
Note #1: Update to the Sca25519 Library
Mitigating Tearing-based Side-channel Attacks

Łukasz Chmielewski and Lubomír Hrbáček

Masaryk University, Brno, Czech Republic
chmiel@fi.muni.cz,493077@mail.muni.cz

Abstract.
This short note describes an update to the sca25519 library, an ECC implementation
computing the X25519 key-exchange protocol on the Arm Cortex-M4 microcontroller.
The sca25519 software came with extensive mitigations against various side-channel
and fault attacks and was, to our best knowledge, the first to claim affordable
protection against multiple classes of attacks that are motivated by distinct real-world
application scenarios.
This library is protected against various passive and active side-channel threats.
However, both classes of attacks were considered separately, i.e., combining the
attacks is considered out-of-scope because to successfully execute such a combined
attack, the adversary would need to be very powerful (e.g., a very well-equipped
security laboratory). Protection against such powerful adversaries is considered
infeasible without using dedicated protected hardware with which Arm Cortex-M4 is
not equipped.
However, there exists a particular class of easy and cheap active attacks: they are
called tearing, and they are well known in the smartcard context. In this paper,
we extend the scope of the library to also consider a combination of tearing and
side-channel attacks. In this note, we show how we can mitigate such a combination
by performing a small code update. The update does not affect the efficiency of the
library.
Keywords: X25519 library · Tearing Attack · Side-Channel Analysis · Fault
Injection

1 Introduction
Originally, the library was presented in a Systematization-of-Knowledge paper in IACR
Transactions on Cryptographic Hardware and Embedded Systems 2023 [BCH+22a]; the
corresponding eprint with some updates was also published [BCH+21]. This software
came with extensive protections against both side-channel and fault attacks while being at
least as efficient as widely-deployed ECC libraries. The authors were optimistic that the
implementation is secure within the assumed attacker model 1, given the experimental
evidence from, but left more extensive investigation for future work. In particular, they
were mostly concerned about the threats posed by attackers equipped with EM microbes
and applications of complex single-trace profiled attacks.

The sca25519 [BCH+22b] repository contains three implementations of X25519 in C
and assembly for the Cortex-M4 with countermeasures against side-channel and fault
injection attacks. The first implementation is unprotected, the second implementation
contains countermeasures required for the case of ephemeral scalar multiplication, and

1To be precise, the authors considered an attacker according to level SL3 as defined in IEC-62443 [IEC13],
which covers capabilities of academic attackers with well-equipped lab, but no powerful state agencies.

mailto:chmiel@fi.muni.cz, 493077@mail.muni.cz


2 Note #1: Update to the Sca25519 Library

the third implementation contains the most countermeasures for the case of static scalar
multiplication. The three implementations are stored under the following names:

STM32F407-unprotected contains the implementation for the unprotected X25519; this
implementation contains no side-channel protections besides being constant-time;

STM32F407-ephemeral contains our implementation for the ephemeral X25519; this
implementation contains some side-channel protections;

STM32F407-static contains our implementation for the static X25519; this implementa-
tion contains multiple side-channel protections.

This update concerns only the STM32F407-static implementation.
Software availability.

The update described in this note is in the public domain, uploaded to the reposi-
tory [BCH+22b], release 1.1. The original code corresponding to the paper [BCH+22a] is
marked as release 1.0.
Organization of the note.

First, we describe the tearing attacks in general, as well as the attack that this update
protects against, in Section 2. Second, we describe the proposed code update in Section 3.
Finally, we conclude the note in Section 4.

2 Tearing Attacks
One of the most straightforward and easy fault injection methods involves cutting power
to the processor during critical computations. The aim is either to prevent the system
from responding to a detected attack or to put the system in a vulnerable state when
power is restored. We call such attacks tearing attacks. This kind of attack is the most
common in the smartcard context [HP04, HMP06]. For example, an attacker can attempt
to bypass the transaction mechanism by powering down (i.e., tearing) a card before a PIN
try counter is increased in the case of an incorrectly provided PIN.

Such attacks on their own are considered in [BCH+22a]. However, the library is not
susceptible to them.

2.1 A Combination Attack
Now, we can describe a combination of a tearing-based attack and a side-channel one
for the STM32F407-static library. Let us recall how protected scalar multiplication in
STM32F407-static works on a high level. First, the private key, which consists of a 64-bit
blinding, blinded scalar, and two blinding points, is loaded. Second, the blinding and the
scalar are additionally randomized and used in the scalar multiplication to compute the
output. Finally, the key is updated and saved 2.

The whole idea of the attack is to collect side-channel traces but power down the target
(running the library) before the final update of the key. This way, the scalar, blinding, and
blinded points are not updated, while multiple side-channel traces can be collected. As a
consequence of this tearing, the output of the operation is not obtained, but that is not
required for many side-channel attacks.

In Figure 1, we point to the moment at which the card needs to be powered down.
The arrow points at the beginning of the update procedure, and before this moment, the
attacker needs to power down the device. This update does not always happen exactly

2Note that the sca25519 does not actually save the key to the flash memory but to the RAM. However,
if the library is used in the practical application, then the key should be saved to the flash in a protected
way (e.g., encrypted or saved to a restricted flash partition).



Łukasz Chmielewski and Lubomír Hrbáček 3

at the same moment in time due to the randomizations used during inversions. Still, the
jitter caused by that is tolerable since it is only necessary to power down the target before
the beginning of the procedure.

Figure 1: The power profile of the static (STM32F407-static) implementation marked the
beginning of the update procedure.

The consequence of this attack is turning off point blinding but not scalar blinding
(because of the additional randomization). Consequently, turning off countermeasures
might enable the execution of side-channel attacks. Furthermore, it is possible to attack
the parts of the private key not only during the initial transfer but also when it is being
re-randomized. In particular, these parts will be loaded to register multiple times.

3 Code Update
The main idea is to move the update procedure from after the scalar multiplication to
before. The resulting new algorithm is presented in Algorithm 1. The reshuffled steps
are marked with blue color. With orange, we marked the code that we believe could
be removed without increasing the leakage. However, this modification might modify
a number of points of interest for single-trace attacks and would require side-channel
evaluation. Therefore, we decided not to include it in release 1.1; we leave analyzing this
extra optimization as a future work.

We performed a brief efficiency analysis, and the results are the same as for the
original algorithm3. The results are in Table 1. We measured the clock cycles of the
static implementation on an STM32F407 Discovery development board in the same way
as in [BCH+22a]. In particular, for all our measurements, we use the gcc compiler,
arm-none-eabi-gcc version 9.2.1 20191025, with the -O2 optimization flag.

Table 1: Short performance evaluation of the updated static implementation (release 1.1).
Implementation/Component Clock Cycles:
Complete static scalar multiplication: 2 338 126
Cost per cswaprr iteration: 1047
Updating static key: 362 958

Since there is no effective modification to the core of the algorithm, we did not perform
a side-channel evaluation on this update.
Comment on removing blinding (i.e., the orange code in Algorithm 1).

We have also tested the code to remove the extra masking/blinding of the scalar after
it is updated — see Table 2. As expected, the code is slightly more efficient4. However,

3There are some minor differences in the total length of the algorithm since it is randomized. The
difference is, however, negligible.

4Updating static key is unchanged; therefore, the costs are approximately the same. Minor differences
are due to randomizations used in this procedure.



4 Note #1: Update to the Sca25519 Library

Algorithm 1 Pseudocode of the updated side-channel and fault-attack protected static X25519
Input: the x-coordinate xP of point P . Output: x[k]P .
Secure Input: a 64-bit blinding f , blinded scalar kf−1 = k · f−1 mod l, and blinding points R, S = [−k]R.

1: ctr ← 0; xP
$← {0, . . . , 2256 − 1} ▷ Initialize iteration counter to 0 and output buffer to random bytes

2: Update(R, S) ▷ 2 double-and-add scalar multiplications with the same 8-bit random scalar for R and S
Randomize(kf−1 , f) ▷ Generate new 64-bit random value f , securely compute f−1 and update kf−1
Save(R, S, kf−1 , f)

3: Copy kf to internal state while increasing ctr. ▷ Updating ctr in a loop protects copying against FI
4: yP ← ycompute(xP )
5: Increase(ctr)
6: (XP , YP , ZP )← ecadd((xP , yP ), R) ▷ Point blinding, output of addition of R is projective
7: (XP , YP , ZP )← ecdouble(ecdouble(ecdouble((XP , YP , ZP )))) ▷ 3 doublings to multiply by co-factor 8

8: r
$← {1, ..., 264 − 1} ▷ Sample 64-bit non-zero random value for scalar blinding

9: b
$← {0, ..., ℓ} ▷ Sample blinding factor of non-constant-time inversion

10: t← r · b mod ℓ ▷ Invert using extended binary gcd
11: s← t−1 · b mod ℓ ▷ Unblind result of inversion
12: k′

f−1 ← kf−1 · s mod l ▷ Multiplicatively blind scalar kf−1

13: k′ ← k′
f−1 · f mod l ▷ Multiplicatively unblind scalar k′

f−1 with f

14: Increase(ctr)
15: xP ← XP · Z−1

P
; yP ← YP · Z−1

P
▷ Return to affine x and y coordinates

16: X1 ← 1, Z1 ← 0
17: Z2

$← {0, . . . , 2255 − 20}; X2 ← xP · Z2 ▷ Initial randomization of projective representation
18: k′ ← k′ ⊕ 2k′ ▷ Precompute condition bits for cswap
19: a

$← {0, ..., 2253 − 1} ▷ Sample mask for address-randomization
20: k′ ← k′ ⊕ a ▷ Mask the scalar
21: Increase(ctr)
22: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a[252]) ▷ Projective re-rand.+cswap based on masking a

23: for i from 253 downto 0 do ▷ scalar multiplication by k′ = k · r−1

24: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, k′[i]) ▷ Projective re-rand.+cswap based on masked k
25: if i ≥ 1 then
26: (X1, Z1, X2, Z2)← ladderstep (xP , X1, Z1, X2, Z2)
27: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a[i− 1]) ▷ Projective re-rand.+cswap based on a
28: Increase(ctr)
29: yP ← yrecover(X1, Z1, X2, Z2, xP , yP )
30: xP ← X2 · Z−1

2
31: X1 ← 1, Z1 ← 0
32: Z2

$← {0, . . . , 2255 − 20}; X2 ← xP · Z2 ▷ Again randomize projective representation

33: a′ $← {0, ..., 265 − 1} ▷ Sample additional mask for address-randomization
34: r ← r ⊕ 2r ▷ Precompute condition bits for cswap
35: r ← r ⊕ a′ ▷ Mask the random scalar r
36: Increase(ctr)
37: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a′[64]) ▷ Projective re-rand.+cswap based on masking a′

38: for i from 64 downto 0 do ▷ Scalar multiplication by r
39: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, r[i]) ▷ Projective re-rand.+cswap based on masked r
40: if i ≥ 1 then
41: (X1, Z1, X2, Z2)← ladderstep (xP , X1, Z1, X2, Z2)
42: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a′[i− 1]) ▷ Projective re-rand.+cswap based on a′

43: Increase(ctr)
44: Y2 ← yrecover(X1, Z1, X2, Z2, xP , yP )
45: (X2, Y2, Z2)← ecadd((X2, Y2, Z2), S) ▷ Remove point blinding, add in S = [−k]R
46: xP ← X2 · Z−1

2
47: Increase(ctr)
48: if ! Verify(ctr) then ▷ Detected wrong flow, including iteration count
49: xP

$← {0, . . . , 2256 − 1} ▷ Set output buffer to random bytes
50: return xP

we did not add this update to the release since we believe it requires an extra side-channel
evaluation, and we leave it for future work.

Table 2: Short performance evaluation of the static implementation experimental branch
(removing_unnecessary_blinding).

Implementation/Component Clock Cycles:
Complete static scalar multiplication: 2 128 112
Cost per cswaprr iteration: 1047
Updating static key: 363 257



Łukasz Chmielewski and Lubomír Hrbáček 5

4 Conclusions
In this short note, we described an update to the sca25519 library, particularly to its static
X25519 key-exchange component, that mitigates a combination of tearing-based attacks
and side-channel attacks with an impact on efficiency.

References
[BCH+21] Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, and Peter

Schwabe. SCA-secure ECC in software — mission impossible? Cryptology
ePrint Archive, Paper 2021/1003, 2021. https://eprint.iacr.org/2021/
1003.

[BCH+22a] Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, and Peter
Schwabe. SCA-secure ECC in software — mission impossible? IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2023(1):557–589,
Nov. 2022.

[BCH+22b] Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, and Peter
Schwabe. The sca25519 library ("SCA-secure ECC in software — mission
impossible?"), 2022.

[HMP06] Engelbert Hubbers, Wojciech Mostowski, and Erik Poll. Tearing Java Cards.
In Proceedings, e-Smart 2006, Sophia-Antipolis, France, September 20–22,
2006. Available on-line.

[HP04] Engelbert Hubbers and Erik Poll. Reasoning about card tears and transactions
in java card. In Michel Wermelinger and Tiziana Margaria, editors, Funda-
mental Approaches to Software Engineering, 7th International Conference,
FASE 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004 Barcelona, Spain, March 29 - april 2,
2004, Proceedings, volume 2984 of Lecture Notes in Computer Science, pages
114–128. Springer, 2004.

[IEC13] Industrial communication networks – network and system security – part 3-3:
System security requirements and security levels. Standard, International
Electrotechnical Commission, 2013. https://webstore.iec.ch/preview/
info_iec62443-3-3%7Bed1.0%7Db.pdf.

https://eprint.iacr.org/2021/1003
https://eprint.iacr.org/2021/1003
https://webstore.iec.ch/preview/info_iec62443-3-3%7Bed1.0%7Db.pdf
https://webstore.iec.ch/preview/info_iec62443-3-3%7Bed1.0%7Db.pdf

	Introduction
	Tearing Attacks
	A Combination Attack

	Code Update
	Conclusions

