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Abstract—Embedded systems are flexible and cost-effective
and thus have found a use case in almost every part of
our daily lives. Due to their widespread use, they have also
become valuable targets for cyber attacks. However, translating
cutting-edge cyber security from servers and desktops to the
embedded realm can be challenging due to the limited com-
putational power and memory of embedded devices. Although
quantum computing is still in early research and development,
it threatens to break conventional asymmetric cryptography
which is a key component of most secure applications currently
in use. Given the long lifespan of embedded devices, which can
last for decades, research must find solutions for post-quantum
(PQ) security rather sooner than later. The field of post-
quantum cryptography (PQC) received significant attention
in 2019 when the National Institute for Standards and Tech-
nology (NIST) launched a competition to find suitable PQC
algorithms. During the PQC competition, the applicability of
novel PQC algorithms to embedded devices was an important
topic that garnered significant research interest. We provide
a survey of the latest research regarding PQC for embedded
systems. However, rather than focusing on PQC algorithms,
our study revolves around practical use cases intending to help
embedded developers understand the current state of research
from an integration perspective.

1. Introduction

Embedded platforms are extensively used throughout
today’s technology driven society and can be found in a
variety of environments ranging from personal smart home
devices to industrial Operational Technology. According to
estimates, there are already 16 billion Internet of Things
(IoT) devices deployed worldwide, and the number is grow-
ing [1]. Despite their functional suitability for many use
cases and environments, their security is often inadequate.
Due to their long lifespan, limitation to few core tasks, and
price pressure, embedded platforms often do not receive the
same level of attention regarding security from both users
and developers. As a result, they are often vulnerable [2], as
demonstrated by multiple large-scale attacks on IoT devices
in recent years, such as the Mirai botnet [3]. Thus, although
these devices have limited computational capabilities and
memory constraints, security must become a priority. One

of the industry’s major security challenges is the threat of
a high-performance quantum computer becoming available
during the long lifespan of embedded devices. Due to
Shor’s algorithm [4], conventional asymmetric cryptography
is broken once a powerful enough quantum computer exists.
Motivated by recent advances by IBM [5] and Google [6],
security research focuses on finding corresponding counter-
measures. Post-Quantum Cryptography (PQC) is the field
of research that tries to find mathematical problems that
can withstand quantum cryptanalysis while remaining usable
on conventional computers. One of the cornerstones of this
research is the PQC competition [7] held by the National
Institute of Standards and Technology (NIST) which ulti-
mately aims to standardize different PQC algorithms.

1.1. Problem Statement and Research Questions

This competition raised fundamental questions about the
new PQC algorithms’ applicability to embedded devices. As
a result, a significant amount of embedded PQC research has
been conducted in the last few years. However, obtaining
an overview of the current state of research is challenging
due to the fast-moving competition and changes in the PQC
algorithms. This leads to the following research questions:
RQ1 What are the strengths and weaknesses of existing

PQC algorithms?
RQ2 Which algorithms are suitable for which use case in

the context of embedded devices?

1.2. Contributions

To answer these questions, we survey the research field
of PQC for embedded devices, focusing on the ARM Cortex
M4 as a reference architecture and real-world use cases
including secure communication, secure boot, and secure
software updates. Our objective is to provide a consoli-
dated overview with the intention to assist developers and
integrators in better understanding the challenges they may
encounter when implementing PQC for their specific ap-
plications. To ensure a reliable representation despite the
fast-moving PQC research, this paper focuses on already
standardized algorithms and software implementations as
they are more flexibly applicable than specialized hardware.
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2. Related Work

Collecting and categorizing PQC research has been a
regular aspect of the NIST competition, as NIST itself
publishes a report [8] at the end of each round summarizing
the most significant advances. However, due to the fast-
paced nature of PQC research, new insights are constantly
gained, and algorithms that were deemed secure get broken.
Standardization of algorithms did not begin until the end of
the third round of the NIST competition in 2022. At the time
of writing, these algorithms are still in draft form. This work
will focus on these standardization candidates since they are
the most mature algorithms and most likely to be adopted
into practice.

Notable other recent surveys in the field of PQC, include
those by Dam et al. [9] and Koziel et al. [10], which survey
the current literature and the trends in publication. They
focus on the NIST round 3 algorithms, their improvements,
and their implementation in software and hardware. In a
similar fashion, Alnahawi et al. [11] categorize papers by
keywords and application fields and outline the migration
process and standardization efforts. Recently, their team also
collected research on the PQC adoption regarding quantum-
safe electronic identity documents and machine-readable
travel documents [12]. The chip cards used in such applica-
tions are often highly constrained with only a fraction of the
RAM and computing capabilities a typical embedded device
has. Furthermore, protocols and use cases for electronic
identity documents are highly specialized and translate only
partly to other embedded devices. For this reason, our paper
does not consider embedded devices with lower capacity
than the ARM Cortex M4 and focuses on general-purpose
use cases. A survey by Kyung-Ah Shim [13] analyzes
Post-Quantum (PQ) signature algorithms in the context
of vehicular communication. Similar to other surveys, she
focuses on the PQC algorithms’ performance in software
and hardware. The embedded devices found in vehicles are
often more powerful than the ARM Cortex M4 and have
very specialized applications that are unique to vehicular
communication. In 2020, Fernández-Caramés [14] analyzed
the current research on IoT security, collecting performance
data on different hardware that is used in IoT environments.
The paper refers to NIST round two and in contrast to this
work, the author does not examine specific protocols and
use cases but rather focuses on the standalone performance
of the algorithms themselves.

Recently, in 2024, Alnahawi [15] published a survey on
PQ TLS. While their findings on the overall good perfor-
mance of PQC in TLS match our results, they focus largely
on ideal network conditions, which are rare for real world
embedded devices.

3. State of Art

Since the formulation of Shor’s algorithm [4], which
threatens to break conventional asymmetric cryptography,
academic research has tried to find new algorithms capable
of securing information in a post-quantum future. The field

Table 1. NIST SECURITY LEVEL REQUIREMENTS

Security Level Security Analogous to Breaking
1 AES-128 = O(264)
2 SHA-256 = O(285)
3 AES-192 = O(296)
4 SHA-384 = O(2128)
5 AES-256 = O(2128)

Attack on AES by Grover [17]
Attack on SHA hash-family by Brassard et al. [18]

of PQC got a special focus in 2016 when NIST started a
competition to standardize post-quantum signatures and key
exchange algorithms [16]. The competition is currently in
preparation for Round 4 after the first three standardization
candidates have been nominated [8]. As indicted by Table 1,
algorithms in the standardization process must meet specific
security levels which correspond to the effort of breaking
conventional symmetric cryptography by a PQ adversary.
Standardization candidates should have multiple parameter
sets to fulfill different security levels. The two leading
algorithms to attack conventional symmetric cryptography
and hash functions are based on the Grover algorithm [17].
It allows PQ adversaries to search the key space of AES in
O( 2

√
n). A variation of the Grover algorithm by Brassard et

al. [18] allows finding a hash collision of SHA-2 in O( 3
√
n).

In addition to the NIST competition, the Internet Engineer-
ing Task Force (IETF) also worked on standardizing PQC
algorithms and their integration into protocols.

PQC has two main primitives: Key Encapsulation Mech-
anisms (KEMs) and Digital Signature Algorithms (DSAs).
KEMs aim to secure symmetric key material for a shared
secret, while DSAs provide authentication by signing and
verifying digital messages. PQ KEMs are intended to re-
place conventional key-sharing protocols, such as Diffie-
Hellman Key Exchange (DHKE), but they slightly differ
in application. KEMs use an ephemeral asymmetric key
pair to encapsulate the secret material itself, instead of
both parties exchanging information to generate a shared
secret. The general application flow involves generating a
key pair, sending the public key to the other party which
then encapsulates the secret and sends it back. The initial
party can then decapsulate the secret using the generated
private key upon receipt. PQ DSAs are more similar to their
conventional predecessors. They use a long-term established
key pair to provide authenticity by signing and verifying
messages.

Since standardization is ongoing, a full transition to PQC
in long-term applications seems not recommended. Due to
the fast-changing PQC research field, early adopters are ad-
vised to follow a hybrid strategy, especially for KEMs [19],
[20], to protect against a ’store now, decrypt later’ attack.
Hybridization aims to combine conventional cryptography
and PQC for specific use cases. Although this approach
doubles the cost, it protects against PQ adversaries while
guaranteeing conventional security should the less mature
PQC algorithm be broken in the future. For PQ DSAs, this
approach seems to be less popular since they are a greater
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burden on the embedded devices and authentication cannot
be broken retroactively.

There are multiple promising mathematical problems
suitable for PQC algorithms. Although there are algorithms
based on other problems, this paper focuses solely on the
already standardized KEMs and DSAs from IETF and NIST.
The following subsections group the different algorithms by
their underlying cryptographic primitives and explain key
performance indicators.

3.1. Hash-Based Algorithms

The class of hash-based algorithms includes all algo-
rithms whose security is based on cryptographic hash func-
tions. Conventional hash functions are deemed to be secure
against a PQ adversary, however, their security strength
is weakened. This makes them a prime candidate for a
conservative choice as a PQC algorithm since the underlying
security assumptions are well understood. The best currently
known attack on cryptographic hash functions is the attack
by Brassard et al. [18], reducing the pre-image search by
3
√
O. Hash-based algorithms are exclusively used for signa-

ture algorithms which can be divided into two categories:
stateful and stateless.

Stateful algorithms are based on One-Time Signature
(OTS) keys that utilize a given hash function in a chain-like
manner. The secret key, signature, and public key are part
of this chain which can only be used once. To utilize this
technique more than once, these OTS keys are combined in
a Merkle hash tree which allows a single public key to be
derived from all the OTS public keys. The final signature for
a message consists of the OTS signature, the OTS public key,
and an authentication path that contains all the necessary
nodes of the Merkle tree to derive the root node, which
corresponds to the main public key. Since signers cannot use
the OTS keys more than once, they need to keep track of
which OTS keys have already been used. This state needs
to be updated after each signature and kept for the keys’
lifetime. The IETF standardized two stateful hash-based
algorithms, namely LMS and XMSS, in RFC 8554 [21] and
RFC 8391 [22], respectively. Their practical difference lies
in the variety of parameters that can be adjusted to the use
case. The most important parameter is the height of the
Merkle tree which influences the number of signatures that
can be generated. A height of n will result in 2n available
signatures. Since large trees are difficult to generate and
manage, both XMSS and LMS have a hyper tree variant,
where the Merkle tree root node is used as a leaf of the above
tree. This is called multi-tree XMSS [22] or Hierarchical
Signature System (HSS) for LMS [21]. It allows generating
new Merkle trees on demand if the signatures of one tree
are exhausted. Additionally, it reduces the number of nodes
needed in the authentication path for a single signature. Fur-
thermore, LMS allows for adjustable Winternitz parameters
used in the construction of the OTS, which impacts signature
size as well as verification performance [21]. In 2020, NIST
published a recommendation [23] for stateful hash-based
PQC algorithms based on XMSS and LMS.

Stateless algorithms are based on a similar construc-
tion, but instead of an OTS they use a so-called Few-
Time Signature (FTS) (FTS) scheme as leave nodes in the
Merkle tree. The only algorithm employing this technique
is the signature algorithm SPHINCS+ [24]. It is currently in
the standardization process under NIST FIPS 205 [25]. In
detail, SPHINCS+ uses the forest of random subsets (FORS)
scheme to sign messages. In FORS, the secret key is split
into pieces whose hashes build the leave nodes of multiple
binary hash trees whose root nodes are compressed into a
single FORS public key. Similar to stateful algorithms, these
FTS are then used as leaves of a Merkle hypertree whose
root node serves as the single public key. Authentication
paths for both the FORS and the Merkle tree are included in
the signature to verify the root node from the FORS leaves.

Both stateful and stateless hash-based algorithms have
similar performance metrics and characteristics that make
them a fitting choice for specific use cases. First and fore-
most, the security assumptions are well understood and
based on years of research. From all of the PQC algorithms,
hash-based ones are the most mature, while achieving a
high NIST security level, due to the inherent security of
the used hash functions. Another distinguishing factor are
their small public and private keys, ranging from 32 to
256 bytes. The signature size on the other hand is highly
dependent on the Merkle tree’s height and the utilized hash
function. Especially SPHINCS+ signatures can grow very
large (> 10kB) due to the FORS authentication path. While
their signing and key generation performance is among the
worst of the presented PQ DSAs, their verification perfor-
mance is decent. All of the mentioned DSAs can operate
with the SHA-2 and Keccak hash schemes. Since these are
widely used in non-PQ applications, hardware accelerators
for these hashes are available for a variety of platforms.
Therefore, performance can be increased on platforms with
the corresponding hash accelerator [26], [27]. Furthermore,
hash-based algorithms are the most customizable out of all
PQC algorithms. SPHINCS+ has a wide range of underlying
hash functions and different construction methods that can
be employed. LMS and XMSS both have definable Merkle
tree height, with LMS additionally having its Winternitz
parameter adjustable. In overall performance, the stateful
algorithms beat SPHINCS+ in almost every category. How-
ever, managing the state is a very harsh requirement that
limits the application possibilities of LMS and XMSS.

3.2. Lattice-Based Algorithms

Lattice-based cryptography is probably the most promis-
ing approach for asymmetric PQC algorithms. It gained the
most traction over the NIST competition and spawned the
most algorithms for digital signatures and key encapsula-
tion [8]. Using lattices for cryptography came up in the
early 2000s after the basic underlying problem was proven
to be NP-hard in 1996 by Ajitai [28]. The basis for most
algorithms is the Shortest Vector Problem (SVP) in high-
dimensional lattices. The idea is to build a lattice from a
well-formed, short base and then derive a scrambled base
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Table 2. SUMMARY OF KEM AND PQ DSA USAGE

KEM Signature Algorithm
Use Case Key Generation Decapsulate Encapsulate Key Generation Verify Sign Long-term Key

TLS ✓ ✓ ✓/x1 x ✓ ✓/x1,2 x
Secure Boot x x x x ✓ x ✓

SUIT x x x x ✓ x ✓
1 Used when the device acts as a server, 2 Used when TLS client authentication is enabled

from the same lattice. The simple, well-formed base is used
as a private key, while the scrambled base can be publicized.
A message is interpreted as a specific point in the lattice and
a random error is added to deviate from the exact point while
still being the closest point within the lattice. Computing the
original point without the added error is relatively simple
when using the well-formed base, but computationally very
expensive when using the public, scrambled base. This
problem is also called the closest vector problem and can be
reduced to the SVP which is the problem of recomputing
the well-formed base from the scrambled one. There are
multiple other problems involved in lattice cryptography,
most notably the Learning With Errors (LWE) problem,
which is a more general problem of introducing random
errors to a secret value. LWE was introduced by Regev [29]
in 2005 and can be reduced to the SVP. The three lattice-
based algorithms that are currently being standardized by
NIST after round 3 are all based on the SVP or variants of
the LWE.

CRYSTALS-Kyber is the only KEM that is currently
being standardized after round three under FIPS 203 [30].
It is based on the module LWE problem in cyclotomic rings
and uses the SHAKE-256 hash for key generation. Each
transaction generates new keys that encapsulate the sym-
metric shared secret. Its performance is significantly better
than RSA encryption for key transfer and also outperforms
the standard Finite Field DHKE and even Elliptic Curve
Diffie-Hellman (ECDH) in terms of speed [8]. However,
in comparison to DH key exchange the memory footprint
increases from a few bytes to multiple kilobytes for public
key and ciphertext, depending on the security level.

CRYSTALS-Dilithium originated from the same re-
search collective as Kyber and is also based on the module
LWE on lattices. It is one of two lattice-based PQ DSAs
that are being standardized under FIPS 204 [31]. However, it
uses the Fiat-Shamir with Aborts [32] technique to generate
digital signatures. Overall, it is regarded as the most well-
rounded PQ DSA since its sign and verification performance
is closely competitive to ECDSA on the lower security
level [8]. The only disadvantage of Dilithium is the rela-
tively large signature and public key size, which increases
substantially with a higher security level.

Falcon is the last of the lattice-based algorithms that is
being standardized by NIST. In contrast to the previous al-
gorithms it is not based on a derivation of the LWE problem,
but rather on the short integer solution (SIS) problem over
lattices [33]. The SIS problem can be reduced to the SVP,
which makes the underlying hardness assumption similar to
LWE. Falcon uses a trapdoor sampler based on the Fast

Fourier Transformation [34] to generate its signature in a
hash-and-sign scheme. Performance-wise, Falcon provides
the smallest signature and public key of all DSAs as well
as a fast verification performance. However, it is magnitudes
slower than Dilithium or conventional ECDSA in sign-
ing messages and requires 53-bit floating point arithmetic
precision. This is usually not found in embedded system
hardware which usually only provides 32-bit floats. As a
result, Falcon needs to emulate higher precision operations
in software, which slows it down, especially during signing.

The data is primarily sourced from the pqm4 [35] library,
which is a part of the mupq project that develops optimized
PQC implementations for embedded platforms and FPGAs.
The pqm4 implementation uses assembly code optimized
for the Cortex-M4 processor and is regularly updated with
changes coming from standardization and NIST round ad-
vances. It is available open-source on GitHub 1.

4. Use Cases for Embedded Devices

The following section is based on the ARM Cortex M4
as a reference platform chosen by NIST as the representative
for embedded CPUs [36]. The ARM Cortex M4 is a 32-bit
CPU in the mid-range segment of embedded hardware. It
is typically equipped with 256 kB of RAM, 1 MB of flash
memory, and operates at a maximum clock speed of 220
MHz.

To decide which of the aforementioned algorithms is
suitable for deployment on this hardware, different use cases
are described. The most prevalent use cases for asymmet-
ric cryptography in IoT can be divided into three main
groups: secure network communication, trusted execution
in the form of secure boot, and secure updates. Specifi-
cally analyzed are TLS as representative of secure network
communication, secure boot, and SUIT as a workflow for
secure updates. Table 2 shows the different asymmetric
cryptography applications within these use cases.

4.1. Transport Layer Security

TLS is the de-facto standard for securing network traffic
over the web. It provides an end-to-end-secure channel over
a TCP connection, including bidirectional authentication,
data confidentiality, and message integrity. Because of its
flexibility in terms of cryptographic algorithms, it is also
a popular choice in embedded environments [37]. Tradi-
tionally, embedded platforms act as clients that connect to

1. pqm4 library source code available at https://github.com/mupq/pqm4
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management instances such as Supervisory Control and Data
Acquisition (SCADA) systems or servers on the internet.
However, due to the increasing use of embedded devices in
IoT hardware applications, they are also increasingly being
used as servers, for example in smart home bridges, or
they come with a web interface for configuration. The latest
version, TLS 1.3 [38], was standardized in 2018 and offers
many improvements over the previous version. However,
TLS version 1.2 remains prevalent in embedded systems
today due to their long lifespan and inability to be easily
upgraded.

4.1.1. TLS Phase Analysis
A TLS session consists of two phases. The first phase

is the handshake protocol, which authenticates the parties
and agrees on cryptographic algorithms. During this phase,
a master secret is negotiated, conventionally using DHKE.
This master secret is used to derive the subsequent transport
keys, which are in turn used to symmetrically encrypt the ap-
plication data in the following record protocol. X.509 Public
Key Infrastructure (PKI) certificates are used to authenticate
both the server and, optionally, the client. To better illustrate
the difference between conventional TLS and PQ TLS, we
first describe the classic TLS handshake from which the
changes for PQ are made. A visualization of a full PQ TLS
handshake can be found in Figure 3.

When initiating a TLS 1.3 handshake, the client starts
with a ClientHello message containing the supported cipher
suites and the client parameter for the DH key exchange.
The server responds with a ServerHello message containing
the server-side DH parameters and the chosen cipher suite
from the list offered by the client. Once the server has
chosen the cipher, it can generate the necessary server-side
parameter and calculate the master secret using the client’s
information. From here on, all messages are encrypted using
secrets derived from the master secret agreed upon via DH
key exchange. Moreover, the server sends the Certificate
message containing its own X.509 certificate chain up to
the root authority. If mutual authentication is required, the
server requests a client certificate via a CertificateRequest
message. The server’s final message at this stage is a finish-
ing message containing a signature over all the previously
exchanged messages. On the client side, the master secret
can now be calculated to decrypt the received handshake
messages. In the next step, the server certificate chain is
validated up to the root CA. After the signature is validated,
server-side authentication is complete. If requested by the
server, the client sends its certificate chain and a signa-
ture over the handshake to prove possession of the private
key. The client completes the handshake protocol with an
HMAC-authenticated hash over all previous messages.

Asymmetric cryptography vulnerable to PQ adversaries
is only used in the handshake protocol. However, it is
present in multiple steps of the handshake, most notably
in the DH key exchange and the X.509 certificates. X.509
certificates contain identity information about the end entity,
its public key, and a signature of the issuing CA. The size
of the individual certificates and the length of the certificate

chain are the primary factors that determine the amount
of data transmitted during the handshake. In an embedded
environment, network bandwidth may be limited, causing
the entire handshake to bottleneck while waiting for the
receipt of the certificate chain. In conventional TLS, the
most expensive computational operation regarding certifi-
cates is usually the verification of the certificate chains,
due to the multiple signatures that need to be verified. The
signing operation is only required by the client if mutual
authentication is performed.

The key exchange is the fundamental part of TLS
which allows both parties to partake in the generation of
a shared key. For this purpose, an ephemeral key pair
is generated to ensure forward secrecy, even if the cer-
tificate’s key pair is compromised. Conventional Diffie-
Hellman (DH) key exchange can be used in conjunction
with RSA or elliptic curves, differing in the exchanged key
sizes and calculation performance. For embedded systems,
Rivest–Shamir–Adleman cryptosystem (RSA) can be very
expensive to the point where it becomes the most expen-
sive operation during the handshake. In comparison, ECDH
outperforms RSA by at least a factor of 10 in terms of
computation time [39].

4.1.2. Embedded PQ TLS Literature Analysis
TLS is used in a wide variety of applications and is

one of the central protocols in securing network traffic.
The following papers focus on its employment in embedded
environments with regard to the ARM Cortex M4. They test
the PQC algorithms in various network constellations and
with different PKI hierarchies. The benchmarks primarily
measure handshake latency and RAM usage. Table 7 gives
an overview and short summary of their findings.

One of the earliest research investigating PQ TLS on
embedded devices was Bürstinghaus-Steinbach et al. [40].
The authors were one of the first to integrate PQC al-
gorithms into the popular mbed TLS library. Their work
focuses on proving the feasibility of full PQ TLS 1.2 on
three different embedded devices, ranging from a rather
powerful Raspberry Pi 3 to a limited field bus option
card. They tested Kyber 512 and SPHINCS with SHA-
256 and SHAKE-256 in the fast variant, respectively. The
KEM public key is transmitted during the very first Clien-
tHello message. All three embedded devices are tested as
server and client. Authentication is server-sided only, with
a single self-signed server certificate. The results show
that PQ handshake times are very similar to ones with
conventional crypto, even outperforming the Elliptic Curve
Diffie-Hellman Ephemeral (ECDHE)-Elliptic Curve Digital
Signature Algorithm (ECDH) baseline in some cases. This
is due to the good performance of Kyber in comparison to
ECDHE and the fast verification speed of SPHINCS when
compared to ECDH. As servers, the embedded devices are
slow in comparison, taking over 10-50 times as much as the
conventional handshake. This was expected due to the slow
SPHINCS signing process. While this work does not include
the ARM Cortex M4 specifically, it shows that similar pow-
erful devices can successfully perform PQ TLS handshakes.
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Since the focus was on verifying the general feasibility of
PQ TLS, only a single combination of DSA and KEM was
tested. The authors were the first to show that deploying PQ
TLS on embedded devices is possible, without the need for
specific hardware accelerators. However, SPHINCS might
not be a reasonable choice as a PQ DSA when the embedded
device needs to sign messages.

One of the most notable works on the Cortex M4 is
the paper from Tasopoulos et al. [39]. They benchmark
all NIST round 3 KEM and DSA candidates on the M4
and integrate them into the WolfSSL TLS 1.3 library. If
available, they use the assembler-optimized implementation
of the pqm4 library. They evaluate different KEM and PQ
DSA combinations that they introduce as supported groups
in TLS 1.3. Similar to previous implementations, the KEM
public key is exchanged in the ClientHello message. The
embedded device acts as a client against a regular high-
powered server, that is directly connected via Ethernet. Their
tests utilize mutual authentication, with a two-layered Public
Key Infrastructure (PKI) certificate hierarchy. In a single test
case, all certificates use the same PQ DSA meaning that both
server and client will sign the handshake message transcript
with the same algorithm. In addition to the PQ performance
tests they also benchmark conventional TLS 1.3 handshakes
using EC and RSA algorithms. Their evaluation shows
that in comparison to RSA, all PQC combinations perform
rather well, except SPHINCS. The sign operation of RSA
is very expensive, which slows down mutual authentication
considerably since the client needs to sign the handshake
transcript with its private key. When comparing with ECDH,
combinations with Dilithium and Kyber are very competi-
tive, even outperforming it on security level 1. Combinations
with Falcon and Kyber take double the handshake time but
only need to transmit half of the communication size. This
is due to the small signatures and public keys of Falcon.
Tests with SPHINCS and Kyber yield results similar to the
server tests by Bürstinghaus-Steinbach et al [40]. The mutual
authentication and slow signing performance of SPHINCS
make it slower by a large margin compared to other PQC
combinations. In 2023 they extended their work with an
analysis of the energy consumption of PQ TLS [41]. Their
findings largely concur with their previous results, as again
PQC, except SPHINCS, is competitive to even ECDH in
terms of power consumption.

Schöffel et al. [37] also focus on the Cortex M4 as an
embedded platform, but instead of TLS 1.3, they implement
the NIST round 3 candidates into Transport Layer Security
(TLS) 1.2. They use the popular Mbed TLS library and
integrate the pqm4 assembler-optimized algorithms. Sim-
ilar to Tsaopoulos et al. [39], the authors test a variety
of PQ KEM and DSA combinations by introducing new
supported groups and exchanging the KEM public key in
the ClientHello. What makes their work stand out from the
others, is their test setup. Instead of directly connecting the
embedded device to a communication partner, their battery-
powered Cortex M4 platform is connected to a gateway
via Bluetooth Low Energy which is then connected to the
server via ethernet. This corresponds to a distributed sensor

network that can be found in many IoT use cases. Due to
this setup, high bandwidth requirements are punished and
algorithms with large signatures, public keys, or ciphertexts
perform worse. Server and client are mutually authenticated
by a two-layered PKI. The authors test heterogenous PKIs
with different algorithms for client, server, and CA. In this
test setup, most KEMs, again, perform well in comparison
to conventional ECDHE. Kyber is still the fastest of all
tested KEMs. However, it is unable to outperform ECDHE
due to its communication overhead. Notable are the mea-
surements with PQ DSAs. While Dilithium is faster than
Falcon in signing, handshakes with Dilithium server and
CA certificates were the slowest in comparison to Falcon.
Due to the constricted network bandwidth, handshakes with
Dilithium certificates spend most of the time transmitting
and receiving data. When using Falcon for all certificates,
the overall handshake completes in half the time compared
to pure Dilithium and overall presents the best-performing
full PQC combination. However, instead of transmission de-
lay, Falcon signature computation takes a significant share of
the handshake time. In addition to handshake latency, battery
consumption of the embedded platform is measured and
lifetimes estimated. Computation on the embedded device
impacts battery consumption more than transmitting data,
making Falcon use more battery even though it finishes the
handshake faster. When using Falcon for the CA and server
certificate, but Dilithium for the client certificate, the overall
handshake time is only marginally slower than using Falcon
for the client certificate, but signature computation time is
reduced drastically. This results in an almost halved battery
consumption.

Gonzales et al. [42] focus on KEMTLS. KEMTLS was
first proposed by Wiggers et al. [43] in 2020 and is a dif-
ferent implementation of PQC into TLS 1.3. Instead of PQ
DSAs, KEMTLS uses KEMs for authentication during the
handshake protocol. This is achieved by establishing long-
term KEM public keys and distributing them via a PKI. CAs
still utilize PQ DSAs within the PKI itself to sign messages,
but the end-entity certificates contain a KEM public key. A
party can prove its authenticity by decapsulating a secret
that the other party encapsulated with the respective public
key. This secret is incorporated into the master secret. Thus,
the communication can only continue if the parties are
indeed in possession of their respective private keys. The
main motivation behind KEMTLS is a performance increase
and simplification due to the minimization of the needed
number of PQC algorithms during the TLS handshake. Since
KEMs are needed to establish the shared master secret for
symmetric encryption anyway, using the same KEM in au-
thentication simplifies the code base and reduces complexity.
Furthermore, most KEMs perform encapsulate and decapsu-
late operations faster than the PQ DSAs sign and verify. The
authors evaluated different KEMTLS combinations on the
Cortex M4 and compared them to PQ TLS using PQ DSAs
for authentication. Their PQ TLS builds on the WolfSSL
library, similar to the work of Tasopoulos et al. [39]. Their
test setup includes a two-layered PKI hierarchy with a PQ
DSA CA certificate and a KEM server certificate. In the
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Table 3. CONNECTION CHARACTERISTICS FROM GONZALEZ ET
AL. [42]

Connection Type Bandwidth RTT
Broadband (BB) 1 Mbit 26 ms
LTE Machine Communication (LTE-M) 1 Mbit 120 ms
Narrowband-IoT (NB-IoT) 46 Kbit 3 s

conducted KEMTLS and PQ TLS experiments, only the
high-powered server is authenticated. The authors simulate
three different network conditions: regular broadband, LTE-
Machine Type Communication (LTE-M), and Narrowband-
IoT (NB-IoT). On broadband, the regular PQ TLS im-
plementation benefits most from deploying Falcon as PQ
DSA in the CA and Server certificate. Since the embedded
platform does not need to sign the handshake, the fast
verify operation from Falcon and its small public keys and
signatures speed up the handshake significantly compared to
Dilithium. As KEM, SABER achieves the best performance,
being less than one percent faster, than combinations with
Kyber. For PQ TLS, this trend continues through all the
different network setups. Pure Dilithium PKIs take around
double the handshake time in comparison to pure Falcon
ones, while Kyber and SABER perform best as KEMs. In
the KEMTLS experiments, combinations with Kyber and
SABER perform well, with SABER again being faster than
Kyber by a small margin. As PQ DSA for the CA certificate,
Rainbow seems to be performing best. However, the used
parameter set of Rainbow is now broken [44]. Ignoring
Rainbow combinations, Falcon is again the best-performing
PQ DSA. Comparing KEMTLS and PQ TLS, KEMTLS
handshake traffic is roughly equal in size and performs
similarly in the given setups. The only case where KEMTLS
outperforms PQ TLS by a large margin is the NB-IoT
network when Rainbow is used for the CA certificate.

4.1.3. Findings
There are some general results that can be observed

from all experimental setups. (i) The choice of KEMs has
only a slight impact compared to the selected DSA and
the network bandwidth. Kyber outperforms ECDH in terms
of computation speed on the ARM Cortex M4, while only
marginally adding to the handshake bandwidth. As Kyber
is currently the only standardized KEM, early adopters may
have less incentive to implement other options, regardless
of network conditions or topology.

The choice of PQ DSA is more complicated and depends
on multiple factors of topology and network condition. The
PQ DSA is responsible for the majority of the required hand-
shake bandwidth. The size of the PQ public key and signa-
ture affects the overall handshake size multiple times, as they
are present in each of the transmitted certificates. Among
all the standardized PQ DSAs, research focuses on the two
lattice-based options Falcon and Dilithium. The primary
tradeoff between these two is bandwidth versus signing per-
formance. Dilithium provides fast signature computation and
verification, but it significantly increases the handshake size
compared to Falcon. Yet, Kyber and Dilithium combinations

can outperform even conventional, mutually authenticated
ECDHE-ECDH TLS in fast networks. Falcon, on the other
hand, performs well in restricted network environments
and if there is no client authentication required. It suffers
from the missing hardware support for 64-bit floating point
precision, which makes its signing operation perform poorly.
Falcon performs well in every network condition if the client
does not need to sign the handshake, as shown in Gonzales et
al. [42]. Furthermore, Falcon can be faster than Dilithium in
heavily restricted networks, even if mutual authentication is
required. In the experiment of Schöffel et al. [37], the two-
layered PKI with Falcon performs the fastest handshake.
However, it takes more computation time than Dilithium.
This presents a trade-off between power consumption and
handshake speed. Furthermore, both Schöffel et al. [37]
and Tasopoulos et al. [39] suggest that heterogeneous PKIs
might perform best in the embedded use case. Using Falcon
for server authentication and CA certificates, while deploy-
ing Dilithium certificates to the embedded clients, appears
to yield the best of both algorithms.

All papers also measure RAM usage during the hand-
shake. Depending on the algorithm and security level, PQ
TLS requires 40-80 KBs of RAM, which is 40 times more
than the average EC TLS implementation. However, the
ARM Cortex M4 is usually equipped with 256 KB of RAM
which still leaves room for the customer application to run.
The other hash-based DSAs that are being standardized
find almost no mention in TLS research. In TLS, they are
considered impractical due to slow signing performance and
large signatures.

KEMTLS is an interesting field of research for embed-
ded platforms since it reduces memory requirements and
handshake bandwidth. In Gonzalez et al.’s experiments [42],
it does not outperform the regular PQ TLS with Falcon and
Kyber. However, they test it without mutual authentication
which would significantly impact PQ DSA performance,
due to the expensive sign operation. Since KEMTLS uses
the KEM encapsulation operation to authenticate, which
performs well on embedded devices, another comparison
to PQ TLS with mutual authentication would be interesting.

4.2. Secure Boot

On an embedded device, secure boot aims to restrict
code execution to legitimate software only. This is achieved
via digital signatures that authenticate each software image
that is supposed to be executed. Naturally, this includes
software from multiple entities and stakeholders ranging
from the producer of the chip to the vendor of the embedded
solution.

4.2.1. Secure Boot Process
The full authentication process of the secure boot chain

is visualized in Figure 1. It starts with the execution of a
trusted zero-stage boot loader (ZSBL) located in read-only
memory (ROM). In embedded platforms, this boot loader
initiates a chain of trust by loading the next firmware image
from flash memory into the internal RAM, authenticating it,
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Figure 1. Secure boot validation chain adapted from Kumar et al. [45]

and passing the control flow to it. Authentication is based
on the certificate attached to each of the software images, a
signature over the image itself, and corresponding metadata.
The initial stage of this chain, which resembles the root of
trust, is particularly critical. This trust is derived from a boot
loader public key whose hash is burnt into the chip dur-
ing manufacturing. The subsequent boot loader images are
signed with the corresponding private key and are verified
by the previous boot loader. Once the control flow passed
all the boot loader images, the firmware is running and can
initialize additional hardware or start customer software.
Since this software is usually developed by entities other
than the firmware, different key pairs are used to sign it.
The public keys are part of the firmware and thus implicitly
authenticated in the chain.

Secure boot imposes certain restrictions and require-
ments on the signature algorithm in use. The longevity of
public keys is here the primary consideration. The chip
manufacturer generates and manages the key pair for the
ZSBL, which is typically used for an entire chip revision.
As the public key is burnt into each chip, it cannot be
replaced during its lifetime. Therefore, the security level of
the signature algorithm should be chosen conservatively to
accommodate advances in computing power and cryptanal-
ysis. Due to the rapid advances in PQC algorithms and their
cryptanalysis, decisions for such a long product lifespan are
difficult. Under these circumstances, hybridization could be
highly beneficial. However, the strict hardware and timing
requirements of secure boot make it unfeasible.

The second restriction is performance. Signing and key
generation performance are less critical in this case since
they are done during the manufacturing of the chip and
not during the boot itself. On the other hand, signature
verification directly affects boot times and is its most impor-
tant performance factor. Especially for embedded systems
with safety functionality, boot time can be crucial. Slow
verification repeatedly impacts boot time since each boot
loader image has its own signature that needs to be verified.

Finally, the most significant limitation is memory. On
the embedded platform, the primary constraint is the in-
ternal on-chip RAM size, which is approximately 256Kb
for the ARM Cortex M4. The boot loader images, their
corresponding signatures, the boot loader public key, and
the verify code itself are loaded into this internal RAM.
Since the CPU can only use internal RAM during the first
stages of the boot loader, there is a hard limit on memory
consumption. To ensure success in this use case, a PQC

algorithm must have minimal signature and public key sizes,
as well as minimal stack usage during verification. Once
the firmware is fully operational, it can initialize external
RAM if available, which relaxes the memory requirements
for customer software.

4.2.2. PQ Secure Boot Literature Analysis
This section focuses not only on the ARM Cortex M4

but also on multiple other embedded platforms to provide a
more comprehensive overview of the current state of the art.
Whenever possible, a direct comparison to the ARM Cortex
M4 is provided to enable comparability. An overview of the
mentioned papers can be found in Table 5.

One of the first papers targeting secure boot with the
now standardized algorithms was authored by Marzougui et
al. [46] in 2019. They focus on software authentication in
embedded devices and identify secure boot and protection
of intermediate keys as the most important applications for
PQ DSAs. The paper analyzes the requirements that PQC
must fulfill for these two applications and concludes that
verification time and RAM usage are critical. Next, the
authors evaluate these requirements for the PQC algorithms
of the time to identify promising candidates for implemen-
tation in secure boot. Since in 2019 NIST round two has
not yet concluded, this research still incorporates algorithms
that have later been eliminated from the competition. They
identify hash-based and lattice-based algorithms as the most
promising candidates. From this conclusion, they bench-
mark XMSS and qTESLA, a lattice-based algorithm that
was broken in round 2 but has very similar performance
characteristics to Dilithium. As their embedded platform
they choose the ARM Cortex R5 processor, which is more
powerful than the ARM Cortex M4 and is equipped with
twice as much RAM. Their software benchmark shows that
XMSS with a tree height of 20, produces a smaller RAM
footprint of less than 5Kb while qTesla takes around 50Kb.
However, qTesla verification performance is almost five
times as fast in comparison to XMSS. This presents a trade-
off between RAM usage and verification speed. The authors
conclude in favor of verification speed since it repeatedly
impacts boot times during secure boot.

Wagner et al. [26] target hash-based PQ DSAs for
embedded secure boot. The authors identify similarities
in computation between SPHINCS, LMS, and XMSS and
develop a hardware/software co-design for secure boot uti-
lizing a newly designed hardware accelerator. Furthermore,
they investigate different parameter sets for stateful and
stateless schemes based on SHA-256, with a special focus
on the Winternitz parameter of LMS. The LMS algorithm
is standardized with a wide range of parameters for its
OTS, that affect signature size and verification performance.
The Winternitzer parameter influences the signature size
and verification performance. Increasing the parameter de-
creases the signature size but increases the amount of hash
computation within the OTS chain. The authors find that
Winternitz parameters of 2 and 4 result in the same number
of hash function calls, even without an accelerator. There-
fore, a Winternitz parameter of 2 should be avoided since
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it has a larger signature than 4 but the same performance.
They also identify that the calculation of the hash chain
constitutes the majority of the operations when using hash-
based algorithms, with Merkle tree authentication taking less
than 15 percent. Thus, hardware that accelerates the hash
chain computation is most valuable to the performance of
hash-based algorithms. However, using a standard SHA-256
hardware hash accelerator, shifts the bottleneck to the com-
munication with such an accelerator since the hash algorithm
must be called repeatedly in the hash chain. The authors
solve that problem by designing a new hardware accelerator
for the hash chain computation that can be fitted to the dif-
ferent stateful or stateless algorithms during synthesis time.
In detail, they improve the OpenTitan SHA256 hardware
accelerator by adding a chain register and a digest feedback
path. This allows the accelerator to compute an entire hash
chain without additional communication overhead.

Additionally, the authors benchmark different parameter
configurations on the RISC-V Ibex processor. They test the
parameters not only with their newly designed accelerator
but also in software implementations and with a general-
purpose SHA-256 core. Table 4 shows the averages of
the benchmark in context to the signature size and NIST
level. The results show that software implementations of
LMS struggle with large Winternitz parameters, resulting
in a 20-fold increase in verification run time between the
lowest (w = 4) and highest (w = 256) parameters. Despite
this, LMS still outperforms XMSS even with higher Win-
ternitz parameters. Another finding is that general-purpose
hash accelerators are beneficial, reducing the time com-
pared to pure software implementations by about half for
stateful algorithms and by a factor of five for SPHINCS.
The newly designed accelerator outperforms software and
general-purpose SHA-256 core implementations by a signif-
icant margin, particularly for LMS where it provides nearly
the same performance for all tested Winternitz parameters.
As such LMS with Winternitz parameter 256 allows for a
fast verification while having the smallest signature when
using the newly proposed accelerator.

Furthermore, the authors test the rapidly verifiable signa-
ture approach [47] for stateful algorithms where the signer
appends a random counter to the message, which yields a
shorter OTS hash chain during verification. The approach’s
results demonstrate that verification speed increases by 30
percent, even with a low number of counters tried, regard-
less of the Winternitz parameter of LMS on software and
general-purpose accelerators. Finally, the paper evaluates the
hash-based algorithms directly in the context of secure boot,
by simulating a full firmware verification. The different
implementations are compared to RSA and ECDSA. In
software, the stateful algorithms outperform the conven-
tional algorithms, while SPHINCS performs worse. When
accelerated by dedicated hardware, only LMS can beat
ECDSA, whose performance is improved by the OpenTitan
BigNumber accelerator.

Kampanakis et al. [48] investigate SPHINCS and LMS
for the UEFI secure boot on high-end devices and the per-
formance of FPGA LMS implementations. Although their

Table 4. VERIFICATION PERFORMANCE OF HASH-BASED ALGORITHMS
MEASURED BY WAGNER ET. AL. ON IBEX PROCESSOR [26]

Algorithm SL Sign. Software SHA-256 SHA-2+

LMS w = 4 5 4.7 KiB 20 ms 8 ms 5.5 ms
LMS w = 16 5 2.7 KiB 40 ms 16 ms 4 ms
LMS w = 256 5 1.6 KiB 300 ms 110 ms 5 ms
XMSS 5 2.6 KiB 260 ms 80 ms 20 ms
SPHINCS 3 29 KiB 700 ms 200 ms 50 ms

SHA-256 denominates general-purpose OpenTitan hash accelerator
SHA-2+ denominates the accelerator designed by the authors

primary focus is not on embedded platforms, their research
provides insights that are also relevant for constraint devices.
They explore various parameter sets of SPHINCS and LMS
that can be used for the UEFI use case. To increase the
number of signatures per public key with LMS without
significantly reducing signing performance, they opt for
the HSS hyper-tree approach. This approach adds another
Merkle tree above the first one instead of increasing the
tree’s height. It enables the combination of the various keys
required for secure boot in a single tree hierarchy and
allows for the revocation of keys in a granular manner.
The authors briefly consider using trees with more than
two children per node but reject it since the memory and
signature size benefits are negligible compared to the per-
formance impact. Additionally, they implement LMS with a
Winternitz parameter of eight on an FPGA and compare it
to FPGA RSA implementations. The results show that LMS
verification is outperforming RSA with 4096 bits, while also
having a similar footprint on the FPGA. The authors suggest
a tradeoff in FPGA LMS design between logic area and
performance and identify SHA-256 hash logic as the most
significant optimization in terms of speed or size.

Kumar et al. [45] present another FPGA implementation
targeting secure boot focusing on XMSS. The target plat-
form is a RISC-V-based Kintex7 FPGA where the hardware
XMSS implementation assists during the secure boot signa-
ture validation. As a parameter set, XMSS with SHA-256
and a tree height of ten is selected. The evaluation indicates
that the XMSS implementation is comparable in size to
ECDSA FPGA implementations, but verification is signifi-
cantly slower, ranging from a factor of 10 to 30, depending
on parallelization. However, the verification process still
takes less than two milliseconds in wall-clock time, which
is acceptable for most embedded systems. The authors also
compare their work to preliminary FPGA implementations
of Dilithium, which shows a smaller footprint and faster
performance for XMSS.

Román et al. [49] focus on XMSS. The authors propose
a new two-stage boot process. The first authentication check
performed in this process uses a Physical Unclonable Func-
tion (PUF) that relies on SRAM cells instead of a signature
and an unalterable public key. The ZSBL checks the first
image by computing an HMAC, which relies on a symmetric
key generated from a PUF based on the startup values of
the device’s SRAM cells. SRAM cells have either random
or static values after boot, which deviate from device to
device, but are fixed after manufacturing. This can be used
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Table 5. PQ SECURE BOOT PAPERS

Reference Approach Algorithms Implementation Main Findings
Marzougui et al.
[46]

Identify requirements for PQ
secure boot in
embedded environments

XMSS,
qTesla

Software - Main limitations are memory requirements and
verification performance
- Hash-based and lattice-based algorithms are promising

Wagner et al.
[26]

Hardware/Software
co-design for hash-based PQ
secure boot

LMS,
XMSS,
SPHINCS

Software,
FPGA, ASIC

- LMS better performance than XMSS and SPHINCS in
hardware and software
- LMS outperforms ECDSA in software
- General-purpose SHA-2 hash accelerators increase
verification performance significantly

Kampanakis et al.
[48]

Test SPHINCS and LMS for
UEFI secure boot on differ-
ent platforms

LMS FPGA - Hypertree LMS approach can combine different keys needed
for UEFI secure boot
- LMS FPGA implementation faster verification than RSA
FPGA implementation

Kumar et al.
[45]

XMSS FPGA hardware opti-
mizations for secure boot

XMSS FPGA - XMSS comparable to ECDSA in footprint size but slower
verification on FPGA
- XMSS smaller and faster than Dilithium in
FPGA implementations

Román et al.
[49]

Novel two-stage secure boot
with PUF in combination
with PQ DSAs

XMSS Software - XMSS signature can be reduced to OTS for speed and size
benefits
- Compared to ECDSA, OTS validation is significantly faster,
and smaller on storage

to generate a device-specific key that is then utilized for
a symmetric HMAC authentication. Once the ZSBL suc-
cessfully verifies the first image, the control flow is passed
on, allowing the next boot loader to load and verify the
firmware and application software. For this step, the authors
propose using XMSS. However, they suggest using only the
Winternitz OTS to verify the firmware. This approach makes
the XMSS signature smaller and verification faster since
only the hash chain needs to be calculated to obtain the
OTS key. The authors argue that the user can validate the
authentication path to the manufacturer’s public key once at
the time of purchase to initially validate the authenticity.

Implementation of this proposal is benchmarked on an
ESP32 microcontroller, that is equipped with 512Kb of
RAM, an SHA-2 accelerator, and runs on a CPU frequency
of 160MHz which makes it slightly more powerful than the
ARM Cortex M4. Results indicate that the first symmet-
ric HMAC authentication performs significantly faster than
asymmetric verification in software, taking around 6ms. The
XMSS OTS validation is compared to ECDSA. Signature
verification of the proposed solution is faster than ECDSA
by a factor of 10, excluding the firmware hashing. The flash
memory requirements are also lower than typical ECDSA
implementations due to the small code size of the OTS
validation, which outweighs the larger signature size. When
comparing the OTS to regular XMSS, the authors observe a
signature size reduction of 10-20%, depending on the XMSS
parameters.

4.2.3. Findings
The first finding is that current research primarily fo-

cuses on hash-based algorithms for the secure boot use
case. Algorithms should be chosen conservatively since
the RoT in the ZSBL cannot be changed once deployed.
This is especially important considering the long lifetime
of embedded devices. Together this favors hash-based al-
gorithms as their security is well-understood. Furthermore,

hash-based algorithms offer good verification performance
and relatively small signatures and public keys which is
crucial for constrained embedded devices. In particular, the
two stateful algorithms LSM and XMSS gained attention,
probably also due to NIST recommending them for firmware
authentication [23]. The main disadvantage of having to
manage a state is considered less problematic since key gen-
eration and signing are performed by the manufacturer and
firmware developer, who are not limited by the constraints
of the embedded platform. Further information on state
management can be found in the NIST recommendation [23]
and the work of McGrew et al. [50]. With secure boot, only
a limited amount of signatures need to be generated under
very strictly defined circumstances, such as the release of
new firmware. This makes it an ideal target for stateful
algorithms, as state management can be easily centralized.

When comparing LMS and XMSS, LMS offers a wider
range of parameters to choose from, particularly the flexible
Winternitz parameter that affects the size and verification
performance of the OTS. According to Wagner et al. [26],
software implementations of LMS generally outperform
XMSS on embedded platforms. Campos et al. [51] confirm
this observation. An interesting finding of Wagner et al. [26]
is that general-purpose hash accelerators can significantly
improve the performance of hash-based DSAs, even without
specialized additions. Since SHA-2 hashes are used ex-
tensively in embedded environments, these general-purpose
accelerators are often found in embedded devices and might
help adopt the new PQC algorithms. Rapidly verifiable
signatures indicate a promising performance improvement.
According to Wagner et al. [26], software implementations
benefit from a verification speed increase of up to 30 per-
cent. Since the additional effort only affects the firmware
provider but releases all devices on every boot process, the
approach should be pursued for stateful signatures.

Tree size is an important parameter that is handled dif-
ferently by the presented papers. With the single tree variant
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of LMS and XMSS, the tree height must be sufficiently large
to generate enough signatures throughout the lifetime of the
key. This depends on the device’s update rate, as well as
the number of firmware images in the secure boot chain.
The smallest tree height considered in the presented papers
is ten which performs best but only allows 210 = 1024
signatures, which might not suffice for the entire lifespan of
the device. The next standardized height is 15 for LMS and
16 for XMSS which can generate a more flexible amount of
signatures with 215 = 32768 or 216 = 65536. It is important
to choose the tree height with foresight, particularly for keys
utilized during the initial stages of secure boot, to ensure
that there are enough signatures available. This is because
the public key present in the ZSBL cannot be changed,
which limits the total number of signatures that can be used
throughout the device’s lifetime.

Since larger heights lengthen the authentication path and
negatively affect verification performance, the proposal of
Román et al. [49] to include the OTS only for firmware sig-
natures might prove valuable for very constrained devices.
The authentication path from the OTS key to the Merkle tree
root can be verified once at purchase time and after each
update, proving authenticity while lessening the burden on
the device. Another option for tree height is the multitree
approach. Kampanakis et al. [48] propose consolidating the
keys involved in the UEFI secure boot use case into a single
tree hierarchy. This approach can simplify key revocation
and save resources. However, it may be challenging to
implement due to the various entities involved in embedded
platform development. Further research is needed to explore
this approach and its potential use in update mechanisms.

Stateful algorithms appear to be competitive with
ECDSA, even in software implementation, with LMS even
outperforming ECDSA [26]. SPHINCS is compared to the
stateful algorithms in some of the papers, however, it per-
forms worse and comes with a larger signature. Wagner
et al. [26] demonstrate that even with specialized hard-
ware accelerators, the verification performance still does not
outperform LMS software implementations. Nevertheless,
SPHINCS can be used as an alternative to LMS if se-
cure state management cannot be guaranteed. Full hardware
FPGA implementations of XMSS and LMS are promising
compared to FPGA implementations of conventional algo-
rithms. While dedicated FPGA hardware accelerators for
single signature algorithms are not common in IoT devices,
they can be found in more specialized settings like industrial
environments. However, according to the papers, they do
not seem necessary to adopt PQ secure boot in embedded
platforms.

4.3. Secure Software Updates

Secure updates are another crucial security aspect of
embedded devices. Patches to the application software and
firmware are vital for their security state, given the long life-
time of up to twenty years. Securing these update processes
closes the attack vector of infecting the embedded platforms
via inauthentic, malicious firmware. The IETF recognized

Figure 2. SUIT workflow adapted from Benegas et al. [54]

this threat and founded the Software Updates for Internet
of Things (SUIT) working group. The working group has
published two RFCs [52] [53] to date, with multiple drafts
currently in progress. The Software Updates for Internet of
Things (SUIT) workflow facilitates updates for IoT devices
integrated into the secure boot Root of Trust (RoT) and
allows crypto-agility with PQC.

SUIT’s primary security objective is authenticity, which
is achieved through code signatures and certificates. It pro-
tects against various attacks such as malicious updates,
replay, and mismatch attacks. SUIT requires the device to be
deployed with a trusted boot loader and a long-term public
key. New software updates and the corresponding metadata
are signed and transferred to the applicable devices. On the
device, the signature is verified and the update is installed.
Figure 2 visualizes the described workflow. The security
and performance requirements for the SUIT workflow are
similar to those of the secure boot use case, with the
main cryptographic operation being signature verification.
However, instead of focusing on runtime performance, the
SUIT workflow benefits most from small signatures and
public keys, since the update duration is more influenced
by network transfer costs than signature validation. Further-
more, the implementation size plays a significant role in the
overall size of the firmware and, consequently, in updates
containing the cryptographic library. The network bandwidth
required for each update containing the library can therefore
be directly affected by its size.

4.3.1. PQ Secure Updates Literature Analysis
Although secure updates and firmware signing are men-

tioned as one of the core applications of PQC [8], [23], there
is surprisingly little research targeting this use case. Trusted
firmware updates are mentioned in some of the secure
boot papers [48], [49], but only from the perspective of
integrating new key material. Only one study directly targets
embedded secure firmware updates with PQC algorithms.

Benegas et al. [54] focus on PQC integration into SUIT
for constrained embedded devices. Their target firmware is
RIOT 2, an open-source IoT firmware with SUIT integration.
The authors differentiate between updates of different sizes
ranging from 5kB to 250kB, including and excluding the

2. RIOT operating system, online at https://github.com/RIOT-OS/RIOT
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SUIT - Firmware Stack Tranfer Transfer
DSA on Flash Usage excl. Library incl. Library
ECDSA 52.4kB 16.3kB 47kB 53kB
Falcon +120% +18% +1.1% +120%
LMS +34% +1.2% +9% +43%

Table 6. RELATIVE COST INCREASE OF FALCON AND LMS FOR SUIT
ON ARM CORTEX M4 ADOPTED FROM BANEGAS ET AL. [54]

PQ DSA library. They benchmark SUIT on an ARM Cortex
M4, an ESP32, and a RISC-V development board. First, the
authors investigate different hash functions for integrity and
PQ signature checks. They identify no direct requirement
for PQ SUIT but advise utilizing SHA3-256 since it is
used in most PQ DSAs, saving flash space and minimizing
complexity. The choice of PQ DSA is more complicated and
depends on multiple different factors. The authors compare
ECDSA to LMS, Dilithium, and Falcon. They find that in
small updates, the larger PQC signatures create the most
overhead, with Falcon performing best, due to its small
signature and public key. LMS provides a good trade-off for
larger updates containing the crypto library itself since its
implementation is smaller compared to the other PQ DSAs.
Comparison between Falcon and LMS against ECDSA for
a medium-sized update (∼50kB) can be found in Table 6.
LMS is considered to be the most secure option for a
long-term deployment such as the RoT. The authors also
measure RAM requirements during verification and find
that LMS is similar to ECDSA with Falcon being second.
Verification performance is also benchmarked and found
that on all the embedded devices the PQ DSAs perform
faster than ECDSA. However, verification typically does
not significantly impact the overall update performance,
especially with larger updates. For the largest update of
250kB, the choice of PQ DSA hardly changes the overall
performance since network transfer is the bottleneck and the
choice of signature affects the total image size only by a few
percent. Dilithium ranks second on both small updates in
terms of signature size overhead and large updates in terms
of implementation size. However, it does require more stack
memory than other PQC algorithms.

4.3.2. Findings
Secure firmware updates present a multi-dimensional

challenge due to network transfer costs and the long-term
key that forms the RoT. The size of the update during
transfer can be affected not only by the PQ signature but
also by the PQC implementation if the update includes the
crypto library itself. Banegas et al. [54] show a trade-off
among the tested PQC algorithms. Falcon performs well
in terms of signature size and verification speed but has
the largest implementation size. For larger updates that
include the crypto libraries themselves, LMS seems to be
the best option since its bigger signature has less effect on
the required network bandwidth, while its implementation
is relatively small. Additionally, LMS is less demanding
on RAM-constrained devices, with moderate RAM usage
similar to ECDSA.

As with secure boot, the long lifetime of the key is a
concern because the RoT cannot be easily updated. Since
Falcon and Dilithium are both lattice-based algorithms with
less cryptanalysis done, early adopters may want to deploy
hash-based algorithms first, due to their conservative secu-
rity assumptions. According to the secure boot analysis in
Section 4.2.3 and the work by Campos et al. [51], LMS
appears to perform better than XMSS on embedded devices
and should be the first choice when employing stateful hash-
based algorithms.

5. Conclusion

This survey provides an overview of research on PQC
for embedded devices, with the goal of enabling developers
to implement quantum-resistant solutions. In the last year,
NIST has selected the first standardization candidates, which
provides an initial outlook on what the future of PQC
will look like. All the analyzed papers agree that in the
future, conventional algorithms will eventually be replaced
by PQC. They also demonstrate that for most use cases
PQC is already competitive with conventional cryptography
and implementation can be started within certain limits.
However, most papers indicate that transitioning to PQC
is not a straightforward drop-in replacement of algorithms
and will come with a cost of higher memory consumption
and latency, especially with PQ DSAs. Furthermore, they
demonstrate that there is no one-fits-all solution. Instead,
most applications involve a trade-off that needs to be evalu-
ated before implementation. Another point of agreement is
the careful selection of the PQ DSA based on the lifetime
of the public key. Lattice-based algorithms are currently
performing well and are at the forefront of standardization.
However, they are relatively new and may be affected by
advances in cryptanalysis. On the other hand, hash-based
algorithms are preferred for applications that rely on a
long-term public key due to their well-understood security
assumptions and high security level. Hardware limitations
can be a significant obstacle in embedded environments, but
the analyzed research suggests that for devices similar to the
ARM Cortex M4, software implementations are sufficient
for all of the investigated use cases. It is important to note
that the ARM Cortex M4 is considered a mid-range product
in the realm of embedded devices. Therefore, it is unclear if
the presented results apply to even more restricted devices
in terms of computation power and RAM. Future research
will also need to investigate more specific use cases, like
VPN connections, remote access, and applications specific
to industrial environments. Although protocols like SSH and
SSL-VPN are commonly used, they find almost no mention
in the current embedded PQC research. Furthermore, the
NIST PQC competition is still ongoing and in the upcoming
fourth round, at least one more KEM will be standard-
ized. Additionally, NIST issued a new call for proposals
to find PQ DSAs based on mathematical problems other
than hashes and lattices. Once more candidates are ready
for standardization, their implementation into embedded use
cases needs to be investigated.
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Appendix

Figure 3. Full PQ-TLS Handshake, including en exemplary PKI structure for client and server certificates
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Table 7. PQ TLS PAPERS

Reference Approach Network
Topology

PKI Structure Main Findings

Bürstinghaus et al.
[40]

Prove feasibility of PQ TLS
1.2 on different embedded de-
vices as client and server with
Sphincs and Kyber

Ethernet,
direct
Connection

Single pre-shared
certificate -
Server
authentication

- Full PQ TLS 1.2 is possible on different
embedded platforms
- Kyber can outperform ECDH
- Sphincs signing process creates bottleneck

Tasopoulos et al.
[39]

Benchmark of PQ TLS 1.3
on ARM Cortex M4 with all
NIST round 3 candidates

Ethernet,
direct
Connection

Homogeneous
two-layered
hierarchy -
Mutual
authentication

- Choice of DSA more impactful than
choice of KEM
- Dilithium-Kyber combination can outperform con-
ventional TLS with elliptic curves
- Handshake bandwidth increases by factor 5-10
depending on algorithm combination

Tasopoulos et al.
[41]

Energy Consumption Evalua-
tion of Post-Quantum TLS 1.3
for Resource-Constrained Em-
bedded Devices

Ethernet,
direct

hierarchy unstated,
Mutual and server
authentication

- PQC can offer equal or greater efficiency compared
to traditional TLS ciphers
- power consuption varies with ciphers and scenarios

Schöffel et al.
[37]

Benchmark PQ TLS 1.2 on
ARM Cortex M4 with all
NIST round 3 candidates

Bluetooth Low
Energy,
Connection
over
Gateway

Heterogeneous
two-layered
hierarchy -
Mutual
authentication

- Bandwidth-restricted environments suffer from
large public keys and signatures from PQ DSAs
- Heterogeneous PKIs can reduce
bandwidth and runtime
- Falcon-Kyber combination provides fastest hand-
shake performance

Gonzales et al.
[42]

Comparison of KEMTLS 1.3
to regular PQ TLS on
ARM Cortex M4

Varies see
Table 3

Heterogeneous
two-layered
hierarchy -
Server
authentication

- In low-bandwidth networks, DSA is the main factor
for latency due to public key and signature size,
otherwise PQC computation is the bottleneck
- KEMTLS can not outperform Falcon with server
authentication only

Halac et al.
[55]

Evaluation of Performance,
Energy, and Computation
Costs of Quantum-Attack
Resilient Encryption
Algorithms for Embedded
Devices

Ethernet,
direct Connec-
tion

hierarchy unstated,
Mutual authentica-
tion

- Effects are mostly defined by the DSA
- Latency compares well to Elliptic Curve Cryptog-
raphy (ECC)
- Memory usage varies heavily between algorithms
and stack or heap utilization
- Dilithium

Alnahawi et al.
[15]

Survey on Post-Quantum TLS Varies Server authentica-
tion

- Both purely and hybrid PQ algorithms are compet-
itive with traditional ciphers
- All proposals for PQ key exchange use KEMs
- Especially KEMTLS shows promise in perfor-
mance and possible scenarios
- Findings vary in non-ideal network conditions
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