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ABSTRACT
We describe designs for an electronic wallet, meant for the housing
of official government documents, which solves the problem of
displaying document data to untrusted parties (e.g., in order to allow
users to prove that they are above the drinking age). The wallet
attains this goal by employing Zero-Knowledge Proof technologies,
ascertaining that nothing beyond the intended information is ever
shared. In order to be practically applicable, the wallet has to meet
many additional constraints, such as to be usable in offline scenarios,
to employ only widely-accessible communication methods which,
themselves, must not impinge on the user’s privacy, and to be
constructed solely over standard, widely-studied cryptographic
algorithms, offering appropriately high levels of cryptographic
security. We explain how our design was able to successfully meet
all such additional constraints.
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1 INTRODUCTION
While traditionally physical certificates such as one’s identity card,
driver’s license, student card or pensioner’s card have been one’s
methods to ascertain one’s identity and one’s eligibility for par-
ticular services, the advent of electronic document wallets aims
for such documents to be storable, managed and retrieved in their
digital forms. New legislation, such as for example the European
electronic IDentification, Authentication and trust Services (eIDAS)
framework [17, 22, 32] and its counterpart projects in the vari-
ous EU countries, are driving the wide-spread adoption of digital
tools for identity verification, and as an extension of this also the
management of academic diplomas [2, 5, 6] and beyond [7].

The introduction of such novel technologies is difficult, in part
for two reasons. First, the digital technologies must demonstrate
that they provide at least the same levels of protection, versatility
and manageability as their physical counterparts. Second, they
must be able to function within the same legal environment as their
physical counterparts [31].

The main thrust of digital wallet research currently focuses
on blockchain technology, such as in the case of the European
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Blockchain Services Infrastructure (EBSI) [14, 47], but this choice,
too, is not without its inherent challenges [19].

For example, single-repository approaches, of which the block-
chain-based approach is one, inherently assume that actors can
access the ledger. What if we want to enable one to present and
validate one’s documents offline, in scenarios in which neither
document presenter nor document validator have Internet access,
and where they can only rely on the data stored locally, on their
own smart devices?

In this paper we describe an alternative approach, which over-
comes some of the issues present in the traditional solutionmethods.
Not only does this alternative method support offline verification,
and therefore greater versatility in the potential scenarios in which
the technology can be put to use, it was also specifically designed to
address the complications presented by “untrusted” document veri-
fiers, and by this provides inherently more privacy than traditional
solutions.

To explain: while many standard solutions may be appropriate
to handle a situation in which, e.g., a traffic police officer requests
a motorist to present their license, not all such solutions are appro-
priate in order to handle a scenario in which a bartender asks a
customer to verify their age.

The latter scenario is one in which the customer has very little
trust of the verifying bartender. Not only would the customer want
to minimise the amount of information exposed to the bartender
(i.e., merely prove that they are above the drinking age, rather
than present their full date of birth, or even a complete ID card
containing their name, address and other details), one should also
take into account the possibility that such verifications may be
recorded and collated, possibly across many venues. The customer
may want to avoid such recording from enabling anyone to track
their whereabouts and/or profile them.

In this paper we describe an algorithmic solution that tackles
all these additional challenges, and can serve as the basis for a
production-ready digital wallet.

We describe this solution by presenting a succession of three
systems. The first system describes the building blocks and inter-
actions that the design is meant to support. We use it in order to
introduce these in a simple environment. We show that this simple
solution meets the vast majority of our requirements, but point out
where it does not. Namely, the simple solution does not completely
eliminate a document verifier’s ability to track a document holder
from one verification to another.

The second system showcases the main idea of our solution,
which is namely the use of general-purpose Zero-Knowledge Proof
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(ZKP) protocols [24, 26] to eliminate entirely a verifier’s ability to
track a document holder from one verification to another.

While the second system ticks all our boxes from a theoretical
point of view, on a practical level the implementation is a little
too slow for commercial use. The third system solves this through
the use of a number of optimisations, of both algorithmic (number
theoretical) and programmatic nature, dramatically improving the
system’s performance.

We note that many ZKP implementations in the literature rely
on the re-implementation of standard protocols but with slight
alterations that make them more amenable to ZKP. For example, it
is common to replace general hash functions, which traditionally
rely on significant amounts of bit mixing andmixed-field arithmetic,
with more ZKP-friendly hash functions, such as ones based on
Pedersen hashes [3, 18, 27]. In our case, however, because our aim
is to enable the practical use of these cryptographic tools in large-
scale deployments, we restricted ourselves to the use of only long-
standing cryptographic algorithms in their original, unaltered and
heavily studied forms.

In Section 2, we describe the general context for the system,
including the relevant actors, terminology, etc.. In Section 3, we
describe the initial “placeholder” system. In Section 4, we describe
the basic ZKP-based solution. In Section 5, we then describe the
final design. Follow up research plans are described in the final
summary section, Section 6.

2 CONTEXT
2.1 The actors
For our purposes, a digital wallet system involves three parties:

• A user, who installs the digital wallet app on their smart
device and uses it to host virtual documents, as well as to
present them, or some data derived from them, to relying
parties;

• A relying party, who accepts digitally-signed data served
by the user’s app, validates it, and provides some required
service on the basis of the data presented; and

• A document issuer, acting also as a wallet authority, which
provides the data used by the user app.

Each of the actors listed above interacts with the system by
electronic means. This includes the user’s device, the relying party’s
device, and the wallet authority’s system.

The user’s device is a smart device running the digital wallet app.
This app supports the following functionalities.

Onboarding: The generation of an ID certificate that identifies
the user within the system;

Normal usage: Allowing the user to present their data to re-
lying parties; and

Administration: Management of the documents within the
wallet, such as by adding more documents or removing ex-
isting ones.

Here, the generation of an ID certificate may involve multiple
steps and actors, but one essential step is the generation of a pri-
vate/public identifier pair, such that the private identifier is only
known to the user’s app, and the public identifier is communicated
to the wallet authority and serves as the user’s identifier within the

system. Note that we refer to these as identifiers rather than keys.
It is not necessary for a user to be able to use these identifiers for
functions such as encryption or decryption. The only requirement
is that the private identifier is the pre-image of the public identifier
in a one-way, collision-resistant hash function.

Similar to the user’s device, the relying party’s device is a smart
device used by the relying party. The relying party’s device runs
dedicated certificate verification software to verify the data pre-
sented by users in the course of normal usage. In our design, relying
parties need no onboarding, no authentication, and no identifiers of
their own. Anyone can become a relying party and request to see
documents: it is the user’s choice who they show which documents
to. This is in no way a limitation of the system, because the same
technology that identifies a user can also be used to identify rely-
ing parties. This makes the management of approvals for relying
parties a deployment choice rather than a design choice.

Lastly, the wallet authority’s system is the software system used
by the wallet authority to

• Onboard users;
• Issue certified documents; and
• Publish any additional information required for the running
of the digital wallet.

2.2 Assumptions and constraints
To be viable, our solution must meet the following conditions.

• Though users and relying parties may interact with the wal-
let authority for onboarding and administration, normal us-
age must be supported without any online interaction. A
user must be able to present certificates to a relying party
without the presence of any network connection. (We refer
to this as the offline assumption.)

• As hinted by the offline assumption, the system is meant for
physically-present parties to exchange information. A design
constraint is that the system must ascertain, when a docu-
ment is presented, that the user presenting the document is
physically present.

• The device and the app of the relying parties are not con-
sidered trusted. No sensitive information, beyond what a
user explicitly intends to share, should be transferred to the
relying party. In particular, to the degree that the documents
shared are not personally identifiable, the system must sup-
port anonymity in document presentation, protecting the
user against any potential attempts by relying parties to
track the user based on their document presentation data.
This protection must continue even if the relying party uses
malicious software on its device.

• The system should be designed for intensive use, allowing
users to present documents frequently. As a result, it is im-
perative that the act of document presentation and validation
itself is as lightweight and convenient as possible to both
the users and the relying parties.

The constraints above are balanced by the following assump-
tions.

• We assume that the user app can generate a private identifier,
and that the software and hardware protections provided by
the smart device are enough to keep this private identifier
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secure, even from the device’s own user. In other words,
if a software is able to access this private identifier, this is
enough to ascertain that it is the legitimate, untampered,
user app.

• We assume that the initial installation of the user app, includ-
ing the generation of the private identifier, can be performed
in such controlled conditions so as to ensure that the public
identifier delivered to the wallet authority was generated by
the authentic user software (and its corresponding private
identifier is therefore kept securely on the user’s device, not
accessible even to the device’s own user).

• As a simplifying assumption for the purposes of the present
system, we do not concern ourselves with resilience against
quantum attacks. The system described uses classical cryp-
tographic primitives.

3 A BASIC SYSTEM
3.1 General
Our initial system implementation, presented here for clarity rather
than as a true contender, utilises a variety of cryptographic tools.

For public/private key operations, it uses points in the addi-
tive Curve25519 [9] twisted Edwards elliptic curve group [10]. For
the user, the private identifier is an integer, 𝑥 , modulo the group
size, and the public identifier is 𝐺𝑥 , where 𝐺 is the default group
generator. We use Ristretto [42], a method to eliminate cofactors
extending on Decaf [29], as our method to represent elliptic group
members, thus establishing a one-to-one connection between 𝑥 and
our representation for 𝐺𝑥 .

The wallet authority uses a similar pair, (𝑤,𝐺𝑤), as its private
and public key. The public key of the wallet authority is known to
all users and all relying parties. (In our implementation, this public
key is available as part of the software apps for these parties. More
generally, one can think of such public keys as available via the
wallet authority’s website, and downloaded by users and relying
parties ahead of any document verification.)

Our implementation of algorithms was in C, and for crypto-
graphic operations the libsodium library [11] and OpenSSL [48, 49]
were used. In particular, we used the Ristretto implementation
available in libsodium.

These C algorithms were later wrapped up in a Kotlin language
[30, 35, 40] implementation for deployment on Android devices.

One of the critical design constraints of the system was the need
for all communication between a user’s app and a relying party’s
app to be fully privacy-preserving. In addition to Internet-based
communication being disallowed by the offline assumption, this
requirement for anonymity in document presentation excludes
any protocol in which the parties need to electronically identify
themselves in any way. Thus, WiFi, Bluetooth and many other
potential communication protocols are all off the table.

To meet this constraint, all communication used by the system
in document presentation and verification is solely based on optical
means: the communicating device displays an image on the device’s
screen, which is then captured by the reading device’s camera. This
ensures that no data other than what is explicitly visible can be
captured in any information exchange. The initial system uses QR

Figure 1: Screenshot of the main menu in an Android imple-
mentation of the software.

codes [33, 44, 46], specifically, for communication in both directions
between the user and relying party.

Balancing the privacy advantages of the optical communication
system, QR codes have the drawbacks that they are fairly cumber-
some to use, and that even the largest QR codes cannot transfer
more than 2953 bytes. The former of these drawbacks forces the
design to use only the minimal number of data transfers in the
protocol, while the latter restricts what can be communicated in
any one transfer.

3.2 Document verification
The core functionality of the digital wallet is to enable a user to
present certified data about themselves to a relying party. For the
relying party to be convinced of the veracity of the information, it
must be able to ascertain all of the following:

(1) That the document presented is authentic;
(2) That the document presented relates to the true owner of

the user’s device; and
(3) That the presenting user is the true owner of the user’s

device.
To attain these goals, the system employs the following tech-

niques.
First, all documents in the wallet are digitally signed by the

wallet authority using EdDSA [12, 13] before they are issued to the
user. A relying party can ascertain the document’s authenticity by
verifying this signature.

Second, recall that at onboarding the user app generates a private
identifier and shares the corresponding public identifier with the
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wallet authority. Later iterations of the design presented in this
paper eliminate the need for this public identifier to be shared with
the relying party, but in this initial design the public identifier is
part of what is signed by the wallet authority and transmitted (via
QR code) to the relying party. To convince a relying party that the
document presented relates to the true owner of the user’s device,
we only need to prove that the device holds the private identifier
corresponding to the public identifier in the signed document that
is presented. As a first use of ZKP in the design, we utilise the
Chaum-Evertse-van-de-Graaf (CEG) ZKP protocol [16] for the zero-
knowledge ascertainment of the knowledge of a discrete logarithm.
The constraints of QR code size allow us to run the CEG protocol
in parallel 80 times, thus providing 80 bits of confidence to the
relying party that the user’s app has access to the private identifier
corresponding to the public identifier in the signed document. Not
only does this prove that the document presented refers to the
owner of the presenting device, it also proves that the presenting
user’s app is authentic and untampered. (In order to make sure
also in other wallet-related operations that only the authentic user
app can be used, all wallet documents are stored using AES-256
[41] in CBC mode [20], where the encryption key used is based
on a SHA3-512 [28] hash of the private identifier. Thus, only the
authentic user app, in possession of the user’s private identifier,
can manipulate the wallet data in any way.)

This leaves us only with the need to authenticate that the user
physically presenting the document is, indeed, the user to whom
the presented document was issued, i.e. the true owner of the user’s
device. How this is verified is discussed in Section 3.3.

3.3 User identification
So far, we have used cryptographic primitives in order to verify
every aspect required of the presented documents that is in the
digital domain. Our one remaining issue to be validated is in the
physical domain: whether the person physically presenting a device,
which in turn is communicating a piece of knowledge, is truly the
owner of the device. This, in turn, is equivalent to asking whether
the person who is the object of the document presented is the same
person as the one presenting the document.

To resolve this issue we use two types of controls:

(1) The user app itself identifies the user by biometric means,
and

(2) Optionally, the relying party may request to see an identi-
fying picture of the person, for manual verification of the
same.

Note that because of our offline assumption, it is not possible
for this type of validation to be performed over any network, so it
must be the responsibility of one of the two devices participating.

Because biometric identifiers (including a person’s image) are
highly sensitive, personal identifiers (e.g., because they can never
be changed by the user), we chose not to entrust them at any point
to the “untrusted” relying party. Instead, once we have verified, in
the digital domain, the integrity and authenticity of the user’s app,
we trust this app to

(1) Perform biometric identification of the user based on bio-
metric information that was stored at enrolment time, and

(2) At request of the relying party, present on the user’s device
an image of the app’s true user, based on information that
was, as before, stored at enrolment time, and which was
signed by the wallet authority.

This separation between digital authentication and physical au-
thentication is critical, because it allows us to connect a user’s
physical identity solely to one, secret item of information, namely
the user’s private identifier, from which point all other data stored
in the wallet can merely refer to this one identifier and contain no
other user identifier.

As a comparison, consider what a customer must do in the
physical-document world in order to convince airport personnel
that they have a boarding card to a particular flight. It is not enough
to present a boarding card that states “I am seated in 23C”, because
the verifier cannot ascertain from this who this “I” refers to. In-
stead, the customer must present a boarding card that identifies
them by their full name, and this name is then validated against
yet another document, such as a passport, containing even more
personal details.

Instead, in our implementation the wallet authority needs to
ascertain with high confidence only once the connection between
the physical user and their digital identifier. Once validation of this
connection through biometric means has been set up, the only infor-
mation the user needs on their documents in order to demonstrate
that a document is about them is their one public identifier (knowl-
edge of the private identifier to which they can prove, digitally,
through zero-knowledge protocols).

This techniques allows us to shard the data from any official
document to its atomic constituents, meaning the minimal pieces
of information that a user may wish to present. Thus, in our system,
a customer wishing to prove to a bartender that they are above
the drinking age only needs to present that one bit of information,
without having to expose even their full birth date, let alone any
other identifying details.

This connection between the user’s physical identity and their
public digital identifier, which is documented and signed by the
wallet authority and installed by the user on their device, is what
comprises the user’s ID certificate. It is produced, signed and in-
stalled as part of the onboarding process, which happens before the
wallet can be activated for normal use. Producing it may require
the user to physically identify themselves to the wallet authority.
Notably, for onboarding, the wallet authority only needs the user’s
public identifier. The private identifier is never shared, and, indeed,
is not known even to the users themselves.

In our implementation, the wallet authority, which is a trusted
party, is given access to the user’s image in order to digitally sign
it. This is important in order to establish with high confidence this
critical link between the physical user and their public identifier.
Technologically, however, it should be noted that it would have
also been possible to implement for this purpose a “blind signature”
protocol [34], in which the wallet authority signs the data without
being digitally exposed to it, thus alleviating even the need for the
wallet authority to have access to the user’s biometrics. As long as
sufficient confidence in the veracity of the signature is maintained,
blind signatures remain a possibility.
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Either way, in our protocol the wallet authority does not (and
should not) retain any copy of the user’s physical identifiers after
the initial creation of the identity certificate. Having said this, the
privacy implications of exposing the wallet authority to the user’s
image are minimal, given that the digital documents stored in the
wallet are meant to replace physical documents, traditionally issued
by the same authority, and traditionally already containing in many
cases images of the user.

3.4 Improvements
When presenting this first system initially, we stated that it is
presented here as a basis to build on, not as a true contender in its
own right.

In the next sections, we describe our heavier, full-ZKP solu-
tions, which address the initial system’s issues in more thorough,
qualitatively-better ways. However, before doing so we close the
present discussion by presenting several fairly lightweight, point-
modifications, that were implemented over the initial system and
which, nevertheless, substantially improve its overall appeal.

3.4.1 Multiple public identifiers. The one Achilles heel of the de-
sign, as presented so far, is that in order for the user to convince the
relying party of the veracity of their documents, said user needs to
produce a signed document that contains not just the information
they wish to convey but also their public identifier.

This is problematic because an untrusted relying party may end
up harvesting the public identifier, using it to track the user, profile
them, etc., specifically violating one of our design constraints.

In Section 4 we will show how such public identifiers can be
omitted altogether from the information presented to the relying
party. However, we will also discuss the costs that such an approach
has.

In our initial implementation, which is extremely lightweight
when it comes to certificate sizes, response times, etc., we never-
theless were able to reduce dramatically the problems associated
with having such a public identifier, without this costing in system
performance.

The way to do so was to establish, at enrolment time (i.e., when
creating the identity certificate) not one private/public identifier
pair but a large number of them. In our specific implementation, at
enrolment 1, 000 such pairs are created.

At document verification, a user still needs to present a pub-
lic identifier, but can now choose randomly any one of the 1, 000
available pairs.

Even if a user presents their certificates daily through the system,
any attempt to track the user via their identifiers will only see
identifiers recurring once every 3 years. This makes data harvesting
essentially useless in this case, noting that the individual identifiers
are all randomly chosen, so on their own carry no information.

3.4.2 A two-message Fiat-Shamir protocol. So far, of the assump-
tions and constraints listed in Section 2.2, the only one that has not
yet impacted the design is the assumption of intensive use. This
stipulates that using the system should not be cumbersome.

In fact, for privacy reasons we have opted to use QR codes,
which are a more cumbersome way to communicate than the more
common alternatives.

In order to satisfy the intensive use assumption, we aimed to
implement our algorithms in a way that minimises the number of
QR codes used per document validation.

To explain, let us first consider what communication happens
during document validation. This can be divided into two parts:

(1) The shared information is transferred from the user device
to the relying party’s device, and

(2) The veracity of this information is ascertained by use of a
zero-knowledge protocol.

In this first system, the protocol used is CEG. In the later sections,
this protocol is replaced by a Bulletproof protocol [15]. In both cases,
however, the protocols share a similar structure:

(1) The prover (in our case the user) performs a zero-knowledge
cryptographic commitment;

(2) The verifier (in our case the relying party) responds with a
random challenge; and

(3) The prover sends a response to the challenge.

In CEG, one such pass over the three steps is enough to provide
one bit of confidence in the proof, and multiple passes (of which we
perform 80) can be run in parallel. This results in a protocol with 3
communication steps (noting that the user can also send the shared
document details during the first step without this increasing the
total number of communication steps).

In the Bulletproof protocol there are significantly more steps,
but the structure is the same: at any point in the protocol, all the
prover’s past communications can be viewed as commitments, and
the verifier sends additional random challenges in order to probe
whether the prover can respond to them correctly. In Bulletproofs,
once the steps of the protocol are done, this proves the claim to all
but a negligible probability of error.

In recent years, in part due to the rising popularity of blockchain
and the wish to encode zero-knowledge proofs on the blockchain
ledger, demand has risen for non-interactive ZKPs. Of these, the
currentlymost popular ones are zk-SNARKs [25, 37] and zk-STARKs
[4].

For ZKP protocols following the template of CEG and Bullet-
proofs as presented above, a common way to transform them from
interactive to noninteractive is through the use of the Fiat-Shamir
heuristic [23]. Essentially, the prover can complete the entire pro-
tocol on its own, substituting in place of the verifier’s random chal-
lenges deterministic challenges that are based on a cryptographic
hash of the entire transcript of the ZKP protocol up to this point.

A verifier looking at the proof can ascertain the correctness of
the hash, and by this be convinced that the challenges could not
have been chosen maliciously, nor could they have been chosen
before the protocol’s prior commitments.

In our case, non-interactivity is not an option because we are
expressly trying to ascertain the physical presence of the user (as
well as the user’s device and the app aware of the user’s private
identifier). We therefore need interactivity. However, we still want
to minimise the amount of it, in the sense of minimising the number
of communication steps.

Unfortunately, if even one challenge by the verifier is not a Fiat-
Shamir challenge, this induces a minimum of 3 communication
steps, as per the list above.
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To overcome this, we have implemented what we refer to as a
two-message Fiat-Shamir protocol. In this protocol we introduce a
brand new random verifier challenge, which does not exist in the
CEG or Bulletproof protocols, or in other zero-knowledge protocols
following the same template. This challenge is sent by the verifier
to the prover prior to any other communication, i.e. without any
prior commitment by the prover.

After this one true challenge by the prover, the verifier continues
the protocol as usual, using the normal Fiat-Shamir heuristic for
all later verifier challenges. The critical point, however, is that the
initial, real challenge is part of the protocol transcript, and therefore
impacts all later Fiat-Shamir challenges (because these are all based
on hashes computed over the protocol transcript).

In this way, we are able to reduce our communication to only two
steps: we begin with the relying party sending a random challenge
as one QR code, and the only other QR code needed is the prover’s
response, containing all other required information.

This is clearly the minimal number of communication passes
needed for any interactive protocol.

We use this optimisation both here and in the later Bulletproof-
based solutions.

Notably, the first communication step, in addition to the random
challenge, may include any other information the relying party
may need to convey to the user. In our implementation, the relying
party uses this communication step to also specify electronically
what document type it is requesting.

3.4.3 JAB codes. In a two-message Fiat-Shamir protocol, the first
challenge does not need to be particularly large. We use a 128-
bit challenge. It is only the response that carries the important
information, and fills the majority of what a QR code can carry.

Unfortunately, in practical experimentation we discovered that
scanning a large QR code that is displayed on a device’s screen
can only be done when the reading device is a fairly high-end
device, and even then may be somewhat fiddly in difficult lighting
conditions. This makes such large QR codes less suited for the
intensive use scenario we wish to support.

Even though this only affects the choice of device for the relying
party, not for the user, we decided to solve this problem altogether,
which we did by switching from QR codes to JAB codes [8]. JAB
codes are an 8-colour variant of QR codes, because of which they re-
quire only 1/3 the number of screen pixels in order to communicate
the same number of bits. JAB codes, like QR codes, are based purely
on visually scanning a user’s device, so changing from one code
type to the other has no implications on the privacy of the design,
but their more compact bit representation allows even low-end de-
vices to be used in our protocol for communicating our challenges
and challenge responses.

This improvement, too, was carried over to all our later designs
as well.

4 A FULL ZKP IMPLEMENTATION
4.1 General
The second version of the digital wallet which we implemented
aims to capitalise on all the advantages of the original design (and,
indeed, reuses as many as possible of the ideas presented in the

previous section), but does so without ever exposing the user’s
public identifier (or any other traceable identifier) to the relying
party.

The way to do so is to implement the document presentation
as a single Bulletproof protocol, implemented (as explained in Sec-
tion 3.4.2) as a two-message Fiat-Shamir protocol. Bulletproofs,
specifically, were chosen because they are essentially unique in
that they are general-purpose ZKP protocols whose entire proofs
nevertheless fit comfortable even on a QR code.

The basic idea is that instead of a CEG protocol, which can only
determine whether a user knows the private identifier matching
a given public identifier, we use a Bulletproof, which is a general
ZKP protocol, able to prove any claim in the computational class
NP [45].

With Bulletproofs, the user can therefore now claim, in zero
knowledge, the statement “I have a document, signed by the wallet
authority, certifying 𝑋 to the individual with public identifier 𝑌 ,
and I know the private identifier matching 𝑌 (proving that I am
this individual),” and can do so whilst only divulging 𝑋 (i.e., the
information the user wants to share) and not𝑌 (the public identifier
which we wish to keep known only to the user and the wallet
authority).

Because this statement is in the computational class NP, we
know that a Bulletproof can be devised for it. Unfortunately, such a
Bulletproof, formulated in this native form, would not be efficient.
Bulletproofs work on what is known as a rank-1 constraint system
(R1CS) representation of NP problems. This is a system of equations
involving linear relationships between variables, as well as triplets
of the form “𝑥𝑅𝑥𝐿 = 𝑥𝑂 ”, encapsulating amultiplicative relationship
between variables, where variables are integers modulo the size of
the elliptic curve used in the implementation (which, in our case, is
Curve25519). The costs associated with a Bulletproof are largely to
do with the number of multiplication gates used. The problem is
that not all NP problems are equally amenable to being represented
as an R1CS with a small number of multiplications.

For example, in the system described in Section 3, the relationship
between a user’s private identifier and their public identifier was
that if the private identifier is 𝑥 , the public identifier is𝐺𝑥 , where
𝐺 is a base element in an elliptic curve. Unfortunately, computing
𝐺𝑥 using an R1CS is quite heavy.

In this section, we describe the specific changes that weremade to
the initial design in order to allow convenient R1CS representation,
and how this was then implemented.

We remark that while the “proof” part of a Bulletproof is ex-
tremely succinct, Bulletproofs do require the prover and verifier
to agree on substantial amounts of public randomness as part of a
one-time setup. In many scenarios this is a drawback, because no
trusted third party exists to ensure that the public randomness is
generated fairly. In our case, however, no such problem exists be-
cause the wallet authority can provide the public random bits (e.g.,
by publishing them on its website, or, as in our implementation, by
bundling them as part of the wallet software). The reason that there
is no cryptological concern around the wallet authority generating
the public randomness is that even if the wallet authority chooses
this public randomness maliciously, the only possible adverse effect
of this, from a cryptological perspective, is that the wallet authority
can allow a user to make a false “proof” that they own a specific
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certificate; however, such a malicious use of the public random-
ness would be entirely unnecessary, because, if the wallet authority
wishes to allow a user to make such a claim, it can simply provide
said user with the relevant certificate, instead.

4.2 The basic idea
In general, any relationship that can be represented through Boolean
logic can be transformed into an R1CS. Unfortunately, this requires
a multiplication for every AND gate and every OR gate. For effi-
ciency, one wants to turn to an algorithm that natively represents
itself through arithmetic operations.

Even more specifically, one wants to turn to an algorithm that
natively expresses itself through arithmetic operations in a field
that has the same size as the underlying elliptic curve.

For this reason, many ZKP implementations of classic crypto-
graphic algorithms tweak them in some ways in order to rely less
on Boolean logic and more on arithmetic in the given field. Replac-
ing general hash functions with functions based on the Pedersen
hash is a classic example of this.

In our case, however, because we want to use only untweaked,
longstanding algorithms, we were not able to follow in this route.

Instead, we built our protocols based on algorithms that are
natively low-degree arithmetic functions.

Specifically:
• For private and public user identifiers, we used the hardness
of the factorisation problem: the private identifiers are cho-
sen as two prime numbers of length 1024 bits, 𝑢𝑝 and 𝑢𝑞 ,
and the public identifier, 𝑢𝑛 , is their product.

• Instead of EdDSA, we use RSA signing [39].
Specifically, let the document information be 𝐼 (represented in

our case as 132 bytes of data) and let 𝑃 be an additional 992 bits of
random padding. Furthermore, let𝑀 be the concatenation of 𝑢𝑛 , 𝐼 ,
and 𝑃 , amounting in total to 4096 bits.

The wallet authority maintains a 4096-bit RSA key 𝑛, and signs
𝑀 by means of the signature 𝑆 = 𝑀𝑑 mod 𝑛, where 𝑑 is chosen
such that𝑀 = 𝑆3 mod 𝑛.

In integer arithmetic, this allows representing the equation that
the user needs to prove they know a solution to merely as

𝑆3 = 𝑢𝑝𝑢𝑞 + 𝐼 × 22048 + 𝑃 × 23104 + 𝐷𝑛, (1)

where 𝑆 , 𝑢𝑝 , 𝑢𝑞 , 𝑃 and 𝐷 are all private integer variables, known
only to the user, whereas 𝐼 is communicated to the relying party
and 𝑛 is public knowledge. Together, as long as the user can also
prove the bit lengths of all private variables, this equation encapsu-
lates both that the wallet authority signed the document with the
appropriate public identifier 𝑢𝑛 = 𝑢𝑝𝑢𝑞 , and that the user knows
the corresponding private identifier (𝑢𝑝 , 𝑢𝑞).

4.3 Bulletproof formulation
Unfortunately, we are unable to depict (1) directly as a Bulletproof
equation. The reason for this is that this is an integer equation, but
Bulletproof R1CS systems work only in modular integer arithmetic
on fields the size of the underlying curve.

To resolve this, note that the entire equation is of 4096×3 = 12288
bits, as determined by its largest element, 𝑆3. Thus, it is enough
to ascertain that the difference between the left-hand side and the

right-hand side is zero modulo some large value 𝑁 , greater than
212288.

To prove this, we add to the shared public data (e.g., data pub-
lished by the wallet authority) the identity of 174 distinct primes,
each 71 bits in length, 𝑃1 . . . , 𝑃174, such that 𝑁 =

∏
𝑖 𝑃𝑖 is suffi-

ciently large. The computation of (1) can then be performedmodulo
each 𝑃𝑖 separately, and if the equation holds under all moduli, then
by the Chinese Remainder Theorem, it must also hold modulo 𝑁 .

The reason for the modular representation, and the reason for
the choice of 71-bit-long primes, is that it allows us to compute the
modular equivalent of (1) without overflows.

To assert this, we must first make sure that all our variables are of
the appropriate bit length. We do this by defining separate variables
for each bit of 𝑆 , 𝑢𝑝 , 𝑢𝑞 , 𝑃 and 𝐷 . This is a common technique used
in ZKP in order to ascertain the bit-size of a value. For example, let
us define 𝐿 𝑗

𝑆
to be the 𝑗 ’th bit of 𝑆 . Then the following equations

𝑅
𝑗

𝑆
= 𝐿

𝑗

𝑆
− 1,

𝐿
𝑗

𝑆
× 𝑅

𝑗

𝑆
= 0,

ensure that all 𝐿 𝑗
𝑆
are bits, while the equation

𝑆 =

4095∑︁
𝑗=0

𝐿
𝑗

𝑆
2𝑗

ensures that 𝑆 is of the appropriate bit length.
In our case, we modify this paradigm by computing a new value,

𝑆𝑖 , as

𝑆𝑖 =

4095∑︁
𝑗=0

𝐿
𝑗

𝑆
(2𝑗 mod 𝑃𝑖 ), (2)

to act as a convenient stand-in for 𝑆 mod 𝑃𝑖 , and we create in the
same way also modular variants for the equation’s other variables.

This “modular representation” works because

𝑆𝑖 ≡ 𝑆 (mod 𝑃𝑖 ) .
However, unlike 𝑆 mod 𝑃𝑖 the value of 𝑆𝑖 is not constrained to be in
[0, 𝑃𝑖 ). Instead, we can only be sure that it does not exceed 4096𝑃𝑖 .

This is enough to ensure that 𝑆3
𝑖
is still within the 252 bit range of

the finite field in which we are computing, allowing us to effectively
compute all of (1) modulo each 𝑃𝑖 .

If we refer to the modular version of the left-hand side of (1) as
LHS𝑖 and the right-hand side as RHS𝑖 , then the final R1CS equation
for each 𝑃𝑖 becomes

LHS𝑖 +𝐶𝑖 = RHS𝑖 + div𝑖𝑃𝑖 . (3)

(The constants 𝐶𝑖 , known to the relying party, are multiples of 𝑃𝑖
designed to make sure that the div𝑖 values proving the modular
equation are nonnegative.)

In total, this approach requires 4096 variables in order to store
the bits of 𝑆 , twice 1022 bits in order to store the bits of 𝑢𝑝 and 𝑢𝑞
(noting that their most and least significant bits are both known to
be 1s), a further 992 variables to store the bits of 𝑃 , 8192 variables
to store the bits of 𝐷 , and 178 bits for each of the 174 div𝑖 variables.
Each such bit requires one multiplication gate.

Additionally, for each of the 174 𝑃𝑖 values, 2 multiplication gates
are required to compute 𝑆3

𝑖
and 1 for the modular equivalent of

𝑢𝑝𝑢𝑞 .
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In total, these are 46, 818 multiplication gates.
Bulletproofs, by their design, require a number of multiplication

gates that is a power of 2, for which reason this number must be
rounded up to 65, 536.

4.4 Performance
The Bulletproof design is relatively frugal in variables (65, 536),
relatively lightweight in total number of equations (94, 854), and
meets the main design goal of proving the veracity of the user’s
documents without divulging to the relying party any traceable
user identifier.

The total size of the challenge response sent by the user to the
relying party is also quite small: at merely 1, 572 bytes, it is only
half the size of what fits on a single QR code, and is a much smaller
challenge response than was needed even for our initial system as
described in Section 3.

Unfortunately, despite all this, the system’s performance is, in
practice, a little too slow for practical usage. In contrast to the
system of Section 3, whose performance is for all practical purposes
instantaneous, generating a Bulletproof based on a challenge by
the relying party takes an average of 45 seconds, and verifying the
response takes an additional 15 seconds.

In the next section, we show how we were able to optimise the
system further, in order to bring these values down to interactive
times.

5 THE FINAL DESIGN
In Section 4 we described the basic layout of a Bulletproof-based so-
lution that meets the problem’s privacy constraints, but its practical
performance was too slow for the needed intensive use.

To resolve this, we have improved the design by adding both
algorithmic and programmatic optimisations. We describe these in
this section.

5.1 A new basic formula
In order to introduce the new optimisations, we must first undo
one optimised design choice in the Section 4 design. Specifically,
originally we established (3), which in turn encapsulates (1), by
means of a single equation.

This was a choice that minimised the total number of multiplica-
tion gates used, but forced us to work in arithmetic modulo 71-bit
primes, largely because the computation of 𝑆3

𝑖
had to fit into the

252-bit field which the Bulletproof was using, as determined by the
size of the underlying elliptic curve.

For the present design, we require our computation to be modulo
higher numbers, so instead of encapsulating (1) by a single equation,
we break it down as

𝑆 ′ = 𝑆2,

𝑆 ′𝑆 = 𝑢𝑝𝑢𝑞 + 𝐼 × 22048 + 𝑃 × 23104 + 𝐷𝑛,

where the first of these, in turn, translates to the modular equation

𝑆2𝑖 = 𝑆 ′𝑖 + div′𝑖𝑃𝑖

thus requiring us to only use our 252-bit-sized field for squaring
rather than for cubing numbers. By setting each 𝑃𝑖 to be at most
111 bits in length, we can ensure that all 𝑆𝑖 and other “modular”
representations of our various integer variables all stay within 123

bits, making products of two such variables limited to 246 bits,
giving us plenty of headroom in order to ensure that all of (1) can
be computed in less than the available 252 bits.

5.2 Number-theoretic optimisations
The time costs of our Section 4 Bulletproof implementation can
largely be traced back to two sources. First, setting up the Bullet-
proof equations requires much large-integer arithmetic, which was
implemented using OpenSSL’s BIGNUM functionality. The bulk
of these computations need to be repeated 174 times, one for each
prime modulus.

Second, the Bulletproof itself requires a one-time amount of
computation related to the total number of nonzero coefficients
in the Bulletproof equations, followed by a sequence of computa-
tions whose complexity is linear in the number of multiplication
gates (which in our case is 65, 536). These computations are in both
Curve25519 Ristretto and in the modular integer field of the same
size, and were implemented using libsodium’s Ristretto implemen-
tation.

Of our Bulletproof variables (whose number is linear in the
multiplication gates needed), only 15, 324 describe the underlying
integer equation. The bulk of our variables are those added for the
modular computation. Specifically, 181 new variables are needed
for each of the 174 moduli tested.

A common idea in Bulletproofs (and ZKP protocols beyond) is
that instead of testing each of a large number of linear equations
separately, one can choose a random combination of the linear
equations and only test it. If all linear equations separately are
satisfied, so will their linear combinations, but if not all linear
equations are met, one can prove that one has only a negligible
probability of choosing a combination that is satisfied.

In our case, we want to prove that the difference between the
left-hand side and the right-hand side of (1) is zero. By construc-
tion, we know this difference to be nonnegative and at most 212288.
Previously we proved it to be zero by computing its value modulo
multiple numbers, 𝑃𝑖 , noting that their least common multiple is
greater than 212288 and so if the difference is not zero, this would
necessarily show up in at least one of the moduli’s residues.

Consider, however, what would happen if we were to compute
the difference, Δ, modulo some randomly-chosen 111-bit number,
𝑄 , not necessarily prime.

It turns out that merely choosing a random𝑄 is not good enough.
The reason for this is that Δ may be chosen adversarially to be, for
example, a highly composite number [1, 38]. In such a case, the
number of 𝑄 values dividing Δ will be large, so merely choosing
randomly one 𝑄 value will not be enough to definitively conclude
that Δ is, in fact, zero.

There is, however, a better way. Consider choosing 𝑄 not at
random from all 111-bit numbers, but only uniformly from those
numbers that are 2200-rough [36], defined as those numbers all of
whose divisors are greater than 2200.

If Δ is nonzero and at most 12288 bits long, such a number can
have at most 1106 prime divisors over 2200.

For a 111-bit number to be 2200-rough, it must be the product of
at most 9 primes over 2200. Note that if some subset of the prime
divisors of Δ is 111 bits in length, no product of a subset or superset

8



ZK-Wallet PoPETs YYYY(X)

of this set can be in the same range (as these products must differ by
at least 11 bits of length). Thus, the maximum number of divisors
of Δ that are 2200-rough integers 111 bits in length can be bounded
at 𝐶1106

9 , i.e. the number of ways to choose 9 primes out of 1106.
(This can be attained in the worst case, which is when Δ is square
free [43], meaning that it factorises into only unique primes.)

This number of possibilities is just under 272.5.
The total number of 2200-rough 111-bit numbers is well-approx-

imated as 2110
∏

𝑖
𝑝𝑖−1
𝑝𝑖

, where 𝑝𝑖 is the 𝑖’th smallest prime. This is
approximately 0.073 × 2110.

In total, the chance for a randomly-chosen 𝑄 to divide a non-
zero Δ can be bounded from above by 2−33.7. By choosing 2 such
𝑄 candidates at random, we ensure that the probability for false
acceptance is bounded from above by 2−67.4, which was deemed
an acceptable rate.

In this optimisation, only 2 moduli need to be checked, rather
than 174, reducing the bulk of the big-number computations re-
quired for the algorithm.

Moreover, the number of multiplication gates required in this
design is only 4096 + 1022 × 2 + 992 + 8192 + 2 × 360 < 214. This is
a reduction to a quarter of the number of variables required for the
initial Bulletproof, and also reduces the number of Bulletproof iter-
ations required, bringing the entire algorithm solidly to interactive
reaction times.

5.3 Programmatic optimisations
The question remains how best to allot a uniform 2200-rough num-
ber that is 111 bits long, recalling that the procedure to do so must
be deterministic from one or more Fiat-Shamir challenges (so that
it can be repeated by both prover and verifier, ascertaining that the
number was not chosen adversarially). The distribution will not
be completely uniform, but will have high enough entropy for our
purposes.

To do this, we employ two techniques.
First, in order to allot a number that is not divisible by 2, 3, 5, 7

and 11, we prepare in advance a table,𝑇 , of all 480 residues modulo
2310 = 2 × 3 × 5 × 7 × 11 that do not divide by any of these primes.

Our Fiat-Shamir challenges are outputs of SHA3-512 [21]. This
provides us, for a single challenge, with 512 pseudorandom bits.
Of these, we can use 17 bits in order to compute the 480 modulus
of a uniformly-chosen 17-bit number, and this already provides us
with a close-enough approximation of a uniform value in the range
[0, 479], which we can use as an index to the look-up table, 𝑇 , of
residues modulo 2310, thus uniformly choosing a residue class for
our chosen number, 𝑄 , modulo 2, 3, 5, 7 and 11. Let𝑚2310 be the
value retrieved from the table of residues.

Next, we choose uniformly a value 𝑑2310 in the range

[⌈2110/2310⌉, ⌊2111/2310⌋).

This provides us with a𝑄 candidate 2310×𝑑2310 +𝑚2310 which we
know does not divide by any prime smaller than 13.

The range for 𝑑2310 is just under 99 bits. We can allot a 𝑑2310
value uniformly by choosing 99 bits from the SHA3 output, then
using rejection sampling to reject the choice if the value of 𝑑2310 it
produces (after adding ⌈2110/2310⌉) is not smaller than ⌊2111/2310⌋.
Such rejection happens with probability around 1/8.

Next, we need to make sure that 𝑄 does not divide by any of the
322 remaining primes below 2200. This we do by checking, i.e. by
more rejection sampling: if our 𝑄 candidate divides by any of the
remaining “small” primes, we eliminate it, and use the next 99 bits
of the SHA3 output in order to allot another 𝑑2310,

The probability that a 𝑄 candidate does not divide any of the
remaining 322 primes is approximately 1/3, and even when account-
ing also for the probability of rejection due to a too-large 𝑑2310, the
probability of success is still above 30%. In expectation, roughly 3
attempts are needed in order to find a successful candidate. Having
started with 512 random bits, we can afford a full 5 attempts before
another Fiat-Shamir challenge needs to be computed, so in high
probability the procedure can be completed using only the first
challenge.

This leaves us with the question of how to efficiently verify that
a candidate value𝑄 does not divide by any of the remaining primes.
To do this, we have partitioned the primes to 49 buckets, such that
the primes in each bucket have a product smaller than 264. This
can be done simply by greedy assignment.

The trick here is that much of the reason for the slow computa-
tion time is the need to handle large numbers (which we do using
OpenSSL’s BIGNUM functionality). Instead, for each 𝑄 candidate
we only compute in this way the 49 residues {𝑄 mod Π𝑖 }49𝑖=1, where
Π𝑖 is the product of all primes in the 𝑖’th bucket. The result of each
such modulo operation can then be stored in a 64-bit unsigned
“long” integer, allowing all remaining checks to be done at much
higher speeds.

6 NEXT STEPS
Research on the described systems is continuing. The designs de-
scribed in this paper are for demonstration prototypes, not for
production-ready systems.

Additional features that will need to be supported for real-world
usability include

(1) Support for multiple document issuing authorities, as well as
a separation between the document issuers and the authority
managing the wallet system itself,

(2) Support for automatic life-cycle management by recognising
document expiration and revocation of documents, and

(3) Potentially, support for resilience against quantum attacks.
New designs that integrate such abilities are currently under inves-
tigation.

Even so, the present system serves as a powerful proof point
that ZKP systems have matured to the point that they can support
complex, real-world usage, powering systems that afford better
privacy management than traditional solutions can.
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