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Abstract. We provide a novel perspective on a long-standing challenge to the integrity
of votes cast without the supervision of a voting booth: “improper influence,” which
we define as any combination of vote buying and voter coercion. In comparison with
previous proposals, our system is the first in the literature to protect against a strong
adversary who learns all of the voter’s keys—we call this property “extreme coercion
resistance.” When keys are stolen, each voter, or their trusted agents (which we call
“hedgehogs”), may “nullify” (effectively cancel) their vote in a way that is unstoppable
and irrevocable, and such that the nullification action is forever unattributable to
that voter or their hedgehog(s). We demonstrate the security of our VoteXX system
in the universal composability model.
As in many other coercion-resistant systems, voters are authorized to vote with
public-private keys. Each voter registers their public keys with the Election Authority
(EA) in a way that convinces the EA that the voter has memorized a passphrase that
corresponds to their private keys. As a consequence, if an adversary obtains a voter’s
keys, the voter also retains a copy. Voters concerned about adversaries stealing their
private keys can themselves, or by delegating to one or more untrusted hedgehog(s),
monitor the bulletin board for malicious ballots cast with their keys, and can act to
nullify these ballots in a privacy-preserving manner with zero-knowledge proofs.
In comparison with previous proposals, our system offers some protection against
even the strongest adversary who learns all keys. Other coercion-resistant protocols
either do not address these attacks, place strong limitations on adversarial abilities,
or rely on fully trusted parties to assist voters with their keys.
Keywords: coercion resistance · high-integrity voting · voter-verifiable elections

1 Introduction
For over 150 years, the voting booth helped prevent voters from being bribed and coerced.
For example, a controlling family member might coerce a voter by observing them vote, if
votes are cast online from home or by mail. The booth, however, is becoming untenable
as information technology provides the means for people to vote more frequently and
conveniently without booths, including using combinations of mailed paper forms and
online interactions. Moreover, growing use of technology facilitates vote buying and voter
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2 Votexx

Table 1: Properties of related work for resisting improper influence in online end-to-end
(E2E) verifiable elections. Properties are fully present ( ), partially present ( ), or not
present ( ). It is best to receive for each property. Decoy ballots act indirectly against
influence ( er).
Influencer: System resists coercion when the influencer: (0) acts before/during regis-
tration; (1) colludes with the EA; (2) colludes with hardware manufactures; (3) acts at
any time; (4) learns all information stored by the voter, including all keys required by
the protocol (i.e., mitigates extreme coercion); (5) learns every action taken by the voter.
Other: (6) voter can undo coercion undetectably; (7) system is inexpensive; (8) system
has low cognitive burden; (9) system has security proof (none/game-based/UC).

0 1 2 3 4 5 6 7 8 9
Type Example Influencer Other

Baseline (coercible) Helios (2008) [Adi08]
Fake credentials JCJ (2005) [JCJ05]
Masked ballots WeBu09 (2009) [WB09]
Panic passwords Selections (2011) [CH11]
Decoy ballots RS-Voting (2012) [Cha12] er er
Secure hardware AOZZ (2015) [AOZZ15]
Re-voting (E2E) VoteAgain (2020) [LQAT20]
Hedgehogs VoteXX (2022)

coercion with electronic payments, live video streaming from voter phones, and various
types of online threats.

Three daunting challenges make Internet voting difficult: (1) The lack of a secure
physical voting precinct facilitates improper influence, including vote selling and coercion.
(2) Malware on a voter’s device (e.g., phone) might undetectably modify votes and spy
on the voter. (3) Determined adversaries might try to launch an online attack, including
causing outages. Of these challenges, the most elusive has been mitigating improper
influence.

We contribute a solution to the problem of improper influence in voting without
booths that enables any voter to “nullify” (effectively cancel) their vote in a way that
is unstoppable, irrevocable, and forever unattributable to that voter. Importantly, our
protocol can be accomplished even when an adversary gains access to all private keys
of voters. Our approach allows each voter to recruit one or more trusted agents, which
we call “hedgehogs.” The voter, or their hedgehog(s), can nullify the vote by proving
knowledge of the voter’s private key using a zero-knowledge proof (ZKP) without revealing
the private key. This paper provides details for these ideas, which we introduced in a
four-page abstract in 2022 [RED22].

Hedgehogs can be recruited before or during the election, from the voter’s acquaintances
or using a service selected on reputation. Hedgehogs can prove to the voter that they
perform their services correctly. We call a “coercer” any entity who obtains a voter’s key
by coercion or bribery, whereas a “hedgehog” is an entity the voter trusts and to whom
the voter voluntarily provides the key to protect the voter against coercers.

We accept that certain types of coercion are impossible to prevent in practice: a coercer
can generally block a voter from registering for an election, and if a coercer posses all
knowledge and attributes of the voter, they cannot be distinguished from the voter. Our
approach differs from previous approaches with end-to-end verifiability (see Section 3 and
Table 1)—e.g., revoting, fake credentials, and decoy ballots—by protecting against what
we believe to be the strongest possible adversarial model that can be realistically protected
against. Specifically we assume adversaries can learn all voter secrets and observe all voter
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interactions with the system, excluding interactions with the hedgehogs which distinguish
the voter from the coercer. We call this protection “extreme coercion resistance.”

Our mechanisms work beyond coercion: they protect voters against any form of loss or
theft of their secret keys.

Some may yearn for an ideal world in which every voter can vote and vote their desires,
but, unfortunately, the imperfect reality is that, in any system, a powerful coercer can
always prevent a voter from voting. Nullification is a useful form of coercion resistance,
and VoteXX achieves this form of coercion resistance, which is the best possible given
the constraints of reality. There is no widely agreed upon well-defined notion of coercion
resistance, and some authors make the weak adversarial assumption that coercers cannot
prevent voters from voting. Our work explores what can be done under very strong
adversarial assumptions.

This paper presents an architecture, design, implementation, and universal composability
(UC) [Can01] security proof (see Appendix C) of our voting system, called VoteXX. The
main feature of VoteXX is that it protects against extreme coercion, which we formally
define in terms of UC ideal functionality (see Section 4.2). Our VoteXX protocols include
comprehensive mechanisms to handle all of the security requirements, including, for
example, inalienable authentication, which many other voting systems simply assume
without providing constructions. We describe the user experience for several settings,
which experiences are intuitive and require few steps. We have implemented the entire
VoteXX system and made all of our sourcecode publicly available as an artifact (see
Section 7). Performance analysis and benchmarking show that the system is highly
practical (see also Section 8.3).

Our primary contributions are: (1) We introduce the new notions of nullification and
hedgehogs, and present a new solution to improper influence based on them. (2) We
give cryptographic protocols realizing nullification, and show how nullification can be
applied to several voting settings, including vote-by-mail and online. (3) We present a
new fully-decentralized scalable voting system, VoteXX, including registration, voting,
nullification, and tallying. (4) We describe our implementation of VoteXX, which uses
an anonymous communication system (ACS) for registration, vote casting, and other
communication. (5) We provide a formal statement and UC proof of VoteXX’s ballot
secrecy, coercion resistance, and tally integrity. In addition, while other systems complicate
registration and vote casting, our approach allows simple registration and vote casting
by keeping nullification separate. Consequently, our system can be used as an overlay
in conjunction with other coercion-resistant approaches—such as re-voting and decoy
ballots—or in conjunction with other voting systems, such as ElectionGuard [BN23].

In the rest of this paper, we explain the notion of extreme coercion resistance, com-
pare our approach with those of previous work, detail our adversarial model, give our
problem specification, show the VoteXX architecture, define the VoteXX cryptographic
protocols, describe voter interfaces for several settings including vote-by-mail and online,
mention possible extensions to VoteXX, sketch the VoteXX implementation and discuss its
performance, and explain the significance of our work. Appendix C gives our UC proofs.
Throughout, we use the terms “coercion” and “improper influence” synonymously.

2 Extreme Coercion Resistance
As pointed out by Hirt and Sako [Hir01], a basic axiom of coercion resistance is that, if the
adversary has/knows/is everything that the voter has/knows/is, the voting system cannot
distinguish the voter from the adversary, and therefore cannot provide a mechanism to
register the true voter’s vote and not the adversary’s. The most common path toward
providing coercion resistance has been to assume a voter can maintain some secret value
for authentication that cannot be stolen by the adversary.
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Table 2: VoteXX countermeasures against various forms of key loss. Traditional coercion-
resistant voting strategies consider the first row (“normal conditions”), whereas we argue
all rows of key loss (see Eyal [Eya21]) should be addressed. We define extreme coercion
resistance as addressing all rows, and introduce VoteXX as the first voting system that
comprehensively mitigates all of these forms of key loss, leak, or theft.

Type of key loss User has key? Adversary has key? Countermeasure in VoteXX
Normal conditions Yes No Coercion resistance
Lost secret No No Inalienable authentication
Leaked secret Yes Yes Nullification
Stolen secret No Yes Inalienable authentication

For fully online voting, maintaining secrets is particularly challenging because digital
forms of secrets are generally “something you have/know” rather than “something you are,”
and secrets can be stolen through a variety of covert means, including malware and physical
access to the voter’s device. Directly stealing a secret side-steps known coercion-resistant
mechanisms—each assumes somewhere that the voter knows of, and possibly plays a role
in, resisting coercion (such as providing a fake secret or by voting again with their real
secret).

We have used the term “stolen” loosely. In fact, there are three specific failures a user
can experience in maintaining a secret value [Eya21]: secrets can be lost, where neither
the user or adversary has the credential; leaked, where the user and adversary both have
the credential; or stolen, where the user loses the credential and the adversary gains the
credential (so only the adversary has the credential). VoteXX deals with each case as
summarized in Table 2.

To provide coercion resistance in normal conditions (Row 1), VoteXX can operate
as an overlay (that provides Rows 2-4) for many coercion-resistant mechanisms. For
pedagogical reasons, we present nullification and inalienable authentication in the context
of a full voting system; however, alternatively, VoteXX mechanisms (nullification and
inalienable authentication) can be added to other coercion-resistant mechanisms to cover
lost/leaked/stolen keys.

For lost and stolen secrets (Rows 2 and 4), the voter loses their secret. Our countermea-
sure is to ensure voters cannot lose their secret through inalienable authentication [CM22],
which is a protocol where the voter proves that they have committed their secret to their
own human memory without revealing the secret.

The threat of a leaked credential (Row 3) is underappreciated in the voting literature.
It is easy to think that coercion resistance already covers this attack; however, coercion
resistance addresses only overt attempts by a coercer to learn the key, whereas we also
need to consider covert attacks for which voters may be unaware.

At first sight extreme coercion resistance seems an unsolvable problem: if the adversary
knows every secret the voter knows, the remote system cannot distinguish the voter and
adversary. The truth of this unpleasant fact implies that a dimension of the problem indeed
is unsolvable: the voter cannot always cast their true intent and prevent the adversary
from doing the same. Nevertheless, the voter still has a course of action: the voter (or
either party) can sabotage (nullify) the vote, preventing themselves and the adversary
from casting a ballot. Further, because we cannot assume that a voter will know their
key was compromised, the election bulletin board can be monitored (by the voter or a
recruited hedgehog) for adversarial action involving the voter’s key.

It would miss a crucial point to dismiss VoteXX simply on the grounds that it “supports
a forced abstention attack.” In our strong model, for any voting system, a coercer can
prevent any voter from registering or voting. VoteXX offers strategies summarized in Table 2
for mitigating all forms of key loss, which strategies in comparison with those of previous
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coercion-resistant mechanisms, offer additional benefits, provide a more comprehensive
solution, and work against a stronger adversary.

3 Comparison to Previous Work
When comparing coercion-resistance systems, it is revealing to consider how they deal with
the various ways credential can be lost, leaked, or stolen. Most papers do not consider
Rows 2, 3, and 4 at all from Table 2, and instead concentrate on only the Row 1 (“normal
conditions”) of the table, which is challenging enough.

Coercion resistance guarantees that each voter may vote freely. Informally, a voting
system is coercion resistant if and only if no ballot is “counted as coerced,” that is, no voter
can prove to any coercer that the voter cast a counted ballot according to the coercer’s
instructions. As explained in Sections 4.2 and C.2, we uniquely adopt a very strong form
of coercion resistance, which we call extreme coercion, in which the coercer learns all of the
voter’s keys. By contrast, other researchers assume only weaker forms of coercion, such
as semi-honest coercion (receipt-freeness) in which the the voter must follow the voting
protocol (see Table 1), or active coercion in which the voter can interact with the coercer
during the voting protocol (see Table 1). Some researchers aim only to detect coercion
rather than to mitigate it (e.g., Caveat Coercitor [GRBR13]).

In an unpublished manuscript, Smyth [Smy19] surveys four definitions of coercion resis-
tance and finds that “coercion resistance has not been adequately formalized.” According to
Smyth, three of the definitions are too weak, and the general definition by Küsters [KTV10]
is complex and too strong. His observations are controversial but demonstrate that settling
definitions is still an elusive goal. Similarly, there remains some debate on the definition of
receipt freeness [DKR06].

Previous work often makes strong assumptions: the voter knows an honest Election
Authority (EA) official [CCM08]; the voter needs a special device to evade coercion [AFT10,
ARR+10, CCM08, JCJ05]; the voter needs to perform mental arithmetic to evade coer-
cion [WB09]; the voter needs to generate a fake password to evade coercion [CH11, ECH12];
the voter must complete registration before being coerced [JCJ05]; the election will not
close before the voter can cast a ballot after coercion [LQAT20, SHD10, VG06]; a trusted
server stores the voters’ private keys [LQAT20]; and the probability of successful coercion
is lowered by flooding voters with decoy ballots [Cha12]. VoteXX makes none of these
assumptions.

Giustolisi et al. [GGS23] propose a coercion-resistance strategy based on flexible vote
updating, which can evade last-minute voter coercion. This approach, however, is limited
to over the shoulder coercion and assumes a voting server trusted for coercion resistance.
VoteXX does not require this assumption.

We do assume the voter can use an untappable channel, as all coercion-resistant systems
must—if an adversary can always influence the voter, they are indistinguishable from the
voter [HS00]. Some systems establish windows for this channel, such as during registration,
or after coercion occurs. VoteXX is as flexible as it could be. The channel is used once or
twice between the voter and each hedgehog (who can be any person in the world): first
to induct the hedgehog (any time before the end of the election), and possibly second to
signal the hedgehog (after coercion and before the end of the election).

VoteXX guarantees that the voter is able to nullify their coerced vote. Unlike some
systems, in VoteXX, the voter cannot change their coerced ballot selection. VoteXX can be
used as an overlay, providing an additional coercion-resistant mechanism to others already
in place. Thus, VoteXX can support re-voting (as outlined in our protocol description): if
a voter were unable to re-vote (due to coercion at the end of the election), nullification
would be a failsafe. Similarly, VoteXX can be used together with decoy ballots.
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Table 1 compares our solution to previous proposed mechanisms, as well as to He-
lios [Adi08], which we take as a baseline coercible system. We do so by scoring each
mechanism with regard to six properties of the influencer and four other properties. We
state each assumption and property positively, meaning it is better to receive than .
Appendix B explains our assumptions and the basis for our scoring.

In any system, an adversary could always prevent a voter from voting. In this sense,
VoteXX achieves an optimal solution. Furthermore, we conjecture, that for Column 4
and Column 6 in Table 1, no system that resists extreme coercion can also undo coercion
undetectably.

4 System Overview
In VoteXX, each voter has a public-private key pair for “YES” votes, and another such pair
for “NO” votes. Without revealing their private keys, each voter registers their public keys
with the Election Authority. This EA comprises a set of independent and non-colluding
(up to a threshold) entities called trustees. Each voter may share their keys with one or
more hedgehogs. During nullification, the voter, or one or more of their hedgehog(s), can
interact with the ACS to nullify a vote by proving knowledge of one of the voter’s private
keys via a ZKP. We describe a fully decentralizable implementation of VoteXX, including
its public bulletin board (BB), which could be implemented on a blockchain.

4.1 Adversarial Model
The adversary could be anyone—including a voter or an EA trustee, located close to or
far away from their target. The adversary might be covert or overt. The adversary’s goal
might include any or all of the following: tamper with the tally, influence a voter’s ballot
choice through coercion, learn how a voter voted, or disrupt or discredit an election. The
adversary can engage in coercion at any time, including before or during voter registration.

We assume a secure ACS that protects against traffic analysis. Examples include TOR
with hidden services [TOR02], I2P [I2P03], xx network [xx.21], and Oxen [Oxe20]. We
further assume that the adversary cannot defeat standard cryptographic functions and
protocols, including encryption, digital signatures, cryptographic hashing, pseudorandom
number generation, and ZKPs. We assume an untappable channel between the voter and
their hedgehog(s), as explained in Section 3.

4.2 Ideal Functionality
A foundational component of our UC proof (Appendix C) is the voting ideal functionality
Fn,k,t

Vote , which we now introduce and define in Fig. 1.
The ideal functionality. The voting ideal functionality Fn,k,t

Vote has four phases:
preparation, registration, voting, and tally. In the voting phase, Fn,k,t

Vote receives ballots
from the voters and records them. In particular, Fn,k,t

Vote accepts a special type of request:
“nullify.” Upon receiving a nullify request, the former choice of the voter will not be counted
in the final tally.

Extreme coercion. In our UC model, the adversary has the power of extreme coercion.
When the adversary A sends an “extreme coercion” request to a voter, Vi, Vi will hand his
state to A and follow A’s instructions, but Vi can still communicate with his hedgehog(s)
Hi secretly.

Connection with the properties. It is easy to see that our UC definition implies
the basic properties of a secure voting scheme. First, Fn,k,t

Vote does not leak the ballot of a
voter to anyone else, so it implies ballot privacy. Second, as mentioned above, the ideal
deception is able to nullify the ballot and the coercer cannot know if the coercion was
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The functionality Fn,k,t
Vote interacts with a set of voters V := {V1, . . . , Vn}, a set of hedgehogs

H := {H1, . . . , Hn}, a set of trustees T := {T1, . . . , Tk}, the Election Authority (EA), and
the adversary S. Internally it keeps variables status, ballots, τ , and J . Let Pcor be the set of
corrupted parties.
Initially, set status := 0, ballots := τ := J := ∅.

Preparation:
• Upon receiving (Start, sid) from the trustee Tj ∈ T , set J := J ∪ {Tj}, and send a

notification (Start, sid, Tj) to the adversary S. (If status ̸= 0, then ignore the request.)
• Upon receiving (Begin, sid) from the EA, if |J | < k ignore the request. Otherwise, send

a notification (Begin, sid) to the adversary S, and set status := 1. (If status ̸= 0, then
ignore the request.)

Registration:
• Upon receiving (Register, sid) from the voter Vi, send (Register, sid, Vi) to the

adversary S. (If status ̸= 1, then ignore the request.)
• Upon receiving (EndReg, sid) from EA, send (EndReg, sid) to the adversary S and set

status := 2. (If status ̸= 1, then ignore the request.)
Voting:
• Upon receiving (Vote, sid, x) from a voter Vi ∈ V, set ballots[i] := x (x=YES/NO), and

send (VoteNotify, sid, Vi) to the adversary S. (If status ̸= 2, then ignore the request.)
• Upon receiving (EndVote, sid) from EA, compute δ ← TallyAlg(ballots) (Cf Fig. 6).

Send (PreTally, sid, δ) to the adversary S. Set status := 3. (If status ̸= 2, then ignore
the request.)

• Upon receiving (Nullify, sid) from a voter Vi ∈ V or Vi’s hedgehog Hi, set
ballots[i] := nullify. Send (NullifyNotify, sid) to the adversary S. (If status ̸= 3, then
ignore the request.)

Tally:
• Upon receiving (Tally, sid) from EA, compute τ ← TallyAlg(ballots) (Cf Fig. 6). Send

(Tally, sid, τ) to the adversary S. (If status ̸= 3, then ignore the request.)
• Upon receiving (Result, sid) from any party P , if τ := ∅, then ignore the request,

otherwise return (Result, sid, τ) to the requester.

Functionality Fn,k,t
Vote

Figure 1: Functionality Fn,k,t
Vote .
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successful, so our definition implies coercion resistance. Third, Fn,k,t
Vote ensures that the

tally procedure is performed correctly, so it implies verifiability.

4.3 Problem Specification

Our main requirement is a coercion-resistant remote voting system that achieves a level
of security at least as strong as that for a precinct-based in-person voter-verifiable paper
secret-ballot system. The system must maximize the ability to prevent or remediate serious
failures by eliminating undetectable attacks, preventing scalable “wholesale” attacks, and
making “retail” attacks as difficult as possible. The key requirements, specific to our
context, are coercion resistance, malware resistance, and availability.

Coercion resistance. An adversary cannot be convinced that the voter’s ballot is
“counted as coerced,” that is, counted the way the coercer instructed the voter to vote.
This property is related to ballot secrecy but we assume that the adversary can watch
the voter vote or vote for them. The adversary, however, cannot be sure how that vote is
counted, so they have no incentive to threaten or pay the voter to vote a certain way. While
rarely a significant issue in polling place elections, this problem is much more important in
uncontrolled environments such as absentee voting or Internet voting.

Malware resistance. Any modification of the hardware or software that changes the
result must be detectable. This property is similar to software independence but with the
caveat that a version of the software exists without the undetected change before or after
the election. In other words, the adversary does not, for all time, control everything read
or written to all devices used by the voter for voting.

Availability. The system must not have single points of failure. It should resist denial
of service attacks, and no single entity should be able to prevent completion of the election.

4.4 System Architecture

As shown in Fig. 2, we describe VoteXX in terms of the following entities and elements.
There are n voters v1, v2, . . . , vn who interact with a publicly readable BB, which is a
distributed ledger such as a blockchain. The writing interactions take place via an ACS.
The ACS disassociates the device, physical location, and other associated metadata by all
clients posting to the BB, protecting the metadata of voters and hedgehogs, as well as
sensitive election authority equipment. Read operations can take place through the ACS or
via a direct interaction with the BB. Each voter may have one or more trusted hedgehog(s).
Each hedgehog interacts with the BB via the ACS. The EA comprises a set of independent
and non-colluding (up to a threshold) entities called trustees. The trustees of the EA are
authoritative over registration, voting, and tallying. The EA can read and write to the BB
directly or via the ACS. The EA is a multiparty computation; it cannot compute any tally
(preliminary or otherwise) without cooperation of the specified threshold of its members.
The system includes a set of auditors who can read from the BB and verify the correctness
of operations performed by the EA.
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Voter(s)

Election
Authority

Bulletin
Board

Auditor(s)

Hedgehog(s)

ACS

ACS

Figure 2: VoteXX Architecture. Arrows represent information flows (i.e., read/write)
between system entities. Thick lines represent communications that take place over the
ACS. The EA can write to the BB directly or via the ACS. Voters submit (encrypted)
ballots over the ACS, read from the BB, and share their secret key over an untappable
channel (dotted) to their hedgehog(s). The hedgehogs submit a ZKP to nullify the
corresponding vote(s) over the ACS. Auditors read from the BB.

5 Protocols
Protocol Boxes 1–3 explain the four main stages of the VoteXX protocols: registration,
voting, and tallying (including nullification). Section 6 explains nullification in more detail.

The VoteXX protocol assumes a number of cryptographic primitives that are common in
the voting literature. All operations are performed in the same elliptic curve group, where
the decisional Diffie-Hellman (DDH) problem (and by extension, the discrete logarithm
problem) is hard. Digital signatures are performed with the Schnorr signature scheme.
Encryption is performed with ElGamal [CGS97], which can be augmented with distributed
key generation (DKG) and threshold decryption (for m out of n key holders [Ped91]).

We use standard Σ−Protocols to prove knowledge of discrete logarithms (Schnorr [Sch91]),
knowledge of representations (Okamoto [Oka92]), and knowledge of Diffie-Hellman tuples
(Chaum-Pedersen [CP92]), which also corresponds to ElGamal re-randomizations and
decryptions. We also use techniques to allow the trustees to compute jointly, verifiably
(i.e., produce Σ−Protocol proofs), and privately on ElGamal ciphertexts the following:
(i) a random shuffle of ciphertexts (Verificatum [Dou10]), and (ii) the evaluation of an
exclusive-or (XOR) operation based on its logic lookup table (mix and match [JJ00]).

Protocol 1 describes registration. Registration can be re-opened by re-running set-up.
Each voter needs to carry out registration only once, and the resulting keys can be reused
in subsequent elections.

Protocol 1 is one way of performing registration, but any method that results in a
posting of the voter’s public key (in encrypted format) is fine. A simple way is for the voter
to have the private key (full entropy, not based on a passphrase) on a hardware device and
provide the public key. One problem that we tackle in Protocol 1 is providing assurance
that the voter actually knows their private key—and it is not, for example, supplied by
a coercer. This assurance is one of two properties of so-called inalienable authentication.
The other property is that the adversary cannot impersonate the voter. Other authors
do not provide concrete constructions for inalienable authentication; some simply tacitly
assume it in their proofs of coercion resistance. In VoteXX, we provide a concrete instance
of the first half of an unalienable authentication protocol, and we present a voting protocol
that does not need the second half. That is, we care only that the voter knows their secret
key—if the adversary knows it too, we can still achieve coercion resistance. There are
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Registration is an in-person ceremony between the voter, using a voting client device, and an officer
for the EA. At completion, the voter registers two public keys

〈
pkyes, pkno

〉
, which are not learned

by the EA officer and will be used to vote YES and NO, respectively. The keys are for a digital
signature. They are based on a passphrase that can be regenerated from any voting client. The EA
additionally does not learn the passphrase but has high assurance through the protocol that the
human voter knows the passphrase.

Registration Set-up.
Registration uses a trapdoor commitment scheme. The commitment aspect allows the voter to present
her passphrase in a hidden form to the EA and answer queries about specific characters within it.
The trapdoor is revealed after registration closes and allows each voter to convert the format of their
commitments into the format of a public key.

1. The generator g0 is a parameter of the election.
2. The EA computes a generator g1 as follows: each trustee T, T ′, T ′′, . . . privately chooses one

random value a1, reveals ga1
0 , and proves knowledge of a1 with a Schnorr Σ−Protocol. Then

g1 = g
(a1+a′

1+a′′
1 +...)

0 .
3. This process is repeated, with new random ai values, to complete a set of N generators:

base← ⟨g0, g1, g2, . . . , gN−1⟩. The same base is used for all voters in a registration period.
4. Call the set of all a values (split across the trustees): trapdoor.

Registration.

1. Each voter generates two N -character passphrases (for YES and NO). Steps 2–4 describe the
process for the first passphrase and are repeated for the second.

2. The voting client parses the passphrase as a sequence of Base64 characters ⟨c0, c1, c2, . . . , cN ⟩
and computes its deterministic commitment using base:
passCommit←

〈
gc0

0 · g
c1
1 · g

c2
2 · . . . · gcN−1

N−1

〉
.

3. The voting client sends JpassCommitK to the EA, which is an encryption of passCommit under
the EA’s threshold encryption scheme.

4. The EA officer issues a challenge like: “Reveal Character 4.” The voter responds “F.” The EA
client computes disclosedChar← (JpassCommitK/gF

4). The voting client proves knowledge of a
representation of disclosedChar using a Σ−Protocol. This step is repeated to build confidence
that the voter knows the passphrase, but bounded in repetitions to protect the passphrase.

5. The EA client posts
〈

VoterID, JpassCommityesK, JpassCommitnoK
〉

to the BB.

Registration Finalization.
1. After the registration period, the EA takes the list of〈

VoterID, JpassCommityesK, JpassCommitnoK
〉

entries, removes the VoterID component,
and verifiably shuffles, threshold-decrypts, and posts〈

passCommityes, passCommitno
〉

for each (now anonymous) voter.

2. Each trustee T, T ′, T ′′, . . . reveals their values producing trapdoor.
3. Each voter uses trapdoor to reformat their two passCommit values into key pairs ⟨sk, pk⟩ such

that pk = passCommit = gsk
0 as follows. Consider generator gi and let αi = ai + a′

i + . . .. With
this notation, sk = c0 + α1 · c1 + α2 · c2 . . ..

4. Given that
〈

passCommityes, passCommitno
〉

=
〈

pkyes, pkno
〉

, the EA holds an anonymized list,
which we call the Roster, of

〈
pkyes, pkno

〉
keys for each registered voter.

Protocol 1: Registration Protocol.
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Voting.
Each voter completes voting online. At completion, each voter will have submitted their ballot using
a passphrase from registration.

1. The value nonce is a parameter of the election.
2. To mark a ballot for YES, the voter uses their YES passphrase to generate skyes and uses this

key to sign n0: σyes ← Sign(nonce). Corresponding values are used to vote NO.

3. The voter uses the EA’s threshold encryption scheme to compute ballot←
〈
JpkyesK, JσyesK, πppk

〉
,

where each group element of σ is individually encrypted and πppk is a proof of plaintext
knowledge using the Chaum-Pedersen Σ−Protocol.

4. The voter submits ballot over the ACS to the BB. The EA marks it as invalid if it is an exact
duplicate or if the proofs are invalid.

Protocol 2: Voting Protocol.

significant advantages in authentication strength with in-person registration, but other
choices can be made.

Voting performs a straightforward signature using a registered key (see Protocol 2).
At the end of registration, voter keys are unlinked from their identity. Until the election
closes, votes are encrypted to preserve the secrecy of the tally, and ballots are submitted
through the ACS to unlink them from the voter communication metadata.

6 Nullification
We explain the nullification protocol in detail. First, we present an overview. Second, we
give the construction of the nullification ZKP and propose a novel succinct ZKP with
O(log n) proof size, where n is the number of total ballots.

6.1 Overview
The tallying process (Protocol 3) includes our novel nullification technique. Consider a
list of public keys that voted YES and assume the hedgehog wants to nullify one of them.
It cannot point out which key it wants to nullify or the coercer would know the voter
is working with (or is personally acting as) a hedgehog to intervene. So the hedgehog
must hide its flag (J1K) in a set of false flags (J0K) for each YES key in the tally. We
could allow the hedgehog to choose a fixed-sized subset of β keys at random to serve as
an anonymity set, which improves performance but sacrifices full anonymity (cf. [CH11]).
For simplicity, the protocol boxes do not explain that, for nullification, we use exponential
ElGamal [CGS97] instead of standard ElGamal used in registration and voting (under the
same election master key).

If a hedgehog flags a key with (J1K), it must know the associated private key; otherwise,
any hedgehog could nullify any vote. However, if it submits a false flag (J0K), it does not
need to know the associated key. Anyone can serve as a dummy hedgehog by submitting a
full set of false flags. To enforce these constraints, the hedgehog must construct a ZK proof
to prove that: [for each flag, (it is an encryption of 0) or (it is an encryption of 1 and I know
skno corresponding to this pkno)]. We will describe the Non-Interactive Zero-Knowledge
(NIZK) proof for the above statement in Section 6.2.

Once a hedgehog computes and submits a set of flags (along with the NIZK proof
Π), Protocol 3 simplifies the description by having the EA wait to perform Steps 1–2
after the nullification period. In practice, it should not wait—the process is quadratic
work (number of hedgehogs times number of voters) and subject to “board-flooding”
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Provisional Tally.
After the voting period ends, the EA produces a verifiable provisional tally.

1. The EA takes the list of ⟨JpkK, JσK⟩, verifiably shuffles them, then threshold-decrypts them:
⟨pk, σ⟩.

2. For each ballot, the ballot is marked invalid if σ does not verify under its corresponding pk.
3. For each valid signature, pk is matched to its entry on the Roster. The EA determines if it is a

YES or NO key, and counts the vote only if it is the only ballot cast that corresponds to that
roster entry.

Nullification.
The goal of nullification is to allow voters to modify their cast ballots, particularly in the case of
coercion. Unlike other protocols, voters can enlist the help of others parties, called hedgehogs. The
nullification period runs after the provisional tallying. If the provisional tally contains pkno, it can be
nullified using skyes (the “opposite” key). In other words, casting a YES and nullifying a NO vote use
the same key, as these two actions are aligned in their intention.

1. At any convenient time, before or after voting, the voter covertly communicates with a hedgehog
to develop a coercion-resistant strategy. For example, assume the following strategy: the voter
wants to vote YES and reveals skyes to the hedgehog, along with

〈
pkyes, pkno

〉
. They request

the hedgehog engage in nullification if pkno is in the provisional tally.
2. Using the Roster and set of valid signatures from the provisional tally, the EA reformats the

election data into two lists. The first list establishes, in arbitrary order, the set of pkno keys
from voters who cast valid votes for YES (call it yesVotes). The second list contains pkyes from
voters who voted NO.

3. For example, assume YES received six votes in the provisional tally. yesVotes consists of six
pkno keys. If the hedgehog wants to nullify the fourth key, it prepares a list of encrypted “flags”
marking the ballot it wants to nullify: ⟨J0K, J0K, J0K, J1K, J0K, J0K⟩.

4. The first encrypted flag corresponds to the first pkno in yesVotes. The hedgehog adds a proof
to this list using the nullification ZK protocol. Concisely, the proof statement is: [for each flag,
(it is an encryption of 0) or (it is an encryption of 1 and I know skno corresponding to this
pkno)].

Final Tally.
After the nullification period ends, the EA produces a verifiable final tally.

1. The EA takes all the encrypted flags for the first pkno key in yesVotes and computes its logical
OR under encryption using the mix and match secure function evaluation (SFE) protocol [JJ00].
It repeats this process for the remaining pkno keys.

2. The EA takes the list of encrypted OR-ed flags, sums them under encryption, and verifiabily
threshold-decrypts the result. The EA subtracts this value from the number of YES votes in
the provisional tally to produce the final tally for YES votes.

3. The EA repeats Steps 1–2 for each pkyes key in noVotes.

Protocol 3: Tallying Protocol (including nullification).
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attacks [KHF11]. The EA must process the nullifications as they arrive; that is, use
“concurrent authorization” [ECH12]. Doing so is possible. When a new set of flags arrives,
the EA checks each proof and computes the OR between the submitted flag. The EA also
computes the accumulation of previous flags—each of these two steps is parallelizable for
each flag. Thus, when nullification closes, the only remaining task is to threshold decrypt
the accumulation of flags, which process is linear in the number of votes.

6.2 The Nullification ZKP
We provide a formal description of the nullification ZK proof. It is well known that
Σ−Protocols can be stacked through conjunction and disjunction (CDS) [CDS94, FS90].
We first present the CDS-composition ZKP and then propose a novel succinct ZKP.
The CDS-composition ZKP. The CDS-composition ZKP takes a voter’s public key pk
and makes a disjunctive proof that either Case 1 OR Case 2 is true: In Case 1, the hedgehog
proves (flag = J0K). For exponential ElGamal, assume ⟨c1, c2⟩ = Enc(m) = ⟨gr, gmyr⟩ for
generator g, public key y, and message m. A proof it encrypts m̂ is equivalent to proving〈
g, c1, y, c2m̂−1〉

is a DDH tuple, which can be done with the Chaum-Pedersen Σ−Protocol.
Call this subproof A. In Σ−Protocol format, its transcript is ⟨aA, eA, zA⟩.

In Case 2, the hedgehog proves a conjunctive statement: (flag = J1K) and it knows
sk, which corresponds to pk for the associated voter’s public key. Call the subproof that
(flag = J1K) B. It is implemented the same as in subproof A, with transcript ⟨aB , eB , zB⟩.
Call the proof of knowledge of sk subproof C, which can be implemented with a Σ−Protocol
due to Schnorr: ⟨aC , eC , zC⟩. To summarize, the hedgehog proves: Π := [A OR (B AND C)]
for each flag.

Further, the resulting proof can be made non-interactive (typically in the random
oracle model with the Fiat-Shamir heuristic [FS86], in its strong form [BPW12], but other
heuristics exist [HL10]). Specifically, the prover generates a single challenge ê for Π. To
handle the conjunction within Case 2, eB = eC ; for the disjunction across the cases,
ê = eA + eB . In Case 1, the prover computes ⟨aA, eA, zA⟩ and simulates ⟨aB , eB , zB⟩ and
⟨aC , eB , zC⟩. In Case 2, the prover simulates ⟨aA, eA, zA⟩ and computes ⟨aB , eB , zB⟩ and
⟨aC , eB , zC⟩.
A new succinct ZKP. We propose a novel succinct nullification ZKP with O(log N)
proof size, where N is the number of total ballots. Assuming that in the nullification
phase, each nullification request nullifies only one ballot. To nullify a ballot, the hedgehog
will form a list of encrypted “flags,” where there is one encryption of 1 and the other flags
are encryptions of 0. The hedgehog needs to prove in ZK that (i) there is one encrypted
flag containing J1K and the others are J0K, and (ii) I know the corresponding sk.

Formally, let h denote the ElGamal public key, and let Jx; rK denote exponential ElGamal
encryption with explicit randomness, i.e., Jx; rK := (gr, gxhr). Let ck denote the Pedersen
commitment key, and let Com denote Pedersen commitment, i.e., Com(x; r) := gxckr.
Denote the public keys in yesVotes as pk0, . . . , pkN−1. Denote the encrypted flags as
E0, . . . , EN−1. Let n := ⌈logN⌉. We will give a ZK protocol for the relation

R = {((pk0, . . . , pkN−1, E0, . . . , EN−1), r0, . . . , rN−1, ℓ, sk) |
ℓ ∈ {0, . . . , N − 1} ∧ pkℓ = gsk ∧ Eℓ = J1; rℓK ∧ Ei = J0; riK, i ̸= ℓ}.

(1)

Following the idea of [GK15, ZOB19], the prover first commits bit-wise to the binary
representation of ℓ. The key observation is that there exists a data-oblivious algorithm
that takes as input the binary representation of ℓ and generates a unit vector where the
ℓth element is 1.

Concretely, the protocol can be split into two parts: The first part proves that there is
one encrypted flag containing J1K and the others are J0K, which is actually a unit vector
proof [ZOB19]. The second part proves that the prover knows the corresponding sk, which
can be proven by modifying the one-out-of-many proof [GK15]. The modification works
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as follows. The prover first computes the commitment of sk, denoted as c. Then, the
verifier can compute ci := pki/c. Now {ci} is a vector satisfying cℓ = Com(0) so that the
one-out-of-many proof [GK15] can be applied. The prover needs to additionally prove that
he knows the opening of c.

We specify the polynomial pi(x) used in the protocol. Following [GK15], we write
i = i1 . . . in and ℓ = ℓ1 . . . ℓn in binary, and we let δij be Kronecker’s delta, i.e., δℓℓ = 1
and δiℓ = 0 for i ̸= ℓ. We let fj = ℓjx + aj , let fj,1 = fj = ℓjx + aj = δ1ℓj

x + aj and
fj,0 = x− fj = (1− ℓj)x− aj = δ0ℓj x− aj . Then, pi(x) =

∏n
j=1 fj,ij has the form:

pi(x) =
n∏

j=1
(δijℓj

x) +
n−1∑
k=0

pi,kxk = δiℓx
n +

n−1∑
k=0

pi,kxk. (2)

Fig. 3 shows the ZK protocol for relation R. By the Fiat-Shamir heuristic [FS86], it
can be transformed into a NIZK proof.

Theorem 1. Assume that the DDH problem is hard. The protocol in Fig. 3 for relation
R is a 4-move public coin ZK protocol with completeness, soundness, and special honest
verifier ZK.

Proof. For completeness, it is easy to see that cx
ℓj

caj =
Com(fj ; zaj ) and c

x−fj

ℓj
cbj = Com(0; zbj ) hold for j ∈ {1, . . . , n} and gv1hv2 = m · cx

holds. Then, observe that
∏n

j=1 fj,ij is a polynomial in the challenge x of the form
pi(x) = δiℓx

n +
∑n−1

k=0 pi,kxk. By the additive homomorphism of Pedersen commitment,∏N−1
i=0 c

∏n

j=1
fj,ij

i ·
∏n−1

k=0 c−xk

dk
= Com(0; zd) always holds since cℓ is a commitment to 0.

Similarly, denote Ei = Jei; riK, we have∏N−1
i=0

(
(Ei)xn · J−

∏n
j=1 fj,ij

; 0K
)yi

·
∏n−1

k=0(Dk)xk = J
∑N−1

i=0 (ei ·xn−pi(x)+
∑n−1

k=0 pi,kxk) ·
yi; RK = J0; RK. Thus, the protocol is perfectly complete.

To prove that the protocol is sound, suppose the adversary creates n + 1 accepting
responses f

(0)
1 , . . . , v

(0)
2 , . . . , f

(n)
1 , . . . , v

(n)
2 to n + 1 different challenges x(0), . . . , x(n) on the

same initial message c, . . . , m.
We first show that ℓj ∈ {0, 1} for j ∈ [1, n]. Pick two responses f

(0)
j , z

(0)
aj , z

(0)
bj

and
f

(1)
j , z

(1)
aj , z

(1)
bj

to challenges x(0), x(1) on the commitments caj , cbj . By combining the verifica-

tion equations we obtain cx(0)−x(1)

ℓj
= Com(f (0)

j −f
(1)
j ; z

(0)
aj − z

(1)
aj ) and c

x(0)−f
(0)
j

−x(1)+f
(1)
j

ℓj
=

Com(0; z
(0)
bj
−z

(1)
bj

). Defining ℓj = f
(0)
j

−f
(1)
j

x(0)−x(1) and γj =
z(0)

aj
−z(1)

aj

x(0)−x(1) we extract an opening of cℓj
=

Com(ℓj ; γj).

Furthermore, since c
x(0)−f

(0)
j

−x(1)+f
(1)
j

ℓj
= c

(1−ℓj)(x(0)−x(1))
ℓj

= Com(ℓj(1−ℓj)(x(0)−x(1)); γj(1−
ℓj)(x(0) − x(1))) = Com(0; z

(0)
bj
− z

(1)
bj

), either ℓj(1 − ℓj) = 0 or the binding property of
Pedersen commitment is broken. Thus, we have ℓj ∈ {0, 1} and extract ℓ = ℓ1 . . . ℓn.

Then, the soundness is two-fold. In the first part, we prove c = Com(sk) ∧ pkℓ = gsk

and extract sk. In the second part, we prove that Eℓ = J1; rℓK ∧ Ei = J0; riK, i ̸= ℓ.
Let aj be the number committed in caj , from the verification equation cx

ℓj
caj =

Com(fj ; zaj ) we conclude that f
(0)
j = ℓjx(0) + aj , . . . , f

(n)
j = ℓjx(n) + aj for all j = 1, . . . , n

unless the adversary breaks the binding property of Pedersen commitment.
From the form of fj ’s we have fj,1 = ℓjx + aj and fj,0 = (1 − ℓj)x − aj . For

i ≠ ℓ, it follows that pi(x) =
∏n

j=1 fj,ij is a polynomial of degree at most n − 1, and
for i = ℓ it is a polynomial of the form pℓ(x) = xn + . . . . Therefore we can rewrite∏N−1

i=0 c

∏n

j=1
fj,ij

i ·
∏n−1

k=0 c−xk

dk
= Com(0; zd) as cxn

ℓ ·
∏n−1

k=0 cxk

∗k
= Com(0; zd),
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CRS: the ElGamal public key h, the Pedersen commitment key ck;
Statement: pk0, . . . , pkN−1, E0, . . . , EN−1;
Witness: r0, . . . , rN−1, ℓ, sk such that ℓ ∈ {0, . . . , N − 1} ∧ pkℓ = gsk ∧ Eℓ = J1; rℓK ∧ Ei =
J0; riK, i ̸= ℓ.

Verifier:
• V → P : Random y ← Zq .

Prover:
• Randomly pick t← Zq , compute c := Com(sk; t);
• For i = 0, . . . , N − 1, compute ci := pki/c.
• For j = 1, . . . , n

– Randomly pick τj , aj , sj , tj , ρk ← Zq ;
– Compute cℓj

:= Com(ℓj ; τj); caj := Com(aj ; sj); cbj
:= Com(ℓjaj ; tj);

– Compute cdk
:=

∏N−1
i=0 c

pi,k

i Com(0; ρk) (using k = j − 1 and pi,k from Eq. 2);

– Pick random Rk ← Zq and compute Dk := J
∑N−1

i=0 (pi,k · yi); RkK (using k = j − 1
and pi,k from Eq. 2);

• Randomly pick s′, t′ ← Zq , compute m := Com(s′, t′);
• P → V : (c, cℓ1 , ca1 , cb1 , cd0 , D0, . . . , cℓn , can , cbn , cdn−1 , Dn−1, m).

Verifier:
• V → P : Random x← Zq .

Prover:
• For j = 1, . . . , n

– Compute fj := ℓjx + aj ; zaj = τjx + sj ; zbj
= τj(x− fj) + tj ;

• Compute zd = (−t)xn −
∑n−1

k=0 ρkxk;

• Compute R :=
∑N−1

i=0 (ri · xn · yi) +
∑n−1

k=0 (Rk · xk);

• Compute v1 := s′ + x · sk, v2 := t′ + x · t;
• P → V : (f1, za1 , zb1 , . . . , fn, zan , zbn , zd, R, v1, v2).

Verifier:
• For i = 0, . . . , N − 1, compute ci = pki/c.

• For all j ∈ {1, . . . , n}, check cx
ℓj

caj = Com(fj ; zaj ) and c
x−fj

ℓj
cbj

= Com(0; zbj
);

• Check
∏N−1

i=0 c

∏n

j=1
fj,ij

i ·
∏n−1

k=0 c−xk

dk
= Com(0; zd), using fj,1 = fj and fj,0 = x− fj ;

• Check
∏N−1

i=0

(
(Ei)xn · J−

∏n

j=1 fj,ij ; 0K
)yi

·
∏n−1

k=0 (Dk)xk = J0; RK, using fj,1 = fj and
fj,0 = x− fj .

• Check gv1 ckv2 = m · cx;
• Output 1 iff all the checks pass.

ZK protocol for relation R

Figure 3: ZK protocol for relation R .
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for some fixed c∗0 , . . . , c∗n−1 , which can be computed from commitments in {ci}i∈[0,N−1]
and the initial message.

Observe that the vectors (1, x(β), . . . , (x(β))n) can be viewed as rows in a Vandermonde
matrix because x(0), . . . , x(n) are all different. The matrix is invertible and we can therefore
find a linear combination (α0, . . . , αn) of the rows that give us the vector (0, . . . , 0, 1).
Combining the n + 1 accepting verification equations, it follows that

cℓ =
n∏

β=0
(c(x(β))n

ℓ ·
n−1∏
k=0

c
(x(β))k

∗k )αβ = Com(0;
n∑

β=0
αβz

(β)
d ). (3)

This equation gives us an extracted opening of cℓ to 0. Since ci = pki/c, and denoting
pkℓ = gsk, we have c = gskckt, where t = −

∑n
β=0 αβz

(β)
d . Then, by gv1ckv2 = m · cx we

have that

c = g(v
(0)
1 −v

(1)
1 )(x(0)−x(1))−1

ck(v
(0)
2 −v

(1)
2 )(x(0)−x(1))−1

. (4)

This equation extracts sk = (v(0)
1 − v

(1)
1 )(x(0) − x(1))−1. Next, we start to prove that

Eℓ = J1; rℓK ∧ Ei = J0; riK, i ̸= ℓ. Denote Ei = Jei; riK. Since x is randomly chosen after
the Dk’s are committed, by the verification equation

∏N−1
i=0

(
(Ei)xn · J−

∏n
j=1 fj,ij

; 0K
)yi

·∏n−1
k=0(Dk)xk = J0; RK, we have that

∏N−1
i=0

(
(Ei)xn · J−

∏n
j=1 fj,ij

; 0K
)yi

·
∏n−1

k=0(Dk)xk

encrypts a zero polynimial w.r.t x with overwhelming probability (by the Schwartz-
Zippel Lemma). Therefore, by denoting ij,1 = ℓj , ij,0 = 1 − ℓj , we obtain Q(y) =∑N−1

i=0 (ei −
∏n

j=1 ij,ij ) · yi = 0. Since y is randomly chosen after the Ei’s are encrypted,
Q(y) is a zero polynomial w.r.t y with overwhelming probability (by the Schwartz-Zippel
Lemma). Hence, we have ei =

∏n
j=1 ij,ij

for i ∈ [0, N − 1].
To prove that the protocol is special honest verifier SK, we build a simulator that is

given x, y ← Zq. It first randomly picks f1, . . . , v2 ← Zq. It then picks c← G at random
and cℓ1 , . . . , cℓn

, cd1 , . . . , cdn−1 ← Com(0) as random commitments to 0. Next, it picks
Ui, Ri ← Zq at random and computes Di := JUi; RiK for i ∈ [1, n− 1]. After the random
selection, it computes ci := pki/c; caj

:= c−x
ℓj

Com(fj ; zaj
), cbj

:= c
fj−x
ℓj

Com(0; zbj
), m :=

gv1hv2c−x, and

cd0 :=
∏N−1

i=0
c

∏n

j=1
fj,ij

i ·
∏n−1

k=1
c−xk

dk
· Com(0;−zd) (5)

and

D0 := J0; RK∏N−1
i=0

(
(Ei)xnJ−

∏n
j=1 fj,ij

; 0K
)yi

·
∏n−1

k=1(Dk)xk
. (6)

The simulator outputs the transcript (y, c, . . . , m, x, f1, . . . , v2).
We argue that the adversary cannot distinguish the simulation from a real argument.

First, in both real proofs and simulated proofs, f1, . . . , v2 are uniformly random in Zq; c is
uniformly random in G. Furthermore, by the verification equations, ca1 , cb1 , . . . , can

, cbn
, m,

cd0 , D0 are determined by f1, . . . , v2 and c, cℓ1 , . . . , cℓn
, cd1 , . . . , cdn−1 , D1, . . . , Dn−1 both

in real and in simulated proofs. The adversary’s advantage must come from being able
to distinguish c, cℓ1 , . . . , cℓn

, cd1 , . . . , cdn−1 , D1, . . . , Dn−1 in real and simulated proofs. To
do so, the adversary must either break the binding property of Pedersen commitment or
break the IND-CPA property of ElGamal encryption by a standard hybrid argument.
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7 Implementation
We built proof-of-concept implementations for all components of VoteXX, included as an
artifact in our submission. We wrote the EA and auditor in Java with the BouncyCas-
tle [Leg00] library. We wrote the nullification and proofs in C++ with the cryptopp [Com95]
library. Both implementations use the secp256k1 group. We can send inputs and outputs
through ACS clients written in Golang using the native cryptographic libraries to interact
with the BB, which currently is a simple file store utility.

We benchmarked specific operations on a PC using a AMD Ryzen 5 5600X 6-Core
Processor with 2 16 GiB DIMMs at 2133 MT/s. The most expensive voting operation,
tallying, took 15.34 seco nds for a simulated 220 (1 million) voters. Assuming that a very
high 217 (25%) of voters nullify, it would take 9.21 minutes to verify the proofs. Each
proof was 5.93 KB in size. See Section 8.3 for more general performance analysis.

8 Discussion
We now discuss our major design decisions, nullification options (cancel or flip), not
revealing nullifications, performance analysis, extensions, and open problems.

8.1 Major Design Decisions
We made three major design decisions: (1) Nullification achieves the theoretically optimal
coercion resistance, and using hedgehogs depends on a more realistic assumption than
that assumed in previous work. (2) Our decentralized architecture provides availability
and malware resistance. (3) In-person registration involving passphrases enhances voter
authentication and supports key functionality for malware resistance.

Nullification and hedgehogs. Nullification allows the voter to share a passphrase anytime
after they conceive of it. In-person registration ensures the voter knows their passphrases,
providing ample opportunity even for captive voters (e.g., a spouse or child) to signal a
hedgehog. Because each passphrase can nullify a ballot only in one direction (the NO key
can only vote NO or nullify YES; the YES key can only vote YES or nullify NO), voter
intent matters and a signal to coordinate with a hedgehog can be optional. For example, a
candidate who is a hedgehog might always nullify a ballot cast against them if possible.

Decentralized architecture. Routing all audit data through the ACS creates a special
challenge to the adversary not present in traditional election systems: Any attack on the
infrastructure must disable a much larger system, where there is an independent financial
incentive for it to remain online. The BB, decentralized through the ACS, is not vulnerable
to denial-of-service. Flooding the BB with data [KHF11] is limited as adversaries must
pay for ACS bandwidth. Because all BB data are public and we use known E2E-voting
constructions, the system meets the requirements for voter verifiable ballots, contestability,
and auditability [PSNR20].

In-Person registration. Our registration design roots trust into passphrases known to
the voter and written on physical paper associated with a specific person. This design
provides a critical feature for the system’s malware resistance: passphrases make it possible
to detect and prove software misbehavior as all data posted to the BB can be regenerated
with the passphrases on any device.

VoteXX greatly complicates undetectable wholesale attacks: the adversary must deploy
malicious software across all devices controlled by checking with a passphrase. The
deployment must go undetected forever, or at least until the election completes. If the
attack is detected after the election, the adversary risks loss of confidence from a provably
improper election outcome. It would be intractable for an adversary to remain undetected
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for a useful period of time. Our design decisions allow VoteXX to prevent undetectable
wholesale attacks at scale and provide detection and mitigation against retail attacks.

8.2 Cancel or Flip
Our design supports a variety of options for implementing the semantics of nullification,
including what we call “cancel” or “flip.” We recommend cancel, which is the default.
Consider a vote that might have been nullified by one or more entities. We will describe
the case for when there are two ballot choices (See Section 8.4 for the general case of k
ballot choices). Assume that this vote selects from one of two ballot choices numbered
0, 1. With cancel, the vote is cancelled if and only if at least one entity nullified it (and
this idea can be generalized to at least t entities for some threshold t). With flip, the vote
becomes x + y mod 2, where x is the ballot choice of the vote, and y is the number of
times the vote was nullified. Intuitively, cancel gives the voter the ability to cancel the
vote, whereas flip gives the voter the ability to randomize the vote.

Each of these options can be implemented using different algebraic operations during
Step 1 of the third phase (Final Tally) of Protocol 3: AND for cancel (realized with a
homomorphic addition of the encrypted flags for each ballot followed by a plaintext equality
test with J0K), and ADDITION modulo 2 for flip (realized with mix and match. Step 2
replaces the final summation with a verifiable shuffle and threshold decryption of the flag
set for each key). We view flip not as re-voting, but as “randomizing” the vote, which is a
form of nullification.

As we point out below, under stronger assumptions, there are some use cases in which
flip can be used to re-vote. Also, nullification can be used as an overlay in conjunction with
re-voting strategies. A useful application of flip arises for a common form of low-intensity
coercion. Suppose during remote voting at home, a coercer tells their spouse to vote for
Alice and watches them comply, but the coercer does not collect the spouse’s keys. The
spouse can later flip their vote to Bob without the coercer knowing.

8.3 Performance Analysis
We analyze the running time of VoteXX for elections with T trustees, V voters, and H
hedgehogs. If a passphrase is ℓ characters long with α possible characters, registration
setup takes Θ(ℓαT ) work (comprised of modular exponentiations and Σ−Protocols). The
proof size and verification time for the auditor is also Θ(ℓαT ). Example parameters might
be α = 64 characters of length ℓ = 20 and T = 10 trustees. The shuffle proof dominates
registration, generally taking Θ(V T log V ). Each vote has a constant amount of signatures,
encryptions, and Σ−Protocols for the voter. Proof size and verification time for the auditor
is Θ(V ). The provisional tally consists of another shuffle, Θ(V T log V ), and decryption
(subsumed in the shuffle), with the proof size and verification time of the same order for
the auditor. Nullification is an involved protocol. As mentioned in Section 5, to avoid
a quadratic bottleneck during the final tally, it is essential to process hedgehog flags as
they arrive. Each hedgehog performs Θ(V ) work (encryptions and Σ−Protocols) that an
auditor must fetch and validate (space and time of Θ(V )). For each of the V flags from
one hedgehog, the trustees can precompute a logic gate (two-input gates are effectively
constant time). Applying the gate to the inputs is Θ(T ) (plaintext equality tests and
Σ−Protocols). In total, nullification is Θ(HV T ) work for the EA and auditors, with same
order proof size on the BB. The final tally is fast: Θ(V T ) work (consisting of decryption
and Σ−Protocols) for the trustees and auditors, with same order proof size.

8.4 Extensions
We briefly describe several possible extensions of VoteXX.



David Chaum et al. 19

Multiple candidates. VoteXX can be easily extended to support an election with
multiple candidates. For example, for a k-candidate race, the voter can register k key
pairs and then vote using the desired key. Without any major changes, nullification still
operates as before. For example, to perform a flip, the system can use an addition modulo
k to determine what flip to apply to the initially cast vote. Since the nullification protocol
scales linearly in the number of voters and hedgehogs, introducing multiple candidates
does not affect the overall performance of the nullification process.

Voting in person or by mail. To support the existing voting infrastructure, VoteXX can
allow for a setting where the voting is accomplished by mail or in precincts using paper
ballots. This capability can be achieved by incorporating a code-voting protocol, such as
that used in Remotegrity [ZCIC+13].

Malware protection. Malicious software and can alter the operations performed by
the voter. VoteXX allows for a two-phase voting process. In Phase 1, the user submits
a vote or a vote commitment. In Phase 2, using a different device, the voter checks if
the submission is correctly posted on the BB. Optionally, this extension can include an
additional set of keys, where the user submits a payload signed with the additional keys
and thereby “locks in” their submission.

Roster changes. If detected early in the election, it is possible to contest and remove a
compromised passphrase. Providing proper documentation, the affected voter would rerun
the in-person registration process.

Online registration. For lower-security elections, it is possible to replace the in-person
registration with an online registration that follows appropriate identification mechanisms
or uses an identity verification service [Wik22].

9 Conclusion
VoteXX provides a new, practical, and versatile solution to improper influence in elections
against strong adversaries who learn the voter’s voting keys. VoteXX works through the
use of nullification supported by voter associates whom we call hedgehogs. In comparison
with previous approaches, our solution makes fewer assumptions and protects against
stronger adversaries. By separating our mechanism for mitigating improper influence
from the mechanisms of ballot marking and collection, our technique works with a wide
range of voting systems, including precinct voting with paper ballots, voting by mail, and
Internet voting. For example, our mechanism works harmoniously with techniques for
mitigating malware attacks, including allowing voters to check across multiple systems and
devices. Also, our nullification mechanism can be used in addition to other mechanisms
for mitigating improper influence.

Currently, election systems without voting booths are vulnerable to potential improper
influence attacks. For example, a nation state, terrorist organization, billionaire, or
anonymous hackers might offer significant amounts of money to vote for certain candidates.
It could likely be impossible to know the extent to which such attacks succeeded. Such
attacks would discredit the election, and re-running the election with the same technology
would not resolve the issue. Our paper offers a solution to this threat and demonstrates
that extreme coercion resistance is possible. Our work protects voting beyond the booth,
and such voting is an essential enabler for the advance of democracy.
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A Acronyms and Abbreviations
ACS anonymous communication system
BB bulletin board
CDS stacked through conjunction and disjunction
DDH decisional Diffie-Hellman
DKG distributed key generation
EA Election Authority
E2E end-to-end
NIZK non-interactive zero knowledge
TA Tally Authority
UC universal composability
VA Voting Authority
ZK zero knowledge
ZKP zero-knowledge proof

B Explanation of Properties in Table 1
0. System resists coercion when the influencer: acts before/during registration. In

a number of coercion resistance mechanisms, the voter is expected to register a
user-chosen key, password, or be assigned a key. If registration can be done in the
presence of the adversary or using inputs supplied by the adversary (and compliance
can be checked by the adversary), without impacting coercion resistance, we award .
Otherwise if the system assumes the adversary cannot be active during this process
or places limitations on their actions in corrupting the registrants, we award .

1. System resists coercion when the influencer: colludes with the EA. A system should
maintain coercion-resistance even when the coercer is able to corrupt a minority of
the EA ( ). Limitations on this assumption might result in : for example, in fake
credentials, it is assumed the coercer can corrupt any member of the EA but the
voter must know which EA member has not been corrupted. Other systems fail to
provide coercion resistance ( ) under this assumption.

2. System resists coercion when the influencer: colludes with hardware manufactures.
A system that does not rely on trusted hardware to provide coercion-resistance is
awarded . By contrast, as system that makes hardware assumptions beyond typical
computational equipment, such as a trusted execution environment [AOZZ15], is
awarded (along with systems that do not provide coercion resistance).

3. System resists coercion when the influencer: acts at any time. Assuming an influencer
cannot act at all times (see Property 5), are there additional restrictions on when
they can act? If not: . Systems receive include ones that assume the influencer
does not act before or during registration, and systems like re-voting that assume
the coercer does not act at the very end of the voting period (blocking a re-vote).

4. System resists coercion when the influencer: learns all information stored by the
voter, including all keys required by the protocol. Our main contribution is that
VoteXX achieves coercion resistance even if all the voter’s stored keys/secrets are
leaked—extreme coercion resistance. This property is stronger than the literature,
which generally assumes voters can establish and maintain secret keys or passwords
(and lie convincingly about them as necessary) that will need to be recalled to cast a
vote: . While non-verifiable re-voting does not require voter secrets or private keys,
end-to-end verifiable systems do as a way to cryptographically link ballots and prevent
multiple votes from the same voter. VoteAgain is designed as an exception to this



24 Votexx

rules; in it, such keys exist but are maintained by a special election trustee so voters
do not need to. However it must be completely trusted for coercion resistance (and
in fact, must be trusted for ballot privacy and election integrity as well [HMQA23]).
Use of a trusted third party also receives . Trusting a hardware enclave to maintain
keys is awarded . Systems that assume the influencer cannot impersonate the voter
but do not provide a specific mechanism for online settings are also awarded .

5. System resists coercion when the influencer: learns every action taken by the voter.
With reasonable assumptions on how voting works, this property is in fact shown
to be impossible to achieve, as the voter can never act independently [HS00]. We
include it to highlight this fact and as an open problem: perhaps some other trust
model or assumptions on the voter would enable this property.

6. Voter can undo coercion undetectably. Coercion needs to be corrected when the
voter’s intent is different than the influencer’s. Assuming the coercion resistance
mechanism is allowed to work, if the voter is always able to vote their true intent,
the mechanism is awarded . By contrast, systems are awarded when voters
cannot reliably vote their true intent. These systems, however, can still be considered
coercion resistant if they do allow the voter to cancel the coercer’s intent by spoiling,
nullifying, or randomizing their ballot. In VoteXX, voters can vote their true intent
if they can predict the influencer’s actions and respond strategically. However, we
cannot assume this ability will always be the case, and so, at best, voters can cancel
or randomize their ballots. In VoteXX this choice depends on a system configuration
discussed in Section 8.2.

7. System is inexpensive. A system that does not introduce new expenses beyond the
EA running a server and voters having access to standard computational devices is
awarded . A system that requires special equipment or hardware for either the EA
or for the voters is awarded (e.g., special hardware for digital signatures [AOZZ15]).

8. System has low cognitive burden. If the human voters strategy for evading coercion
is automated or does not require any cognitive effort, it is awarded . If the
voter needs to remember passwords, it is awarded . Any strenuous mental effort
(e.g., remembering an integer offset and performing mental arithmetic [WB09]) is
awarded .

9. System has security proof. A universal composability proof is awarded , a game-
based security definition and proof is awarded , while informal security arguments
and sketches are awarded .

C Security Analysis
We formally state and prove properties of VoteXX in the Universal Composability (UC)
framework [Can01]. To begin, we define types of coercion and state the security of
VoteXX. Next, we give a UC specification of VoteXX and state and prove a theorem that
characterizes its security properties, using “cancel” nullification (see Section 8.2). We
model our proofs in part from those of Alwen, Ostrovsky, Zhou, and Zikas [AOZZ15].

C.1 Preliminaries
In this section, we formally define the cryptographic primitives in VoteXX and their
properties.
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NIZK. A non-interactive zero-knowledge proof (NIZK) for relation R consists of four
probabilistic polynomial algorithms
(Setup, Prove, Verify, Sim) such that

(σ, τ)← Setup(R): The setup algorithm outputs a common reference string σ and a
simulation trapdoor τ for relation R.

π ← Prove(R, σ, ϕ, w): the prover algorithm takes as input a common reference string
σ and (ϕ, w) ∈ R and outputs a proof π.

0/1← Verify(R, σ, ϕ, π): the verification algorithm takes as input a common reference
string σ, a statement ϕ and a proof π, and it returns 0 OR 1 for rejection OR acceptance,
respectively.

π ← Sim(R, τ, ϕ): the simulation algorithm takes as input a simulation trapdoor τ and
a statement ϕ, and it outputs a proof π.

Completeness. Completeness says that an honest prover can always convince an honest
verifier. Formally, for all (ϕ, w) ∈ R,

Pr[(σ, τ)← Setup(R);

π ← Prove(R, σ, ϕ, w) : Verify(R, σ, ϕ, π) = 1] = 1.

Zero-Knowledge. A proof is zero-knowledge if it does not leak any information except
that the statement is true. Consider the following experiment:

Experiment EXPTzk
A,NIZK(λ):

1. For a relation R, (σ, τ) ← Setup(R), (ϕ, w) ∈ R, the challenger computes π0 ←
Prove(R, σ, ϕ, w) and π1 ← Sim(R, τ, ϕ).

2. The challenger picks a random bit b ∈ {0, 1}.

3. A is given (σ, πb) as input, and it outputs a guess bit b′ ∈ {0, 1}.

4. If b = b′, output 1; otherwise, output 0.

A NIZK is zero-knowledge if the adversary A’s advantage
Advzk

NIZK(A, λ) := |2 · Pr[EXPTzk
A,NIZK(λ) = 1]− 1| is negligible in λ.

Soundness. Soundness says that a prover cannot prove a false statement. Consider the
following experiment:

Experiment EXPTsound
A,NIZK(λ):

1. For a relation R, (σ, τ)← Setup(R).

2. Given σ as input, A outputs (ϕ, π).

3. If Verify(R, σ, ϕ, π) = 1 and ϕ /∈ LR, output 1; otherwise, output 0.

A NIZK is sound if the adversaryA’s advantage Advsound
NIZK (A, λ) := Pr[EXPTsound

A,NIZK(λ) =
1] is negligible in λ.

Encryption scheme. An encryption scheme consists of three probabilistic poly-
nomial algorithms (Keygen, Enc, Dec). We require the underlying encryption scheme to
be indistinguishable under chosen-plaintext attack (IND-CPA). Consider the following
experiment:

Experiment EXPTIND-CPA
A,Enc (λ):

1. The challenger performs the key generation algorithm
(pk, sk)← Keygen(λ) and sends pk to the adversary A.

2. A sends m0, m1 to the challenger.
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3. The challenger picks a random bit b ∈ {0, 1} and sends c← Encpk(mb) to A.

4. A outputs a guess bit b′ ∈ {0, 1}. If b = b′, output 1; otherwise, output 0.

An encryption scheme is IND-CPA secure if the adversaryA’s advantage AdvIND-CPA
Enc (A, λ) :=

|2 · Pr[EXPTIND-CPA
A,Enc (λ) = 1]− 1| is negligible in λ.

Signature. A signature scheme consists of three probabilistic polynomial algorithms
(Keygen, Sign, Verify). We require the underlying signature scheme to be existentially
unforgeable under chosen-message attack (EUF-CMA). Consider the following experiment:

Experiment EXPTEUF-CMA
A,Sig (λ):

1. The challenger performs the key generation algorithm
(pk, sk)← Keygen(λ) and sends pk to the adversary A.

2. A can repeatedly request for signatures on chosen messages (m0, . . . , mq), and receives
the valid signatures (σ0, . . . , σq) in response.

3. A outputs a message and signature (m∗, σ∗).

4. If m∗ is not one of the messages requested in Step 2, and Verifypk(m∗, σ∗) = 1, output
1; otherwise, output 0.

A signature scheme is EUF-CMA if the adversary A’s advantage AdvEUF-CMA
Sig (A, λ) :=

Pr[EXPTEUF-CMA
A,Sig (λ) = 1] is negligible in λ.

Bulletin Board. A bulletin board is required for any voting scheme to record ballots
and other related information. We model the bulletin board as a UC global functionality
GBB, which is depicted in Fig. 4. It has two interfaces: Read and Write, and records
all the valid messages. GBB ensures that all the communication with the bulletin board is
anonymous.

The ideal functionality GBB is globally available to all participants. It is parameterized with a
predicate Validate.
Upon initialization, set Storage := ∅.
Upon receiving (Read, sid) from P :
• Let val := Storage[sid];
• Return (READ, sid, val) to the requestor.

Upon receiving (Write, sid, inp) from P , do the following:
• Let val := Storage[sid];
• If Validate(val, inp) = 1, then set Storage[sid] := val||inp, return (Receipt, sid) to the

requestor;
• Otherwise, return (Reject, sid) to the requestor.

Functionality GBB

Figure 4: Functionality GBB

C.2 Types of Coercion
To articulate the capability of the coercer in VoteXX, we define a new type of coercion:
extreme coercion, which differs from previous notions of semi-honest coercion (receipt-
freeness) and active coercion.
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Semi-Honest coercion. This type of coercion is most common in the literature;
resistance against semi-honest coercion is called receipt-freeness. In this case, the coercer
provides an input to the coerced party and expects evidence that such input was used,
which evidence is called a “receipt.” For example, the receipt can be the entire view of the
protocol execution.

Active coercion. Moran and Naor [MN06] proposed this stronger type of coercion.
Instead of merely requiring a receipt, the coercer can query the current view interactively
and send commands to the coerced party during the protocol execution.

Extreme coercion. We define this new stronger type of coercion, called “extreme
coercion,” which captures the real world more accurately. The coercer can obtain all the
secret keys and passwords of the coerced party, and can perform operations in substitution
for the coerced party. The coerced party, however, can secretly communicate with other
people via some untappable channel.

Extreme coercion captures real world coercion more realistically because the coercer
may ask the coerced party to hand over their device to extract the secret keys and monitor
the coerced party’s action. Because we consider it impossible to coerce a target throughout
their entire life, they can recruit a hedgehog and agree on some secret action in advance.

C.3 Ballot privacy, coercion resistance and verifiability.
In this section, we give (informal) definitions of ballot privacy, coercion resistance, and
verifiability. Then, we give intuition why VoteXX satisfies these properties. We formalize
the secure definition in Section C.4 under the UC framework and argue that the UC
definition implies these properties.

Ballot privacy [FOO92]. All votes must be secret.
The link between the voter and the corresponding public key in the roster is hidden by

the verifiable shuffle in the registration phase. In addition, all the ballots are encrypted
under the EA’s threshold encryption scheme in the voting phase. Thus, VoteXX ensures
ballot privacy assuming that the majority of EA trustees are honest.

Coercion resistance. No coercer can tell if the coerced party is trying to deceive.
The ballots and nullification requests are posted on the BB via an ACS to avoid identity

leakage. In the nullification phase, the flags marking which ballots are to be nullified are
encrypted and a ZKP establishes knowledge of the corresponding secret key. In addition,
we assume that there is an untappable channel between the voter and his hedgehog(s) that
cannot be blocked by the coercer. Therefore, the coercer cannot stop a coerced party from
nullifying his vote and cannot know if the ballot is nullified.

Verifiability [FOO92]. No one can falsify the result of the voting.
We assume an honest BB and the messages posted on the BB cannot be deleted OR

changed. In the provisional and final tallies, VoteXX uses ZKPs to ensure that the shuffle
and decryption are performed correctly. The max-and-match SFE protocol [JJ00] in the
final tally is publicly verifiable.

C.4 Security Definition.
We define the security of VoteXX in the UC framework [Can01]. A protocol is represented
as a set of interactive Turing machines (ITMs), where each ITM represents the program
to be run by a participant. There are two additional entities: the environment Z and the
adversary A. The environment Z can communicate with A and provides inputs to the
parties. We assume that each ITM is a probabilistic polynomial-time (PPT) machine.

Security is based on the indistinguishability between real/hybrid world executions and
ideal world executions. Specifically, in the ideal world, all the participants are dummy
parties and there is an ideal functionality F that serves as a trusted third party. We say
that a protocol π UC-realizes F if and only if, for any PPT adversary A, there exists a PPT
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simulator S such that no PPT environment Z can distinguish between the real/hybrid
world and the ideal world.

Our protocol contains pre-tally and nullification phases. Therefore, by comparing the
final tally with the pre-tally, the coercer can discern the amount by which nullification
altered the results. The coercer, however, cannot attribute such difference to the voter.
To capture this feature, we model the ideal world as follows.

Ideal deception. Our treatment of incoercibility in the ideal world is inspired by
Alwen, Ostrovsky, Zhou, and Zikas [AOZZ15]. Alwen et al. define an ideal deception
strategy DI as a mapping applied on the message given by the coercer to an intended
choice, and they realize this ideal deception with the assumption of trusted hardware. In
our system, since we make the minimal assumption of an untappable channel between the
voter and their hedgehog(s), we cannot realize such a strong DI. Alternatively, we define a
weaker DI: If DI chooses to obey, it forwards the coercer’s input to the ideal functionality.
If DI chooses to deceive, it forwards the coercer’s input to the ideal functionality but
sends a nullification request at the end of voting phase. Meanwhile, the ideal functionality
accepts a special command—“nullify”—and leaks the provisional tally to the simulator S,
which captures the features of VoteXX. In this type of weaker ideal deception, the coercer
may know that there are people deceiving him, but he cannot attribute such deception to
the voter.

Definition 1. Let π be any protocol and let F be any ideal functionality. Let A be the
adversary who has the power of corruption and coercion. We say that π IUC realizes F if,
for every i ∈ [n] and for every ideal deception strategy DIi, there exists a real deception
strategy DRi such that, for every PPT adversary A, there exist a simulator S such that,
for any set DIJ = {DIi : i ∈ J } and any environment Z,

EXECF,DIJ ,S,Z ≈ EXECπ,DRJ ,A,Z . (7)

Theorem 2. (Universal composition) Let π, ρ be any polynomial-time protocols, and let
F be any ideal functionality. If π IUC realizes F , then ρπ IUC realizes ρF .

Following Alwen et al., it is easy to see that our framework remains universally
composable with the same type of DI.

The ideal functionality. The voting ideal functionality Fn,k,t
Vote has four phases:

preparation, registration, voting, and tally. In the voting phase, Fn,k,t
Vote receives ballots

from the voters and records them. In particular, Fn,k,t
Vote accepts a special type of request:

“nullify.” Upon receiving a nullify request, the former choice of the voter will not be counted
in the final tally. Fig. 5 is a formal description of Fn,k,t

Vote .
Extreme coercion. In our UC model, the adversary has the power of extreme

coercion. It is modeled as follows. When the adversary A sends a “extreme coercion”
request to a voter, Vi, Vi will hand his state to A and follow A’s instructions, but Vi can
still communicate with his hedgehog(s) Hi secretly, i.e., the communication between Vi

and Hi is not controlled by the adversary.
Connection with the properties. It is easy to see that our UC definition implies

the basic properties of a secure voting scheme. First, Fn,k,t
Vote does not leak the ballot of a

voter to anyone else, so it implies ballot privacy. Second, as mentioned above, the ideal
deception is able to nullify the ballot and the coercer cannot know if the coercion was
successful, so our definition implies coercion resistance. Third, Fn,k,t

Vote ensures that the
tally procedure is performed correctly, so it implies verifiability.

C.5 UC Specification of VoteXX
Before we give a UC proof for VoteXX, we give a UC description of the VoteXX protocol.
We assume that the protocol uses “cancel” nullification (Cf. 8.2). We will discuss the
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The functionality Fn,k,t
Vote interacts with a set of voters V := {V1, . . . , Vn}, a set of hedgehogs

H := {H1, . . . , Hn}, a set of trustees T := {T1, . . . , Tk}, the Election Authority (EA), and
the adversary S. Internally it keeps variables status, ballots, τ , and J . Let Pcor be the set of
corrupted parties.
Initially, set status := 0, ballots := τ := J := ∅.

Preparation:
• Upon receiving (Start, sid) from the trustee Tj ∈ T , set J := J ∪ {Tj}, and send a

notification (Start, sid, Tj) to the adversary S. (If status ̸= 0, then ignore the request.)
• Upon receiving (Begin, sid) from the EA, if |J | < k ignore the request. Otherwise, send

a notification (Begin, sid) to the adversary S, and set status := 1. (If status ̸= 0, then
ignore the request.)

Registration:
• Upon receiving (Register, sid) from the voter Vi, send (Register, sid, Vi) to the

adversary S. (If status ̸= 1, then ignore the request.)
• Upon receiving (EndReg, sid) from EA, send (EndReg, sid) to the adversary S and set

status := 2. (If status ̸= 1, then ignore the request.)
Voting:
• Upon receiving (Vote, sid, x) from a voter Vi ∈ V, set ballots[i] := x (x=YES/NO), and

send (VoteNotify, sid, Vi) to the adversary S. (If status ̸= 2, then ignore the request.)
• Upon receiving (EndVote, sid) from EA, compute δ ← TallyAlg(ballots) (Cf Fig. 6).

Send (PreTally, sid, δ) to the adversary S. Set status := 3. (If status ̸= 2, then ignore
the request.)

• Upon receiving (Nullify, sid) from a voter Vi ∈ V OR Vi’s hedgehog Hi, set
ballots[i] := nullify. Send (NullifyNotify, sid) to the adversary S. (If status ̸= 3, then
ignore the request.)

Tally:
• Upon receiving (Tally, sid) from EA, compute τ ← TallyAlg(ballots) (Cf Fig. 6). Send

(Tally, sid, τ) to the adversary S. (If status ̸= 3, then ignore the request.)
• Upon receiving (Result, sid) from any party P , if τ := ∅, then ignore the request,

otherwise return (Result, sid, τ) to the requester.

Functionality Fn,k,t
Vote

Figure 5: Functionality Fn,k,t
Vote

Input: a table ballots consisting of all the ballots.
Output: tally result σ.
The algorithm performs as follows:
• Set nryes := 0, nrno := 0.
• For i := 1 to n, if ballots[i] = YES then nryes := nryes + 1; if ballots[i] = NO then

nrno := nrno + 1.
• Return σ := (nryes, nrno)

Tally Algorithm TallyAlg

Figure 6: Tally Algorithm TallyAlg
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security of “flip” variant nullification in Section C.7.

VoteXX protocol Πn,k,t
VoteXX

Denote the voters as V := {V1, . . . , Vn}, the hedgehogs as H := {H1, . . . , Hn}, the
trustees as T := {T1, . . . , Tk}, and the Election Authority as EA. We assume that EA
cannot be corrupted.

Preparation phase:
Upon receiving (Start, sid) from the environment Z, the trustee Ti performs the

following:

• Privately choose one random values {ai,j}j∈[N−1], reveal g
ai,j

0 , and prove knowledge
of ai,j with a Schnorr Σ−Protocol.

Upon receiving (Begin, sid) from the environment Z, the EA performs the following:

• Compute gj :=
∏k

i=1 g
ai,j

0 , j ∈ [N − 1].

• Set base← ⟨g0, g1, g2, . . . , gN−1⟩ and send (Write, sid, base) to GBB.

Registration phase:
Upon receiving (Register, sid) from the environment Z, the voter Vi performs the

following:

• Send (Read, sid) to GBB and get base.

• Generate two N -character passphrases (for YES and NO).

• Parse the passphrase as a sequence of Base64 characters ⟨c0, c1, c2, . . . , cN ⟩ and
compute its deterministic commitment using
base: passCommit←

〈
gc0

0 · g
c1
1 · g

c2
2 · . . . · gcN−1

N−1
〉
.

• Send (PassCommit, sid,
〈
passCommityes, passCommitno

〉
) to the EA.

Upon receiving (PassCommit, sid,
〈
passCommityes, passCommitno

〉
) from the voter Vi,

the EA performs the following:

• Send (Write, sid, ⟨VoterID, JpassCommityesK, JpassCommitnoK⟩) to GBB, where JpassCommitK
is an encryption of passCommit under the EA’s threshold encryption scheme.

• Prove to the voter client the correctness of the encryptions using the Chaum-Pedersen
Σ−Protocol.

Upon receiving (EndReg, sid) from the environment Z, the EA performs the following:

• Take the list of
〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
entries, remove the VoterID

component, and verifiably shuffle, threshold-decrypt, and send
(Write, sid,

〈
passCommityes, passCommitno

〉
) to GBB.

• Send (Reveal, sid) to each trustee Ti.

Upon receiving (Reveal, sid) from EA, trustee Ti sends
(Write, sid, {ai,j}j∈[N−1]) to GBB.

Upon receiving (EndReg, sid) from the environment Z, the EA sends (StartVote, sid)
to each voter.

Voting phase:
Upon receiving (StartVote, sid) from EA, voter Vi performs the following:
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• Send (Read, sid) to GBB and get {ai,j}i∈[k],j∈[N−1].

• Compute sk := c0 + α1 · c1 + α2 · c2 . . ., where αi := a1,i + a2,i + . . ..

Upon receiving (Vote, sid, x) from the environment Z, voter Vi performs the following:

• If x = YES,

– Generate σyes ← Sign(nonce) and use EA’s threshold encryption scheme to
compute ballot ←

〈
JpkyesK, JσyesK, πppk

〉
, where each group element of σ is in-

dividually encrypted and πppk ← NIZKballot.prove(JpkyesK, JσyesK) is a proof of
plaintext knowledge using the Chaum-Pedersen Σ−Protocol.

– Send (SecretKey, sid, skyes,
〈
pkyes, pkno

〉
) to his hedgehog Hi.

• If x = NO,

– Generate σno ← Sign(nonce) and use EA’s threshold encryption scheme to
compute ballot← ⟨JpknoK, JσnoK, πppk⟩, where each group element of σ is individ-
ually encrypted and πppk ← NIZKballot.prove(JpknoK, JσnoK) is a proof of plaintext
knowledge using the Chaum-Pedersen Σ−Protocol.

– Send (SecretKey, sid, skno,
〈
pkyes, pkno

〉
) to his hedgehog Hi.

• Send (Write, sid, ballot) to GBB.

Upon receiving (EndVote, sid) from the environment Z, the EA performs the following:

• Send (Read, sid) to GBB and get the list of ⟨JpkK, JσK⟩, then verifiably shuffle and
threshold-decrypt them: ⟨pk, σ⟩. Send (Write, sid, ⟨pk, σ⟩ , π) to GBB, where π ←
NIZKDec.prove(JpkK, JσK, pk, σ) is the decryption NIZK.

• For each ballot, the ballot is marked invalid if σ does not verify under its corresponding
pk.

• For each valid signature, determine if it is a YES OR NO key, and count the vote
only if it is the only ballot cast that corresponds to that roster entry.

• Use the Roster and set of valid signatures from the provisional tally to reformat the
election data into two lists. The first list establishes, in arbitrary order, the set of
pkno keys from voters who cast valid votes for YES (call it yesVotes). The second
list contains pkyes from voters who voted NO (call it noVotes).

• Send (Write, sid, ⟨yesVotes, noVotes⟩) to GBB.

• Send (EndVote, sid) to every voter.

Upon receiving (Nullify, sid, 1) from the voter Vi, the hedgehog Hi does the following:

• Send (Read, sid) to GBB and find the key to be nullified in yesVotes OR noVotes.
Denote the index of the key as ℓ.

• Prepare a list of encrypted “flags” L marking the ballot it wants to nullify, i.e., the
i’th element is J1K and the other elements are J0K.

• Add a proof to this list using the nullification Σ−Protocol. Concisely, the proof
statement is: [(this flag is an encryption of 0) OR (this flag is an encryption of
1 and I know skno corresponding to this pkno)]. Denote the nullification proof as
π ← NIZKnul.prove(yesVotes/noVotes, L).

• Send (Write, sid, ⟨L, π⟩) to GBB.
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Upon receiving (Nullify, sid, 0) from the voter Vi, the hedgehog Hi does the following:

• Prepare a list of encrypted “flags” L where all the elements are J0K.

• Add a proof to this list using the nullification Σ−Protocol. Concisely, the proof
statement is: [(this flag is an encryption of 0) OR (this flag is an encryption of
1 and I know skno corresponding to this pkno)]. Denote the nullification proof as
π ← NIZKnul.prove(yesVotes/noVotes, L).

• Send (Write, sid, ⟨L, π⟩) to GBB.

Tally phase:
Upon receiving (Tally, sid) from the environment Z, EA performs the following:

• Send (Read, sid) to GBB and collect all encrypted flags.

• For each pkno in yesVotes, take all encrypted flags and compute their OR under
encryption using the max-and-match SFE protocol [JJ00].

• Take the list of encrypted ORed flags, sum them under encryption (denote it as c),
and verifiably threshold-decrypt the result (denote it as x).

• Subtract this value from the number of YES votes in the provisional tally to produce
the final tally for YES votes.

• Repeat the above three steps for each pkyes key in noVotes.

• Denote the final tally result as τ . Send (Write, sid, ⟨τ, π⟩) to GBB, where π ←
NIZKDec.prove(c, x) is the decryption proof.

Upon receiving (Result, sid) from the environment Z, the party P returns (Result, sid, τ).

C.6 UC Proof for VoteXX
We have the following theorem.

Theorem 3. Assume that NIZKballot, NIZKnul and NIZKDec are complete, sound and
zero-knowledge; the encryption scheme is IND-CPA secure; and the signature scheme is
existentially unforgeable against chosen-message attack. The VoteXX protocol Πn,k,t

VoteXX IUC
realizes Fn,k,t

Vote against static corruption and mobile extreme coercion in the GBB-hybrid
model.

Proof. To prove the theorem, we need to construct the real deception strategies DR and a
simulator S such that no non-uniform PPT environment Z can distinguish (i) the real
execution
EXECGBB

Πn,k,t
VoteXX,DR,A,Z

from the (ii) the ideal execution EXECGBB
Fn,k,t

Vote ,DI,S,Z
.

Real Deception Strategy. The real deception strategy DRi internally runs DIi, forwarding
messages to and from the environment Z. DRi works as follows:

DRi follows the coercer’s instructions. Upon receiving (EndVote, sid) from the EA:

• If DIi does not send a nullification request to Fn,k,t
Vote , then DRi sends (Nullify, sid, 0)

to the hedgehog Hi via the untappable channel.

• If DIi sends (Nullify, sid) to Fn,k,t
Vote , then DRi sends

(Nullify, sid, 1) to the hedgehog Hi via the untappable channel.
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Simulator. The simulator S internally runs A, forwarding messages to and from the
environment Z. The simulator S works as follows:

In the preparation phase:

• Upon receiving (Start, sid, Ti) from the functionality Fn,k,t
Vote , S simulates the trustee

Ti following the protocol Πn,k,t
VoteXX as if Ti received (Start, sid) from the environment

Z.

• Upon receiving (Begin, sid) from the functionality Fn,k,t
Vote , S simulates the EA fol-

lowing the protocol Πn,k,t
VoteXX as if EA received (Begin, sid) from the environment

Z.

In the registration phase:

• Upon receiving (Register, sid, Vi) from the functionality Fn,k,t
Vote , the simulator S

simulates Vi following the protocol Πn,k,t
VoteXX as if Vi received

(Register, sid) from the environment Z.

• Upon receiving (EndReg, sid) from the functionality Fn,k,t
Vote , the simulator S simulates

EA following the protocol Πn,k,t
VoteXX as if the EA received (EndReg, sid) from the

environment Z.

In the voting phase:

• Upon receiving (VoteNotify, sid, Vi) from the functionality Fn,k,t
Vote , send an encryp-

tion of 0 ⟨J0K, J0K, πppk⟩ to GBB.

• If a corrupted party Vi casts a valid ballot for an honest voter on GBB, S will abort.

• When a corrupted party Vi casts a ballot on GBB, decrypt the ballot to get the choice
x = YES/NO and send (Vote, sid, x) to Fn,k,t

Vote on behalf of Vi in the ideal world.

• Upon receiving (PreTally, sid, δ) from the functionality Fn,k,t
Vote , the simulator S

simulates the pre-tally result by simulating the NIZK for decryption based on δ.

• Upon receiving (NullifyNotify, sid) from the functionality Fn,k,t
Vote , the simulator

sends a dummy nullification request (a nullification request where the encrypted flags
are all J0K) to GBB.

• If a corrupted party Vi sends a valid nullification request for an honest voter on GBB,
S will abort.

• When a corrupted party Vi sends a nullification request on GBB, decrypt the nullifica-
tion request. Otherwise, if it is not a dummy nullification request, send (Nullify, sid)
to Fn,k,t

Vote on behalf of Vi in the ideal world.

In the tally phase:

• Upon receiving (Tally, sid, τ) from the functionality Fn,k,t
Vote , S simulates EA doing

the following:

– For each pk in yesVotes and noVotes, take all the encrypted flags, compute its
OR under encryption. Sum them under encryption for yesVotes and noVotes,
respectively.

– Simulate the decryption of the summed encrypted flags and the corresponding
NIZK proof π based on τ .
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– Send (Write, sid, τ, π) to GBB.

Indistinguishability.
We prove indistinguishability through a series of hybrid worlds H0, . . . ,H9.
Hybrid H0: This object is the real world execution

EXECGBB
Πn,k,t

VoteXX,DR,A,Z
.

Hybrid H1: H1 is the same as H0 except the followings. During the pre-tally phase
(upon receiving (EndVote, sid) from the environment Z) and tally phase, the EA’s
decryption proofs are generated by NIZK simulator.

Claim 1: If the decryption NIZK is zero-knowledge with adversary advantage Advzk
NIZKDec

(A, λ),
then H1 and H0 are indistinguishable with distinguishing advantage at most
(2n + 2) · Advzk

NIZKDec
(A, λ).

Proof: Each ballot has two ciphertexts and there are n voters in total, so there are
2n ciphertexts to decrypt in pre-tally. In tally phase, there are 2 ciphertexts to decrypt.
Therefore, the overall advantage is at most (2n + 2) ·Advzk

NIZKDec
(A, λ) by a standard hybrid

argument.

Hybrid H2: H2 is the same as H1 except the followings. During the pre-tally phase
(upon receiving (EndVote, sid) from the environment Z) and tally phase, the honest EA
members’ decryption shares are backward calculated from the pre-tally result and the tally
result, respectively.

Claim 2: If the encryption scheme is backward calculatable, then H2 and H1 are
perfectly indistinguishable.

Proof: The backward calculated decryption shares in H2 and the decryption shares in
H1 have the same distribution .

Hybrid H3: H3 is the same as H2 except the followings. During the voting phase, the
honest voters’ ballot NIZK proofs are generated by the NIZK simulator.

Claim 3: If the ballot NIZK proof is zero-knowledge with adversary advantage
Advzk

NIZKballot
(A, λ), then H3 and H2 are indistinguishable with distinguishing advantage at

most n · Advzk
NIZKballot

(A, λ).
Proof: There are at most n honest voters, so the overall advantage is at most n ·

Advzk
NIZKballot

(A, λ) by a standard hybrid argument.

Hybrid H4: H4 is the same as H3 except the followings. During the voting phase, the
honest voters’ ballots are replaced with ⟨J0K, J0K⟩.

Claim 4: If the encryption scheme is IND-CPA secure with advantage AdvIND-CPA
Enc (A, λ),

thenH4 andH3 are indistinguishable with distinguishing advantage at most 2n·AdvIND-CPA
Enc (A, λ).

Proof: There are at most 2n ciphertexts in total. Thus, the overall advantage is at
most 2n · AdvIND-CPA

Enc (A, λ) by a standard hybrid argument.

Hybrid H5: H5 is the same as H4 except the followings. During the voting phase,
honest parties’ nullification NIZKs are generated by the NIZK simulator.

Claim 5: If the nullification NIZK proof is zero-knowledge with adversary advantage
Advzk

NIZKnul
(A, λ), then H5 and H4 are indistinguishable with distinguishing advantage at

most n · Advzk
NIZKnul

(A, λ).
Proof: There are at most n honest voters, so the overall advantage is at most n ·

Advzk
NIZKnul

(A, λ) by a standard hybrid argument.

Hybrid H6: H6 is the same as H5 except the followings. During the voting phase,
honest parties’ nullification requests are replaced with ⟨J0K, . . . , J0K⟩.
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Claim 6: If the encryption scheme is IND-CPA secure with advantage AdvIND-CPA
Enc (A, λ),

thenH6 andH5 are indistinguishable with distinguishing advantage at most n·AdvIND-CPA
Enc (A, λ).

Proof: For each nullification request, there is an encryption of 1 replaced with encryption
of 0, and there are at most n honest voters. Thus, the overall advantage is at most
n · AdvIND-CPA

Enc (A, λ) by a standard hybrid argument.

Hybrid H7: H7 is the same as H6 except that, if a corrupted voter generates a valid
nullification request for an honest voter, the execution will abort.

Claim 7: If the nullification NIZK is sound with soundness error Advsound
NIZKnul

(A, λ), then
H7 and H6 are indistinguishable with distinguishing advantage at most n ·Advsound

NIZKnul
(A, λ).

Proof: There are at most n honest voters, so the probability of aborting is no more
than n · Advsound

NIZKnul
(A, λ) by a standard hybrid argument.

Hybrid H8: H8 is the same as H7 except that, if a corrupted voter generates a valid
ballot for an honest voter, the execution will abort.

Claim 8: If the signature scheme is existentially unforgeable against chosen-message
attack with adversary advantage
AdvEUF-CMA

Sig (A, λ), then H8 and H7 are indistinguishable with distinguishing advantage at
most AdvEUF-CMA

Sig (A, λ).
Proof: Same as the previous proof, the probability of aborting is no more than

n · AdvEUF-CMA
Sig (A, λ) by a standard hybrid argument.

Hybrid H9: This object is the ideal execution EXECGBB
Fn,k,t

Vote ,DI,S,Z
.

Claim 9: If the decryption NIZK is sound with soundness error Advsound
NIZKDec

(A, λ), the
shuffle NIZK is sound with soundness error Advsound

NIZKshuffle
(A, λ) and the max-and-match

SFE protocol is robust with adversary advantage Advrobust
SFE (A, λ), then H9 and H8 are

indistinguishable with distinguishing advantage at most (n + 2) · Advsound
NIZKDec

(A, λ) + n ·
Advrobust

SFE (A, λ) + Advsound
NIZKshuffle

(A, λ).
Proof: To prove Claim 9, we will show that the real tally (pre-tally) and ideal tally

(pre-tally) are indistinguishable.
We first show that the real pre-tally and ideal pre-tally are indistinguishable. If decryp-

tion correctness of honest voters’ ballots holds, the number of yesVotes and noVotes are
identical in both real pre-tally and ideal pre-tally. In the ideal execution EXECGBB

Fn,k,t
Vote ,DI,S,Z

,
the corrupted parties’ ballots are honestly tallied, while honest and coerced parties’ pre-tally
are simulated by randomly choosing correct number of public keys. They are indistinguish-
able by the verifiable shuffle in registration phase. Thus, the overall advantage in pre-tally
is no more than n · Advsound

NIZKDec
(A, λ) + Advsound

NIZKshuffle
(A, λ).

We then show that the real tally and ideal tally are indistinguishable. If the max-and-
match SFE protocol is sound and decryption correctness holds, the number of nullified
ballots are identical in both real tally and ideal tally. The max-and-match protocol
is performed for n times. Thus, the overall advantage in tally is no more than n ·
Advrobust

SFE (A, λ) + 2 · Advsound
NIZKDec

(A, λ).
In summary, the distinguishing advantage ofH9 andH8 is at most (n+2)·Advsound

NIZKDec
(A, λ)+

n · Advrobust
SFE (A, λ) + Advsound

NIZKshuffle
(A, λ).

Consequently, the real execution EXECGBB
Πn,k,t

VoteXX,DR,A,Z
and ideal execution EXECGBB

Fn,k,t
Vote ,DI,S,Z
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are indistinguishable with distinguishing advantage no more than

(2n + 2) · Advzk
NIZKDec

(A, λ) + n · Advzk
NIZKballot

(A, λ)+
3n · AdvIND-CPA

Enc (A, λ) + n · Advzk
NIZKnul

(A, λ) + n · Advsound
NIZKnul

(A, λ)+
n · AdvEUF-CMA

Sig (A, λ) + (n + 2) · Advsound
NIZKDec

(A, λ)+
n · Advrobust

SFE (A, λ) + Advsound
NIZKshuffle

(A, λ)

This argument concludes the proof. □

C.7 Security of “Flip” Variant
In this section, we will illustrate that the above UC proof can be adapted to “flip”
nullification. To prove security of “flip” nullification, the ideal functionality Fn,k,t

Vote has
interface Flip instead of Nullify. Upon receiving (Flip, sid) from a voter Vi OR Vi’s
hedgehog, Fn,k,t

Vote flips Vi’s vote and sends the notification to S. The ideal deception
strategy DI also needs to be modified accordingly: If DI chooses to deceive, it forwards the
coercer’s input to the ideal functionality and has 50% probability sending a flip request to
the ideal functionality.

The construction of the real deception strategy DRi is straightforward. If DIi sends a flip
request to the ideal functionality, DRi will follow the protocol to flip the vote. Otherwise,
DRi sends a dummy flip request to BB. The construction of simulator S is completely the
same except that “cancel” request is replaced by “flip” request. Then, through a series of
same hybrid worlds, we can prove that “flip” protocol UC realizes Fn,k,t

Vote .

D VoteXX with Decoy
In this section, we will show that we can achieve better coercion resistance by adding
decoy ballots to VoteXX.

D.1 Intuition
A decoy ballot is a ballot that will not be counted in the final tally, but is indistinguishable
from a real ballot in the coercer’s view. In the registration phase, if the voter knows that
he will be coerced, he will register two (or more) public keys to the distributed EA and
only one of them is real, while the others are decoys. In the voting phase, the voter can
use the decoy secret key to submit a ballot that will not be counted in the final tally, and
use the real secret key to vote as he wants. However, if the voter cannot hide the real
secret key from the coercer, he can still use VoteXX’s nullification to nullify the vote. In
conclusion, adding decoy allows a voter to vote as he wants, if he can keep the
real secret key from the coercer, and to nullify if he cannot hold the secret.

To add decoy ballots into VoteXX protocol, we modify the registration phase and the
final tally phase while keep the other parts same as VoteXX. We assume that the VoteXX
protocol uses “cancel” nullification.

We assume that there is a public roster consisting of commitments of voters’ credentials,
and each voter holds his credential σ. In the registration phase, if a voter knows that he
will be coerced, he (and his hedgehog) sends two (or more) ⟨pkyes, pkno, ρ⟩ tuples to the
distributed EA, where ρ ← Signσ(pkyes||pkno). At the end of the registration phase, the
distributed EA will a perform secure multi-party computation (MPC) to generate the table
of public keys, which is of the form ⟨pkyes, pkno, i⟩, where i ∈ {J0K, J1K} is called a “decoy
flag”. If i = J1K, it means that the corresponding public key is decoy. For the public keys
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signed by the same credential, the distributed EA uses a public function to determine
which public key is real. The secure MPC ensures that none of the EA trustees know
which of the public keys are decoys.

In the final tally phase, for each key in yesVotes OR noVotes, the EA takes all the
encrypted flags and the corresponding “decoy flags” to compute them OR under encryption
using the max-and-match SFE protocol [JJ00]. In this way, if the ballot is a decoy ballot,
it will be nullified automatically since the “decoy flag” is an encryption of 1; if the ballot
is a real ballot, it can be nullified the same way as in VoteXX.

D.2 Security Definition
We analyze security of VoteXX with decoy under the UC framework [Can01]. Comparing
with VoteXX, the only difference is the ideal deception strategy.

Ideal deception. VoteXX with decoy realizes a stronger DI, which performs as follows:
when DI receives an input x from the simulator (ideal coercer) S, it maps x to x′ and
sends (Vote, sid, x′) to the ideal functionality F . (x′ can be equal OR not equal to x,
representing obeying and deceiving, respectively.)

D.3 UC Specification of VoteXX with Decoy
VoteXX with decoy protocol Πn,k,t

VoteXX−decoy
Denote the voters as V := {V1, . . . , Vn}, the hedgehogs as H := {H1, . . . , Hn}, the

trustees as T := {T1, . . . , Tk}, and the Election Authority as EA. We assume that EA
cannot be corrupted. At the beginning of the protocol, each voter holds his credential σ
and GBB contains commitments of σ.

Preparation phase:
Upon receiving (Begin, sid) from the environment Z, the EA performs the initialization

procedure of the secure multi-party computation.
Registration phase:

Upon receiving (Register, sid) from the environment Z, the voter Vi performs the
following:

• Send ⟨pkyes, pkno, ρ⟩ to the EA, where ρ ← Signσ(pkyes||pkno), and hold the corre-
sponding ⟨skyes, skno⟩.

• (If Vi will be coerced, he sends ⟨pkyes, pkno, ρ⟩ and
⟨pk′

yes, pk′
no, ρ′⟩ to the EA, where ρ← Signσ(pkyes, pkno) and ρ′ ← Signσ(pk′

yes||pk′
no).

He holds the corresponding ⟨skyes, skno⟩ and
〈
sk′

yes, sk′
no

〉
. Let ⟨skyes, skno⟩ be the real

key and
〈
sk′

yes, sk′
no

〉
be the decoy key.)

Upon receiving (EndReg, sid) from the environment Z, the EA performs the following:

• Perform secure multi-party computation to generate a list of the form ⟨pkyes, pkno, i⟩,
where i ∈ {J0K, J1K}. For the public keys signed by the same credential, the EA uses
a public function h to determine which public key is real. The real keys have i = J0K
while the decoy keys have i = J1K.

• Send (Write, sid, {⟨pkyes, pkno, i⟩}) to GBB.

Voting phase is completely the same as Πn,k,t
VoteXX.

Tally phase:
Upon receiving (Tally, sid) from the environment Z, EA performs the following:
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• Send (Read, sid) to GBB and collect all encrypted flags and decoy flags.

• For each pkno in yesVotes, take all encrypted flags along with the decoy flag and
compute their OR under encryption using the max-and-match SFE protocol [JJ00].

• Take the list of encrypted ORed flags, sum them under encryption, and verifiably
threshold-decrypt the result.

• Subtract this value from the number of YES votes in the provisional tally to produce
the final tally for YES votes.

• Repeat the above three steps for each pkyes key in noVotes.

• Denote the final tally result as τ . Send (Write, sid, τ, π) to GBB, where π is the
NIZK for SFE and decryption.

Upon receiving (Result, sid) from the environment Z, the party P returns (Result, sid, τ).

D.4 UC Proof for VoteXX with Decoy
By constructing a similar simulator, we have the following theorem. Since we need to
assume the voter knows he will be coerced in the registration phase, the VoteXX with
decoy protocol is secure against static active coercion.

Theorem 4. Assume that the NIZKs are complete, sound and zero-knowledge; the encryp-
tion scheme is IND-CPA secure; and the signature scheme is secure against existential
forgery. The “VoteXX with decoy” protocol Πn,k,t

VoteXX-decoy IUC realizes Fn,k,t
Vote against static

corruption and static active coercion in the GBB-hybrid model.

Proof sketch. To prove the theorem, we need to construct the real deception strategies
DR and a simulator S such that no non-uniform PPT environment Z can distinguish (i) the
real execution EXECGBB

Πn,k,t
VoteXX-decoy,DR,A,Z

from the (ii) the ideal execution EXECGBB
Fn,k,t

Vote ,DI,S,Z
.

Real Deception Strategy. The real deception strategy DRi internally runs DIi, forwarding
messages to and from the outside. DRi works as follows:

In the registration phase, upon receiving (Register, sid) from the environment Z, Vi

sends ⟨pkyes, pkno, ρ⟩ and ⟨pk′
yes, pk′

no, ρ′⟩ to the EA, where ρ← Signσ(pkyes, pkno) and
ρ′ ← Signσ(pk′

yes||pk′
no), and holds the corresponding ⟨skyes, skno⟩ (real key) and

〈
sk′

yes, sk′
no

〉
(decoy key).

In the voting phase:

• When coerced, DRi provides the decoy key sk′
yes, sk′

no to the coercer and simulates
the transcript of using sk′

yes, sk′
no to register. DRi follows the coercer’s instructions.

• If DIi sends (Vote, sid, x′) to the ideal functionality, DRi performs as if Vi receives
(Vote, sid, x′) from the environment Z.

Simulator. The simulator S is almost the same as the simulator for Πn,k,t
VoteXX since we

only modified the registration phase and tally phase.
In the registration phase, the simulator S simulates the parties following the protocol:

• Upon receiving (Register, sid, Vi) from the functionality Fn,k,t
Vote , the simulator S

simulates Vi following the protocol Πn,k,t
VoteXX-decoy as if Vi received

(Register, sid) from the environment Z.

• Upon receiving (EndReg, sid) from the functionality Fn,k,t
Vote , the simulator S simulates

EA following the protocol
Πn,k,t

VoteXX-decoy as if the EA received (EndReg, sid) from the environment Z.
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In the tally phase, the simulator S simulates the EA to perform the tally procedure,
but uses the NIZK simulator to generate the NIZK proof:

• Upon receiving (Tally, sid, τ) from the functionality Fn,k,t
Vote , S simulates EA doing

the following:

– For each pk in yesVotes and noVotes, take all the encrypted flags along with
the decoy flag, compute its OR under encryption. Sum them under encryption
for yesVotes and noVotes, respectively.

– Simulate the decryption of the summed encrypted flags and the corresponding
NIZK π based on τ .

– Send (Write, sid, τ, π) to GBB.

Same as the proof of Theorem A.2, through a series of hybrid worlds, the real world
and ideal world are indistinguishable.
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