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Abstract In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements
are based on two technical contributions. First, we make use of a distribution of a linear combination of
several random variables that are derived from different differentials and explain how to exploit this in
order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value
for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the
computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity.
As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly
better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on
7.5-round of 128-bit key version of Salsa20. Also, we provide improvements in the attack against the
8-round of 256-bit key version of Salsa20 and the 7-round of 128-bit key version of Salsa20.

Keywords Salsa20, Differential-Linear Cryptanalysis, Probabilistic Neutral Bits, Key recovery.

1 Introduction

Salsa20 is, as part of the eSTREAM portfolio for software, the base design for the cipher ChaCha used
in TLS and one of the most important and analyzed stream ciphers today. It was designed by Daniel J.
Bernstein in 2005 and was submitted to the ECRYPT Stream Cipher Project (eSTREAM) [3]. The cipher
was a part of the final eSTREAM portfolio in the software profile. The original design has 20 rounds.
To improve the encryption time, the designer tweaked the submissions into two round-reduced variants,
Salsa20/8 and Salsa20/12 [2]. The cipher uses a function, referred to as Salsa-core, that takes a 64-byte
(512-bit) input and produces a 64-byte (512-bit) output. The input consists of a nonce, a counter, some
constants, and the key. The key used in the encryption is either 256-bit length or 128-bit length. The
Salsa-core is an ARX design, i.e., it is based on addition, fixed-distance rotation, and XOR of 32-bit words.
We recall the details of the design in Section 2.
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Known Cryptanalysis

The cipher has been cryptanalyzed ever since it was made public. Most of the works focused on the 256-bit
key version. Below, we summarize the main cryptanalytic results on the 256 and 128-bit key versions of
Salsa20 separately.

Attacks on 256-bit key version of Salsa20

The first cryptanalysis on 256-bit key version of Salsa20 was given by P. Crowley in 2005 [7]. The attack
was on the 5-round variant of the cipher using a meet-in-the-middle approach technique with 3 rounds
in the forward direction and 2 rounds in the backward direction after guessing 160 key bits. The time
complexity of the attack was 2165. In 2006, a significantly faster attack on the 6-round Salsa20 cipher was
presented at Indocrypt by S. Fischer, W. Meier, C. Berbain, J. F. Biasse, and M. J. B. Robshaw [10].
This attack runs 4 rounds forward and 2 rounds backward after guessing 160 bits of the key. Its time
complexity is 2177. In the next year, Tsunoo et al. proposed an attack on 7-round Salsa20 by guessing 171
key bits [17]. In 2007, Aumasson et al. proposed an attack on the 8-round variant of the Salsa20 cipher by
guessing 228 key bits [1]. Technically, the main contribution of this paper was the introduction of the idea
of non-significant key bits, namely Probabilistic Neutral Bits (PNBs). The attack complexity achieved
by this technique was 2251. In 2012, this attack was improved slightly by Shi et al. [16] to 2250. After
that, Maitra, G. Paul, and W. Meier [13] provided an attack complexity of 2247.2 by improving the idea of
finding non-significant key bits. Later in [14], Maitra improved the attack complexity further and reduced
it to 2245.5. In 2016, A. R. Choudhuri and S. Maitra [6] provided a new approach to getting a multi-bit
output instead of a single bit and hence improved the attack complexity to 2244.9. Finally in 2017, Dey et
al. provided an improved analysis of finding non-significant key bits and reduced the complexity to 2243.67

[9].

Attacks on 128-bit key version of Salsa20

Compared to the main works on Salsa20 with a 256-bit key, there are relatively fewer attacks on the
128-bit key version of Salsa20. The work of Fischer et al. [10] mentioned that we can recover the 5 rounds
of 128-bit key version of Salsa20 with around 281 operations. Aumasson et al.’s work [1] also proposed
an attack on the 7-round of 128-bit key version of Salsa20 with a complexity of 2111. In 2012, Shi et al.
[16] improved this attack to 2109. Much later, in 2018, Deepthi et al. [8] provided an attack with time
complexity 2107. Till date, there has been no attack on the 128-bit key version of Salsa20 beyond 7 rounds.

Our Contribution

In this work, we significantly improve the known attacks on Salsa20. In particular, we provide the first-ever
attack on the 7.5-round of the 128-bit key version of Salsa20 in Subsection 5.1. For the Salsa20 version with
256 key bits, we produce an improved attack with complexity 2240.23. For comparison with the previous
attacks, those complexities are given in Table 1 as well.

Technically, our improvements are based on two orthogonal ideas that we combine for our new attacks.
After recalling the details of the structure of the cipher and the usual differential-linear attack approaches
on the cipher in Section 2, we discuss our findings in Section 3 and Section 4.

As our first improvement in Section 3, we propose a technique based on the linear combination of
variables derived from several differentials together to construct the differential attack.

Our second improvement stems from a better understanding of the PNBs that we present in Section 4.
We provide a mathematical study on how to optimally assign the values of the PNBs so that we can
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produce a good backward bias. While the value of the PNBs should be expected to be irrelevant, as this
is the basic idea, it turns out that this is not the case. Indeed, there is the optimal choice, and, most
intriguingly, the most natural choice of fixing the non-guessed key bits to zero is the worst possible choice.
We start by providing a simplified example in order to explain the effect more clearly. We then give a
theoretical analysis of choosing values at the PNB positions.

Finally, we apply those ideas on 128 and a 256-bit key version of Salsa20 in Section 5. For the 128-bit
key version, we produce an attack on the 7-round, which is 18 times faster than the previously existing
attack [8] and present the first attack on 7.5-round [Subsection 5.1]. For the 256-bit key version, our attack
on 8-round improves the best-known attack [9] by a factor of roughly 8 both in time and data complexity
[Subsection 5.2].

Cipher Key-size Rounds Time Data Ref.

2128 0 Brute-force attack

2111 221 [1]

7 2109 219 [16]

128 2107 224 [8]

2102.82 228.77 [Our work]

7.5 2128 0 Brute-force attack

Salsa20 2124.22 223.06 [Our work]

2256 0 Brute-force attack

2251 231 [1]

2250 227 [16]

2247.2 230 [13]

256 8 2245.5 296 [14]

2244.9 296 [6]

2243.7 230.86 [9]

2240.62 227.56 [Our work]

Table 1: Known Full Key Recovery Attacks.

2 Details of Salsa20

Salsa20 is an ARX cipher. The detailed structure and the use of various tools in its design have been
discussed in [4]. Below, we discuss the structure of the 256-bit and 128-bit key versions of the Salsa20
cipher.

2.1 Design

The cipher is represented in a 4 × 4 matrix form consisting of 16 words, where each word is 32 bits.
The 256-bit key version of cipher takes 8 key words (k0, k1, . . . , k7), 4 constants words (c0, c1, c2, c3), 2
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IV words (t0, t1) and 2 counter words (v0, v1) as input and generates a 512-bit output. The constant
words (c0, c1, c2, c3) for 256-bit key version have fixed value as: c0 = 0x61707865, c1 = 0x3320646e, c2 =
0x79622d32, c3 = 0x6b206574. In case of 128-bit key version the 8 key words (k0, k1, . . . , k7) are taken
as ki+4 = ki, ∀ 0 ≤ i ≤ 3. The constant words (c0, c1, c2, c3) for 128-bit key version are slightly different
from 256-bit key version and are given as: c0 = 0x61707865, c1 = 0x3120646e, c2 = 0x79622d36, c3 =
0x6b206574. The state matrix form of the Salsa20 is given by:

X =


X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 .

In the Salsa20 cipher algorithm, the function operated in each round is a nonlinear operation which
transforms a vector (a, b, c, d) into (a′, b′, c′, d′) by performing the ⊕,⊞ and ≪ operation for each round.
Here, ⊕ denotes XOR operation between the bits, ⊞ is the addition modulo 232, ≪ is left cyclic rotation
operation.

b′ = b⊕ ((a⊞ d) ≪ 7),

c′ = c⊕ ((b′ ⊞ a) ≪ 9),

d′ = d⊕ ((c′ ⊞ b′) ≪ 13),

a′ = a⊕ ((d′ ⊞ c′) ≪ 18).

(1)

a b c d

+

+

+

+

⊕

⊕

⊕

⊕

≪ 7

≪ 9

≪ 13

≪ 18

a′ b′ c′ d′

Fig. 1: Quaterround Function in Salsa20.
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This function described in Equation 1 is known as the quarterround function. This function is applied
to each column and row of the matrix X. The application of this function along columns is known
as column-round. The ordering of (a, b, c, d) along the columns is (X0, X4, X8, X12), (X5, X9, X13, X1),
(X10, X14, X2, X6) and (X15, X3, X7, X11). After columns the quarterround function is operated along the
rows called row-round. The ordering along the rows is (X0, X1, X2, X3), (X5, X6, X7, X4), (X10, X11, X8, X9)
and (X15, X12, X13, X14). In the Salsa20 cipher algorithm, if the quarterround function is performed on X
matrix up to n rounds, then we denote the obtained matrix by X(n). The final output matrix is denoted
by Z and achieved by the addition of input matrix X and iterated matrix X(n), i.e., Z = X +X(n). The
quarterround function is reversible and known as the reverse quarterround function. This function is used
to obtain the relation between the intermediate state and ciphertext by operating in the reverse direction.
The detailed design of the Salsa20 cipher is described in [3] and [4].

Notation Meaning

X The state matrix of the cipher consisting of 16 words

X(0) Initial state matrix

∆X
(r)
i [j] XOR difference after r-th round of the j-th bit of the i-th word of two states X and X′

ID Column Column which includes the input difference

ϵd′ Denotes the bias obtained after r1 rounds in forward direction

ϵl Denotes the bias obtained on linear approximation in forward direction

γl Denotes the bias of the event ∆M̃p[q] = ∆X
(r)
p [q]

X̃ State obtained by assigning values to the PNBs in the initial state matrix X

Z Key stream block obtained by xoring X and Xn

α Parameter for finding significance level in Neyman-Pearson lemma

Table 2: List of Notations.

2.2 General Attack Procedure

Differential and linear cryptanalysis techniques are the two major attack techniques applied to symmetric
ciphers. The differential cryptanalysis was introduced by Biham and Shamir in 1990 [5] for cryptanalysis
of DES-like cryptosystems. Linear cryptanalysis was first applied to FEAL-cipher by Matsui in 1992 [15].
Later, Martin Hellman and Susan K. Langford gave a combination of both attacks as Differential-Linear
cryptanalysis [12] in 1994. This attack technique is widely used for cryptanalysis of symmetric ciphers.

At first, we explain the differential and linear attacks. A differential attack is a chosen plaintext attack.
In this attack procedure, we introduce a change in the input of the cipher and observe the corresponding
change in the output. For example, if we consider a plaintext Pt, we construct P

′
t by introducing a difference

in it. Now, we observe the output of the cipher for both these inputs. Let us assume the outputs are Ct

and C ′
t, respectively. We observe the correlation between the two ciphertexts Ct and C ′

t, which in turn is
used to find out the key. In a linear attack, a linear relation is constructed between plaintext, ciphertext,
and key with high bias. The attacker then uses these relations together with known plaintext-ciphertext
pairs to find the key.
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These two attack procedures together form the differential-linear attack. In Differential-Linear crypt-
analysis, the cipher E is divided into subciphers E1 and E2. The input differential exists in the first
subcipher E1 and linear approximation in the second subcipher E2. The combination of these two attacks
on E2 ◦ E1 is the differential-linear analysis.

Let us take an initial state matrix X and give an input difference at the j-th bit of the i-th word to
get another state matrix X ′. The input difference matrix for the two initial matrices X and X ′ is defined
as ∆X = X ⊕X ′. To introduce a difference at a single-bit position in the matrix, let us define a matrix
DID as shown below:

DID =

 1 j-th bit of the i-th word

0 otherwise.

For example, if the difference is introduced at the 0-th bit of the 7-th word, then the matrix DID is
written as:

DID =



0 0 0 0

0 0 0 0x00000001

0 0 0 0

0 0 0 0


.

The output differential between two states is observed after r1-rounds. We choose a particular bit of both
the matrices as the position of the output differential. Let the bit be the q-th bit of the p-th word. We

denote it by X
(r1)
p [q]. Let ∆X

(r1)
p [q] = X

(r1)
p [q]⊕X

′(r1)
p [q] denotes the difference observed between the two

states. If a good bias is observed for this after r1-rounds, we will use these state matrices to attack the
ciphers. The bias is denoted by ϵ′d and is defined as:

Pr
[
∆X(r1)

p [q] = 0|∆X = DID

]
=

1

2
(1 + ϵ′d), (2)

After the differential part we extend this differential by r2-rounds with the help of a linear combination

of bits

(⊕
i

X
(r)
pi [qi]

)
and observed the output at r = (r1 + r2)-th round. ϵl denotes the bias for linear

approximation. The linear approximation works in a similar manner for both X and X ′ states. The
differential-linear bias after r = (r1 + r2)-rounds is given as ϵd = ϵ′dϵ

2
l . The bias is also known as forward

bias, and the probability is given as:

Pr

[(⊕
i

∆X(r)
pi

[qi]

)
= 0|∆X = DID

]
=

1

2
(1 + ϵd). (3)
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E1

E2

F

X(0) ⊕X
′(0) = ∆X

∆X(r)[q]

X(n), X
′(n)

guess k; compute F−1

Fig. 2: General Overview of the Attack.

Finding Probabilistic Neutral Bits

Next, we explain the probabilistic neutral bits (also called non-significant key bits) and the procedure of
finding those bits. Using this procedure, we partition the key bits into significant key bits and non-significant
key bits. Non-significant key bits are those which influence the output difference bit with low probability.
The aim of partitioning the key bits is that, instead of searching over all 2256 feasible possibilities of the
key bits (for 256 bit key), if, for example, m bits are significant and the remaining (256 −m) bits are
non-significant. At first, we aim to search the m significant bits only. As a result, the maximum number of
guesses is reduced to 2m. Once we achieve these bits, we can find the remaining bits by exhaustive search.

Let us define the non-significant bits or PNBs formally. For an initial state matrix X, after introducing a
suitable non-zero input difference (ID), we get another stateX ′. RunningX,X ′ for r-rounds (1 ⩽ r < n) we

observe the output difference (OD) at position (p, q), i.e.,∆X
(r)
p [q]. The bias is given by ϵd. After completing

the n-rounds, we obtain the final state X(n) and X ′(n), which are operated with the respective initial
states X and X ′ to obtain keystream blocks Z and Z ′. Considering Figure 2, we get X(r) = F−1(Z −X)
and X ′(r) = F−1(Z ′ −X ′).

In the procedure of finding the PNB, we will alter one key bit, say l, among the total key bits (128 or 256)
in the initial states X and X ′. X̄ and X̄ ′ are the new altered states. We apply the reverse round function
on Z − X̄ and Z ′ − X̄ ′ by (n− r)-rounds and obtain the state matrices M̄ and M̄ ′ i.e., M̄ = F−1(Z − X̄)

and M̄ ′ = F−1(Z ′ − X̄ ′). For a non-significant bit, the probability of the event ∆M̄p[q] = ∆X
(r)
p [q] is

expected to be high. We denote γl to be the bias of this event, i.e.,

Pr
v,t

[
∆X(r)

p [q]⊕∆M̄p[q] = 0|∆X = DID

]
=

1

2
(1 + γl). (4)

To construct the set of PNBs, in the work of [1], at first a threshold γ is chosen. Each of the key bits for
which γi ≥ γ are considered to be probabilistically neutral.
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Attack Idea and Complexity

In the attack procedure, for finding the complete key, we will assign arbitrary values to these PNBs and
fix guessed values to the significant-key bits in the initial states X and X ′. The newly obtained states are
X̃ and X̃ ′. Now we apply reverse round function on Z − X̃ and Z ′ − X̃ ′ and obtain state matrices M̃ and

M̃ ′, i.e., M̃ = F−1(Z − X̃) and M̃ ′ = F−1(Z ′ − X̃ ′). Prv,t

[
∆M̃p[q] = 0|∆X = DID

]
= 1

2 (1 + ϵ̃). If ϵ̃ has

a higher value, then the guessed values of the significant-key bits are correct. A pictorial overview is given
in Figure 2. To perform the attack, the following steps are done:

1. N pairs of keystream blocks are collected for each guessed key.
2. For every significant key bit, we compute the bias of output differential using the N pairs. Then, we

compute an exhaustive search among the remaining keys to detect the non-significant keys.

If (∆M̃p[q] = ∆X
(r)
p [q]) with high probability we obtain a good bias. The bias observed is called

backward bias and is denoted by ϵa.
For 2m possible guesses of the significant subkey, only one guess is correct. Let us consider the null

hypothesis and alternative hypothesis as follows:
H0 : the selected guess is not correct.
H1 : the selected variable is correct.
So 2m − 1 guesses satisfy H0, and only one guess satisfies H1. The two possible errors are as follows:

1. Error of Non-detection: In this selected variable is correct, but it is not detected. The probability of
this event is Prend

.
2. Error of False Alarm: In this, an incorrect variable is chosen because it gives significant bias. The

probability of the event is Prefa
.

Using the Neyman-Pearson lemma, for Prefa
= 2−α and Prend

= 1.3 × 10−3, required number of
samples N to achieve a bound on these probabilities is

N ≈

(√
α log 4 + 3

√
1− ϵ2aϵd

2

ϵaϵd

)2

.

The complexity of the attack is given by the equation

2m
(
N + 2(256−m)Prefa

)
= 2mN + 2(256−α). (5)

3 Exploiting Linear Combination of Random Variables Generated from Distinguishers to
Reduce the Attack Complexity

In our idea, the primary requirement is that there must be multiple ID positions that produce a good bias
after the r-th round at the same output difference position. Suppose there are k such ID positions, and
we denote them by ID1, ID2, · · · IDi, · · · IDk. By OD, we denote the bit/combination of bits where we
observe the output difference. The corresponding biases for ID1, ID2, · · · IDi, · · · IDk are ϵ1, ϵ2, · · · ϵi, · · · ϵk
respectively. This means,

Pr(∆XOD = 0|∆XIDi
= DID) =

1

2
(1 + ϵi).

In the usual attack, we have N pairs of initial states X,X ′, from which we generate N pairs of output
keystream Z,Z ′. In our new approach, since we exploit k Input Difference positions separately, and for
each of them, we need N pairs of initial states X,X ′.
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Now, for each (IDi), we have a sample of N state pairs (X,X ′) with the input difference at IDi. The
set of (X,X ′) pairs corresponding to IDi is denoted by Ii. Let us define k variables Y1, Y2, · · ·Yk as follows

Yi = {(X,X ′) ∈ Ii : ∆XOD = 0}.

Each Yi denotes the number of pairs in Ii for which ∆XOD = 0 out of the N pairs with input difference at
IDi. Clearly, each of the Yi’s follows a binomial distribution with N trials with Pr(success) = 1

2 (1 + ϵdi
).

To exploit all the k distinguishers, we define a new variable Ycipher = a1Y1 + a2Y2 + · · ·+ akYk, where an’s
are some constants. We assign the values of these constants later.

Attack Procedure

Here, we use the bias of Ycipher = a1Y1+ a2Y2+ · · ·+ akYk as our distinguisher. Now, to produce an attack
from this, we use the usual procedure where for each X and X ′, we assign some constant values to the PNBs
and aim to guess the significant bits correctly. Please note that since the output difference position is the
same for each IDi, the set of PNBs are also the same. From the output keystream Z,Z ′, we compute Z−X̃
and Z ′ − X̃ ′, run the reverse algorithm and observe the difference at the desired output difference position
(OD). Suppose Ỹi (i ∈ {1, 2, . . . k}) be the variables corresponding to the IDi’s which count the number of
pairs for which the difference is 0. Now, we consider the variable Ỹcipher = a1Ỹ1 + a2Ỹ2 + · · ·+ akỸk. If
this value is higher than some predetermined threshold T , we conclude that the guess of the significant
bits is correct.

3.1 Complexity Computation

We have to distinguish the Normal distribution Ỹ from the distribution generated from random output.
Each Ỹi follows a binomial distribution. Suppose the probability is 1

2 (1 + ϵi). Then, since the backward

bias is ϵa, we express ϵi as ϵdi
.ϵa. We approximate the distribution of Ỹi by the Normal Distribution with

parameters

E(Ỹi) =
N

2
(1 + ϵi) and σỸi

=

√
V ar(Ỹi) =

√
N

4
(1 + ϵi)(1− ϵi).

From the distribution of a linear combination of some independent normal random variables, we know
that Ỹcipher is a Normal distribution with mean

µcipher =
N

2

(
k∑

i=1

ai(1 + ϵi)

)
and σcipher =

√√√√ k∑
i=1

a2iσ
2
Ỹi
.

Suppose we denote the distribution generated from random output by Y0, with

µ0 =
N

2
(a1 + a2 · · ·+ ak) and σ2

0 =
N

4
(a21 + a22 · · ·+ a2k).

µ0 =
N

2

(
k∑

i=1

ai

)
and σ0 =

√
N

2


√√√√ k∑

i=1

a2i

 .

Let Y be the same linear combination with coefficients a1, a2, · · · ak of the outputs coming from a
generator. If the generator is the cipher, Y = Ỹcipher and if it is random then Y = Y0.

Let H0 : Y = Ỹcipher and H1 : Y = Y0. Let T be the threshold. We want our error probabilities to be
bounded as follows: Pr(Y ≤ T |H1) ≤ 1.3× 10−3 and Pr(Y ≥ T |H0) ≤ 2−α for some suitable α.
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False Alarm Error

Therefore, Pr(Y0 ≥ T ) should be upper bounded by 2−α. Converting to standard normal, we have:

Z =
Y0 − µ0

σ0
=

Y0 − N
2

(
k∑

i=1

ai

)
√
N
2

(√
k∑

i=1

a2i

) . (6)

So, Pr
(

Y0−µ0

σ0
≥ T−µ0

σ0

)
≤ 2−α, where Pr

(
Y0−µ0

σ0

)
is standard normal. Since, Pr(Z ≥ x) ≤ e−x2/2 for

any x, therefore we choose e
−
(

T−µ0
σ0

)2
/2

to be 2−α. This implies

(
T − µ0

σ0

)2

= α log 4

=⇒
T − N

2

(
k∑

i=1

ai

)
√
N
2

(√
k∑

i=1

a2i

) =
√
α log 4. (7)

Non-Detection Error

So, after converting Ycipher to standard normal, we have:

Z =
Ycipher − µcipher

σcipher
=

Ycipher − N
2

(
k∑

i=1

ai(1 + ϵi)

)
√
N
2

(√
k∑

i=1

a2i (1− ϵ2i )

) .

Now, the non-detection error probability is restricted to 1.3× 10−3. So, Pr (Ycipher ≤ T ) ≤ 1.3× 10−3.

Since Pr(Z ≤ −3) = 1.3× 10−3, therefore
T − N

2

(
k∑

i=1

ai(1 + ϵi)

)
√
N
2

(√
k∑

i=1

a2i (1− ϵ2i )

)
 = −3 (8)

From this, we want to find the value of the L.H.S of Equation 7. Then, equating the two R.H.S will give
us an expression for N . So, from Equation 8, we get

T − N

2

(
k∑

i=1

ai

)
= −3×

√
N

2


√√√√ k∑

i=1

a2i (1− ϵ2i )

+
N

2

(
k∑

i=1

aiϵi

)
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=⇒
T − N

2

(
k∑

i=1

ai

)
√
N
2

(√
k∑

i=1

a2i

) =
√
N


k∑

i=1

aiϵi√
k∑

i=1

a2i

− 3×


√√√√√√√√

k∑
i=1

a2i (1− ϵ2i )

k∑
i=1

a2i


=

√
N ·A− 3B. (9)

For simplification, we use the notations A =

 k∑
i=1

aiϵi√
k∑

i=1
a2
i

 and B =


√√√√√ k∑

i=1
a2
i (1−ϵ2i )

k∑
i=1

a2
i

. This gives a

relation between T and N .

Formulation of N

We equate the R.H.S. of Equation 7 with Equation 9, and get the following:

√
α log 4 =

√
N ·A− 3B

=⇒
√
N ·A =

√
α log 4 + 3B

=⇒ N =

(√
α log 4 + 3B

A

)2

. (10)

Since ϵi’s are biases, those are fractions between 0 and 1. In order to reduce the value of N , we have to
choose ai’s in such a way that the denominator A increases. So, we aim to maximize the function.

A(a1, a2, · · · , ak) =


k∑

i=1

aiϵi√
k∑

i=1

a2i

 . (11)

Cauchy-Schwarz Inequality states that for all real numbers ui and vi we have(
k∑

i=1

uivi

)
≤


√√√√ k∑

i=1

u2
i


√√√√ k∑

i=1

v2i

 .

(
k∑

i=1

uivi

)
(√

k∑
i=1

u2
i

) ≤


√√√√ k∑

i=1

v2i

 . (12)

We know equality holds if and only if ui

vi
= h, ∀ 1 ≤ i ≤ k, for some constant h ∈ R+.

If we replace the values of ui and vi in the Equation 12 with ai and ϵi, respectively, we find that k∑
i=1

aiϵi√
k∑

i=1
a2
i

 ≤

(√
k∑

i=1

ϵ2i

)
and equality holds if and only if ai

ϵi
= h, ∀ 1 ≤ i ≤ k, for some constant h ∈ R+.

11



Hence the maximum value of A =

 k∑
i=1

aiϵi√
k∑

i=1
a2
i

is

(√
k∑

i=1

ϵ2i

)
, where all ϵi’s are constant. This maximum

value of A is attained if and only if ai

ϵi
= h, ∀ 1 ≤ i ≤ k, for some constant h ∈ R+.

Therefore, value of N will be minimum if ai

ϵi
= h, ∀ 1 ≤ i ≤ k, for some constant h ∈ R+. In particular,

if we take h = 1 i.e., ai = ϵi ∀ 1 ≤ i ≤ k, the value of N is given by

N =



√
α log 4 + 3×


√√√√√1−

k∑
i=1

ϵ4i

k∑
i=1

ϵ2i


(√

k∑
i=1

ϵ2i

)


2

. (13)

Using this value of N , we can reduce the value of complexity given in Equation 5.

3.2 Generation of Samples for Each ID

In our new approach, since we exploit k Input Difference positions separately, and for each of them, we
need N pairs of initial states X and X ′, apparently, the data complexity should be kN . But, in our
technique, we will use the same initial states in multiple IDs. Let X be a random state. Suppose, for each
of i = 1, 2, · · · k, ei ∈ {0, 1} and X(e1,e2,···ek) denotes the state where ei is the value at the position IDi,
and the remaining bits are same as X. For example, X(0,0,···0) is the matrix where the values at all the

ID positions are 0, and the remaining are the same as X. So, X(e1,e2,···ek) can be 2k different possible
states, out of which X itself is one. Let S be the set of all such X(e1,e2,···ek). Let us assume that we have
the output keystreams corresponding to each of these X(e1,e2,···ek), and are denoted by Z(e1,e2,···ek).

Now, let us consider the input difference at ID1. For all possible values of e2, e3 · · · ek, X = X(0,e2,··· ,ek)
and X ′ = X(1,e2,··· ,ek) forms a pair with the difference at ID1. Therefore, we can form 2k−1 such pairs.

For any other input difference, say IDi, we can similarly form 2k−1 such X,X ′ pairs from the same set S.
Therefore, if we only have the encryption corresponding to the 2k possible X(e1,e2,···ek) matrices, for each

of the ID positions, we can actually achieve 2k−1 pairs of X,X ′ and their corresponding (Z,Z ′). Even for
input difference at two positions simultaneously, we can achieve 2k−1 such pairs. So, to achieve N pairs of
matrices for each ID, we follow the following procedure: We choose N

2k−1 randomly chosen initial states.

For each of them, we form the set SX of 2k possible matrices X(e1,e2,···ek). We find the encryption of all

these N
2k−1 × 2k = 2N matrices. Since each SX produces 2k−1 pairs for each ID, we will achieve N pairs

in total for each of the IDs. Since we have to encrypt 2N matrices in total, the data complexity is N .

4 Analysing the PNBs and Choice of Assigned Vectors

For a general discussion, let us denote the function computing from the ciphertext backward by f . This
function takes as input a ciphertext (or a pair of ciphertexts) and a key guess to compute the internal
state that serves as a distinguisher.

f : Fn
2 × Fκ

2 → F2

12



(x, k) 7→ f(x, k)

Now, the hope is that one can compute this function f without actually having knowledge of all key
bits. The easiest case is if the function f is independent of some bits of k. This can be captured by the
notion of linear structures. A Boolean function g has a linear structure β for a non-zero vector β ∈ Fn

2 if

g(x) + g(x+ β) = 0

for all x. In the case where β is a vector in the canonical basis, this corresponds to being independent of a
bit. The set of all linear-structures

L(g) = {β ∈ Fn
2 | β is a linear structure}

actually forms a vector space. In the case of f as above, if f is independent of the first bit of k and the
second bit of k, it is also independent of both bits.

We now split the key into two parts: the (probabilistic) independent bits or vector space and a
complement for it. That is, now f takes three inputs: the ciphertext, the significant part of the key ks,
and the neutral part of the key kn.

f : Fn
2 × Fκ1

2 × Fκ2
2 → F2

(x, ks, kn) 7→ f(x, k).

In the case of linear-structures, it holds that

f(x, ks, kn) = f(x, ks, 0)

for all ciphertexts x and keys ks. That translates to the obvious strategy to set the insignificant, neutral
bits to zero and only guess the significant part. Setting to any other value than zero clearly does not make
any difference, simply due to the definition of a linear structure.

However, the situation changes if the bits are not neutral but only probabilistic neural bits.

4.1 Detecting Probabilistic Neutral Subspaces

In order to detect a subspace of the key space that does not have to be guessed, one usually relies on
detecting probabilistic neutral bits in the first step. Here, one computes

∆(βi) = |{x | f(x, k) + f(x, k + βi) = 0}|
for all the standard unit vectors βi ∈ Fκ

2 . All the ones that are above a certain threshold are collected
into the set of probabilistic neutral bits, and the key space is decomposed into this space (dimension κ2)
and a space of the significant bits (dimensions κ1).

Now, for a given key (ks, kn) and a fixed vector β ∈ Fκ2
2 we hope that

f(x, ks, β) = f(x, ks, kn)

with good probability. That is

T (ks, kn, β) = |{x ∈ Fn
2 | f(x, ks, β) = f(x, ks, kn)}|

should be close to 2n.
What is (usually experimentally) computed is the average of those counters, averaged over all keys and

all fixed constants. This corresponds to the backward bias that is then taken into account when computing
the complexity of the entire attack. Note that there is no general way to deduce the value of the backward
bias given the thresholds ∆(βi) as those thresholds simply do not provide the full picture of what happens
if more than a single bit is flipped.

13



Value of Assigned Vector (β) Matters

As we do not know and have no control over ks and kn, it makes sense to consider the average over all
keys, i.e., consider

C(β) =
∑
ks,kn

T (ks, kn, β).

However, even so, the constants β should not have a strong influence (as otherwise, they are not probabilistic
neutral); it is not clear that

C(β) = C(0)

that is, it might well be that fixing to other constants than zero for computing backward might be
beneficial for the attacker.

Example: Consider the following example, where x, k are 8-bit numbers, the addition operation is
modulo 28, and we are interested in computing the most significant bit of y.

x k

+

⊕ ≪ 4

y

Fig. 3: Function f(x, k).

Here f corresponds to the function

f(x, k) = ((x+ k)⊕ ((x+ k) ≪ 4)) [7] (14)

Bit no. (ki) 0 1 2 3 4 5 6 7

Bias 0.765 0.531 0.062 -0.875 0.750 0.500 0.000 -1.000

Table 3: Bias Observed for the Function f(x, k) for Each Bit ki.
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In the above experiment, we choose three bits {0, 1, 4} as PNBs. For these three bits, we express
β = (k0, k1, k4) ∈ F3

2 in decimal form and their corresponding backward bias in Table 4.

β 0 1 2 3 4 5 6 7

Backward Bias 0.57 0.57 0.66 0.66 0.66 0.66 0.57 0.57

Table 4: Backward Bias Observed for Different Assigned Vectors β for the PNBs k0, k1, k4.

4.2 Improving the Backward Bias by Proper Choice of Assigned Vector

We observe that the PNBs are located in the form of blocks, i.e., collections of consecutive bits. For example,
the PNB set for the 8-round of 256-bit key version of Salsa20 has many PNB set blocks, which we observe in
the list given in subsection 5.2. As examples, {25, 26, 27, 28, 29, 30, 31} and {164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174, 175, 176} are two blocks. The first block is of size 7 at X0 from X0[26] to X0[31]. Similarly,
the second block is of size 13 at X6 from X6[4] to X6[16]. We decompose the subspace ks in the form of
subspaces ksi , where each ksi corresponds to a block. Now, consider one such block of PNBs of size b at
Xi from Xi[j] to Xi[j + b− 1].

In our attack, after assigning the vector β at the PNBs, we compute Z − X̃ and Z ′ − X̃ ′. From
Subsection 2.2 we know that M̃ = F−1(Z − X̃) and X(r) = F−1(Z −X). Therefore, in order to get a
good backward bias, we aim to find out how closely Z − X̃ replicates Z −X. In simple words, the more
the number of bits of Z −X matches with Z − X̃, the more is the backward bias. During the subtraction
Z − X̃, the difference between X and X̃ can also propagate to the bit at the position j + b and onwards of
Z − X̃ due to carry-propagation. Now, we observe that this probability of propagation varies based on the
assigned values at the PNBs. So, if the assigned values at X̃[j] · · · X̃[j + b− 1] can be chosen in such a
way that the probability of this propagation can be reduced, we achieve a higher backward bias. We next
analyze how the values can be chosen so that this probability of propagation is minimal.

Which Values of β Minimizes the Probability of Propagation

For each of Zi, Xi and X̃i, if we consider the PNB block from j to j + b− 1 bit, each of them is a number
between 0 to 2b − 1. Let us denote them z, kn and β respectively. From attackers perspective, z and kn
are unknown, and β is decided by him/her. We aim to find which value of β would be most suitable. The
difference between Z −X and Z − X̃ would propagate to j + b-th bit if either kn > z ≥ β or β > z ≥ kn.

Theorem 1 Let for some β ∈ {0, 1, 2, · · · 2b − 1}, Sβ={(x, z): either x > z ≥ β or β > z ≥ x}. Then |Sβ |
is minimum if β = 2b−1 − 1 or β = 2b−1, and maximum if β = 0 or 2b − 1.

Proof. Possible values of (x, z) such that x > z ≥ β is 2b−βC2, since x, z can be any integer in the range
[β, 2b − 1]. Similarly, possible values of (x, z) such that β > z > x is βC2, and possible values such that
β > z = x is β. Therefore,

|Sβ | = 2b−βC2 +
βC2 + β =

(2b − β)!

(2!)(2b − β − 2)!
+

β!

(2!)(β − 2)!
+ β

=
(2b − β)(2b − β − 1)

2!
+

β(β − 1)

2!
+ β
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=
(2b − β)(2b − β − 1) + β(β − 1) + 2β

2

=
22b − β × 2b − 2b(β + 1) + β(β + 1) + β(β − 1) + 2β

2

=
22b − 2β × 2b − 2b + 2β2 + 2β

2

= 22b−1 − 2b × β − 2b−1 + β2 + β.

We aim to find the value of β for which |Sβ | is minimum. For this, we can write it as:

|Sβ | = 22b−1 − 2b−1 + β2 − (2b − 1)× β

= 22b−1 − 2b−1 + β2 − 2β ×
(
2b − 1

2

)
+

(
2b − 1

2

)2

−
(
2b − 1

2

)2

= 22b−1 − 2b−1 −
(
2b − 1

2

)2

+

(
β − 2b−1 +

1

2

)2

.

The term (β − 2b−1 + 1
2 )

2 is non-negative. Since β is an integer, (β − 2b−1 + 1
2 )

2 gives minimum value

either at β = 2(b−1) − 1 or at β = 2b−1, and at both of them (β − 2b−1 + 1
2 )

2 = 1
4 . So, in both these cases,

we get g(2(b−1) − 1) = 22(b−1) and g(2b−1) = 22(b−1). Similarly, to find the β for which |Sβ | is maximum,

we focus on the term
(
β − 2b−1 + 1

2

)2
. It gives the maximum value when β = 0 or 2b − 1. ■

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Fig. 4: Graphical Representation of the Backward Biases for Different Values of β for the PNBs
{13, 14, 15, 16}.
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Observation for 7-round 128-bit key version of Salsa20

We experiment on a set of four consecutive PNBs {13, 14, 15, 16} for 7 round 128-bit key version of Salsa20
from the PNB set given in Section 5.1. We know that there can be 24 possible values of this PNB set, i.e.,
{0, 1, 2, · · · 15}. For each of these values, we will find the value of ϵa (backward bias). We observe that we
got a maximum backward bias for the values 7, 8 and a minimum backward bias at 0, 15. In this case b=4,
hence from above theorem |Sβ | is minimum at β = (2b−1 − 1) = (23 − 1) = 7 or β = 2b−1 = 23 = 8.

5 Attacks on Salsa20

We exploit 6 single-bit differentials and 7 two-bit differentials in our attack, which are given in Table 5.

We use the linear combination of the output differences at the positions X
(5)
9 [0]⊕X

(5)
1 [13]⊕X

(5)
13 [0] at the

5th round. For the 128-bit key version, we assign the IVs randomly since there are a significant number of
key bits in the input difference column.

i ID Bias (ϵdi
)

Chosen IV Random IV
1 (7, 0) -0.2334 -0.1147

2 (7, 1) 0.0876 0.0334

3 (7, 7) -0.0970 -0.0459

4 (7, 18) 0.0914 0.0449

5 (7, 20) -0.0882 - 0.0442

6 (7, 30) 0.2194 0.0542

7 (7, 0), (7, 1) -0.103 -0.0568

8 (7, 0), (7, 18) -0.062 -0.0171

9 (7, 0), (7, 20) 0.095 0.0293

10 (7, 0), (7, 30) -0.131 -0.0178

11 (7, 1), (7, 20) -0.133 -0.0244

12 (7, 1), (7, 30) 0.072 0.0077

13 (7, 7), (7, 30) -0.060 -0.0080

Table 5: Biases Observed at the OD X
(5)
9 [0]⊕X

(5)
1 [13]⊕X

(5)
13 [0] for Different ID Positions.

5.1 128-bit key version of Salsa20

Attack on 7-round

Using the PNB procedure after assigning threshold γ = 0.17 we achieve 53 PNBs, if we assign γ = 0.14 we
get 2 more PNBs {40, 58}. We get the best result if we add only {40} as a PNB along with the first 53
PNBs. The list is given below:
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{0, 1, 13, 14, 15, 16, 19, 20, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 57, 62, 63, 64, 76, 77, 78,
84, 85, 86, 87, 88, 89, 90, 91, 96, 97, 101, 107, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127}.

Complexity: For these 54 PNBs we have the backward bias ϵa = 0.0026. For calculating the value of N
we use Equation 13. In these equations ϵi is the product of ϵa and ϵdi

, i.e., ϵi = ϵdi
∗ ϵa ∀ 0 ≤ i ≤ 13. All

the values of ϵdi
are mentioned in Table 5. For α = 30, Equation 13 gives N = 228.77 and from Equation 5

we have time complexity as 2102.82.

Attack on 7.5-round

For finding the first-ever set of PNBs for 7.5 rounds of Salsa20, we use the PNB procedure. We assign the
bias limit to be γ = 0.1 to get the 27 PNBs mentioned below. We are providing a GitHub link [11] of a C
program (‘PNB Set 7.5.c’) for finding the PNB set.

{27, 35, 36, 37, 38, 39, 44, 76, 77, 84, 85, 86, 87, 88, 89, 90, 96, 101, 119, 120, 121, 122, 123, 124,
125, 126, 127}.

Complexity: We have the backward bias ϵa = 0.122 for these 27 PNBs. Using Equation 13, we have
N = 223.06 for α = 7, and time complexity is 2124.22.

5.2 8-round of 256-bit key version of Salsa20

For the 256-bit key version of Salsa20, we use the chosen IV approach since we have only 2 key bits in
the Input Difference column. As shown in [9], we will have IVs available, which will give the minimum
difference after the first round for all possible values assigned at the PNBs. For the chosen IV approach,
the biases corresponding to each Input Difference are given in Table 5. The PNB set we use is the set used
in [9], which is given as follows:

{25, 26, 27, 28, 29, 30, 31, 39, 70, 71, 72, 107, 119, 120, 121, 122, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 209, 210, 211, 212, 213, 224, 225, 241, 242, 243, 244, 245, 246, 255}.

Complexity: Assigning the values in each block of PNBs in the form 2b−1 or 2(b−1) − 1, (b is the size of
the block), we achieve backward bias ϵa = 0.0013. This value of ϵa is multiplied by each ϵdi to get the
value of ϵi. Therefore for α = 20, we achieve N = 227.56 and the final complexity is 2240.62.

6 Conclusion

After the attack of [1], all the attacks on Salsa20 afterward provided some minor improvements in the
complexity only. None of the attack was able to find a partial or full round extension to the next round.
We propose a new direction in the approach of differential-linear attacks on Salsa20 and produce a new
attack on this cipher after 5 years. Importantly, we provided a half-round improvement in the 128-bit key
version of the cipher. We hope that this work will regain the flow of cryptanalysis of this cipher, which is
important considering the influence of the design principle of Salsa20 on future ciphers. Also, this approach
has the potential to find more applications in other ARX-based designs.
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