
AGATE: Augmented Global Attested Trusted Execution in
the Universal Composability framework

Lorenzo Martinico1,2,Markulf Kohlweiss1,2

1 University of Edinburgh, UK, firstname.lastname@ed.ac.uk
2 IOG, UK

Abstract. A Trusted Execution Environment (TEE) is a new type of security technology,
implemented by CPU manufacturers, which guarantees integrity and confidentiality on a
restricted execution environment to any remote verifier. TEEs are deployed on various con-
sumer and commercial hardwareplatforms, and have been widely adopted as a component
in the design of cryptographic protocols both theoretical and practical.

Within the provable security community, the use of TEEs as a setup assumption has con-
verged to a standard ideal definition in the Universal Composability setting (Gatt, defined by
Pass et al., Eurocrypt ’17). However, it is unclear whether any real TEE design can actually
implement this, or whether the diverse capabilities of today’s TEE implementations will in
fact converge to a single standard. Therefore, it is necessary for cryptographers and protocol
designers to specify what assumptions are necessary for the TEE they are using to support
the correctness and security of their protocol.

To this end, this paper provides a more careful treatment of trusted execution than the
existing literature, focusing on the capabilities of enclaves and adversaries. Our goal is to
provide meaningful patterns for comparing different classes of TEEs , particularly how a
weaker TEE functionality can UC-emulate a stronger one given an appropriate mechanism
to bridge the two. We introduce a new, “modular” definition of TEEsthat captures a broad
range of pre-existing functionalities defined in the literature while maintaining their high level
of abstraction. While our goal is not directly to model implementations of specific commercial
TEE providers, our modular definition provides a way to capture more meaningful and
realistic hardware capabilities. We provide a language to characterise TEE capabilities along
the following terms:

– a set of trusted features available to the enclave;

– the set of allowed attacks for malicious interactions with the enclaves;

– the contents of attestation signatures.

We then define various possible ideal modular Gatt functionality instantiations that capture
existing variants in the literature, and provide generic constructions to implement stronger
enclave functionalities from an existing setup. Finally, we conclude the paper with a simple
example of how to protect against rollback attacks given access to a trusted storage feature.

1 Introduction

In recent years, programmable hardware-based Trusted Execution Environments (TEEs)
have been made available by computer manufacturer for different market segments, including
consumer and server CPUs. Their introduction has led them to be considered as a realistic
component in the development of secure interactive protocols, for a range of diverse use
cases. While actual real-world protocols deployments adopting TEEs have been limited,
there has been a large number of academic publications exploring the feasibility of their use,
both in the systems and cryptographic literature. Within the provable security community,
a popular approach has been taking the existence of TEEs as a setup assumption. Hardware
setup assumptions had previously considered simpler devices with limited computational
power [49]. To capture the flexibility of a full fledged TEE, Pass, Shi, and Tramèr [76]
(PST) formulate an ideal setup in the Generalised Universal Composability setting. Their
functionality, the global attested execution functionality Gatt, captures the two core security
claims of Trusted Execution: 1) programs run in an isolated environment (a secure “enclave”)
maintain confidentiality in the presence of an otherwise corrupted party; 2) the output of
such a program is authenticated by “attestation”. Gatt models attestation as a (globally
shared) signature over the program output and metadata, allowing any remote party to
verify the value of attestation regardless of their access to an enclave.

2 Lorenzo Martinico,Markulf Kohlweiss

The PST functionality provides a clean abstraction for TEEs that facilitates security proofs of
protocols using Universal Composability. By necessity, such a high level formulation should
not contain precise implementation details for any one TEE platform. As a consequence,
the PST functionality does not expose a specific programming model, leading to publica-
tions with various (sometimes incompatible or unrealistic) assumptions about what features
are available to the enclave program. It is also not clear whether the strong guarantees of
the functionality can be met by any real implementation of TEEs, given the vast num-
ber of practical side-channels and physical attacks on the technology published since its
release. It is thus necessary to question whether the promised guarantees can actually be
delivered. This is an issue that most protocol designers that incorporate TEEs in their con-
structions conveniently choose to ignore by considering these attacks as out of scope. While
in principle this approach is justifiable, as it would be unreasonable to ask cryptographers
to become experts in the finer details of computer architectures necessary to create TEEs,
a more realistic model is warranted if we are to see the deployment of these protocols in
the real world. Replacing the idealisation of a TEE with a specific instantiation is bound
to invalidate any security claim. A salient example is given by Bhatotia et al. [13], who
show how a weakened abstraction that allows malicious adversarial interference with an
enclave’s state could lead to loss of confidentiality, by mounting a rollback attack, in a pro-
tocol that would be secure in the Gatt-hybrid model. On the other hand, previous works
[86, 41] have shown that, for some protocols, a (significantly) weaker TEE implementation
can still provide meaningful guarantees. The existence of these works suggests the need
for cryptographers to articulate more precisely what aspects of a TEE their protocols will
rely on. Articulation requires an appropriate language; our goal for this work is to create one.

We augment the ideal PST functionality with three “units of meaning” that can be modularly
selected to provide different TEE guarantees: features, attacks, and attestation contents.
Features model the high level (trusted) interface available to programs executed within a
TEE to interact with the untrusted portions of the machine or the outside world. The imple-
mentation of a feature might be implemented through a specific hardware modifications to
the CPU architecture, trusted firmware, a cryptographic protocol between multiple enclaves
and remote parties, or a combination thereof. As such, we give the enclave program access
to “oracles” (an abstraction of a trusted interface) for the available features. The goal of
a feature oracle is to model the guarantees of the untrusted boundary between the trusted
code running within the enclave and its access to the external (untrusted) world.
Attacks are also represented as abstract oracles, available to the adversary when interacting
with the ideal TEE functionality. When constructing protocols that interact with TEEs,
the attacker is generally modelled as the party that is executing an enclave on their local
machine. As such, we give the attacker the option of passing additionally malicious control
instruction along with any input to the enclave, and explicitly state in the formulation how
a call to that oracle will affect the internal enclave state.
The values of Attestation that are transmitted to a remote verifier to certify the authenticity
of the installed program are defined as a function over the state of the enclave (its measure-
ment) and is bound to the TEE instance it runs on. The PST model has a rigid definition
of attestation, with its guarantees inspired by the earliest scheme adopted by Intel SGX.
Our formulation is more abstract and allows us to adopt a wider class of measurements and
attestation properties.
Our modelling of these interfaces is presented in a modular fashion, with a shared baseline
abstraction that provides an interface to parties interacting with TEEs. For each instantiation
of a TEEs, we capture its unique combination of features, attacks and attestation through
a combination of UC “shells”, a modelling construct that allows us to reason about the
interface of the enclave without the need to analyse the specific applications it is running.
We provide several examples of shells that capture pre-existing formulations of TEEs in the
literature, unifying all previous PST variants.
By providing a modular functionality for TEEs, we let the security proof for a protocol
be independent from a concrete TEE instantiation. The protocol designer simply needs to
choose the minimum set of features required by the enclave program, an upper bound on
how an attacker is allowed to tamper with enclaves, and how much information about the
enclave is provided to other parties (or “leaked” to the environment) by the attestation.
Despite this, we do not want to dismiss the pre-existing work to prove protocols as secure
in the simpler PST model. As such we propose a technique to bridge different versions
of the functionality, either by adding a new feature oracle, or by removing an attack or-
acle. We show how to construct generic “wrapper” protocols which, combined with a less

AGATE 3

powerful TEE abstraction, are functionally equivalent to a stronger one, by implementing
the missing features in runtime, or patching the remaining attacks. Showing that a more
realistic TEE formulation, combined with the appropriate wrapper, is equivalent to PST
could allow us to preserve pre-existing proofs under Universal Composability. By repeatedly
showing that the combination of a “weak” TEE with a protocol implements a “stronger”
TEE, we can provide a path to realise a powerful abstraction such as PST from realistic
TEE implementations. We hope that our functionality will provide the cryptographic com-
munity a unifying abstraction to characterise different versions of TEEs, including those
that have already been proposed in the literature, and will help analyse how they relate to
each other. This is an important step to enable a more nuanced discussion on the security
claims of TEE vendors and the requirements for TEE-enabled protocols - but is ultimately
still a theoretical contribution. Constructing the next generation of practical TEE will re-
quire a much more system-focused approach than what is possible at this level of specificity.

The paper is structured as follows: in Section 2, we review some notions of Universal Com-
position and provide an overview of the existing TEE modelling from Pass, Shi, and Tramèr
[76] and follow-up works. We then propose, starting from Section 3, a generic framework for
specifying Trusted Execution functionalities with more granular interfaces. The key char-
acteristic of our framework is to provide three parameters for each TEE setup: the set of
features that an enclave running on the TEE can access; the set of attacks the adversary
is allow to mount; and what values are included in the attestation measurement signed by
each enclave. In Section 4 , we provide a “Zoo” of enclave capabilities, adapting pre-existing
formulations of enclaves into our model, as well as new capabilities that form useful building
blocks for building protocols involving TEEs. Section 5 provides a notion of equivalence be-
tween different classes of TEEs, sketching a path to compiling programs designed for more
powerful TEEs into programs that can run on weaker ones. Specifically, we use the feature
and attack sets as parameters along which we can compare different types of TEE. We pro-
vide a generic compiler (and associated proof strategy) that shows how any TEE setup can
be UC-emulated by the combination of a setup with fewer features, and a protocol that
implements the missing one. Similarly, we sketch how combining a TEE setup with some
attacks, and a protocol to defend against a portion of them, UC-emulate a setup with equiv-
alent features, but without those attacks. We conclude by applying the latter compiler to an
illustrative example in Section 6, where we sketch how to provide security in the presence of
rollback attacks through a simple protocol that relies on access to trusted storage.

2 Background

2.1 Universal Composability

Universal Composability, introduced by Canetti [20], is a computational proof model that
allows showing the security of protocols under concurrent composition.
UC is based on the computation model of Interactive Turing Machines (ITM) [48] and
allows constructing simulation-based proofs of security in a modular way. Due to its flexible
modelling of communication channels and adversarial capabilities, UC can capture a broad
variety of adversarial scenarios, and a large number of protocols have been shown to be UC-
secure. Moreover, since its introduction the framework has inspired numerous extensions and
variations [68, 5, 58, 51, 18, 22] including different revisions to the original model (see [19,
Appendix B]).

Fundamentals A succinct but comprehensive summary of the key components of UC can
be found in [9, Section 2] and in [14, Appendix B]. In this section, we give a higher level
overview of the model and discuss conventions adopted in the rest of the paper.
A protocol is defined in UC as a set of ITM instances (ITIs) whose unique identity is
composed of a party identifier (PID) and a shared session identifier (SID). We generally
refer to the ITIs that represent the protocol principals as main parties, which can spawn
subroutine that represents portion of code executed by the principal. To allow separating
modelling artefacts from the code of the analysed protocol, a “structured protocol” divides
ITIs into a shell and body component (introduced in [19, Version of 2018]). The body of the
protocol handles the cryptographic operations, and is not aware of the shell, which is limited
to handling modelling related instructions and can read and modify the contents of the

4 Lorenzo Martinico,Markulf Kohlweiss

body appropriately. A protocol is executed in the presence of a probabilistic polynomial time
(PPT) bound machine, the environment, that captures the influence of any computation that
might be taking place outwith the current instance of the analysed protocol. The environment
can be seen as initialising the computation of the protocol, and providing input to each of
the protocol principals and the adversary. The adversary is another PPT-bound machine
that is able to instruct ITIs with special corruption messages to modify their behaviour,
through a dedicated backdoor tape. For the rest of the paper, we assume the convention that
any adversary is a dummy adversary, where its behaviour is to simply forward corruption
messages originated by the environment to protocol parties. Besides the adversarial backdoor
tape, ITIs are able to communicate with each other by writing messages on some dedicated
tapes. These mechanisms should not be seen as equivalent to network communication but
rather as a modelling artefact, while the network model can be implemented as an ideal
functionality (allowing flexibility to model networks with different properties). While the
framework does not impose general restrictions on which ITIs can communicate with each
other, there are certain communication topologies that can be considered “better-formed”,
and necessary for certain composition results (such as subroutine respecting protocols, where
all communications to protocol subroutines have to originate from the protocol main parties
or one of their subroutines). To allow composing our examined protocol, the environment
represents external communication by claiming an external machine’s identity when sending
an input to the protocol parties. An environment is said to be ξ-identity-bounded if the set
of identities it can claim is restricted by ξ (expressed as a predicate over the system’s state
at the time the environment sends a message claiming an external machine’s identity).
The model of execution of ITI is inherently single-threaded, but allows flexibility in describ-
ing the granularity of operations and how they interleave. Runtime constraints are satisfied
by maintaining a runtime budget for each machine (known as import). Import can be shared
with a machine’s subroutine, allowing arbitrary dynamical subroutine nesting without run-
ning the risk of exceeding the remaining runtime. The minimum import considered by UC
protocols is the length of the security parameter. A balanced environment ensures that at
any point during the execution of a protocol, the adversarial import is at least as large as
the sum of imports for all other ITIs in the protocol.
Like other simulation proofs, the basic mechanism for showing UC-security is to define an
ideal functionality, which captures the essential properties of the desired protocol as being run
by a trusted party, and show it to be computationally indistinguishable from an execution
of the real protocol (UC-emulation). EXECπ,A,Z is the random variable representing the
output of environment Z for an execution of π in the presence of adversary A (conversely
EXECϕ,S,Z is for the execution of the ideal functionality ϕ in the presence of simulator S).

Theorem 1 (UC emulation). For any PPT protocols π, ϕ and identity predicate ξ, we
say that π ξ-UC-emulates ϕ (or simply π UC-emulates ϕ if the identity bound allows any
identity) if for any PPT adversary A there exists a corresponding PPT adversary S (the
simulator), such that for any balanced PPT ξ-identity-bounded environment Z, it holds that
EXECπ,A,Z ≈ EXECϕ,S,Z

UC-emulation can be used to show that, if we have a protocol π that realises an ideal
functionality F, the security analysis of a new protocol ρ that has π as a subroutine can be
carried out by replacing all of ρ’s call to subroutines running π with calls to ideal functionality
F, which we denote as ρπ→F . This new version of ρ is said to be in the hybrid model, since
its ITIs interact with both other real ITIs and ideal functionalities. For the replacement to
be successful, we require that any party in ρ that calls to a subroutine in π or F satisfies
ξ and does not call instances of π and F in the same session (we say that the protocol ρ is
(π, ϕ, ξ)-compliant). Additionally, the adversary should be able to determine whether an ITI
in a certain session is part of the protocol (the protocol is subroutine exposing).

Theorem 2 (UC Composition Theorem). For any PPT protocols ρ, π, ϕ and predicate
ξ, if ρ is (π, ϕ, ξ)-compliant, ϕ, π are both subroutine respecting and subroutine exposing, and
π ξ-UC-emulates ϕ, then ρπ→ϕ UC-emulates ρ.

Unfortunately, many interesting protocols, such as commitment schemes [23], secure two-
party computation [24] or even authenticated channels [21], are not easily provable in UC
in the plain model. We therefore need to add some ideal subroutine that can represent
the cryptographic assumptions required as a block box ideal subroutine. The next section
will discuss how hybrid functionalities that share state among sessions can also be used
composably through some tweaks to the UC framework.

AGATE 5

Globality While UC provides a powerful paradigm for reusable cryptographic proofs, com-
position imposes many restrictions over the base model as outlined in Theorem 2. To address
the limitation of the UC theorem of subroutine-respecting interactions, Canetti and Rabin
[25] introduces Universal Composition with Joint-State, a new composition theorem that
allows a single protocol session to be a subroutine of different protocols. This can be used for
example to prove the security of different protocols that use an authenticated channel, where
all sessions interacting with the same party share the signing key. This composition theorem
is, however, only valid for static protocols (where the number of shared sessions is already
well defined). Canetti et al. [29] formulate two new variants of Universal Composition, Ex-
tended UC and Generalised 3 UC, that allow composition when arbitrary protocol interact
with the shared subroutine. The formulation of GUC has been widely used in the literature,
allowing modelling of protocols that were previously impossible to prove in plain UC, such
as those that provide deniability. Canetti, Shahaf, and Vald [26] later extended the GUC
composition theorem to allow the replacement of global functionalities with protocols. De-
spite its popularity, proving security in GUC is more difficult than in the incompatible plain
UC setting, as it requires arguing about all possible protocols rather than just the one being
analysed. Moreover, as basic UC has received multiple updates and fixes over time, those
have not percolated to the GUC formalisation, and the equivalence between GUC and the
simpler EUC theorem (which most security proofs in the global setting are actually using) has
been called into question due to some components of the framework being underspecified [9].
Camenisch, Drijvers, and Tackmann [17] also show that neither the UC or GUC composi-
tion theorems allow proving that a protocol ρπ→F can UC-emulate ρ if π is a subroutine of
both ρ and of another distinct ideal subroutine of ρ. They therefore propose a new recursive
composition theorem for jointly subroutine respecting functionalities, multi-protocol UC.

Universal Composability with Global Subroutines [8] aims to rectify these issues by embed-
ding UC emulation in the presence of a global protocol within the standard UC framework.
To achieve this, a protocol π with access to subroutine γ is replaced by a new structured
protocol µ = M [π, γ], known as the management protocol. The management protocol is
designed to be subroutine-respecting to preserve composition, while allowing the external
protocol ρ to access a single instance of π and multiple of γ. µ is a shell only protocol that
uses a directory ITI to redirect external communication from ρ to the appropriate machines
in π or γ (and conversely to the external machine that should receive a response). The
following definition roughly corresponds to the EUC formulation of global functionalities:

Definition 1. For protocols π, ϕ, γ, we say that π ξ-UC-emulates ϕ in the presence of (global
subroutine) γ if M [π, γ] ξ-UC-emulates M [ϕ, γ]

As in the basic UC framework, the composition theorem follows, with some additional re-
strictions: π and ϕ are allowed to break their subroutine- respecting behaviour to use the
global subroutine γ (we say they are γ-subroutine respecting), and γ itself does not depend
on ϕ as one of its subroutines (we say that γ is ϕ-regular). These requirements allow the use
of the shared state subroutine without provoking circular dependencies that would prevent
a clean cut replacement 4.

Theorem 3 (Universal Composition with Global Subroutines). For any subroutine-
exposing protocols ρ, ϕ, π, γ where
– γ is subroutine respecting and ϕ-regular,
– π, ϕ are γ-subroutine respecting,
– ρ is (π, ϕ, ξ)-compliant, (π,M [ϕ, γ], ξ)-compliant and (π,M [π, γ], ξ)-compliant;

if π ξ-UC-emulates ϕ in the presence of γ (per Definition 1), then ρϕ→π UC-emulates ρ.

The above theorems can be used to recover EUC statements in the literature by formulating
an appropriate identity bound. While most of the existing work focus on ideal functionalities
as global subroutine, Badertscher, Hesse, and Zikas [7] show that UCGS does not universally
preserve the composition theorem from [26] to replace the setup with a potentially interactive
protocol using a different setup. In particular, when replacing a particularly weak global
setup G (where adversarial capabilities are more extensive than the proposed protocol γ
that realises it), the simulator S in the emulation of a G-hybrid functionality F by some

3 commonly misattributed as Global UC
4 This type of recursive composition is implemented in multi-protocol UC [17]; however the composition
theorem of that work is not compatible with Theorem 2

6 Lorenzo Martinico,Markulf Kohlweiss

protocol π might no longer be possible in the γ-hybrid world, as it can no longer use the
attacks allowed by G. Their work then provides some guidelines on which global setups can
be successfully replaced by a protocol. Namely, an equivalent setup (where protocol γ UC-
emulates ideal functionality G, and G UC-emulates γ) can always be replaced, regardless
of the context protocols which use it as a global subroutine. Additionally, replacement is
possible if the simulation strategy of S either avoids using any of the adversarial capabilities
of G (S is an agnostic simulator), or that the adversarial capabilities it does interact with
will be preserved by γ (S is an admissible simulator).

Canetti et al. [28] later observes that the replacement statement also holds if protocol γ
replaces the protocol that combines G with the simulator from the γ UC-emulates G exper-
iment, and thus any F using that combined protocol as a global subroutine can be replaced
with γ.

To conclude this section, we note that in the rest of this work, whenever an ideal functionality
calls another (global) ideal subroutine (e.g. provides some input to the global subroutine on
behalf of a specific party), the underlying operation relies on the intermediary dummy party
convention of [8, Definition 4]. Additional remarks about our notation when we present UC
protocols follows.

Notation We now list additional convention taken by our pseudocode for the remainder
of this work. We hope our notation is generally self-explanatory, but in case of ambiguity
we refer the reader to the following explanation. We might refer to UC terminology beyond
what was described above; any such usage is self-contained to this section, but we refer the
reader to [19, Section 3.1] for additional context.

Our notation defines ITIs in terms of their behaviour when they are activated and find a new
message on their input tape. We define the code executed when such a message is received
as a subroutine. Some subroutines definitions are not meant to be triggered by external
parties, but are simply used to extract some shared code that the ITI might need to execute
multiple times. In that case, we use the keyword “run” followed by the subroutine name to
denote that the same ITI is executing it. The ITI is understood to choose which subroutine
to execute by pattern matching on the program definition as specified in the pseudocode,
starting from the earliest subroutine definition i.e. if there are multiple commands that start
with the same keyword, it will try to find the one with the correct arguments starting from
the earlier definition. When the first argument is *, it is taken to be a wildcard, and when
font cmd is used, it is taken to be a variable; , so any subroutine will match (and is therefore
typically defined last).

Our message-passing treatment tends to stay at a higher level than the underlying UC
execution. As such, we omit many details of the ITI behaviour in our protocol descriptions.
We generally describe a subroutine by using the notation “On message (SubroutineName,
list of subroutine arguments) from party P :” followed by high-level pseudo code for the ITI
execution, in the style of an imperative programming language. This notation is short for
indicating that the machine we are describing on activation reads from its input type a
message of type (P, (SubroutineName, list of subroutine arguments)), where P is an object
that contains fields pid, sid; and SubroutineName corresponds to some code in its program
it can execute with the inputs from the argument list. Conversely, the notation return
(msg, args), as part of the description of subroutine pseudocode for an ITI M , denotes the
end of the execution of the current subroutine with the issuing an external write request
(f,M ′, t, r,M,m), where destination ITI M ′ is the same machine from which it received
input, and m = (msg, args). In this case, we always set f , the forced-write flag, to 1; t, the
destination tape, to subroutine-output (unless the pseudocode describes an adversarial
machine, in which case t=backdoor); and r, the reveal-sender-id flag, also set to 1.
Keyword abort, or return with no arguments indicate the end of execution for the current
subroutine without issuing a corresponding subroutine output message.

If M wants to issue an external write request for a destination ITI that is not the same that
initiated the current subroutine execution by passing input to M , we use “Send (msg,args)
to M ′” to issue a the same message as described above, except for setting t to input. If the
Send instructions is not the last one in the current subroutine description, the external write
request is not issued immediately, but rather queued in the outgoing message tape forM until
the end of the subroutine, or when M next relinquishes the activation token. When we use
“Send (msg,args) to M ′ and receive (msg′,args′)”, M yields activation immediately, and
resumes execution the pseudocode from the same instruction when it next receives message
(msg’, args′) on its subroutine output tape from the sender. When this happens, the ITI

AGATE 7

stores its current execution context (i.e. any intermediate computation on the work tape)
somewhere in memory in a way that it can be restored when activated in this way. Between
sending and receiving the response, the ITI can be activated with any other message on any
tape, although if our current program can not tolerate such concurrency, the ITI might abort
by checking some internal flag. If multiple outgoing messages were sent to the same M ′, we
assume that the response includes some unique identifier to allow M to restore the correct
context for which it is responding to5. When M issues an outgoing message, and expects the
corresponding response to come from a different party, we use the keyword await , followed
by a full description of the behaviour on next activation.
A variable assigned as part of a subroutine does not guarantee that it will be available to other
subroutines, unless it is defined in the State variables table at the start of the definition. When
the same program uses the same identifier across different subroutines, they are generally
taken to be distinct values, especially if received as part of a message. Variables first defined
within a loop or if branch have their scope local to that block. Protocol parameters are
generally taken to be globally readable to all protocol parties and their subroutines.
Our formulations in this work rely on structured protocols, as defined in [19, Section 5.1]. A
structured protocol is a list of nested ITIs, on which a higher level ITI (generally referred to
as shell) has full access to read or overwrite the tapes of any lower level subroutine ITI (which
we refer to interchangeably as the virtual ITI, or by their extended identities). ITIs have
access to a number of tapes to store their identity, code, running memory, and communicate
with other machines. Although the description of an ITI is not precise or prescriptive in terms
of how it implements the computation, we assume that the program description uses some
well-defined language, perhaps similar to a low level programming language or assembly.
We represent each individual instruction as a command with optional arguments, which
we represent using function call notation command(argument) sometimes with optional
parenthesis (command argument e.g. for the case where command = return). We overload
the set membership operator ∈ to verify that the command component of the instruction
belongs to the set. The code of an enclave can be seen as a list of ITI instructions of this
type, and the notation “for instruction i ∈ prog do” can be interpreted as iterating over the
list of instructions for program prog (including command and arguments) without executing
them (i.e. by advancing only the head of the shell over the tape). Conversely, when an ITI
ρ in a structured protocol (see 2.1) contains pseudocode

begin executing input on π
for next instruction i on π do f(i)

it should be read as ρ iterating through the code of a subroutine with extended identity π,
and for each instruction i, ρ executes subroutine f(i) to advance the state of π (updating its
tapes and advancing π’s head), while performing any additional operations in ρ’s code.

2.2 Trusted Execution Environments

Trusted Execution Environments have generally been the domain of the system security
research community. Costan and Devadas [37] first attempted to bridge the knowledge gap
to allow cryptographers to understand the internals and guarantees of Intel SGX, the first
widely available and commercially successful TEE. We assume the reader is familiar with
the high level guarantees of a TEE, and refer to that work for an in-depth explanation of
the internals of one of its most popular instantiation.
Since then, a variety of works have attempted to formalise TEEs for the purposes of cryp-
tographic protocol design.

– Sinha et al. [79] and Sun and Lei [82] propose an Intel SGX application development
technique, and an ARM TrustZone variant, respectively, where the trusted component is
narrowed down to a well specified interface between the secure world and the operating
system through a security monitor, whose safety is easy to formalise and verify.

– Xu et al. [94] propose a model in the Tamarin prover to automate security proofs of
protocols that rely on TEEs.

– Sinha et al. [80] propose a verification toolkit for assessing whether an application de-
veloped for SGX fulfills the claimed confidentiality and integrity guarantees based on its
usage of the SDK, providing one of the first machine-checkable models of SGX APIs.

– Dokmai et al. [40] reduce leakage resilience their TEE-enabled application to the safety
of the type-system of the Rust programming language

5 This is not a universally safe assumption to make for any UC protocol, but it is sufficently safe for the
ones analysed in this work

8 Lorenzo Martinico,Markulf Kohlweiss

– Antonino, Woloszyn, and Roscoe [4] formulate a new notion of correctness for enclave
execution, and provides a program analysis tool to ensure that the required conditions
are met.

– Vukotic, Rahli, and Esteves-Veŕıssimo [89] propose a new language to assert safety prop-
erty of hybrid fault tolerance protocols (where some of the replicas, running on SGX,
are more trustworthy than others).

– Subramanyan et al. [81] propose the Trusted Abstract Platform, a formal model of
TEEs that captures security against local privileged processes and remote attestation.
TAP is shown to capture both the Intel SGX and MIT Sanctum architectures with a
machine checked proof of refinement. Lee et al. [59] later extend the TAP model to
capture memory sharing capabilities between enclaves, and Gaddamadugu [47] provides
a machine checked-proof using this variant.

– Fisch et al. [43] define a game-based model of SGX to prove the security of their protocol
– Barbosa et al. [11] are concerned with the problem of proving the security of TEE

programs in a composable way, and provide a custom game-based security model that
can capture TEE execution and attestation. Jacomme, Kremer, and Scerri [52] provides
a SAPIC/Tamarin machine-checked simplification of this model, and Bahmani et al. [10]
later realise a secure MPC protocol using the model in a simulation-based proof.

– Lu et al. [63] provides a simulation based security definition for a TEE with a partial
corruption model.

– Pass, Shi, and Tramèr [76] gives a definition of TEEs under the Universal Composability
setting.

Given the desirable composition guarantees of UC, we choose the latter model to conduct
the security analyses in this work. We now provide a detailed overview of their formalisation.

TEEs under Universal Composability While various works exist to model HSM-
like functionality in UC (e.g. see [55]), and some initial work has been proposed by Canetti
et al. [30] to give a UC treatment of validating the security guarantees of generic hardware
constructions (including protecting against side-channel attacks), Pass, Shi, and Tramèr [76]
provide the first UC formulation of TEEs. Their Gatt functionality (fully reproduced below
in Figure 1) is a generalised TEE model that aims to capture architecture independent
properties. It distills the essence of TEEs into attested execution i.e. evaluation of a program
with associated proof of execution. on capturing the concept of attested execution in a general
manner, removing implementation details. Gatt lets a pre-established set of parties, with local
access to a TEE, install and execute arbitrary enclave programs, which produce anonymous
attestation signature over the program output and enclave metadata. While the environment
is able to install their own programs through a corrupted party and verify the authenticity of
an attested output, they learn nothing about the internal state of an enclave or the identity
of the party executing that program. Any implementation details of the trusted hardware
or concrete attestation protocol are abstracted away from the attested execution formalism.
Through its simple signature mechanism, which collapses local and remote attestation into
a single operation, Gatt incorporates both the roles of attester and verifier into one setup
functionality.
The functionality is parameterised with a signature scheme and a registry to capture all
platforms with a TEE. The functionality in Figure 1 diverges from the original one in that
we let vk be a global variable, accessible by enclave programs as Gatt.vk. This allows us to
use Gatt for protocols where the enclave program does not trust the caller to its procedures
to pass genuine inputs, making it necessary to conduct the verification of attestation from
within the enclave.
The install and resume subroutines can only be triggered by parties who have access
to TEE hardware (a static set defined as functionality parameter reg); but any party can
obtain the verification key. On enclave installation, its memory contents are initialised by
the specification of its code; this initial memory state is represented by symbol ∅. The
unique enclave id is taken to be a software component of the Trusted Computing Base,
generated during installation. The output of computations (through resume) consists of the
(anonymous) ID of the enclave, the UC session ID, some unique encoding for the code
computed by the enclave (which could be its source code, or its hash), and the output of the
computation itself. Input does not have to be included in the attested return value, but if
security requires parties to verify input, the function can return it as part of its output.
Gatt is a Global Functionality in GUC [29] where the only meaningful global state shared be-
tween all protocols is the attestation verification key. This is a simplification over the EPID

AGATE 9

Functionality Gatt[Σ, reg, λ]

State variables Description

vk Master verification key, available to enclave programs
msk Master secret key, protected by the hardware

T ← ∅ Table for installed programs

On message initialize from a party P :

let (spk, ssk)← Σ.Gen(1λ), vk← spk,msk← ssk

On message getpk from a party P :

return vk

On message (install, idx, prog) from a party P where P.pid ∈ reg:

if P is honest then assert idx = P.sid
generate nonce eid

$← {0, 1}λ
store T [eid, P]← (idx, prog, ∅)
return eid

On message (resume, eid, input) from a party P where P.pid ∈ reg:

let (idx, prog,mem)← T [eid, P], abort if not found
let (output,mem′)← prog(input,mem)
store T [eid, P]← (idx, prog,mem′)
let σ ← Σ.Sign(msk, (idx, eid, prog, output)) and return (output, σ)

Fig. 1. The Gatt functionality of [76]

attestation protocol used in the original version of SGX [77], that removes the key revocation
phase. Attestation verification amounts to simply verifying the output data structure as de-
scribed through a simple signature scheme with the globally available (both to machines with
and without enclave capabilities) public verification key. The signing key is never released
by the functionality, capturing the provisioning mechanism of the SGX system enclaves. The
inclusion of the session ID in the attestation signature ensures that enclaves installed in
different sessions (for which the simulator has no visibility) can not adversely interacts with
the protocol.
As part of their work Pass, Shi, and Tramèr [76] show that TEE-assisted two-party com-
putation is realisable in UC only if both parties have access to attested execution, and fair
two-party computation is also possible if additionally both secure processors have access to a
trusted clock.

Since its publication, numerous cryptographic protocols that rely on TEEs have been proven
using Gatt in the (G)UC framework [96, 34, 32, 95, 33, 92, 62, 60, 36, 50, 65, 61, 91, 53, 56,
45, 46, 73, 12, 35] or using [64] the Abstract Cryptography framework [69], and it as provides
a basis for formalising TEEs in property-based definitions [70, 66, 42, 93, 44, 38, 83].
Additionally, some attempts have been made to relax the Gatt functionality for the purposes
of capturing TEE vulnerabilities. Tramer et al. [84] introduced the concept of transparent
enclaves to model confidentiality leaks in an enclave program (formalised under GUC in [75,
Section 8.1]). The transparent enclave functionality behaves exactly as Gatt, except that
for each resume operation, the functionality additionally leaks the randomness used by the
enclave (allowing the OS to derive any secret created within the enclave). Since authenticity
is still preserved, as the signing key for the enclave platform is not leaked, transparent
enclaves are still useful for proving various constructions, such as zero-knowledge proofs and
commitment schemes.
This is perhaps an excessively strong model, as the use of side channel attacks might only
allow a portion of the memory or randomness to be learned by the adversary. Dörre, Mech-
ler, and Müller-Quade [41] proposes both a weaker and a stronger variants. Since the SGX
quoting enclave that allows producing attestation does not have any specific hardening mech-
anism compared to other enclaves running on the machine, besides being carefully imple-
mented with side-effect free primitives, the authors argue that it is realistic to model a

10 Lorenzo Martinico,Markulf Kohlweiss

class of TEEs where side channels do not affect certain secure operations such as key ex-
change and symmetric encryption (since the quoting enclave relies on them for attestation
to be successful). As such, they define almost-transparent enclaves as transparent enclaves
with access to side-channel free implementations of symmetric cryptography primitives and
Diffie-Hellman key exchange operation. On a resume operation, an almost transparent en-
clave leaks the random bits used during its execution, the memory of the enclave at the start
of the resume call, and the return value of the cryptographic operations, but crucially not
the randomness used to perform the cryptographic functions. This allows the adversary (and
the simulator) to learn any values that would have been leaked through any intermediate
computation on secrets the enclave had access to. Additionally, they consider a semi-honest
enclave, inspired by the modelling of [63], where the adversary is able to adaptively leak
the list of operations executed by an enclave run by any party regardless of their corruption
status. A semi-honest enclave model captures a scenario where the manufacturer of the TEE
might have introduced a backdoor that enables them to remotely instruct any TEE-enabled
machine to record and leak their data. Besides providing the alternative attacker models,
their global functionalities are realised in UCGS, and allow any party to install an enclave
(i.e. there is no fixed registry set reg).
The models of almost-transparent and semi-honest enclaves is motivated by the design of a
protocol to implement one-sided Private Set Intersection (a two-party protocol where only
one party learns the intersection of the two inputs). Dörre, Mechler, and Müller-Quade
construct a protocol that realises one-sided PSI in the almost-transparent setting where one
party is corrupted, and in the semi-honest when sitting where neither party is corrupted.
Bhatotia et al. [13] provides a further weakened UCGS version ofGatt that allows an adversary
to conduct rollback and forking attacks. Their functionality keeps track of enclave states in
a tree data structure and allows a corrupted party to select an arbitrary node in the tree to
load the state from as part of a resume operation. This new weaker setup can be shown to
no longer be sufficient to guarantee the security of a protocol that includes stateful enclaves.

3 A modular Gatt Setup

As an ideal functionality, the Gatt formalisation described in the previous section does not
really explain how enclave execution takes place in any detail. This formulation of TEEs does
not explicitly expose any specific hardware or implementation details, beyond the abstract
interface that allows the local party to install a program and execute it. When describing the
components of Gatt, Pass, Shi, and Tramer [75, Section 3.2] explicitly state that the function-
ality emerges from a combination of the TEE features with some assumed firmware to provide
this type of confidential computing service. In particular, they attribute the generation of
unique per-enclave ids at installation, which are not guaranteed by all TEE architectures,
to this firmware sampling a nonce from a unique key distributed to each TEE by the man-
ufacturer during provisioning.
This abstraction of TEEs as an isolated execution mechanism with an easily verifiable proof
of computation is a key insight of the model, and its promise of using the abstraction as a
block box for constructing protocols a major selling point. This high level model does however
conceal how realistic hardware component might fail, preventing the protocol designer to take
such a scenario into account. A more careful approach would then consider the functionality
provided by Gatt as implementable by a combination of hardware, trusted firmware, and
system-defined enclaves. The attestation signature guarantees that all of these components
were acting in concert at the time when an output was generated.
Examining these components in more detail provides two advantages. First, it allows more
meaningful relaxations of the security guarantees, by allowing to distinguish which compo-
nents of the system can be compromised. Additionally, once we stop thinking of the func-
tionality as a monolithic hardware component, it becomes natural to consider alternative
features that the manufacturer or third parties might augment the TEE with. In particu-
lar, we may think of the combined hardware and software libraries an enclave has access
to during its execution “runtime” as providing a kind of API. While the list of features
provide by Gatt could be considered a “standard” enclave interface, it is possible to imagine
additional API calls available to the enclaves, for example a trusted clock [31], monotonic
counters[31, 67], secure access to GPU compute resources [85, 88, 97] etc. Regardless of how
these interfaces are implemented (e.g. by modifying the architecture or trusted firmware, or
running the enclave through a “wrapper” library that interacts with a trusted system en-
clave, or even through a distributed protocol between multiple mutually untrusted enclaves),

AGATE 11

the attestation mechanism should capture their presence. Beyond showing that an enclave
is running the correct program, a sound attestation mechanism also needs to certify to the
verifier that the TEE provides the correct version of the API, otherwise the program code
can not provide its security guarantees. In other words, a TEE functionality attests to the
combination of (prog, runtime) rather than the mere application code prog.

Features, Attacks, and Attestation We now extend the Gatt functionality from [76] (hence-
forth referred to as GPST

att) to allow defining a larger class of TEE setups. Our goal is to
capture the runtime behaviour of enclaves, without delving into the specifics of their imple-
mentation. To maintain this level of abstraction, we use a number of idealised interfaces.
Within our new formalism, a TEE application developer can choose to target a minimum set
of features required bv their applications. A standard error will be returned if such a program
is installed on an instance of the TEE functionality that does not support the feature set. For
each possible modular instantiation of a TEE Gmod

att , we thus define a set of feature oracles O,
which represent the library of subroutines that are available to an enclave program. A feature
of this kind is a polynomial time algorithm, as implemented by the runtime combination of
hardware and software in that version of Gmod

att , including any communication with external
parties. We also define a set of attack oracles A to capture adversarial behaviour. This can
be thought as a parameter chosen by a protocol designer that captures “allowable” attacks
in the current TEE setting under which the target protocol can still be proven secure. Any
cryptographic protocol that wants to use TEE will therefore need to provide a lower bound
for the set of required features O, and an upper bound for the set of tolerated attacks A, to
parameterise their chosen version of Gmod

att . Relationships between different versions of TEEs
are captured by the difference of these two sets, with equivalence statements made possible
by running some additional runtime along enclave programs (either to increase the size of
interfaces provided by O, or to reduce the attacks available in A).
We also introduce modularity in the attestation procedure. This is both to allow capturing a
greater class of TEE architectures, as well as being a technical requirement. A reader familiar
with the simulation framework will quickly realize that our programme of proving that, given
the right runtime, a weaker TEE setup Gmod

att can UC-emulate the stronger G′mod
att , is hindered

by the usage of a fixed signature scheme to model attestation. Since the two different TEE
functionality would each sign different (prog, runtime) messages, it would be trivial for an
environment to distinguish whether it is communicating with the real or ideal world. We
therefore abstract the attestation mechanism in order to “program” the signature scheme.
Our model ties attestation and its verification to the specific Gmod

att functionality instance
the user interacting with: the public parameters of the functionality allow a verifier to di-
rectly assess the capabilities of the attested enclave runtime and its adversary, and make
an informed trust decision based on the feature and vulnerability of the enclave they are
communicating with.

The functionality We now highlight the differences between the new formulation of Gmod
att

(Fig. 2) and the original GPST
att functionality, introduced in Section 2.2

We iterate on the work of [13] to more carefully follow the conventions and formality of mod-
ern UC versions compared to GPST

att . In particular, we now model enclaves as structured ITI
subroutines to the Gmod

att functionality. On installation of an enclave, the functionality spawns
a new ITI subroutine with composite extended identity6 (shO,A[prog], (eid||pid, “att”||idx)),
encoding the program prog, oracles O,A, the unique enclave ID eid, the identity pid for the
party that installed the enclave, and the claimed session identity idx. The new subroutine
is part of a UC structured protocol, where the top level subroutine with code shO,A[prog]
spawned by Gmod

att is known as a shell, and a second subroutine with code prog created by
the shell is known as the body. We use the shell of our structured protocol to capture mod-
elling instructions related to the oracles, while the body is instantiated with the unaltered
program code for the enclave (see Figure 3 for a graphical representation). Running enclaves
as separate subroutine ITIs is functionally equivalent to running the input code within the
global functionality as in the original treatment. It does provide, however, a cleaner abstrac-
tion, in that we are able to explicitly instantiate an ITI that runs the code of the enclave
program installed, rather than having the ideal functionality act as an interpreter. In partic-
ular, our formalism now involves enclaves run by different parties being executed as separate
ITIs, which we believe is a more natural model. Enclave programs are subroutine respecting

6 recall that the identity of an ITI is made up of two strings: party ID and session ID. An extended identity
combines the code for the ITI with the identity

12 Lorenzo Martinico,Markulf Kohlweiss

Functionality Gmod
att [λ, reg,O,A,S]

State variables Description

vk← ϵ Master verification key
Sign← ϵ Attestation Signing algorithm
S ← ∅ Table for signed messages
T ← ∅ Table for installed programs

On message initialise from a party P :

send initialise to A and receive k, s
vk← k, Sign← s

On message getpk from a party P :

return vk

On message (verify, σ,m) from a party P :

// Returns Boolean value

return m ∈ S[σ]
On message (install, idx, prog) from a party P where P.pid ∈ reg:

if pid is not corrupted then
assert idx = sid

for instruction i ∈ prog do
if i ̸∈ O then

return MissingInstructionError

generate nonce eid
$← {0, 1}λ, store T [eid, pid] = (idx, prog)

send install to (shO,A[prog], (eid||pid, “att”||idx))
return eid

On message (resume, eid, input, attack) from a party P where P.pid ∈ reg:

let (idx, prog)← T [eid, pid], abort if not found
if attack = ϵ ∨ pid is not corrupted then

send input to (shO,A[prog], (eid||pid, “att”||idx)) and receive output
else

assert attack ∈ A
send (attack, input) to (shO,A[prog], (eid||pid, “att”||idx)) and receive output, aux
if aux ̸= ϵ then

query A with (attack, aux) and receive the reply continue

let meas← S(configuration of shO,A[prog])
let σ ← Sign(meas),S[σ]← S[σ] ∥ meas
return (output, σ)

Fig. 2. Global functionality Gmod
att

AGATE 13

in that the shell rejects any input message not sent through the Gmod
att functionality, and

will only accept subroutine output messages from machines in its extended session. When
resuming an enclave, the calling party might need to provide some additional import, de-
pending on how much work the shell is required to carry out in addition to the enclave code
execution in itself (e.g. if an enclave calls a feature that involves significant communication
with external parties to be implemented, Gmod

att needs to be activated with sufficient import
to activate those subroutines).

Fig. 3. When a program with code P is installed on a Gmod
att enclave, the functionality spawns a new

structured protocol subroutine with shell shO,A[] and body P . For some interfaces I ∈ O, the shell will
outsource its computation to some external functionality F . The adversary A can interact with the enclave
shell for any attacks A ∈ A through Gmod

att . Both shO,A[] and F can leak additional information to A

We parameterise each instance of Gmod
att by the static sets O,A which capture feature and

adversarial oracles respectively. On installation of a new enclave, Gmod
att first checks that all

instructions in the proposed program code correspond to a call to one of the oracles in O,
and aborts with an error message if they are not. Both sets are the basis for the definition
of the shell for all enclave subroutine ITIs installed by that instance of Gmod

att . We use the
shell mechanism device to help us capture a specification of how the enclave program and
the adversary can interact with the runtime. In particular, for each unique combination of
oracles, we have to give a specific shell definition.

The shell detects when its enclave calls a feature oracle at runtime, and provides a return
value. This can be derived through some local computation conducted by the shell, poten-
tially after communicating with the adversary or other parties; or delegated to a distinct
subroutine. When defining shell in this work we will generally use ideal subroutines, but
this can be implemented through a real protocol without changing the definition (through
UC-emulation).

A corrupted party is allowed to specify an auxiliary command along with their resume
instructions that is executed by the shell in conjunction or instead of the normal program

14 Lorenzo Martinico,Markulf Kohlweiss

execution. The adversarial oracle is allowed to send a message to the adversary after the
resume call has completed, and the adversary can in turn prevent the output of the program
from being released with an attestation. The shell also handles any communication between
enclaves that might be prompted by an attacker or feature oracle.

Finally, we parameterise the functionality by S, a function that defines the contents of the
attestation message for each enclave’s execution. The original GPST

att models an anonymous
attestation signature scheme, and as such always produces an attestation signature tied to the
set of arguments (idx, eid, prog, output). This includes the claimed session ID for the current
protocol executing the enclave, its unique enclave ID, the program code and the output of
the most recent computation. Replacing this fixed data structure with a function allows us to
model a broader range of attestation primitives, such as non-anonymous attestation (e.g. by
including the UC party ID as one of the returned values, or a long-term public key tied to the
party identity, as outlined in [75, Section 8.4]). We further relax the attestation mechanism of
the GPST

att functionality by allowing the adversary (through the simulator in the ideal world)
to choose the format of attestation signatures, to allow the addition of details lacking in the
high-level abstraction. Rather than having a full-fledged offline digital signature algorithm,
the adversary provides (during the initialise phase of the setup) Gmod

att with a public key
and a signing algorithm s. The algorithm s is not required to be a well-formed signature
scheme or guarantee typical security properties such as existential unforgeability. Therefore,
Gmod

att implements signature verification by maintaining a map S of all signed strings and
corresponding signatures generated by Sign. Verifications require sending a message to the
setup, which checks whether it did produce the signed output through an “ideal” table
lookup, rather than running a real verification algorithm as specified by the signature scheme.
We still allow fetching a verification key for interface compatibility with GPST

att , but any
environment party that has obtained the relevant verification algorithm and key from the
adversary will not have any guarantees of existential unforgeability.

When showing UC-emulation between two TEE setups, the simulator can provide a modified
version of these algorithms to convince the environment that the ideal world TEE shares
its runtime with the real world TEE. Take an adversary, for instance, that selects a signa-
ture scheme Σ, and initialises a Gmod

att instance with closure s(meas) = Σ.Sign(sk,meas),
such that on a resume call, Gmod

att applies s to the value produced by function S over the
configuration of the enclave ITI, the enclave measurement. On receiving algorithm s from
the adversary, the ideal world simulator can derive a new s′(meas) = s(R(meas))). R is a
transformation on the measurement that preserves all of its information, except that, if the
measurement contains a public commitment to the program executed in the enclave (such
as a hash of its source code), and the real world Gmod

att functionality is running code of type
prog = (app, runtime) for a specific runtime library, R replaces the commitment to enclave
code app with a commitment to (app, runtime). This means that attestations in the ideal
world will look like attestations to (app, runtime), despite Gmod

att only installing and execut-
ing app as part of its enclave. Of course, app still needs access to the service offered by
the runtime, but in the ideal world it directly accesses the idealised features in the O set.

It is easy to show that GPST
att UC-emulates Gmod

att for the sets of oracles and measurement
function that correspond to GPST

att (which we describe in the next section). We construct a
simulator that selects the exact signature scheme specified in GPST

att . Note that the opposite
direction Gmod

att UC-emulates GPST
att is more subtle. In fact, it is clear that the statement

can not hold for all possible signature schemes provided by an adversary. Consider the null
signature scheme where the signing algorithm Sign(ssk,m) = 0λ; the signature scheme is
still valid under the definition of Gmod

att , but it allows the environment to learn whether an
enclave has produced a specific message, without having to communicate with it (by simply
querying the ideal functionality for verification of an arbitrary measurement produced by
S). This is not possible in GPST

att . A minimum entropy requirement for signatures provided
by the adversary would therefore be necessary (but not sufficient) for the other direction of
the equivalence.

A recent work by Canetti et al. [28] shows, as a corollary of the UCGS composition theorem,
that if a global protocol G UC-emulates G′ with respect to simulator S, then it is possible,
in the general case of any context protocol ρ, to replace any subroutine call from ρ to G
with a call to the combined subroutine of G′ and S. This enables us to port any existing
proofs that rely on GPST

att (provided that the proof is valid under UCGS rather than GUC)
into our new model, by simply replacing GPST

att with the combination of the Gmod
att instance

with equivalent O,A oracles (which we describe in Section 4.1), and the simulator that at

AGATE 15

instantiation chooses the precise GPST
att signature scheme over the usual (idx, pid, prog, output)

measurement produced by S.

4 Defining a Gmod
att Zoo

We now provide the definition for several sets of Gmod
att oracle instantiations, aiming to capture

all existing variants of GPST
att in the literature, as well as some natural extensions related

to real world TEE realisations and attacks. Instantiating a shell for the functionality and
adversarial oracles is a required step for using a new Gmod

att variant, and we have made efforts
to write shells modularly so that they are easy to reuse. This does not mean that we can
directly apply clean-room UC composition, but the structure of the shells makes it easy to
mix and match them as required to handle additional oracles. In particular, most shells are
structured around a loop that examines all instructions executed in the enclave subroutine
ITI. When the instruction matches a specific oracle call, the shell shows how to implement it
(in an ideal way). Some shells (such as the one presented in Section 4.4), modify the structure
of ITIs created by the shell, but are still fully compatible with the formulation for the other
shells.
For the remainder of this section, we consider versions of Gmod

att that use the same attestation
signature function S as GPST

att i.e. anonymous attestastions over (idx, eid, prog, output), unless
stated otherwise .

4.1 GPST
att

We begin by reformulating GPST
att in the language of Gmod

att . While this is not made explicitly
in the original work, GPST

att relies on the following features:

– Addressable instructions: enclave execution begins at arbitrary instructions addressed
through labels; in other words, the enclave program defines some entrypoint as func-
tions/procedures/subroutines that can be called by the registered party that installed
the enclave, along with optional input arguments. On every execution, the enclave re-
turns some output with an associated attestation signature

– Stateful resumes: each resume instruction is atomic, meaning that the subroutine will
execute perfectly without any possibility for adversarial intervention. The state of the
enclave is maintained across each sequential resume execution, and the adversary is not
able to erase or otherwise tamper with it

– Sample Randomness: enclave programs are assumed to provide a true source of random-
ness (of arbitrary lengths)

– Unique Enclave Identifiers: a unique enclave ID is generated as a cryptographic nonce
during enclave installation. Enclave IDs should be unique for all enclaves, regardless of
which party installed them

– Attestation verification: attestation signatures can be verified from within the enclave
program, without having to trust the external OS code to provide the attestation veri-
fication key as an input.

The first three notions are usually considered standard for Interactive Turing Machines. We
therefore define the standard oracle set Ostd to capture all ITI instructions that are standard
for local computation. Although the operation of an Interactive Turing Machine are much
more abstract, this can be thought of as the set of microarchitectural instruction provided
by the processing unit executing the ITI. Attestation verification is explicitly not used in
the GPST

att paper[75, page 23], but we include it because many GPST
att -hybrid protocols in the

literature require the ability of verifying attestation inside an enclave. It could be argued
that adding a capability to verify the attestation within an enclave makes the functionality
less composable than intended, due to the inability to swap the fixed signature scheme with
a call to an attestation service as provided by Intel for SGX. Gmod

att resolves this by moving
verification to an abstract check in the functionality rather than verification of a concrete
signature scheme.
We also note that the GPST

att model forbids the enclave to have access to the UC PID for the
party that is running it. While this is not explicitly stated, enclave programs with PID access
could assist the party to establish a secure channel with another enclave-enabled party [75,
Section 3.3].
As for the adversarial powers, even in the scenario where a host party is fully corrupted, ad-
versarial interactions are limited when it comes to the PST enclaves. For any fully corrupted

16 Lorenzo Martinico,Markulf Kohlweiss

party, a GPST
att adversary is able to install programs with arbitrary sessions identifiers under

that host, honestly execute an enclave, and verify attestation signatures. These behaviours
are all captured by default in the Gmod

att functionality, so no additional attack is required.
For capturingGPST

att underGmod
att , we thus define O to be the union of Ostd and {AttestVerify},

and A = {}. We now give an implementation for a UC shell that models enclave access to the
oracle sets as defined. The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx)),
where the PID is a concatenation of the enclave identifier generated by Gmod

att and the PID of
the source machine which installed the enclave; the session SID is a concatenation of string
att and the session of the protocol under which the enclave was installed. The enclave itself
is a (virtual) subroutine ITI with extended identity (prog, (eid, idx)). While this is a simple
shell, we examine it in detail, as it introduces patterns that are replicated in more complex
shells later in this section.

shO,A[prog]

The shell is defined for O = Ostd ∪ {AttestVerify} and A = {}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

if virtual ITI (prog, (eid, idx)) does not exist, create

On message input from Gmod
att :

begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = AttestVerify(σ,m) then
send (verify, σ,m) to Gmod

att and receive v
append v to subroutine output tape for virtual ITI

else if i = (return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

The shell receives message install when it is first created from Gmod
att , and it initialises the

virtual ITI that will actually execute the enclave program. We make this step explicit in
the pseudocode to mirror the interface of some of the shells presented later in the section,
although it is not strictly necessary since UC creates a non-existing ITI when it first receive
a message (if the force− write flag is set to 1).
Any other (non-install) input input the shell receives from Gmod

att must be the argument
of a resume call, since the adversary is not able to give an attack message. Rather than
writing input to the virtual ITI’s input tape and letting it execute prog(input) directly,
the shell observes the current configuration of (prog, (eid, idx)), and the instruction i that
would be executed if it was activated with input (we denote this as “begin executing input
on (prog, (eid, idx))”). With this the shell enters its main loop: depending on what type of
instruction i is, it executes i following the specification in the appropriate branch, updates
the configuration of (prog, (eid, idx)), and chooses the next instruction.
The behaviour of this shell within the loop is fairly simple: most program instructions it con-
siders will be in the standard oracle set Ostd. In this case, the shell activates (prog, (eid, idx))
with input i; as this is a simple instruction that any ITI can compute, the shell does not
need to modify its behaviour, and it will allow the virtual ITI to execute it (updating its
work tape) and immediately halt. The activation token now returns to the shell, which can
select the next instruction i from the updated configuration.
When the instruction is of type AttestVerify(·), the shell does not activate (prog, (eid, idx)),
but rather sends a message to Gmod

att to verify the attestation signature. Once it receives a
boolean response, it writes it to the subroutine output tape of (prog, (eid, idx)), and modifies
the location of the tape head on its work tape. This essentially convinces the enclave virtual
ITI that on its last activation it called the AttestVerify subroutine, and has just received
its return value. We use this mechanism extensively in the rest of the section, as it allows
modelling feature oracles so that the enclave program is oblivious of how they are computed.
Finally, when the next instruction i for the enclave is to return some value, the shell forwards
it to Gmod

att , overwriting the sender-id of the outgoing message with its own extended identity.
The shell thus yields activation back to Gmod

att , which proceeds with generating the attestation
by calling S on the configuration of (eid||pid, “att”||idx).

AGATE 17

4.2 Accessing a Clock

A natural extension of GPST
att , which the original paper uses to realise fair MPC [75, Section

7.2], is to give the enclave access to a clock. The protocol is proven in a synchronous setting,
where each party is activated in a round-robin fashion and is therefore aware of the round
number. Enclaves are also equipped with round aware capabilities, even if they are not
activated every round.
We now show how to realise a new Gmod

att functionality that supports feature oracles O =
Ostd ∪{ReadRound, IncRound} by giving it access to a local functionality that any protocol
participant is allowed to interact with (both from within the enclave and outwith). Whenever
the enclave program tries to execute an instruction interacting with the clock, the shell
intervenes to forward the message to an ideal functionality, and inserts the value back into
the enclave virtual ITI through the subroutine output tape.

shO,A[prog]

The shell is defined for O = Ostd ∪ {ReadRound, IncRound} and A = {}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

if virtual ITI (prog, (eid, idx)) does not exist, create
if ideal functionality (Fclock, (idx,⊥)) does not exist, create
send register to Fclock on behalf of (prog, (eid, idx))

On message input from Gmod
att :

begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = ReadRound then
send Read to (Fclock, (sid,⊥)) and receive v
append v to subroutine output tape for virtual ITI

else if i = IncRound then
send Inc to (Fclock, (sid,⊥)) and receive v
append v to subroutine output tape for virtual ITI

else if i =(return v) then
return v with source (prog, (eid, idx))

The install subroutine of this shell installs the virtual ITI for a new enclave, and ensures
that an instance of the ideal functionality for the clock exists in this session (with a standard
PID ⊥). It then sends a registration message for the enclave to Fclock. For enclave resume
calls, the structure of the shell execution loop is the same as in the shell from last section,
with the instructions executed by the enclave for either ReadRound, IncRound oracle calls
forwarded to the ideal functionality, and its return values returned to the enclave in the
same way that we added the return value for an attestation verification call in the previous
section. We now describe the behaviour of the clock functionality

Functionality Fclock

The identity of the functionality is (sidF ,⊥)
On message register from a party P :

if t = {} then r ← 0

if P.sid = sidF then
t[pid]← ⊥

On message Read from a party P :

return r

On message Inc from a party P :

if P.sid = sidF then t[P.pid]← ⊤
if all values in t = ⊤ then

r++

18 Lorenzo Martinico,Markulf Kohlweiss

reset all values in t to ⊥
return r

Fclock provides a per-session round counter functionality. A round is increased when all regis-
tered parties consent to. Internally, it stores the round counter as a monotonically increasing
integer r, and records whether a party has agreed to increase the round via dictionary t,
which records a boolean value for each party. Once a party sends an Inc message, they are
not allowed to withdraw. After the last registered party agrees to increase, r is incremented,
and all values in t are set to false. A new part can register at any point, and the value of the
round counter is publicly accessible.

4.3 Interrupting computation

As a first attempt to show how to capture an attack oracle, we now model a new version of
Gmod

att where enclave programs are explicitly able to control which objects in their memory
can be saved to confidential persistent storage. An enclave is able to preserve state across
enclave executions by storing arbitrary bitstrings in an encrypted form, and later fetch it
back into memory when next resumed. Only the original enclave itself is able to access any
data it stored through the oracle call; the adversary only learns the size of what was stored.
In Intel SGX, these features are known as sealing and unsealing.
As the enclave now interacts with the (untrusted) memory of the host, the adversary will be
notified of any storage or fetching attempt, and will have a chance to censor them. Given that
the program integrity relies on these external oracle calls completing, this is equivalent to
the adversary aborting the enclave program. We therefore provide the adversary with oracles
A = {Abort,Continue}. The adversary can stop a memory access oracle from completing, but
can not erase or leak external memory that was already successfully stored. This example
oracle combination for Gmod

att is for illustrative purposes; a more realistic oracle definition
would let memory operations return to the enclave with an error, allowing the program
execution to continue, and allow the adversary to permanently erase external memory.
We define the following shell:

shO,A[prog]

The shell is defined for O = Ostd ∪ {Store,Fetch} and A = {Abort,Continue}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))

State variables Description

mem← ϵ Persistent memory storage for the enclave

On message install from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist, create
set halt← ⊥

On message input from Gmod
att :

if halt = ⊤ then abort
begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i ∈ {Store(s),Fetch} then
if pid is corrupted then

halt← ⊤
Send message (Store, |s|) ∨ Fetch to A and await
if next message on the input tape is Abort from Gmod

att then
erase work tape contents of virtual ITI and return

else if next message on the input tape is Continue from Gmod
att then

halt← ⊥
if i = Store(s) then

mem← s
else if i = Fetch then

AGATE 19

append mem to subroutine output tape for (prog, (eid, idx))

else if i = (return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message Abort from Gmod
att :

if halt = ⊥ then
set halt← ⊤
erase work tape contents of virtual ITI and return

On message (Continue, input) from Gmod
att :

if halt = ⊥ then
parse (cmd, args)← input
return cmd(args)

Unlike the previous two shells, the execution loop of the above includes adversarial inter-
actions as part of the enclave operation. In particular, when an enclave run by a corrupted
party tries to interact with external memory by calling a Store or Fetch instruction, the
shell sets flag halt← ⊤, notifies the adversary, and relinquishes the activation token. On its
next activation, if it finds a message from the set A, it resumes execution from where it last
stopped. Otherwise, on any other input, it will abort (as long as flag halt = ⊤): storing and
fetching are blocking.
The adversary A only learns that enclave eid run by party pid in session idx is either trying
to read from external storage, or that is writing some data and its size. A replies by sending
a message of type (resume, eid, ϵ, a ∈ A) from corrupted party pid to Gmod

att . If a = Continue,
the shell continues executing from where it left off, storing bitstring s “ideally” (within its
own internal variable mem). Otherwise, if a = Abort, the enclave crashes, losing all memory
stored within the virtual ITI’s work tape. An Abort attack is not final: depending on the
code of prog, the enclave can be resumed later on, and recover some partial state from the
last value successfully stored to mem, if any. The A can call the attack oracles at any other
point, without the enclave trying to access memory (i.e. when halt = ⊥); on an Abort call,
the shell erases the enclave’s working memory as well; on a Continue call, the shell simply
executes the provided argument as a resume operation.
Within the above definition, the shell variable halt keeps track on whether the adversary
has instructed the enclave to stop. On every call to Store or Fetch, the shell yields to the
adversary, informing it on what type of instruction the enclave has requested, including the
length of the message that’s being stored (but not the contents, memory storage is still
confidential). These requests are blocking, so we do not allow any other enclave operation
to be executed until the adversary replies with a Abort or Continue on the input tape. On
an Abort message, the current resume execution is halted, and any memory in the enclave’s
worktape is erased. If the adversary instead issues a Continue message (with no arguments),
the enclave will resume from where it stopped. If the adversary issues a Abort followed by
a Continue, it should pass an argument to an appropriate subroutine of the program, which
might Fetch whatever memory was last stored to let the program recover from a last known
state.

4.4 Rollback Attacks

While the previous version of Gmod
att describes an adversary that is able to stop an enclave

from storing any data to an external medium, the integrity and freshness of a successfully
stored message is always guaranteed by a successful Fetch. We now explore a model with a
slightly stronger adversary, who controls the storage medium and can overwrite the external
memory location. Despite this, the enclave will not accept arbitrary messages, but only ones
that were produced during a legitimate Store operation.
Bhatotia et al. [13] introduces a new variant of Gatt that allows state continuity attacks,
Grollback

att . The functionality tracks enclave state updates in a tree-like structure, and allows
the adversary to specify an index for an arbitrary node in the tree to resume enclave execution
from a specific snapshot. The tree allows the adversary to fork the enclave at an arbitrary
state and maintain multiple copies that can progress independently.
Since Gmod

att no longer tracks the state of an enclave in a table T , an instance of Gmod
att that

supports Rollback or Fork instructions in A will require an alternative mechanism to maintain
the state. We implement this through an enclave shell that executes each resume operation

20 Lorenzo Martinico,Markulf Kohlweiss

as a distinct virtual ITI. After the resume returns, the shell instantiates a new ITI by
copying the last active configuration, and notifies the adversary of a unique pointer for that
execution through an Iter message. When the adversary calls for a Rollback or Forking
attack with a specific pointer, the shell can run the provided input on with adequately stale
state by activating the older ITI that the pointer corresponds to.

shO,A[prog]

The shell is defined for O = Ostd and A = {Rollback,Fork}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

generate nonce c
$← {0, 1}λ

create virtual ITIs (prog, (eid||∅, idx)), (prog, (eid||c, idx))
if pid is corrupted then send (Iter, ∅, c) to A

On message input from Gmod
att :

execute input on virtual ITI (prog, (eid||c, idx))
generate nonce c′

$← {0, 1}λ
copy working tape of (prog, (eid||c, idx)) into new virtual ITI (prog, (eid||c′, idx))
if pid is corrupted then send (Iter, c, c′) to A
c← c′

On message (Rollback, (i, input)) from Gmod
att :

execute (out, (Fork, c, i, i′))← (Fork, i, input)
c← i′

return (out, (Rollback, i, i′))

On message (Fork, (i, input)) from Gmod
att :

if virtual ITI (prog, (eid||i, idx)) exists then
out← ϵ
if input ̸= ϵ then

execute input on (prog, (eid||i, idx)), read subroutine output tape into out

generate nonce i′
$← {0, 1}λ

copy work tape of (prog, (eid||i, idx)) to (prog, (eid||i′, idx))
return (out, (Fork, c, i, i′))

The structure of each subroutine’s extended identity involves appending a unique pointer
nonce to the enclave id (the initial state is denoted by special pointer ∅). Variable c holds
the pointer to the latest snapshot of the enclave accessible by a honest resume command.
After each honest execution, the enclave creates a new UC subroutine by generating a new
id and copies the execution tape of the subroutine c points to into this new copy, which is
where the new instructions will be executed. The adversary always learn the pointer gener-
ated for each iteration. If the adversary conducts a Rollback (by sending message (resume,
eid, input,Rollback) from corrupted party pid to Gmod

att), c is overwritten with the pointer for
an ITI whose memory state is copied from the one the adversary provided a pointer for.
In a fork, c is not affected, but the adversary learn of new pointer i′ it can access. In both
cases, the shell returns to Gmod

att with the enclave output (if the attack also contained an
instruction to execute) and auxiliary information on the new ITI pointer. Since the attack
was successful, Gmod

att waits for the adversary to issue a Continue message to finalise the
return value and produce attestation (otherwise the resume call for Gmod

att never terminates).

It is clear from our formulation that a rollback is just a special case of a fork, where one
of the two fork branches is not used again (in fact, on any Rollback message, the shell
executes the Fork subroutine with the appropriate parameters). Distinguishing the two
cases is primarily useful in the setting of a mobile adversary. While corrupted, a party can
always choose the index for an enclave copy it wants to execute through the Fork command.
When the party is no longer corrupted, however, the only copy of the enclave that can be
executed is the one at index c. The adversary can thus use Rollback to force the newly
honest party to execute the enclave from an arbitrary state, essentially erasing the access to
any state that might have succeeded it.

AGATE 21

4.5 Modelling side channels

As we have discussed in the Background section 2.2, some previous works in the literature
have extended the GPST

att model to capture additional types of side-channel attacks. We now
adapt those extensions into Gmod

att shells.

Transparent enclaves Tramer et al. [84] provides a (local) UC functionality for attested
execution with no confidentiality guarantees, later extended in [75, Section 8] to the global
setting. Enclaves in this Transparent Enclave setting suffer from leakage of all internal mem-
ory, except for the master signing key for attestation. This allows integrating an enclave with
such a leakage in protocols that only require the integrity provided by enclaves. The model-
ing of transparent enclave is a simple extension over that of GPST

att : the output of each resume
call is followed by the leakage of the random bits sampled by the enclave program. Knowing
the inputs, randomness and the code of the program is sufficient to reconstruct its opera-
tion and internal memory for any randomised program, whereas deterministic programs are
inherently transparent by default, since the adversary knows the code of the enclave when
they install it.
In the language of Gmod

att , we state that for any attested functionality with RandomSample ∈
O (and therefore any adversary where Ostd ⊂ O), we can realise a transparent version by
including TransparentLeak in the adversarial oracles A =. We recover the modelling from
[84] and [75, Section 8.1] by letting the shell leak produce the entirety of the virtual ITI
random tape to the adversary after each execution. On installation, enclaves start in the
default non-transparent state, but once the adversary issues the TransparentLeak attack, all
further values of the tape are leaked.

shO,A[prog]

The shell is defined for O = Ostd and A = {TransparentLeak}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

if virtual ITI (prog, (eid, idx)) does not exist, create
transparent← ⊥

On message input from Gmod
att :

begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i =(return v) then
if transparent = ⊤ ∧ pid is corrupted then

send (Leak, random tape of (prog, (eid, idx))) to A
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message (TransparentLeak, input) from Gmod
att :

set transparent← ⊤
if input ̸= ϵ then

parse (cmd, args)← input, return cmd(args)
else

return (ϵ, random tape of (prog, (eid, idx)))

A stronger type of leakage would leak the entirety of the virtual ITI’s work tape. This would
allow the adversary to recover any shared secret that predate the corruption attack. This
can be implemented by simply appending the work tape to the Leak message, or allow the
adversary to apply standard UC passive corruption to the virtual ITI.

Almost-transparent and Semi-honest enclaves Dörre, Mechler, and Müller-Quade [41]
introduce two relaxations over the Gatt functionality that aim to capture a middle ground
between the side-channel freeGPST

att and transparent enclaves. Their models provides enclaves
with access (in our language) to feature oracles for secure key exchange and symmetric
encryption.
We now provide an implementation for a shell that implement these cryptographic functions
by outsourcing them to local functionality Fcrypto as defined by Küsters and Rausch [57].

22 Lorenzo Martinico,Markulf Kohlweiss

shO,A[prog]

The shell is defined forO = Ostd ∪ {KeyExchange,SKEGen, SKEEnc,SKEDec,ReleaseKey}
and A = {TransparentLeak,Halt}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))

State variables Description

E ← {} Stores Group elements received by other enclaves

On message install from Gmod
att :

if virtual ITI (prog, (eid, idx)) does not exist, create
if ideal functionality (Fcrypto, (idx,⊥)) does not exist, create
send GetDHGroup to Fcrypto and receive (DHGroup, G, n, g)

On message input from Gmod
att :

if halt = ⊤ then abort
begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = (KeyExchange, pid′, eid′) then
set halt← ⊤
send GenExp to Fcrypto and receive (ExpoPointer, ptre, ge)
if pid is corrupted then

query A with (KeyExTo, pid′, eid′) and receive the reply continue

if E [pid′, eid′] = ⊥ then
// no stored keyshare for eid′, we are the initiatior

send (KeyEx, ge) to (shO,A[prog], (eid
′||pid′, “att”||idx)) and await

while next message on the input tape is not (KeyEx,pid′, eid′, h) do ignore

send (BlockGroupElement, h) to Fcrypto and receive OK
else

// eid′ was the key exchange initiatior, we already have h
h← E [pid′, eid′]

send (GenDHKey, ptre, h) to Fcrypto and receive (Pointer, ptrdhk)
send (Derive, ptrdhk, unauth-key) to Fcrypto and receive (Pointer, ptrsk)
set halt← ⊥
append ptrsk to subroutine output tape for virtual ITI (prog, (eid, idx))

else if i = SKEGen then
send (New, unauth-key) to Fcrypto and receive (Pointer, ptr)
append ptr to subroutine output tape for virtual ITI (prog, (eid, idx))

else if i = (SKEEnc, ptr,m) then
send (Enc, ptr,m) to Fcrypto and receive (Ciphertext, hdl)
append hdl to subroutine output tape for virtual ITI (prog, (eid, idx))

else if i = (SKEDec, hdl, ct) then
send (Dec, ptr, ct) to Fcrypto and receive (Plaintext,m)
append m to subroutine output tape for virtual ITI (prog, (eid, idx))

else if i = (ReleaseKey, ptr) then
send (Retrieve, ptr) to Fcrypto and receive (Key, k)
append k to subroutine output tape for virtual ITI (prog, (eid, idx))

else if i =(return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message Halt from Gmod
att :

set halt← ⊤
return

On message (KeyEx, h) from (shO,A[prog], (eid
′||pid′, “att”||idx)):

if halt = ⊥ then
// we are not waiting for key exchange to complete;

AGATE 23

// eid′ is the initiator

send (BlockGroupElement, h) to Fcrypto and receive OK
E [pid′, eid′]← h

// if the enclave is halted, eid is the initiator; on message KeyEx, we exit

the loop to complete the key exchange

Most of the oracle calls in the shell are simply forwarded from the enclave to the ideal
functionality. KeyExchange is more interesting, as it is our first oracle call that involves direct
communication between two enclaves. We implement a “synchronous” key exchange, in that
we expect both enclaves to call the respective KeyExchange oracle to establish a channel.
We do not provide a mechanism for enclaves to discover enclave IDs, and assume that they
are provided by one of the other protocol inputs. The first enclave to call the oracle will stop
accepting any further activations until the key exchange protocol completes (we refer to this
enclave as the initiator). If the other enclave’s shell receives a KeyEx message before its
enclave has reached the KeyExchange call, it will store the received share dictionary E to be
retrieved at a later point. Once both parties have communicated their shares to each other,
the shared key is computed by the Fcrypto functionality. Rather than returning it directly to
the two enclaves, our shell uses it to derive a new symmetric key, which is what is obtained
by both parties as the return value of KeyExchange (this step is necessary because Fcrypto

does not allow using keys of type dh-key for symmetric operations). If either party running
the enclave is corrupted, the adversary can learn that the key exchange is taking place and
issue a Halt message. Additionally, the adversary might learn any other information leaked
by F and its leakage functions.
The addition of these oracles does not provide the enclave with meaningful new capabili-
ties on its own, since an enclave can implement these operations as part of a library with
access to randomness and attestation verification. However, it becomes significant once it is
combined with the TransparentLeak attack: by executing the secure operations “ideally ”
through oracles, the randomness needed to compute them is not leaked as part of the trans-
parent attack. Dörre, Mechler, and Müller-Quade [41] define an enclave with access to both
{KeyExchange,SKEGen, SKEEnc,SKEDec,ReleaseKey} ∈ O and TransparentLeak ∈ A to
be a almost-transparent enclave, and show that it is possible to realise one-sided PSI between
two parties running almost-transparent enclaves even if one of the parties is corrupted. Con-
structing a shell that realises the almost-transparent enclave can be achieved through a
combination of the previous two shells, with the TransparentLeak additionally leaking the
state of the work tape of the program before the command was executed, and the return
value of all secure operation oracles. Leaking these values is required in the
There are some minor differences between our model and theirs: in their version of almost-
transparent enclaves, once the initiatior issues a KeyExchange command, the receiving
enclave is immediately notified and provided the symmetric key. Therefore, the initiator
program needs to be run first (a natural constraint in their protocol). An additional difference
from their model is our use of the idealised Fcrypto for all operations, rather than using a mix
of ideal key exchange and concrete symmetric operations in their model. Therefore, we have
to do an additional step to derive a symmetric key, rather than using the shared DH key
directly.
The second relaxation, semi-honest enclaves, captures an adversarial manufacturer who is
able to adaptively break into enclaves and extract historical transaction data. Note that in
this setting, the party running the enclave does not need to be corrupted for the leakage to
occur i.e. the adversary can cause leakage for any enclave run by a honest party. Despite the
extreme vulnerability of this type of enclave to an adversarial manufacturer, it is still useful
to construct some classes of private set intersection (distinct from the ones in the previous
setting).
The shell for a Semi-honest enclave is defined as follows

shO,A[prog]

The shell is defined for O = Ostd and A = {CompleteLeak}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

if virtual ITI (prog, (eid, idx)) does not exist, create

24 Lorenzo Martinico,Markulf Kohlweiss

rec← []

On message (resume, input) from Gmod
att :

begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i =(return v) then
rec← rec ∥ (input, args, virtual ITI work tape)
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message CompleteLeak from A:
return rec

The definition of the shell is quite simple, as it merely records the output of each resume
execution and returns it to the adversary when it issues the CompleteLeak command. The
message is sent directly to the shell rather than through a corrupted resume call to represent
that it doesn’t have to be issued by the calling party.

4.6 Shared Registry

We now give a shell to implement a single-writer multi-reader registry functionality for any
subset of enclaves. The registry contains a linearisable list of values that any enclave in the
set can read, but only one enclave can write into (in this case, the first enclave to complete
a write). We give the adversary the ability to temporarily block or permanently censor
corrupted parties, such that they can not access the registry for reading. If the number
of censored replicas is greater than a certain quorum Q (a percentage of the registered
parties) the registry is no longer able to guarantee termination of read/write operation, and
will produce an error instead. If the writing enclave is censored, all subsequent write calls
will fail but read calls from other enclaves can continue. The registry can be thought of as a
shared single-writer ledger whose storage is distributed between enclaves, and is synchronised
through a consensus mechanism; if less than Q of the total enclaves return a value, there are
not enough live enclaves to establish consensus and thus the protocol terminates.
We define the following shell, where the adversarial oracle CensorQ is parameterised by Q.

shO,A[prog]

The shell is defined for O = Ostd ∪ {Read,Write} and A = {Block,CensorQ}
The extended identity of the shell is defined as (shO,A[prog], (eid||pid, “att”||idx))
On message install from Gmod

att :

j ← ⊥
if virtual ITI (prog, (eid, idx)) does not exist, create
if ideal functionality (RegCoord[Q], (⊥, idx)) does not exist, create

On message input from Gmod
att :

begin executing input on (prog, (eid, idx))
for next instruction i on virtual ITI do

if i ∈ Ostd then
allow (prog, (eid, idx)) to execute i

else if i = {Read, (Write, v)} then
if j = ⊥ then

send Join to RegCoord[Q] on behalf of (prog, (eid, idx)); j ← ⊤
send i to RegCoord[Q] through (prog, (eid, idx)) and receive v
append v to subroutine output tape of virtual ITI

else if i ∈(return v) then
return v with source (shO,A[prog], (eid||pid, “att”||idx))

On message (Censor, ϵ) from Gmod
att :

send (Censor, pid) to RegCoord[Q]

AGATE 25

Functionality RegCoord[Q]

State variables Description

P ← [] List of enclaves participating in the registry
C ← [] List of censored enclaves
V ← [] List of registry values over time
w ← ⊥ identity of writer enclave

On message Join from (prog, (eid, idx)):

P ← P ∪ (prog, (eid, idx))
send (Join, (prog, (eid, idx))) to A

On message (cmd, v) from (prog, (eid, idx)):

if eid is running on a corrupted party then
query A with (Read, (prog, (eid, idx))) and receive the reply Block, b

if b ̸= ⊤ ∧ |C|
|P | < Q then

if cmd=Write then
if w = ⊥ then w ← P
if w ̸= P ∨ P ∈ C then return Fail

V ← V ∥ v
send (cmd, V, (prog, (eid, idx))) to A return V

elsereturn Fail

On message HealthCheck from (prog, (eid, idx)):

return |P |, |C|
On message (Censor, (prog, (eid, idx))) from Gmod

att :

if eid is running on a corrupted enclave then
C ← C ∥ (prog, (eid, idx))
return

The above functionality allows any enclave shell to join the protocol as a registry party.
The first shell who writes to the registry is locked in as w, the writer. Thereafter, only w
can issue a new Write, which appends the value to the end of the registry, and all other
registered parties receive the entirety of the registry on every Read7 On any read and write,
a corrupted party will query the adversary on whether they are allowed to proceed. The
adversary can also permanently block an enclave by issuing a Censor message. If too many
parties have been censored (i.e. the ratio between the number of censored parties and total
registered parties is greater than Q), it is impossible for the registry to guarantee that the
registry value is still safe, and the functionality fails.
We assume the functionality has access to some directory ITI that records whether enclaves
are run by corrupted parties.

5 Relationships between Gmod
att variants

Having defined a variety of different Gmod
att functionalities with different sets O,A, we are now

interested in exploring how they relate to each other. It is clear that all the shells described
in the previous sections are a modelling tool, rather than a real implementation for that
interface. As a downstream protocol designer, this level of abstraction is sufficient to detail
the ideal behaviour of the oracles they require for their enclaves. To show that our model is
realistic, however, we need to show that it is realisable in one way.
As we discussed in Section 2.2, there are a large number of TEE designs and enhancements
that provide different features, as well as numerous attacks against real world implementa-
tions. Formalising what oracles are realised by a specific TEE implementation is a non-trivial
task, and once a set is finalised, the discovery of new attack oracles might invalidate the secu-
rity of any proofs using it as a hybrid (or at least making the protocol vulnerable “in the real
world”). Rather than taking this bottom-up approach, we propose to go the other direction:

7 The functionality could be made more efficient by keeping track of what values have been read by each
group member, and only downloading the difference on a read.

26 Lorenzo Martinico,Markulf Kohlweiss

showing that strong TEE setups, which we know are not possible to realise with our current
implementations (despite their usage in security proofs), can be gradually realised through
a less powerful abstraction.
Our intuition is that, given two versions of Gmod

att which sign over the same measurement
functions, a “weaker” setup (Gatt) that has either fewer features or more attacks can UC-
emulate the stronger one (G′

att). If there is a “wrapper” protocol around Gatt that for all
enclave programs running on it can emulate the missing feature oracle, or mitigate the
additional adversarial oracle, the combination of the wrapper protocol with the Gatt setup
is at least as strong as G′

att.
This section sketches how to design such a protocol to show the UC-emulation between any
two Gatt, G

′
att setups. Our treatment aims to be generic and provide a universal compiler

protocol, but we are aware that our design will not work for all combinations of oracles
running arbitrary programs. Our protocols and proofs should be seen as templates to be
adapted to the specific setups under consideration.

5.1 Adding a Feature oracle

To fully capture the modular power of our new formalisation, we show how to add a new
feature to a TEE instance, increasing the size of its feature oracle set. We want to show that a
TEE that has native access to that feature (through an oracle) is indistinguishable from one
that does not and has to implement it through runtime code. Depending on its complexity, a
feature can be implemented by just running some additional computation within the enclave
itself, by calling out to a library running within an assisting enclave on the same party, or
by conducting an interactive protocol with multiple remote parties. We can represent these
type of runtime behaviour as a UC protocol that provides the same interface and guarantees
of the missing feature oracle.
More formally, we consider two instantiations of attested execution Gatt and G′

att (both
modular), with feature oracles O,O′, respectively, where O ⊂ O′. Let I = O′ \ O. The
adversarial oracles A and attestation signature function S are shared between Gatt and G′

att.
We now define a new “wrapper” protocolW which uses Gatt as a subroutine and UC-realises
G′

att by implementing the interface for I in the real world.
W takes the same parameters as Gmod

att , and in addition the two functions mapL,mapR, and
the code of enclave program WI [·]. Function mapR takes the set of Gmod

att -enabled parties,
and chooses a subset to run assisting enclaves that any party can rely on (the parties chosen
by mapR do not have to be honest). mapL returns a set of local assisting enclave programs
the party should install locally, and a next message function for WI [·].
WI [prog, nextmsg] is a “wrapper” enclave that instruments prog with additional code such
that, when prog attempts to use interface I, the next message function begins executing I
as a protocol. Function nextmsg observes the current state of the enclave, and chooses the
command required to start the I-protocol execution. The command issued by nextmsg will
either be run as a local subroutine in the enclave wrapper code itself, by another enclave
installed locally (as instructed by mapL), or by a remote party (in an enclave created through
mapR). nextmsg is aware of the details of each assisting enclave, such as their enclave ID or
what party they are installed on.
If the next command issued by nextmsg is received by the assisting enclave it is destined for
(a corrupted party could diverge from the protocol and choose not to deliver the message), it
executes the requested subroutine, produces its own next command, and forwards it to the
party that should execute it. Eventually, the original WI [prog, nextmsg] will receive a final
message, and return the result value of I to the prog oracle call. Essentially, the program
that implements I is compiled into a multi-party computation between the enclaves. We do
not require a full-fledged secure MPC protocol to execute I, however, due to the integrity
guarantees of attestation, as the only possible malicious behaviour of a participant is dropping
messages (known as the omission corruption adversarial model in MPC [16]). Within the
execution of the next message functions, enclaves are able to construct an authenticated or
secure channel through attestation. We do not give a description of how this is done, and
refer the reader back to the construction of the secure channel in the Steel protocol of [13].
The W protocol (Figure 4) proceeds as follows. During initialisation, it calls the mapR func-
tion to produce a list of supporting enclaves ER

i run by a subset of reg parties, initialises Gmod
att

with the appropriate parameters, and requests each selected party to install the wrapped
ER

i . It then returns a public list of all assisting parties and the associated enclave IDs.
On a call from pidi to install some program progi, if progi does not include any call to I, it
installs a wrapped version with dummy next message function ϵ. Otherwise, it runs mapL()

AGATE 27

Protocol W[λ,Gmod
att , reg,O,A,S,mapR,mapL,WI [·]]

On message initialise from a party P :

[(ER
1 , pid1), . . . , (E

R
n , pidm)]← mapR(reg)

send initialise to Gmod
att [λ, reg,O,A, S]

let ĒR ← []
for i ∈ {0, . . . , n} do

send (installRequest,ER
i) to pidi and receive eidi

ĒR ← ĒR ∥ pidi, eidi
return ĒR

On message getpk from a party P :

send getpk to Gmod
att and receive vk

return vk

On message (verify, σ,m) from a party P :

if m is an attestation measurement that contains a commitment to some program with code ER
i

or EL
i then
return ⊥

else
send (verify, σ,m) to Gmod

att and receive v and return v

On message (install, prog) from a party P where P.pid ∈ reg:

if I ∈ prog then
(nextmsg∅, (E

L
1 , . . . ,E

L
n))← mapL(ĒR)

let ĒL ← []
for i ∈ {1, . . . , n} do

send (install,EL
i) to Gmod

att and receive eidi
send (resume, eidi, init) to Gatt

ĒL ← ĒL ∥ eidi
let nextmsg(x)← nextmsg∅(x, Ē

L)
send (install,WI [prog, nextmsg]) to Gatt and receive eidprog
send (resume, eidprog , init) to Gatt

else
send (install, sid,WI [prog, ϵ]) to Gatt and receive eidprog

return eidprog

On message (resume, eid, input) from a party P with pidi:

send (resume, eid, input) to Gmod
att and receive out, σ

while out = (resumeRequest, pid, eid′, v) do
if pid = pidi then

(out, σ′)← resume(eid′, (v, σ,⊤)))
else

send (resumeRequest, eid′, (v, σ)) to pid and await
if next message m,σ′ on input tape does not start with resumeRequest then ignore
else out← m, sσ′

return out, s

On message (installRequest, prog) from a party P ∈ reg:

send (install, prog) to Gmod
att and receive eid

return eid

On message (resumeRequest, eid, input) from a party P ∈ reg:

send (resume, eid, input)) to Gmod
att and receive output, σ

return (output, σ)

Fig. 4. The wrapper protocol

28 Lorenzo Martinico,Markulf Kohlweiss

to produce a list of local assisting enclave programs to be installed by the same party, and a
next message function nextmsg∅. The party installs all such enclaves, runs their initialisation
subroutine, and creates a new message function nextmsg that is a wrapper around nextmsg∅
aware of the assisting parties enclave IDs. mapL makes nextmsg and all EL

i programs aware
of the enclave IDs for any ER parties, and assists WI [·] in generating the appropriate next
commands to implement I along with the assisting protocols.
On a resume call from its local party pidi to execute command cmd on arguments args for
enclave WI [progi, nextmsg], the enclave wrapper (described in Figure 5) begins executing the
code of progi with those inputs. Once the program makes a subroutine call to I, the wrapper
stops the internal program execution and calls the nextmsg function, which returns the PID,
Enclave ID and some command that needs to be executed to begin computing the value for
the subroutine call. The enclave returns these to its local party with the special keyword
resumeRequest, and waits for a next activation. When the party receives this return value,
it knows that cmd(args) did not terminate. Instead, it passes the resumeRequest and
associated command on to the appropriate party, or, if the destination PID is pidi, activates
one of its local enclaves, including WI [progi,nextmsg] itself. When resuming an enclave as
part of the I computation, the local party can set input flag ⊤ as part of the resume
arguments to indicate that the command being executed is not part of the normal progi
code. pidi waits to receive the next message, and once again passes it on to one of its local
enclaves, and forwards the resulting resumeRequest. Eventually, when the PID and EID
returned by nextmsg are ⊥, the computation of I has terminated, and the wrapper can pass
back v as its return value to the internal execution of progi. Whenever the enclave returns
with an intermediate message, the latest attestation signature should always be bundled
with the next message input for the receiver party. Attestation validation logic is defined in
the code ofW for all appropriate messages, and interacts directly with the Gmod

att verification
request through a call to the AttestVerify protocol. When a user requests verification of one
of these intermediate attestation signatures from outside one of the participating enclaves,
the protocol always returns ⊥.
It is convenient for our purposes to model the code of WI [·] using a UC shell, since its
behaviour is similar to some of the shells we constructed in the previous section. The two
types of shell are complementary: UC structured protocols support nesting shells, so we
instantiate the WI [·] as a subroutine of shO,A[·]. Formally, the program installed by W is
WI [p, f], but using the shell means that we don’t have to define its full source code (or
more likely, a compiler program that interleaves calls to next function f throughout p).
Additionally, the oracle sets provided by the combined interface O ∥ I is intuitively equivalent
to the oracle sets of G′

att (see Figure 6 for a graphical representation).
We now provide the following conjecture:

Conjecture 1. Let Gatt = Gmod
att [λ, reg,O,A, S], G′

att = Gmod
att [λ, reg,O′,A, S],O′ \ O = I. For

any enclave wrapper WI [·] which, combined with functions mapL,mapR implements the
difference between the shells shO,A[·] and shO′,A[·], it is possible to show that protocol
W[λ, reg,O,A, S,mapR,mapL,WI [·]], which instantiates Gatt as a subroutine, UC-emulates
G′

att

Without a precise definition of protocol W and the interface it is implementing, or the
preexisting interfaces for O and A, it is difficult to provide evidence that W in the presence
of Gatt UC-emulates G′

att. We now provide some guidelines on how a simulator for such
theorems of special instances of this conjecture might be structured; however, depending on
the nature of the programs installed, the wrapper code, or the shared oracles between the
two setups, a different simulation strategy might be needed. For example, if the adversary
is able to directly observe the source code of an enclave while it is executing, the simulation
will not work. It might be possible for some of this cases where the below simulation strategy
does not work to add some backdoor code in the WI [·] description to give the simulator some
additional powers (see Pass, Shi, and Tramèr [76] and Bhatotia et al. [13]).
We describe simulation for the three possible protocol topologies implementing I:

1. We begin our simulation sketch for the case of a wrapper protocolW where neither mapR

or mapL functions returns any additional enclave i.e. the wrapper WI [·] can implement
I without relying on any external assistance. During the global functionality initialisa-
tion phase, the simulator observes the signature algorithm s chosen by the environment
through the dummy adversary, and provides G′

att with a new algorithm s′ which ap-
plies s over the transformation F (meas). F takes a measurement string that contains an
identifier for program prog, and replaces it with an identifier for WI [prog,nextmsg] (for
an appropriate value of nextmsg), as discussed in Section 3. Attestations produced by

AGATE 29

Shell WI [prog,nextmsg] (Template)

The identity of the shell is (eid, idx)
The parent shell extended identity is (shO,A[W

I[prog]], (eid||pid, “att”||idx))

On message (cmd, args, r) from (eid||pid, “att”||idx):
if virtual ITI (prog, (eid||“wrapped”, idx)) does not exist then create

if r = ⊥ then
let input← (cmd, args)
begin executing input on (prog, (eid||“wrapped”, idx))
for next instruction i on virtual ITI do

if i ̸∈ I then
// Execution of i is delegated to the higher order shell

allow (prog, (eid||“wrapped”, idx)) to execute i
else

(pidj, eidj, v)← nextmsg(tapes of virtual ITI)
while (pidj , eidj) ̸= (⊥,⊥) do

send (resumeRequest, (pidj, eidj, v)) to (eid||pid, “att”||idx) and await

if next message on the input tape is (cmd′, args′,⊤) then
execute (pidj, eidj, v)← cmd′(args′,⊤)

else
ignore

append v to subroutine output tape for (prog, (eid||“wrapped”, idx))
// The loop terminates when nextmsg() returns (⊥,⊥, v)

else
// r = ⊤ as the result of an I computation, execute code in subroutine cmd
execute cmd(args)
return nextmsg(tapes of virtual ITI)

Fig. 5. Template for the internal wrapper shell. A complete definition of the shell requires an implemen-
tation for any additional cmd that might be requested by the next message functions

30 Lorenzo Martinico,Markulf Kohlweiss

Fig. 6. Protocol W can add a shell to GO,AS
att enclaves to UC-emulate the missing feature oracles I from

GO′,AS
att

an enclave prog in the G′
att-hybrid world are thus indistinguishable from those produced

by the equivalent wrapped enclave in the Gatt-hybrid world. Therefore, the simulator
can simply block any installations of an un-wrapped program that requires access to
I with MissingInstructionError, and replace installations of wrapped programs with the
unwrapped version on the G′

att functionality. Honest parties in protocolW do not install
any unwrapped program, and no external session will have direct access to Gatt since it
is installed as aW subroutine. If the (local) adversary attempts to install an unwrapped
program to Gatt directly, the simulator can run the program “in its head” without going
through G′

att, and use the algorithm s provided by the dummy adversary for the en-
vironment for producing plausible attestation signatures for the unwrapped code. The
signatures will not verify through any calls to the ideal verification subroutine, as they
wouldn’t for honest parties of W, but they will look legitimate to environment through
running the local verification algorithm that corresponds to s.

2. When mapR does not install any assisting enclaves, but mapL does, the simulator instanti-
ates the same signature scheme as in the previous case (by adding the F transformation).
When it receives a request to install any enclave with code EL

i , it generates a plausible
enclave ID and returns it, without actually installing the enclave in Gmod

att . While we do
not explicitly define an enclave ID generation algorithm for Gmod

att , we assume that the
probability of sampling the same ID is negligible. The simulator then ensures that, before
a corrupted party requests to install some enclave WI [prog, nextmsg], it has requested to
install all necessary EL

i enclaves produced by mapL(), and has given a value of nextmsg
with the appropriate enclave IDs, otherwise WI [prog, nextmsg] would not be able to
verify them for attestation.
Whenever the adversary resumes the program enclave, the simulator runs the input in
its head to determine whether it contains any calls to I. If it does, it calls the next
message function nextmsg on the partial result, and uses the signing key generated
during initialisation by the adversary to produce signing algorithm s, and uses it to
sign a resumeRequest message. If the adversary then tries to resume the receiver en-
clave, the simulator executes the related command in its head and returns the next
resumeRequest message. Any attempts from the adversary to verify one of the inter-

AGATE 31

mediate attestation messages directly is dropped, since the protocol does not let parties
verify these attestations either (they are however likely to be verified by the code of
the wrapper enclave as part of its next command execution). Once it is satisfied that
the adversary has provided the appropriate sequence of messages to fully compute I, it
sends the initial original input to the unwrapped program in G′

att. If the feature shell
triggers any adversarial interaction, it uses the values provided by the adversary through
resumeRequest messages to maintain a consistent state with the W interactions. Any
interactions with the adversary through attacks or feature requests unrelated to I are
captured by the ideal shell run by Gatt, so no additional simulation is required for them.

3. Finally, in the case of the mapR function requesting multiple enclaves across a variety
of parties, the simulator initialises Gmod

att with the same signature algorithm as before.
It then calls the mapR function and sends the resulting resume requests to corrupted
parties, but installs the assisting enclaves for honest parties on a machine it controls,
and produces the appropriate list of assisting enclave IDs, ĒR.
Like in the previous case, on an enclave installation request, it installs a non-wrapped
copy of any enclaves requested by corrupted parties, as long as they have installed all
the related local assisting enclaves. Simulation proceeds as in the previous case, except
that the simulator also ensures that any remote resumeRequest message is delivered
(i.e. the appropriate messages on the network are not censored). When a next command
is sent to a remote assisting party run by some honest user, the simulator does not pass
it on, and runs the command on its local copy to find out the next message location,
using its copy of the s algorithm to sign plausible attestations (including faking the
party ID if using non-anonymous attestation) Finally, if the computation succeeds, it
calls the unwrapped enclave in G′

att as before. Any attempts by a corrupted party to
send a resumeRequest to honest enclaves outside of the correct sequence of events is
dropped.

General replacement of global setups As we discussed in Section 2.1, it is not possible to
prove, in the general case, that a protocol UC-emulates a global subroutine. A well formed
replacement statement needs to account for the context emulation statement the global
subroutine is being invoked in.
Intuitively, since the adversarial oracle sets for the Gatt, G

′
att functionalities considered are

the same, replacing the global functionality G′
att with a Gatt-hybrid protocol W to provide

the missing feature interface I should generally be safe, as a higher level simulator that
interacts with TEEs as part of a protocol subroutine will have the same interface for attacks.
However, given the general nature of our conjecture, we can not conclusively say that the
implementation of I provided by W communicates with the adversary in the same manner
as the ideal implementation of I provided by the G′

att shell. Indeed, the role of the W to G′
att

simulator is to reconciling any such difference. We therefore have to analyse two distinctive
cases.

Theorem 4. Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such that Con-
jecture 1 holds, and additionally G′

att UC-emulates W. For any protocol ρ in the presence of
G′

att that UC-emulates some F in the presence of G′
att, ρ in the presence of W UC-emulates

F in the presence of W.

The statement follows from the composition theorem of [6, Theorem 3.3]. Showing that
G′

att UC-emulates W (i.e. in conjunction with 1, W and G′
att are UC-equivalent) involves

constructing a new simulator S ′ such that EXECG′
att,A,Z ≈ EXECW,S′,Z .

During the setup phase, S ′ instantiates Gmod
att with the inverse transformation for attestation

signatures described in the proof of 1 i.e. for any attestation measurement that includes an
identifier for some program with code WI [prog, ·] and replaces it with an identifier for prog.
Thereafter, the behaviour of S ′ consists of simply forwarding any input from the environment
to the protocol W (including allowable attacks in A), and after a resume, execute any
associated resumeRequest for corrupted parties without modifying their inputs or showing
the result to the environment, except for any adversarial leakage consistent with what would
be produced by the shell implementation for G′

att. WhenW returns the output of the resume
and associated attestation message, S ′ only forwards this result and its attestation (with the
wrapper code removed by the F−1

If the shell implementing feature I in the G′
att world includes direct communication with the

adversary that is not fully equivalent by the messages produced by the supporting enclaves in
W, the simulation will fail. For such protocols we need to consider a weaker setting, where we
fix the feature simulator within the ideal subroutine available to the higher level protocols.

32 Lorenzo Martinico,Markulf Kohlweiss

Theorem 5. Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such that Conjec-
ture 1 holds for some simulator S. Let GS

att be the combination of G′
att and S; for any protocol

ρ in the presence of GS
att that UC-emulates some F in the presence of GS

att, ρ in the presence
of W UC-emulates F in the presence of W.

The statement above directly follows from [27, Lemma 1].

5.2 Removing Adversarial Interfaces

Just like the above protocol allows increasing the size of a TEE feature oracle interface set,
we now formulate a corresponding protocol to reduce an enclave’s attack surface. For many
types of enclave attacks, there are cryptographic or distributed protocols that can provide
some degree of protection. We can use these protocols to construct a new functionality with
a smaller adversarial interface set. A core difference from the oracle interface implementa-
tion of the previous section, however, is that, rather than interrupting the execution of a
normal enclave program for a specific instruction to run a protocol between supplementary
enclaves, it is necessary to run the defensive protocol from the start of the execution. Since
the adversary could mount the attack during or between arbitrary resume operations, the
protocol might need to execute certain instructions before or independently from an attack,
such as establishing a secure channel with an assisting enclave.

As in the previous section, given two (modular) implementations of attested executions
Gatt, G

′
att with adversarial interfaces A,A′ respectively, and shared O and S, we define a

wrapper protocol W (for non-empty A = A \ A′) that uses Gatt as a subroutine and UC-
realises G′

att.

Protocol W is defined in the same way as W. As we remarked above, the only difference
between the two protocols is that WA[prog, nextmsg] never executes the internal protocol
prog directly. Instead, the nextmsg() function now takes the code prog as an additional
argument, and compiles it into the code for local enclaves EL

i∈{1,...,n}. When the party installs

all enclaves WA[prog, nextmsg],EL
1 . . . ,ER

n }, it immediately resumes them with init, which
allows the enclaves to conduce any necessary setup operations. Thereafter, on a resume call
to prog, WA[prog, nextmsg] always begins its execution by running nextmsg first. When
nextmsg returns (⊥,⊥, v), this indicates that the resume call has completed, and the enclave
returns v to the party.

The protocol W only protects against the attacks in A; all other attacks in A′ are still
allowable in both worlds.

We omit the formal description or the protocol or wrapper enclave due to their similarity
to the one in the previous section. Likewise, we omit a further summary of the simulation
techniques for showing that W UC-emulates G′

att, in favour of adopting a concrete example
in Section 6. However, we do state the following for completeness:

Conjecture 2. Let Gatt = Gmod
att [λ, reg,O,A, S], G′

att = [λ, reg,O,A′, S],A \ A′ = A. For any
enclave wrapper WA[·] which, combined with functions mapL,mapR implements the difference
between the shells shO,A[·], shO,A′ [·], it is possible to show that protocolW[λ, reg,O,A, S,mapR,mapL,WA[·]],
which instantiates Gatt as a subroutine, UC-emulates G′

att

Theorem 6. Let Gatt, G
′
att,W be any Gmod

att setups and a wrapper protocol such that Conjec-
ture 1 holds. For any protocol ρ in the presence of G′

att that UC-emulates F in the presence
of G′

att, ρ in the presence of W UC-emulates F in the presence of W.

We claim the latter theorem holds because the adversarial interface is smaller in the ideal
world, so there is no additional attack that was used by the ρ to F simulator which is no
longer available with the introduction of the protocol. This is the inverse scenario of which
Badertscher, Hesse, and Zikas [6] are concerned, where the real world global protocol includes
fewer attacks that the ideal world global functionality. Therefore, the theorem holds due to
the composition theorem of [6, Theorem 3.10], as the ρ to F simulator is W \ A′-agnostic
(i.e. the simulator does not interact with W except for using adversarial interfaces in A′ -
that is, everything except for A). This is true because A is not a valid adversarial interface
in G′

att. Therefore, if simulator of the pre-condition is able to simulate the protocol without
using A, the same simulator will equally apply to the statement where G′

att has been replaced
with W.

AGATE 33

5.3 Interactions Between Features and Attacks

When defining the transformation between two versions of Gatt, it is important to think
carefully about specifying the necessary requirements. Just like the defence protocol to re-
move some adversarial attack might require specific feature oracles (therefore the addition
of attack A requires a lower bound for O), there will be classes of attacks that can break
security of most protocols without access to some adequate feature oracles to construct a
protection mechanism (setting an upper bound to what attacks can be introduced in A).
Additionally, in some cases the addition of a new feature will also imply the expansion
of adversarial attacks. Consider the addition of explicit storage and fetching capabilities
described in Section 4.3. By adding those external oracle calls, we are also forced to provide
an adversarial oracle to abort the program. While it would be possible to consider a version
of Gmod

att where only the new interfaces were added, it would be hard to justify as the natural
implementation of that feature requires handing off control of the memory to untrusted
permanent storage. Of course, a novel TEE architecture could allow a more secure way to
implement storage and fetching without exposing the enclaves to adversarial crashes. Our
goal for Gmod

att is not to be prescriptive with what kind of (ideal) TEE objects should be used
as assumptions in cryptographic protocols; however we recommend caution when designing
a new variant of Gmod

att with complex or unrealistic features.
Another illustrative example could be the introduction of cloning [59]. This feature allows
efficient enclave creation, as it instantiates a second copy of an enclave including its memory
(equivalent to normal process forking in operating systems). Depending on the implemen-
tation, the addition of this feature might however give the adversary additional power, as
it could now be able to swap memory regions for each of the two versions of the enclave
interactively, effectively executing a forking attack not tied to rollback (where the remote
party is not able to distinguish which of the two enclaves it is communicating with, and the
adversary can interactively swap and censor messages between the two). While this specific
attack can be easily mitigated with another wrapper protocol that augments sealing with
freshness values, it will require an additional explicit transformation and corresponding level
of shells.
Our theorems in this section only show a single step Gmod

att oracle change (through feature
addition and attack removal). Unlike the oracle shells in Section 4, which have to be manually
integrated to provide the appropriate functionality for the set of oracles chosen (although
in many cases the shell changes are trivial), it should be easy for some oracle combinations,
where they don’t negatively interact with each other, to repeatedly apply Conjectures 1 and 2
without modifying the protocols.
We note that in some cases the oracle transformation protocols given above might not be
simulatable for all possible enclave programs. In those cases, it is still possible for a program
designed to run in G′

att to run in the Gatt-hybrid world where the oracle feature is not
available, or be secure even if Gatt allows an attack not in G′

att. Such substitution require to
be proven on a case by case basis, but the observation is consistent with the state of the
art of TEE program design, where mitigations for certain attacks exist only if the program
is “well-written” (e.g. memory safe or using oblivious primitives) or does not use certain
functions (see [78, Table 1]).

6 Implementing Rollback protection from Registers

We now give an example of one the equivalences described in the previous section, with the
aim of addressing the rollback attacks described in [13]. Our construction relies on the well-
known observation in the literature that a monotonic counter or a trusted storage services
can be used to prevent rollback attacks [74]. Although the protocol equally applies to the
related class of forking attacks, we do not explicitly address them in this section for simplicity.
To construct the protocol, we require our target enclave to support the trusted Store,Fetch
interfaces we described in Section 4.3, as well as an oracle Meas, which returns a digest (such
as a hash) over the state of the enclave’s virtual ITI. We construct a simple protocol W as
described in Section 5, that removes the Rollback interface from an ideal Gmod

att where A
includes Abort.
The intuition for the protocol is that the shell can store the digest of the latest copy of the
internal enclave measurement in persistent storage at the end of every resume. When enclave
execution starts, the shell can fetch the stored measurement digest and compare it with the
measurement for the current state as returned by Meas. If the two states match, the enclave

34 Lorenzo Martinico,Markulf Kohlweiss

can be safely executed; otherwise, the state must have been tampered with, and the function
aborts. We denote this sequence of operations as wrapper-subroutine MeasExec. If every
resume operation uses MeasExec, the adversary is not able to execute a rollback attack,
but will effectively abort the enclave. Defining a rollback protection protocol by relying on
the usage of safe memory might seem like a circular definition - if the enclave has access
to trustworthy Store,Fetch oracles, why not just store the entirety of memory using this
interface? There exist several protocols that claim to resolve rollback attacks (for example
[67, 15, 72, 3, 54, 72, 39, 90])). We leave the formalisation of such a protocol to remove
the adversarial rollback interface as future work. We believe that the current setting is still
valuable, as it minimises the size of data stored in trusted memory (as well as providing an
easy to explain protocol to prove an instance of Conjecture 2).

To provide the formal definition for the protocol, we define functions mapR() and mapL()
that produce no supporting enclaves. Function mapL() defines a next message function
nextmsgmeas(), which determines how to execute the wrapped program. When the enclave
state is at the beginning of executing a resume instruction, nextmsgmeas runs the Mea-
sExec subroutine of WA[·]. Subroutine MeasExec checks that the current measurement
of the enclave’s state corresponds to the last state saved in storage, before executing the
input subroutine, and updating the storage with the resulting new state. If MeasExec
aborts, nextmsgmeas returns (⊥,⊥, “abort”), while if it terminates successfully with value v,
it returns ⊥,⊥, v; in both cases, the enclave returns the values to its caller.

Shell WA[prog,nextmsgmeas]

The identity of the shell is (eid ∥ c, idx)
The parent shell extended identity is (shO,A[W

I[prog]], (eid||pid, “att”||idx))

On message init from (eid||pid, “att”||idx):
if Fetch() ̸= ϵ then

return Abort
install virtual ITI (prog, (eid||c||“wrapped”, idx))
let m← Meas()
Store(m)

On message input from (eid||pid, “att”||idx):
while ⊤ do

out← nextmsgmeas(tapes of virtual ITI)
if out = (pid, eid,(MeasExec, input)) then

run MeasExec(input)
else if out = (⊥,⊥, v) ∧ v ̸= “abort′′ then

return v
else

erase the virtual ITI work tape
abort

On message (MeasExec, input):

let m← Fetch()
let m′ ← Meas()
if m ̸= m′ then abort

begin executing input on (prog, (eid||c||“wrapped”, idx))
for next instruction i on virtual ITI do

if i = (return v) then
b←Write(Meas())
assert b = OK

else allow (prog, (eid||c||“wrapped”, idx)) to execute i

Fig. 7. The WA[·] enclave shell installed by protocol W for rollback iteration c of enclave eid installed by
party pid for session idx

AGATE 35

The code of the shell that implements the WA[·] program is presented in Figure 7. The shell
runs with ID (eid||c, idx) as a subroutine to the top level shell (eid||pid, “att”||idx), which
implements the full oracle set, including the attack Rollback ∈ A. Whenever the inner shell
calls to a feature oracle, its execution is paused by (eid||pid, “att”||idx), which computes
the oracle value and writes it on the subroutine output tape. Shell (eid||c, idx) is oblivious
to this mechanism, and can simply call the oracles as if they were local subroutines. The
identity of the shell includes counter c because the shell is one of the copies created by
the shell (shO,A[prog], (eid||pid, “att”||idx)) from Section 4.4 to enable rollbacks. All shell
copies created for new resume iterations share the same storage interface for Store,Fetch.
(eid||c, idx) instantiates a subroutine (prog, (eid||c||“wrapped”, idx)) to execute the code of
prog. For most of the execution of prog, it allows the internal subroutine to run. Since
the execution of (eid||c, idx) is also running within an execution loop of (eid||pid, “att”||idx),
whenever (prog, (eid||c||“wrapped”, idx)) calls an oracle, (eid||pid, “att”||idx) will pause the
execution of both subroutines to provide a return value. Likewise, if the adversary issues an
Abort attack, (eid||pid, “att”||idx) will handle it directly.
Our protocol provides an inc-then-store counter (as defined in Matetic et al. [67]) - despite
the name, performing the store operation corresponds to a counter increase, since the local
storage is reliable, and we do it before returning (storing) to the untrusted party.
To show that Conjecture 2 holds for the above protocol, we need to show that the protocol
UC-emulates a G′

att functionality without Rollback. To prove this, we construct a simulator
that turns any attempt at a Rollback into an Abort. Our simulator roughly follows the
sketch outlined in the first case of the proof strategy for Conjecture 1, although we modify
it appropriately for the adversarial case.
Assume the simulator has access to the same parameters as W. The simulation translates
all requests to install a wrapped enclave from corrupted parties into requests to install
the unwrapped enclave in G′

att; any attempt to install an unwrapped enclave will be simu-
lated “in its head”. Thereafter, whenever the party resumes one of the wrapped enclaves,
the simulator fakes an access to the Fetch oracle, to reproduce the behaviour of the Mea-
sExec subroutine in wrapper WA[·] to check that the enclave was not previously rolled
back. If the check succeeds, the enclave begins executing the program ideally through run-
ning its non-wrapped version through the G′

att functionality. During its execution, the shell
(shO,A′ [progw], (eid||pid, “att”||idx)) might send messages on the backdoor tape related to
some attacks in A′ unrelated to rollback (therefore present in both real and ideal world).
In that case, the simulator forwards it to the adversary and returns its response back to
the shell without modification. After the execution of the enclave program has terminated,
the simulator fakes a call to the Store oracle, with the length of the hash function used for
measuring enclave states (m) as its leakage.
If at any point during the simulation the adversary aborts a simulated oracle call, or if
the simulator has recorded in dictionary P that the adversary has issued a rollback attack
against that enclave, it will issue an abort message through the adversarial interface of
G′

att, and halt its own execution. Otherwise, if all the checks succeed, it returns the output
value and attestation signatures produced by G′

att. Additionally, the simulator produces an
Iter message to signal that the resume execution has been successful, and the creation of a
new copy for the ITI state (as if the enclave was running on Gatt). Attestation verification
requests are forwarded to G′

att if they are for the wrapped version of an enclave (where it
will succeed only if the unwrapped version of the same enclave issued that message, before
being transformed by F). Any request to verify a message where the attestation contains
the unwrapped code (which is what is actually running on G′

att) is rejected.
Calls to install, resume, or verify the attestation of any unwrapped enclaves are not allowed
by the protocol, but a corrupted party might try to get around this by directly writing
to the tapes of real world Gatt subroutine - this is allowed by the identity bound. In that
case, the simulator lets the message through to its local simulated Gatt subroutine, which can
produce a convincing attestation signature for any message by using the original s algorithm.
To denote this, we adopt the convention of forwarding adversarial messages for unwrapped
enclaves to a “fake” copy of the hybrid functionality GF

att. It is possible to think of GF
att as

simply shorthand for the book keeping operations inlined by the simulator’s code, similar to
the roles of the dictionary G in the Steel simulator of [13]. Alternatively, it is possible to see
GF

att as a bona-fide instance of Gmod
att run by the simulator as a local subroutine, and therefore

granting no access to machines in other sessions. Adopting this view is only possible in our
modular setting: while the Steel simulator, in the presence of GPST

att , was required to keep a
separate record of all messages signed by adversarial enclaves, this is the default for Gmod

att ,
and therefore we do not require keeping track of any additional operations. GF

att is taken to

36 Lorenzo Martinico,Markulf Kohlweiss

be initialised with the same arguments as the real world Gatt emulated by the protocol, such
that any attempts to access an attack in A is reproduced by its (simulated) shells.
The pseudocode for the shell described above is as follows:

Simulator S

F (a, f) is the function that transforms an attestation measurement a so that it replaces
the code of an enclave program p with code WA[p, f]. M is the standard uniform length
for the output of Meas() oracle calls

State variables Description

P← [] List of state pointers for rollback protected enclaves

On message initialise from G′
att:

send initialise to A through Gatt and receive pk, s
nextmsgmeas ← mapL(ĒR)
let s′(x)← s(F (x,nextmsgmeas)
send (pk, s′)) to G′

att on behalf of A
send initialise to GF

att through Z and receive initialise
send Σ to GF

att on behalf of A
On message (install, idx, prog) from corrupted party P :

if prog = WA[progw, nextmsgmeas] then
send (install, progw) to G′

att through P and receive eid
P[P, idx, eid, progw]← (∅, ∅)

else
send (install, prog) to GF

att through P and receive eid

return eid

On message (resume, eid, (i ∥ input),Rollback) from corrupted party P :

if P[P, ·, eid, ·] = (c, clatest) then
P[P, ·, eid, ·]← (i, clatest)
if input ̸= ϵ then

run out, σ ←resume(eid, input, ϵ),
else

send (Iter, c, i) to A on behalf of (shO,A[prog], (eid||pid, “att”||idx))
else send (resume, eid, (i ∥ input),Rollback) to GF

att on behalf of P

On message (resume, eid, ·,Abort) from corrupted party P :

if (·, ·) ∈ P[P, ·, eid, ·] then send (resume, eid, ϵ,Abort) to G′
att on behalf of P

else send (resume, eid, ϵ,Abort) to GF
att on behalf of P

On message (resume, eid, input, a) from corrupted party P :

if (c, clatest) ∈ P[P, ·, eid, progw] then
assert a = ϵ ∨ a ∈ A′

let shEID ← (shO,A′ [progw], (eid||pid, “att”||idx))
send Fetch to A through shEID and receive b
if b ̸= Continue ∨ c ̸= clatest then send (resume, eid, ϵ,Abort) to G′

att and
return

send (resume, eid, input, a) to G′
att on behalf of P and

while receive (msg, args) from shEID do
send (msg, args) to A through shEID and receive response
send response to shEID on behalf of A
if response= Abort then return

receive out, σ from G′
att

send (Store, 1M) to A through shEID and receive b′

if b′ ̸= Continue then send (resume, eid, ϵ,Abort) to G′
att and return

generate nonce c′
$← {0, 1}λ,P[P, ·, eid, progw]← (c′, c′)

send (Iter, c, c′) to A on behalf of shEID
else

send (resume, eid, input, ϵ) to GF
att and receive out, σ

AGATE 37

return out, σ

On message (verify, σ,m) from corrupted party P :

if m is a measurement for an enclave with program WA[progw, nextmsgmeas] then
send (verify, σ, F (m, nextmsgmeas)) to G′

att and receive v
else if m is a measurement for a program prog with enclave ID eid installed by some
party P ′ in session idx, and P[P ′, idx, eid, prog ̸= ⊥] then

return ⊥
else

send (verify, σ,m)) to GF
att and receive v

return v

For any protocol that adopts the standard identity bound, preventing the environment from
sending messages on behalf of corrupted parties outside of the test session, the environment
can not distinguish the real or ideal world, due to the simulator constructing a perfect
transcript for the execution of W with the attestation signatures in the ideal world verifying
for a real world WA[·] program.
Consider the case where the adversary does not conduct a rollback attack. For every resume
operation from the corrupted party, the simulator activates the adversary with message
Fetch, allowing it to interrupt the computation. If this happens, the simulator mounts the
equivalent Abort attack on G′

att. If Fetch is allowed, the measurement stored will be the
same as from the previous execution, and therefore the simulator runs the program in G′

att.
The behaviour of this execution is equivalent to the real world setup, since the shells of
Gatt and G′

att implement the same (non-rollback) oracles, and the simulator lets through
any such adversarial access. Finally, the adversary receives a final Store for a message
of the same length as a Meas value. Since the storage oracle does not leak the message
contents but only their size, the adversary can not distinguish it from a state storage as
executed during the MeasExec subroutine. If it chooses to abort, the real world wrapper
would never terminate, so the simulator does the same for the ideal world enclave (by issuing
its own Abort), otherwise it returns the (ideally computed) value. The distribution of the
return value for the enclave as executed in Gatt and G′

att is equivalent (given they have the
same feature oracles implementation), and the modified signature scheme attests to code
WA[prog, f] in both worlds, thanks to the transformation F .
For the case of an adversary who, after some sequence of successful resumes, issues a rollback
attack to an earlier state. The code of subroutine WA[·] does not allow executing any further
resume, since the assertion that the measurement stored is equal to the current one will fail
with non-negligible probability (as long as the measurement computed by oracle Meas is
collision-resistant, and the code of the enclave program iterates through a sufficiently diverse
state distribution8). The simulator perfectly reproduces this behaviour, by issuing an Abort
to the ideal enclave, after having issued the preceding Fetch.

References

[1] Bhavani M. Thuraisingham et al., eds. ACM CCS 2017: 24th Conference on
Computer and Communications Security. Dallas, TX, USA: ACM Press, Oct.
2017.

[2] Heng Yin et al., eds. ACM CCS 2022: 29th Conference on Computer and Com-
munications Security. Los Angeles, CA, USA: ACM Press, Nov. 2022.

[3] Sebastian Angel et al. “Nimble: Rollback Protection for Confidential Cloud
Services”. In: 17th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2023, Boston, MA, USA, July 10-12, 2023. Ed. by Roxana
Geambasu and Ed Nightingale. USENIX Association, 2023, pp. 193–208. url:
https://www.usenix.org/conference/osdi23/presentation/angel.

[4] Pedro Antonino, Wojciech Aleksander Woloszyn, and A. W. Roscoe. “Guardian:
Symbolic Validation of Orderliness in SGX Enclaves”. In: Proceedings of the
2021 on Cloud Computing Security Workshop. CCS ’21. ACM, Nov. 2021. doi:
10.1145/3474123.3486755. url: http://dx.doi.org/10.1145/3474123.
3486755.

8 If the enclave is running a program with a very limited set of states, such as a small finite state automaton,
it is possible to artificially expand the state space by augmenting the program with a monotonically
increasing counter for each resume. This will ensure that every measurement is distinct.

https://www.usenix.org/conference/osdi23/presentation/angel
https://doi.org/10.1145/3474123.3486755
http://dx.doi.org/10.1145/3474123.3486755
http://dx.doi.org/10.1145/3474123.3486755

38 Lorenzo Martinico,Markulf Kohlweiss

[5] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The Reactive Sim-
ulatability (RSIM) Framework for Asynchronous Systems. Cryptology ePrint
Archive, Report 2004/082. https://eprint.iacr.org/2004/082. 2004.

[6] Christian Badertscher, Julia Hesse, and Vassilis Zikas. On the (Ir)Replaceability
of Global Setups, or How (Not) to Use a Global Ledger. Cryptology ePrint
Archive, Report 2020/1489. https://eprint.iacr.org/2020/1489. 2020.

[7] Christian Badertscher, Julia Hesse, and Vassilis Zikas. “On the (Ir)Replaceability
of Global Setups, or How (Not) to Use a Global Ledger”. In: TCC 2021: 19th
Theory of Cryptography Conference, Part II. Ed. by Kobbi Nissim and Brent
Waters. Vol. 13043. Lecture Notes in Computer Science. Raleigh, NC, USA:
Springer, Cham, Switzerland, Nov. 2021, pp. 626–657. doi: 10.1007/978-3-
030-90453-1_22.

[8] Christian Badertscher et al. “Universal Composition with Global Subroutines:
Capturing Global Setup Within Plain UC”. In: TCC 2020: 18th Theory of
Cryptography Conference, Part III. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12552. Lecture Notes in Computer Science. Durham, NC, USA: Springer,
Cham, Switzerland, Nov. 2020, pp. 1–30. doi: 10.1007/978-3-030-64381-2_1.

[9] Christian Badertscher et al. Universal Composition with Global Subroutines:
Capturing Global Setup within plain UC. Cryptology ePrint Archive, Report
2020/1209. https://eprint.iacr.org/2020/1209. 2020.

[10] Raad Bahmani et al. Secure Multiparty Computation from SGX. Cryptology
ePrint Archive, Report 2016/1057. https://eprint.iacr.org/2016/1057.
2016.

[11] Manuel Barbosa et al. Foundations of Hardware-Based Attested Computation
and Application to SGX. Cryptology ePrint Archive, Report 2016/014. https:
//eprint.iacr.org/2016/014. 2016.

[12] Saskia Bayreuther et al. “Hidden ∆-fairness: A Novel Notion for Fair Secure
Two-Party Computation”. In: IACR Cryptol. ePrint Arch. (2024), p. 587. url:
https://eprint.iacr.org/2024/587.

[13] Pramod Bhatotia et al. “Steel: Composable Hardware-Based Stateful and Ran-
domised Functional Encryption”. In: PKC 2021: 24th International Conference
on Theory and Practice of Public Key Cryptography, Part II. Ed. by Juan Garay.
Vol. 12711. Lecture Notes in Computer Science. Virtual Event: Springer, Cham,
Switzerland, May 2021, pp. 709–736. doi: 10.1007/978-3-030-75248-4_25.

[14] Pramod Bhatotia et al. Steel: Composable Hardware-based Stateful and Ran-
domised Functional Encryption. Cryptology ePrint Archive, Report 2021/269.
https://eprint.iacr.org/2021/269. 2021.

[15] Marcus Brandenburger et al. “Rollback and Forking Detection for Trusted Exe-
cution Environments Using Lightweight Collective Memory”. In: CoRR (2017).
arXiv: 1701.00981 [cs.DC]. url: http://arxiv.org/abs/1701.00981v2.

[16] Konstantinos Brazitikos and Vassilis Zikas. “General Adversary Structures in
Byzantine Agreement and Multi-Party Computation with Active and Omission
Corruption”. In: IACR Cryptol. ePrint Arch. (2024), p. 209. url: https://
eprint.iacr.org/2024/209.

[17] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-Protocol UC and
its Use for Building Modular and Efficient Protocols. Cryptology ePrint Archive,
Report 2019/065. https://eprint.iacr.org/2019/065. 2019.

[18] Jan Camenisch et al. iUC: Flexible Universal Composability Made Simple. Cryp-
tology ePrint Archive, Report 2019/1073. https://eprint.iacr.org/2019/
1073. 2019.

[19] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. Cryptology ePrint Archive, Report 2000/067. https://
eprint.iacr.org/2000/067. 2000.

[20] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: 42nd Annual Symposium on Foundations of Com-
puter Science. Las Vegas, NV, USA: IEEE Computer Society Press, Oct. 2001,
pp. 136–145. doi: 10.1109/SFCS.2001.959888.

https://eprint.iacr.org/2004/082
https://eprint.iacr.org/2020/1489
https://doi.org/10.1007/978-3-030-90453-1_22
https://doi.org/10.1007/978-3-030-90453-1_22
https://doi.org/10.1007/978-3-030-64381-2_1
https://eprint.iacr.org/2020/1209
https://eprint.iacr.org/2016/1057
https://eprint.iacr.org/2016/014
https://eprint.iacr.org/2016/014
https://eprint.iacr.org/2024/587
https://doi.org/10.1007/978-3-030-75248-4_25
https://eprint.iacr.org/2021/269
https://arxiv.org/abs/1701.00981
http://arxiv.org/abs/1701.00981v2
https://eprint.iacr.org/2024/209
https://eprint.iacr.org/2024/209
https://eprint.iacr.org/2019/065
https://eprint.iacr.org/2019/1073
https://eprint.iacr.org/2019/1073
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888

AGATE 39

[21] Ran Canetti. Universally Composable Signatures, Certification and Authenti-
cation. Cryptology ePrint Archive, Report 2003/239. https://eprint.iacr.
org/2003/239. 2003.

[22] Ran Canetti, Asaf Cohen, and Yehuda Lindell. “A Simpler Variant of Univer-
sally Composable Security for Standard Multiparty Computation”. In: Advances
in Cryptology – CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9216. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Berlin, Heidelberg, Germany, Aug. 2015, pp. 3–22. doi:
10.1007/978-3-662-48000-7_1.

[23] Ran Canetti and Marc Fischlin. “Universally Composable Commitments”. In:
Advances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Berlin,
Heidelberg, Germany, Aug. 2001, pp. 19–40. doi: 10.1007/3-540-44647-8_2.

[24] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. “On the Limitations of Uni-
versally Composable Two-Party Computation Without Set-Up Assumptions”.
In: Journal of Cryptology 19.2 (Apr. 2006), pp. 135–167. doi: 10.1007/s00145-
005-0419-9.

[25] Ran Canetti and Tal Rabin. “Universal Composition with Joint State”. In: Ad-
vances in Cryptology – CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Berlin, Hei-
delberg, Germany, Aug. 2003, pp. 265–281. doi: 10.1007/978-3-540-45146-
4_16.

[26] Ran Canetti, Daniel Shahaf, and Margarita Vald. “Universally Composable Au-
thentication and Key-Exchange with Global PKI”. In: PKC 2016: 19th Interna-
tional Conference on Theory and Practice of Public Key Cryptography, Part II.
Ed. by Chen-Mou Cheng et al. Vol. 9615. Lecture Notes in Computer Science.
Taipei, Taiwan: Springer, Berlin, Heidelberg, Germany, Mar. 2016, pp. 265–296.
doi: 10.1007/978-3-662-49387-8_11.

[27] Ran Canetti et al. Universally Composable End-to-End Secure Messaging. Cryp-
tology ePrint Archive, Report 2022/376. https://eprint.iacr.org/2022/
376. 2022.

[28] Ran Canetti et al. “Universally Composable End-to-End Secure Messaging”.
In: Advances in Cryptology – CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13508. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Cham, Switzerland, Aug. 2022, pp. 3–33. doi:
10.1007/978-3-031-15979-4_1.

[29] Ran Canetti et al. “Universally Composable Security with Global Setup”. In:
TCC 2007: 4th Theory of Cryptography Conference. Ed. by Salil P. Vadhan.
Vol. 4392. Lecture Notes in Computer Science. Amsterdam, The Netherlands:
Springer, Berlin, Heidelberg, Germany, Feb. 2007, pp. 61–85. doi: 10.1007/
978-3-540-70936-7_4.

[30] Ran Canetti et al. “Using Universal Composition to Design and Analyze Secure
Complex Hardware Systems”. In: 2020 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020.
IEEE, 2020, pp. 520–525. isbn: 978-3-9819263-4-7. doi: 10.23919/DATE48585.
2020.9116295. url: https://doi.org/10.23919/DATE48585.2020.9116295.

[31] Shanwei Cen and Bo Zhang. Trusted Time and Monotonic Counters with Intel
Software Guard Extensions Platform Services. Online at: https://software.
intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-

Services.pdf. 2017.
[32] Raymond Cheng et al. “Ekiden: A Platform for Confidentiality-Preserving,

Trustworthy, and Performant Smart Contract Execution”. In: CoRR abs/1804.05141
(2018). arXiv: 1804.05141. url: http://arxiv.org/abs/1804.05141.

[33] Raymond Cheng et al. “Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contracts”. In: IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19,

https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/s00145-005-0419-9
https://doi.org/10.1007/s00145-005-0419-9
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-662-49387-8_11
https://eprint.iacr.org/2022/376
https://eprint.iacr.org/2022/376
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.23919/DATE48585.2020.9116295
https://doi.org/10.23919/DATE48585.2020.9116295
https://doi.org/10.23919/DATE48585.2020.9116295
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://arxiv.org/abs/1804.05141
http://arxiv.org/abs/1804.05141

40 Lorenzo Martinico,Markulf Kohlweiss

2019. IEEE, 2019, pp. 185–200. isbn: 978-1-7281-1148-3. doi: 10.1109/EuroSP.
2019.00023. url: https://doi.org/10.1109/EuroSP.2019.00023.

[34] Arka Rai Choudhuri et al. “Fairness in an Unfair World: Fair Multiparty Com-
putation from Public Bulletin Boards”. In: ACM CCS 2017: 24th Conference
on Computer and Communications Security. Ed. by Bhavani M. Thuraisingham
et al. Dallas, TX, USA: ACM Press, Oct. 2017, pp. 719–728. doi: 10.1145/
3133956.3134092.

[35] Michele Ciampi, Aggelos Kiayias, and Yu Shen. “Universal Composable Trans-
action Serialization with Order Fairness”. In: 44th Annual International Cryp-
tology Conference. Lecture Notes in Computer Science. Aug. 2024.

[36] Michele Ciampi, Yun Lu, and Vassilis Zikas. “Collusion-Preserving Computation
without a Mediator”. In: CSF 2022: IEEE 35th Computer Security Foundations
Symposium. Haifa, Israel: IEEE Computer Society Press, Aug. 2022, pp. 211–
226. doi: 10.1109/CSF54842.2022.9919678.

[37] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086. https://eprint.iacr.org/2016/086. 2016.

[38] Poulami Das et al. “FastKitten: Practical Smart Contracts on Bitcoin”. In: 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019. Ed. by Nadia Heninger and Patrick Traynor. USENIX
Association, 2019, pp. 801–818. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/das.

[39] Baltasar Dinis, Peter Druschel, and Rodrigo Rodrigues. “RR: A Fault Model
for Efficient TEE Replication”. In: 30th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2023, San Diego, California, USA, February
27 - March 3, 2023. The Internet Society, 2023. url: https://www.ndss-
symposium.org/ndss- paper/rr- a- fault- model- for- efficient- tee-

replication/.
[40] Natnatee Dokmai et al. “Privacy-preserving genotype imputation in a trusted

execution environment”. In: Cell Systems 12.10 (Oct. 2021), 983–993.e7. issn:
2405-4712. doi: 10.1016/j.cels.2021.08.001. url: http://dx.doi.org/
10.1016/j.cels.2021.08.001.

[41] Felix Dörre, Jeremias Mechler, and Jörn Müller-Quade. “Practically Efficient
Private Set Intersection from Trusted Hardware with Side-Channels”. In: Ad-
vances in Cryptology – ASIACRYPT 2023, Part IV. Ed. by Jian Guo and Ron
Steinfeld. Vol. 14441. Lecture Notes in Computer Science. Guangzhou, China:
Springer, Singapore, Singapore, Dec. 2023, pp. 268–301. doi: 10.1007/978-
981-99-8730-6_9.

[42] Andreas Erwig et al. “CommiTEE : An Efficient and Secure Commit-Chain
Protocol using TEEs”. In: 8th IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2023, Delft, Netherlands, July 3-7, 2023. IEEE, 2023, pp. 429–
448. isbn: 978-1-6654-6512-0. doi: 10.1109/EuroSP57164.2023.00033. url:
https://doi.org/10.1109/EuroSP57164.2023.00033.

[43] Ben Fisch et al. “IRON: Functional Encryption using Intel SGX”. In: ACM
CCS 2017: 24th Conference on Computer and Communications Security. Ed.
by Bhavani M. Thuraisingham et al. Dallas, TX, USA: ACM Press, Oct. 2017,
pp. 765–782. doi: 10.1145/3133956.3134106.

[44] Tommaso Frassetto et al. “POSE: Practical Off-chain Smart Contract Execu-
tion”. In: 30th Annual Network and Distributed System Security Symposium,
NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023. The
Internet Society, 2023. url: https://www.ndss-symposium.org/ndss-paper/
pose-practical-off-chain-smart-contract-execution/.

[45] Sivanarayana Gaddam et al. “How to Design Fair Protocols in the Multi-
Blockchain Setting”. In: IACR Cryptol. ePrint Arch. (2023), p. 762. url: https:
//eprint.iacr.org/2023/762.

[46] Sivanarayana Gaddam et al. “LucidiTEE: Scalable Policy-Based Multiparty
Computation with Fairness”. In: CANS 23: 22th International Conference on
Cryptology and Network Security. Ed. by Jing Deng, Vladimir Kolesnikov, and

https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1109/CSF54842.2022.9919678
https://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://www.ndss-symposium.org/ndss-paper/rr-a-fault-model-for-efficient-tee-replication/
https://www.ndss-symposium.org/ndss-paper/rr-a-fault-model-for-efficient-tee-replication/
https://www.ndss-symposium.org/ndss-paper/rr-a-fault-model-for-efficient-tee-replication/
https://doi.org/10.1016/j.cels.2021.08.001
http://dx.doi.org/10.1016/j.cels.2021.08.001
http://dx.doi.org/10.1016/j.cels.2021.08.001
https://doi.org/10.1007/978-981-99-8730-6_9
https://doi.org/10.1007/978-981-99-8730-6_9
https://doi.org/10.1109/EuroSP57164.2023.00033
https://doi.org/10.1109/EuroSP57164.2023.00033
https://doi.org/10.1145/3133956.3134106
https://www.ndss-symposium.org/ndss-paper/pose-practical-off-chain-smart-contract-execution/
https://www.ndss-symposium.org/ndss-paper/pose-practical-off-chain-smart-contract-execution/
https://eprint.iacr.org/2023/762
https://eprint.iacr.org/2023/762

AGATE 41

Alexander A. Schwarzmann. Vol. 14342. Lecture Notes in Computer Science.
Augusta, GA, USA: Springer, Singapore, Singapore, Oct. 2023, pp. 343–367.
doi: 10.1007/978-981-99-7563-1_16.

[47] Pranav Gaddamadugu. “Formally Verifying Trusted Execution Environments
with UCLID5”. MA thesis. EECS Department, University of California, Berke-
ley, Aug. 2021. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2021/EECS-2021-200.html.

[48] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof Systems”. In: SIAM Journal on Computing 18.1
(1989), pp. 186–208.

[49] Vipul Goyal et al. “Founding Cryptography on Tamper-Proof Hardware To-
kens”. In: TCC 2010: 7th Theory of Cryptography Conference. Ed. by Daniele
Micciancio. Vol. 5978. Lecture Notes in Computer Science. Zurich, Switzerland:
Springer, Berlin, Heidelberg, Germany, Feb. 2010, pp. 308–326. doi: 10.1007/
978-3-642-11799-2_19.

[50] Michele Grisafi et al. “PISTIS: Trusted Computing Architecture for Low-end
Embedded Systems”. In: USENIX Security 2022: 31st USENIX Security Sympo-
sium. Ed. by Kevin R. B. Butler and Kurt Thomas. Boston, MA, USA: USENIX
Association, Aug. 2022, pp. 3843–3860.

[51] Dennis Hofheinz and Victor Shoup. GNUC: A New Universal Composability
Framework. Cryptology ePrint Archive, Report 2011/303. https://eprint.
iacr.org/2011/303. 2011.

[52] Charlie Jacomme, Steve Kremer, and Guillaume Scerri. Symbolic Models for
Isolated Execution Environments. Cryptology ePrint Archive, Report 2017/070.
https://eprint.iacr.org/2017/070. 2017.

[53] Sashidhar Jakkamsetti, Zeyu Liu, and Varun Madathil. “Scalable Private Sig-
naling”. In: IACR Cryptol. ePrint Arch. (2023), p. 572. url: https://eprint.
iacr.org/2023/572.

[54] Gabriel Kaptchuk, Matthew Green, and Ian Miers. “Giving State to the State-
less: Augmenting Trustworthy Computation with Ledgers”. In: ISOC Network
and Distributed System Security Symposium – NDSS 2019. San Diego, CA,
USA: The Internet Society, Feb. 2019. doi: 10.14722/ndss.2019.23060.

[55] Jonathan Katz. “Universally Composable Multi-party Computation Using Tamper-
Proof Hardware”. In: Advances in Cryptology – EUROCRYPT 2007. Ed. by
Moni Naor. Vol. 4515. Lecture Notes in Computer Science. Barcelona, Spain:
Springer, Berlin, Heidelberg, Germany, May 2007, pp. 115–128. doi: 10.1007/
978-3-540-72540-4_7.

[56] Mahimna Kelkar et al. Complete Knowledge: Preventing Encumbrance of Cryp-
tographic Secrets. Cryptology ePrint Archive, Report 2023/044. https://eprint.
iacr.org/2023/044. 2023.

[57] Ralf Küsters and Daniel Rausch. “A Framework for Universally Composable
Diffie-Hellman Key Exchange”. In: 2017 IEEE Symposium on Security and Pri-
vacy. San Jose, CA, USA: IEEE Computer Society Press, May 2017, pp. 881–
900. doi: 10.1109/SP.2017.63.

[58] Ralf Küsters and Max Tuengerthal. The IITM Model: a Simple and Expres-
sive Model for Universal Composability. Cryptology ePrint Archive, Report
2013/025. https://eprint.iacr.org/2013/025. 2013.

[59] Dayeol Lee et al. “Cerberus: A Formal Approach to Secure and Efficient En-
clave Memory Sharing”. In: ACM CCS 2022: 29th Conference on Computer and
Communications Security. Ed. by Heng Yin et al. Los Angeles, CA, USA: ACM
Press, Nov. 2022, pp. 1871–1885. doi: 10.1145/3548606.3560595.

[60] Ming Li et al. IvyCross: A Trustworthy and Privacy-preserving Framework
for Blockchain Interoperability. Cryptology ePrint Archive, Report 2021/1244.
https://eprint.iacr.org/2021/1244. 2021.

[61] Jinghui Liao et al. “Speedster: An Efficient Multi-party State Channel via En-
claves”. In: ASIACCS 22: 17th ACM Symposium on Information, Computer

https://doi.org/10.1007/978-981-99-7563-1_16
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-200.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-200.html
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://eprint.iacr.org/2011/303
https://eprint.iacr.org/2011/303
https://eprint.iacr.org/2017/070
https://eprint.iacr.org/2023/572
https://eprint.iacr.org/2023/572
https://doi.org/10.14722/ndss.2019.23060
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-72540-4_7
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://doi.org/10.1109/SP.2017.63
https://eprint.iacr.org/2013/025
https://doi.org/10.1145/3548606.3560595
https://eprint.iacr.org/2021/1244

42 Lorenzo Martinico,Markulf Kohlweiss

and Communications Security. Ed. by Yuji Suga et al. Nagasaki, Japan: ACM
Press, May 2022, pp. 637–651. doi: 10.1145/3488932.3523259.

[62] Joshua Lind et al. “Teechain: a secure payment network with asynchronous
blockchain access”. In: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019.
Ed. by Tim Brecht and Carey Williamson. ACM, 2019, pp. 63–79. isbn: 978-
1-4503-6873-5. doi: 10.1145/3341301.3359627. url: https://doi.org/10.
1145/3341301.3359627.

[63] Yibiao Lu et al. “Correlated Randomness Teleportation via Semi-trusted Hard-
ware - Enabling Silent Multi-party Computation”. In: ESORICS 2021: 26th
European Symposium on Research in Computer Security, Part II. Ed. by Elisa
Bertino, Haya Shulman, and Michael Waidner. Vol. 12973. Lecture Notes in
Computer Science. Darmstadt, Germany: Springer, Cham, Switzerland, Oct.
2021, pp. 699–720. doi: 10.1007/978-3-030-88428-4_34.

[64] Yao Ma et al. “QEnclave - A practical solution for secure quantum cloud com-
puting”. In: CoRR abs/2109.02952 (2021). arXiv: 2109.02952. url: https:
//arxiv.org/abs/2109.02952.

[65] Varun Madathil et al. “Private Signaling”. In: USENIX Security 2022: 31st
USENIX Security Symposium. Ed. by Kevin R. B. Butler and Kurt Thomas.
Boston, MA, USA: USENIX Association, Aug. 2022, pp. 3309–3326.

[66] Wenze Mao, Peng Jiang, and Liehuang Zhu. “BTAA: Blockchain and TEE-
Assisted Authentication for IoT Systems”. In: IEEE Internet of Things Journal
10.14 (July 2023), pp. 12603–12615. issn: 2372-2541. doi: 10.1109/jiot.2023.
3252565. url: http://dx.doi.org/10.1109/jiot.2023.3252565.

[67] Sinisa Matetic et al. “ROTE: Rollback Protection for Trusted Execution”. In:
USENIX Security 2017: 26th USENIX Security Symposium. Ed. by Engin Kirda
and Thomas Ristenpart. Vancouver, BC, Canada: USENIX Association, Aug.
2017, pp. 1289–1306.

[68] Ueli Maurer. “Constructive Cryptography - A Primer (Invited Paper)”. In: FC
2010: 14th International Conference on Financial Cryptography and Data Secu-
rity. Ed. by Radu Sion. Vol. 6052. Lecture Notes in Computer Science. Tenerife,
Canary Islands, Spain: Springer, Berlin, Heidelberg, Germany, Jan. 2010, p. 1.
doi: 10.1007/978-3-642-14577-3_1.

[69] Ueli Maurer and Renato Renner. “Abstract Cryptography”. In: ICS 2011: 2nd
Innovations in Computer Science. Ed. by Bernard Chazelle. Tsinghua Univer-
sity, Beijing, China: Tsinghua University Press, Jan. 2011, pp. 1–21.

[70] Koichi Moriyama and Akira Otsuka. “Permissionless Blockchain-Based Sybil-
Resistant Self-Sovereign Identity Utilizing Attested Execution Secure Proces-
sors”. In: IEEE International Conference on Blockchain, Blockchain 2022, Es-
poo, Finland, August 22-25, 2022. IEEE, 2022, pp. 1–10. isbn: 978-1-6654-6104-
7. doi: 10.1109/Blockchain55522.2022.00012. url: https://doi.org/10.
1109/Blockchain55522.2022.00012.

[71] 30th Annual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3, 2023. The Internet Society,
2023. url: https://www.ndss-symposium.org/ndss2023/.

[72] Jianyu Niu et al. “NARRATOR: Secure and Practical State Continuity for
Trusted Execution in the Cloud”. In: ACM CCS 2022: 29th Conference on
Computer and Communications Security. Ed. by Heng Yin et al. Los Angeles,
CA, USA: ACM Press, Nov. 2022, pp. 2385–2399. doi: 10.1145/3548606.
3560620.

[73] Chris Orsini, Alessandra Scafuro, and Tanner Verber. How to Recover a Cryp-
tographic Secret From the Cloud. Cryptology ePrint Archive, Paper 2023/1308.
https://eprint.iacr.org/2023/1308. 2023. url: https://eprint.iacr.
org/2023/1308.

[74] Bryan Parno et al. “Memoir: Practical State Continuity for Protected Modules”.
In: 2011 IEEE Symposium on Security and Privacy. Berkeley, CA, USA: IEEE
Computer Society Press, May 2011, pp. 379–394. doi: 10.1109/SP.2011.38.

https://doi.org/10.1145/3488932.3523259
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1007/978-3-030-88428-4_34
https://arxiv.org/abs/2109.02952
https://arxiv.org/abs/2109.02952
https://arxiv.org/abs/2109.02952
https://doi.org/10.1109/jiot.2023.3252565
https://doi.org/10.1109/jiot.2023.3252565
http://dx.doi.org/10.1109/jiot.2023.3252565
https://doi.org/10.1007/978-3-642-14577-3_1
https://doi.org/10.1109/Blockchain55522.2022.00012
https://doi.org/10.1109/Blockchain55522.2022.00012
https://doi.org/10.1109/Blockchain55522.2022.00012
https://www.ndss-symposium.org/ndss2023/
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://eprint.iacr.org/2023/1308
https://eprint.iacr.org/2023/1308
https://eprint.iacr.org/2023/1308
https://doi.org/10.1109/SP.2011.38

AGATE 43

[75] Rafael Pass, Elaine Shi, and Florian Tramer. Formal Abstractions for Attested
Execution Secure Processors. Cryptology ePrint Archive, Report 2016/1027.
https://eprint.iacr.org/2016/1027. 2016.

[76] Rafael Pass, Elaine Shi, and Florian Tramèr. “Formal Abstractions for At-
tested Execution Secure Processors”. In: Advances in Cryptology – EURO-
CRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10210. Lecture Notes in Computer Science. Paris, France: Springer, Cham,
Switzerland, Apr. 2017, pp. 260–289. doi: 10.1007/978-3-319-56620-7_10.

[77] Muhammad Usama Sardar, Do Le Quoc, and Christof Fetzer. “Towards For-
malization of Enhanced Privacy ID (EPID)-based Remote Attestation in Intel
SGX”. In: 23rd Euromicro Conference on Digital System Design, DSD 2020,
Kranj, Slovenia, August 26-28, 2020. IEEE, 2020, pp. 604–607. isbn: 978-1-
7281-9535-3. doi: 10.1109/DSD51259.2020.00099. url: https://doi.org/
10.1109/DSD51259.2020.00099.

[78] Stephan van Schaik et al. SoK: SGX.Fail: How Stuff Get eXposed. https :
//sgx.fail. 2022.

[79] Rohit Sinha et al. “A design and verification methodology for secure isolated
regions”. In: Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016. Ed. by Chandra Krintz and Emery D. Berger. ACM,
2016, pp. 665–681. isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.2908113.
url: https://doi.org/10.1145/2908080.2908113.

[80] Rohit Sinha et al. “Moat: Verifying Confidentiality of Enclave Programs”. In:
ACM CCS 2015: 22nd Conference on Computer and Communications Security.
Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. Denver, CO, USA:
ACM Press, Oct. 2015, pp. 1169–1184. doi: 10.1145/2810103.2813608.

[81] Pramod Subramanyan et al. “A Formal Foundation for Secure Remote Ex-
ecution of Enclaves”. In: ACM CCS 2017: 24th Conference on Computer and
Communications Security. Ed. by Bhavani M. Thuraisingham et al. Dallas, TX,
USA: ACM Press, Oct. 2017, pp. 2435–2450. doi: 10.1145/3133956.3134098.

[82] Haiyong Sun and Hang Lei. “A Design and Verification Methodology for a Trust-
Zone Trusted Execution Environment”. In: IEEE Access 8 (2020), pp. 33870–
33883. issn: 2169-3536. doi: 10.1109/access.2020.2974487. url: http:
//dx.doi.org/10.1109/ACCESS.2020.2974487.

[83] Taisei Takahashi, Taishi Higuchi, and Akira Otsuka. “VeloCash: Anonymous
Decentralized Probabilistic Micropayments With Transferability”. In: IEEE Ac-
cess 10 (2022), pp. 93701–93730. doi: 10.1109/ACCESS.2022.3201071. url:
https://doi.org/10.1109/ACCESS.2022.3201071.

[84] Florian Tramer et al. Sealed-Glass Proofs: Using Transparent Enclaves to Prove
and Sell Knowledge. Cryptology ePrint Archive, Report 2016/635. https://
eprint.iacr.org/2016/635. 2016.

[85] Florian Tramèr and Dan Boneh. “Slalom: Fast, Verifiable and Private Execution
of Neural Networks in Trusted Hardware”. In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. url: https://openreview.net/forum?id=
rJVorjCcKQ.

[86] Florian Tramèr et al. “Sealed-Glass Proofs: Using Transparent Enclaves to Prove
and Sell Knowledge”. In: 2017 IEEE European Symposium on Security and
Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE. IEEE, 2017,
pp. 19–34. isbn: 978-1-5090-5762-7. doi: 10 . 1109 / EuroSP . 2017 . 28. url:
https://doi.org/10.1109/EuroSP.2017.28.

[87] Kevin R. B. Butler and Kurt Thomas, eds. USENIX Security 2022: 31st USENIX
Security Symposium. Boston, MA, USA: USENIX Association, Aug. 2022.

[88] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. “Graviton: Trusted Exe-
cution Environments on GPUs”. In: 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, Octo-
ber 8-10, 2018. Ed. by Andrea C. Arpaci-Dusseau and Geoff Voelker. USENIX

https://eprint.iacr.org/2016/1027
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1109/DSD51259.2020.00099
https://doi.org/10.1109/DSD51259.2020.00099
https://doi.org/10.1109/DSD51259.2020.00099
https://sgx.fail
https://sgx.fail
https://doi.org/10.1145/2908080.2908113
https://doi.org/10.1145/2908080.2908113
https://doi.org/10.1145/2810103.2813608
https://doi.org/10.1145/3133956.3134098
https://doi.org/10.1109/access.2020.2974487
http://dx.doi.org/10.1109/ACCESS.2020.2974487
http://dx.doi.org/10.1109/ACCESS.2020.2974487
https://doi.org/10.1109/ACCESS.2022.3201071
https://doi.org/10.1109/ACCESS.2022.3201071
https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/635
https://openreview.net/forum?id=rJVorjCcKQ
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.1109/EuroSP.2017.28
https://doi.org/10.1109/EuroSP.2017.28

44 Lorenzo Martinico,Markulf Kohlweiss

Association, 2018, pp. 681–696. url: https://www.usenix.org/conference/
osdi18/presentation/volos.

[89] Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veŕıssimo. “Asphalion: trust-
worthy shielding against Byzantine faults”. In: Proceedings of the ACM on Pro-
gramming Languages 3.OOPSLA (Oct. 2019), pp. 1–32. issn: 2475-1421. doi:
10.1145/3360564. url: http://dx.doi.org/10.1145/3360564.

[90] Weili Wang et al. “ENGRAFT: Enclave-guarded Raft on Byzantine Faulty
Nodes”. In: ACM CCS 2022: 29th Conference on Computer and Communi-
cations Security. Ed. by Heng Yin et al. Los Angeles, CA, USA: ACM Press,
Nov. 2022, pp. 2841–2855. doi: 10.1145/3548606.3560639.

[91] Pengfei Wu et al. “Exploring Dynamic Task Loading in SGX-Based Distributed
Computing”. In: IEEE Trans. Serv. Comput. 16.1 (2023), pp. 288–301. doi:
10.1109/TSC.2021.3123511. url: https://doi.org/10.1109/TSC.2021.
3123511.

[92] Pengfei Wu et al. “ObliDC: An SGX-based Oblivious Distributed Computing
Framework with Formal Proof”. In: ASIACCS 19: 14th ACM Symposium on
Information, Computer and Communications Security. Ed. by Steven D. Gal-
braith et al. Auckland, New Zealand: ACM Press, July 2019, pp. 86–99. doi:
10.1145/3321705.3329822.

[93] Rongwu Xu et al. “Miso: Legacy-Compatible Privacy-Preserving Single Sign-On
Using Trusted Execution Environments”. In: CoRR (2023). arXiv: 2305.06833
[cs.CR]. url: http://arxiv.org/abs/2305.06833v2.

[94] Shiwei Xu et al. “A Symbolic Model for Systematically Analyzing TEE-Based
Protocols”. In: ICICS 20: 22nd International Conference on Information and
Communication Security. Ed. by Weizhi Meng et al. Vol. 11999. Lecture Notes in
Computer Science. Copenhagen, Denmark: Springer, Cham, Switzerland, Aug.
2020, pp. 126–144. doi: 10.1007/978-3-030-61078-4_8.

[95] Fan Zhang et al. Paralysis Proofs: Secure Access-Structure Updates for Cryp-
tocurrencies and More. Cryptology ePrint Archive, Report 2018/096. https:
//eprint.iacr.org/2018/096. 2018.

[96] Fan Zhang et al. “Town Crier: An Authenticated Data Feed for Smart Con-
tracts”. In: ACM CCS 2016: 23rd Conference on Computer and Communica-
tions Security. Ed. by Edgar R. Weippl et al. Vienna, Austria: ACM Press, Oct.
2016, pp. 270–282. doi: 10.1145/2976749.2978326.

[97] Xuyang Zhao et al. “Towards A Secure Joint Cloud With Confidential Com-
puting”. In: 2022 IEEE International Conference on Joint Cloud Computing
(JCC) (Aug. 2022). doi: 10.1109/jcc56315.2022.00019. url: http://dx.
doi.org/10.1109/jcc56315.2022.00019.

https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1145/3360564
http://dx.doi.org/10.1145/3360564
https://doi.org/10.1145/3548606.3560639
https://doi.org/10.1109/TSC.2021.3123511
https://doi.org/10.1109/TSC.2021.3123511
https://doi.org/10.1109/TSC.2021.3123511
https://doi.org/10.1145/3321705.3329822
https://arxiv.org/abs/2305.06833
https://arxiv.org/abs/2305.06833
http://arxiv.org/abs/2305.06833v2
https://doi.org/10.1007/978-3-030-61078-4_8
https://eprint.iacr.org/2018/096
https://eprint.iacr.org/2018/096
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1109/jcc56315.2022.00019
http://dx.doi.org/10.1109/jcc56315.2022.00019
http://dx.doi.org/10.1109/jcc56315.2022.00019

	AGATE: Augmented Global Attested Trusted Execution in the Universal Composability framework

