
Adaptive Successive Over-Relaxation Method for

a Faster Iterative Approximation of

Homomorphic Operations

Jungho Moon1, Zhanibek Omarov1, Donghoon Yoo1, Yongdae An1,
and Heewon Chung1

1Desilo Inc., Seoul, Republic of Korea

August 30, 2024

Abstract

Homomorphic encryption is a cryptographic technique that enables
arithmetic operations to be performed on encrypted data. However, word-
wise fully homomorphic encryption schemes, such as BGV, BFV, and
CKKS schemes, only support addition and multiplication operations on
ciphertexts. This limitation makes it challenging to perform non-linear
operations directly on the encrypted data. To address this issue, prior
research has proposed efficient approximation techniques that utilize iter-
ative methods, such as functional composition, to identify optimal poly-
nomials. These approximations are designed to have a low multiplicative
depth and a reduced number of multiplications, as these criteria directly
impact the performance of the approximated operations.

In this paper, we propose a novel method, named as adaptive suc-
cessive over-relaxation (aSOR), to further optimize the approximations
used in homomorphic encryption schemes. Our experimental results show
that the aSOR method can significantly reduce the computational effort
required for these approximations, achieving a reduction of 2–9 times com-
pared to state-of-the-art methodologies. We demonstrate the effectiveness
of the aSOR method by applying it to a range of operations, including
sign, comparison, ReLU, square root, reciprocal of m-th root, and divi-
sion. Our findings suggest that the aSOR method can greatly improve
the efficiency of homomorphic encryption for performing non-linear oper-
ations.

1 Introduction

Fully homomorphic encryption (FHE) is a fundamental cryptographic principle
that enables the evaluation of an arithmetic or logical circuit representing a func-
tion while maintaining the privacy of the corresponding messages. By allowing

1

Figure 1: MLaaS with FHE for inference.

arithmetic and logical operations to be performed on encrypted messages, FHE
guarantees the privacy while allowing meaningful computation. Clients can keep
their data in encrypted format in the cloud and perform computations, such as
inference, prediction, statistics, and more, directly on the encrypted data with-
out revealing their confidential information. Similarly, the cloud-based service
providers do not need to reveal their secrets, such as models or methods, to the
clients.

As an example of application areas, FHE can be used as a technology for
protecting the clients’ privacy when deploying Machine Learning as a Service
(MLaaS) on public clouds. In MLaaS, cloud servers can access clients’ raw
data, and hence potentially introduce privacy risks. The privacy of the clients’
data can be protected using FHE as depicted in Figure 1. Since the client’s
data is encrypted by FHE before sending it to the server, the data never leaves
the control of the client in plaintext. The server only receives the encrypted
data and evaluates the machine learning model, which consists of FHE-friendly
components as suggested in this work, with the given encrypted data. The result
of the inference is also encrypted and only the client can decrypt and see the
result. In this manner, the server acquires no knowledge of either the input or
the output of such MLaaS pipeline, ensuring data privacy. This solution is called
Privacy Preserving Machine Learning (PPML) [16, 22, 30, 25]. In addition to
its deployment within PPML, FHE finds extensive applicability across various
domains such as medical data analysis [28, 3, 35], financial data analysis [40],
secure searchable encryption [43, 4], secure database [38, 41], and so on.

Gentry first introduced the blueprint of FHE scheme in [19], and since then
several studies [6, 5, 18, 17, 9, 13] have aimed to construct efficient FHE schemes.

2

FHE schemes can be categorized into two types: word-wise FHE schemes (such
as BGV [6], BFV [5, 18], and CKKS [9]) and bit-wise FHE schemes (such as
FHEW [17] and CGGI [13]), depending on the primitive operations between
ciphertexts. Word-wise FHE schemes support primitive operations of addition
and multiplication on integers or complex numbers, while bit-wise FHE schemes
support Boolean gates [17] and look-up table based operations [12].

Non-linear functions such as sign, square root, inverse, comparison, and
activation functions found in neural nets (including ReLU, Max Pooling, Soft-
max, and others) are essential for practical real-world applications of FHE.
Since word-wise FHE schemes only support addition and multiplication opera-
tions, such non-linear functions must be approximated through iterative meth-
ods, high-degree polynomials, or other sub-variations like polynomial composi-
tions [10].

The efficiency of approximations of non-linear functions is determined by,

• Computational complexity — the total number of multiplications in the
arithmetic circuit,

• Multiplicative depth — length of the longest chain of sequential multipli-
cations. Depth can also be determined via the largest polynomial degree
of an arithmetic circuit.

For example, f(x) = x4 + x3 + 1 has a depth of log2 4 = 2 and complexity of
2 + 2 + 0 = 41.

The practicality of FHE is typically limited by the significant performance
gap between FHE operations and ordinary calculations. There have been vari-
ous efforts to bridge this gap, such as the development of hardware accelerators
(e.g., CraterLake [39], Medha [33], SHARP [27]) and efficient FHE library im-
plementations (e.g., HElib [21], Microsoft SEAL [34], OpenFHE [2], HEaaN [24],
TFHE-rs [44]). This work aims to enhance the FHE performance orthogonally
to these software and hardware optimizations, by improving non-linear function
approximation methodologies.

1.1 Related Work

Cheon et al. [10] have reviewed evaluation methods for various basic functions
such as inverse and square root which they used to construct an algorithm
for maximum/minimum of numbers without using Boolean functions. Later,
the authors [7] have substantially improved their results by introducing a new
method for evaluating comparison function (equivalent to maximum/minimum)
for which they needed to carefully devise two new sets of polynomials to achieve
maximal performance. Lee et al. [29] have shown that the multiplicative depth
can be further optimized by using compositions of special minimax approximate
polynomials for approximation of comparison function. Panda [36] has demon-
strated a fast evaluation method of inverse square root at the cost of additional
evaluation of the comparison function.

1with reuse of computation results it further reduces to 3

3

Cheon et al.’s works [10, 7] have pioneered efficient polynomial approxima-
tions for non-linear homomorphic operations. The subsequent works generally
tend to extend and/or improve their initial efforts. Panda’s work [36] focuses
on inverse square root while showing worse performance in addition to requir-
ing an auxiliary computation. Lee et al. [29] have achieved performance on par
with ours for comparison function, but their approach is limited to compari-
son function only. Our work stands out in that it directly extends well-known
iterative methods, such as Newton’s method and Goldschmidt’s method, with
simple-to-implement modification. Our approach is more versatile and can be
applied to a wider range of iterative functions.

1.2 Our Contribution

In this paper, we further develop ideas introduced in the successive over-relaxation
(SOR) [42, 15] method to improve the efficiency for iterative methods that are
commonly used for homomorphic evaluation of non-linear functions. Our pri-
mary contribution, adaptive successive over-relaxation method (aSOR), is a gen-
eral purpose method for a faster evaluation of iterative processes (Section 2.2).
The term ”adaptive” in aSOR refers to the continuous adjustment of the re-
laxation coefficient to ensure the fastest convergence at each step. SOR is a
general-purpose method that is not limited to FHE or certain iterative func-
tions. We demonstrate the practicality and high performance of aSOR by ap-
proximating non-linear functions such as comparison, sign, ReLU, square root,
inverse square root, reciprocal of m-th root, inversion (division), max pooling,
and softmax as possible applications of this methodology. Overall, we find that,
in general, aSOR outperforms state-of-the-art iterative methods used in FHE,
achieving a speedup ranging from 2 to 9 times faster, with the improvement
increasing as the accuracy of the termination criteria becomes tighter.

Organization Section 2 presents definitions of homomorphic encryption and
various approximation algorithms. In Section 3, we introduce the main idea
of our work, which is adaptive successive over-relaxation (aSOR). We then de-
scribe the application of aSOR to several non-linear approximations in Section 4,
including Cheon et al.’s comparison function [10, 7], Goldschmidt’s inverse cal-
culation [20, 10], Goldschmidt’s square root and inverse square root calculation,
and Newton-Raphson’s method for square root calculation [1, 37]. Finally, in
Section 5, we provide benchmarks with specific parameters.

2 Preliminaries

2.1 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) allows for computations to be performed
directly on ciphertexts without requiring decryption. FHE schemes are classified
as bitwise and word-wise as we mentioned in Section 1. The basic operations

4

of bitwise schemes are logic gates, whereas the basic operations of word-wise
schemes are addition and multiplication. In this paper, we focus only on word-
wise FHE schemes, and the terminology FHE refers to word-wise FHE.

An FHE scheme can be represented by a quintuple of probabilistic polynomial-
time algorithms, denoted by FHE = (KeyGen, Enc, Dec,
Add, Mult), which are defined as follows:

• KeyGen(params)→ (pk, sk, evk); This algorithm takes a parameter params,
which is determined by the security parameter λ and the multiplicative
depth L, and outputs a public key pk, a secret key sk, and an evaluation
key ek.

• Enc(pk,m) → c; This algorithm takes a message m ∈ P and a public key
pk as inputs, and outputs a ciphertext c ∈ C, where P and C denote the
plaintext space and the ciphertext space, respectively.

• Dec(sk, c)→ m: This algorithm takes a ciphertext c ∈ C and a secret key
sk as inputs, and outputs a message m ∈ P.

• Add(c1, c2, evk)→ cadd; This algorithm takes ciphertexts c1 ∈ C and c2 ∈
C of plaintexts m1 ∈ P and m2 ∈ P, respectively, with an evaluation key
evk as inputs, and outputs a ciphertext cadd ∈ C of m1 +m2.

• Mult(c1, c2, evk) → cmult; This algorithm takes ciphertexts c1 ∈ C and
c2 ∈ C of plaintexts m1 ∈ P and m2 ∈ P, respectively, with an evaluation
key evk as inputs, and outputs a ciphertext cmult ∈ C of m1 ·m2.

The computational efficiency of an arithmetic circuit f in an FHE scheme
is primarily determined by its computational complexity, which corresponds to
the number of multiplications, and its multiplicative depth. Therefore, mini-
mizing these parameters is essential for achieving practical performance. In the
remainder of the paper, we will concentrate on the non-scalar multiplicative
depth and computational complexity, disregarding the number of additions and
scalar multiplications in our analysis of computational efficiency.

2.2 Iterative Process

An iterative process is a computational technique used to refine an initial guess
solution value x1 until a terminal condition is met. Convergence rate and at-
traction basin, which denotes the range of initial values that converge, are im-
portant properties of any iterative process. Examples of well-known iterative
processes include the Goldschmidt’s division algorithm [20] and the Newton-
Raphson method [1].

In an iterative process of the form xn+1 = f(xn), where xfp = f(xfp) and the
subscript ”fp” denotes the “fixed point”, or convergence point, of f , the sequence
xn (n ≥ 1) starting from x1 converges to the true solution xfp provided that the
initial guess x1 lies within the convergence region. Since f is not restricted to
be linear, the commonly used notion of spectral radius is not applicable.

5

3 Adaptive successive over-relaxation method

The adaptive successive over-relaxation (aSOR) method introduced in this work
is based on the conventional successive over-relaxation (SOR) method [42, 15],
which aims to improve the convergence of iterative processes (as discussed in
Section 2.2) by scaling the input using a relaxation factor k (often denoted as
ω in literature). The SOR method is typically used for faster solving of linear
systems of equations in the form Ax = b, where the relaxation factor remains
constant across iterations. The focus of this work is on non-linear scalar valued
iterative processes with variable relaxation factor ki, where i denotes an iteration
number. All values of ki are predetermined, and no just-in-time decisions are
made based on the output of any particular iteration.

Consider the function f(x) = x(2−x) as a simple example, where the input
range is x1 ∈ [ϵ, 1] for 0 < ϵ < 1. The functional composition of the example
function can be denoted as x3 = f(f(x1)) = f (2)(x1), and more generally,
xn+1 = f (n)(x1). It is clear that limn→∞ fn(x) = 1, and the fixed point of f
is xfp = 1. We can call this function as the ”almost sign” function because it
makes any positive number 0 < x ≤ 1 converge to unity, although it does not
work for negative numbers. The discussion of this particular function is still
useful for its application in Goldschmidt’s division algorithm, as discussed in
Section 4.2.

Increasing the value of n leads to an increasingly better approximation, as il-
lustrated in Figure 2 (Left). We will restrict the initial input range to x1 ∈ [ϵ1, 1],
where ϵ1 ≪ 1 and the subscript i indicates the iteration number. Consequently,
the input range for the i’th iteration can be defined as xi ∈ [ϵi, 1]. Also, it
is helpful to reinterpret this problem in terms of shrinking input ranges. For
every pair of i and j with 0 < i < j, we aim to have a narrower input range
xj ∈ [ϵj , 1] compared to xi ∈ [ϵi, 1], where ϵj > ϵi. The narrowing of the
input/output interval is achieved through iterative evaluation.

Instead of directly evaluating f(x), the idea lies in computing f(kx) even in
the first iteration such that,

f(k1x1) ∈ [min(f(k1ϵ1), f(k1)), 1],

which is also the input range for the next iteration. That is, the idea of aSOR
iterative composition is to evaluate,

xn = f(kn−1xn−1)

= f(kn−1f(kn−2xn−2))

= f(kn−1f(. . . f(f(k1x1)))).

In general, the optimal relaxation factor k may differ for each iteration, and
can be determined as follows:

ki = argmax
ki

[min(f(kiϵi), f(ki))].

The relaxation factors ki are to be chosen such that the output range constricts
maximally at each iteration i. And this process yields the array of optimal

6

0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50

0.75

1.00
fn (

x) n = 1
n = 2
n = 3
n = 4
n = 5

0 2 4 6 8 10 12
n

10.0

7.5

5.0

2.5

0.0

M
in

im
al

 v
al

ue
, l

og
2
(

)

fn(x)
fn(kx)

Figure 2: Left: Composite evaluation of “almost sign” f(x) = x(2−x) function
for various n values. Right: Illustration of shrinkage of minimal input value
ϵ for increasing n with normal evaluation (blue) and aSOR method (orange).
n = 0 corresponds to the initial input with ϵ1 = 2−10.

ki. For the specific example given, the maximum criterion is achieved when
f(ϵi) = f(kiϵi) or ki = 2/(ϵi+1), as shown in Figure 3. Selecting the maximally
optimal relaxation factor for each iteration is the core idea of aSOR method.

Assuming an initial input range floor of ϵ1 = 2−10, and considering n itera-
tions to evaluate the function f , Figure 2 (Right) demonstrated the accelerated
input range shrinkage achieved by the aSOR method in comparison to nor-
mal evaluation. As can be observed, the difference between the two methods
increases naturally with larger values of n.

We can now formalize the aSOR method and the necessary conditions for
any iterative function f .

Definition 1 (Fixed point) Given a function f , a fixed point is the “conver-
gence point” of the iterative evaluation for f which can be achieved by xfp =
limn→∞ fn(x) for some small but finite ε > |x− xfp|.

Definition 2 (Attraction basin) Given a function f , the attraction basin is
defined as a maximal contiguous range x ∈ [a, b] such that xfp = limn→∞ fn(x)
where a ≤ xfp ≤ b.

Assuming that x1 ∈ [a1, b1] ⊂ [a, b] is the expected input range at the first
iteration, it implies that the initial expected input range is strictly narrower than
the maximally allowed range (or the attraction basin). The iterative process can
be interpreted as an array of intervals,

[an, bn] ⊂ [an−1, bn−1] ⊂ · · · ⊂ [a1, b1] ⊂ [a, b],

where [ai+1, bi+1] = f([ai, bi]),

lim
n→∞

an = lim
n→∞

bn = xfp.

7

Table 1: Example of sign approximation without aSOR

i 0 1 2 3 4 5 6

xi -0.25 -0.36 -0.52 -0.71 -0.89 -0.98 -0.99

Table 2: Example of sign approximation with aSOR

i 0 1 2 3

ki - 1.51 1.28 1.06
xi -0.25 -0.54 -0.87 -0.99

As long as [kiai, kibi] ⊂ [a, b], such ki can be used without ruining the
convergence criteria. We can compare the results of the i-th iteration with and
without the relaxation factor ki as follows:

f([ai, bi]) = [ai+1, bi+1]

f([kiai, kibi]) = [a′i+1, b
′
i+1].

If [a′i+ 1, b′i+ 1] ⊂ [ai+1, bi+1], then the relaxation factor ki is considered
valid as it accelerates the convergence. Empirically, ki ≥ 1 and generally,
limn→∞ kn = 1. The aSOR method chooses an optimal ki at each iteration
such that

ki = argmax
ki

(ci+1 − c′i+1), (1)

where ci+1 = bi+1 − ai+1 and c′i+1 = b′i+1 − a′i+1 with ci+1 > c′i+1.

4 Applications of aSOR method

We will demonstrate the aSOR method using several exemplary non-linear func-
tions, including comparison, inversion, square root, and reciprocal of m-th root.
Since only additions and multiplications are available as primitive operations
in word-wise FHE schemes, non-linear functions cannot be evaluated directly.
Instead, non-linear functions are approximated via polynomials. In practice,
Goldschmidt’s division algorithm [20] and Newton-Raphson method [37] are
widely used for this purpose.

8

Figure 3: Graphical illustration of finding the optimal ki. (a) when ki = 1,
ϵi+1 = f(ϵi) < f(1) = 1. (b) when ki is chosen so that ϵi+1 = f(kϵi) < f(ki) <
1, larger ki makes ϵi+1 larger. ki is chosen too small. (c) when ki is chosen so
that ϵi+1 = f(ki) < f(kiϵi) < 1, smaller ki makes ϵi+1 larger. ki is chosen too
large. (d) when ki is chosen so that ϵi+1 = f(kiϵi) = f(ki) < 1, we can get
the largest ϵi+1 while maximally reducing the number of needed iterations. ki
is optimal.

4.1 Sign, Comparison and ReLU

For the sake of simplicity, we define a comparison function Cmp and a sign
function Sgn: for a, b ∈ R,

Cmp(a, b) =

1 if a > b

1/2 if a = b

0 if a < b

Sgn(a− b) =

1 if a > b

0 if a = b

−1 if a < b

Note that Cmp does not satisfy linearity and it can be obtained from Sgn

since

Cmp(a, b) =
Sgn(a− b) + 1

2
.

With an additional multiplication after comparison evaluation, ReLU can be
easily obtained via ReLU(x) = x · Cmp(x, 0).

9

Algorithm 1 RelaxationFactor(f, α, ϵ)

INPUT: a polynomial f(z), z ∈ [ϵ, 1], α, ϵ ∈ R ∩ [0, 1]
OUTPUT: a list of the relaxation factors

1: ϵ1 ← ϵ and i← 1
2: K ← []
3: while 1− ϵi > 2−α do
4: ki = argmaxki

[min(f(kiϵi), f(ki))]
5: append ki to K
6: ϵi+1 ← f(ki)
7: i← i+ 1
8: end while
9: return K

In [7], they constructed a set of composite polynomials to approximate the
sign function. We use

f(x) = −1

2
x3 +

3

2
x (2)

which shows the best performance within the set of polynomials in [7] when
applying the aSOR method.

The input range for the sign function is x ∈ [ϵ, 1], and the composition pro-
cess is repeated for n iterations until the convergence criteria 2−α is met. That
is, the iterative composition xi+1 = f(xi) is repeated n times until |f(xn+1) −
Sgn(x)| < 2−α. In other words, given the initial input range ϵ ≤ x1 ≤ 1 (or
equivalently for negative input −1 ≤ x1 ≤ −ϵ, as Equation 2 is an odd func-
tion), we expect the final output range to be 1 − 2−α ≤ xn+1 ≤ 1. Similar
convergence criteria will be used the rest of the non-linear functions too.

To apply the aSOR method for the sign function, we first need to pre-
calculate the relaxation factors ki with 1 ≤ i ≤ n as given in Algorithm 1.

Specifically, to get the ki for Equation 2, the maxima criteria occurs at
ki =

√
3/(ϵ2i + ϵi + 1). Next, we can immediately apply this method perform a

faster sign function as given in Algorithm 2. Numerical evaluations are given in
Table 1 and Table 2.

4.2 Inversion

Goldschmidt’s Division Algorithm Goldschmidt’s [20] division algorithm
is a well-known algorithm to perform a division operation by iterative multipli-

10

cations. More precisely, for x ∈ (0, 2) the inversion could be interpreted as,

1

x
=

1

1− (1− x)

=
1 + (1− x)

1− (1− x)2

=
(1 + (1− x))(1 + (1− x)2

1

)

1− (1− x)22

= · · ·

=
(1 + (1− x)) · · · (1 + (1− x)2

n−1

)

1− (1− x)2n
(3)

and the denominator converges to 1 for a large enough n. Thus, by computing

and multiplying
(
1 + (1− x)2

i
)
iteratively, we can approximate 1/x. The au-

thors in [10] proposed a new method for computing inversion via Goldschmidt’s
division algorithm. For x ∈ (0, 2), Equation (3) implies that an approximated
value of 1/x can be obtained by

1

x
≈

n∏
i=0

(
1 + (1− x)2

i
)

They prove that for x ∈ [2−n, 1) their construction required Θ(logα+ n) itera-
tions to converge to 1/x with an error bound of 2α.

Instead of taking their approach, we take a different formulation of Gold-
schmidt’s division algorithm. Let ai and bi be denominator and numerator after
i iterations, respectively. Then,

ai = 1− (1− x)2
i

bi =

n∏
i=0

(
1 + (1− x)2

i−1
)

and ai+1 can be re-written as

ai+1 = 1− (1− x)2
i+1

=
(
1− (1− x)2

i
)(

1 + (1− x)2
i
)

= ai(2− ai) (4)

11

Algorithm 2 Sign(x, α, ϵ)

INPUT: x ∈ [−1,−ϵ] ∪ [ϵ, 1], α, ϵ ∈ R ∩ [0, 1]
OUTPUT: an approximate value of 1 if x > 0, -1 if x < 0 and 0 otherwise

1: f ← Equation 2.
2: ϵ1 ← ϵ and i← 1
3: K ← RelaxationFactor(f, α, ϵ)
4: while 1− ϵi > 2−α do
5: ki ← i-th element of K
6: x← f(kix)
7: ϵi+1 ← f(ki)
8: i← i+ 1
9: end while

10: return x

Similarly, bi+1 becomes

bi+1 =

n∏
i=0

(
1 + (1− x)2

i+1
)

=
(
1 + (1− x)2

i
) n∏

i=0

(
1 + (1− x)2

i−1
)

= bi(2− ai).

When ai is close to 1, bi is close to 1/x. Therefore, Goldschmidt’s inver-
sion algorithm — Equation 4, for input x ∈ R can be re-expressed as evaluating
f(x) = x(2−x) iteratively. This function is similar to fn(x) used in the previous
section: both functions get through the origin (0, 0) and (1, 1) and monotoni-
cally increase for 0 ≤ x ≤ 1 and monotonically decrease for x > 1. Hence, the
relaxation factor idea can also be utilized with f(x) = x(2− x). It then follows
that,

bi+1 = kibi(2− kiai)

ai+1 = kiai(2− kiai)

where a1 = x, y1 = 1, and ki is an relaxation factor for the i-th iteration of the
composite evaluation.

This relaxation factor can also be computed by Algorithm 1. That is, once a
set of ki for particular ϵ, α are computed there is no need for repeat calculations.
This has been summarized in Algorithm 3.

4.3 Inverse Square Root and Square Root

Goldschmidt’s inverse Square Root Algorithm Goldschmidt’s inverse
square root algorithm is a numerical method achieved by iterative process. This

12

Algorithm 3 Inverse(α, ϵ, x)

INPUT: x ∈ [ϵ, 1], α, ϵ ∈ R ∩ [0, 1]
OUTPUT: an approximate value of 1/x

1: f ← z(2− z)
2: ϵ1 ← ϵ and i← 1
3: a← x
4: b← 1
5: K ← RelaxationFactor(f, α, ϵ)
6: while 1− ϵi > 2−α do
7: ki ← i-th element of K
8: b← kib(2− kia)
9: a← kia(2− kia)

10: ϵi+1 ← ki(2− ki)
11: i← i+ 1
12: end while
13: return b

algorithm utilizes composable f(x) = x(3− x)2/4 that converges to 1 for the
input range of (0, 1]. This composite function also gets through the origin (0,
0) and (1, 1) and monotonically increases for 0 ≤ x ≤ 1 and monotonically
decreases for x > 1. Therefore, aSOR is to be applied here similarly. In Al-
gorithm 1, the optimal relaxation factor ki can be achieved by finding the first
positive ki that satisfies f(kiϵi) = f(ki).

Formally, similar to the Goldschmidt’s algorithm,

1

x
=

1

a0
=

(3− a0)
2/4

a0(3− a0)2/4
=

b21
a1

= b21
(3− a1)

2/4

a1(3− a1)2/4
= b21

b22
a2

= b21b
2
2

(3− a2)
2/4

a2(3− a2)2/4
= b21b

2
2

b23
a3

= · · ·

= b21b
2
2 · · · b2n−2b

2
n−1

(3− an−1)
2/4

an−1(3− an−1)2/4

= b21b
2
2 · · · b2n−2b

2
n−1

b2n
an
≈

(
n∏
i

bi

)2

(5)

1√
x
=

n∏
i

bi (6)

When an converges to 1,
∏n

i bi converges to
1√
x
according to Equations 5 and 6.

If an converges to 1 faster via relaxation factors ki,
∏n

i bi will also converge

13

to 1√
x
. For the sake of completeness, the procedure of applying the relaxation

factor for such iterative process is given below,

1

x
=

1

a0
=

k0(3− k0a0)
2/4

k0a0(3− k0a0)2/4
=

b21
a1

= b21
k1(3− k1a1)

2/4

k1a1(3− k1a1)2/4
= b21

b22
a2

= b21b
2
2

k2(3− k2a2)
2/4

k2a2(3− k2a2)2/4
= b21b

2
2

b23
a3

= · · ·

= b21b
2
2 · · · b2n−2b

2
n−1

kn−1(3− kn−1an−1)
2/4

kn−1an−1(3− kn−1an−1)2/4

=
b21b

2
2 · · · b2n
an

≈

(
n∏
i

bi

)2

. (7)

The algorithm is given in Algorithm 4.

Goldschmidt’s Square Root Algorithm Since
√
x = x/

√
x, we can readily

reuse the previous algorithm with minimal modification as,

1√
x
=

n∏
i

bi

√
x = ai

n∏
i

bi.

The algorithm is also given in Algorithm 4, with a slight modification that b← x
for square root calculation.

4.4 Reciprocal of m-th root

Newton-Raphson Method Newton–Raphson [1] method is a root-finding
algorithm that returns approximate roots of a polynomial. Given a function
g defined over x ∈ R, and its derivative g′, we begin with a first guess y1
for the root of the function g. A better approximation for the root is y2 is

y2 = y1 − g(y1)
g′(y1)

. Geometrically, (y1, 0) is the intersection with the x-axis of the

tangent to the graph of f at (y1, g(y1)). The process is repeated as

yi+1 = yi −
g(yi)

g′(yi)
= f(yi)

until a sufficiently accurate value is reached. In this paper, we utilize such an
iterative procedure to approximate reciprocal m-th root of x, that is, x− 1

m .

14

Let g(yi) = y
− 1

m
i − x, by Newton-Raphson’s method, we have

yi+1 = yi −
g(yi)

g′(yi)
= yi

(
(m+ 1)− xymi

m

)
= f(yi). (8)

This iterative process can be repeated with a starting value of y1 = 1 to
obtain increasingly better approximations to x− 1

m . However, we cannot blindly
apply the relaxation factor yet as this function f does not pass through (1, 1)
for an arbitrary input x.

We can overcome this limitation by introducing a dummy intermediate vari-
able zi = x

1
m ·yi which changes the iterative updating rule to (from Equation 8),

x
1
m yi+1 = x

1
m yi

(
(m+ 1)− xymi

m

)
zi+1 = zi

(
(m+ 1)− zmi

m

)
= f(zi).

Here, f(x) converges to 1 for the input range of (0, 1]. This composite function
also passes the origin (0, 0) and (1, 1); monotonically increases for 0 ≤ x ≤ 1;
and monotonically decreases for x > 1. Therefore, aSOR can be applied here
similarly.

If the range of x is given as 0 < ϵ1 ≤ x ≤ 1, then x
1
m ∈ [ϵ1

1
m , 1] and

z1 ∈ [ϵ1
1
m y1, y1] as zi = x

1
m yi. If y1 = 1, then the minimum range limit of z1 is

ϵz1 = ϵ1
1
m and the maximum range limit of z1 is 1, which is similar to the sign

function with the range of [ϵz1, 1]. This enables us to use relaxation method for
the reciprocal of m-th root.

The relaxation factor ki for each i-th iteration can be computed so that
f(kiϵ

z
i) = f(ki), and yi+1 = kiyi((m+ 1)− x(kiyi)

m)/m. After n iterations of
composite polynomial, yn can be finally calculated where n is pre-determined
by α. This has been summarized in Algorithm 5.

5 Performance Analysis

Importantly, the methods described in this work are not tied to CKKS [9] or
even FHE in general. To our knowledge, CKKS happens to be the most efficient
scheme for the described aSOR method. We will briefly provide reasons on why
aSOR method could implemented efficiently with CKKS in the following section.

5.1 CKKS Scheme and Scale Adjustment

CKKS scheme [9] and its RNS variant [8] are the state-of-the-art FHE schemes
that support approximate arithmetic for addition and multiplication operations.
CKKS scheme encodes a raw data vector into a plaintext cyclotomic polynomial
and then encrypts the encoded plaintext using the RLWE (Ring Learning with
Errors) cryptosystem [32].

15

Algorithm 4 (Inverse)SquareRoot(x, α, ϵ)

INPUT: x ∈ [ϵ, 1], α, ϵ ∈ R ∩ [0, 1]
OUTPUT: an approximate value of 1/x

1: f ← z(3− z)2/4
2: ϵ1 ← ϵ and i← 1
3: a← x
4: b← x
5: b← 1 (In case of inverse square root)
6: K ← RelaxationFactor(f, α, ϵ)
7: while 1− ϵi > 2−α do
8: ki ← i-th element of K
9: b←

√
kib(3− kia)/2

10: a← kia(3− kia)
2/4

11: ϵi+1 ← ki(3− ki)
2/4

12: i← i+ 1
13: end while
14: return b

One of the main challenges of the CKKS scheme is the approximation error
that is inherent to almost every operation in the scheme [14, 26]. The CKKS
scheme introduces several sources of error including encoding, encryption, rescal-
ing, and relinearization errors. The CKKS error analysis and its impact on the
aSOR method are presented in Appendix B.

The CKKS scheme uses fixed-point arithmetic. A data vector is scaled with a
large integer, called the scaling factor ∆, and then rounded to the integer before
the encryption. When two data vectors encrypted with the CKKS scheme are
multiplied homomorphically, the scaling factors of the two are also multiplied.
This scaling factor should be reduced to the original value by using the rescaling
operation. Each encoded plaintext can be interpreted as an integer vector x,
which could also potentially overflow just like machine integers, divided by its
scale ∆. As a mental analogy, it is helpful to imagine a ciphertext as x/∆.

The scale of a ciphertext can be modified as follows:

x/∆1 × k = x/∆2.

This scale adjustment results in an efficient multiplication/division of the ci-
phertext by a scalar k, which consumes no depth and could potentially reduce
the scale at the same time. This is extremely similar to machine bit-shifting
for fast multiplication/division by the powers of two. Therefore, such multipli-
cations by a relaxation factor k can be done nearly free of computational cost,
which is why this method works so well for this particular FHE scheme.

We believe that this method has not been explored before in other fields due
to the requirement of multiplication by a constant factor k, which can sometimes
be as computationally expensive as running an additional iterative evaluation
loop.

16

Algorithm 5 ReciprocalRoot(x,m, α, ϵ)

INPUT: x ∈ [ϵ, 1], α, ϵ ∈ R ∩ [0, 1]

OUTPUT: An approximate value of x− 1
m

1: f ← z((m+ 1)− zm)/m
2: ϵ1 ← ϵ and i← 1
3: y ← 1
4: K ← RelaxationFactor(f, α, ϵ)
5: while 1− ϵi > 2−α do
6: ki ← i-th element of K
7: y ← kiy((m+ 1)− x(kiy)

m)/m
8: ϵi+1 ← ki((m+ 1)− kmi)/m
9: i← i+ 1

10: end while
11: return y

Figure 4: Comparison of the scale management of naive method and proposed
method to compute f(x) = kx2 when k = 1.5. c.c.m. : ciphertext-ciphertext
multiplication, c.p.m. : ciphertext-plaintext multiplication, a.s. : adjusting
scale r.s. : rescaling, u.s. : upscaling by 21. (a) Without scale adjustment
(b) With scale adjustment (c) With scale adjustment by pre-selected prime
modulus.

CKKS scale management becomes more involved as it is now necessary to
decide on the optimal rescaling moduli, based on the pre-calculated array of ki
values with the scale adjustment in mind. In the most optimal scenario, the
scale should be always rescaled back to the “waterline level” (defined as the
lowest scale without loss of significant bits [31]) after each iterative evaluation
to maximally suppress growth of the error bits in the ciphertexts.

Such scale adjustment might seem to come at the cost of having haphaz-
ard scales across ciphertexts. However, after performing any of the operations
discussed before, the scale could be brought back to an arbitrary level via multi-
plication by unity of the needed scale. Such upscaling when necessary has been
used before in CKKS compilers such as HECATE [31]. Ideally, our methodology
should be embedded within a CKKS circuit compiler, where the compiler would
automatically decide on the most optimal rescaling moduli to perform aSOR

17

6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

(c) Square root

Gol. sqrt
Algorithm 4

6 7 8 9 10 11 12 13
0

10

20

30

40

50
de

pt
h

(a) Sign

[9]
Algorithm 2

6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

(d) Inverse sqrt (Gol.)

Gol. inv. sqrt
Algorithm 4

6 7 8 9 10 11 12 13
0

5

10

15

20

25

(e) Inverse sqrt (NR)

NR inv. sqrt
Algorithm 5

6 7 8 9 10 11 12 13
0

3

6

9

12

15

18

(b) Inverse

[10]
Algorithm 3

Figure 5: Summary of depth results for basic non-linear functions.

optimally.
As an example, let us imagine a computation of f(x) = kx2 with k = 1.5

for the sake of compatibility of the presented algorithms but the value of k, in
principle, does not matter. Let us also assume that the scales, waterline scale,
and the rescaling moduli are all equal to 230 and the x ciphertext starts at
level 0 (assuming increasing level convention as we progress further along the
computation). Naive computation of f would require two rescaling operations
and hence at least two levels (equivalent to computing x3) as illustrated in
Figure 4 (a).

As shown in Figure 4 (b) and (c), the calculation could be carried out more
efficiently with scale adjustment via the following steps:

1. Calculate square(x) = x2: scale 260 and level 0.

2. Adjust the scale of square(x) = x2 by log2 1.5 = 0.585 to complete the
calculation of kx2: scale 260/ log2 1.5 = 259.415 and level 0 (rescaling now
would result in loss of significant bits as the result would fall below the
waterline scale).

3. Upscale by multiplication of nearest integer scale unity 260−59.00 to make
the resulting ciphertext to have the scale 260.415. Alternatively, the rescal-
ing modulus could be chosen to be around 229.415 to exactly match the
needed rescaling value — Figure 4 (b) and (c); this would be even more
efficient as we would not need perform cipher-plain multiplication.

4. Apply relinearization and rescaling: scale 230.415 and level 1.

Performing this “scale trick” not only reduces the number of rescaling op-
erations but could potentially remove one multiplication (if the next rescaling
modulus is chosen accordingly) resulting in a much more efficient calculation
overall. Additionally, if the values of k are comparably large with rescaling
moduli, this methodology could effectively “rescale” ciphertexts without explic-
itly performing the rescaling operation honestly.

18

6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

70

80

(c) Square root

Gol. sqrt
Algorithm 4

6 7 8 9 10 11 12 13
0

25

50

75

100

125

150

175

200
Ti

m
e

(s
)

(a) Sign

[9]
Algorithm 2

6 7 8 9 10 11 12 13
0

20

40

60

80

(d) Inverse sqrt (Gol.)

Gol. inv. sqrt
Algorithm 4

6 7 8 9 10 11 12 13
0

10

20

30

40

50

(e) Inverse sqrt (NR)

NR inv. sqrt
Algorithm 5

6 7 8 9 10 11 12 13
0

3

6

9

12

15

18

(b) Inverse

[10]
Algorithm 3

Figure 6: Summary of time results for basic non-linear functions.

5.2 Benchmarks of Basic Non-linear Functions

Our experiments were conducted on Linux Ubuntu 18.04.6 using AMD EPYC
7502-32 CPU.We used CKKS scheme implemented in Microsoft SEAL library [34]
with the highest polynomial degree of 217 and the initial scale ∆ = 240. In the
experiment, we compare our algorithm to the previous work using three criteria:
1) the number of iterations, 2) the required multiplicative depth, 3) the compu-
tational complexity, and 4) the computational time in encrypted state. In this
section, we will consider ϵ = 2−α to make the same precision of input and out-
put of all operations. The results are concisely summarized in Table A.1, where
Depth indicates multiplicative depth, and Complexity indicates computational
complexity. All of the metrics tend to show better improved with increasing α
value.

The baseline of our benchmarks is Cheon et al.’s works [10] and [7] as they
reviewed a large set of functions while being simple in implementation. Multi-
plicative depth benchmarks are summarized in Figure 5, and time benchmarks
are summarized in Figure 6. Complete benchmarks are given in Table A.1 to
avoid visual clutter.

Comparison Figure 5 (a) shows the multiplicative depth comparison results
for comparison function. The time in Figure 6 (a) is not amortized, i.e to
get the amortized time per ciphertext slot the time should be divided by 216.
Algorithm 2 outperforms the previous work in all metrics — Table A.1. The
multiplicative depth and the number of multiplications are both reduced, indi-
cating a no-compromises improvement. Generally, the aSOR method reduces
the computation time by about 6–9 times — Figure 6 (a).

Lee et al. [29] showed a similar performance improvement to this work, but
they focused only on the comparison function. Additionally, their work requires
sophisticated pre-calculations using dynamic programming.

Inversion Figure 5 (b) and Figure 6 (b) show that inverse operation is im-
proved in depth, time and the ratios have a tendency to increase as α increases.

19

Goldschmidt Square Root Figure 5 (c) and Figure 6 (c) show that our
method improves Goldschmidt Square Root algorithm in depth and especially
in computation time considerably; almost 4 times faster when α is 6, which
increases to about 8 times faster when α is 13.

Goldschmidt Square Root and Inverse Square Root are mostly the same
algorithm except that they have a different initialization stage (Algorithm 4).
Depth and time comparisons are given in Figure 5 (d) and Figure 6 (d).

Goldschmidt and Newton Raphson Inverse Square Root Figure 5 (e)
and Figure 6 (e) compare the performance of aSOR for Inverse Square Root op-
eration. Our method reduces the computation time significantly when applying
it to both inverse square root algorithms — 4–9 times faster.

While Goldschmidt algorithm shows the better performance in complexity,
Newton-Raphson method outperforms it in depth and time. For FHE applica-
tions, it is suggested to use Newton-Raphson method as it consumes less depth
which is very much desirable in practice — Table A.1.

5.3 Applications

The methodologies developed in this work can be readily applied to various
functions. Since word-wise FHE schemes are natively compatible with addition,
subtraction and multiplication, the importance of an efficient methodology to
perform the division operation alone (Algorithm 3) cannot be overstated. The
following subsections demonstrate the possible applications of the presented
methods in this paper.

Softmax The softmax function takes in a vector of real numbers and outputs
a valid vector of probabilities. For a vector X = (x1, . . . , xt), softmax is defined
as,

softmax(X) =
1∑t

i=i exp(xi)
(exp(x1), exp(x2), . . . , exp(xt)).

In order to approximate the exponential function, we utilized the elementary
definition of exp(x) [11] as,

exp(x) = lim
k→∞

(
1 +

x

n

)n
≃
(
1 +

x

2r

)2r
.

Next, the inverse function can be approximately computed via Goldschmidt’s
division algorithm (Algorithm 3). Almost a two-fold improvement over the
previous methodology [23] has been achieved as shown in Table 3 (3 classes,
α = 2−7, ϵ = 2−9, 2−15, 2−29 per column).

Max pooling Max pooling is a common operation typically found in convo-
lutional neural networks, which essentially reduces to computation of maximal
value among 2-dimensional array of pixels. For n distinct positive number of

20

Table 3: Summary of results for Softmax

Softmax range [−3, 3] [−5, 5] [−10, 10]

Ref [23]
Depth 17 29 46
Complexity 30 49 68

Ours
Depth 12 20 29
Complexity 20 31 34

Table 4: Summary of results for Max Pooling

Filter size 2× 2 3× 3 4× 4

Ref [11]
Depth 42 52 59
Complexity 122 217 336

Ours
Depth 27 32 36
Complexity 92 177 290

pixels (a1, a2, ..., an), the maximal value max(a1, a2, ..., an) could be calculated
using the following identity [23],

lim
k→∞

aki
ak1 + · · ·+ akn

=

{
1, if ai is maximal.
0, otherwise.

For this application k = 27, α = 2−7, ϵ = 1/255 were chosen to demonstrate
the potential improvement in both complexity and depth of the algebraic circuits
as shown in Table 4.

6 Conclusion

We propose adaptive successive over-relaxation method (aSOR). aSOR method
derives inspiration from the usual SOR method and implements adaptive (vary-
ing) relaxation factor to always have the greatest impact on the convergence.

To our knowledge, the methodology performs the best when used in tandem
with FHE schemes such as CKKS due to the fact that constant multiplications
could be performed at practically free of computational cost. We have used
SEAL library implementation of the CKKS scheme and performed our bench-
marks using various input/output precision specifications. With CKKS scheme
we find that the overall improvement of evaluation of the non-linear functions
is around 2 to 9 times in terms of execution time.

Concrete and ready-to-use evaluation algorithms are presented in detail for
sign, (inverse) square root, and negative inverse power functions. Given the to-
day’s needs for privacy preserving solutions for real-world applications in statis-
tics, machine learning and other disciplines, such ready-to-use algorithms are
crucial for usage of FHE in industrial and practical applications.

21

A Detailed benchmarks

Detailed performance metrics for all the algorithms presented in this work are
listed in Table A.1.

B CKKS error analysis

Following Section 3, the iterative operations of

f([ϵn, 1]) = [ϵn+1, 1]

could incur errors during encryption and evaluations in CKKS scheme.
We adopt the notation of some distributions from [8, 9]. For a real σ > 0,

DG(σ2) samples a vector in ZN by drawing its coefficient independently from the
discrete Gaussian distribution of variance σ2. For a positive integer h, HWT(h)
is the set of signed binary vectors in 0,±1N for which Hamming weight is exactly
h. Next, l, Bi, νi denote a level, an upper bound on the message mi, and the
noise of the encrypted message mi respectively.

Let us call Eencn , Eaddn , Emul
n , Eksn , Ersn as maximal absolute errors which could

occur during encoding and encryption, addition, multiplication, key switching
(for relinearization and rotation), and rescaling respectively during the n-th
iteration. Then, the errors can be defined as follows [9]:

Eencn = 8
√
2σN + 6σ

√
N + 16σ

√
hN

Eaddn = B1 +B2

Emul
n = ν1B2 + ν2B1 +B1B2

Eksn = B +
8√
3
Nσ

Q

P

√
l2 + 1 + (k + 1)(

√
3N +

8√
3

√
hN)

Ersn = q−1
l B +

√
3N +

8√
3

√
hN

The size of errors can be managed by choosing a proper FHE parameter set.
For convenience, let us denote En as the total error per iteration (Eencn>0 = 0).

To completely guarantee the correctness of our algorithms in this work, the
input ranges could be conservatively redefined as,

[ϵn+1, 1]→ [ϵn+1 − En, 1 + En].

This range needs to re-normalized to [ϵ, 1]-like form before proceeding with the
next iteration. To do so, this range is divided by the maximum value 1 + En,
such that [

ϵn+1 − En
1 + En

, 1

]
is the new range. We can re-define a new minimum input value as,

ϵ′n+1 =
ϵn+1 − En
1 + En

,

22

and proceed with the next n + 1-th iteration as usual. In practice and in this
work, such precautious measures are not necessary when the ϵi values are suffi-
ciently large.

References

[1] Saba Akram and Quarrat Ul Ann. “Newton Raphson method”. In: Inter-
national Journal of Scientific & Engineering Research 6.7 (2015), pp. 1748–
1752.

[2] Ahmad Al Badawi et al. “OpenFHE: Open-Source Fully Homomorphic
Encryption Library”. In: Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. WAHC’22. Los An-
geles, CA, USA: Association for Computing Machinery, 2022, pp. 53–63.
doi: 10.1145/3560827.3563379. url: https://doi.org/10.1145/
3560827.3563379.

[3] Sagarika Behera et al. “Preserving the Privacy of Medical Data using Ho-
momorphic Encryption and Prediction of Heart Disease using K-Nearest
Neighbor”. In: 2022 IEEE International Conference on Data Science and
Information System (ICDSIS). July 2022, pp. 1–6. doi: 10.1109/ICDSIS55133.
2022.9915983.

[4] Charlotte Bonte and Ilia Iliashenko. “Homomorphic String Search with
Constant Multiplicative Depth”. In: Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop. CCSW’20. Virtual
Event, USA: Association for Computing Machinery, 2020, pp. 105–117.
isbn: 9781450380843. doi: 10 . 1145 / 3411495 . 3421361. url: https :
//doi.org/10.1145/3411495.3421361.

[5] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP”. In: Advances in Cryptology - CRYPTO.
2012, pp. 868–886.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled)
fully homomorphic encryption without bootstrapping”. In: ITCS. 2012,
pp. 309–325.

[7] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. “Efficient Homo-
morphic Comparison Methods with Optimal Complexity”. In: Advances
in Cryptology - ASIACRYPT. Vol. 12492. 2020, pp. 221–256.

[8] Jung Hee Cheon et al. “A full RNS variant of approximate homomorphic
encryption”. In: Selected Areas in Cryptography–SAC 2018: 25th Inter-
national Conference, Calgary, AB, Canada, August 15–17, 2018, Revised
Selected Papers 25. Springer. 2019, pp. 347–368.

[9] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Ap-
proximate Numbers”. In: Advances in Cryptology - ASIACRYPT. 2017,
pp. 409–437.

23

[10] Jung Hee Cheon et al. “Numerical Method for Comparison on Homomor-
phically Encrypted Numbers”. In: Advances in Cryptology - ASIACRYPT.
2019, pp. 415–445.

[11] Jung Hee Cheon et al. “Numerical method for comparison on homomor-
phically encrypted numbers”. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer. 2019,
pp. 415–445.

[12] Ilaria Chillotti et al. “Faster Packed Homomorphic Operations and Ef-
ficient Circuit Bootstrapping for TFHE”. In: Advances in Cryptology –
ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham:
Springer International Publishing, 2017, pp. 377–408. isbn: 978-3-319-
70694-8.

[13] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over
the Torus”. In: J. Cryptol. 33.1 (2020), pp. 34–91.

[14] Anamaria Costache et al. On the precision loss in approximate homo-
morphic encryption. Cryptology ePrint Archive, Paper 2022/162. https:
//eprint.iacr.org/2022/162. 2022. url: https://eprint.iacr.org/
2022/162.

[15] Jr David M. Young. “Iterative methods for Solving Partial Difference
Equations of Elliptic Type”. 1950. url: https://web.ma.utexas.edu/
CNA/DMY/david_young_thesis.pdf.

[16] Nathan Dowlin et al. “CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy”. In: Proceedings of
the 33rd International Conference on International Conference on Ma-
chine Learning - Volume 48. ICML’16. New York, NY, USA: JMLR.org,
2016, pp. 201–210.

[17] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomor-
phic Encryption in Less Than a Second”. In: Advances in Cryptology -
EUROCRYPT. 2015, pp. 617–640.

[18] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Paper 2012/144. https:
//eprint.iacr.org/2012/144. 2012. url: https://eprint.iacr.org/
2012/144.

[19] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
STOC. 2009, pp. 169–178.

[20] Robert E Goldschmidt. “Applications of division by convergence”. PhD
thesis. Massachusetts Institute of Technology, 1964.

[21] Shai Halevi and Victor Shoup. “HElib: Software library for homomorphic
encryption”. http://github.com/shaih/HElib.git. 2018.

[22] Ehsan Hesamifard et al. “Privacy-preserving Machine Learning as a Ser-
vice”. In: PoPETs 2018.3 (2018), pp. 123–142.

24

[23] Seungwan Hong et al. “Secure tumor classification by shallow neural net-
work using homomorphic encryption”. In: BMC genomics 23.1 (2022),
pp. 1–19.

[24] CryptoLab Inc. HEaaN: Homomorphic Encryption for Arithmetic of Ap-
proximate Numbers. https://heaan.it/. 2022.

[25] Nikola Jovanovic et al. “Private and Reliable Neural Network Inference”.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’22. Los Angeles, CA, USA: Association
for Computing Machinery, 2022, pp. 1663–1677. isbn: 9781450394505. doi:
10.1145/3548606.3560709. url: https://doi.org/10.1145/3548606.
3560709.

[26] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. “Approximate
Homomorphic Encryption with Reduced Approximation Error”. In: Top-
ics in Cryptology – CT-RSA 2022. Ed. by Steven D. Galbraith. Cham:
Springer International Publishing, 2022, pp. 120–144. isbn: 978-3-030-
95312-6.

[27] Jongmin Kim et al. “SHARP: A Short-Word Hierarchical Accelerator for
Robust and Practical Fully Homomorphic Encryption”. In: Proceedings
of the 50th Annual International Symposium on Computer Architecture.
ISCA ’23. Orlando, FL, USA: Association for Computing Machinery, 2023.
isbn: 9798400700958. doi: 10 . 1145 / 3579371 . 3589053. url: https :
//doi.org/10.1145/3579371.3589053.

[28] Miran Kim et al. “Ultrafast homomorphic encryption models enable secure
outsourcing of genotype imputation”. In: Cell Systems 12.11 (2021), 1108–
1120.e4. issn: 2405-4712. doi: https://doi.org/10.1016/j.cels.2021.
07.010. url: https://www.sciencedirect.com/science/article/
pii/S240547122100288X.

[29] Eunsang Lee et al. “Minimax approximation of sign function by compos-
ite polynomial for homomorphic comparison”. In: IEEE Transactions on
Dependable and Secure Computing (2021).

[30] Joon-Woo Lee et al. “Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption for Deep Neural Network”. In: IEEE Access 10
(2022), pp. 30039–30054.

[31] Yongwoo Lee et al. “HECATE: Performance-Aware Scale Optimization for
Homomorphic Encryption Compiler”. In: 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 2022, pp. 193–
204. doi: 10.1109/CGO53902.2022.9741265.

[32] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices
and learning with errors over rings”. In: Advances in Cryptology - EURO-
CRYPT. 2010, pp. 1–23.

25

[33] Ahmet Can Mert et al. “Medha: Microcoded Hardware Accelerator for
computing on Encrypted Data”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2023.1 (Nov. 2022), pp. 463–500. doi:
10.46586/tches.v2023.i1.463-500. url: https://tches.iacr.org/
index.php/TCHES/article/view/9959.

[34] Microsoft. SEAL: Simple Encrypted Arithmetic Library. https://github.
com/Microsoft/SEAL. 2022.

[35] Kundan Munjal and Rekha Bhatia. “A systematic review of homomorphic
encryption and its contributions in healthcare industry”. In: Complex &
Intelligent Systems (May 2022), pp. 1–28. issn: 2199-4536. doi: 10.1007/
s40747-022-00756-z.

[36] Samanvaya Panda. Polynomial Approximation of Inverse sqrt Function
for FHE. Cryptology ePrint Archive, Paper 2022/423. 2022.

[37] J Raphson. Analysis Aequationum Universalis. London. 1690.

[38] Xuanle Ren et al. “HEDA: Multi-Attribute Unbounded Aggregation over
Homomorphically Encrypted Database”. In: Proc. VLDB Endow. 16.4
(Dec. 2022), pp. 601–614. issn: 2150-8097. doi: 10 . 14778 / 3574245 .
3574248. url: https://doi.org/10.14778/3574245.3574248.

[39] Nikola Samardzic et al. “CraterLake: A Hardware Accelerator for Effi-
cient Unbounded Computation on Encrypted Data”. In: Proceedings of the
49th Annual International Symposium on Computer Architecture. ISCA
’22. New York, New York: Association for Computing Machinery, 2022,
pp. 173–187. isbn: 9781450386104. doi: 10.1145/3470496.3527393. url:
https://doi.org/10.1145/3470496.3527393.

[40] M. Siva Sangari et al. “A Survey on Homomorphic Encryption for Finan-
cial Cryptography Workout”. en. In: Homomorphic Encryption for Fi-
nancial Cryptography: Recent Inventions and Challenges. Cham: Springer
International Publishing, 2023, pp. 13–27. isbn: 978-3-031-35535-6. doi:
10.1007/978-3-031-35535-6_2. url: https://doi.org/10.1007/978-
3-031-35535-6_2.

[41] Olamide Timothy Tawose et al. “Toward Efficient Homomorphic Encryp-
tion for Outsourced Databases through Parallel Caching”. In: Proc. ACM
Manag. Data 1.1 (May 2023). doi: 10.1145/3588920. url: https://
doi.org/10.1145/3588920.

[42] Wikipedia contributors. Successive over-relaxation — Wikipedia, The Free
Encyclopedia. https : / / en . wikipedia . org / w / index . php ? title =

Successive_over- relaxation&oldid=1109147320. [Online; accessed
26-September-2022]. 2022.

26

[43] Ahmed El-Yahyaoui and Mohamed Dafir EC-Chrif El Kettani. “Fully
Homomorphic Encryption: Searching over Encrypted Cloud Data”. In:
Proceedings of the 2nd International Conference on Big Data, Cloud and
Applications. BDCA’17. Tetouan, Morocco: Association for Computing
Machinery, 2017. isbn: 9781450348522. doi: 10.1145/3090354.3090364.
url: https://doi.org/10.1145/3090354.3090364.

[44] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data. https://github.
com/zama-ai/tfhe-rs. 2022.

27

Table A.1: Summary of benchmark results for basic non-linear functions

α 6 7 8 9 10 11 12 13

Sign algorithm as in [7]

Iterations 12 14 16 18 20 22 24 26
Depth 24 28 32 36 40 44 48 52
Complexity 24 28 32 36 40 44 48 52
Time (s) 27.0 40.7 55.9 74.0 97.0 133.0 159.0 208.0

Algorithm 2
Sign

Iterations 6 7 8 9 10 11 12 12
Depth 12 14 16 18 20 22 24 24
Complexity 12 14 16 18 20 22 24 24
Time (s) 4.4 6.3 8.5 11.7 16.0 20.2 26.9 26.9

Goldschmidt 1/x [10]

Iterations 9 10 11 12 13 14 16 16
Depth 9 10 11 12 13 14 16 16
Complexity 9 10 11 12 13 14 16 16
Time (s) 4.2 5.1 6.8 8.4 10.3 12.7 18.2 18.2

Algorithm 3
Inverse

Iterations 5 6 6 7 8 8 9 9
Depth 5 6 6 7 8 8 9 9
Complexity 5 6 6 7 8 8 9 9
Time (s) 1.2 1.8 1.8 2.5 3.3 3.3 4.4 4.4

Goldschmidt
√
x

Iterations 7 8 9 11 12 13 14 15
Depth 14 16 18 22 24 26 28 30
Complexity 14 16 18 22 24 26 28 30
Time (s) 10.4 14.7 20.0 35.2 50.9 66.0 72.0 79.0

Algorithm 4
(Inverse)SquareRoot

Iterations 4 5 5 6 6 7 7 8
Depth 8 10 10 12 12 14 14 16
Complexity 8 10 10 12 12 14 14 16
Time (s) 2.7 4.4 4.4 6.7 6.7 10.4 10.4 14.9

Goldschmidt 1/
√
x

Iterations 7 8 9 11 12 13 14 15
Depth 14 16 18 22 24 26 28 30
Complexity 14 16 18 22 24 26 28 30
Time (s) 9.9 12.9 19.1 32.2 45.7 67.0 80.0 94.0

Algorithm 4
(Inverse)SquareRoot

Iterations 4 5 5 6 6 7 7 8
Depth 8 10 10 12 12 14 14 16
Complexity 7 9 9 11 11 13 13 15
Time (s) 2.4 4.1 4.1 6.6 6.6 9.8 9.8 12.8

Newton-Raphson 1/
√
x

Iterations 6 7 8 9 11 12 13 14
Depth 12 14 16 18 22 24 26 28
Complexity 18 21 24 27 33 36 39 42
Time (s) 6.2 9.0 12.1 16.1 24.9 33.4 43.5 54.3

Algorithm 5
ReciprocalRoot

Iterations 3 4 4 5 5 6 6 7
Depth 6 8 8 10 10 12 12 14
Complexity 9 12 12 15 15 18 18 21
Time (s) 1.5 2.6 2.6 4.1 4.1 6.2 6.2 9.0

28

