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Abstract. In 2023, Mfungo et al. presented an image encryption scheme
that relies on a series of diffusion techniques and uses a chaotic map
to generate three secret keys. Note that two out of three keys are dy-
namically generated based on the size of the original image, while the
remaining key is static. The authors claim that their proposal offers 149
bits of security. Unfortunately, we found a chosen plaintext attack that
requires 2 oracle queries and has a worse case complexity of O(232).
If the attacker has access to 1 encryption oracle query and 1 decryp-
tion oracle query, we can lower the complexity to O(218.58). Encrypting
an image with Mfungo et al.’s scheme has a worst case complexity of
O(233). Therefore, both our attacks are faster than encrypting an image.
Our attacks are feasible because the dynamic keys remain unchanged for
different plaintext images of the same size, and the static key remains
the same for all images.

1 Introduction

The security risks associated with digital images, particularly theft and unau-
thorized distribution, have been amplified by the widespread use of social me-
dia. Consequently, researchers have devoted significant attention to this issue
and have developed various techniques to encrypt images. Chaotic maps have
emerged as a popular choice due to their high sensitivity to initial conditions
and previous states, which makes predicting their behavior difficult. As a result,
several novel cryptographic algorithms based on chaos have been developed.
However, many image encryption schemes based on chaotic maps suffer from
critical security vulnerabilities due to inadequate security analysis and a lack of
design guidelines. In fact, numerous compromised schemes exist, which are listed
non-exhaustively in Table 1. For further information, please refer to [9,26,28,48].

In [24], the authors propose a new image encryption scheme that combines the
Kronecker xor product, Hill cipher and sigmoid logistic map. More specifically,
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Scheme [44] [23] [39] [12] [13] [33] [3] [10] [27] [11] [6]
Broken by [19] [38] [2] [42] [1] [41] [10] [16] [15] [46] [36]

Scheme [30] [20] [31] [32] [43] [45] [14] [29] [25] [5]
Broken by [37] [22] [40] [47] [4] [21] [7] [17] [18] [34]

Table 1. Broken chaos based image encryption algorithms.

their algorithm starts by shifting the values in each row of all 4 × 4 image
blocks using the AES shift row operation. Then, the algorithm performs a bitwise
xor between the top value of each odd or even column and all other values in
the corresponding even or odd column, excluding the top value. Next, the Hill
Cipher encrypts each 4 × 4 block of the result. The resulting image is then
xor-ed with a key generated using the sigmoid logistic map. To further obscure
the image’s pixels, the result is transformed using the Kronecker xor product.
Finally, another key generated using the sigmoid logistic map is xor-ed with the
output to obtain the encrypted image. Since the sigmoid logistic map is simply
used as a pseudorandom number generator (PRNG) and the scheme’s weakness
is independent of the employed generator, we omit its description and simply
consider the two keys as being randomly generated.

The focus of this paper is to conduct a security analysis of the Mfungo et
al. scheme [24]. We describe two chosen text attacks, which would allow an
attacker to decrypt all images of a specific size. To mount such attacks, the
attacker needs access to ciphertexts of 2 chosen plaintexts3, or the ciphertext and
plaintext of a plaintext and an adaptive ciphertext4. Once the attacker obtains
either set of information, he can easily extract the secret keys. According to the
authors, the largest image size that they experimented with was 256×256 pixels
due to the large computational resources required by their proposal: O(233) for
encryption. Our chosen text attacks have a complexity of O(232) and O(218.58),
respectively. Thus, both attacks require less resources than encryption to recover
the secret keys. However, if the attacker has already computed the Hill key,
then only 1 chosen plaintext is required, and the complexity of the recovery
process becomes O(1). In summary, the attacks proposed in this paper reduce
the scheme’s security from 149 bits to 32 bits and 18.58 bits, respectively. Once
the Hill key is recovered, the security is reduced to 0 bits. Regarding the case
of chosen ciphertext attacks, the repetition code embedded in the Mfungo et al.
encryption scheme prevented us from devising an efficient attack.

Previous work. The chosen plaintext attack against Mfungo et al.’s image en-
cryption scheme was initially presented in [35]. This version of the paper also
addresses the security of the scheme in the context of adaptive mixed chosen
plaintext/chosen ciphertext attacks.

3chosen plaintext attack
4adaptive mixed chosen plaintext/chosen ciphertext attack
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Structure of the paper. We provide the necessary preliminaries in Section 2.
An alternative description of Mfungo et al.’s scheme is outlined in Section 3. In
Sections 4 and 5 we show how an attacker can recover the secret keys in a chosen
plaintext scenario and an adaptive mixed chosen plaintext/chosen ciphertext
scenario, respectively. We conclude in Section 6.

2 Preliminaries

Notations. In this paper, the subset {1, . . . , s− 1} ∈ N is denoted by [1, s). The
action of selecting a random element x from a sample space X is represented by
x

$←− X, while x ← y indicates the assignment of value y to variable x. By H
and W we denote an image’s height and width.

2.1 Mfungo et al. Image Encryption Scheme

In this section we present Mfungo et al.’s encryption (Algorithm 2) and decryp-
tion (Algorithm 3) algorithms as described in [24]. Note that W and H must be
divisible by 4.

The first step of the encryption process consists in breaking the image in 4×4
blocks and then circular shifting row i of each block to the left by i positions.
The exact function is provided in Algorithm 1 as shift_rows. Note that the
function takes as input one of the following matrices

shift←


0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 or inv_shift←


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

 ,

one for encryption and the other one for decryption. Then the top values of the
resulting matrix are preserved, while all values in even columns5 are xor-ed with
the top value of the previous odd column. In the case of odd columns, the values
are xor-ed with the top value of the next column, except their top value. The
corresponding function is xor_between_pairwise_columns from Algorithm 1.
Using a secret 4 × 4 matrix h, each row of each 4 × 4 block is multiplied with
h. Hill encryption is presented in Algorithm 1, Hill. The resulting image is then
xor-ed with k(1). Another diffusion layer is then added, i.e. the rows are moved
down with 3 positions (see Algorithm 1, shift_entire_rows). The Kronecker
xor transformation is then applied. More precisely, the authors apply the Kro-
necker product between the image and itself, with the following modifications:
the product between two elements from two distinct positions is replaced by
xor, while the ones from the same position remain unaltered. The pseudo-code
is given in the Kronecker_xor_transformation function from Algorithm 1.
Finally, we perform a final xor with the second key k(2).

5except their top values
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Algorithm 1: Helper functions.
1 Function shift_rows(P, shift)
2 for i ∈ [0,W ) and at each step increment i with 4 do
3 for j ∈ [0, H) do
4 for k ∈ [0, 4) do
5 index← i+ shiftk,j mod 4

6 Qi+k,j ← Pindex,j

7 return Q

8 Function xor_between_pairwise_columns(P )
9 for i ∈ [0,W ) do Ri,0 ← Pi,0

10 for i ∈ [0,W ) and at each step increment i with 2 do
11 for j ∈ [1, H) do
12 Ri,j ← Pi,j ⊕ Pi+1,0

13 Ri+1,j ← Pi+1,j ⊕ Pi,0

14 return R

15 Function Hill(P, h)
16 for i ∈ [0,W ) and at each step increment i with 4 do
17 for j ∈ [0, H) do

18

Si,j ← Pi,jh0,0 + Pi+1,jh0,1 + Pi+2,jh0,2 + Pi+3,jh0,3 mod 256

Si+1,j ← Pi,jh1,0 + Pi+1,jh1,1 + Pi+2,jh1,2 + Pi+3,jh1,3 mod 256

Si+2,j ← Pi,jh2,0 + Pi+1,jh2,1 + Pi+2,jh2,2 + Pi+3,jh2,3 mod 256

Si+3,j ← Pi,jh3,0 + Pi+1,jh3,1 + Pi+2,jh3,2 + Pi+3,jh3,3 mod 256

19 return S

20 Function shift_entire_rows(P, n)
21 for i ∈ [0,W ) and j ∈ [0, H) do
22 Ti,j ← Pi,j+n mod H

23 return T

24 Function Kronecker_xor_transformation(P )
25 for i ∈ [0,W ) and j ∈ [0, H) do
26 for k ∈ [0,W ) and ℓ ∈ [0, H) do
27 if i = k and j = ℓ then Ui·W+k,j·H+ℓ ← Pi,j

28 else Ui·W+k,j·H+ℓ ← Pi,j ⊕ Pk,ℓ

29 return U

30 Function compress_Kronecker_xor_transformation(P )
31 for i ∈ [0,W ) and j ∈ [0, H) do
32 Di,j ← ∅
33 for k ∈ [0,W ) and ℓ ∈ [0, H) do
34 if i = k and j = ℓ then E ← Pi·W+k,j·H+ℓ

35 else E ← Pi·W+k,j·H+ℓ ⊕ Pi·W+i,j·H+j

36 Di,j [E]← Di,j [E] + 1

37 for i ∈ [0,W ) and j ∈ [0, H) do
38 Ti,j ← max_value(Di,j)
39 return T
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Algorithm 2: Encryption algorithm.
Input: A plaintext P , two secret keys k(1) and k(2), and a secret matrix h
Output: A ciphertext C

1 Q← shift_rows(P, shift)
2 R← xor_between_pairwise_columns(Q)
3 S ← Hill(R, h)

4 for i ∈ [0,W ) and j ∈ [0, H) do Si,j ← Si,j ⊕ k
(1)
i,j

5 T ← shift_entire_rows(S,−3)
6 U ← Kronecker_xor_transformation(T )

7 for i ∈ [0,W 2) and j ∈ [0, H2) do Ci,j ← Ui,j ⊕ k
(2)
i,j

8 return C

Algorithm 3: Decryption algorithm.
Input: A ciphertext C, two secret keys k(1) and k(2), and a secret matrix h
Output: A plaintext P

1 for i ∈ [0,W 2) and j ∈ [0, H2) do Ui,j ← Ci,j ⊕ k
(2)
i,j

2 T ← compress_Kronecker_xor_transformation(U)
3 S ← shift_entire_rows(T, 3)

4 for i ∈ [0,W ) and j ∈ [0, H) do Si,j ← Si,j ⊕ k
(1)
i,j

5 R← Hill(S, h−1)
6 Q← xor_between_pairwise_columns(R)
7 P ← shift_rows(Q, inv_shift)
8 return P

To decrypt we simply perform all the inverse operations in reverse order. Note
that when reversing the Kronecker xor transformation, we recover the matrices
from all W × H block and take a majority vote for each byte. This is done in
order to provide protection against data loss and noise alteration. Basically, the
compression of the Kronecker xor transformation is used as a repetition code.
To describe the compression function, we use several dictionaries Di,j initialized
as empty. Each time we access the dictionary with an new “key”, a “key-value”
entry is created and the corresponding “value” is initialized to 0. Additionally,
we use a function max_value that, when given a dictionary, returns the “key”
with the largest “value”.

3 A New Look at Mfungo et al.’s Scheme

In this section we present an alternative description of Mfungo et al.’s scheme.
More precisely, we show how to combine k(1) and k(2) into a single key k(3). The
alternative encryption and decryption algorithms are provided in Algorithms 4
and 5.
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We further show how we derived the equivalent description of lines 4-7, Al-
gorithm 2. After the shift_entire_row operation we obtain

Ti,j ← Si,j+n mod H ⊕ k
(1)
i,j+n mod H .

Applying the Kronecker transformation we get

Ui·W+k,j·H+ℓ ← Ti,j = Si,j+n mod H ⊕ k
(1)
i,j+n mod H

when i = k and j = ℓ and

Ui·W+k,j·H+ℓ ← Ti,j ⊕ Tk,ℓ

= Si,j+n mod H ⊕ k
(1)
i,j+n mod H ⊕ Sk,ℓ+n mod H ⊕ k

(1)
k,ℓ+n mod H

= (Si,j+n mod H ⊕ Sk,ℓ+n mod H)⊕ (k
(1)
i,j+n mod H ⊕ k

(1)
k,ℓ+n mod H),

otherwise. Finally, we get

Ci·W+k,j·H+ℓ ← Ui·W+k,j·H+ℓ ⊕ k
(2)
i·W+k,j·H+ℓ

= Si,j+n mod H ⊕ (k
(1)
i,j+n mod H ⊕ k

(2)
i·W+k,j·H+ℓ)

when i = k and j = ℓ and

Ci·W+k,j·H+ℓ ← Ui·W+k,j·H+ℓ ⊕ k
(2)
i·W+k,j·H+ℓ

= (Si,j+n mod H ⊕ Sk,ℓ+n mod H)

⊕ (k
(1)
i,j+n mod H ⊕ k

(1)
k,ℓ+n mod H ⊕ k

(2)
i·W+k,j·H+ℓ),

otherwise. Note that if we compose Kr = Kronecker_xor_transformation
with ser = shift_entire_rows we get

Kr(ser(S, n)) =

{
Si,j+n mod H , if i = k and j = ℓ
Si,j+n mod H ⊕ Sk,ℓ+n mod H , otherwise

Therefore, if we define k(3) as follows

k
(3)
i·W+k,j·H+ℓ =

{
k
(1)
i,j−3 mod H ⊕ k

(2)
i·W+k,j·H+ℓ, if i = k and j = ℓ

k
(1)
i,j−3 mod H ⊕ k

(1)
k,ℓ−3 mod H ⊕ k

(2)
i·W+k,j·H+ℓ, otherwise

we get the equivalent description of lines 4-7, Algorithm 2 provided in lines 4-6,
Algorithm 4.
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Algorithm 4: Equivalent encryption algorithm.
Input: A plaintext P , a secret key k(3), and a secret matrix h
Output: A ciphertext C

1 Q← shift_rows(P, shift)
2 R← xor_between_pairwise_columns(Q)
3 S ← Hill(R, h)
4 T ← shift_entire_rows(S,−3)
5 U ← Kronecker_xor_transformation(T )

6 for i ∈ [0,W 2) and j ∈ [0, H2) do Ci,j ← Ui,j ⊕ k
(3)
i,j

7 return C

Algorithm 5: Equivalent decryption algorithm.
Input: A ciphertext C, a secret key k(3), and a secret matrix h
Output: A plaintext P

1 for i ∈ [0,W 2) and j ∈ [0, H2) do
2 Ui,j ← Ci,j ⊕ k

(3)
i,j

3 T ← compress_Kronecker_xor_transformation(U)
4 S ← shift_entire_rows(T, 3)
5 R← Hill(S, h−1)
6 Q← xor_between_pairwise_columns(R)
7 P ← shift_rows(Q, inv_shift)
8 return P

4 Chosen Plaintext Attack

A chosen plaintext attack (CPA) is a scenario in which the attacker A briefly
gains access to the encryption machine Oenc and is permitted to query it with
various inputs. In this way, A generates specific plaintexts that can facilitate
his attack and uses Oenc to obtain the corresponding ciphertexts. We prove in
this section that Mfungo et al.’s image encryption scheme is vulnerable to such
attacks.

In the first step of our attack we aim to retrieve k(3). This can be easily done
if we encrypt an image I0 with all its pixels set to 0. By setting all the pixels
to 0, after passing the image through lines 1-5, Algorithm 4 we end up with the
same image I0. Therefore, we retrieve the key from k

(3)
i,j = Ci,j .

Now we aim to find the secret matrix h. Hence, we create an image Ih such
that

P[0,4),[0,4) =


P0,0 P1,0 P2,0 P3,0

P0,1 P1,1 P2,1 P3,1

P0,2 P1,2 P2,2 P3,2

P0,3 P1,3 P2,3 P3,3

←

1 0 0 0
0 0 0 0
1 0 0 1
1 0 1 0


and the remaining pixels are set to 0. Since we are only interested in the first
4 × 4 block, we will only study its evolution. Thus, after the shift_row and
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Algorithm 6: CPA attack.
1 Function compress_Kronecker_xor_transformation_short(P )
2 for i ∈ [0,W ) and j ∈ [0, H) do
3 if i = 0 and j = 0 then Ti,j ← Pi,j

4 else Ti,j ← Pi,j ⊕ P0,0

5 return T

6 Function main()

7 %recover k(3)

8 for i ∈ [0,W ) and j ∈ [0, H) do Pi,j ← 0
9 Send the plaintext P to the encryption oracle Oenc.

10 Receive the ciphertext C from the encryption oracle Oenc.
11 k(3) ← C
12 %recover h
13 P0,0, P1,0, P2,0, P3,0 ← 1, 0, 0, 0
14 P0,1, P1,1, P2,1, P3,1 ← 0, 0, 0, 0
15 P0,2, P1,2, P2,2, P3,2 ← 1, 0, 0, 1
16 P0,3, P1,3, P2,3, P3,3 ← 1, 0, 1, 0
17 Send the plaintext P to the encryption oracle Oenc.
18 Receive the ciphertext C from the encryption oracle Oenc.
19 for i ∈ [0,W 2) and [0, H2) do Ui,j ← Ci,j ⊕ k

(3)
i,j

20 T ← compress_Kronecker_xor_transformation_short(U)
21 S ← shift_entire_rows(T, 3)
22 h← S[0,4),[0,4)

23 return k(3), h

xor_between_pairwise_columns operations we obtain

Q[0,4),[0,4) ←


1 0 0 0
0 0 0 0
0 1 1 0
0 1 0 1

 and R[0,4),[0,4) ←


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Therefore, we obtain that

S[0,4),[0,4) ←


h0,0 h1,0 h2,0 h3,0

h1,0 h1,1 h2,1 h3,1

h2,0 h1,2 h2,2 h3,2

h3,0 h1,33 h2,3 h3,3


is exactly the matrix h. Since we already know k(3) and the remaining opera-
tions are easily reversible, it results that we can retrieve h from the ciphertext
corresponding to Ih. The formal description of our CPA attack is provided in
Algorithm 6. Since, we consider the ideal case when oracle answers are relayed
unaltered, we can simply recover the image from the first W ×H block, and thus
lower our attacks’ complexity.

The complexity of Algorithm 6 is O(H2W 2 + 2HW ) and we need 2 ora-
cle queries. Note that Mfugo et al.’s encryption scheme has a complexity of
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O(2H2W 2 +8HW ) and according to the authors the maximum image size that
they experimented on is H = W = 256. Thus, in this case, our attack has a
complexity of O(232), while Mfugo et al.’s scheme has one of O(233). Remark
that if we already recovered h in a previous iteration, we only need to run lines
8-11, Algorithm 6. Thus, the complexity becomes O(1) and we need 1 oracle
query.

5 Adaptive Mixed Chosen Plaintext/Chosen Ciphertext
Attack

A mixed chosen plaintext/chosen ciphertext attack (CP/CCA) [8] is similar to
a CPA attack. The main difference is that, in addition to having access to the
encryption oracle Oenc, A also gains access to the decryption oracle Odec and is
allowed to query it with various inputs. Therefore, A can generate plaintexts and
ciphertexts that can aid him in attacking the encryption scheme, and uses Oenc

and Odec to obtain the corresponding ciphertexts and plaintexts. In the case of
adaptive attacks, A chooses each text one at a time, based on the responses to
his previous queries. We further provide such an attach for Mfungo et al.’s image
encryption scheme.

The first step of our attack is identical to the first step of the CPA. More
precisely, we encrypt an all 0 image I0, and thus obtain the key k

(3)
i,j = Ci,j

directly from Oenc.
When constructing the adaptive ciphertext we want to obtain after line 4,

Algorithm 5 the image Ih−1 composed of

P̄[0,4),[0,4) =


P̄0,0 P̄1,0 P̄2,0 P̄3,0

P̄0,1 P̄1,1 P̄2,1 P̄3,1

P̄0,2 P̄1,2 P̄2,2 P̄3,2

P̄0,3 P̄1,3 P̄2,3 P̄3,3

←

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and the remaining pixels set to zero. Therefore, after line 5, Algorithm 5 we
obtain h−1 in the first 4× 4 block. Since the xor_between_pairwise_columns
and shift_rows operations are unkeyed, we can easily recover h−1 from the
plaintext outputted by Odec.

To see how we can achieve this, we first look at the effect of lines 4-5, Algo-
rithm 4 on the image Ih−1 . Let 0a,b be a block of width a and height b. After
the shift_entire_rows function we obtain

T ←



0 0 0 0 0W−4,1

0 0 0 0 0W−4,1

0 0 0 0 0W−4,1

1 0 0 0 0W−4,1

0 1 0 0 0W−4,1

0 0 1 0 0W−4,1

0 0 0 1 0W−4,1

01,H−7 01,H−7 01,H−7 01,H−7 0W−4,H−7


.
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Let T a,b be the image composed of ab copies of T arranged as an a× b matrix.
After the Kronecker_xor_transformation operation we obtain

U ←



T T T T TW−4,1

T T T T TW−4,1

T T T T TW−4,1

T 0 T T T TW−4,1

T T 1 T T TW−4,1

T T T 2 T TW−4,1

T T T T 3 TW−4,1

T 1,H−7 T 1,H−7 T 1,H−7 T 1,H−7 TW−4,H−7


, (1)

where T 0 to T 3 are some known blocks.
Note that the compress_Kronecker_xor_transformation function takes

a majority vote between all the W × H blocks it recovers. Therefore, when
constructing our image we can consider U ← TW,H instead of Equation (1) to
minimise our computations. Note that in this case we have only 4 blocks that are
not correct before the majority vote, compared to HW − 4 correct ones, where
H,W ≥ 4.

We can easily see that after the key addition step each T matrix changes
only 4 key bits in an W ×H key block. Therefore, the total number of changed
key bits is 4HW . The formal description of our adaptive CP/CCA attack is
provided in Algorithm 7. Note that we use the C++ language operators & as
reference to a variable.

The complexity of Algorithm 7 is O(10HW ) and we need 1 encryption or-
acle query and 1 decryption oracle query. Hence, in this case, our attack has a
complexity of O(219.32), which is significantly lower than the CPA complexity
O(232). As in the CPA case, once h−1 is recovered the complexity for further
attacks becomes O(1) and we need 1 encryption oracle query.

Optimization. Given the nature of the Kronecker compression function, we can
further improve the attack’s complexity by introducing more suitable errors in
the U matrix that we construct. For simplicity, we further assume that W ≥ 12.

Since W is divisible by 4, we can write W = 2w. Therefore, we can construct
the matrix as follows

U ←
[

0w−2,1 T Tw,1

0w−2,H−1 0 Tw,H−1

]
.

From Equation (1) we can see that in this case we have Hw + 1 correct blocks
compared to Hw − 1 incorrect ones. Note that since w − 2 ≥ 4 we prevent
overwriting the T 0 to T 3 matrices from Equation (1) with T , thereby avoiding
an increase in the number of incorrect blocks.

The only change needed to optimize our CP/CCA attack (Algorithm 7) is to
replace the key_transformation function with the key_transformation_opt
function. We present this function in Algorithm 8. In this case, the complexity
becomes O(6HW ) instead of O(10HW ). Therefore, when H = W = 256 we
obtain a complexity of O(218.58), compared to O(232) in the case of the CPA.
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Algorithm 7: Adaptive CP/CCA attack.
1 Function key_transformation(&k)
2 for i ∈ [0,W ) and j ∈ [0, H) do
3 kiW,jH+3 ← kiW,jH+3 ⊕ 1
4 kiW+1,jH+4 ← kiW+1,jH+4 ⊕ 1
5 kiW+2,jH+5 ← kiW+2,jH+5 ⊕ 1
6 kiW+3,jH+6 ← kiW+3,jH+6 ⊕ 1

7 Function main()

8 %recover k(3)

9 for i ∈ [0,W ) and j ∈ [0, H) do Pi,j ← 0
10 Send the plaintext P to the encryption oracle Oenc.
11 Receive the ciphertext C from the encryption oracle Oenc.
12 k(3) ← C
13 %recover h−1

14 key_transformation(k(3))

15 Send the ciphertext k(3) to the decryption oracle Odec.
16 Receive the plaintext P from the decryption oracle Odec.
17 Q← shift_rows(P, shift)
18 R← xor_between_pairwise_columns(Q)
19 h−1 ← R[0,4),[0,4)

20 %undo the changes to k(3)

21 key_transformation(k(3))

22 return k(3), h−1

Algorithm 8: Optimized helper function CP/CCA attack.
1 Function key_transformation_opt(&k)
2 w ←W/2
3 k(w−1)W,3 ← k(w−1)W,3 ⊕ 1
4 k(w−1)W+1,4 ← k(w−1)W+1,4 ⊕ 1
5 k(w−1)W+2,5 ← k(w−1)W+2,5 ⊕ 1
6 k(w−1)W+3,6 ← k(w−1)W+3,6 ⊕ 1
7 for i ∈ [w,W ) and j ∈ [0, H) do
8 kiW,jH+3 ← kiW,jH+3 ⊕ 1
9 kiW+1,jH+4 ← kiW+1,jH+4 ⊕ 1

10 kiW+2,jH+5 ← kiW+2,jH+5 ⊕ 1
11 kiW+3,jH+6 ← kiW+3,jH+6 ⊕ 1

6 Conclusions

In [24], a novel proposal for encrypting images was introduced. The authors com-
bined a variety of diffusion techniques to build their encryption algorithm and
claimed that the resulting scheme has a security strength of 149 bits. However,
our security analysis showed that its actual strength is only O(232) in the CPA
scenario, and O(218.58) in the CP/CCA scenario. Both attacks require 2 oracle
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queries: 2 encryption queries for the CPA, and 1 encryption and 1 decryption
queries for the CP/CCA. Consequently, the proposed cryptosystem fails to meet
the necessary security strength needed to protect confidential information.
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