
Attacking trapdoors from matrix products

Thomas Decru1, Tako Boris Fouotsa2, Paul Frixons1, Valerie Gilchrist1,
Christophe Petit13

1 Université Libre de Bruxelles, Brussels, Belgium
2 EPFL, Lausanne, Switzerland

3 University of Birmingham, Birmingham, United Kingdom

Abstract. Recently, Geraud-Stewart and Naccache proposed two trap-
doors based on matrix products. In this paper, we answer the call for
cryptanalysis. We explore how using the trace and determinant of a ma-
trix can be used to attack their constructions. We fully break their first
construction in a polynomial-time attack. We show an information leak
in the second construction using characteristic polynomials, and provide
an attack using traces that decreases the bit security by about half.

Keywords: matrix, cryptanalysis, post-quantum

1 Introduction

In 2023, Geraud-Stewart and Naccache proposed a new trapdoor based on matrix
products [3]. From a set of public invertible matrices A1, ..., Ak, it sends the

permutation σ to the product
∏k

i=1 Aσ(i). Even if the practical encryption does
not become competitive to already known procedures, the prospect of a new
family of trapdoors is enriching for cryptography in general as it could lead
to new applications. The simplicity of the scheme and the concepts are also
attractive in itself when thinking about widespread implementations.

That being said, trust can only be given to a scheme once it has received
careful inspection and resisted the various attempts of breaking from the cryp-
tographic community. In the last year, no work assessing the security of these
schemes has been released. This paper is inscribed in this procedure, and in fact
shows that the constructions, as they are, do not meet their claimed security
levels.

Related work. These trapdoors can be seen as an instance of Dehn’s “word
search” problem. That is, from a group G, a set of generators g1, ..., gk and a
target t, determine the sequence {mi} given a writing t =

∏
gmi

. As such it

∗ Authors listed in alphabetical order: see https://www.ams.org/profession/

leaders/CultureStatement04.pdf. Valerie Gilchrist and Thomas Decru are sup-
ported by grants from the National Fund for Scientific Research (F.N.R.S.) of
Belgium; Christophe Petit is partly supported by EPSRC through grant number
EP/V011324/1.

Date of this document: 2024-08-26.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

2 Decru et al.

is linked to other cryptosystems based on similar problems. The first one is a
trapdoor based directly on Dehn’s problem from Wagner and Magyarik [7], but
broken later by Levy-dit-Vehel and Perret [6]. Another one is the family of Cayley
hashes initiated by Tillich and Zémor [5] and Charles, Goren, and Lauter [2].

Organization of the paper. In Section 2, we recall the relevant concepts and the
trapdoor constructions. In Sections 3 and 4, we investigate some properties of
dwarf matrices from the trapdoor constructions. Concrete attacks are proposed
in Sections 5 and 6, and we conclude with some future work in Section 7.

2 Background

We review some of the key concepts put forward in [3] for using matrix products
as trapdoors. For the rest of the paper we let Sk denote the set of permutations
on the integers {1, . . . , k}.

Consider some σ ∈ Sk. Given some set of k matrices, A = {A1, . . . , Ak} ⊂
GLn(Fp), we can map σ to a matrix product as

σA :=

k∏
i=1

Aσ(i).

By choosing the parameters k, n, p carefully, and sampling A uniformly at ran-
dom, we can ensure that with high probability this map is injective. That is,
that the products we are mapping into are distinct for each distinct σ.

In order to build cryptography on top of this mapping, we would hope for
the inverse computation to be cryptographically hard. To this end, the authors
of [3] first provide a very specific instance where the inversion of this map is
easy, and then take advantage of these easy instances to build a trapdoor. To
explore their construction, we first establish a way of determining the “size” of
a matrix. To do so we define a partial order relation on the set of matrices.

Definition 1. Let M := {mi,j}ni,j=1,M
′ := {m′

i,j}ni,j=1 be two matrices in
GLn(Fp). We say M < M ′ if for all i, j ∈ [1, . . . n], we have that mi,j < m′

i,j

when expressed as integers in [0, p− 1].
We will use the notation M < α, to mean that every entry in M , when

expressed as an integer in [0, p− 1], is less than α.

Now, if the entries of the matrices of A are very small, then we can expect
the entries of σA to also be relatively small. In particular, we could choose our
prime p so that when considering the product over the integers, it holds that
σA < p. Thus we can work with these products as if they were over the integers.

In particular, barring few exceptions such as the identity matrix, we get that
as we multiply more matrices together, the entries are strictly increasing. This
means we expect that

Aσ(1) · · ·Aσ(k) > Aσ(1) · · ·Aσ(k) ·A−1
σ(k) = Aσ(1) · · ·Aσ(k−1).

Attacking trapdoors from matrix products 3

This provides us with a method of recovering the permutation from the product.
We give the details of this in Algorithm 1, which we call Decompose , where we
assume each matrix Ai ∈ A is such that Ai ≤ α, and p is chosen such that
nk−1αk < p. This will ensure that we are working over the integers.

Algorithm 1: Decompose

Input : A ⊂ D, C = σA
Output: σ

1 if |A| = 0 /* if A is an empty list */

2 then
3 return ⊥
4 if |A| = 1 and C /∈ A then
5 return ⊥, else return 1

6 for A ∈ A do
7 M ← C ·A−1

8 if M < C then
9 L← Decompose(M,A \ {A})

10 if L =⊥ then
11 return ⊥
12 else
13 L = L||[A]
14 return σ that maps A to L (as ordered lists)

15 return ⊥

Notice that for Decompose (Algorithm 1) to work, all of the matrices in A
had to be bounded in size. Thus, we will make a distinction between these special
matrices and the rest of GLn(Fp). Note, we make a point to exclude the center
of GLn(Fp), denoted Z(GLn(Fp)), as they will not be usable in the trapdoors
later on. In particular, Z(GLn(Fp)) = {sI : s ∈ Fp}.

E := GLn(Fp) \ Z(GLn(Fp)),

D := {M ∈ E : M ≤ α}.

Following the terminology introduced in [3], we refer to these sets as elves
and dwarves respectively. In summary, while Decompose can be run on a set of
dwarf matrices, the work of [3] conjectures that for random elf matrices it is not
easy to recover the same information. Specifically, they claim that the following
problem is hard for sufficiently large n, k, p.

Problem 1. Let A ⊂ E be a uniformly sampled set of elf matrices. Given σA
over Fp, compute σ.

4 Decru et al.

This leads [3] to two trapdoor constructions, a direct construction and an
alternating construction. The core idea to both constructions being that we will
define secret maps sending a set of dwarf matrices to a set of elf matrices. By
making the elf matrices public, anyone can create a product and publish it,
where adversaries will not be able to recover the permutation. With knowledge
of the secret mapping, however, we will be able to send the product of elves to a
product of dwarves, where we can apply Decompose to recover the permutation.

2.1 Direct construction

Let A := {A1, . . . Ak} ⊂ D be a set of (secret) dwarf matrices. Choose a (secret)
elf matrix, E ∈ E. We will use E to mask A as

Ā := {Āi := EAiE
−1}ki=1.

The set Ā will serve as the public key. Now an external party can choose some
permutation σ ∈ Sk, and compute the ciphertext

C := σĀ = E(σA)E−1.

We can map this ciphertext back to a product of dwarf matrices since

E−1CE = σA.

From which we can apply the Decompose algorithm to recover σ.

Parameters. The authors from [3] give parameters for varying security levels,
which they refer to as “toy”, “challenge”, “recommended”, and “large”. We list
them in the table below, where λ is their estimated security level in bits.

λ k n α p

toy 16 9 4 2 253 + 5

challenge 64 21 8 2 2167 + 83

recommended 128 35 10 2 2302 + 307

large 512 99 24 2 21105 − 1335

Table 1: Parameters from [3] for the direct construction.

Extra masking. In the original work of [3] the authors suggest that including
an extra dwarf matrix in the masking could improve security, though they do
not provide concrete reasons for using it. In this variant they define their public
key matrices as Āi := EAiDE−1, where D ∈ D. For simplicity of exposition,
we exclude this masking matrix in the proceeding sections, but will justify why
including a non-trivial D does not avoid the attack later on.

Attacking trapdoors from matrix products 5

2.2 Alternating construction

Let Ab := {Ab
1, . . . A

b
k} ⊂ D, be two sets of (secret) dwarf matrices, one for each

bit b ∈ {0, 1}. Choose a set of (secret) elf matrices, {Ei}ki=0 ∈ E. Define

Āb := {Āb
i := Ei−1A

b
iE

−1
i }ki=1.

The sets Āb will serve as the public keys. Now for a binary string m ∈ {0, 1}k,
we can compute the ciphertext as

C =

k∏
i=1

Āmi
i = E0

(k∏
i=1

Ami
i

)
E−1

k .

We will refer to this computation with the notation mĀ for ease of notation.
Thus to map C to a product of dwarf matrices we compute E−1

0 CEk, and then
apply the Decompose algorithm to recover m.

Parameters. Similarly to the direct construction, the authors from [3] give toy,
challenge, recommended, and large parameters for the alternating construction,
where λ is the estimated security level in bits. We list them in the table below.

λ k n α p

toy 16 16 4 2 247 + 5

challenge 64 64 8 2 2255 − 19

recommended 128 128 10 2 2553 + 549

large 512 512 24 2 22859 + 641

Table 2: Parameters from [3] for the alternating construction.

3 Properties of dwarf products

We will explore some properties of dwarf matrices and dwarf matrix products.
We continue to use the notation outlined in Section 2.

3.1 Dwarf determinants

We begin by considering some properties of the determinants of dwarf matrices.

Lemma 1. For a dwarf matrix A it holds that |detA| ≤ (α
√
n)n, when detA

is seen as an integer in (−p/2, p/2).

6 Decru et al.

Proof. This follows from Hadamard’s inequality.

In Lemma 2, we will get concrete upper bounds on the determinants of dwarf
matrices, but only for the smallest values of α, namely, α = 1 or 2. This is
convenient since these choices of α coincide with the suggested parameters.

Lemma 2. For an n×n dwarf matrix A with α ∈ {1, 2} and n even, the maximal
value of detA is the maximal value of the determinant of the n × n Hadamard
matrices with entries {0, 1}, respectively {−1, 1}.

Proof. For α = 1 this is immediate. For α = 2, it suffices to see that in both
cases we are computing the volume of the maximal n-dimensional hypercube
with lattice points at most distance two away.

Since not all dwarves are Hadamard matrices, the determinants of the dwarves
will be much smaller than these maximal values, as can be seen from the ex-
periments in [4]. Studying them, however, gives us an effective upper bound on
dwarf determinants. The work of Tao and Vu [4, Theorem 1.1] shows that with
probability tending to 1 (as n tends to infinity), the absolute value of the deter-
minant of a random {1,−1} Hadamard matrix is close to

√
n!. For n = 8, this

means the determinant is expected to be close to 28.
For α = 2 and n ranging from 1 to 10 we then get that |detA| is maximally

equal to
2, 4, 16, 48, 160, 576, 4096, 14336, 73728, 327680.

There is no known closed-form expression for these values, but the first 22 can
be found as A003433 in The On-Line Encyclopedia of Integer Sequences [1].
Some of the larger values of determinants cannot be attained; e.g. for n = 3
we cannot construct a matrix with determinant ±13,±14,±15. The maximum
values are typically achieved by incorporating a lot of structure. The following
is an example for n = 8 with maximal determinant:

2 0 2 0 0 2 2 0
2 2 0 2 0 0 2 2
2 2 2 0 2 0 0 2
0 2 2 2 0 2 0 0
0 0 2 2 2 0 2 0
2 0 0 2 2 2 0 2
0 2 0 0 2 2 2 0
0 0 2 0 0 2 2 2


.

3.2 Dwarf traces

The trace of a matrix is invariant under conjugation, but is not multiplicative.
Thus Tr(EσAE−1) = Tr(σA), and will change depending on the choice of σ.
For dwarf products in general we expect that as more dwarves are multiplied to
it, the trace should strictly increase. This will provide us with a test to use in
our attack later on. We formalize this idea in Heuristic 1 and give both heuristic
arguments and thorough experimental evidence to support it.

Attacking trapdoors from matrix products 7

Heuristic 1. Choose parameters (n, k, p, α) as described in Section 2.1.
Let {A1, . . . Ak} ⊂ D, σ ∈ Sk, and m ≤ k.
Then we have that

tr

(m−1∏
i=1

Aσ(i)

)
< tr

(m∏
i=1

Aσ(i)

)
with overwhelming probability.

Recall that every entry in a dwarf matrix is at most α. By considering a set
of matrices, where each entry is exactly the maximum value α, we can upper
bound the trace of a product of m dwarf matrices by nmαm. Note that the prime
is chosen to be larger than nk−1αk. However, this upper bound is significantly
larger than what occurs in practice since the bound is computed from considering
a matrix with only entries equal to α, which is not itself an invertible matrix. So
in practice, we expect the trace of the product to always be less than p, meaning
we are working strictly over the integers.

Now, let Dα be the distribution of a variable uniformly randomly sampled
in {0, . . . , α}. Though dwarf matrices are required to be invertible and so there
may be some bias introduced, we estimate that this bias does not have a signif-
icant impact on the results of this analysis, and we will support this claim with
experimental evidence later on. Thus, we assume the elements of a dwarf matrix
are sampled according to Dα. Their expected value is

µα :=
1

α+ 1

α∑
i=0

i = α/2.

Their variance is

σ2
α =

1

α+ 1

(
α∑

i=0

i2

)
− µ2

α =
α(2α+ 1)

6
− (α/2)2 =

α(α+ 2)

12
.

We will use the following fact. Let X and Y be two random variables, and
let Z be their product. Assume X and Y are independent. Then we have

µZ = µXµY and σ2
Z = (σ2

X + µ2
X)(σ2

Y + µ2
Y)− µ2

Xµ2
Y .

Entries in the product of two dwarf matrices can now be estimated as fol-
lows. Each entry is the sum of n terms, where each term is the product of two
independent variables, each one distributed as Dα. Their average value is then

µ(2)
α = nµ2

α = n
α2

4
,

and their variance is

(σ(2)
α)2 = n

[
(σ2

α + µ2
α)(σ

2
α + µ2

α)− µ2
αµ

2
α

]
= nα2 7α

2 + 16α+ 4

144
.

8 Decru et al.

Entries in the product of three or more dwarf matrices are harder to estimate
rigorously. We can try to iterate the previous argument, by heuristically ignoring
correlations between elements of partial products. We then obtain formulae for
the average as

µ(k)
α = nµ(k−1)

α µα = nk−1µk
α (1)

and for the variances as

(σ
(k)
α)2 = n

[
((σ

(k−1)
α)2 + (µ

(k−1)
α)2)(σ2

α + µ2
α)− (µ

(k−1)
α)2µ2

α

]
= n

[
(σ

(k−1)
α)2(σ2

α + µ2
α) + (µ

(k−1)
α)2σ2

α

]
.

(2)

Consider the probability that the trace of a product of k+1 dwarves is smaller
than the trace of the product of the first k factors. In other words, letting P
be the product of k dwarf matrices, and A a dwarf matrix, we are interested in
when Tr(PA) − Tr(P) = Tr((P (A − I)) is negative. Ignoring correlations, the
expected value of the trace difference can be approximated as follows

µ := Tr(PA)− Tr(P) = n(µ(k+1)
α − µ(k)

α) = nµ(k)
α (nα/2− 1).

This average is of course positive, but we also need the variance to argue about
the probability to obtain a negative value. We estimate this as follows

σ2 = n((σ(k+1)
α)2 + (σ(k)

α)2).

We can then bound the probability that the trace difference is negative using
Tchebychev inequality

Pr [Tr(PA)− Tr(P) ≤ 0] ≤
(
σ

µ

)2

. (3)

This implies that ϵ(α, n, k) := 1− (σ/µ)2 is a lower bound on the probability
that Tr(PA) > Tr(P) holds. For each set (n, k, α) of the parameters from [3]
for the direct construction, we computed ϵ(α, n, k′) where 1 ≤ k′ ≤ k. This data
is given in Figure 1. When verifying these figures experimentally, we checked
Heuristic 1 for k = 2, 3 using 106 samples for each of the toy, challenge, and
recommended parameters, and found that it was true 100% of the time. Thus,
these results support the claim from Heuristic 1.

Experiments. In Figure 2, we computed the average trace of a product of i dwarf
matrices, for i ∈ [1, k]. The averages were taken from 10, 000 samples for several
parameter sets. As can be seen, the traces follow a logarithmic line, further
supporting the claim in Heuristic 1. The coloured bars indicate the standard
deviation.

The experimental results shown in Figures 3 and 4 show how varying the
values of n and α will affect the trace. In general, increasing these values will
increase the average trace of the dwarf products. In Figure 3 the slopes of the
lines change by a constant value close to 1, with values close to 1,2, and 3. This

Attacking trapdoors from matrix products 9

2 4 6 8

0.78

0.8

0.82

0.84

0.86

k

Toy parameters

0 5 10 15 20
0.96

0.97

0.97

0.98

0.98

k

Challenge parameters

0 10 20 30

0.98

0.99

0.99

k

Recommended parameters

0 20 40 60 80 100

1

1

1

1

1

k

Large parameters

Fig. 1: We plot the probabilities that the trace differences are non-negative ac-
cording to Equation 3 for each set of parameters from Section 2.1.

means that increasing n will linearly increase the average trace, as would be
expected. In Figure 4 we see that the lines seem to be converging to each other
as α increases, with the most dramatic difference between α = 1 and α = 2. This
signifies that we get the most dramatic differences in trace for small α values.
We also computed these values from 10, 000 samples, which were generated using
the challenge parameters.

10 Decru et al.

2 4 6 8

100

102

104

106

108

k

Toy parameters

avg. trace

trace upper bound

0 5 10 15 20
10−1

106

1013

1020

1027

k

Challenge parameters

0 10 20 30
10−3

1010

1023

1036

1049

k

Recommended parameters

Fig. 2: We plot the average trace values for products of dwarves of various pa-
rameter sets together with the maximum possible trace value.

4 Trace of inverse dwarf products

4.1 Dwarf products and inverse dwarves

Now instead of looking at how the trace changes in dwarf products, we consider
how it might change when multiplying by a non-dwarf matrix in the following
heuristic. Note that the inverse of a dwarf is not expected to be a dwarf.

Heuristic 2. Let C =
∏m

i=1 Aσ(i) be a product of dwarf matrices. The expected

value of tr(C) is less than the expected value of tr(A−1
σ(j)C) where j ̸= 1,m.

Attacking trapdoors from matrix products 11

0 5 10 15 20
10−4

1014

1032

1050

k

A
v
er
a
g
e
tr
a
ce

Trace of challenge parameters, varying n

n = 6
n = 8
n = 10

Fig. 3: Average trace value for dwarf products of varying k values for the chal-
lenge parameters. The different lines indicate different n values.

0 5 10 15 20
10−7

1016

1039

1062

1085

k

A
v
er
a
g
e
tr
a
ce

Trace of challenge parameters, varying α

α = 1
α = 2
α = 3
α = 4

Fig. 4: Average trace value for dwarf products of varying k values for the chal-
lenge parameters. The different lines indicate different α values.

12 Decru et al.

In our experiments, after running 10, 000 samples, we found that for the
recommended parameters from the direct construction, Heuristic 2 was true
71% of the time. For the large parameter set this probability increased to 99%.

4.2 Estimating entries of inverse dwarves

Let D be an n× n dwarf matrix, then D−1 = 1/det(D) ·Adj(D), where Adj(D)
denotes the adjugate of D. Recall that the entries of Adj(D) are minors of D i.e.
determinants of the (n− 1)× (n− 1) submatrices of D. Suppose the coefficients
of D are distributed with mean µ and variance σ2, we now study the expected
distribution of the minors ofD. A minor of size r is a sum (with signs) of r! terms,
with each term a product of r coefficients in D. If these behave as independent,
we then expect

µr =

{
0 if r is even
µr if r is odd

, σ2
r = (r!)((σ2 + µ2)r − µ2r).

In particular, we expect the determinant to be a random variable with aver-
age and variance µn and σ2

n. Coefficients of an inverse dwarf matrix times its
determinant should have average µn−1 and variance σ2

n−1.
This analysis indicates that though the inverse of a dwarf matrix over Fp

is not itself a dwarf, they still behave differently from a randomly sampled elf
matrix. For example, we know that when the entries of Adj(D) are considered
as integers in [0, p − 1], they will not be small. When they are considered as
integers in [−(p − 1)/2, (p − 1)/2], however, they are in fact close to zero. In
what follows, we will be looking at the absolute value of these matrix entries,
where we consider the entry in [−(p−1)/2, (p−1)/2], and multiply it by −1 if it
is negative to ensure a positive value. Thus, we claim that the absolute value of
the trace of Adj(D) will also be small in general. We compute an upper bound
for it in Lemma 3.

Lemma 3. Let D ∈ D, so D < α and has dimensions n× n.
Then |Tr(Adj(D))| ≤ nαn−1(n− 1)(n−1)/2.

Proof. The elements of Adj(D) are determinants of the (n−1)× (n−1) subma-
trices of D. Thus, |Tr(Adj(D))| ≤ |n·dn−1|, where dn−1 bounds the determinant
of dwarves of dimensions n− 1. From Hadamard’s inequality we get that

dn−1 ≤ αn−1(n− 1)(n−1)/2.

We now give experimental evidence to support these claims.

Experiments. We considered 106 dwarf matrices, D, for each set of parameters
proposed for the alternating construction. We then computed the absolute value
of Tr(Adj(D)) = Tr(det(D) ·D−1) and list the average of the results in Table 3.
Remark that the trace for each D is roughly n times the average coefficient of
Adj(D).

Attacking trapdoors from matrix products 13

λ n α p log(max bound) log(|trace|) log(stand. dev.)

toy 16 4 2 247 + 5 7.3 2.6 2.3
challenge 64 8 2 2255 − 19 19.8 6.9 7.0

recommended 128 10 2 2553 + 549 26.6 9.6 9.9
large 512 24 2 22859 + 641 79.6 34.5 35.1

Table 3: Toy, challenge, recommended, and large parameters from [3] for the
alternating construction, together with the average and standard deviation val-
ues for log2(|tr(Adj(D))|) taken from 106 random samples. We also include the
maximum bound from Lemma 3.

5 Trace attack on the direct construction

In what follows, we outline an attack on the direct construction from [3], and so
assume the notation and structure summarized in Section 2.1.

Given some ciphertext C = E(σA)E−1, and a public key Ā := {Ā1, . . . Āk},
we can iteratively multiply by (Āi)

−1, while checking the trace. If the trace is
less than Tr(C), then we will assume that we have correctly guessed the first
matrix in the product. Heuristic 2 asserts that this will likely be the case, we
estimate that the probability of this being a correct guess is at least 0.99, as seen
in Section 3. The issue here is that trace is invariant under conjugation, thus
when we left-multiply by the inverse of the last matrix we get that

Tr

(
(Āσ(k))

−1 · Āσ(1) · · · Āσ(k)

)
= Tr

(
Āσ(1) · · · Āσ(k−1)

)
.

This trace will also be smaller than Tr(C).

As it turns out, if we make an incorrect guess of the first matrix using this
trace check, we can quickly flag it as incorrect by continuing to left-multiply by
inverses. If the guess had been correct, there will always exist at least one matrix
from the public key such that left-multiplying by its inverse gives a smaller trace.
In the case of an incorrect guess, this quickly stops being the case, since the odds
of being in one of these special cases, described above, becomes less and less likely
as the product grows. Hence we can discard it. This approach is summarized in
Algorithm 2.

Note that the set Tk from Algorithm 2 will contain two permutations that are
equal except for the final two indices, which are permuted. This is due to the fact
that once we get down to a product of two matrices, we get that tr

(
Āk−1Āk

)
=

tr
(
ĀkĀk−1

)
. Determining which permutation was the correct one can be done

easily by computing the corresponding products, and comparing them to the
ciphertext.

We coded Algorithm 2 in Magma, which can be found at the following link:

https://github.com/vgilchri/matrix-product-attack.

https://github.com/vgilchri/matrix-product-attack

14 Decru et al.

Algorithm 2: DirectTraceAttack

Input : C = σĀ, Ā
Output: σ

1 T0 ← {I}
2 for i = 1 to k do
3 Ti ← {} /* trace-decreasing products of length i */

4 for M ∈ Ti−1 do
5 for Āj ∈ Ā do
6 if Tr(Ā−1

j ·M
−1 · C) < Tr(M−1 · C) then

7 Ti ← Ti ∪ {M · Āj}

8 return σ ∈ Tk

We give timings for this attack on the “challenge”, “recommended”, and
“large” parameters from [3] in Table 4. The experiments were run using Magma
V2.27-7 on a laptop with an Intel Dual-Core i3 at 1.1 GHz.

λ k n α p time (s)

challenge 64 21 8 2 2167 + 83 0.2

recommended 128 35 10 2 2302 + 307 2.8

large 512 99 24 2 21105 − 1335 915

Table 4: Timings in seconds for attacking the direct construction, where λ was
the previously estimated security in bits.

Theorem 1. Given a ciphertext C = σĀ, and a public key, Ā, as described in
Section 2.1, Algorithm 2 can recover σ in complexity O(k2nω) under Heuristic 2,
where O(nω) is the cost of inverting an n× n-matrix.

Proof. Looking at Algorithm 2, we see that the first loop has length k. From
Heuristic 2 we assume the second loop will require O(1) iterations. The last loop
starts at length k, but decreases by one each time it is called (since we do not
need to check matrices already in the product M). The dominating cost of line 6
is from the matrix multiplications and inversions, thus we get a total complexity
of O(k2nω).

Note, our experiments showed that in practice |Ti| never exceeded 3 for any
of the parameter sets, thereby supporting our use of Heuristic 2.

Attacking trapdoors from matrix products 15

Extra masking. Recall from Section 2.1 that the authors of [3] suggested that
including an extra masking matrix could improve the security of the scheme.
They defined their public key matrices as Āi := EAiDE−1, where D ∈ D. Note,
this would require a larger prime to ensure Decompose still runs, since the length
of the dwarf product essentially doubles. This alternate construction, with a non-
trivial choice of D, does not avoid the attack from this section. Though AiD is
not itself a dwarf matrix, the properties of the trace function being an increasing
function in our context remains true. Though D can be chosen to have as large
a trace as possible in the hopes of making the trace of the products larger than
p, we argue this would not be an effective countermeasure since you also risk the
Decompose algorithm, that is central to the trapdoor function, failing.

6 Attacking the alternating construction

Recall that in the alternating construction we have two sets of dwarf matrices,
say the {A0

i }ki=1 and the {A1
i }ki=1. We also have elves E0, . . . , Ek. For each i,

the matrix Āb := Ei−1A
b
iE

−1
i is computed. When the sender wants to encrypt

a bitstring m = m1...mk, they compute the following product:

C :=
∏

Ei−1A
mi
i E−1

i = E0

(∏
Ami

i

)
E−1

k .

In Section 6.1 we outline an information leak that impacts the entropy of the
scheme, and in Section 6.2 we give an attack that significantly decreases the bit
security.

6.1 Recovering the determinant of dwarf matrices

In what follows we will assume that n is much smaller than k, which is true
for every suggested parameter set of the protocol. Recall, we have matrices Āb

i

which – when combined – we can turn into conjugate matrices as follows:

Ā0
i (Ā

1
i)

−1 = Ei−1A
0
i (A

1
i)

−1E−1
i−1.

Following [3, Remark 7], A0
i and A1

i are chosen to have the same determinant
as to not leak information. We know that A0

i is a dwarf such that it has small
entries. This is unfortunately not true for (A1

i)
−1, since it is the inverse of a

matrix with small entries, so when seen as a matrix over Z, its entries can be
huge. However, as described in Section 4, we can construct the inverse of a matrix
through its determinant and its adjugate; i.e. (A1

i)
−1 = 1

detA1
i
· adjA1

i . We also

know that detA1
i is small since we can upperbound it in terms of n and α like

in Lemma 1.
Now consider

det(A1
i) · Ā0

i (Ā
1
i)

−1 = Ei−1A
0
i · adj(A1

i)E
−1
i−1.

Even though the adjugate will not have coefficients bounded by α, it will have
coefficients much smaller than p; i.e. the entries are bounded from above by entry

16 Decru et al.

n−1 of the A003433 sequence, as seen in Section 3.1. Recall, we also assume that
n is much smaller than k, which is true for every suggested parameter set of the
protocol. Furthermore, conjugate matrices keep their characteristic polynomial
(which includes the trace as well as the determinant).

With the public information, we can compute the characteristic polynomial
of the matrix Ā0

i (Ā
1
i)

−1 (as an element of Fp[x]) and use lattice techniques to find
the coefficients of this polynomial (as elements of Z). Indeed, write

∑n
i=0 cix

i

for the characteristic polynomial (seen with coefficients in [0, . . . , p − 1]), and
consider the lattice generated by the following basis:

Λ =


c0 c1 c2 . . . cn−1

p 0 0 . . . 0
0 p 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . p

 .

Remark that c0 = 1 since Ā0
i and Ā1

i have the same determinant. When
multiplying Ā0

i (Ā
1
i)

−1 with det(Ā1
i), we get the matrix Ā0

iAdj(Ā1
i) with char-

acteristic polynomial det(Ā1
i)
∑n

i=0 cix
i, whose entries are expected to be small

relative to p, given that the coefficients of both Ā0
i and Adj(Ā1

i) are small relative
to p. Now, the vector v = (det(Ā1

i)c0, . . . ,det(Ā
1
i)cn−1) is in Λ, so we can expect

it to be a relatively short vector. The first entry of this short vector will be the
determinant of A1

i up to sign, since c0 = 1. From this, one can also easily deduce
the coefficients of the characteristic polynomials of A0

i · (A1
i)

−1 and A1
i · (A0

i)
−1,

seen as elements in Q.

How likely is the vector v to be the shortest vector in Λ? Due to the con-
struction of the characteristic polynomial, its first entry can achieve the largest
possible value so if we bound this from above by the aforementioned maximal
value we get

||v|| = ||(det(Ā1
i)c0, . . . ,det(Ā1

i)cn−1)||
≤ ||(det(Ā1

i)c0, . . . ,det(Ā1
i)c0)||

= ||(det(Ā1
i), . . . ,det(Ā1

i))||
=

√
n · det(Ā1

i)

≤
√
n · (α

√
n)n

= αn
√
n
n+1

.

Attacking trapdoors from matrix products 17

On the other hand, we can consider the Minkowski upper bound for the
shortest vector λ1 in Λ:

||λ1|| ≤
√
n ·
(√

det(ΛTΛ)

)1/n

=
√
n ·

pn−1

√√√√(p2 + (

n−1∑
i=0

c2i)

1/n

≤
√
n ·
(
pn−1

√
p2 + np2

)1/n
=

√
n · p · (

√
n+ 1)1/n.

Now if we assume p ≈ αknk−1 as in the protocol, as well as n being much
smaller than k, we can simplify this to

||λ1|| ≤ αknk−1/2.

Even though it is clear that v is short compared to this bound, the lattice
Λ is not constructed at random so we cannot conclude that v is likely to be
the shortest vector. In fact, for small values of p and n one can easily construct
counterexamples to this statement. For realistic parameters however, only one
exceptional case appears heuristically. This is the case where all entries of v
share a common factor over Z, in which case a shortest vector algorithm will
only get v divided by this common factor. It is hard to determine what the
odds of this happening are exactly, given that the ci are not drawn uniformly
at random and will depend on the (small) parameter α. Generically, we expect
every ci to be divisible by a prime ℓj with probability ℓ−1

j , so all of them will

be divisible by ℓj simultaneously with a probability of ℓ−n
j . This probability is

heavily dominated by ℓj = 2 of course, and in practice we see that this is the case
as well for all realistic parameters. Even for the challenge parameters, it means
we can determine the determinant of the used dwarf matrices in the public key
with over 99% accuracy. When swapping to the recommended parameters, this
turns into 99.9% already. This can be seen from the code provided at

https://github.com/vgilchri/matrix-product-attack.

Since the determinant of the dwarf matrices leaks, this means the key gener-
ation can be unlucky and have a pair of dwarf matrices A0

i , A
1
i with very large

determinant, although the chances of this happening are rather slim.4 Given how
there are significantly less matrices with these large determinants, their entropy
can easily be too small which may allow brute force guessing.

4 Remark that this is also noticeable in the timing of the key generation: sampling
random elements from D until a second one with the same huge determinant is found
can take an egregious amount of time.

https://github.com/vgilchri/matrix-product-attack

18 Decru et al.

Countermeasures. One possible countermeasure would be to only sample dwarves
from a set D ∩ F, where F is a set of matrices with fixed determinant (up to
sign). The choice of F would of course require enough entropy for D ∩ F. One
suggestion would be F = SLn(Fp), although depending on α and n, better op-
tions may be available. Apart from this, any type of security reduction would
still need to take into account information leaking from the characteristic poly-
nomials of A0

i · (A1
i)

−1 and A1
i · (A0

i)
−1, making it a lot harder to argue why they

would be indistinguishable from random for example.

6.2 Trace attack

The näıve approach to applying the trace attack from Section 5 would be to
compute a new product from a bit string, d, of the form

D :=
∏

Ei−1A
di
i E−1

i = E0

(∏
Adi

i

)
E−1

k .

Then we can compute CD−1 to obtain a product of the form

CD−1 = E0

∏
Ami

i

∏
(Adi

i)−1E−1
0 .

This is a product of dwarves and inverse dwarves, conjugated by one elf. The
hope, thus, would be that since the product is conjugated by an elf, we can use
the trace to gain some knowledge about the secret, m. The caveat here is that
inverse dwarves are not guaranteed to have small entries, and in fact, often have
seemingly very large entries as we saw in Section 4. Hence, some more care will
be required for this construction.

We will be able to use the same overall idea to gain information about the
secret using the trace, but will need to consider the absolute value of the trace
instead. This time we have more variance in the size of the entries, unlike in
Section 5 where we were guaranteed to have entries with a fixed upper bound.
We will need to guess several bits at once in order to see noticeable differences
in the absolute value of the trace. Another issue is that since the product of
matrices now has 2k matrices, it is likely that the combined trace of the product
will be larger than p. So in order for the attack to run we will first need to guess
some bits of m, and then we can run the attack to recover the remaining bits of
m.

We will begin with some initial guess d, and take note of the absolute value
of the trace |tr(CD−1)|. Then, we will adjust d by switching the last step bits
of d with every possible bit string of length step, and compare all of the traces.
We expect there to be a big difference in trace size between correct and incor-
rect guesses, as seen in Heuristic 2. Thus, we keep any bit strings that achieve
the minimum trace value, or close to the minimum trace value (we denote this
interval using ϵ). We iterate until we have some candidates for m.

Attacking trapdoors from matrix products 19

We outline the attack in Algorithm 3, where we would like to recover k′ bits of
m, assuming we have already guessed the first k−k′ bits. Recall that the notation
mĀ refers to computing a product of matrices using Ā0 and Ā1 that relies on
m, as outlined in Section 2.2. We use ϵ to denote some “wiggle room”, that is, we
want to keep any candidates that give a trace that is close to the minimum, even
if not exactly the minimum. We will use AllBitStrings(length=step) to denote a
function that lists all bitstrings of length step. Note also we will use prev to
track what the previous product’s trace was in order to keep only products of
decreasing trace. It is initialized to be as large as possible since the first product
does not have any trace to be compared to.

Algorithm 3: AlternatingTraceAttack

Input : Ā0,Ā1, step, C = mĀ
Output: m

1 str ← AllBitStrings(length=step)
2 T ← {str} /* track "good" candidates */

3 prev ← p− 1− ϵ /* track previous trace for comparison */

4 for i = 1 to k′/step do
5 for b ∈ T do
6 traces← {}
7 for s ∈ str do
8 Ds ← (b||s||0 · · · 0)Ā /* add zeros until length k */

9 ts ← Abs(Tr(CD−1
s))

10 if ts < prev then
11 traces← traces ∪ {ts}

12 T ← {s : ts < min(traces) + ϵ}
13 prev ← min(traces) + ϵ

14 return m ∈ T

We coded the attack in Magma, which can be found at the following link:

https://github.com/vgilchri/matrix-product-attack.

We see that the first loop has length k′/step. The second loop has length
upper bounded by 2step, but in practice is far smaller. The third loop has length
exactly 2step. The dominating subroutine within the loops is the matrix mul-
tiplications, which has complexity O(nω), where ω depends on the choice of
algorithm used. Based on experimental evidence, we estimate that step can be
chosen between k′/8 and k′/4, with the latter being more expensive but hav-
ing a higher likelihood of success. In total this means that the complexity can
range between O(2k

′/4nω) and O(2k
′/2nω), which gives a time-accuracy trade-

off for the attack. This reduces the bit complexity of the scheme from k to
approximately k − 3k′/4 bits of security.

https://github.com/vgilchri/matrix-product-attack

20 Decru et al.

For our experimental analysis and in order to better estimate the resource
requirements and accuracy of our attack on larger parameter sets, we created
additional parameter sets following the description in [3] for 24, 32, 40, 48, and
56 bits of security. Following [3], we take α = 2 for all the sets. Since we need
that k ≥ λ, we simply take them equal. We choose n depending on λ and then
take the smallest prime such that p > αknk−1. The new parameter sets of the
form (λ, k, n, p) we obtained are

(24, 24, 4, 1180591620717411303449),

(32, 32, 5, 20000000000000000000000000000047),

(40, 40, 6, 2449619279948477417637925925025071021162531),

(48, 48, 6, 1053291452546545112653655703164648880199901921673307),

(56, 56, 6, 452896045148266986479329939846808292752854647314708573454667).

We list the choices of k′, and some experimental results in Table 5. Note, k′

was chosen experimentally such that a product of 2k′ matrices did not exceed
p more than 99% of the time. The results listed in the table are averages from
running the attack 100 times using Magma V2.28-5 on an Intel Xeon CPU E5-
2630v2 at 2.60GHz.

λ λ′ k′ step time (s) success (%)

24 12 16 2 0.15 96

4 0.30 100

32 14 24 3 0.20 97

6 1.71 100

40 19 28 4 1.25 100

48 24 32 4 9.27 100

56 29 36 6 114.87 100

64 40 32 4 11.4 100

128 80 64 8 3418.96 55

16 10172.06 100

Table 5: Experimental results for partial attack on the alternating construction.
λ was the previously estimated security in bits and λ′ is the newly estimated bit
security, k′ is the number of bits that are recovered in the attack from m, “step”
refers to the number of bits guessed at once, timings are given in seconds, and
the probability of success is given as a percent.

Attacking trapdoors from matrix products 21

Countermeasures. One possible countermeasure would be to reduce the size of
the prime to as small as possible such that Decompose still runs. This would
save back some bits of security, but does not avoid the attack entirely.

The other obvious countermeasure is to increase the size of k. As mentioned,
we are estimating the new security value as λ′ = k− (3/4)k′, so in order to reach
λ bits of security, we would need k = λ+ (3/4)k′. For example, this means that
for 64 bits of security, k = 88.

7 Conclusion

We have shown that the constructions outlined in [3] are not secure by giving
two full message recovery attacks, running in polynomial time, and detailing
several other weaknesses. We expect these attacks cannot easily be avoided with
simple countermeasures.

We believe the attack from Section 6.2 may be an interesting example where
machine learning could be used to make a more adaptive attack that makes use
of previous (failed) guesses, and optimizes some of the bounds used such as ϵ and
k′. It may also be combined with the ideas from Section 6.1 to decrease the size of
the product and thus allow for a larger k′ value. Future work could also consider
how the attacks detailed in this paper may apply to other non-commutative
objects, such as tensors, or other word problem based cryptosystems.

22 Decru et al.

References

1. OEIS Foundation Inc. (2024), Entry A003433 in The On-Line Encyclopedia of In-
teger Sequences, https://oeis.org/A003433

2. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-
pander graphs. Journal of CRYPTOLOGY 22(1), 93–113 (2009)

3. Geraud-Stewart, R., Naccache, D.: New public-key cryptosystem blueprints using
matrix products in Fp. Cryptology ePrint Archive, Paper 2023/1745 (2023), https:
//eprint.iacr.org/2023/1745

4. Tao, T., Vu, V.: On random ±1 matrices: singularity and determinant. Random
Structures Algorithms 28(1), 1–23 (2006). https://doi.org/10.1002/rsa.20109,
https://doi.org/10.1002/rsa.20109

5. Tillich, J.P., Zémor, G.: Hashing with sl 2. In: Advances in Cryptol-
ogy—CRYPTO’94: 14th Annual International Cryptology Conference Santa Bar-
bara, California, USA August 21–25, 1994 Proceedings 14. pp. 40–49. Springer
(1994)

6. Levy-dit Vehel, F., Perret, L.: Security analysis of word problem-based cryptosys-
tems. Designs, Codes and Cryptography 54, 29–41 (2010)

7. Wagner, N.R., Magyarik, M.R.: A public-key cryptosystem based on the word prob-
lem. In: Workshop on the Theory and Application of Cryptographic Techniques. pp.
19–36. Springer (1984)

https://oeis.org/A003433
https://eprint.iacr.org/2023/1745
https://eprint.iacr.org/2023/1745
https://doi.org/10.1002/rsa.20109
https://doi.org/10.1002/rsa.20109
https://doi.org/10.1002/rsa.20109

	Attacking trapdoors from matrix products

