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is not able to initiate a decryption query with the help of a corrupt party. We
argue that this is not a real-world attack scenario because an adversary that has
corrupted a subset of parties can control their behaviors. Therefore, potentially
the adversary can initiate a decryption query with the help of a corrupt party.
We address this realistic adversarial scenario in our paper and strengthen the
message privacy definition.

Our Proposed Definition: IND-CCA2 Security. We allow the adversary
to make the encryption and decryption queries. These queries can be initiated
by any party. In more details, in contrast to the message privacy definition, in
our definition a corrupt party can initiate a decryption query and the output of
a decryption query initiated by a non-corrupt party would be communicated to
the adversary in our definition. (See Definition 16 for more details.)

The adversary submits two challenge messages m0,m1 and the challenger
encrypts one of these two messages and sends the resulting ciphertext c∗ to
the adversary. The adversary’s goal is to determine which of m0,m1 has been
encrypted. Trivially, the non-corrupt parties should not participate in the de-
cryption of c∗ if a corrupt party initiates a decryption query on c∗ in the post-
challenge phase. (Otherwise, no encryption scheme satisfies the security defini-
tion.)

Implication and Achievability. It is obvious that our definition is stronger
than the message privacy definition.

We argue that the well-known approach to construct an IND-CCA2 secure
symmetric encryption scheme (the Encrypt-then-Mac approach) might not work
in the distributed setting. At a high-level, since the verification of the message au-
thentication code is a distributed algorithm, a corrupt party can learn a valid tag
on a valuem through a decryption query. In more details, let us define a threshold
symmetric encryption scheme ΠTSE that its encryption algorithm on an input m
returns c = (c1, c2) where c1 := EncTSE′(m) and c2 := TM.Mac(EncTSE′(m)).
The adversary can alter the challenge ciphertext c∗1 to get a valid ciphertext c′1
and initiate a decryption query with the help of a corrupt party j on (c′1, c2).
The decryption algorithm first checks if c2 is a correct tag for c′1 or it is not.
During this verification, the party j may learn about a correct tag tag on c′1.
That is, the party j may learn tag = TM.Mac(c′1). Consequently, the adversary
can submit (c′1, tag) as decryption query and use it to determine which of the
two messages m0,m1 has been encrypted in the challenge phase.

Fortunately, we show that the Encrypt-then-Sign approach will result in
an IND-CCA2 secure threshold symmetric encryption scheme. We construct a
threshold symmetric encryption scheme from a threshold pseudorandom func-
tion, a symmetric encryption scheme and a signature scheme. (See Figure 4.) We
show that our scheme satisfies the IND-CCA2 security if the underlying TPRF is
pseudorandom, the symmetric encryption scheme is one-time IND-CPA secure
and the signature scheme satisfies the strong unforgeability. (See Theorem 5
for more details.) The difference between the Encrypt-then-Sign approach with
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the Encrypt-then-Mac approach is that the verification of the signature scheme
is not distributed. In more details, each party evaluating an encryption on a
message m signs the resulting ciphertext with its private-key. Then, anyone can
check if this is a valid signature by the corresponding public-key when it is sub-
mitted as a decryption query. This bypasses the attack described above for the
Encrypt-then-Mac approach.

2 Preliminaries

We say fk is a pseudorandom function if it is indistinguishable from a truly
random function for any probabilistic polynomial-time (PPT) adversary.

Definition 1 (Pseudorandom Function). Let λ be the security parameter.
Let F := {fk}k be a family of keyed functions fk : M → N where k is a
bit string of length n. The size of M,N and the value n may depend on the
security parameter. We say F is a pseudorandom function family if for any
PPT adversary A:

|Pr[b = 1 : k
$←− {0, 1}n, b← Afk ]−

Pr[b = 1 : f
$←− {all f : M → N}, b← Af ]| ≤ neg(λ),

where AO has access to the oracle O.

We define one-time IND-CPA security for a symmetric encryption scheme.

Definition 2. We say SYM := (Sym.Gen,Sym.Enc,Sym.Dec) is one-time
IND-CPA secure if for any PPT adversary A:

|Pr[b = 1 : m0,m1 ← A, c∗ ← Sym.Encsk(m0), b← A(c∗)]−
Pr[b = 1 : m0,m1 ← A, c∗ ← Sym.Encsk(m1), b← A(c∗)]| ≤ negl(λ),

where sk← Sym.Gen(λ).

Definition 3 (Strong Unforgeability). A signature scheme SignScheme :=
(SGen,Sign,Verif) is strong unforgeable if for any PPT adversary A, and any
(pk, sk) generated by SGen, the following holds:

Pr[Verifpk(m, θ) = 1 ∧ (m, θ) /∈ L : (m, θ) ← ASignsk(L)] ≤ negl(λ),

where L is a list to store the A’s signature queries to Signsk.

Definition 4 (Commitment Scheme). A commitment scheme consists of
three polynomial-time algorithms Gen, Com and Ver described below.

– The key generating algorithm Gen that on the input of the security parameter
1λ returns a public-key pkcom.
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– The commitment algorithm Com on the inputs pkcom and a message m
chooses a randomness r and returns c := Com(pkcom,m; r) and the cor-
responding opening information ω.

– The verification algorithm Ver on the inputs pkcom, c, ω and m, either ac-
cepts (b = 1) or rejects (b = 0).

The scheme has the correctness property, that is, the verification algorithm re-
turns 1 with the probability 1 if c, ω are the output of Com:

Pr[b = 1 : pkcom ← Gen(1λ), (c, ω)← Com(pkcom,m), b← Ver(pkcom, c, ω,m)] = 1.

We define hiding and binding properties of a commitment scheme against a
PPT adversary.

Definition 5. We say a commitment scheme (Gen(1λ),Com,Ver) is statisti-
cally hiding if for any pkcom ← Gen(1λ), for any two messages m1,m2 and for
any distinguisher D

|Pr[D(pkcom, c1) = 1 : (c1, ω1)← Compkcom(m1)]−
Pr[D(pkcom, c2) = 1 : (c2, ω2)← Compkcom(m2)]| ≤ neg(λ).

Definition 6. A commitment scheme (Gen(1λ),Com,Ver) is computationally
binding if for any commitment c, and any PPT adversary A

|Pr[Ver(pkcom, c,m1, ω1) = 1 ∧Ver(pkcom, c,m2, ω2) = 1 ∧m1 ̸= m2 :

pkcom ← Gen(1λ), (m1, ω1,m2, ω2)← A(c, pkcom)]| ≤ neg(λ).

2.1 Threshold Pseudorandom Function

Definition 7 (Threshold Pseudorandom Function [AMMR18]). A thresh-
old pseudorandom function TPRF is a tuple of three algorithms TPRF = (Setup,
Eval, Combine) described below:

– The Setup algorithm generates n secret keys (sk1, · · · , skn) and public param-
eters pp. The i-th secret key ski is given to party i. That is, ((sk1, · · · , skn), pp)←
Setup(1λ, n, t).

– The Eval algorithm generates pseudo-random shares for a given value x.
Party i computes the i-th share zi for a value x by running Eval with ski, x
and pp. That is, zi ← Eval(ski, x, pp).

– The Combine algorithm combines the partial shares {zi}i∈S from parties in
the set S to generate a value z. If the algorithm fails, its output is denoted
by ⊥. Combine({(i, zi)}i∈S ; pp) =: z/ ⊥.

The TPRF = (Setup, Eval, Combine) has to fulfill the consistency property in
which with a high probability Combine executed on two different sets {(i, zi)}i∈S,
{(j, zj)}j∈S′ (generated honestly for two sets S, S′ of size at least t) will result
into the same value.
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Definition 8 (Correctness [AMMR18]). A threshold pseudorandom func-
tion TPRF = (Setup, Eval, Combine) is correct if for all PPT adversary A
there exists a negligible function neg such that the following game outputs 0 with
a probability at most neg(λ).

– Initialization. Run Setup algorithm to generate n secret keys and public
information pp: ((sk1, · · · , skn), pp)← Setup(1λ, n, t). Send pp to A.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A.

– Evaluation. In response to A’s evaluation query (Eval, x, i) for some i ∈
[n] \ C, return Eval(ski, x, pp) to A. Repeat this step as many times as A
desires.

– Computation. When A sends a set S of size at least t, an input x∗ and
shares {(i, z∗i )}i∈S∩C , compute zj ← Eval(skj , x

∗, pp) for any j ∈ S and
compute z′i ← Eval(ski, x

∗, pp) for any i ∈ S \ C. Also, compute z :=
Combine({j, zj}j∈S , pp) and z∗ := Combine({i, z′i}i∈S\C∪{(i, z∗i )}i∈S∩C , pp).
Finally, output 1 if z∗ ∈ {z,⊥}. Otherwise, output 0.

We present the pseudorandomness definition from [AMMR18].

Definition 9 (Pseudorandomness [AMMR18]). A threshold function TPRF =
(Setup, Eval, Combine) is pseudorandom if for all PPT adversaries A, there ex-
ists a negligible function neg such that

Pr[PseudoRanGame(1λ, 0) = 1]− Pr[PseudoRanGame(1λ, 1) = 1] ≤ neg(λ),

where PseudoRanGame is defined below.

PseudoRanGame(1λ, b) :

– Initialization. Run Setup(1λ, n, t) to get ((sk1, · · · , skn), pp). Give pp to
A. Initialize a list L := ∅ to record the set of values for which A may know
the TPRF outputs.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A. Define the corruption
gap as g := t− |C|.

– Pre-challenge evaluation queries. In response to A’s evaluation query
(Eval, x, i) for some i ∈ [n] \C, return Eval(ski, x, pp) to A. Repeat this step
as many times as A desires.

– Build the list. Add an x to L if |{i|A made a (Eval, x, i)query}| ≥ g. In
other words, if A contacts at least g honest parties on a value x, it has
enough information to compute the TPRF output on x.

– Challenge. A outputs (x∗, S, {(i, z∗i )}i∈U ) such that |S| ≥ t and U ⊆ S ∩C.
If x∗ ∈ L, output 0 and stop. Let zi ← Eval(ski, x, pp) for i ∈ S\U and z∗ :=
Combine({(i, z∗i )}i∈U ∪{(i, zi)}i∈S\U , pp). If z

∗ =⊥, return ⊥. Otherwise, if
b = 0, return z∗ and if b = 1, return a uniformly random value.

– Post-challenge evaluation queries. Same as the pre-challenge phase
except that if A makes a query of the form (Eval, x∗, i) for some i ∈ [n] \ C
and i is the g-th party it contacted, then output 0 and stop.

– Guess. Finally, A returns a guess b′. Output b′.
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2.2 Threshold Symmetric Encryption

Definition 10 (Threshold Symmetric-key Encryption [AMMR18]). A
threshold symmetric-key encryption scheme TSE consists of (possibly random-
ized) algorithms TSE.Setup, TSE.Enc and TSE.Dec described below:

– The algorithm TSE.Setup takes the security parameter as input, and outputs
n secret keys sk1, · · · , skn and public parameters pp. The i-th secret key ski
is given to party i.

– TSE.Enc(JskK[n]; [j : m;S]; pp) → [j : c/ ⊥] : The algorithm TSE.Enc is a
distributed protocol through which a party j encrypts a message m with the
help of parties in a set S. At the end of the protocol, j outputs a ciphertext
c (or ⊥ to denote failure). All the other parties have no output.

– TSE.Dec(JskK[n]; [j : c;S]; pp) → [j : m/ ⊥] : The algorithm TSE.Dec is a
distributed protocol through which a party j decrypts a ciphertext c with the
help of parties in a set S. At the end of the protocol, j outputs a message m
(or ⊥ to denote failure). All the other parties have no output.

It is required that TSE fulfills a consistency property: For any natural numbers
n, t such that t ≤ n, all (JskK[n]; pp) output by TSE.Setup(1λ), for any message
m, any two sets S, S′ ⊊ [n] such that |S|, |S′| ≥ t, and any two parties j ∈ S, j′ ∈
S′, if all the parties behave honestly, then there exists a negligible function neg
such that

Pr[[j′ : m]← TSE.Dec(JskK[n]; [j′ : c;S′]; pp)|
[j : c]← TSE.Enc(JskK[n]; [j : m;S]; pp)] ≥ 1− neg(λ),

where the probability is taken over the randomness chosen in TSE.Enc and
TSE.Dec.

The consistency property does not prevent an adversary to deliberately in-
fluence an encryption of a message m through the corrupt parties to get a ci-
pheretxt c which later can be decrypted to a different message than m. Below,
the correctness property is defined to address this scenario.

Definition 11 (Correctness [AMMR18]). We say a threshold symmetric
encryption scheme TSE := (TSE.Setup,TSE.Enc,TSE.Dec) is correct if for all
PPT adversaries A there exists a negligible function neg such that the following
game outputs 0 with a probability at most neg(λ).

– Initialization. The setup algorithm TSE.Setup is run to get (JskK[n], pp).
Send pp to A.

– Corruption. When receiving a set of corrupt parties C from A where |C| <
t, send {ski}i∈C to A.

– Encryption. When receiving an encryption query on (m, j, S) where j ∈
S \C and |S| ≥ t, initiate the TSE.Enc distributed algorithm from the party
j on inputs m,S and pp. If j outputs ⊥, stop and return ⊥. Otherwise, send
c to A.
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– Decryption. When receiving a decryption query on (c, j′, S′) where j′ ∈
S′ \ C and |S′| ≥ t, initiate the TSE.Dec distributed algorithm from the
party j′ on inputs c, S′ and pp.

– Output. Return 1 if and only if j′ outputs m or ⊥.

We say TSE is strongly-correct if we differentiate the output as follows. The
game outputs 1 if and only if:

– when all parties in S′ behave honestly, then j′ outputs m.
– when corrupt parties in S′ deviate from the protocol, then j′ outputs m or
⊥.

We import the message privacy from [AMMR18].

Definition 12 (Message Privacy). A TSE := (TSE.Setup,TSE.Enc,TSE.Dec)
satisfies message privacy if for all PPT adversaries A, there exists a negligible
function neg such that

Pr[MsgPrivTSE,A(1
λ, 0) = 1]− Pr[MsgPrivTSE,A(1

λ, 1) = 1] ≤ neg(λ),

where MsgPrivTSE,A is defined below.

MsgPrivTSE,A(1
λ, b) :

– Initialization. Run TSE.Setup(1λ, n, t) to get ((sk1, · · · , skn), pp). Give
pp to A.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A.

– Pre-challenge encryption queries. In response to A’s encryption query
(Encrypt, j,m, S) where j ∈ S and |S| ≥ t, run an instance of the protocol
TSE.Enc with A. Note that when j /∈ C, party j runs TSE.Enc and returns
the output ciphertext to A. Repeat this step as many times as A desires.

– Pre-challenge indirect decryption queries. In response to A’s decryp-
tion query (Decrypt, j, c, S) where j ∈ S \ C and |S| ≥ t, party j initiates
TSE.Dec with inputs c and S. Repeat this step as many times as A desires.

– Challenge. A outputs (j∗;m0;m1;S
∗) where |m0| = |m1|, j∗ ∈ S∗ \ C and

|S∗| ≥ t. Party j∗ initiates TSE.Enc with inputs mb and S∗ and sends the
resulting ciphertext c∗ to A.

– Post-challenge encryption queries. Same as the pre-challenge phase.
– Post-challenge indirect decryption queries. Same as the pre-challenge

indirect decryption queries.
– Guess. Finally, A returns a guess b′. Output b′.

2.3 Threshold MAC

We define a threshold message authentication code below. Our definition is dif-
ferent from the definition in [MPS+02] since we present the verification algorithm
as a distributed algorithm as well.
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Definition 13 (Threshold Message Authentication Code (TMAC)). A
TMAC is a tuple of three algorithms TMAC = (TM.Setup, TM.Mac, TM.Verif)
described below:

– The algorithm TM.Setup takes the security parameter as input, and outputs
n secret keys sk1, · · · , skn and public parameters pp. The i-th secret key ski
is given to party i.

– TM.Mac(JskK[n]; [j : m;S]; pp)→ [j : tag/ ⊥] : The algorithm TM.Mac is a
distributed protocol through which a party j computes a tag on a message m
with the help of parties in a set S. At the end of the protocol, j outputs a tag
tag (or ⊥ to denote failure).

– TM.Verif(JskK[n]; [j : (m, tag);S]; pp) → [j : b] : The algorithm TM.Verif is
a distributed protocol through which a party j verifies a tag tag on a message
m with the help of parties in a set S. At the end of the protocol, j outputs a
bit b which indicates accept (b = 1) or reject (b = 0).

It is required that TMAC fulfills a consistency property: For any natural numbers
n, t such that t ≤ n, all (JskK[n]; pp) output by TM.Setup(1λ), for any message m,
any two sets S, S′ ⊊ [n] such that |S|, |S′| ≥ t, and any two parties j ∈ S, j′ ∈ S′,
if all the parties behave honestly, then there exists a negligible function neg such
that

Pr[[j′ : 1]← TM.Verif(JskK[n]; [j′ : (m, tag);S′]; pp)|
[j : tag]← TM.Mac(JskK[n]; [j : m;S]; pp)] ≥ 1− neg(λ),

where the probability is taken over the randomness chosen in TM.Mac and
TM.Verif.

3 TPRF from a PRF

In this section, first, we strengthen the pseudorandomness security definition
(Definition 9). And then we show that the well-known NPR’s threshold pseu-
dorandom function [NPR99] satisfies our security definition if the underlying
function family is pseudorandom.

Construction of a threshold pseudorandom function (TPRF) in [NPR99] is
based on any pseudorandom function. In the setup phase, for d :=

(
n

k−1

)
, random

numbers k1, · · · , kd are chosen. Let D1, · · · , Dd be the d distinct (n− t+1)-sized
subsets of [n]. Then, the i-th random number is given to all parties in the set Di.
The TPRF is defined as Fk(x) = ⊕d

i=1PRFki
(x), where PRF is any pseudorandom

function. We call this NPR threshold function. (See Figure 1.) Since all the d
keys are needed to compute Fk, no set S of parties with less than t members
can compute Fk by itself since at least one of the D1, · · · , Dd subsets does not
intersect with S.3

3 Note that d is the total number of (n− t+ 1)-sized subsets of [n] and it is the total
number of (t− 1)-sized subsets of [n]. Then the map Di → [n] \Di is a permutation
between these subsets. Therefore, any subset S of size t−1 (or less) will not intersect
with at least one Dj(:= [n] \ S).
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Public Parameters: Let PRF : {0, 1}k×{0, 1}λ → {0, 1}λ
′
be a pseudorandom function.

– Setup(1λ, n, t) → (sk1, · · · , skn; pp). For any i ∈ [d], choose ki
$←− {0, 1}k where

d =
(

n
n−t+1

)
. Let D1, · · · , Dd be the d distinct (n − t + 1)-sized subset of [n]. For

any i ∈ [n], let ski := {kj |i ∈ Dj for j ∈ [d]}. Set pp := (f,D1, · · · , Dd) and gives
(ski, pp) to the party i.

– Eval(ski, x; pp) → zi. For any k ∈ ski, computes hi,k := PRFk(x). Set zi :=
{hi,k}k∈ski .

– Combine({(i, zi)}i∈S ; pp) := z. If |S| < t, it returns ⊥. Parse zi = {hi,k}k∈ski . We
define a set {h′

1, · · · , h′
d′} := ∪i∈S{hi,k}k∈ski . If d

′ > d, returns ⊥. Otherwise, set
z := ⊕i∈[d′]h

′
i.

Fig. 1. The NPR threshold pseudorandom function.

3.1 Our Definition: Indifferentiability

The Pseudorandomness definition in [AMMR18] (Definition 9) is reminiscent
of the unpredictability of pseudorandom number generators. However, if one
wants to reflect on the definition of a pseudorandom function to the threshold
setting, a threshold pseudorandom function TPRF(:= (Setup, Eval, Combine))
and Eval(·, ski) for i ∈ [n] \ C should look like random functions beyond the
information that the adversary has learned through the corrupt parties and its
evaluation queries. We embed this requirement in our definition.

Let C be a set of corrupt parties. The adversary in the real world is allowed
to make two types of queries: 1) an evaluation query to a party i ∈ [n] \C, that
is, an (Eval, x, i) query. And 2) an evaluation query to TPRF itself, that is an
(Eval, x) query. For any i ∈ [n], let fi be a truly random functions with the same
domain and co-domain as Eval(·, ski). Let F be a truly random function with
the same domain and co-domain as TPRF. We require the existence of a PPT
simulator Sim that given {ski}i∈C and oracle access to fi and F is able to simulate
the interaction of adversary with the primitive in the real world.4 Obviously,
the answers to the (Eval, x, i) and (Eval, x) queries should be consistent if the
adversary queries (Eval, x, ·) beyond the threshold gap. In other words, whatever
an adversary can learn from the threshold psudorandom function during the real
execution of the function can be simulated by the simulator without using the
non-corrupt keys.

In the definition below, we remove the use of fi and F and instead, we put
a convention for the simulator Sim:

– Sim is stateful and it starts with empty databases. Whenever the simulator
answers a query, it stores the input/output of this query in its corresponding
database.

– Sim simulates the random functions fi and F with the lazy sampling ap-
proach. That is, the simulator has to return a uniformly random value if
the output of a query is not determined from its database.

4 This is inspired from the Indifferentiability Framework [MRH04].
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Note that our convention to consider such a simulator Sim described above is not
limiting. The reason is that in the security reductions the simulator should be an
efficient algorithm. That is, one needs to implement the truly random functions
fi and F with the lazy-sampling approach. Therefore, we explicitly embed this
efficiency in our definition.

Definition 14 (Indifferentiability). A threshold pseudorandom function TPRF =
(Setup, Eval, Combine) is indifferentiable from a truly random function if for
any PPT adversaries A, there exist a PPT (stateful) simulator Sim described
above and a negligible function neg such that

Pr[IndifGame(1λ, Real) = 1]− Pr[IndifGame(1λ, Random) = 1] ≤ neg(λ),

where IndifGame games are defined below.

IndifGame(1λ, Real) :

– Initialization. Run Setup(1λ, n, t) to get ((sk1, · · · , skn), pp). Give pp to
A.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A. Define the corruption
gap as g := t− |C|.

– The adversary makes a mix order of the following two query types:

• Evaluation queries to parties. In response to A’s evaluation query
(Eval, x, i) for some i ∈ [n] \ C return Eval(ski, x, pp) to A.

• Evaluation queries to TPRF. In response to a query (Eval, x) choose
a set S ⊆ [n] of at least t and return Combine({(i, zi)}i∈S ; pp) where
zi ← Eval(ski, x, pp) for i ∈ S.

– Guess. Finally, A returns a guess b′. Output b′.

IndifGame(1λ, Random) :

– Initialization. Run Setup(1λ, n, t) to get ((sk1, · · · , skn), pp). Give pp to
A and Sim.

– Corruption. Receive the set of corrupt parties C from A, where C < t. Give
the secret keys {ski}i∈C of these parties to A and Sim. Define the corruption
gap as g := t− |C|.

– The simulator responds to the adversary as:

• Evaluation queries to parties. In response to A’s evaluation query
(Eval, x, i) for some i ∈ [n] \ C, Sim({ski}i∈C ; pp) answers either using
its databases or with a uniformity random value.

• Evaluation queries to TPRF. In response to an A’s query on (Eval, x),
Sim({ski}i∈C ; pp) answers either using its databases or with a uniformity
random value.

– Guess. Finally, A returns a guess b′. Output b′.
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Remark. It may sound like a (pathological) example, where Eval and TPRF al-
ways output a zero bit, independently of the inputs, rejects our definition. Since
this zero-construction is consistent and correct and moreover, a simulator that
always outputs 0 bit on any query may work. However, we emphasize that with
our convention a valid simulator has to return a uniformly random value when-
ever the output of a query can not be determined from its database. Clearly, for
an adversary that makes a single query to TPRF, there is no valid simulator to
make these two games indistinguishable for this zero-construction.

We show that the indifferentiability definition (Definition 14) is stronger than
the pseudorandomness definition (Definition 9).

First, we show that if a TPRF is pseudorandom with respect to the Defini-
tion 9, then it is not necessarily indifferentiable with respect to the Definition 14.

Theorem 1. There exists a scheme that is secure with respect to the Definition 9
but it is not secure with respect to the Definition 14.

Proof. Let PRF : {0, 1}k ×{0, 1}n → {0, 1}m be a pseudorandom function where
n,m depends on a security parameter λ. Let ComScheme := (Gen, Com, Ver)
be a commitment scheme. Let H be a random oracle. We propose a (2, 1)-TPRF
with three algorithms defined below:

1. The Setup(1λ) algorithm chooses sk1, sk2 uniformly random from {0, 1}k.
Then it executes Gen(1λ) to obtain a public-key pkcom. It chooses a random x
from {0, 1}n and computes y1 = PRFsk1(x), y2 = PRFsk2(x), r = H(y1, y2) and
c = Compkcom(y1⊕y2; r). Then it sets pp := (PRF, H, pkcom, x, c). The i-th se-
cret key ski is given to party i. That is, ((sk1, · · · , skn), pp)← Setup(1λ, n, t).

2. The Eval algorithm generates pseudo-random shares for a given value x and
it is defined as Eval(ski, x, pp) := PRFski(x).

3. The Combine algorithm given two partial shares {z1, z2} from parties returns
z1 ⊕ z2.

We sketch why this scheme is secure with respect to the Definition 9 when
PRF is pseudorandom and ComScheme satisfies the hiding property. Note that
our scheme is a modified NPR TPRF with the parameters n = 2, t = 1. Let
us assume that the adversary A is attacking this scheme with respect to the
Definition 9. Without of loss of generality, we assume that A is corrupting the
party 1. We discuss the following cases:

1. Neither x is a learning query nor it is the challenge query.
2. x is the challenger query.
3. x is a learning query.

In the case 1 and 2, since PRFsk2(x) is unknown to A and H is a random oracle,
we can use a totally random value r∗ instead of r. Then, by the hiding property
of the commitment scheme, we can replace c with a random commitment value.
The rest of the proof follows from the security of the NPR TPRF.
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In the case 3, the proof follows from the security of the NPR TPRF. Because
the adversary can learn y1, y2, r and checks if these values are consistent with c,
but this does not give any extra information.

Insecurity with respect to Definition 11: First, the adversary makes an
TPRF query on the input x and forces the simulator to commit to a random an-
swer y′. Later the adversary calculates r = H(y1, y1⊕y′), opens the commitment
c to y′′, and compares y′′ with y′. If y′′ equals to y′, the adversary guesses an
interaction with the real protocol, otherwise, it is interacting with the simulator.
The simulator can win only if at least one of the following two cases happens:

1. The simulator breaks the hiding property of the commitment scheme and
obtains y1 ⊕ y2 before answering to the TPRF on the input x, or,

2. The simulator breaks the binding property of the commitment scheme and
opens the commitment value c to y′ with the opening of H(y1, y1 ⊕ y′).

Intuitively, if TPRF is indifferentiable with respect to the Definition 14, there
exists a simulator Sim that without knowing the non-corrupt keys can simulate
(Eval, x, i) queries. Since the adversary does not have enough information to
compute (Eval, x∗) where (x∗, S, {(i, z∗i )}i∈U ) is the challenge query, (that is,
the simulator is not able to answer this query using its databases), the simulator
Sim (by our convention) has to return a random value for the challenge query.
And this shows the psudorandomness property.

Theorem 2. If a threshold function TPRF is indifferentiable with respect to the
Definition 14, then it is pseudorandom with respect to the Definition 9.

Proof. Game 0. We start with PseudoRanGame game where AP is an adversary
to attack the psudorandomness definition. We consider a slightly different version
(but equivalent) of the Definition 9. That is, a random bit b is chosen by the
challenger in the game and AP wins if it guesses b correctly. We show that:

Pr[b = b′ : b
$←− {0, 1}, b′ ← PseudoRanGameAP

(1λ, b)] ≤ 1/2 + neg(λ).

Game 1. Let AI be an adversary against the Definition 14 and it runs AP .
Below is the description of AI .

– Initialization. The adversaryAI chooses a random bit b. When receiving
pp from its challenger, AI passes pp to AP . After receiving a corrupt set C
from AP , AI forwards this set to its challenger. While receiving {ski}i∈C , it
sends this set of keys to AP .

– Pre-challenge evaluation queries. The adversary AI answers to an
evaluation query Eval(ski, x, pp) using its challenger and construct a list L.
That is, it adds an x to L if |{i|AP made a (Eval, x, i) query}| ≥ g where g
is the corruption gap.
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– Challenge. When receiving the challenge query (x∗, S, {(i, z∗i )}i∈U ) such
that |S| ≥ t and U ⊆ S ∩C, if x∗ is in L, it stops and returns 0. Otherwise,
it computes zi := (Eval, i, x) for i ∈ S ∩ U . If there exist an i ∈ S ∩ U such
that zi ̸= z∗i , it returns ⊥. Otherwise, it queries (Eval, x) to its oracle to
receive a value z∗. If b = 0 it returns z∗ to AP . If b = 1, the adversaryAI

returns a random value to AP .
– Post-challenge evaluation queries. The adversary AI answers to post-

challenge evaluation queries same as the pre-challenge phase except that if
AP makes a query of the form (Eval, x∗, i) for some i ∈ [n] \ C and i is the
g-th party it contacted, then output 0 and stop.

– Output. Finally, if the output of AP is b′, it returns [b = b′].

Note that the difference between Game 0 and Game 1 is how the challenge query
is responded. Therefore, these two games are indistinguishable by the correct-
ness of the TPRF with respect to the Definition 8.

Game 2. Since TPRF is indifferentiable from a random function, there exists a
stateful simulator Sim that without knowing the non-corrupt keys can simulate
the answers to the queries by AI . The simulator chooses random elements to
answer the queries whenever the output is not determined from its databases.
Game 1 and Game 2 are indistinguishable by the Definition 14.

Since the adversary does not have enough information to evaluate TPRF
on x∗, the simulator Sim answers to the (Eval, x∗) query with a random value.
Consequently, AP will receive a random value in both cases: b = 0 and b = 1.
Therefore, it is clear that in this game the probability that b′ = b is at most 1/2.
Putting all together, this finishes the proof.

3.2 Achievability of Indifferentiability

In this subsection we show that the NPR threshold pseudorandom function sat-
isfies our indifferentiability definition. First we describe a stateful simulator Sim
that simulates answers to the adversary’s queries using only the corrupt keys.
The simulator answers to (Eval, x, i) and (Eval, x) queries with random values
unless for the keys that A knows (the keys that corrupt parties possess) or
when the adversary has enough knowledge to compute NPR(x). The simulator
uses PRF to answer the queries on the corrupt keys. When the adversary has
enough information to compute NPRPRF itself, the simulator needs to make the
consistency between its databases.

Then based on Sim, we introduce some intermediate simulators Simℓ that
know ℓ non-corrupt keys beside all the corrupt keys. The difference between Sim
and Simℓ is the answers to (Eval, x, i) queries where i is a non-corrupt party and
Simℓ knows its corresponding secret key ski. For these queries Simℓ uses PRF.

Finally, we start with IndifGame(1λ, Real) game that uses a Simn−|C| that
knows all the secret keys. Then, for each non-corrupt party i we remove its
corresponding secret key from the simulator (one-by-one) in subsequent games
to reach the last game that uses Sim. We show that each two subsequent games
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are indistinguishable if PRF is a pseudorandom function family and this finishes
the proof.

Theorem 3. If PRF is a pseudorandom function family, the NPRPRF threshold
function in Figure 1 is indifferentiable with respect to the Definition 14.

Proof. First we present some preliminaries and a simulator Sim. Then we use
this simulator Sim to prove the theorem.

Simulator Sim({ski}i∈C , pp):
Setup. For any input query x, let Lx be an empty list to store pairs (j, αj). For any
Lx, we define Lx,J := {j| ∃ (j, αj) ∈ Lx}. Let Lcomb be an empty list to store pairs
(x, y). For any i ∈ C, let Ji be the set of all indexes of keys in ski.

Evaluation queries to parties. In response to a query (Eval, x, i) for an i ∈ [n] \
C: The simulator Sim finds all the sets Dj1 , · · · , Djℓ that contain i. It sets Ij :=
{j1, · · · , jℓ}. Then for any j ∈ Ij ∩ {Ji}i∈C , it computes hi,j := PRF(kj , x).

1. While |Lx,J| < g − 1: For any j ∈ Ij that is not in {Ji}i∈C , the simulator searches
over database Lx to find a pair (j, αj). If Sim finds such a pair, it sets hi,j := αj ,
otherwise, it chooses a random element αj from the co-domain and sets hi,j := αj

and it stores (j, αj) in Lx and it removes j from the set Ij. Then, if |Lx,J| = g − 1
and Ij is non-empty, it breaks and goes to the item 2, otherwise, Sim continues
with another j ∈ Ij that is not in {Ji}i∈C .

2. When |Lx,J| = g − 1: Note that since |Lx,J| = g − 1 and Ij is not empty, there
is at least one index j ∈ Ij that is not in Lx,J. For this j, the simulator Sim
searches over Lcomb to find a pair (x, y) and if it finds such a pair, it sets
hi,j := (⊕m∈Lx,Jαm) ⊕ y ⊕ (⊕m∈{Ji}i∈C

PRF(km, x)). Otherwise, it chooses a ran-
dom element αj from the co-domain and sets hi,j := αj and it stores (j, αj) in Lx

and then it stores (x,⊕j∈Lx,Jαj ⊕j∈{Ji}i∈C
PRF(kj , x)) in Lcomb. Remove this j

from Ij. If Ij is empty, go to the step 4. Otherwise, it continues with the step 3.
3. When |Lx,J| > g − 1. In this case, the adversary has enough information to com-

pute the evaluation of TPRF on the value x. This means that PRF(·, x) is evaluated
on all the non-corrupt keys. Therefore, for any j ∈ Ij that is not in {Ji}i∈C , the
simulator searches over database Lx to find a pair (j, αj) and it sets hi,j := αj .

4. Finally, the simulator sets zi := {hi,jm}m∈[ℓ] and sends zi to the adversary.

Evaluation queries to TPRF. In response to a query (Eval, x), the simulator
searches over database Lcomb to find a pair (x, y). If it finds such a pair, it sends
y to the adversary. Otherwise, it chooses a random element y from the co-domain and
sends it to A. Then, it stores (x, y) in Lcomb.

Fig. 2. Description of the Simulator Sim.

Initialization. For any i ∈ [d], choose ki
$←− {0, 1}k where d =

(
n

n−t+1

)
. Let

D1, · · · , Dd be the d distinct (n− t+ 1)-sized subset of [n]. For any i ∈ [n], let
ski := {kj |i ∈ Dj for j ∈ [d]}. Set pp := (PRF, D1, · · · , Dd) and gives (ski, pp) to
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the party i.

Corruption. Receive the set of corrupt parties C from A, where C < t. Give
the secret keys {ski}i∈C of these parties to A. Define the corruption gap as
g := t− |C|.

We describe a simulator Sim that given the set {ski}i∈C and pp answers to
A’s queries. For any input query x, let Lx be an empty list to store pairs (j, αj)
where j represents the index of the key kj and αj is either PRF(kj , x) or a random
value. For any Lx, we define Lx,J := {j| ∃ (j, αj) ∈ Lx}. Let Lcomb be an empty
list to store pairs (x, y) where x is an input query and y is the answer to an
(Eval, x) query. For any i ∈ C, let Ji be the set of all indexes of keys in ski. The
simulator Sim described in Figure 2 answers to (Eval, x, i) and (Eval, x) queries
with random values unless for the keys that A knows (the keys that corrupt
parties possess) or when |Lx,J| ≥ g − 1. The simulator Sim uses PRF to answer
the queries on the keys in {Ji}i∈C . When |Lx,J| ≥ g − 1, since the adversary
has enough information to compute NPRPRF itself, the simulator needs to make
the consistency between its databases of Lx and Lcomb.

Now we use Sim to show that NPR threshold function is indifferentiable from
a random function. Let JNotC := {j1, · · · , jm} be the set of all index of the keys
that are not corrupted. That is,

KNotC := {kj1 , · · · , kjm} = {k1, · · · , kd} \ {ski}i∈C .

Game m + 2. This is IndifGame(1λ, Real) in which the adversary A is inter-
acting with the real protocol.

Game m + 1. In this game, we use Sim′
m in the interaction with the adver-

sary. The simulator Sim′
m knows all the keys and responds to any evaluation

query (Eval, x, i) using PRF and keep a database similar to Sim. Note that when
the answer can be derived from its databases, the Sim′

m is exactly as Sim. For
evaluation queries to TPRF, the simulator Sim′

m is the same as the challenger
with a difference that it stores the values in Lcomb. It is clear that Game m+2
and Game m+1 are indistinguishable since Sim′

m knows all the secret keys and
replies similar to the challenger in the real game.

Game m. In this game, we use Simm in the interaction with the adversary.
The simulator Simm is similar to Sim′

m unless for the evaluation queries to
TPRF. For a TPRF evaluation query on an input x, if there exists a pair
(x, ·) in Lcomb, the simulator Simm uses Lcomb, otherwise, it returns a ran-
dom value. We show that two games m and m + 1 are indistinguishable. Note
that for an evaluation queries to TPRF on an input x, if there exists a pair
(x, ·) in Lcomb derived from (Eval, x, i) queries, the answer to this query is in-
distinguishable by the consistency property of TPRF. When there is no pair
(x, ·) in Lcomb, Simm returns a random value y and this will effect the an-
swer for some evaluation queries (Eval, x, i) when |Lx,J| ≥ g − 1. Since PRF is
pseudorandom this remains indistinguishable for the adversary. In more de-
tails, setting hi,j := (⊕m∈Lx,J

αm) ⊕ y ⊕ (⊕m∈{Ji}i∈C
PRF(km, x)) when y is
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chosen randomly is indistinguishable from receiving PRF(kj , x) unless the ad-
versary can find a collision for PRF. That is, it finds two values x1, x2 such that
PRF(kj , x1) = PRF(kj , x2). Since a pseudorandom function is indistinguishable
from a random function and a random function is collision-resistant, these two
games are indistinguishable.

Game m−1. In this game, we use Simm−1 in the interaction with the adversary.
The simulator Simm−1 is similar to Simm unless for evaluation queries that needs
kjm . For these queries, Simm−1 answers similar to Sim (returns a random value
whenever it is needed.). We show that Game m and Game m − 1 are indistin-
guishable since PRF is a pseudorandom function family. Let’s assume that the
adversary A distinguishes these two games with a probability ϵ. A reduction ad-
versary BO runs A and answers to A’s queries similar to Simm unless for queries
that involve the key kjm . For any evaluation query (Eval, x, i) and any combine
query (Eval, x) that needs kjm , B uses its oracle O to reply. It is clear that when
O is a pseudorandom function, B simulates the Game m for A. And when O
is a truly random function, B simulates the Game m − 1 for A. Therefore, the
adversary BO is able to distinguishes PRFkjm

from a truly random function with
the probability ϵ. We can conclude that ϵ should be negligible since PRFkjm

is a
pseudorandom function.

We define Games m − 2, Games m − 3, · · · , Games 1, Games 0 which
use Simm−2, Simm−3, · · · ,Sim1,Sim, respectively. Similarly, we can show that
each two subsequent games are indistinguishable since PRF is a pseudorandom
function. This finishes the proof since m < d is a polynomial on the security
parameter.

4 Threshold Message Authentication Code

We define an existential unforgeability definition for a randomized threshold
message authentication code. Currently, we are not aware of a threshold mes-
sage authentication code that is randomized, and we present our definition for
completeness and for the prospect of inventing such a construction in the fu-
ture. (Note that randomized message authentication codes are well-motivated
and constructed [JJV02, DKPW12].)

4.1 Our Definition

Definition 15 (Strong Existential Unforgeability). We say a threshold
message authentication code TMAC := (TM.Setup,TM.Mac,TM.Verif) sat-
isfies existential unforgeability if for all PPT adversaries A, there exists a neg-
ligible function neg such that

Pr[ForgeTM.Mac,A(1
λ) = 1] ≤ neg(λ),
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where Forge is defined below.

ForgeTMAC,A(1
λ):

– Initialization. Run TM.Setup(1λ, n, t) to get ((sk1, · · · , skn, skR), pp). Give
pp to A. Sets a counter ct := 0 and a list L := ∅.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A. Define the gap between
the threshold and the number of corrupt parties as g := t− |C|.

– MAC queries. In response to A’s MAC query (Mac, j,m, S) where j ∈ S
and |S| ≥ t, run the protocol TM.Mac with m,S as the inputs of j to get
tag tag. If j ∈ C, increment ct by |S \ C| (number of honest parties in S).
Otherwise, send (m, tag) to A and append (m, tag) to L.

– Forgery. Let k := ⌊ct/g⌋. The adversary A outputs (m1, tag1), (m2, tag2),
· · · , (mk+1, tagk+1) such that (mi, tagi) /∈ L for every i ∈ [k + 1] and
(mi, tagi) ̸= (mj , tagj) for any i ̸= j . For every i ∈ [k+1], run TM.Verif on
the input (mi, tagi) and a set |S| ≥ t and S∩C = ∅. It output 1 if TM.Verif
returns 1 for all. We assume that parties involved in the verification behaves
honestly.

Remark. For a deterministic threshold message authentication code, the
definition above can be simplified since for any A’s MAC query (Mac, j,m, S)
where j ∈ S and |S| ≥ t, the corresponding tag can be computed and stored in
L by the oracle even when j ∈ C. Therefore, in the forgery phase, the adversary
outputs one pair (m, tag) and wins if (m, tag) /∈ L and TM.Verif on the input
(m, tag) return 1.

4.2 Achievability

Figure 3 presents a threshold message authentication code based on a threshold
pseudorandom function. We show that the protocol in Figure 3 satisfies strong
existential unforgeability with respect to Definition 15 if the underlying threshold
pseudorandom function satisfies the pseudorandomness with respect to Defini-
tion 9. The high-level idea of the proof: from an adversary A that attacks the
unforgeability, we construct an adversary B that breaks the pseudorandomness
of the underlying TPRF. The reduction adversary B is able to track the messages
that the adversary A might know their corresponding tags. Therefore, when A
returns k + 1 pairs (m1, tag1), (m2, tag2), · · · , (mk+1, tagk+1) at the end, B is
able to detect at least one pair (mi, tagi) in which tagi is not obtained from
MAC queries since the message authentication protocol in Figure 3 is deter-
ministic. Then, the reduction adversary B uses this pair (mi, tagi) to break the
pseudorandomness of TPRF.

Theorem 4. If TPRF satisfies the pseudorandomness and correctness, then the
protocol in Figure 3 satisfies the strong existential unforgeability.
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Ingredients:

– An (n; t)-threshold pseudorandom function TPRF := (Setup,Eval,Combine)

TM.Setup(1λ, n, t)→ (sk1, · · · , skn, skR; pp). Run Setup(1λ, n, t) to get the keys
(sk1, · · · , skn; pp). Then it sets skR := {ski}i∈S for a set S ⊆ [n] of size at least t.

TM.Mac(JskK[n]; [j : m;S]; pp)→ [j : t/ ⊥] : To obtain a tag on a message m with the

help of parties in S:

– Party j sends m to all parties in S.
– For every i ∈ S, party i runs Eval(ski,m; pp) to get tagi, and sends it to party j.
– Party j runs Combine on {tagi}i∈S to get a value tag.

TM.Verif(JskK[n]; [j : (m, tag);S]; pp)→ [j : b] :

– Party j sends m to all parties in S.
– For every i ∈ S, party i runs Eval(ski,m; pp) to get tagi, and sends it to party j.
– Party j runs Combine on {tagi}i∈S to get a value tag′.
– Party j returns [tag = tag′].

Fig. 3. Threshold Message Authentication Code

Proof. Let A be a polynomial-time adversary that breaks the simplified strong
existential unforgeability. (Since the message authentication code is determinis-
tic.) Let B be a polynomial-time adversary that has oracle access to a TPRF.
The adversary B runs A and answers to its queries as follows.

Description of B: It sets a list L := ∅.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Forward the set C to its oracle to receive the secret keys {ski}i∈C of these
parties. Send {ski}i∈C to A. Define the gap between the threshold and the
number of corrupt parties as g := t− |C|.

– MAC queries. When A makes a MAC query (Mac, j,m, S) where j ∈ S
and |S| ≥ t, if j ∈ C, whenever it receives a query TM.Mac(ski,m, pp)
for an i ∈ S \ C, it sends (Eval,m, i) to its oracle to get a response tagi.
Then it forwards tagi to the party j. Also, for any i ∈ S ∩ C, it computes
tagi := Eval(ski,m; pp). Finally, it computes Combine({(i, tagi)}i∈S ; pp) to
get a value tag and appends (m, tag) to L.

When j /∈ C, for any i ∈ S\C the adversary B queries (Eval,m, i) to its oracle
to receive tagi. Also, for any i ∈ S ∩C, it computes tagi := Eval(ski,m; pp).
Finally, it computes Combine({(i, tagi)}i∈S ; pp) to get a value tag. It sends
(m, tag) to A and appends (m, tag) to L.

– Attack. When the adversary A outputs a pair (m, tag) /∈ L as a forgery,
the adversary B sends (m,S, ∅) as a challenge query to its oracle to receive
a value tag∗. If tag = tag∗, B returns 0. Otherwise, it returns 1.
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Success probability. Note that if the advantage of A in outputting a forgery
is ϵ, the adversary B is able to break the pseudorandomness with the probability
negligibly close to |ϵ − 1/2T | where T is the set of all possible tags. For the
reason that when b = 1, B’s oracle returns a random value tag∗ and therefore
tag = tag∗ with the probability 1/2T . And when b = 0, tag = tag∗ with the
probability negligibly close to ϵ by the correctness of TPRF.

5 Threshold Symmetric Encryption

5.1 Our definition

The indirect decryption queries in the message privacy definition (Defini-
tion 12) are allowed to be initiated only by a non-corrupt party and their outputs
are not communicated to the adversary. We argue that this is not a real-world
attack scenario since an adversary A that corrupts some parties C can control
their behaviors. This means that A can initiate a decryption query with the
help of a corrupt party in C.5 But these decryption queries are not embedded
in Definition 12.

We strengthen the message privacy definition on two fronts:

1. A corrupt party can initiate a decryption query.
2. The output of a decryption query initiated by a non-corrupt party will be

sent to A.

Obviously, non-corrupt parties should not participate in the decryption of the
challenge ciphertext c∗, otherwise, no encryption scheme satisfies the security
definition.

Definition 16 (IND-CCA2 Security). A TSE := (TSE.Setup,TSE.Enc,TSE.Dec)
satisfies IND-CCA2 security if for all PPT adversaries A, there exists a negli-
gible function neg such that

Pr[CCAGame2TSE,A(1
λ, 0) = 1]− Pr[CCAGame2TSE,A(1

λ, 1) = 1] ≤ neg(λ),

where CCAGame2TSE,A is defined below.

CCAGame2TSE,A(1
λ, b) :

– Initialization. Run TSE.Setup(1λ, n, t) to get ((sk1, · · · , skn), pp). Give
pp to A.

– Corruption. Receive the set of corrupt parties C from A, where |C| < t.
Give the secret keys {ski}i∈C of these parties to A.

– Pre-challenge encryption queries. In response to A’s encryption query
(Encrypt, j,m, S) where j ∈ S and |S| ≥ t, run an instance of the protocol
TSE.Enc with A. Note that when j /∈ C, party j runs TSE.Enc and returns
the output ciphertext to A. Repeat this step as many times as A desires.

5 This trivially breaks Definition 12 since a decryption query initiated by a corrupt
party on the input c∗ will reveal the bit b to A.
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– Pre-challenge decryption queries. In response to A’s decryption query
(Decrypt, j, c, S) where j ∈ S and |S| ≥ t, party j initiates TSE.Dec with
inputs c and S and it sends the resulting output to A. Repeat this step as
many times as A desires.

– Challenge. A outputs (j∗;m0;m1;S
∗) where |m0| = |m1|, j∗ ∈ S∗ \ C and

and |S∗| ≥ t. Party j∗ initiates TSE.Enc with inputs mb and S∗ and sends
the resulting ciphertext c∗ to A.

– Post-challenge encryption queries. Same as the pre-challenge phase.
– Post-challenge decryption queries. Same as the pre-challenge decryp-

tion queries except for the challenge ciphertext c∗. For this ciphertext, non-
corrupt parties will not participate in the decryption.

– Guess. Finally, A returns a guess b′. Output b′.

IND-CCA1 Security. It is similar to IND-CCA2 except that A is not allowed
to make post-challenge decryption queries in the IND-CCA1 game.

5.2 Existing Schemes

The threshold symmetric encryption in [NPR99]. In [NPR99], authors
propose a threshold symmetric encryption scheme constructed from an IND-CPA
symmetric encryption scheme Π and a distributed pseudorandom function F .
Vaguely speaking, any party j to encrypt a message m, generates a secret key sk
for the symmetric encryption scheme, then it encrypts the message m with this
key sk to get a value e (e← EncΠ(sk,m)). Then it invokes a distributed evalua-
tion of F on the input j∥e (with a set of parties beyond the threshold) to obtain
a value y. Finally, it returns the ciphertext c := (j, e, y ⊕ sk). To decrypt, it is
clear that any set of parties that has at least t members can recompute y from F
and j∥e and consequently can obtain sk and decrypt e with DecΠ(sk, ·) to get m.

The threshold symmetric encryption in [AMMR18]. The protocol in
[AMMR18] uses a commitment scheme, a threshold pseudorandom function and
a pseudorandom generator. Vaguely speaking, any party j to encrypt a mes-
sage m, commits to m using a fresh randomness ρ to get a value α, that is,
α := Com(m, pp; ρ). Then it invokes a distributed evaluation of F on the input
j∥α (with a set of parties beyond the threshold) to obtain a value y. Finally,
it returns the ciphertext c := (j, α, PRG(y) ⊕m∥ρ). To decrypt, it is clear that
any set of parties that has at least t members can recompute y from F and j∥α
and consequently can obtain m∥ρ and check if α is equal to Com(m, pp; ρ) or not.

The threshold symmetric encryption in [DMV22]. The DiAE protocol in
[DMV22] uses a threshold pseudorandom function (F), a Key Derivation Func-
tion (KDF) [Kra10] and a Encryptment scheme (EC) [DGRW18]. Vaguely speak-
ing, any party j to encrypt a message m, runs the key generating algorithm of
EC to get a key kEC and then it computes (cEC , tEC) ← EC(k, j,m). Next it
invokes a distributed evaluation of F on the input j∥tEC (with a set of par-
ties beyond the threshold) to obtain a value y. Finally, it returns the ciphertext
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c := (j, cEC , tEC , e) where e := KDF (y)⊕ kEC . To decrypt, it is clear that any
set of parties that has at least t members can recompute y from F and j∥tEC and
consequently can obtain kEC . Therefore, it can run the decryption algorithm of
EC on the inputs kEC , j, tEC and cEC to get the message m back.

CCA Attack. We show that these encryption schemes are not IND-CCA2 se-
cure with respect to Definition 16. An adversary given the challenge ciphertext
c∗ := (j∗, e∗, F (j∗∥e∗)⊕ sk) (or c∗ := (j∗, α∗, PRG(F (j∗∥α∗))⊕mb∥ρ∗)) can ini-
tiate a decryption query on an input (j∗, e∗, β) where β ̸= F (j∗∥e∗) ⊕ sk (or
(j∗, α∗, β) where β ̸= PRG(F (j∗∥α∗))⊕mb∥ρ∗)) with the help of a corrupt party
jc. (Note that the honest parties would participate in the decryption since c∗ is
not submitted as a decryption query.) These means that jc is able to evaluate
F (j∗∥e∗) (or F (j∗∥α∗)) and decrypt the challenge ciphertext. Similarly, we can
show that the DiAE protocol in [DMV22] is not CCA secure.

5.3 Encrypt-then-Mac

A known approach to construct an IND-CCA2 secure symmetric encryption
scheme is the Encrypt-then-Mac method [BN08]. We discuss the difficulties of
constructing an IND-CCA2 secure threshold symmetric encryption using this
method below.

Discussion: why Encrypt-then-Mac may not work. As shown in [BN08],
any encryption scheme that is both IND-CPA secure and INT-CTXT secure is
also IND-CCA2 secure. Vaguely speaking, an encryption scheme is INT-CTXT
secure if the only way to generate a valid cipheretxt is to query the encryption
algorithm. (We say a ciphertext c is valid if it decrypts to a massage and not to
⊥.) The high-level idea of the proof is as follows. Since the only way to generate a
valid ciphertext is to use the encryption oracle, then a CPA reduction adversary
B can answer to decryption queries made by a CCA adversary A if B stores all
the encryption queries made by A. However, in the distributed setting, a CCA
adversary A may be able to generate a valid ciphertext through an decryption
query that is initiated by a corrupt party. And this may prevent the reduction
strategy to work.

Later, the authors in [BN08] show that the Encrypt-then-Mac approach will
result in an encryption scheme that is IND-CPA secure and INT-CTXT secure
if the underlying encryption scheme is IND-CPA secure and the underlying mes-
sage authentication code is strongly unforgeable. And this gives us an IND-CCA2
secure encryption. We argue that the Encrypt-then-Mac approach may not work
in the distributed setting. To do so, we take a threshold symmetric encryption
scheme TSE′ that is malleable but it satisfies the message privacy (or it satis-
fies IND-CPA security notion in the threshold setting). Now for any threshold
message authentication code TM.Mac with a distributed verification algorithm,
we define a threshold symmetric encryption scheme ΠTSE such that its encryp-
tion algorithm on an input m returns c = (c1, c2) where c1 := EncTSE′(m) and
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c2 := TM.Mac(EncTSE′(m)). The adversary can alter c1 to get a valid cipher-
text c′1 and initiates a decryption query with the help of a corrupt party j on
(c′1, c

′
2). The decryption algorithm first checks if c′2 is a correct tag for c′1 or it

is not. During this verification, the party j may learn about a correct tag tag
on c′1. That is, the party j may learn tag = TM.Mac(c′1). Consequently, a valid
ciphertext (c′1, tag) is generated without using the encryption oracle. This would
be problematic if the adversary alters the challenge ciphertext which would help
the adversary to distinguish which message has been encrypted. Therefore, it
breaks the IND-CCA2 security.

For instance, we can use the Encrypt-then-Mac method and a threshold
pseudorandom function TPRF to construct a threshold symmetric encryption
scheme. To achieve this, any party j to encrypt a message m, generates a secret
key sk for the symmetric encryption scheme, then it encrypts the message m
with this key sk to get a value e (e ← EncΠ(sk,m)). It invokes a distributed
evaluation of TPRF on the input j∥e (with a set of parties beyond the threshold)
to obtain a value y. Then, it invokes a distributed evaluation of TPRF on the
input j∥e∥y ⊕ sk (with a set of parties beyond the threshold) to obtain a value
tag. Finally, it returns the ciphertext c := (j, e, y ⊕ sk, tag). To decrypt, any set
of parties that has at least t members can recompute a value tag′ from TPRF
and j∥e∥y ⊕ sk. If tag′ ̸= tag, honest parties would not participate in the rest of
decryption. If tag′ = tag, they can recompute the value y from TPRF and j∥e
and consequently can obtain sk and decrypt e with DecΠ(sk, ·) to get m.

Regrettably, this threshold symmetric encryption scheme is not IND-CCA2
secure. Let c∗ = (c∗1, c

∗
2) where c

∗
1 = (j∗, e∗, y∗⊕ sk∗) be the challenge ciphertext.

If the adversary initiates a decryption query c = (c1, c2) where c1 = (j∗, e∗, β),
β ̸= y∗ ⊕ sk∗ and c2 ̸= c∗2 with the help of a corrupt party, the adversary
can learn the evaluation of TPRF(c1). Then, it initiates a decryption query
(c1,TPRF(c1)) with the help of a corrupt party to learn y∗ = TPRF(j∗∥e∗).
Finally, the adversary using y∗ can obtain the challenge message mb and breaks
the IND-CCA2 security.

5.4 Encrypt-then-Sign

We show that the Encrypt-then-Sign approach will result in an IND-CCA2 secure
threshold symmetric encryption scheme.

Theorem 5. If TPRF is an (n, t)-threshold function satisfies Definition 9, SYM
is a one-time IND-CPA secure encryption scheme and SignScheme satisfies the
strong unforgeability, the threshold symmetric encryption in Figure 4 is IND-
CCA2 secure.

Proof. Game 0. We start with CCAGame2(1λ, b) game where Acca is an adver-
sary to attack the CCA definition. We consider a slightly different version (but
equivalent) of Definition 16. Namely, a random bit b is chosen by the challenger
in the security game and the value mb is encrypted. Then, the adversary Acca

wins if it guesses b correctly. We show that:

Pr[b = b′ : b
$←− {0, 1}, b′ ← CCAGame2Acca(1

λ, b)] ≤ 1/2 + neg(λ).
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Ingredients:

– An (n; t)-threshold pseudorandom function TPRF := (Setup,Eval,Combine)
– A symmetric encryption scheme SYM := (Sym.Gen, Sym.Enc, Sym.Dec)
– A signature scheme SignScheme := (SGen, Sign,Verif).

Setup(1λ, n, t)→ (sk1, · · · , skn; pp). Run Setup(1λ, n, t) to get the keys

(skf1 , · · · , skfn; ppf ). Run SGen(1λ) n times to get n key pairs ((sks1, pk
s
1) · · ·

(sksn, pk
s
n). For any i ∈ [n], set sk1 := (skfi , sk

s
i ). Set pp := (ppf , pks1, · · · , pksn).

TSE.Enc(JskK[n]; [j : m;S]; pp)→ [j : c/ ⊥] : To encrypt a message m with the help of
parties in S:

– Party j samples k ← Sym.Gen and computes e← Sym.Enck(m). Then it sends e
to all parties in S.

– For every i ∈ S, party i runs Eval(skfi , j∥e; pp
f ) to get yi, and sends it to party j.

– Party j runs Combine({(i, yi)}i∈S ; pp
f ) to get y or ⊥. If ⊥, it stops and returns ⊥.

Otherwise, it sets c1 := (j, e, y ⊕ k) and computes c2 = Sign(sksj , c1) and outputs
c := (c1, c2).

TSE.Dec(JskK[n]; [j : c;S]; pp)→ [j : m/ ⊥] : To decrypt a ciphertext c with the help of
parties in S:

– Party j checks if c1 is of the form (j′, e, β) for some j′ ∈ [n]. If not, it stops and
returns ⊥. Then it computes b = Verif(pksj′ , c1, c2). If b = 0, it stops and returns
⊥. Otherwise, it sends c = (c1, c2) to all parties in S.

– For every i ∈ S, party i computes b = Verif(pksj′ , c1, c2). If b = 0, it stops and

returns ⊥. Otherwise, it runs Eval(skf
i , j

′∥e; ppf ) to get yi, and sends it to the
party j.

– Party j runs Combine({(i, yi)}i∈S ; pp
f ) to get y or ⊥. If ⊥, it aborts and returns

⊥. Otherwise, it computes k := β ⊕ y and outputs m := Sym.Deck(e).

Fig. 4. Threshold Symmetric Encryption: Encrypt-then-Sign
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Let us assume (c∗1 = (j∗, e∗, β∗), c∗2) is the challenge ciphertext.

Game 1. This is similar to the Game 0 except for the post-challenge decryption
queries. The decryption oracle returns ⊥ if the adversary Acca submits a decryp-
tion query (c1, c2) where c1 = (j∗, e∗, ·). We define a bad event E in which Acca

submits a decryption query (c1 = (j∗, e∗, β), c2) such that (c1, c2) ̸= (c1∗, c∗2) and
Verif(pksj∗ , c1, c2) = 1. Note that two Games 0, 1 are distinguishable if the bad
event E happens with a non-negligible probability. If Acca is able to do so, we
can easily construct a reduction adversary that breaks the strong unforgeability
of the SignScheme.

Let us assume that Acca submits a decryption query (c1 = (j∗, e∗, β), c2) such
that (c1, c2) ̸= (c1∗, c∗2) and Verif(pksj∗ , c1, c2) = 1 with a non-negligible probabil-
ity (or the bad event E happens with a non-negligible probability). A reduction
adversary B that has an oracle access to a signing algorithm Signsks with its corre-
sponding public-key pks, chooses a random index j∗ from [n], a threshold pseu-
dorandom function TPRF := (Setup,Eval,Combine), a symmetric encryption
scheme SYM := (Sym.Gen,Sym.Enc,Sym.Dec). Then, it runs Setup(1λ, n, t)

to get the keys (skf1 , · · · , sk
f
n; pp

f ). It runs the setup algorithm SGen(1λ) of its
signing oracle n times to get n key pairs ((sksj1 , pk

s
j1) · · · (sksjn , pk

s
jn). It sets

pp := (ppf , pks1, · · · , pk
s
n) where pksi := pksji when i ̸= j∗, and pksj∗ := pks.

Then it runs Acca with pp. When receiving the set of corrupt parties, if
j∗ is corrupted, B aborts. Otherwise, for any i ∈ [n] where i ̸= j∗, it sets

ski := (skfi , sk
s
i ). And for j∗, it uses its signing oracle Signsks . It sends the set

of corrupt keys to the adversary. The adversary B simulates the A’s encryption
and decryption queries using its keys and its signing oracle Signsks . Note that

with a probability 1 − |C|
n , B does not abort. Condition on not aborting, the

adversary Acca makes a challenge query

TSE.Enc(JskK[n]; [j∗ : m0,m1;S
∗]; pp)

with a probability 1/n. Overall, this is a non-negligible probability since the
number of parties is a polynomial in the security parameter λ. The reduction
adversary B chooses a random b, encrypts mb and sends the resulting ciphertext
to Acca.

When Acca submits a post-challenge decryption query (c1 := (j∗, e∗, β), c2)
such that (c1, c2) ̸= (c1∗, c∗2) and Verif(pksj∗ , c1, c2) returns 1, B return (c1, c2) as
a new forgery. Note that the only way to access the signing algorithm Signsks is
through an encryption query that is initiated by the party j∗. And in each exe-
cution of the encryption query, the party j∗ generates a new value e randomly.
Therefore, a valid signature on c1 = (j∗, e∗, β) would be a valid forgery with a
high probability (the probability is not 1 since e∗ may be generated twice with
some negligible probability.). Overall, the reduction adversary is able to break
the strong unforgeability of the underlying signature scheme if the bad event E
happens with a non-negligible probability.
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Game 2. This is similar to Game 1 unless, how the challenger responds to the
challenge query TSE.Enc(JskK[n]; [j∗ : m0,m1;S

∗]; pp). The challenger computes

e∗ and y∗ similar to the Game 1, but it sets β∗ := β$ for a randomly chosen
β$ afterwards. Finally, it returns c∗1 := (j∗, e∗, β$) and c∗2 := Signsks

j∗
(c∗1) to the

adversary. We show that Game 1 and Game 2 are indistinguishable since the
underlying threshold function TPRF satisfies Definition 9.

Let us assume that an adversary Adis distinguishes these two games. We
construct a reduction adversary Btprf which breaks Definition 9. Here is the
description of the reduction adversary Btprf :

– The reduction adversary Btprf chooses a signature scheme SignScheme :=
(SGen, Sign,Verif) and a symmetric encryption scheme SYM := (Sym.Gen,
Sym.Enc,Sym.Dec). It runs SGen(1λ), n times to get n key pairs (sks1, pk

s
1),

· · · , (sksn, pk
s
n). When it receives ppf from its challenger, it sets pp := (ppf ,

pks1, · · · , pk
s
n) and runs Adis with the input pp.

– WhenAdis sends a set C of corrupt parties, Btprf forwards C to its challenger

to receive {skfi }i∈C . Then it sends {(skfi , sk
s
i )}i∈C to Adis.

– The adversary Btprf simulates the encryption and the decryption queries
using SYM, its oracle and SignScheme.

– When Adis outputs a challenge query TSE.Enc(JskK[n]; [j∗ : m0,m1;S
∗]; pp),

the adversary Btprf chooses a random value b, samples a key k∗ ← Sym.Gen(1λ),
computes e∗ ← Sym.Enck∗(mb) and sends ((j∗, e∗), S∗, ∅) to its challenger.
After receiving an answer y∗, it sets c∗1 := (j∗, e∗, y∗ ⊕ k∗) and c∗2 :=
Signsks

j∗
(c∗1). Finally, it sends c

∗ := (c∗1, c
∗
2) to Adis.

– The adversary Btprf simulates the encryption and the decryption queries
using SYM, its oracle and SignScheme unless for decryption queries of the
form c1 = (j∗, e∗, ·). For these queries, Btprf returns ⊥ immediately.

– When Adis returns a guess b′, Btprf outputs b′.

It is clear that the adversary Btprf simulates Game 1 for Adis when its chal-
lenger simulates PseudoRanGame(1λ, 0) in Definition 9 since y∗ is the evaluation
of TPRF on the input(j∗, e∗). And Btprf simulates Game 2 for Adis when its
challenger simulates PseudoRanGame(1λ, 1) in Definition 9, since y∗ is chosen ran-
domly. Since the underlying the underlying threshold function TPRF satisfies
Definition 9, these two games (1 and 2) are indistinguishable.

Now the success probability of a CCA adversary in the Game 2 is negligi-
ble by the one-time IND-CAP security of the underlying symmetric encryption
scheme SYM, since k∗ is only used once and to generate e∗ which is the encryp-
tion of mb. We skip the detailed reduction algorithm since it is straightforward
and it is similar to two reductions presented above. The high level idea is a re-
duction adversary Bsym chooses a TPRF and a SignScheme, and runs the CCA
adversary in the Game 2. Once the CCA adversary submits a challenge query
TSE.Enc(JskK[n]; [j∗ : m0,m1;S

∗]; pp), Bsym forwards m0,m1 to its challenger.

After receiving e∗, it computes y∗, but it sets β∗ := β$ for a randomly chosen β$.
Finally, it returns c∗1 := (j∗, e∗, β$) and c∗2 := Signsks

j∗
(c∗1) to the adversary. Af-

terwards, it simulates answers to the encryption and decryption queries similar
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to the Game 2. Finally, Bsym returns the output of the CCA adversary. Overall,
if the CCA adversary in the Game 2 guesses b with a non-negligible probability,
the reduction adversary Bsym breaks the one-time IND-CAP security of SYM
with a a non-negligible probability.

6 Acknowledgment

This work is supported by the Luxembourg National Research Fund under the
Junior CORE project QSP (C22/IS/17272217/QSP/Ebrahimi).

References

ABKM22. Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-
quantum security of the even-mansour cipher. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277
of LNCS, pages 458–487. Springer, Heidelberg, May / June 2022.

Agr19. Shweta Agrawal. Indistinguishability obfuscation without multilinear
maps: New methods for bootstrapping and instantiation. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Pro-
ceedings, Part I, volume 11476 of Lecture Notes in Computer Science, pages
191–225. Springer, 2019.

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum secu-
rity proofs using semi-classical oracles. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
269–295. Springer, Heidelberg, August 2019.

AMMR18. Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter
Rindal. Dise: Distributed symmetric-key encryption. In David Lie, Moham-
mad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
1993–2010. ACM, 2018.

AMRS20. Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song.
Quantum-access-secure message authentication via blind-unforgeability. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 788–817. Springer, Heidelberg, May 2020.
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A Post-quantum Security

In this section, we discuss the security of a threshold functionality in the presence
of a quantum polynomial-time adversary (QPT). We fix two terminologies:

– Post-quantum Secure Pseudorandom Function. We say a function f
is post-quantum secure pseudorandom function if no QPT adversary with
classical access to its oracle, can distinguish f from a truly random func-
tion.

– Quantum Secure Pseudorandom Function. We say a function f is
quantum secure pseudorandom function if no QPT adversary with superpo-
sition access to its oracle, can distinguish f from a truly random function.
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A.1 Discussion

The cryptographic community are reevaluating the traditional assumptions and
security model in cryptography due to the rapid progress in quantum comput-
ing and the dramatic effects of a full-scale quantum computer on cryptogra-
phy [Sho94]. Towards this goal, the first essential step would be replacing the
quantumly broken computational assumptions with quantum-hard assumptions,
though, some classical security proofs may not carry to the post-quantum set-
ting trivially ([Wat06, Unr12]) and this replacement might not be sufficient to
claim the post-quantum security. The extension of this reevaluation is a con-
ducive line of research, where new security definitions have been developed in
the superposition-access model [KM10, KM12, Zha12, DFNS14, BZ13a, BZ13b,
ATTU16, KLLN16, AMRS20, BBC+21, CETU21, ABKM22, EvW22, CEV22]
and many cryptographic schemes have been proven (in)secure in this model. In
the superposition-access model, a quantum adversary may be able to run the
cryptographic primitive in superposition of inputs. One example is the security
proofs in the quantum random oracle model [BDF+11] in which the adversarial
superposition queries are allowed to the random oracle.

Although, the security proofs in the quantum random oracle [BDF+11, TU16,
Zha19, DFMS19, CMS19, AHU19, YZ21, CFHL21, DFMS22, Ebr22] become
standard and a necessity, the community may still consider a superposition ac-
cess to a classical cryptographic primitive as an unnatural scenario. For instance
a quote from [BDE+23] for a threshold signature scheme: “Since we are con-
sidering only classical protocols, there is no real-world scenario in which an
adversary would have quantum access to signature generation, so this restric-
tion is quite reasonable”. So, even with the existence of many research papers
in the superposition-access model, often a research in this model is evaluated
as a more conservative security requirement and as a resolution of the authors
inquisitiveness rather than addressing a realistic threat. However, we raise some
evidence that the security in the superposition-access model might be necessary
in some settings. Namely, in a distributed setting (for instance for a threshold
signature scheme) some parties are involved in a joint evaluation of a functional-
ity (signature) and hypothetically a malicious quantum entity is able to corrupt
a subset of these parties, and therefore the quantum entity has a superposition
access to a partial evaluation of the functionality. So if the partial evaluation of
the functionality is vulnerable to a superposition attack, then the security of the
overall evaluation may be affected negatively. In other words, our observation is
that we may not be able to conclude a threshold system (for instance a threshold
signature scheme) post-quantum secure even if it is based on a quantum-secure
computational assumption.

To back our claim, we discuss a security concern in a threshold pseudoran-
dom function from [NPR99] in the post-quantum setting. More specifically, we
consider a threshold pseudorandom function in [NPR99] that is constructed from
a family of pseudorandom functions as follows. At a high-level, a threshold pseu-
dorandom function TPRF is defined as TPRF(x) = ⊕iPRFski(x), where {PRFk}k
is a family of keyed pseudorandom functions. (The exact parameters are not
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needed for our purpose in this discussion.) It is clear that one needs all the
keys {ski}i to evaluate TPRF on some input x. Now if {PRFk}k functions family
is post-quantum secure (secure against a quantum adversary with the classical
access to {PRFk}k), but it is vulnerable to superposition attack, for instance if
there is a hidden period s in the construction of {PRFk}k, we can not conclude
TPRF post-quantum secure. For the reason that a quantum adversary that has
corrupted a party j and possesses its secret key skj can implement PRFskj in
superposition of inputs and obtain s using the Simon’s algorithm [Sim94]. By
the construction, TPRF is periodic in s as well and therefore TPRF should
not be considered as a secure threshold pseudorandom function. In other words,
we can not conclude the post-quantum security of a TPRF constructed from a
post-quantum secure {PRFk}k.

Now we explain why our assumption of constructing a periodic function with-
out including the period as a part of the secret key is reasonable. We recall a
quantum attack to the 3-Round Feistel Cipher (FC) [KM10]. In [KM10], it is
shown how to construct a periodic function from the first half of the Feistel Ci-
pher’s output (FC1). In more details, FC1(x1, x2) = x2⊕PRFsk2(x1⊕PRFsk1(x2)).
And the periodic function f is defined as

f(b, x) =

{
FC1(x, α)⊕ β b = 0

FC1(x, β)⊕ α b = 1

where α and β are distinct fixed strings. It is straightforward to show that f is
periodic in 1∥PRF1(α)⊕PRF1(β). This period is not a part of the secret key and it
is introduced by the construction of the Feistel Cipher itself. (See Appendix A.2
for a separation based on post-quantum obfuscation.)

Take-home Message: The take-home message from our observation is that
a post-quantum secure pseudorandom function family that is not secure in the
superposition-access model will not result in a post-quantum secure threshold
pseudorandom function using the NPR approach.

A.2 Separation

Theorem 8.4 in [AMMR18] formally states that when PRF is a pseudorandom
function, the NPR threshold function sketched above is a TPRF that satisfies
pseudorandomness. We show that theorem 8.4 does not hold if we replace PPT
adversary with a QPT adversary in the pseudorandomness definition under the
existence of a post-quantum obfuscator.

Observation 1. Let {PRF′ki
}i be a family of pseudorandom functions from

{0, 1}n to {0, 1}m. For each i, we define PRFki
(x) := PRF′ki

(x) ⊕ PRF′ki
(x ⊕ s)

where s is a randomly chosen element from the domain. If there exists a post-
quantum obfuscator 6 for the value s, the NPR threshold function constructed
from this family is not post-quantum TPRF with respect to the Definition 9.

6 See [Agr19, WW21, BDGM22] for recent advances on post-quantum obfuscation.
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First, we show that {PRFk}k is a family of pseudorandom functions if {PRF′k}k
is a family of pseudorandom functions. Our assumption is that the secret period
s is obfuscated in the program of PRF. Then, we show that the NPR threshold
function that uses {PRF} (Fk(x) = ⊕d

i=1PRFki(x)) is not post-quantum secure.

Game 0. In this game, a PPT adversary A has oracle access to PRFki
for a

randomly chosen key ki. The adversary makes polynomial number of queries to
its oracle and returns an output b.

Game 1. Let f : {0, 1}n → {0, 1}m be a function chosen uniformly at ran-
dom from the set of all functions. In this game, the adversary has oracle access
to PRFf (x) := f(x) ⊕ f(x ⊕ s). We show that Game 0 and Game 1 are indis-
tinguishable if PRF′ki

is a pseudorandom function. Let A be an adversary that
distinguishes Game 0 and Game 1 with some non-negligible probability ϵ mak-
ing q queries. We construct an adversary B that distinguishes PRF′ from a truly
random function. Namely, the adversary BO chooses a random element s, runs A
and answers to its queries as follows. On input x received from A, the adversary
BO queries x and x⊕s to its oracle O to receive O(x) and O(x⊕s), respectively.
Then it returns O(x)⊕O(x⊕ s) to A. At the end, BO returns A’s output. It is
clear that BO distinguishes PRF′ki

from a truly random function with a proba-
bility ϵ and making 2q queries to its oracle.

Game 2. Let F : {0, 1}n → {0, 1}m be a truly random function. In this game,
the adversary has oracle access to F . Under the existence of a post-quantum
obfuscator [WW21, BDGM22], the two games 1 and 2 are indistinguishable un-
less the adversary makes a query on two inputs x and x⊕ s that occurs with a
probability at most q2/2n due to the birthday attack. This shows that {PRFk}k
is a family of pseudorandom functions.

Quantum Attack. We show how a quantum polynomial-time adversary is able
to break the Definition 9. Note that a QPT adversary A that has corrupted a
party j can employ the Simon’s algorithm on the function PRFkj to recover s.
Then, it queries (Eval, x, i) for as many as i that is enough to compute Fk(x).
Then, it submits (x ⊕ s, S, ∅) where S ⊆ [n] \ {j} and |S| ≥ t as a challenge
query. It is clear that when b = 0, the adversary expects to receive Fk(x). On
the other hand, when b = 1, the adversary receives a random value. This breaks
the Definition 9.

A.3 Effect on Our Result

Most of our result in this paper hold if we replace a PPT adversary with a QPT
adversary in the security definitions and theorems. Only Theorem 3 needs further
modification: That is, it holds if the underlying function family PRF is Quantum
Secure. (In other words, it does not hold if we use a post-quantum secure PRF.)
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