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Abstract—Kyber was selected by NIST as a Post-Quantum
Cryptography Key Encapsulation Mechanism standard. This
means that the industry now needs to transition and adopt
these new standards. One of the most demanding operations in
Kyber is the modular arithmetic, making it a suitable target for
optimization. This work offers a novel modular reduction design
with the lowest area on Xilinx FPGA platforms. This novel design,
through K-reduction and LUT-based reduction, utilizes 49 LUTs
and 1 DSP as opposed to Xing and Li’s [XL21] 2021 CHES design
requiring 90 LUTs and 1 DSP for one modular multiplication.
Our design is the smallest modular multiplier reported as of
today.

Index Terms—CRYSTALS-Kyber, Hardware Design, FPGA

I. INTRODUCTION TO THE BUTTERFLIES USED IN
CRYSTALS-KYBER

Large-scale quantum computers present an ever-increasing
threat to currently deployed public key cryptographic algo-
rithms. Quantum attacks will be able to break the security
of cryptographic algorithms based on the large integer fac-
torization or discrete logarithm problem [Sho97]. However,
cryptographic algorithms resistant to these attacks exist and
are commonly referred to as Post-Quantum Cryptography
(PQC). The US National Institute of Standards and Technology
(NIST) launched its initial PQC standardization effort in 2016,
recognizing the need for formulating novel public-key stan-
dards [Div16]. The first schemes selected for standardization
were announced in 2022 by NIST. Three out of four are
lattice-based schemes: Kyber [Div23b], Dilithium [Div23c],
and Falcon [P+20].

Kyber (or ‘ML-KEM’, see FIPS 203 [Div23a]), and all
other lattice-based cryptography, heavily rely on modular
polynomial arithmetic. More specifically, the bottleneck is
modular polynomial multiplication. Kyber uses the fast Num-
ber Theoretic Transform (NTT), performed on multiple large-
degree polynomials of size N (e.g., N = 256 for Kyber and
Dilithium). The open-source pqm4 library1 includes imple-
mentations and benchmarking of all NIST-selected schemes.
Depending on the security level, 10% to 24% of the execution
time is spent in the NTT and Inverse NTT (INTT) routines.

A significant component of the NTT and INTT operation
is the butterfly unit, which is applied recursively. Due to the
nature of the NTT operation, optimized (e.g., parallelized)
implementations are possible in hardware. More specifically,

1https://github.com/mupq/pqm4

as illustrated in [BAK21b], duplicating butterfly units and
parallelizing the NTT operation reduces the total latency.
Area utilization can be exchanged for latency in hardware
implementations of NTT. This paper thus focuses on the
arithmetic cost of one butterfly as the basic unit, expressed
in LUTs and DSPs.
Related Work. Prior work has targeted and optimized
the NTT operation for both large AMD and Intel proces-
sors, the more resource-constrained Arm Cortex-M4 platform
and FPGA [Sei18], [LS19], [BKS19], [BC22], [JGCS21],
[GLK22a].
Contribution. The main contributions of this paper are the
following:

• An implementation and comparison of the best (i.e., low-
est area cost (LUT/DSP)) modular reduction algorithms
and a novel 49-LUT reduction design.

• An open source Github repository of said implementa-
tions.

The intended audience for this paper is hardware designers
looking to implement and/or optimize their Kyber designs
on FPGA. Many research papers in this area put significant
design effort into innovative modular reduction. However, the
design comparison in this paper shows a large fraction does not
improve on a state-of-the-art design like Xing et al.’s [XL21]
which appeared in CHES 2021. To remedy this, a modular
reduction design2 is put in the public domain in our repository
which utilizes 49 LUTs as opposed to the 90 LUTs in Xing
et al.’s state-of-the-art design.
Outline. In this paper, the butterfly operation is explored in de-
tail. First, the architecture of a butterfly is introduced (Section
II). Secondly, modular reduction, the most critical operation
in a butterfly, is discussed in Section III. Here, techniques
relevant to our Kyber modular multiplier implementation in
hardware are specifically analyzed. In Section IV, several
state-of-the-art modular multiplier designs are presented and
compared. Finally, a novel hardware design for the modular
multiplication is introduced in Section V and contrasted with
prior art in Section VI. The open-source implementation offers
a significant improvement over prior work.

2https://github.com/axytho/KyberButterflyCollection/blob/main/butterflies/
butterfly Best.v

https://github.com/mupq/pqm4
https://github.com/axytho/KyberButterflyCollection/blob/main/butterflies/butterfly_Best.v
https://github.com/axytho/KyberButterflyCollection/blob/main/butterflies/butterfly_Best.v


II. PRELIMINARIES

This section introduces the butterfly operation and its usage
as a crucial component in NTTs. Different types of butterflies
are introduced, discussed and contrasted.

A. The Cooley-Tukey and Gentleman-Sande Butterfly

Butterflies and their implementations designed for Kyber-
parameter (Inverse) Number Theoretic Transforms ((I)NTTs)
come in a range of different forms. The calculations contained
in a single butterfly are simple: a modular addition, a modular
subtraction, and a single modular multiplication with a twiddle
factor. Both types of butterfly, Cooley-Tukey and Gentleman-
Sande, require an equal amount of additions, subtractions, and
multiplications. For Cooley-Tukey, first multiply, then add and
subtract:

aout = (ain + bin · w) mod q (1)

bout = (ain − bin · w) mod q (2)

For Gentleman-Sande, first add and subtract, then multiply:

aout = (ain + bin) · w mod q (3)

bout = (ain − bin) · w mod q (4)

with ain and bin, 12 bit inputs, w a 12 bit constant multipli-
cand, w = ωi, i ∈ [0 . . . 127] with ωn/2 = −1 mod q.

B. Unified Butterflies

Many Kyber designs choose to support both Gentleman
Sande and Cooley Tukey. The reason for this lies in how a
polynomial multiplication of two polynomials modulo XN+1
is done.

It is a very common misconception [BLP+23], [SS23],
[DMG23], [BAK21a], [BUC19], [BPC19], [XHY+20],
[ZLZ+22], [BAK21b] that a combined CT/GS architecture
removes the bit-reversal step. This is not the case: to remove
the bit-reversal step, the structure of the forward NTT itself
can be changed so that it maps a normal order polynomial
to a bit-reversed order polynomial. In this case, the inverse
NTT will map a bit-reversed order polynomial to a normal
order polynomial, independent of butterfly architecture. Alter-
natively, the NTTs can be designed to map normal order to
normal order (see Chapter 6 of [CCG00], [POG15]). However,
as the structure of the NTT is independent of the structure of
the butterfly, one can use a Gentleman-Sande butterfly to map
normal order to bit-reversed order (see Figure 1) and could do
vice versa with a Cooley-Tukey butterfly.
The actual reason for a combined GS/CT architecture is that
properly configured (CT for NTTno→bo, GS for INTTbo→no),
the architecture efficiently calculates the negatively wrapped
convolution (see [POG15]).

III. MODULAR REDUCTION

Now, various modular reduction techniques relevant to
hardware designs are described.

Fig. 1. A Gentleman-Sande (Decimation-In-Frequency) butterfly that maps
Normal Order to Bit-reversed Order, proving that this capability is not unique
to Cooley-Tukey. Whether a circuit maps normal order to bit-reversed or vice
versa depends on the ordering of the butterflies themselves rather than on the
internal architecture of the butterfly

A. K-reduction

In 2016, Longa and Naehrig [LN16] proposed a new mod-
ular reduction algorithm for lattice-based cryptography: K-
reduction (Algorithm 1). K-reduction exploits the fact that the
Kyber modulus q can be written as a power of two multiplied
with a small constant k (k = 13) plus one. Under this modulus,
reducing numbers that are to be multiplied by k is a low-
complexity operation because any number multiplied by k ·28
is equivalent to the negative of that number. In other words,
the upper bits, starting from position 8, can be subtracted from
the lower bits, once the lower bits have been multiplied by k
(See Algorithm 1). Thus, rather than calculating the desired
result:

a · b mod q (5)

The following is calculated (which is off by a constant factor
k = 13):

K-red(a, b) = a · b · k mod q (6)

with q = 3329 = k · 2x + 1 with x = 8 and k = 13. The
fact that k · 28 ≡ −1 mod q is then leveraged in a similar
fashion to bitwise multiplication. By splitting k · c into k ·
c[23:8] · 28 + k · c[7:0], and replacing the upper part k · 28 with
−1, the end result is a single subtraction −c[23:8] + k · c[7:0]
to reduce the size of the product by almost 8 bits. The fact
that the calculation is off by a constant factor k is rectified by
multiplying one of our inputs (namely the twiddle factor) by
a constant factor k−1 (mod q).

K-reduction does not fully reduce a 24-bit value to a
12-bit value since c[23:8] is a 16-bit value, but there are
multiple approaches to utilize K-reduction for Kyber modular
multiplication.



Algorithm 1: K-red Algorithm
Data: a and b, 12 bit inputs, q = k · 2x + 1 with x = 8

and k = 13 so that q = 3329 and
k · 28 ≡ −1 mod q

Result: r = a · b · k mod q

1 begin
2 c = a · b;
3 c = c[23:8] · 28 + c[7:0];
4 r = k · c mod q = (c[23:8] · k · 28 + k · c[7:0]) mod q;
5 r = (c[23:8] · (−1) + k · c[7:0]) mod q;
6 end

B. LUT-based reduction

In LUT-based reduction, the modular reduction is pre-
computed for a group of bits in the multiplication result
c = a · b. For instance, precomputing the most significant
four bits consists of storing which 12-bit value corresponds to
220 · c[23:20] mod q for every single possible value of c[23:20].
As there are 24 possible values for c[23:20], 24 values, each of
12 bits, must be stored. If a single 4-to-1 LUT is used per bit,
12 LUTs are used in total. The LUT-based reduction algorithm
is described in Algorithm 2.

LUT-based reduction, like K-reduction, does not fully re-
duce a 24-bit value to a 12-bit value since c[19:0] is a 20-bit
value.

Algorithm 2: LUT-based Algorithm
Data: a and b, 12 bit inputs, LUT a function mapping

4 bits to 12 bits
Result: r = a · b mod q

1 begin
2 c = a · b;
3 c = c[23:8] · 28 + c[7:0];
4 LUT(c[23:20]) = (c[23:20] · 220 · k) mod q;
5 r ≡ c ≡ LUT(c[23:20]) + c[19:8];
6 end

IV. HARDWARE IMPLEMENTATIONS

Five different K-reduction strategies are discussed here.
Based on these five K-reduction strategies, a novel design is
introduced in the next section.
K-reduction does not fully reduce the product but rather
decreases its size by 7 bits, and thus an extra reduction is
required to complete the full reduction for Kyber parameters
from 24 bits to 12 bits. Firstly, Bishes-Niasar et al. [BLP+23]
created the K2-RED approach (not to be confused with the
K2-RED algorithm from Longa and Naehrig [LN16]). The K2-
RED approach applies the K-RED algorithm twice, requiring
six additions in total, followed by a conditional addition. This
reduces the result to the desired 12 bits. Li et al. [LQYW24]

improve this by utilizing K-reduction with k = −13 (as usual)
in the first step and k = −13 · 24 for the second step. The
second K-reduction then consists of a series of 4 bit instead
of 8 bit additions. We consider this to be K1.5-red because it
is an 8-bit K-red followed by a 4-bit K-red which has the area
usage of doing 1.5 times an 8-bit K-red.
Secondly, Salarifard and Soleimany [SS23] create a trade-off
between memory and logic units by pre-calculating a[5:0] · b ·
k−1 mod q for all possible b and all possible 6 bits of a.
The factor k−1 is included to cancel with a later K-reduction.
Because b are the twiddle factors in the NTT, there are only
128 possible values for b. This results in:

a ·b ·k−1 mod q =
(
a[11:6] ·b ·26+a[5:0] ·b

)
·k−1 mod q (7)

In other words, two accesses to memory suffice to reduce the
result:

r1 · 26 + r2 mod q (8)

with r1 and r2 12 bit numbers. This result can be reduced using
K-reduction. Alternatively, two different memories can be
instantiated: one containing a[5:0] ·b mod q and one containing
the calculated values for a[12:6] ·b·26 mod q. These two values
can then be combined with a modular addition to gain the final
bit result without requiring K-reduction (or pre-calculation
with a factor k−1). Each BRAM requires storage for 128×64
elements of 12 bits.

Thirdly, Ni et al. [NKLO23] leverage LUT-based reduction
to cheaply remove the top 4 bits, utilizing only 12 elements
of 4:1 LUTs. It should be noted that LUT-6 and LUT-5:2
elements are standard primitives on 7-series Xilinx FPGAs,
including the xc7a200t platform targeted by Ni et al.. As such,
Ni et al. do not fully utilize the primitives available.
Finally, Nguyen et al. [NPH23] merge 6:1 LUT-based reduc-
tion with Karatsuba [Kar95] and do the final reduction through
K-reduction, requiring only three adders. Table I gives the
arithmetic cost of the K-reduction algorithms.
Nguyen et al. [NPH23]’s design requires 12 bits of arithmetic
cost for the 6:1 LUT reduction, 12 bits for the addition of x
with the Karatsuba multiplication, and an addition of 10 bits,
a subtraction of 12 bits and a final subtraction of 12 bits. A
signed bit is saved from this final subtraction as the result
r ∈ (−q, q). This signed bit is then utilized in the butterfly
architecture’s modular addition and subtraction to ensure the
final output is [0, q). This merging has an arithmetic cost of
12 bits.

Ni et al. [NKLO23] combine the results by adding the result
of the Look-Up Table to −c[19:8]+k·c[7:0], then select between
adding 0, q or −q. This requires a 10-bit, 12 bit and 13-bit
adder or subtractor for the K circuit, 12 bits worth of LUTs for
calculating x, 14 bits for the addition of x and −c[19:8]+k·c[7:0]
and a further 12 bits for the multiplexer and 12 bits for the
final subtraction circuit. In total, 85 bits are required for the
reduction (see Figure 2).

It should be noted that Ni et al.’s [NKLO23] design does not
fully reduce the final result within [0, q). Figure 2 is misleading
as it suggests that the sum of the LUT and K-RED method



Fig. 2. We based one of our implementations on Ni et al.’s modular reduction, taken from [NKLO23] and used under provisions of fair use with the following
corrections: Note that the shift by one at the bottom of the figure should be a shift by two, and the addition of Ch − (Cl << 3) and (Cl << 2) + Cl

should be a subtraction. Moreover, note that result ∈ [0, 212) rather than ∈ [0, q).

Fig. 3. Nguyen et al.’s modular reduction, taken from [NPH23] and used under provisions of fair use. We modified this design with a conditional subtraction
to bring the result within [0, q).

lies within [−q, 2q) and requires a single adder and 3:1 MUX
to reduce the circuit. In reality, the final result lies within
[−q, 212+ q), and even if this were not the case, the design in
Figure 2 would only reduce the result to [0, 212) as the circuit
has no way to detect that the result lies in [q, 212). Modifying
Ni et al.’s design to reduce the final result within [0, q) by
moving two conditional subtractions with q to the very end
of the circuit ensures a fair comparison between the different
butterfly units.

TABLE I
ARITHMETIC COMPLEXITY OF DIFFERENT K-REDUCTION DESIGNS.

Paper Type Adder bits # Mults
Bishes-Niasar et al. [BLP+23] K2-red 96 bits 1

Li et al. [LQYW24] K1.5-red 72 bits 1
Salarifard et al. [SS23] BRAM 36 bits 2 BRAM

Ni et al. [YMÖS21] LUT/K-red 85 bits 1
Nguyen et al. [GLK22b] LUT/K-red 269 bits 0

There is a trade-off between the LUT-6 strategy used by
Nguyen et al. and the LUT-4 approach, favored by Ni et
al. A LUT-6 reduction, followed by K-reduction, requires
only a conditional addition to ensure the final result lies in
[0, q). A LUT-4 addition requires conditional subtraction and
a conditional addition to reduce the final result. The LUT-
6 approach should be favored when LUT-6 elements are
primitives in the architecture, whereas the LUT-4 approach
should be favored when LUT primitives are unavailable, with

the LUT-4 implemented in logic gates.

V. A NOVEL DESIGN

A novel design that combines the best features of Ni et
al. and Nguyen et al. for FPGA use is proposed here. It
utilizes LUT-6s and DSPs to minimize area usage. The design
is described in Figure 4 and can be found in our repository
3. It is also described by Algorithm 3. This novel design

Algorithm 3: Our Kyber Modular Reduction
Data: a and b, 12 bit inputs, q = k · 2x + 1 with x = 8

and k = 13 so that q = 3329 and
k · 28 ≡ −1 mod q, LUT a function mapping 6
bits to 12 bits

Result: r = a · b · k mod q

1 begin
2 c = a · b;
3 y = LUT(c[23:18]) = (c[23:18] · 218 · k) mod q;
4 LUT-RED = c[17:0] + y;
5 K-RED = −LUT-RED[18:8] + k · LUT-RED[7:0];
6 r = if (K-RED < 0) then K-RED+ q else K-RED;
7 end

3https://github.com/axytho/KyberButterflyCollection

https://github.com/axytho/KyberButterflyCollection
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Fig. 4. Our design consists of a LUT-6-based reduction, followed by K-
reduction, followed by a conditional addition.

consists of a sequential LUT-based reduction, followed by K-
reduction, followed by a conditional addition. We conclude
this composition of steps is most efficient, based on the
following observations:

1) LUT-6 elements are available on Xilinx FPGAs as
primitives and LUT-based reduction is the cheapest form
of reduction when viewed as area consumed

2) K-reduction is a slightly more expensive reduction
method which returns a value between −q and q

3) Conditional addition or subtraction is a relatively expen-
sive step (requiring 24 LUTs per element)

In order to minimize area utilization, it is critical to minimize
the number of conditional additions or subtractions (3). Our
design takes advantage of K-reduction as it reduces inputs to
a narrower range than LUT-reduction and thus requires only
a single conditional addition at the end of the circuit (2).
The initial stage is completed by LUT-reduction because it is
cheaper than K-reduction and there is no need for reducing
the result to a small range in the first stage (1).

To demonstrate that K-reduction reduces to a narrower
range than LUT-based reduction, consider the middle (K-
reduction) stage of Figure 4. The maximum output of the
K-reduction circuit K-RED will be 211 − 1 and the minimum
output −13 · 28. In contrast, a LUT6-reduction circuit that is
fed a 19-bit input will result in the sum of a value smaller
than q = 3329 and a value of 13 bits. The sum will be at
most 213 − 1 + 3329, and would thus require at least two

conditional subtractions (one with 3329 · 2, one with 3329) to
fully reduce the value.

To fully demonstrate that a combination of a LUT-based
reduction and a K-reduction method is the optimal design for
FPGAs, we have optimized four different cases: (i) A design
with two LUT-based reduction (implemented in parallel, as
this is slightly more optimal), (ii) A design with two K-
reductions (utilizing the techniques from Li et al. [LQYW24],
but with a better implementation of the multiplication with 13
and other optimizations), (iii) a design with a K-reduction step
followed by a LUT-reduction step and (iv) our design, which
as previously mentioned consists of a LUT-based reduction
followed by K-reduction. The results can be found in Table
II. A design with double LUT-based reduction (i) suffers from
the area consumption of two conditional subtraction blocks
and as such requires 72 LUTs. Two conditional subtractions
are necessary as LUT6 will remove 6 bits but add an addition
of a value < q. A design with an optimized double K-reduction
(ii) requires a single conditional addition but utilizes slightly
more expensive K-reduction as opposed to LUT-reduction. In
total, it requires 56 LUTs. A design (iii) implementing K-
reduction first, followed by LUT reduction still requires a
conditional subtraction and requires 60 LUTs. Finally, our best
optimized design (iv) takes only 49 LUTs as it utilizes LUT
based reduction for the first stage (1) and K-reduction for the
second (2), requiring only a single conditional addition for the
final stage (3). It can be argued that lazy reduction obviates the

TABLE II
K-RED + LUT-RED COMBINATIONS AREA COST

LUT first K-red first
LUT second 72 LUTs 60 LUTs
K-red second 49 LUTs 56 LUTs

need for a full reduction to a value between 0 and 3329. One
could for instance allow the output to be all values of 12 bits,
including values between 0 and 212 = 4096. However, this
merely shifts the problem of modular reduction to the modular
addition and subtraction of the butterfly. When adding two 12
bit numbers modulo q, it is not enough to simply subtract the
modulus q = 3329, as the sum can have a maximum value
of 213 − 2, requiring a subtraction by 2q to reduce below
12 bit. Therefore an extra conditional subtraction unit would
be required in the addition and subtraction if lazy reduction
is utilized for the modular multiplication. In other words, one
conditional subtraction is saved at the cost of adding two extra
conditional subtractions, which is not a worthwhile trade-off.

The following section provides the synthesis results of all
state-of-the-art design techniques for modular multiplication
on a Xilinx 7-Series FPGA platform. The state-of-the-art
designs are open sourced 4, so that the reader can run his
own synthesis on his desired hardware platform.

4https://github.com/axytho/KyberButterflyCollection
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VI. RESULTS

In this section, the best algorithms from each category of
modular multiplication are implemented to verify their re-
source usage. Moreover, this provides an opportunity to verify
that the algorithms correctly implement a Kyber butterfly. Xing
et al. [XL21] and Yaman et al. [YMÖS21] provided open-
source implementations of their designs, whereas Nguyen et
al.’s [NPH23] strategy is implemented from scratch. Ni et
al.’s [NKLO23] design was also implemented to provide a
K-reduction implementation that does not rely on Karatsuba.

Some implementations target flexibility, whereas others try
to minimize area or maximize throughput, which poses chal-
lenges for comparison. To keep the comparison fair and to
increase the usability of the open-sourced implementations,
the butterfly unit of Yaman et al. [YMÖS21] is taken for all
implementations. Yaman et al.’s design has been placed in the
public domain by its authors and is a hardware implementation
of the full Kyber algorithm. To compare the various modular
multiplication techniques, only the modular multiplier inside
the design is replaced. Yaman et al.’s implementation supports
NTT with different numbers of butterflies, guaranteeing that
the implementation of the butterfly is independent of the
targeted specifications.

The butterfly units were exhaustively tested for all possible
twiddle factors (256 possibilities) and all possible inputs
(q = 3329). Wherever designs did not fully reduce the result
and thus offered a misleading area utilization for the modular
reduction circuit (see Figure 2 & Figure 3), the necessary
reduction logic was added.

A. Area Results

TABLE III
BUTTERFLY AREA USAGE

Paper Technique # LUT # DSP
Yaman et al. [YMÖS21] Bit-wise 269 1

Xing and Li [XL21] Barrett 192 1
Nguyen et al. [GLK22b] LUT/K-red 342 0

Li et al. (their impl.) [LQYW24] K1.5-red 140 2
[NKLO23] (our improv.) LUT4/K-red 185 1
[LQYW24] (our improv.) K1.5-red 152 1

Figure 4 LUT6/K-red 151 1

The modular multiplication unit is also synthesized sepa-
rately in Table IV for a better comparison between the different
designs.

TABLE IV
MODULAR MULTIPLICATION AREA USAGE

Paper # LUT # FF # DSP
Yaman et al. [YMÖS21] 167 1 1

Xing and Li [XL21] 90 1 1
Nguyen et al. [GLK22b] 248 111 0

Li et al. (their impl.) [LQYW24] 38 0 2
Ni et al. (our improv.) [NKLO23] 83 38 1
Li et al. (our improv.) [LQYW24] 56 0 1

Figure 4 49 32 1

VII. THE SYSTEM LEVEL

To measure the area improvement resulting from our but-
terfly circuit, we replace Yaman et al.’s [YMÖS21] highly
optimized modular reduction circuit with our own. Our prelim-
inary findings show that the latency of our design is smaller
than Yaman et al.’s. We thus will not consider the critical
path in our analysis. The designs were implemented for the
same Artix-7 FPGA (xc7a200tffg1156-3) that Yaman et al.
utilized for 1, 4 and 16 butterflies. The results, generated by
Vivado 2020.2, are in Table V. The area reduction predictably
improves as butterfly units account for a greater percentage of
the area on the circuit. For a Kyber implementation utilizing
one butterfly, ours takes 14.7% less LUTs whereas a full Kyber
implementation utilizing 16 requires 22.9% less LUTs. This
area improvement can be achieved with very little effort by
the reader: simply replacing the modular multiplication in the
butterfly suffices.

TABLE V
KYBER AREA USAGE

# PE Mod Mult. # LUT # FF # BRAM # DSP
1 [YMÖS21] 809 388 2.5 1
1 Ours 690 419 2.5 1
4 [YMÖS21] 2238 903 9 4
4 Ours 1782 1027 9 4

16 [YMÖS21] 8293 3106 33 16
16 Ours 6393 3604 33 16

VIII. CONCLUSION

This paper provides a highly optimized modular multiplica-
tion circuit for Kyber modular multiplication. The techniques
discussed here are partially applicable to other PQC schemes,
but their relative costs will change depending on the structure
of the modulus. The discussion on modular arithmetic and the
implementation results make it clear that future hardware ac-
celeration of Kyber should maximally exploit the fixed nature
of the modulus for the modular multiplication arithmetic. On
7-Series FPGAs, by far the most commonly studied hardware
architecture, a merging of K-reduction with LUT-reduction has
the lowest area.
As for future work, it should be noted that further im-
provements on modular reduction in FPGAs can only reduce
its cost by up to 49 LUTs as this is the current cost of
the modular multiplication circuit without the multiplier. In
contrast, a Karatsuba multiplier has a logic cost of ≈ 211
LUTs. Short of a significant decrease in the arithmetic cost
of 12 bit multiplication, Amdahl’s law prohibits serious gains
from optimizing the modular reduction circuit. In conclusion,
future Kyber hardware optimizations must be made outside
the butterfly unit.
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