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ABSTRACT
The conventional Byzantine fault tolerance (BFT) paradigm requires

replicated state machines to execute deterministic operations only.

In practice, numerous applications and scenarios, especially in the

era of blockchains, contain various sources of non-determinism.

Despite decades of research on BFT, we still lack an efficient and

easy-to-deploy solution for BFT with non-determinism—BFT-ND,

especially in the asynchronous setting.

We revisit the problem of BFT-ND and provide a formal and

asynchronous treatment of BFT-ND. In particular, we design and

implement Block-ND that insightfully separates the task of agreeing

on the order of transactions from the task of agreement on the

state: Block-ND allows reusing existing BFT implementations; on

top of BFT, we reduce the agreement on the state to multivalued

Byzantine agreement (MBA), a somewhat neglected primitive by

practical systems. Block-ND is completely asynchronous as long as

the underlying BFT is asynchronous.

We provide a new MBA construction significantly faster than

existing MBA constructions. We instantiate Block-ND in both the

partially synchronous setting (with PBFT, OSDI 1999) and the purely

asynchronous setting (with PACE, CCS 2022). Via a 91-instance

WAN deployment on Amazon EC2, we show that Block-ND has

only marginal performance degradation compared to conventional

BFT.

1 INTRODUCTION
This paper revisits the classic problem of Byzantine fault tolerance

with non-determinism—BFT-ND.We provide the first practical solu-

tion that is both modular (without the need to modify the consensus

layer or the system architecture) and asynchronous (the system

being live even during network asynchrony).

Non-determinism in BFT and blockchains. State machine repli-

cation (SMR) is a generic approach to achieving system availability

and reliability. Byzantine fault-tolerant state machine replication

(BFT)—handling Byzantine (arbitrary) failures—is nowadays the de

facto model of permissioned blockchains [7, 12] and being increas-

ingly used in permissonless blockchains such as Ethereum [60].

The conventional state machine replication paradigm requires

replicated state machines to execute deterministic operations. If

all operations are deterministic and replicas execute the opera-

tions according to the same order, correct replicas eventually main-

tain a consistent state. In practice, various scenarios contain non-

determinism—caused by, for instance, scheduler decisions, multi-

threading and parallel execution, probabilistic algorithms, operating

system discrepancy, and implementation difference. Namely, even

if all correct replicas execute the transactions in the same logical

order, they end up with inconsistent system states.

Take the programming languages in blockchain smart contracts

as examples. The Chaincode in Hyperledger Fabric [7] uses general-

purpose languages and naturally contains non-deterministic op-

erations (due to, e.g., local random numbers [18, 59]). While the

programming languages of Ethereum virtual machine (EVM) do

not permit non-deterministic operations [2], Ethereum still suf-

fers from various inconsistencies of execution results because of,

for example, the discrepancy of the virtual machine versions and

programming languages [30]. For instance, in an experiment with

36,295 real-world smart contracts using four different EVM versions,

it was found that over 50% contracts suffer from inconsistency of

gas used, 1,275 contracts suffer from inconsistent opcode execution

sequences [30]. As a result, non-determinism in blockchain may

cause correct replicas’ states to diverge.

(a) Order-then-execute. (b) Execute-then-order.

Figure 1: Models of dealing with non-determinism in BFT.

As it is difficult to detect and quarantine all possible sources

of non-determinism, various systems have chosen to handle non-

determinism from the protocol design perspective [5, 11, 15, 25,

36, 37, 42, 51, 67, 68]. Cachin, Schubert, and Vukolić (CSV) [15]

provide a comprehensive survey on protocols dealing with non-

determinism in BFT and distinguish three models:

• Order-then-execute (Figure 1a). The transactions are first ordered
using BFT and then executed at replicas; the executed results,

one from each replica, are communicated to all other replicas

using (up to) 𝑛 BFT instances (where 𝑛 is the number of repli-

cas). Then a decision can be made depending on the atomically

delivered outputs.

• Execute-then-order (Figure 1b). The transactions are executed
speculatively by all replicas upon receiving requests from a

designated replica (i.e., the leader), and then the leader collects

signed approvals from replicas. After receiving 𝑓 + 1 approvals

for the same speculative result, the leader initiates a BFT proto-

col communicating the decision and the signed approvals to all

other replicas.

• Master-slave. A specific replica is assigned as the master making

all non-deterministic choices, while other replicas act as slaves

and follow the choices. In the Byzantine failure scenario, the

master must provide the state and the correctness proof of the

execution to justify the choices and the results.

In particular, the order-then-execute and the execute-then-order

approaches do not require modifying the source code of the BFT

protocol; however, the master-slave approach requires that the
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Figure 2: Overview of Block-ND.

developers have access to and modify the protocol. CSV proposed

an approach in the execute-then-order model, a variant of which is

used in Hyperledger Fabric [3].

Issues. In spite of decades of research on BFT, we lack an efficient

and easy-to-deploy solution for BFT-ND. In particular, existing

approaches suffer from the following issues:

• Modularity and compatibility. So far, existing solutions dealing

with non-determinism still lack modularity, in the sense that

they need to 1) modify the underlying BFT protocol—in which

case a special-purpose BFT protocol handling non-determinism

should be designed, validated, and implemented, and/or 2) mod-

ify the system architecture (e.g., by adopting the execute-then-

order model).

First, designing and implementing a new BFT protocol (espe-

cially at the production level) has been acknowledged as a chal-

lenging task; crucially, for BFT infrastructures in operation,

transitioning to new ecosystems would be prohibitively expen-

sive. Second, it is not always possible to change the system

architecture as it may take tremendous engineering efforts.

• Efficiency. Existing BFT-ND protocols are much less efficient

than conventional BFT protocols. First, the order-then-execute

approach allows replicas to reach an agreement on the order of

transactions and then execute the transactions. If non-deterministic

operations are detected, replicas roll back to the previous state

until an agreement on the state is reached. When rollback is

triggered frequently, the entire system may suffer from a large

window of zero throughput. Second, the execute-then-order

and master-slave approaches require replicas to execute the

transactions first and then reach an agreement on the execution

results. As the execution of the transactions and the agreement

are highly coupled, the slower process becomes the bottleneck

of the system.

• Asynchrony. Existing BFT protocols with non-determinism do

not have effective solutions dealing with network asynchrony [5,

11, 15, 25, 36, 37, 42, 51, 67, 68]. First, the order-then-execute

paradigm would require 𝑛-fold increase in message and commu-

nication to cope with asynchrony. The other two approaches

inherently rely on a leader to prevent the replica state from

diverging; it is unclear how to extend them to deal with network

asynchrony.

Our approach. The root cause for all the challenges above is that
traditional BFT-ND protocols handle the agreement on the order

of transactions and the agreement on the replica state at the same

time. In this paper, we challenge this conventional wisdom and sep-

arate it into two tasks: agreement on the order of the transactions

(block agreement layer) and agreement on the state (state agree-

ment layer). In particular, we design Block-ND, the architecture of

which is shown in Figure 2a. The block agreement layer is fully

de-coupled from the state agreement layer; the agreement on the

state additionally allows the replica state to converge. The block

agreement layer employs a conventional BFT protocol, allowing

one to reuse the existing BFT system implemented and deployed.

We reduce the problem of agreement on the state to multivalued

Byzantine agreement (MBA), a primitive that allows correct replicas

to reach an agreement on some arbitrary values. MBA guarantees

that replicas eventually agree on the state by some correct replica(s).

To further capture the need for state transfer and make the agree-

ment on the state more self-contained, we slightly extend the MBA

notion to a new primitive called double-output multivalued Byzan-

tine agreement (DO-MBA). DO-MBA produces two outputs: the

primary output follows that of a conventional MBA; the secondary

output denotes whether a replica needs to synchronize its state

with other replicas. In this way, DO-MBA fully captures our needs

for agreement on the state and ensures replicas eventually converge

on their states.

As shown in Figure 2b, Block-ND follows the order-then-execute

paradigm. Replicas first reach an agreement on the order of blocks

of transaction (e.g., at time 𝑡2, the order of𝑚1 is committed), execute

the transactions in the background, and then start an MBA instance

to reach an agreement on the execution results. Replicas can con-

tinue the block agreement layer without waiting for the execution

and MBA to complete. Our approach is completely asynchronous:

if the underlying BFT protocol is asynchronous, Block-ND is asyn-

chronous; if the underlying BFT is partially synchronous [27], the

mechanisms ensuring liveness (e.g., view change) is "hidden" by

BFT itself.

Our contributions.We make the following contributions:

• We revisit the problem of BFT-ND. The core idea is to separate

the agreement on the order of transactions and the agreement

on the state. To reach an agreement on the state, we reduce the

problem to multivalued Byzantine agreement (MBA).

• We present a practical and asynchronous MBA construction

ND-MBA based on reproposable asynchronous binary agree-

ment (RABA) [64]. Our MBA protocol terminates in only three

steps in the optimistic case and is more efficient than all MBA

constructions we are aware of. Accordingly, the agreement on

the state can be very lightweight when all correct replicas hold

the same state, i.e., there are no non-deterministic operations.

• We transformMBA construction to DO-MBA, an extended prim-

itive of MBA that has two outputs. In our case, transforming

ND-MBA to DO-MBA is easy: we only need to modify a few

lines of code. DO-MBA might be a primitive of independent

interest.

• Based on the MBA protocol, we build Block-ND. Block-ND can

reuse any BFT protocols and is asynchronous as long as the

underlying BFT is asynchronous.
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• We evaluate the throughput and latency of our DO-MBA pro-

tocol and Block-ND using up to 91 Amazon EC2 instances. We

provide a partially synchronous instantiation and an asynchro-

nous instantiation using PBFT [17] and PACE [64], respectively.

We use Ethereum Virtual Machine (EVM) for transaction exe-

cution. Our results show that Block-ND is efficient, with 0.89%-

21.0% performance degradation compared to the underlying BFT

protocols that do not handle non-determinism.

2 RELATEDWORK
BFT assuming partial synchrony and asynchrony. BFT proto-

cols can be divided into partially synchronous protocols (e.g., [17,

26, 31, 56, 63]) and asynchronous protocols (e.g., [23, 24, 33, 34, 43,

47, 64]). Partially synchronous BFT assumes that there exists an

unknown upper bound on the message transmission and process-

ing delay [27]. In contrast, asynchronous BFT assumes no timing

assumptions. The celebrated FLP result [28] rules out the possibility

of deterministic consensus in the asynchronous environment; asyn-

chronous BFT must thus be randomized to be probabilistically live.

Block-ND, by design, assumes no timing assumptions, applying to

both partially synchronous and asynchronous BFT protocols.

Detection of non-determinism in blockchains. A line of work

aims to detect non-deterministic behavior via code analysis (see [18]

and references therein). For example, Luu et al. used static code

analysis to study non-determinism on transaction dependencies in

EVMs during the ordering and execution of transactions [45]. A

recent work studied Chaincode and explored the use of Go-based

tools to scan its contracts and detect non-deterministic instruc-

tions [61]. Some commercial software tools can also analyze de-

ployed contracts and detect non-deterministic operations [1]. These

analysis-based approaches, however, can only detect program-level
non-determinism with limited accuracy.

Separating agreement from execution. Yin et al. [62] and Duan

et al. [25] studied the architecture of separating the BFT agree-

ment and the execution of transactions. In the architecture, the

BFT agreement cluster orders client requests and the execution

cluster then executes client requests according to the order. Our

work is different from their approaches: we first reach an agree-

ment on the transactions from different clients and then reach an

agreement on states across correct replicas even in the presence of

non-determinism.

Multivalued Byzantine agreement (MBA) vs. multivalued
validated Byzantine agreement (MVBA). For the consensus

problem, every replica holds a message (supposedly the same), and

all replicas want to agree on this message. Consensus includes

the binary agreement (BA) and the multivalued Byzantine agree-

ment (MBA). The difference is that BA reaches an agreement on

binary values, while MBA reaches an agreement on values from an

arbitrary domain.

In synchronous settings, the reduction fromMBA to BA was first

introduced by Turpin and Coan [58] and followed up by [29, 38, 41,

50]. In the asynchronous environments, the reduction from MBA

to asynchronous BA (ABA) was first established by Correia, Neves,

and Veríssimo [19]. TheMBA protocol, however, has𝑂 (𝑛3)message

complexity and expected 𝑂 (1) time. Mostéfaoui and Raynal [48]

presented the first MBA with optimal 𝑂 (𝑛2) message complexity

and optimal expected constant time. Several works aimed at reduc-

ing the communication of MBA for long messages [44, 49].

MBA is a somewhat neglected primitive in practical systems.

This is in sharp contrast to multivalued validated Byzantine agree-

ment (MVBA) [13] — the validated version of MBA. Indeed, despite

the similarities between MBA and MVBA, they are fundamentally

different: MBA does not imply MVBA and MBA does not imply

MVBA either. MVBA has been identified as a useful primitive in

building asynchronous BFT protocols [33, 34]. In contrast, to the

best of our knowledge, MBA has never been used in practical sys-

tems.

In this work, we build a new MBA protocol that significantly

reduces the number of communication steps of prior protocols,

while maintaining the optimal message and time complexity.

Crusader agreement. The crusader agreement primitive was in-

troduced by Dolev [22]. It is weaker than the conventional Byzan-

tine agreement in the sense that crusader agreement allows that

some correct replicas decide ⊥ but other correct replicas decide the

same non-⊥ value (called the weak agreement property). Abraham,

Ben-David, and Yandamuri recently showed that by introducing

a binding property on crusader agreement, crusader agreement

can be used to construct efficient binary agreement protocols [4].

In this work, we propose a new primitive DO-MBA that outputs

two values. The secondary output satisfies the weak agreement

property.

RABA. Reproposable ABA (RABA) was originally proposed by

Zhang and Duan [64]. Unlike prior RABA-based distributed com-

puting primitives [24, 64–66], the usage of RABA in our ND-MBA

protocol is radically different. Indeed, all previous RABA-based ap-

proaches are used to build asynchronous common subset (ACS) [24,

64, 66] and distributed key generation (DKG) [65]. In contrast, our

work uses RABA to build MBA.

BFT with cryptographically secure common coins. Many BFT

protocols or applications require the usage of cryptographically se-

cure common coins. Depending on applications and setups, onemay

use verifiable random functions [15], threshold pseudorandom func-

tions using trusted setup [14], and distributed key generation [39].

Parallel BFT and parallel execution of transactions. Many

previous works explore parallelism in BFT and blockchains. Mir-

BFT [54] and ISS [55] execute multiple BFT instances to turn leader-

based BFT into leaderless BFT. The protocols partition the domain of

client requests into different instances to enhance the performance

and scalability of conventional BFT. RBFT [8] executes multiple

BFT instances, but the instances are identical, i.e., they order and ex-
ecute the same transactions. The goal is to handle the performance

degradation attack launched by the leader. In comparison, our work

executes a conventional BFT and MBA in parallel. Different from

all prior works, the two parallel instances aim to achieve BFT-ND.

Parallel transaction (e.g., smart contract) execution has been

explored in the past [6, 21, 32, 37]. Transactions are executed in

parallel so the performance of transaction execution can be im-

proved. Our approach considers that the transactions are executed

sequentially according to their order. However, our work can be

extended to handle parallel transaction execution.
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3 SYSTEM MODEL
We consider a system with 𝑛 replicas, where 𝑓 of them may be

Byzantine (fail arbitrarily). The protocols we consider assume 𝑓 ≤
⌊𝑛−1

3
⌋, which is optimal. According to the timing assumptions,

BFT protocols can be divided into partially synchronous protocols

(where messages are guaranteed to be delivered within a time-

bound, but the bound may be unknown [27]) and asynchronous

protocols (with no timing assumption). Partially synchronous BFT

attains liveness only when the network becomes synchronous.

Asynchronous BFT can (always) use randomization to achieve prob-

abilistic liveness.

In our description, we tag a protocol instance with a unique

identifier 𝑖𝑑 . We may omit the identifiers when no ambiguity arises.

Throughout the paper, we explicitly distinguish between BFT

(atomic broadcast), BFT-SMR (secure with deterministic operations

only), and BFT-ND (dealing with non-determinism).

BFT (atomic broadcast). This paper uses BFT and atomic broad-

cast interchangeably, as these two primitives are only syntactically

different. In atomic broadcast, a replica a-broadcasts messages and

all replicas a-deliver messages. The correctness of atomic broadcast

is specified as follows:

• Safety: If a correct replica a-delivers a message 𝑚 before a-
delivering 𝑚′, then no correct replica a-delivers a message𝑚′

without first a-delivering𝑚.

• Liveness: If a correct replica a-broadcasts a message𝑚, then all

correct replicas eventually a-deliver 𝑚.

The atomic broadcast abstraction implicitly assigns an order

to each delivered transaction. Slightly restricting its syntax, we

may write a-deliver (𝑠𝑛,𝑚) to denote that𝑚 is the 𝑠𝑛-th a-delivered
transaction.

SMR and BFT-SMR. In the state machine replication paradigm [40,

52], a state machine consists of a set of states S, a set of operations
O, and an execution function execute(). The execution function

execute() takes a state 𝑠 (initially 𝑠0) and an operation 𝑜 as input and

outputs an updated state 𝑠′: execute(𝑠, 𝑜) → 𝑠′. A state machine can

(optionally) compute a response 𝑟 based on its state. Alternatively,

one could also include a response in the output of the execution

function: execute(𝑠, 𝑜) → (𝑠′, 𝑟 ).
In the BFT-SMR protocol, each replica maintains a replicated

state machine, and all correct replicas maintain the same initial

state. If they use atomic broadcast (BFT) to disseminate and order

client operations, then once the operations are deterministic, their

states will never diverge. Namely, atomic broadcast directly implies

a secure BFT-SMR for deterministic operations.

BFT-SMR with non-determinism (BFT-ND). If allowing sources
of non-determinism, we need to carefully revisit the properties of

BFT-SMR. In this case, atomic broadcast (BFT) does not imply a

"secure" BFT-SMR; indeed, the states of replicas may diverge due

to non-determinism.

We, therefore, define BFT-SMR with non-determinism, or BFT-

ND. Still, in BFT-ND, we use the same syntax as SMR. A client still

submits a transaction containing some operation 𝑜 and may expect

a response 𝑟 from the replicas. However, we dissociate the events

in BFT-ND from those in the atomic broadcast. Namely, we do not

consider the a-broadcast and a-deliver events. Instead, we define

nd-deliver (𝑜) as the event that a replica terminates the BFT-ND

protocol and updates its state via an update function that takes

as input 𝑜 . (Each replica may internally run a-broadcast, a-deliver,
execute(), and possibly other operations, but these functions need

not be exposed as the API of BFT-ND.) Specifically, we consider the

following properties for BFT-ND:

• Total order: If a correct replica nd-delivers 𝑜 before nd-delivering
𝑜′, then no correct replica nd-delivers 𝑜′ without first nd-delivering 𝑜 .
• Correctness: If a correct replica maintains state 𝑠 before it nd-
delivers 𝑜 and maintains 𝑠′ after it nd-delivers 𝑜 , another correct
replica maintains state 𝑠 before it nd-delivers 𝑜 and maintains

𝑠′′ after it nd-delivers 𝑜 , then 𝑠′ = 𝑠′′.
• Liveness: If an operation 𝑜 is submitted to all correct replicas,

then each correct replica eventually nd-delivers 𝑜 or ⊥; if 𝑜 is

deterministic, each correct replica nd-delivers 𝑜 and updates its

state via update.

The liveness property is concerned with deterministic operations

only. There is a chance some non-deterministic operations may

be nd-delivered; however, due to the total order and correctness

guarantees, those non-deterministic operations will not cause any

inconsistencies—which is exactly our goal.

4 PRELIMINARIES
Asynchronous binary agreement (ABA). An ABA protocol can

be viewed as a binary version of MBA with the input domain being

{0, 1}. An ABA protocol is specified by two events: a-propose()
and a-decide(). Every replicas a-propose𝑠 a bit 𝑣 ∈ {0, 1}, and each

correct replica a-decide𝑠 a value 𝑣 ∈ {0, 1}. ABA should satisfy the

following properties:

• Validity: If all correct replicas a-propose 𝑣 , then any correct

replica that terminates a-decide 𝑣 .
• Agreement: If a correct replica a-decide𝑠 𝑣 , then any correct

replica that terminates a-decide𝑠 𝑣 .
• Termination: Every correct replica eventually a-decide𝑠 some

value.

• Integrity: No correct replica a-decide𝑠 twice.

Reproposable asynchronous binary agreement (RABA).RABA
is a distributed computing primitive recently introduced by Zhang

and Duan [64]. In contrast to conventional ABA protocols, where

replicas can vote once only, RABA allows replicas to change their

votes. A RABA protocol is specified by r-propose(), r-repropose(),
and r-decide(), with the input domain being {0, 1}. For our purpose,
RABA is "biased towards 1." Each replica r-proposes a value 𝑏 at

the beginning of the protocol. A correct replica that r-proposed 0 is
allowed to change its mind and r-repropose 1, but not vice versa. If
a replica r-repropose 1, it does so at most once. A replica terminates

the protocol by r-decideing some value. RABA (biased towards 1)

satisfies the following properties:

• Validity: If all correct replicas r-propose 𝑣 and never r-repropose
𝑣 , then any correct replica that terminates r-decide 𝑣 .
• Unanimous termination: If all correct replicas r-propose 𝑣 and
never r-repropose 𝑣 , then all correct replicas eventually termi-

nate.

• Agreement: If a correct replica r-decides 𝑣 , then any correct

replica that terminates r-decides 𝑣 .
4
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• Biased validity: If 𝑓 + 1 correct replicas r-propose 1, then any

correct replica that terminates r-decides 1.

• Biased termination: Let 𝑄 be the set of correct replicas. Let

𝑄1 be the set of correct replicas that r-propose 1 and never

r-repropose 0. Let 𝑄2 be correct replicas that r-propose 0 and

later r-repropose 1. If𝑄2 ≠ ∅ and𝑄 = 𝑄1∪𝑄2, then each correct

replica eventually terminates.

• Integrity: No correct replica r-decides twice.

Informally, most RABA protocols terminate under three condi-

tions: 1) all correct replicas r-propose 0 and never r-repropose 1; 2) at
least 𝑓 + 1 correct replicas r-propose 1; 3) at least one correct replica
r-propose 1 and later those correct replicas that r-proposed 0 change
their mind and r-repropose 1.
Multivalued Byzantine agreement (MBA). An MBA protocol

is specified by two events: mba-propose() and mba-decide(). Every
replica mba-proposes an input value 𝑣𝑖 ∈ {0, 1}𝐿 , and each correct

replicamba-decides an output 𝑣 ∈ {0, 1}𝐿 , where 𝐿 is a finite integer.

Let ⊥ be a distinguished symbol. An MBA protocol should satisfy

the following properties.

• Validity: If all correct replicas mba-propose 𝑣 , then any correct

replica that terminates mba-decides 𝑣 .
• Agreement: If a correct replica mba-decides 𝑣 , then any correct

replica that terminates mba-decides 𝑣 .
• Termination: If all correct replicas mba-propose some value,

every correct replica eventually mba-decides.
• Integrity: No correct replica mba-decides twice.

Note that the following non-intrusion is an optional property

that can be met in some MBA constructions only [48]:

• Non-intrusion: If a correct replica mba-decides 𝑣 such that

𝑣 ≠ ⊥, then at least one correct replica mba-proposes 𝑣 .

Crusader agreement (CA). CA [22] relaxes the notion of Byzan-

tine agreement (MBA and binary agreement). In CA, it is allowed

that some correct replicas decide a ⊥ value, while other correct

replicas decide the same non-⊥ value. A CA protocol is specified by

c-propose() and c-decide() and satisfies the following properties.

• Weak agreement: If a correct replica c-decides value 𝑣 and

another correct replica c-decides 𝑣 ′, then 𝑣 = 𝑣 ′ or one of 𝑣 and
𝑣 ′ is ⊥.
• Validity: If all correct replica c-propose 𝑣 , then any correct

replica that terminates c-decides 𝑣 .
• Termination: If all correct replicas c-propose some value, every

correct replica eventually c-decides.

Hash; threshold signatures. We use a collision-resistant hash

function ℎ𝑎𝑠ℎ. We also use threshold signatures in our DO-MBA

protocol. A (ℓ, 𝑛) threshold signature scheme [10, 53] consists of

the five algorithms (tgen, tsign, shareverify, tcombine, tverfiy). tgen
outputs a public key known to anyone and a vector of 𝑛 private

keys. A partial signature signing algorithm tsign takes as input a

message𝑚 and a private key 𝑠𝑘𝑖 and outputs a partial signature 𝜋𝑖 .

A combining algorithm tcombine takes as input 𝑝𝑘 , a message𝑚,

and a set of ℓ valid partial signatures, and outputs a signature 𝜋 . A

signature verification algorithm tverify takes as input 𝑝𝑘 , a message

𝑚, and a signature 𝜋 , and outputs a bit. We require the conventional

robustness and unforgeability properties for threshold signatures.

Convention and notation. In the paper, we use best-effort broad-
cast, or simply broadcast, where a sender multicasts a message to all

replicas. To measure the latency of asynchronous protocols, we use

the standard notion of asynchronous steps [16], where a protocol
runs in 𝑥 asynchronous steps if its running time is at most 𝑥 times

the maximum message delay between correct replicas during the

execution. The notion of rounds is restricted to ABA protocols: an

ABA protocol proceeds in rounds, where an ABA round consists of

a fixed number of steps.

5 PATHWAY TO BLOCK-ND
5.1 The Strawman Approaches
We present the challenges of transforming a conventional BFT

to BFT-ND in an asynchronous model. Our goal in this transfor-

mation is to preserve the communication or time complexity of

BFT, ensuring that the system performance is not significantly de-

graded. As mentioned in the introduction, providing a protocol

in the master-slave model lacks modularity, we thus focus on the

order-then-execute and execute-then-order models.

(a) The dilemma of the 1st attempt in the
order-then-execute model.

(b) The challenge of the 2nd at-
tempt in the execute-then-order
model.

Figure 3: The challenges of building BFT-ND.

First attempt.A straightforward approach in the order-then-execute

model is shown in Figure 3a. Replicas first use a conventional BFT

protocol to agree on the order of a block, execute the transactions,

and then include the execution results in the order of another block,

i.e., the proposed content in the consensus is in the form of (𝑚, 𝑠),
where 𝑚 is a block and 𝑠 is the system state (or the hash of the

state). As illustrated in the figure, replicas reach an agreement on

the order of a block𝑚1 (duration 𝑡1 to 𝑡2), execute𝑚1 in the back-

ground and continue to reach an agreement on the order of other

blocks. After𝑚1 is executed at time 𝑡3, the state 𝑠1 is included in the

proposal of another block𝑚3, i.e., the proposal for𝑚3 is (𝑚3, 𝑠1).
Here, there is a dilemma on the agreement of 𝑠1 when𝑚1 consists

of non-deterministic operations. In particular, some correct repli-

cas may not maintain 𝑠1 after the execution of𝑚1. If these correct

replicas do not vote for𝑚3, none of the correct replicas are able to

collect more than 2𝑓 + 1 matching votes. As 2𝑓 + 1 matching votes

are necessary for the agreement on𝑚3, the protocol suffers from

the liveness issue. Alternatively, if correct replicas passively accept

𝑠1, a malicious block proposer can directly manipulate the state

of the system, i.e., this design cannot handle the case where 𝑚1

consists of deterministic operations, but the block proposer simply

proposes a wrong state.
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Note that we can use techniques such as zero-knowledge proof

for the replicas to prove the correctness of execution results. How-

ever, some operations might be expensive to prove [35]. Addition-

ally, such a design modifies the underlying BFT and is thus not

modular.

Second attempt. We now switch to the execute-then-order model.

In an asynchronous model, we cannot rely on any designated leader

to lead the agreement on the state. Alternatively, we can ask replicas

to exchange their execution results and then decide whether the

corresponding transactions can be included in the block proposal.

As shown in Figure 1b, replicas can exchange the hashes of their

states; if any correct replica collects 𝑓 + 1 matching values, the

corresponding transaction is considered valid and can be included

in the block proposal.

Here, there are two major challenges. First, replicas have to ex-

ecute the transactions first. In this way, an inherent pre-ordering

is required. As there is no leader in such a system, read write con-

flicts may frequently occur under high concurrency of transactions,

causing significant system performance degradation [32, 46, 57].

Second, one may ask each replica to collect the execution results

and determine whether the transactions are deterministic. In the

example in Figure 3b, a block𝑚1 consists of non-deterministic oper-

ations and the execution results of replicas 𝑝1, 𝑝2, 𝑝3, and 𝑝4 are 𝑠1,

𝑠′
1
, 𝑠′′

1
, 𝑠1, respectively. In this scenario, replicas may have different

views about whether𝑚1 is valid. For instance, 𝑝1 considers𝑚1 as

valid since 𝑝1 receives 𝑠1 from 𝑝4 and itself, but 𝑝2 will not consider

𝑚1 as valid since 𝑝2 receives 𝑠′
1
, 𝑠′′

1
, and 𝑠1 from 𝑝2, 𝑝3, and 𝑝4,

respectively. Therefore, replicas have to create digital signatures

for their states and include the signatures in their block proposal

to verify whether𝑚1 is valid.

Thus, the communication overhead for verification of execution

results can be extremely high. Consider the naive solution where

each replica provides a signature of the execution result of each

transaction. A proposal of a block with |𝑚 | transactions needs to
be associated with 𝑂 ( |𝑚 |𝑛) digital signatures for the purpose of
agreement on the state. Consider a block with 1MB size, each trans-

action has 250 bytes, and each digital signature has 256 bits. If there

are 100 replicas, the block size will be blown up to 13.8MB, with

12.8MB dedicated for verification of the execution results! It is still

unclear how to build a communication-efficient and asynchronous

treatment for BFT-ND.

5.2 Overview of Our Approach
The idea in Block-ND is de-coupling the agreement on the order

of the transactions (the block agreement layer) from the agree-

ment on the state (the state agreement layer), as shown in Figure 2.

Namely, replicas first run BFT to order the transactions, execute the

transactions, and then reach an agreement on the executed results

(states). Obviously, the block agreement layer allows us to reuse

existing BFT implementations. For the state agreement layer, our

idea is to use Multivalued Byzantine agreement (MBA) [48] that

reaches agreement on values from an arbitrary domain; in this way,

replicas can decide if they are in consistent states. Recall that MBA

guarantees that if all correct replicas provide the same input value

to MBA (in which case they have the same state), the value will be

output by every correct replica. Additionally, if a non-⊥ value is

decided, at least one correct replica has proposed the value (the non-

intrusion property), showing that the corresponding transactions

have indeed been executed by at least one correct replica.

To make the state agreement layer more self-contained, we

slightly extend the notion of MBA to a new primitive called double-

output MBA (DO-MBA). DO-MBA produces two outputs. The pri-

mary output denotes (the hash of) the state replicas reach an agree-

ment on, and the security properties follow those of conventional

MBA. The secondary output represents whether a replica needs

state transfer. Replicas reach a crusader agreement on the secondary

output, i.e., some correct replicas may decide ⊥ while other correct

replicas decide a non-⊥ value [22]. If a correct replica decides a

non-⊥ value for the secondary output, it does not need to perform

state transfer—and vice versa.

A practical MBA (and DO-MBA) construction. We provide a

novel MBA construction ND-MBA that is significantly faster than

existing MBA constructions, as shown in Table 1. The main con-

tribution of our construction is using reproposable asynchronous

binary agreement (RABA) [64] in a novel manner. Implementing

Pisa, the best-known RABA protocol featuring a one-step coin-free

fast path [64], our MBA is more efficient than other MBA designs.

We further modify a few lines of code to transform our MBA to

DO-MBA. To the best of our knowledge, our construction is the

first practical MBA protocol ever implemented and evaluated in

the era of blockchains.

Block-ND in a nutshell. Based on DO-MBA, we build Block-

ND, an asynchronous and modular system for BFT-ND. Block-ND

employs a conventional BFT to order transactions first. After the

ordering is finalized, each replica can execute the transactions and

provide the hash of its state as input to DO-MBA. We distinguish

three different scenarios:

• If the transactions only contain deterministic operations, our

approach guarantees that DO-MBA outputs the hash of correct

replicas’ states (for both the primary output and the secondary

output), and the transactions will be nd-delivered. (No state

transfer is needed.)

• The transactions contain non-deterministic operations, and repli-

cas may still agree on some non-⊥ value as the primary output

in DO-MBA. In this case, replicas still nd-deliver the transactions.
Depending on the secondary output in DO-MBA, some correct

replicas may start state transfer. Our approach guarantees that

correct replicas eventually complete state transfer and converge

to the same state.

• The transactions contain non-deterministic operations, and repli-

cas agree on ⊥ for the primary output in DO-MBA. In this case,

all correct replicas roll back to the state before the execution of

transactions and then nd-deliver ⊥.
We emphasize that the way that we use rollback and state trans-

fer [9] to handle inconsistent states follows that of CSV [15, pp. 9]

(in fact, no solutions can prevent rollback from happening): if a

rollback operation is used for execution, a process with a diverging

state can obtain the state from other processes via state transfer.

Our work does not focus on how to complete state transfer effi-

ciently but studies how to provide an asynchronous and modular

treatment to BFT-ND.
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protocols non-intrusion? msg best steps expected steps

CNV MBA [20] no 𝑂 (𝑛3 ) 14 23

MR [48]
★

yes 𝑂 (𝑛2 ) 8 16

ND-MBA yes 𝑂 (𝑛2 ) 3 12

Table 1: Comparison of known asynchronous MBA and DO-
MBA protocols.★MR reducesMBA to ABA. Here, we consider
Quadratic-ABA [66], the most efficient ABA with a fast path
known so far. Quadratic-ABA terminates in 4 steps in the
best case and the expected number of steps is 10.

To summarize, our paradigm enjoys several benefits as the block

agreement layer and the state agreement layer are fully de-coupled.

First, our work is the first practical BFT-ND in the order-then-

execute model, as it preserves the complexity of the conventional

BFT (for the block agreement layer). As the two layers are executed

in parallel, the system performance, as we later show in our eval-

uation, is only marginally degraded. Second, our work is the first

asynchronous treatment of BFT-ND. As mentioned previously, it

is unclear how to do so in the execute-then-order or master-slave

model.

6 ND-MBA: PRACTICAL MBA AND DO-MBA
In this section, we provide our DO-MBA construction. We begin

with an efficient MBA construction that terminates in only 3 steps

in the optimistic case, as shown in Table 1. In contrast, the most

efficient MBA protocol known so far is due to Mostéfaoui and

Raynal (MR) [48], which terminates in 8 steps in the optimistic case.

We then show how to transform ND-MBA to DO-MBA.

6.1 Our MBA Construction
Overview.We propose a new protocol based on threshold signa-

tures. The core idea is to reduce the MBA problem to RABA, and we

use the Pisa protocol by Zhang and Duan [64]. RABA is a variant of

asynchronous binary agreement (ABA) protocol that has a coin-free

fast path: the protocol can terminate as fast as only one step and

does not require coin-tossing.

ND-MBA only involves several steps of all-to-all communica-

tion for replicas to exchange their proposed values. Then a RABA

instance is started for replicas to agree on whether a sufficiently

large fraction of correct replicas have proposed the same value. In

the optimistic case where all correct replicas mba-propose the same

value, ND-MBA involves two steps of communication and a RABA

instance. Hence, ND-MBA terminates in three steps in the fast path

and 12 expected steps, much lower than existing ones, as shown in

Table 1.

Description of the ND-MBA protocol. As shown in Figure 5, our

MBA protocol consists of 2-4 communication steps and a RABA

instance: disperse(), echo(), forward(), distribute(), and RABA𝑖𝑑 ,
where RABA𝑖𝑑 denotes the RABA instance tagged by an identifier

𝑖𝑑 . Briefly speaking, each replica first sends a disperse(𝑣)message to

all replicas where 𝑣 is its proposed value. If a replica receives 𝑛 − 2𝑓

disperse(𝑣) where 𝑣 is different from its proposed value, it sends an

echo(𝑣) message to all replicas. These two steps together ensure

that every correct replica will receive 𝑛− 𝑓 disperse(𝑣) and echo(𝑣)
messages with the same 𝑣 . Whenever such 𝑣 exists, the replica sends

01 initialization
02 𝑝𝑣, 𝑟 𝑣, 𝜌 ← ⊥ //proposed value and received value

03 𝑟𝑑 ← [⊥]∗ //set of received values

04 upon mba-propose(𝑣)
05 𝑝𝑣 ← 𝑣

06 broadcast disperse(𝑣) //disperse( ) step
07 upon receiving disperse(𝑣) from 𝑝 𝑗 for the first time

08 𝑟𝑑 [𝑣 ] ← 𝑟𝑑 [𝑣 ] + 1

09 upon receiving 𝑛 − 2𝑓 disperse(𝑣) s.t. 𝑣 ≠ 𝑝𝑣 and echo(𝑣) has not
been sent //optional echo( ) step
10 broadcast echo(𝑣)
12 upon receiving echo(𝑣) from 𝑝 𝑗 for the first time and disperse(𝑣)
is not received from 𝑝 𝑗

13 𝑟𝑑 [𝑣 ] ← 𝑟𝑑 [𝑣 ] + 1

14 loop in the background
15 if ∀𝑥 ≠ 𝑝𝑣, Σ𝑥𝑟𝑑 [𝑥 ] ≥ 𝑓 + 1

16 r-propose(0) to RABA𝑖𝑑
17 if 𝑟𝑑 [𝑣 ] ≥ 𝑛 − 𝑓 and forward( ) has not been sent

18 𝜎𝑖 ← 𝑡𝑠𝑖𝑔𝑛 (𝑣) // forward( ) step
19 broadcast forward(𝑣, 𝜎𝑖 )
20 let 𝑤 be the value s.t. ∀𝑥 received by 𝑝𝑖 , 𝑟𝑑 [𝑤 ] ≥ Σ𝑥𝑟𝑑 [𝑥 ]
21 if Σ𝑥𝑟𝑑 [𝑥 ] − 𝑟𝑑 [𝑤 ] ≥ 𝑓 + 1

22 r-propose(0) to RABA𝑖𝑑
23 upon receiving 𝑛 − 𝑓 matching forward(𝑣, 𝜎 𝑗 )
24 𝜎 ← 𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝜎 𝑗 · · · )
25 if RABA𝑖𝑑 is not started, r-propose(1) to RABA𝑖𝑑
26 else r-repropose(1) to RABA𝑖𝑑
27 𝑟 𝑣 ← 𝑣, 𝜌 ← 𝜎

28 if distribute( ) has not been sent //distribute( ) step
29 broadcast distribute(𝑟 𝑣, 𝜎 )
30 upon receiving distribute(𝑣, 𝜎 ) such that 𝑡𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑣, 𝜎 ) and 𝑛 − 𝑓

forward( ) messages have been received

31 𝑟 𝑣 ← 𝑣, 𝜌 ← 𝜎

32 if RABA𝑖𝑑 is not started, r-propose(1)
33 else r-repropose(1) to RABA𝑖𝑑
34 upon r-decide(1)
35 wait until 𝑟 𝑣 ≠ ⊥
36 mba-decide(𝑟 𝑣)
37 upon r-decide(0)
38 mba-decide(⊥)

Figure 4: ND-MBA construction. The code is for 𝑝𝑖 .
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p3

p4
disperse
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RABA
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RABA 
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Figure 5: ND-MBA.

a forward(𝑣) message to all replicas and can start to propose to

RABA𝑖𝑑 upon receiving a sufficiently large fraction of matching
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forward() messages. Finally, the distribute() step allows replicas to
further exchange their received values from the forward()messages

and is used to ensure the special biased termination property of

RABA.

We show the pseudocode in Figure 4. Every replica 𝑝𝑖 maintains

four system parameters: 𝑝𝑣 , 𝑟𝑣 , 𝜌 , and 𝑟𝑑 . The 𝑝𝑣 parameter denotes

the proposed value of 𝑝𝑖 . The value 𝑟𝑣 stores the received value. The
𝜌 parameter stores a proof for the value 𝑟𝑣 , if any. Finally, the 𝑟𝑑 is

a map that tracks the number of received votes for each value.

The protocol proceeds as follows.

� Disperse (lines 04-08). Upon the mba-propose(𝑣) event, 𝑝𝑖 first
sets 𝑝𝑣 as 𝑣 , and then broadcasts a disperse(𝑣) message. Meanwhile,

every replica uses the 𝑟𝑑 parameter to track the number of received

votes. In particular, upon receiving a disperse(𝑣) message from

some replica 𝑝 𝑗 for the first time (line 07), 𝑝𝑖 sets 𝑟𝑑 [𝑣] as 𝑟𝑑 [𝑣] + 1

(line 08).

� Echo (optional, lines 09-13). If𝑝𝑖 receives𝑛−2𝑓 matching disperse(𝑣)
messages such that 𝑣 is different from its proposed value 𝑝𝑣 , 𝑝𝑖
broadcasts an echo(𝑣) message. Every replica still uses the 𝑟𝑑 pa-

rameter to track the number of received votes in the echo() mes-

sages. If 𝑝𝑖 receives an echo(𝑣) message from 𝑝 𝑗 for the first time

and it has not previously received a disperse(𝑣) message from 𝑝 𝑗 ,

it also sets 𝑟𝑑 [𝑣] as 𝑟𝑑 [𝑣] + 1 (lines 12-13).

� Forward (lines 17-20). Every replica 𝑝𝑖 loops in the background

and tracks the 𝑟𝑑 parameter (line 14). If 𝑝𝑖 receives 𝑛 − 𝑓 matching

disperse(𝑣) and echo(𝑣) messages, i.e., 𝑟𝑑 [𝑣] ≥ 𝑛 − 𝑓 (line 17), 𝑝𝑖
creates a partial signature𝜎𝑖 for value 𝑣 (line 18) and then broadcasts

a forward(𝑣, 𝜎𝑖 ) message (line 19). Every correct replica only sends

one forward() message.

� Conditions for providing 1 as input to RABA𝑖𝑑 (lines 23-26, lines
30-33). There are two conditions for 𝑝𝑖 to provide 1 as input to

RABA𝑖𝑑 .

• Lines 23-26: 𝑝𝑖 receives 𝑛− 𝑓 matching forward(𝑣, 𝜎 𝑗 ) messages.

In this case, 𝑝𝑖 combines the partial signatures included in the

forward() messages into a signature 𝜎 . Then, 𝑝𝑖 sets 𝑟𝑣 as 𝑣

and 𝜌 as 𝜎 (line 27). If 𝑝𝑖 has not sent a distribute() message, it

broadcasts a distribute(𝑟𝑣, 𝜎) message (lines 28-29).

• Lines 30-33: 𝑝𝑖 receives a valid distribute(𝑣, 𝜎) message such

that 𝜎 is a valid signature for 𝑣 . In this case, 𝑝𝑖 also sets 𝑟𝑣 as 𝑣

and 𝜌 as 𝜎 .

� Conditions for providing 0 as input to RABA𝑖𝑑 (lines 15-16, lines
20-22). There are two conditions for 𝑝𝑖 to provide 0 as input to

RABA𝑖𝑑 .

• Lines 15-16: 𝑝𝑖 tracks whether it receives 𝑓 + 1 inconsistent

disperse(𝑣) and echo(𝑣) for any value 𝑣 different from 𝑝𝑣 . Once

the condition "∀𝑥 ≠ 𝑝𝑣 , Σ𝑥𝑟𝑑 [𝑥] ≥ 𝑓 + 1" is satisfied, at least

one correct replica must have proposed a value different from

𝑝𝑣 . In this case, 𝑝𝑖 r-proposes 0 to RABA𝑖𝑑 .
• Lines 20-22: 𝑝𝑖 tracks value𝑤 for which it receives the highest

number of votes, i.e., 𝑟𝑑 [𝑤] ≥ Σ𝑥𝑟𝑑 [𝑥]. Then, if the number of

votes for all other values is at least 𝑓 + 1 higher than 𝑟𝑑 [𝑤] (i.e.,
Σ𝑥𝑟𝑑 [𝑥] − 𝑟𝑑 [𝑤] ≥ 𝑓 + 1), 𝑝𝑖 r-proposes 0 to RABA𝑖𝑑 .

� Output conditions (lines 34-38). Every replica waits for RABA𝑖𝑑
to terminate. There are two cases. If 𝑝𝑖 r-decides 1, it waits for 𝑟𝑣

to become non-⊥. After that, it mba-decides 𝑟𝑣 . Otherwise, if 𝑝𝑖
r-decides 0, it mba-decides ⊥.
Complexity analysis. ND-MBA only involves all-to-all communi-

cation and the message complexity of known RABA protocols (e.g.,

Pisa [64]) is 𝑂 (𝑛2). Hence, the message complexity of ND-MBA

is 𝑂 (𝑛2). The time complexity is 𝑂 (1) as every phase completes

in constant time. We now analyze the communication complexity.

Consider that the input of each replica is 𝐿. Replicas exchange their

proposed values in the disperse() and echo() steps, so the com-

munication complexity is 𝑂 (𝐿𝑛2). In the forward() and disperse()
steps, each replica sends one value and a signature to all replicas, so

these two steps have 𝑂 (𝐿𝑛2 + 𝜅𝑛2) communication, where 𝜅 is the

length of the security parameter (e.g., the length of the signature).

In the RABA phase, the communication is𝑂 (𝜅𝑛2), considering that
the common coin is instantiated by threshold PRF [14]. Therefore,

ND-MBA has 𝑂 (𝐿𝑛2 + 𝜅𝑛2) communication.

6.2 Formalizing DO-MBA
We now formally define DO-MBA that extends MBA. In DO-MBA,

every correct replica mba-proposes one value 𝑣 ∈ {0, 1}𝐿 and mba-
decides two values (𝑣1, 𝑣2), where 𝐿 is a finite integer. Here 𝑣1 and

𝑣2 are called the primary output and the secondary output, respec-

tively. Both the primary output and the secondary output can be ⊥
(a distinguished symbol). We require the conventional agreement

property for the primary output and weak agreement (as in the cru-

sader agreement) for the secondary output. In particular, DO-MBA

satisfies the following properties:

• Validity. If all correct replicas mba-propose 𝑣1, all correct repli-

cas eventually mba-decide (𝑣1, 𝑣2) for any 𝑣2.

• Primary agreement. If a correct replica mba-decides (𝑣1, 𝑣2)
and a correct replica mba-decides (𝑣 ′

1
, 𝑣 ′

2
) such that 𝑣1 ≠ ⊥ and

𝑣 ′
1
≠ ⊥, then 𝑣1 = 𝑣 ′

1
.

• Weak secondary agreement. If a correct replica mba-decides
(𝑣1, 𝑣2) and a correct replica mba-decides (𝑣 ′

1
, 𝑣 ′

2
), then 𝑣2 = 𝑣 ′

2

or one of 𝑣2 and 𝑣 ′
2
is ⊥.

• Termination. If all correct replicas mba-propose, every correct

replica eventually mba-decides some value.

• Integrity. Every correct replica mba-decides once.
• Non-intrusion. If a correct replicamba-decides (𝑣1, 𝑣2), at least
one correct replica mba-proposes 𝑣1.

The DO-MBA primitive has features for the agreement on the

state, considering the input of each replica is the hash of its state.

First, if all correct replicas mba-propose the same value 𝑣1, the

validity property of DO-MBA guarantees that all correct replicas

will mba-decide (𝑣1, 𝑣2) (in our construction, 𝑣1 = 𝑣2). Hence, if all

correct replicas execute non-deterministic operations in the same

order, they will mba-propose the same value 𝑣1, mba-decide (𝑣1, 𝑣2),
and do not need state transfer. Second, the secondary output of

DO-MBA captures the feature for state transfer. In particular, any

replica that mba-decides (𝑣1,⊥) will start state transfer. The non-
intrusion property of DO-MBA guarantees that at least one correct

replica mba-proposes 𝑣1 and the hash of its state is 𝑣1. Hence, all

correct replicas will eventually complete the state transfer. (Recall

that the non-intrusion property may not be needed in some earlier

works but is crucial in our definition of DO-MBA.)

8



Byzantine Fault Tolerance with Non-Determinism, Revisited , ,

replace lines 34-38 in Figure 4 using the following lines

34 upon r-decide(1)
35 wait until 𝑟 𝑣 ≠ ⊥
36 if 𝑟 𝑣 = 𝑝𝑣

37 mba-decide(𝑟 𝑣, 𝑟 𝑣)
38 else
39 mba-decide(𝑟 𝑣,⊥)
40 upon r-decide(0)
41 mba-decide(⊥,⊥)

Figure 6: Transforming ND-MBA to DO-MBA.

Note that as mentioned in Sec. 5, MBA with the non-intrusion

property already ensures that replicas will eventually agree on

the same state. We slightly extend the notion to DO-MBA mainly

because DO-MBA is a self-contained notion for the agreement on

the state. Namely, the needs for state transfer is directly exposed to

users as part of the output.

6.3 Our DO-MBA Construction
We transformND-MBA to a DO-MBA protocol by replacing lines 34-

38 with ones shown in Figure 6. In particular, each replica 𝑝𝑖 waits

for RABA𝑖𝑑 to terminate. There are two cases. First, 𝑝𝑖 r-decides 1.

Here, replicas have already reached an agreement on some value

for the primary output. Replica 𝑝𝑖 then waits for its 𝑟𝑣 to become

non-⊥ (line 35). This 𝑟𝑣 value is updated in the forward() and
distribute() steps. After that, 𝑝𝑖 verifies whether 𝑟𝑣 is the same

as its proposed value 𝑝𝑣 . If so, 𝑝𝑖 mba-decide(𝑟𝑣, 𝑟𝑣) (lines 36-37).
Otherwise, 𝑝𝑖 mba-decide(𝑟𝑣,⊥) (lines 38-39). Second, if 𝑝𝑖 r-decides
0, 𝑝𝑖 mba-decide(⊥,⊥) (lines 40-41).
Complexity analysis. Our transformation from the MBA protocol

to the DO-MBA protocol only involves additional local computation.

Therefore, our DO-MBA protocol preserves the complexity of ND-

MBA, achieving 𝑂 (1) time, 𝑂 (𝑛2) messages, and 𝑂 (𝐿𝑛2 + 𝜅𝑛2)
communication. When we use our DO-MBA protocol in Block-ND,

the input of each replica is always a hash, so the communication

complexity is 𝑂 (𝜅𝑛2). We prove the correctness of our DO-MBA

protocol in Appendix A.

7 BLOCK-ND
This section describes Block-ND consisting of a block agreement

layer ordering transactions and a state agreement layer reaching

an agreement on the state. We present in Figure 7 the workflow of

Block-ND. For the block agreement layer, we use the a-deliver(𝑠𝑛,𝑚)
event, i.e., replicas a-deliver 𝑚 and explicitly assign a sequence

number 𝑠𝑛 to 𝑚. For DO-MBA, we use the mba-propose() and
mba-decide() events.

Every replica 𝑝𝑖 maintains a state 𝑠 . We use 𝑠𝑠𝑛−1 to denote

the state before querying the execute(𝑠𝑠𝑛−1,𝑚) function and 𝑠𝑠𝑛 to

denote the state after the execution of𝑚.

The protocol works as follows. After the a-deliver(𝑠𝑛,𝑚) event
(line 03), each replica 𝑝𝑖 executes the transactions in block𝑚 by

querying the function execute(𝑠𝑠𝑛−1,𝑚), and obtains the state 𝑠𝑠𝑛
(line 05). Then at line 06, 𝑝𝑖 starts a DO-MBA instance MBA𝑠𝑛 and

provides ℎ𝑎𝑠ℎ(𝑠𝑠𝑛) as the input.
There are three cases afterMBA𝑠𝑛 outputs (𝑣, ℎ) (line 07).

01 initialization
02 𝑠,𝑚𝑠𝑔 //𝑠 denotes state and𝑚𝑠𝑔 is a delivered block

03 upon a-deliver(𝑠𝑛,𝑚) //block agreement layer

04 𝑚𝑠𝑔𝑠𝑛 ←𝑚

05 𝑠𝑠𝑛 ← execute(𝑠𝑠𝑛−1,𝑚) //execution

06 mba-propose(ℎ𝑎𝑠ℎ (𝑠𝑠𝑛 ) ) forMBA𝑠𝑛 //state agreement layer

07 upon mba-decide(𝑣,ℎ) forMBA𝑠𝑛
08 if 𝑣 ≠ ⊥ and ℎ ≠ ⊥
09 nd-deliver(𝑚𝑠𝑔𝑠𝑛 ) such that ℎ𝑎𝑠ℎ (𝑠𝑠𝑛 ) = 𝑣

10 if 𝑣 ≠ ⊥ and ℎ = ⊥ //need to synchronize with other replicas

11 perform state transfer until ℎ𝑎𝑠ℎ (𝑠𝑠𝑛 ) = 𝑣

12 nd-deliver(𝑚𝑠𝑔𝑠𝑛 ) such that ℎ𝑎𝑠ℎ (𝑠𝑠𝑛 ) = 𝑣

13 if 𝑣 = ⊥ //𝑚 contains non-deterministic operations

14 𝑠𝑠𝑛 ← 𝑠𝑠𝑛−1 //rollback

15 nd-deliver(⊥)

Figure 7: The workflow of Block-ND. The code for 𝑝𝑖 .

m1 m2 m4m3

execute(s0,m1)

h = hash(s1)

MBA1

(h,h)
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h = hash(s1)
(h,h)

(h,   )

execute(s0,m1)

execute(s0,m1)
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state transfer

p1

p2

p3

p4

s0

s0

s0

s0

Block agreement layer

State agreement layer
s1

s1'

s1

s1 h = hash(s1)
(h,h)

Figure 8: A running example of Block-ND.

• Lines 08-09: 𝑣 ≠ ⊥ and ℎ ≠ ⊥. In this case, replicas reach an

agreement on ℎ𝑎𝑠ℎ(𝑠𝑠𝑛) and the state of 𝑝𝑖 matches one that

replicas reach an agreement on. Replica 𝑝𝑖 then nd-delivers𝑚.

• Lines 10-12: 𝑣 ≠ ⊥ and ℎ = ⊥. In this case, replicas reach

an agreement on the state, such that the hash of the state is

𝑣 . Additionally, 𝑝𝑖 maintains an inconsistent state with other

correct replicas. In this case, 𝑝𝑖 performs state transfer with all

the replicas until it updates it state, the hash of which is ℎ. Then

𝑝𝑖 nd-delivers𝑚.

• Lines 13-14: 𝑣 = ⊥. In this case, replicas fail to reach an agree-

ment on the same state. Alternatively, we can also say that repli-

cas reach an agreement on the fact that the block𝑚 consists

of at least one transaction with non-deterministic operations.

Replica 𝑝𝑖 then rolls back to the state of the prior block, i.e., by

setting 𝑠𝑠𝑛 as 𝑠𝑠𝑛−1. It then nd-delivers a special symbol ⊥.

A running example.We illustrate a running example of Block-ND

in Figure 8. All correct replicas initially maintain state 𝑠0. After the

order of block 𝑚1 is finalized (i.e., an agreement on the order is

reached), replicas use the hash of the state as input to MBA1, a

DO-MBA instance. There are three possible scenarios:

(1) Block𝑚1 does not include any transactionswith non-deterministic

operations. Accordingly, all correct replicas maintain the same

state 𝑠1 after execute(𝑠0,𝑚1). According to the validity property

of DO-MBA, all correct replicas will mba-decide (ℎ,ℎ) where
ℎ = ℎ𝑎𝑠ℎ(𝑠1). No replicas need to perform state transfer. All

correct replicas then nd-deliver 𝑚1 and their state is 𝑠1.

9
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(2) Block𝑚1 contains transactions with non-deterministic opera-

tions, but correct replicas still reach an agreement on some state.

An example is shown in Figure 8 with four replicas. Replicas 𝑝1,

𝑝3, and 𝑝4 obtain the same execution result, and their state is

𝑠1. Replicas 𝑝1, 𝑝3, and 𝑝4 provide ℎ as input to DO-MBA but

replica 𝑝2 obtains 𝑠
′
1
and provides ℎ′ as input. After DO-MBA

terminates, 𝑝1, 𝑝3, and 𝑝4 mba-decide (ℎ,ℎ) and 𝑝2 mba-decides
(ℎ,⊥). Then 𝑝2 performs state transfer with other replicas. Ac-

cording to the non-intrusion property of DO-MBA, the protocol

guarantees that at least one correct replica maintains the state

𝑠1 such that ℎ = ℎ𝑎𝑠ℎ(𝑠1) so 𝑝3 can successfully complete the

state transfer. After that, correct replicas then nd-deliver𝑚1 and

their state is 𝑠1.

(3) The block𝑚1 contains transactions with non-deterministic op-

erations and correct replicas reach an agreement on (⊥,⊥). All
correct replicas then roll back to the state 𝑠0 and nd-deliver ⊥.
We prove the correctness of Block-ND in Appendix B.

Why order-then-execute? In Block-ND, as the agreement on the

order and the agreement on the state are de-coupled, the agreement

on the state can be triggered in the background. We show in our

experiments that by doing so, this paradigm creates little overhead

to the system performance. This demonstrates the advantage of

building BFT-ND in the order-then-execute model.

While we build Block-ND in the order-then-execute model, the

DO-MBA primitive itself can be used for the agreement on the state

in other models as well. For instance, in the execute-then-order

model, replicas can execute the transactions and use DO-MBA to

agree on the execution result. If DO-MBA outputs a non-⊥ value

for the primary output, replicas then reach a consensus on the order

of the corresponding transactions.

Handling transactions with non-deterministic operations. To
build a fully-fledged BFT-ND protocol, we still need to consider

how to handle scenario (3) mentioned above: correct replicas nd-
deliver ⊥ for block𝑚 (where𝑚 is a-delivered). As mentioned above,

replicas have already agreed on the fact that𝑚 contains at least

one transaction with non-deterministic operations. According to

the protocol,𝑚 should directly be discarded by the replicas.

However, discarding the entire block creates a subtle liveness is-

sue. In particular,𝑚 consists of multiple transactions. Consider that

only one transaction𝑜 in𝑚 consists of non-deterministic operations,

while other transactions only contain deterministic operations. If

correct replicas directly nd-deliver ⊥ and discard 𝑚, all transac-

tions with deterministic operations in𝑚 will be discarded as well,

violating the liveness property of BFT-ND.

To address this issue, we further make the following change to

Block-ND. After each correct replica nd-delivers ⊥ for any block

𝑚, replicas do not immediately discard all the transactions in𝑚.

Instead, replicas execute the transactions in𝑚 sequentially (in a

deterministic order) and start an MBA instance for each transaction.

After the MBA instance terminates, replicas handle the transaction

in exactly the sameway as described above. In this way, transactions

with deterministic operations can then be nd-delivered, and the

liveness property is satisfied.

8 IMPLEMENTATION AND EVALUATION
We implement Block-ND in Golang. Our implementation

1
of the

protocols involves more than 11,000 LOC. For the underlying BFT

protocol in the block agreement layer, we implement both PACE [64]

(an asynchronous BFT protocol) and PBFT [17] (a partially synchro-

nous BFT protocol). We use gRPC as the communication library. We

use HMAC to realize the authenticated channel, SHA256 as the hash

function, and ECDSA as the digital signature scheme. For PACE, we

implemented threshold PRF [14] as the common coin protocol. For

the threshold signature scheme (used in our DO-MBA protocol),

we use a set of ECDSA signatures instead, following that of a large

number of prior systems [31, 56, 63]. For the execute() function, we
use the open-source EVM implementation from the Hyperledger

Burrow project
2
. We evaluate the performance on Amazon EC2

using up to 91 virtual machines (VMs). We use m5.xlarge instances.

The m5.xlarge instance has four virtual CPUs and 16GB memory.

We deploy our protocols in the WAN setting, where replicas are

evenly distributed across the following regions: us-west-2 (Oregon,

US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and eu-west-1

(Ireland).

We conduct the experiments under different network sizes and

batch sizes.We use 𝑓 to denote the network size; in each experiment,

we use 𝑛 = 3𝑓 +1 replicas in total. We use 𝑏 to denote the batch size,

where each replica proposes 𝑏 transactions at a time. The default

transaction size is 250 bytes. For each experiment, we repeat the

experiment 5 times and report the average performance result.

Our evaluation aims to answer the following questions:

• How efficient is our DO-MBA protocol?

• How does our DO-MBA protocol perform under different

input conditions (i.e., correct replicas provide the same input

and inconsistent inputs)?

• What is the latency breakdown for our DO-MBA protocol?

• How does Block-ND perform compared to conventional BFT

protocols? What is the performance overhead introduced by

running an additional DO-MBA protocol?

• What is the performance of Block-ND under failures?

Performance of ourND-MBAprotocol. In our constructions, the
input to the DO-MBA is a fixed-length hash, i.e., 256 bits. Therefore,

we mainly assess the latency of our DO-MBA protocol for different

𝑓 . To better analyze the performance overhead, we assess four

different modes of DO-MBA protocol for each 𝑓 .

• Mode 0: All correct replicas provide the same input.

• Mode 1: 2𝑓 correct replicas provide the same input, and one

correct replica provides an inconsistent input.

• Mode 2: 𝑓 + 1 correct replicas provide the same input while 𝑓

correct replicas provide some inconsistent inputs.

• Mode 3: Every correct replica generates a local random value

and provides the value as the input.

We show the latency of our DO-MBA protocol for 𝑓 = 1, 10, 20, 30

under the four modes in Figure 9a. All the experiments are com-

pleted within 1.14 seconds, where the experiment with the highest

latency is for 𝑓 = 30 (91 replicas) and mode 3. Among the four

1
https://anonymous.4open.science/r/block-nd-D5E7

2
https://github.com/hyperledger-archives/burrow
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Figure 9: Evaluation results of our DO-MBA protocol and Block-ND.

modes, the latency of mode 3 is consistently higher than the other

three modes. To further assess the result, we also present the la-

tency breakdown in Figure 9b-9e. We use "exchange" to denote the

disperse(), echo(), forward(), and distribute() steps, and "RABA"

to denote the RABA phase. As shown in the figures, the RABA

phase occupies a higher running time in mode 3 than in the other

three modes. For instance, when 𝑓 = 30, the RABA phase occupies

87.3% of the total runtime in mode 3, in contrast to 32.5% in mode 1.

The results are expected, as in mode 3, it is more likely that replicas

will provide 0 as input to RABA in the early stage of the exchange

phase. In such a case, RABA will terminate in more rounds.

Performance of Block-ND.We assess Block-ND using PACE and

PBFT as the block agreement layer, denoted as Block-ND (PACE)

and Block-ND (PBFT), respectively. We compare the performance

under two scenarios: running a PACE (resp. PBFT) instance and

running Block-ND (PACE) (resp. Block-ND (PBFT)). In this way, we

can evaluate the overhead created by our DO-MBA protocol. We

assess two different scenarios.

• No execution benchmark (Figure 9f-9i). We neglect the cost of

execution and assess the performance of the Block-ND protocol

itself. For this scenario, we aim to understand the overhead

caused by DO-MBA on top of a conventional BFT protocol and

understand the performance of Block-ND itself.

• Smart contract benchmark. We use EVM to instantiate the

execute() function. We choose the default hello world smart

contract. For this scenario, we also assess the performance of

CSV. To have a fair comparison of our work, we use the CSV

framework instead of assessing Hyperledger Fabric. In particu-

lar, we use EVM as the execution layer and PACE/PBFT as the

consensus after the execution. For example, in the EVM+PBFT
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f PACE
Block-ND \Degradation

(PACE)
CSV

(PACE)

1 30.00 29.51 \ 1.65% 3.01

10 87.30 79.4 \ 9.94% 3.39

f PBFT
Block-ND \Degradation

(PBFT)
CSV

(PBFT)

1 11.77 10.88 \ 8.23% 2.85

10 13.91 12.74 \ 7.24% 3.11

Table 2: Throughput (ktx/sec) of PACE (resp. PBFT) with EVM
vs. Block-ND (PACE) (resp. Block-ND (PBFT)) with EVM vs.
CSV, and the performance degradation of Block-ND.

combination of CSV, after the leader collects 𝑓 + 1 matching

execution results, it proposes the transaction.

No execution benchmark.We demonstrate the throughput for 𝑓 =

1, 10, 30, varying the batch size for BFT in the block agreement layer.

We report batch size vs. throughput in Figure 9f-9g and throughput

vs. latency in Figure 9h-9i. In our experiments, the performance

of Block-ND degrades marginally compared to that of running

a single BFT instance. In particular, the throughput of Block-ND

(PBFT) degrades 0.89%-10.02% compared to that of PBFT and the

throughput of Block-ND (PACE) degrades 1.47%-11.79% compared

to that of PACE. The difference between Block-ND and a single

BFT instance is more visible when 𝑓 is large. As for the throughput

vs. latency, given the same throughput, the latency of PACE (resp.

PBFT) is consistently and slightly lower than that of Block-ND

(PACE) (resp. Block-ND (PBFT)).

Smart contract benchmark.We report the throughput of both the

block agreement layer and the state agreement layer (transaction

execution and DO-MBA) for 𝑓 = 1 and 10. We also assess the CSV

paradigm as a comparison. We fix the batch size to 30,000 for the

block agreement layer.We study three different scenarios and assess

the throughput: PACE/PBFT with EVM, Block-ND with EVM, and

CSV. We summarize our results in Table 2.

Our evaluation results show that the throughput of the state

agreement layer is 3.5 ktx/sec (on average for almost all experi-

ments), and the throughput of CSV is from 2.85-3.39 ktx/sec. Com-

pared with the throughput of the block agreement layer (e.g., 33.0

ktx/sec for PACE), the throughput of the state agreement layer

and CSV are significantly lower than the block agreement layer.

Clearly, the performance bottleneck for the state agreement layer

and CSV is due to the slow EVM execution. Just as we claimed in

the introduction, the performance bottleneck of such a paradigm is

the slower process.

Note that, in Block-ND, the block agreement layer does not need

to wait for the state agreement layer or the execution of the smart

contract to complete before starting a new epoch. Therefore, the

performance of the block agreement layer with EVM execution

degrades only marginally. As shown in Table 2, for 𝑓 = 1 and

𝑓 = 10, the throughput degradation of Block-ND (PACE) are 1.6%

and 9.94%; the throughput degradation of Block-ND (PBFT) is 8.23%

and 7.24%.

In all cases with EVM executions, the performance bottleneck of

Block-ND is due to the executions in the state agreement layer.
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Figure 10: Latency of our DO-MBA protocol in Block-ND
(PACE) under different failure scenarios.

Performance under failures.We assess the performance of Block-

ND (PACE) for 𝑓 = 1, 10, 20, 30 under four different scenarios, fol-

lowing the practice in prior asynchronous BFT [64, 66].

• S0: All replicas are correct.

• S1: Let 𝑓 replicas crash by not processing any message.

• S2: Let 𝑓 faulty replicas keep voting 0 in RABA in both PACE

and DO-MBA.

• S3: Let 𝑓 replicas fail by always voting for the flipped value in

RABA in both PACE and DO-MBA.

As the performance of the underlying BFT is not the focus of

this paper, we focus on the performance of our DO-MBA protocol.

We evaluate mode 0 and mode 3. Recall that in mode 0, all correct

replicas provide the same input to the DO-MBA protocol. In con-

trast, in mode 3, every correct replica provides a random value as

input to the DO-MBA protocol. In this way, we can evaluate the

performance of our DO-MBA under two extreme scenarios.

We report the latency of our DO-MBA protocol in Figure 10. For

mode 0, the latency of DO-MBA in the four scenarios is almost

identical. This is because correct replicas all vote for 1 in RABA, so

faulty replicas cannot render RABA to terminate in a larger num-

ber of rounds. For mode 3, the latency of the DO-MBA protocol

varies slightly for different scenarios. For larger 𝑓 , the latency under

failure scenarios is slightly higher compared to the failure-free sce-

nario. We conclude that the performance of our DO-MBA protocol

is dominated by the inputs of the replicas instead of the failure

scenarios.

9 CONCLUSION
We revisit the notion of Byzantine fault-tolerant state machine

replication with non-determinism (BFT-ND) and build an efficient,

modular, and asynchronous system called Block-ND. At the core of

Block-ND is a novel idea of separating agreement on transaction

ordering from agreement on replica state. As a key building block

for Block-ND, we formalize a new distributed computing primitive—

DO-MBA and provide an efficient construction. We implemented

Block-ND in both partially synchronous and asynchronous settings

and demonstrated that Block-ND incurs marginal overhead to the

conventional BFT systems dealing with deterministic operations

only.
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A PROOF OF OUR DO-MBA
We prove the correctness of our DO-MBA. As our DO-MBA already

implies an MBA protocol, correctness of our MBA follows.

Theorem A.1 (Non-intrusion). If a correct replica mba-decides
(𝑣1, 𝑣2), at least one correct replica mba-proposes 𝑣1.

Proof. If a correct replica mba-decides (𝑣1, 𝑣2), at least one cor-
rect replica sets 𝑟𝑣 as 𝑣1 and 𝜌 as 𝜎 , where 𝜎 is a valid signature for

𝑣1. Hence, at least 𝑛 − 2𝑓 correct replicas have sent forward(𝑣1,−).
For any correct replica that sends a forward(𝑣1,−) message, it has

received 𝑛 − 𝑓 echo(𝑣1) and disperse(𝑣1) messages. According to

the protocol, if one correct replica receives an echo(𝑣1) message, it

has received 𝑓 + 1 disperse(𝑣1) messages. Thus, at least one correct

replica sends a disperse(𝑣1) message and mba-proposes 𝑣1. ■

Lemma A.2. If a correct replica r-proposes 1 or r-reproposes 1, it
sets 𝑟𝑣 as 𝑣 and 𝜌 as 𝜎 where 𝜎 is a valid signature for 𝑣 . If another
correct replica r-proposes 1 or r-reproposes 1, it sets 𝑟𝑣 as 𝑣 and 𝜌 as
𝜎 .

Proof. If a correct replica r-proposes 1 or r-reproposes 1, it has re-

ceived 𝑛 − 𝑓 matching forward(𝑣,−) messages or a distribute(𝑣,−)
message. Replica 𝑝𝑖 sets 𝜌 as 𝜎 where 𝜎 is a valid signature for 𝑣 .

We assume that another correct replica 𝑝 𝑗 sets 𝑟𝑣 as 𝑣
′
and prove

the correctness by contradiction. In particular, if 𝑝 𝑗 r-proposes 1

or r-reproposes 1, it has received 𝑛 − 𝑓 matching forward(𝑣 ′,−)
or a valid distribute(𝑣 ′, 𝜎′) message where 𝜎′ is a valid signature

for 𝑣 ′. Therefore, at least one correct replica must have sent both

forward(𝑣,−) and forward(𝑣 ′,−), contradicting the fact that every

correct replica only sends a forward() message once. ■

LemmaA.3. If correct replicas r-decide 1, at least one correct replica
sends a distribute(𝑣, 𝜎) message, where 𝜎 is a valid signature for 𝑣 .
If any replica receives distribute(𝑣 ′, 𝜎′), 𝑣 = 𝑣 ′.

Proof. If correct replicas r-decide 1, at least one correct replica

r-proposes 1 or r-reproposes 1, as otherwise the validity property of

RABA is violated. According to Lemma A.2, at least one correct

replica sets 𝑟𝑣 as 𝑣 and 𝜌 as 𝜎 such that 𝜎 is a valid signature

for 𝑣 . If another replica sends distribute(𝑣 ′, 𝜎′) such that 𝜎′ is a
valid signature for 𝑣 ′, at least one correct replica must have sent

both forward(𝑣,−) and forward(𝑣 ′,−). As every correct replica

only sends a forward() message once, 𝑣 = 𝑣 ′. ■

Theorem A.4 (Validity). If all correct replicas mba-propose 𝑣1,
all correct replicas eventually mba-decide (𝑣1, 𝑣2) for any 𝑣2.

Proof. If all correct replicas mba-propose 𝑣1, no correct repli-

cas will receive more than 𝑓 + 1 disperse(𝑣 ′
1
) messages s.t. 𝑣1 ≠

𝑣 ′
1
. Therefore, no correct replica will r-propose 0. Every correct

replica eventually receives 𝑛 − 𝑓 disperse(𝑣1) and then broadcasts

forward(𝑣1,−). Similarly, no correct replicawill receive forward(𝑣 ′
1
,−)

as a valid 𝜎 requires 𝑛 − 𝑓 partial signatures for 𝑣 ′
1
. Furthermore,

no correct replica will send an echo(𝑣 ′
1
) message. The condition

Σ𝑥𝑟𝑑 [𝑥] − 𝑟𝑑 [𝑣] ≥ 𝑓 + 1 will not be triggered so no correct replica

will r-propose 0. Similarly, the condition ∀𝑥 ≠ 𝑝𝑣 , Σ𝑥𝑟𝑑 [𝑥] ≥ 𝑓 + 1

will not be triggered as no replica is able to receive 𝑓 +1 disperse(𝑣 ′
1
).

As every correct replica will send a forward(𝑣1, 𝜎𝑖 ) message, ev-

ery correct replica will eventually receive 𝑛− 𝑓 forward(𝑣1, 𝜎 𝑗 ) and
r-proposes 1. According to the biased validity property of RABA, ev-

ery correct replica eventually r-decides 1. According to the protocol,

any correct replica that mba-proposes 𝑣 sets 𝑝𝑣 as 𝑣1. Additionally,

every replica sets 𝑟𝑣 as 𝑣1 and 𝑝𝑣 as 𝑣1, it will then mba-decide
(𝑣1, 𝑣1). The theorem thus holds. ■

Theorem A.5 (Primary agreement). If a correct replica mba-
decides (𝑣1, 𝑣2) and a correct replica mba-decides (𝑣 ′

1
, 𝑣 ′

2
) such that

𝑣1 ≠ ⊥ and 𝑣 ′
1
≠ ⊥, then 𝑣1 = 𝑣 ′

1
.

Proof. We assume 𝑣1 ≠ 𝑣 ′
1
and prove the theorem by contradic-

tion. According to the protocol, any correct replica thatmba-decides
must have r-decided 1. If a correct replica 𝑝𝑖 mba-decides (𝑣1, 𝑣2),
there are two cases: 1) 𝑝𝑖 receives 𝑛 − 𝑓 forward(𝑣1,−) messages, it

sets 𝑟𝑣 as 𝑣1 and 𝜌 as 𝜎 where 𝜎 is a valid signature for 𝑣1; 2) 𝑝𝑖 re-

ceives a distribute(𝑣1, 𝜎) message from another replica such that 𝜎

is a valid signature for 𝑣1. If another correct replica 𝑝 𝑗 mba-decides
(𝑣 ′

1
, 𝑣 ′

2
), 𝑝 𝑗 also receives a valid signature for 𝑣 ′

1
after receiving 𝑛− 𝑓

forward(𝑣 ′
1
,−) messages or a distribute(𝑣 ′

1
,−) message. Hence, at

least one correct replica must have sent both forward(𝑣1,−) and
forward(𝑣 ′

1
,−), contradicting the fact that every correct replica only

sends a forward() message once. ■

TheoremA.6 (Weak secondary agreement). If a correct replica
mba-decides (𝑣1, 𝑣2) and a correct replica mba-decides (𝑣 ′

1
, 𝑣 ′

2
), then

𝑣2 = 𝑣 ′
2
or one of 𝑣2 and 𝑣 ′

2
is ⊥.

Proof. If a correct replicamba-decides (𝑣1, 𝑣2), there are three cases:
1) 𝑣1 = ⊥. In this case 𝑣2 = ⊥ according to the protocol; 2) 𝑣1 ≠ ⊥
and 𝑣2 ≠ ⊥. According to the protocol, 𝑣1 = 𝑣2; 3) 𝑣1 ≠ ⊥ and

𝑣2 = ⊥. Similarly, if another correct replica mba-decides (𝑣 ′
1
, 𝑣 ′

2
),

there are three cases: 1) 𝑣 ′
1
= ⊥ and 𝑣 ′

2
= ⊥; 2) 𝑣 ′

1
≠ ⊥, 𝑣 ′

2
≠ ⊥, and

𝑣 ′
1
= 𝑣 ′

2
; 3) 𝑣 ′

1
≠ ⊥ and 𝑣 ′

2
= ⊥. We show that for every combination

of 𝑣1, 𝑣
′
1
, 𝑣 ′

2
, and 𝑣 ′

2
, either 𝑣2 = 𝑣 ′

2
or at least 𝑣2 or 𝑣 ′

2
is ⊥.

• 𝑣1 = ⊥. For all the three cases for 𝑣 ′
1
and 𝑣 ′

2
, the theorem holds

as 𝑣1 = 𝑣2 = ⊥.
• 𝑣1 ≠ ⊥ and 𝑣2 ≠ ⊥; 𝑣 ′

1
= ⊥. The theorem holds as 𝑣 ′

1
= ⊥.

• 𝑣1 ≠ ⊥ and 𝑣2 ≠ ⊥; 𝑣 ′
1
≠ ⊥ and 𝑣 ′

2
≠ ⊥. According to the proto-

col, 𝑣1 = 𝑣2 and 𝑣 ′
1
= 𝑣 ′

2
. According to the primary agreement

property, we know that 𝑣1 = 𝑣 ′
1
. Therefore, 𝑣2 = 𝑣 ′

2
.

• 𝑣1 ≠ ⊥ and 𝑣2 ≠ ⊥; 𝑣 ′
1
≠ ⊥ and 𝑣 ′

2
= ⊥. The theorem holds as

𝑣 ′
2
= ⊥.

• 𝑣1 ≠ ⊥ and 𝑣2 = ⊥. For all three cases for 𝑣 ′
1
and 𝑣 ′

2
, the theorem

holds as 𝑣2 = ⊥. ■

Lemma A.7. If a correct replica r-proposes 1 or r-reproposes 1, any
correct replica either r-proposes 1 or will later r-repropose 1.
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Proof. If a correct replica r-proposes 1, it has received 𝑛 − 𝑓

matching forward(𝑣,−) messages and set 𝜌 as 𝜎 where 𝜎 is a valid

signature for 𝑣 . The replica will broadcast a distribute(𝑣, 𝜎) mes-

sage. According to the protocol, any correct replica that receives a

distribute(𝑣, 𝜎) message either has r-proposed 1 or will r-repropose
1. ■

Theorem A.8 (Termination). If all correct replicas mba-propose,
every correct replica eventually mba-decides some value.

Proof. There are two cases considering the values correct repli-

cas mba-propose: 1) at least 𝑓 + 1 correct replicas mba-propose the
same value 𝑣 ; 2) fewer than 𝑓 + 1 correct replicas mba-propose the
same value. In the following, we first prove that for the two cases,

RABA𝑖𝑑 eventually terminates, and then show that every replica

eventually mba-decides.
Case 1) According to the protocol, all correct replicas that do not

mba-propose 𝑣 will eventually receive 𝑓 + 1 disperse(𝑣) and then

broadcast echo(𝑣). Every correct replicaswill receive𝑛−𝑓 disperse(𝑣)
and echo(𝑣), such that 𝑟𝑑 [𝑣] ≥ 𝑛 − 𝑓 . Then every correct replica

broadcasts a forward(𝑣,−) message. Similarly, every correct replica

will eventually receive 𝑛− 𝑓 forward() messages and then r-propose
some value to RABA𝑖𝑑 . There are two sub-cases: A) At least one cor-
rect replica r-proposes 1 to RABA𝑖𝑑 ; B) None of the correct replicas
r-propose 1 to RABA𝑖𝑑 .

• A). From Lemma A.7, every correct replica eventually r-proposes
or r-reproposes 1. Hence, the biased termination property of

RABA guarantees that RABA𝑖𝑑 eventually terminates.

• B). If none of the correct replicas r-reproposes to RABA𝑖𝑑 , the
unanimous termination property of RABA guarantees RABA𝑖𝑑
eventually terminates. If at least one correct replica r-reproposes
1, then according to Lemma A.7, any correct replica will even-

tually r-repropose 1. The biased termination property of RABA

guarantees that RABA𝑖𝑑 eventually terminates.

Case 2) Fewer than 𝑓 +1 correct replicasmba-propose the same value.

In this case, one of the following conditions is satisfied for any cor-

rect replica: 1) Σ𝑥𝑟𝑑 [𝑥]−𝑟𝑑 [𝑣] ≥ 𝑓 +1; 2)∀𝑥 ≠ 𝑝𝑣 , Σ𝑥𝑟𝑑 [𝑥] ≥ 𝑓 +1,

i.e., every correct replica receives 𝑓 + 1 disperse(𝑣) or echo(𝑣) mes-

sages such that 𝑣 is different from 𝑝𝑣 . The first condition holds

if the correct replica receives messages from all replicas in the

system, as given any value 𝑣 , 𝑟𝑑 [𝑣] ≤ 𝑓 , Σ𝑥𝑟𝑑 [𝑥] ≥ 𝑛 − 𝑓 . The

second condition holds as follows: considering the inputs of all

correct replicas, for the value 𝑣 for any correct replica, fewer than

𝑓 + 1 correct replicas mba-propose so more than 𝑓 + 1 correct repli-

cas must mba-propose values different from 𝑣 . Thus, every correct

replica eventually receives 𝑓 + 1 disperse() messages such that the

carried value is different from the replica’s 𝑝𝑣 . After that, every

correct replica that has not started RABA𝑖𝑑 eventually r-proposes
some value. If all correct replicas r-propose 0, RABA𝑖𝑑 terminates

according to the unanimous termination property of RABA. If at

least one correct replica r-proposes 1, according to Lemma A.7, ev-

ery correct replica either r-proposes 1 or r-reproposes 1. RABA𝑖𝑑
terminates according to the biased termination property.

In both cases, after RABA𝑖𝑑 outputs, there are two cases: every

correct replica r-decides 1; every correct replica r-decides 0. In the

first case, according to Lemma A.3, every correct replica either has

already set 𝑟𝑣 as 𝑣 or will eventually receive distribute(𝑣,−). Then

correct replica eventually mba-decides. In the second case, every

correct replica mba-decides according to the protocol. ■

Theorem A.9 (Integrity). Every correct replica mba-decides
once.

Proof. Every correct replica mba-decides after it r-decides. Ac-
cording to the integrity of RABA, every correct replica r-decides
once so every correct replica mba-decides once. ■

Lemma A.10. Let 𝑛𝑏 be the maximal number of distinct values a
correct replica may send in an echo() message. We have 𝑛𝑏 ≤ 2.

Proof. Every correct replica broadcasts an echo(𝑣) message

only if 𝑣 ≠ 𝑝𝑣 and it has received 𝑛 − 2𝑓 disperse(𝑣). As there are
𝑛 replicas in total, every correct replica sends a echo() message at

most twice, i.e., 𝑛𝑏 ≥ 2. ■

Theorem A.11. The time complexity of DO-MBA is expected𝑂 (1).

Proof. According to Lemma A.10, disperse() and echo() runs
in 𝑂 (1) time. Also, as each correct replica sends one forward()
message and one distribute() message and RABA runs in 𝑂 (1)
expected time. Thus, DO-MBA terminates in 𝑂 (1) expected time.

■

B PROOF OF BLOCK-ND
Theorem B.1 (Total order). If a correct replica nd-delivers 𝑜

before nd-delivering 𝑜′, then no correct replica nd-delivers 𝑜′ without
first nd-delivering 𝑜 .

Proof. We assume that a correct replica 𝑝𝑖 nd-delivers 𝑜 with

sequence number 𝑠𝑛 and nd-delivers 𝑜′ with 𝑠𝑛′, where 𝑠𝑛 < 𝑠𝑛′.
We assume another correct replica 𝑝 𝑗 nd-delivers 𝑜 with 𝑠𝑛1 and nd-
delivers 𝑜′ with 𝑠𝑛′

1
, where 𝑠𝑛1 > 𝑠𝑛′

1
. We then prove the theorem

by contradiction.

If 𝑝𝑖 nd-delivers 𝑜 with sequence number 𝑠𝑛 and 𝑝 𝑗 nd-delivers
𝑜 with 𝑠𝑛1 such that 𝑠𝑛 ≠ 𝑠𝑛1, 𝑝 𝑗 has nd-delivered a value 𝑜′′ ≠ 𝑜

with sequence number 𝑠𝑛, as a correct replica never nd-delivers
the same value twice. There are two cases: 𝑝𝑖 a-delivers 𝑠𝑛, 𝑜 and

𝑝 𝑗 a-delivers 𝑠𝑛, 𝑜′′, a violation of the safety property of atomic

broadcast; 𝑝𝑖 and 𝑝 𝑗 both a-deliver 𝑠𝑛, 𝑜 , 𝑝𝑖 mba-decides (𝑣, 𝑣) and
𝑝 𝑗 mba-decides (𝑣 ′, 𝑣 ′) such that 𝑣 ′ ≠ 𝑣 , a violation of the primary

agreement property of DO-MBA. Therefore, 𝑠𝑛1 = 𝑠𝑛.

Similarly, if 𝑝𝑖 nd-delivers 𝑜′ with 𝑠𝑛′ and 𝑝 𝑗 nd-delivers 𝑜′ with
𝑠𝑛′

1
, 𝑠𝑛′

1
= 𝑠𝑛′. We already know that 𝑠𝑛 = 𝑠𝑛1. Additionally, ac-

cording to the assumption, 𝑠𝑛′ > 𝑠𝑛 and 𝑠𝑛1 > 𝑠𝑛′
1
. Therefore, it

holds that 𝑠𝑛′ > 𝑠𝑛′
1
, a contradiction with 𝑠𝑛′

1
= 𝑠𝑛′. ■

Theorem B.2 (Correctness). If a correct replica maintains state
𝑠 before it nd-delivers 𝑜 and maintains 𝑠′ after it nd-delivers 𝑜 , another
correct replica maintains state 𝑠 before it nd-delivers 𝑜 and maintains
𝑠′′ after it nd-delivers 𝑜 , then 𝑠′ = 𝑠′′.

Proof. We consider that a correct replica 𝑝𝑖 maintains 𝑠′ at
the end of the epoch (after DO-MBA outputs) and another correct

replica 𝑝 𝑗 maintains 𝑠′′ at the end of the epoch.

Let 𝑠1 ← execute(𝑠, 𝑜) be the execution result at 𝑝𝑖 . There are

three cases for 𝑠′ at 𝑝𝑖 : 1) DO-MBA outputs (𝑣, ℎ), where 𝑣 ≠ ⊥
and ℎ ≠ ⊥; 2) DO-MBA outputs (𝑣, ℎ), where 𝑣 ≠ ⊥ and ℎ = ⊥;
3) DO-MBA outputs (𝑣, ℎ), where 𝑣 = ⊥. Similarly, the same three
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cases apply for 𝑝 𝑗 , considering 𝑠2 ← execute(𝑠, 𝑜). We prove that

𝑠′ = 𝑠′′ for each of the three cases for 𝑝𝑖 .

• Case 1) In this case, according to the protocol, 𝑠′ = ℎ𝑎𝑠ℎ(𝑠1) = 𝑣 .

According to the primary agreement and weak secondary agree-

ment properties of DO-MBA, the output of 𝑝 𝑗 can only be 𝑣, ℎ or

𝑣,⊥. If 𝑝 𝑗 mba-decides (𝑣, ℎ), we have 𝑠′′ = ℎ𝑎𝑠ℎ(𝑠2) = 𝑣 . Therefore,

𝑠′ = 𝑠′′. If 𝑝 𝑗 mba-decides (𝑣,⊥), we know that ℎ𝑎𝑠ℎ(𝑠2) ≠ 𝑣 . Ac-

cording to the protocol, 𝑝 𝑗 performs state transfer until ℎ𝑎𝑠ℎ(𝑠′′) =
𝑣 . The non-intrusion property of DO-MBA ensures that at least

one correct replicas holds 𝑠′′, so 𝑝 𝑗 will complete the state transfer.

Therefore, 𝑠′ = 𝑠′′.
• Case 2) In this case, we know that ℎ𝑎𝑠ℎ(𝑠1) ≠ 𝑣 for 𝑝𝑖 . Accord-

ing to the protocol, 𝑝𝑖 performs state transfer until ℎ𝑎𝑠ℎ(𝑠′) = 𝑣 .

Furthermore, according to the primary agreement and weak sec-

ondary agreement properties of DO-MBA, the output of 𝑝 𝑗 can

only be 𝑣, ℎ or 𝑣,⊥. If 𝑝 𝑗 mba-decides (𝑣, ℎ), we know that 𝑠′′ =
ℎ𝑎𝑠ℎ(𝑠2) = 𝑣 . Therefore, 𝑠′ = 𝑠′′. If 𝑝 𝑗 mba-decides (𝑣,⊥), we know
that ℎ𝑎𝑠ℎ(𝑠2) ≠ 𝑣 . According to the protocol, 𝑝 𝑗 performs state

transfer until ℎ𝑎𝑠ℎ(𝑠′′) = 𝑣 . Therefore, 𝑠′ = 𝑠′′.
• Case 3) In this case, as 𝑝𝑖 rolls back to the prior state, 𝑠′ = 𝑠 .

According to the primary agreement property of DO-MBA, 𝑝 𝑗
must have mba-decided (⊥,⊥) and rolled back to 𝑠 . Thus, it holds

𝑠′ = 𝑠′′. ■

Theorem B.3 (Liveness). If an operation 𝑜 is submitted to all
correct replicas, then each correct replica eventually nd-delivers 𝑜 or
⊥; if 𝑜 is deterministic, each correct replica nd-delivers 𝑜 and updates
its state via update.

Proof. According to the liveness property of atomic broad-

cast, every correct replica will eventually a-deliver(𝑠𝑛, 𝑜). After
a-deliver(𝑠𝑛, 𝑜), every correct replica queries 𝑠𝑠𝑛 ← execute(𝑠𝑠𝑛−1, 𝑜)
and starts a DO-MBA instance. According to the termination prop-

erty of DO-MBA, every correct replica eventuallymba-decides some

value and then nd-delivers 𝑜 or ⊥.
We now prove that if 𝑜 deterministic, every correct replica even-

tually nd-delivers 𝑜 and updates it state via update. As 𝑠0 is the same

for all correct replicas, we prove that 𝑜 will eventually be executed

by an induction on sequence number. Without loss of generality, we

consider each block consists of one transaction 𝑜 . The case where

each block consists of multiple transactions can be proved similarly.

For the base case, 𝑠𝑛 = 1. As 𝑠0 is the same for all correct replicas

and 𝑜 consists of only deterministic operations, 𝑠1 must be the same

for all correct replicas. Therefore, all correct replicas mba-propose
𝑣 = ℎ𝑎𝑠ℎ(𝑠1). The validity property of DO-MBA guarantees that all

correct replicas will mba-decide (𝑣, 𝑣) and then nd-deliver 𝑜 . The 𝑠1

state includes update on 𝑜 .
For the induction case, consider 𝑠𝑛 > 1 and all correct repli-

cas maintain the same 𝑠𝑠𝑛−1, we prove that all correct replicas

will execute 𝑜 and a-deliver 𝑜 . In particular, as 𝑠𝑠𝑛−1 is the same

for all correct replicas, all correct replicas will execute 𝑜 and ob-

tain the same state 𝑠𝑠𝑛 . All correct replicas will then mba-propose
𝑣 = ℎ𝑎𝑠ℎ(𝑠𝑠𝑛) and mba-decide (𝑣, 𝑣). Every correct replica then

nd-delivers 𝑜 and the state 𝑠𝑠𝑛 includes the update on 𝑜 . ■
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