
New Results for Coppersmith’s Method from
the Perspective of Sumsets Theory

Yansong Feng1,2, Abderrahmane Nitaj3, and Yanbin Pan1,2

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing, China

2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, China

{fengyansong,panyanbin}@amss.ac.cn
3 Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France

abderrahmane.nitaj@unicaen.fr

Abstract. Coppersmith’s method, combined with the Jochemsz-May
strategy, is widely used to find the small roots of multivariate polynomi-
als for cryptanalysis. At Asiacrypt’23, Meers and Nowakowski improved
the Jochemsz-May strategy from a single polynomial equation to a sys-
tem of polynomial equations and proposed a new method, called Auto-
mated Coppersmith. Note that it is typically a tedious and non-trivial
task to determine asymptotic upper bounds for Coppersmith’s method
and manual analysis has to be performed anew when a new set of polyno-
mials is considered. By making certain heuristic assumption, Meers and
Nowakowski showed that the bound can be obtained using Lagrange in-
terpolation with the computer, but it is still time-consuming. Moreover,
we find that sometimes the interpolation method may get stuck in lo-
cal convergence, which will result in an incorrect bound when a natural
termination strategy is employed in the method.

In this paper, we revisit the Jochemsz-May strategy as well as the work
of Meers and Nowakowski and point out that the bound can be obtained
by calculating the leading coefficient of some Hilbert function, which
is exactly the volume of the corresponding Newton polytope. To this
end, we introduce the concept of Sumsets theory and propose a series of
related results and algorithms. Compared with the Automated Copper-
smith, we overcome the issue of getting stuck in local convergence and
directly eliminate the time-consuming calculation for fm in Automated
Coppersmith when m is large, which brings a 1000x∼1200x improvement
in running time for some polynomials in our experiment.

Additionally, our new method offers a new perspective on understanding
Automated Coppersmith, thus providing proof of Meers and Nowakowski’s
Heuristic 2 for the system of a single polynomial.

Keywords: Coppersmith · Sumsets · Newton polytopes · Additive com-
binatorics

2 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

1 Introduction

In 1996, Coppersmith [6,7] introduced a method to find the small solutions of
a univariate polynomial modular equation, and another method to find the small
roots of a bivariate polynomial. Since then, these methods have been extended
in several ways, such as [14,21], and have found significant applications in the
cryptanalysis [4,5,13,20,21,22,24,30].

The main idea behind Coppersmith’s methods lies in constructing a set of
polynomials sharing common roots with the original polynomial. In general, the
coefficients of such polynomials are used to build a lattice L to be reduced in
the sequel. To improve Coppersmith’s method, the key is to construct a better
family of polynomials G.

In 2006, Jochemsz and May [16] presented a heuristic strategy, known as
the Jochemsz-May strategy, for choosing the collection Gm of the polynomi-
als gi,j(x1, . . . , xk) satisfying a congruence of the form gi,j(x1, . . . , xk) ≡ 0
(mod M)m for a specific integer m. The main idea in the Jochemsz-May strat-
egy is to decrease the order of M in gi,j . The Jochemsz-May strategy applies
to all multivariate polynomials that have either modular or integer roots, which
generalizes the work of Blömer and May [2] that finds optimal bound for small
integer roots of bivariate polynomials.

At Asiacrypt’23, Meers and Nowakowski’s [23] proposed an automated method,
called Automated Coppersmith. They improved on Jochemsz-May from a single
polynomial equation to a system of polynomial equations. Moreover, it is typi-
cally a tedious and non-trivial task to determine asymptotic upper bounds for
Coppersmith’s method and manual analysis has to be performed anew when a
new set of polynomials is considered. It seems convoluted to prove the asymp-
totic bound. By making certain heuristic assumption, Meers and Nowakowski
showed that the bound can be obtained using Lagrange interpolation with the
computer, but it is still time-consuming.

More precisely, both strategies encounter estimating the exponents of the
following inequality at the end 1, where Xi is the upper bound of the absolute
value of xi for i = 1, · · · , k:

X
p1(m)
1 · . . . ·Xpk(m)

k MpF (m) < MpM(m)−ϵ.

How to quickly calculate these p1, . . . , pk, pF and pM(m) is an unavoidable issue.
For some simple polynomials, we can compute them by summation. Taking

the modular polynomial equation f(x1, x2) = a1x1 + a2x2 + C ≡ 0 (mod M)

as an example, pM(m) is m|supp{fm}| = m
∑m

i1=0

∑m−i1
i2=0 1 ≈ m3

2 . However,
for polynomials with more variables, manual analysis becomes tedious and time-
consuming significantly. In [23], Meers and Nowakowski claimed that the func-
tions pj(m)’s (j = 1, . . . , k) and pM(m) are polynomials in m when m is large
enough, but gave no proof. Furthermore, they assumed that the function pF (m)
becomes a polynomial when m is sufficiently large. This allows them to select

1 This is just a simplified version, details can be found in Section 2

Newton Polytope 3

specific values m and then utilize Lagrange interpolation to solve for pM(m),
pj(m)’s and pF (m).

However, the interpolation method will usually involve the computation of
fm, which needs lots of time in the worst case since the number of monomi-
als of the power of f grows very quickly. Hence, Automated Coppersmith is
still very time-consuming for general polynomials, which is also verified by the
experiments.

Furthermore, when using the interpolation method, it’s necessary to ensure
thatm is big enough for pM(m) and pj(m) to be polynomials. The current bound
for m in theory is very huge [11]. A natural idea in practice is to continuously
adjust the value of m and add the corresponding interpolation polynomials into
a sequence, and output the polynomial when some new added interpolation
polynomials remain the same. However, another question of how many times we
should adjustm arises. We find in our experiments that sometimes there can be a
continuous subsequence of unchanged polynomials before the correct polynomial
appears, resembling the phenomenon of local convergence, which means that an
incorrect result will be outputted if the times we adjust m is not enough. This
significantly affects our confidence in the correctness of the outputted result from
the interpolation method.

As a consequence, the following natural question arises:

Can we compute pM(m), pj(m)’s and pF (m) more efficiently?

In fact, for the asymptotic upper bound of the roots, only the leading coef-
ficient of these polynomials (if they are) are needed.

Note that for the single polynomial f , pM(m) = m|supp{fm}|. In 1992,
Khovanskii [17] proved that |supp{fm}| is indeed polynomial in m when m is
big enough and the leading coefficient of |supp{fm}| is exactly the volume of
the convex hull related to f . See Fig. 1 for an example. Hence we can compute
the leading coefficient of pM(m) by computing the volume, which is usually very
fast in practice.

(0, 0)

(0, 1)

(1, 0)

f(x1, x2) = a1x1 + a2x2 + C,

∆ is a triangle of {(0, 0), (0, 1), (1, 0)},

S∆ =
1

2
.

Fig. 1: Newton polytope corresponding to supp{f} = {x1, x2, 1}

Subsequently, researchers investigated how large m needs to be such that
|supp{fm}| is a polynomial in m. Such explicit results were only previously

4 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

known in the special cases when the number of variables k = 1 [10,12,26,32],
when the convex hull of f is a simplex or when |supp{f}| = k + 2 [8] until 2023
Granville et al. [11] give the first effective upper bounds for this threshold for
arbitrary f . When |supp{f}| = n, it tends to be as least nn! It might imply
that in certain worst-case, if we using Lagrange interpolation, we would need to
compute fm for very large m = O(nn).

Obviously, Khovanskii’s results can help improve the computation of dim(L)
for the Jochemsz-May strategy, while to our best knowledge, no similar results
have been found for computing dim(L) for a system of multi polynomial equa-
tions with Automated Coppersmith. Moreover, it remains unsolved to compute
the leading coefficients of pj(m)’s and pF (m) more efficiently for a system of
polynomial equations with Automated Coppersmith, even for a single polyno-
mial equation with Jochemsz-May strategy.

Our Contribution. Inspired by Khovanskii’s results [17], we try to solve the
problem of computing the leading coefficients of pM(m), pj(m)’s and pF (m) from
the perspective of sumsets theory, and present some more efficient algorithms in
this paper. These algorithms are aimed to construct Newton polytopes, whose
volume equals the desired leading coefficient of pM(m), pj(m)’s and pF (m).
Therefore, we avoid encountering the phenomenon of local convergence and the
calculation of fm using Lagrange interpolation.

Compute the leading coefficient of pM. By [17], we know that for a single poly-
nomial f , the number of monomials in fm becomes a polynomial in m when m
is sufficiently large. The leading coefficient of this polynomial is exactly the vol-
ume of the convex hull of f . However, no similar results are found for a system
of multi polynomials f1, . . . , fn when n > 1. We try to generalize Khovanskii’s
results for such case.

To solve the system of multi polynomials with Coppersmith’s method, two
types of collections of polynomials have been utilized to construct the lattice.
The first one is considered in the Automated Coppersmith, which is {f i11 · . . . ·
f inn |i1, . . . , in ≤ m

n }, and the second one is {f i11 · . . . · f inn |i1 + . . .+ in ≤ m} used
in [9], which has been found performing better for linear modular equations.
Hence, we consider computing supp{f i11 · . . . · f inn |i1, . . . , in ≤ m

n } and supp{f i11 ·
. . . · f inn |i1 + . . .+ in ≤ m} to yield pM(m). By successfully reducing the multi-
polynomial case to the single polynomial case, we prove that pM(m) is also a
polynomial in m when m is big enough and present two more efficient algorithms
to calculate the leading coefficient of pM(m) via computing the volume of some
Newton polytope.

Compute the leading coefficient of pj. Meers and Nowakowski [23] claimed that
pj ’s are polynomials in m when m is large enough, but no proof is presented. We
find that it is non-trivial to prove this. Furthermore, we also aim to construct a
Newton polytope such that its volume equals LC(pj).

By introducing the concept of ”High Dimension Duplicate”, a method for
constructing higher-dimensional convex hull Nj , we prove that pj ’s are exactly

Newton Polytope 5

polynomials in m when m is large enough and the leading coefficient of pj is the
volume of Nj . The definition we propose is quite intriguing, possessing many
desirable properties, such as Lemma 6-8. From these useful Lemma, we can
show that its vertex count doesn’t need to exceed twice the number of vertices
of the original convex hull, making the computation of Nj not too challenging.
It is worth mentioning that we provided an algorithm to compute this higher-
dimensional convex hull, along with Theorem 5 and Algorithm 5.

Compute the leading coefficient of pF . Meers and Nowakowski assumed that pF
becomes a polynomial in m when m is sufficiently large [23]. The difficulty with
pF lies in characterizing the optimal polynomial for each monomial, making it
challenging to prove that pF becomes a polynomial in m for large m. However,
by introducing sumset theory, we realize that for n = 1, that is, the system
has a single polynomial f , and the selected monomial sets correspond to the
saturated Newton polytope of f . Regardless of the order, the leading monomial
of f is definitely a vertex of this Newton polytope. Besides, we not only prove
that when n = 1 pF becomes a polynomial in m for large m, i.e., Heuristic 2
in [23], but also provide a symbolic solution for the leading coefficient of pF .

As with Meers and Nowakowski in [23], we also do not consider the ”Extended
Strategy” mentioned in [16]. Just ”Basic Strategy” is enough in practice, such
as CI-HNP in [23]. Besides, using the ”Extended Strategy” leads to an increase
in the dimension of the lattice.

However, we have made an interesting discovery. Upon studying the uni-
variate case, we observed that there is no need to introduce additional shift
polynomials for the ”Extended Strategy”. Instead, we simply modify Nm−i

to Nmax(t−i,0). This modification yields the same results as before but with a
smaller lattice dimension. Using the same idea, we studied multivariate case. In
the case of modular unknown divisors, this result can produce an effect similar
to shift polynomials without increasing the lattice dimension.

Roadmap. The paper is organized as follows: In Section 2 we give some basic
preliminaries about polynomials (such as the definition of Hilbert function),
Coppersmith’s method (Jochemsz-May Strategy and Automated Copper-
smith) and Sumsets Theory (such as the definition of Newton polytope). Our
algorithms for computing Automated Coppersmith’s method quickly is described
in Section 3, where we omit the calculation about the values of pM and pj when
mi is relatively large. Then we provided our proof of Heuristic 2 in Automated
Coppersmith for n = 1 in Section 4. In order to fully demonstrate the superiority
of our algorithm, we have conducted sufficient experiments, and the experimen-
tal results can be found in Section 5. We also provide an example to illustrate
the phenomenon of local convergence encountered with interpolation methods.
Finally, We conclude our work in Section 6.

6 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

2 Notations and Preliminaries

Let Z denote the ring of integers and Q denote the field of rational numbers.
We use lowercase bold letters (e.g., v) for vectors and uppercase bold letters
(e.g., A) for matrices. The notation

(
n
m

)
represents the number of ways to select

m items out of n items, which is defined as n!
m!(n−m)! . If m > n, we set

(
n
m

)
= 0.

2.1 Polynomials

Let x1, . . . , xk be k variables. Suppose f is a polynomial in Z[x1, . . . , xk],
then the polynomial f can be expressed as

f(x1, . . . , xk) =
∑

i1,...,ik∈N
αi1,...,ik · xi11 · . . . · xikk .

Here, xi11 · . . . · xikk is termed as a monomial of f if its coefficient αi1,...,ik ̸= 0.
The set of all monomials of f is denoted as supp{f}. The total degree deg(f) of
f is defined as

deg(f) := max
αi1,...,ik

̸=0
(i1 + · · ·+ ik).

The following definitions serve to simplify the notations related to multivari-
ate polynomials.

Definition 1. LetM be a positive integer. For a set of polynomials F ⊂ Z[x1, . . . , xk],
we define the set ZM (F) of its roots as

ZM (F) :=
{
r = (r1, . . . , rk) ∈ Zk | ∀f ∈ F : f(r) ≡ 0 mod M

}
.

Similarly, for parameters M , X1, . . . , Xk ∈ N, we define the corresponding
set of its small modular roots as

ZM,X1,...,Xk
(F) :=

{
r = (r1, . . . , rk) ∈ Zk | ∀f ∈ F : f(r) ≡ 0 mod M, ∀j : |rj | ≤ Xj

}
.

Definition 2 (Monomial Order). Let M be a set of monomials. A monomial
order on M is a total order ≺ that satisfies the following two properties:

1. For every λ ∈ M, it holds that 1 ≺ λ.
2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ ∈ M.

For example, suppose x1 ≺ x2 ≺ x3, then x
2
2 ≺ x3 and x1 ≺ x2 ≺ x22 when

using the lexicographic monomial order ≺lex. Because lexicographic monomial
order (≺lex) first compares exponents of x1 in the monomials, and in case of
equality compares exponents of x2, and so forth.

If ≺ is a monomial order, the leading monomial of a polynomial f is the
unique monomial λ of f that satisfies λ′ ≺ λ for every monomial λ′ of f . We
denote the leading monomial, and the leading coefficient of the leading monomial
of f by LM(f) and LC(f) respectively. The leading term of f is denoted LT(f)
and satisfies

LT(f) = LC(f)× LM(f).

If LC(f) = 1, then we say that f is a monic polynomial.

Newton Polytope 7

Definition 3 (Ideal). Let F = {f1, . . . , fn} be a set of polynomials in Z[x1, . . . , xk].
The ideal I generated by F is the set of all linear polynomial combinations of
f1, . . . , fn, that is

I = {a1f1 + . . .+ anfn : ai ∈ Z[x1, . . . , xk]} .

If I is ideal, then the set of all leading terms of the elements of I is denoted
LT(I) and satisfies LT(I) = {LT(f)|f ∈ I}.

Definition 4. Fix a monomial order, and let I be an ideal. A finite subset G =
{g1, . . . , gr} ⊂ I is a Gröbner basis for I if

LT(I) = {LT(g1), . . . ,LT(gr)} .

Before we introduce the Hilbert Function of an ideal I, we need the following
definition:

Definition 5. Suppose I is an ideal in Z[x1, x2, . . . , xk] and then we define
Z[x1, x2, . . . , xk]⩽s to be the set of polynomials in Z[x1, x2, . . . , xk] of total degree
⩽ s, and I⩽s is the set of polynomials in I of total degree ⩽ s. That is,

Z[x1, x2, . . . , xk]⩽s = {f ∈ Z[x1, x2, . . . , xk] : deg(f) ⩽ s},
I⩽s = I ∩ Z[x1, x2, . . . , xk]⩽s = {f ∈ I : deg(f) ⩽ s}.

Both Z[x1, x2, . . . , xk]⩽s and I⩽s are vector spaces over Z, with I⩽s exactly
being a subspace of Z[x1, x2, . . . , xk]⩽s. Now, we are prepared to introduce the
Hilbert function.

Definition 6 (Hilbert function). Let I be an ideal in Z[x1, x2, . . . , xk], and
let I⩽s be the space of elements of I of degree at most s. The (affine) Hilbert
function HF (s) of I is defined to be the dimension of Z[x1, x2, . . . , xk]⩽s/I⩽s as
a vector space over Z. That is,

HFI(s) = dim(Z[x1, x2, . . . , xk]⩽s/I⩽s).

There is a useful lemma for Hilbert function, which is called Hilbert’s theorem
(see [[25], Theorem 6.21]):

Lemma 1. Let I ⊂ Z[x1, x2, . . . , xk] be a proper ideal. Then there exists a poly-
nomial h(z) ∈ Q[z] such that deg(h) = dim(I), for sufficiently large m,

HFI(m) = h(m).

The polynomial h(z) is often referred to as the Hilbert polynomial of I.

Remark 1. The concepts of Hilbert functions and Hilbert polynomials of graded
algebras are crucial in commutative algebra. For more detailed results, please
refer to [29].

Finally, there is one more result about the sum of the p-th powers of the first
m positive integers.

8 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Lemma 2 (Faulhaber’s formula,[15]). The sum of the p-th powers of the
first m positive integers

m∑
k=1

kp = 1p + 2p + 3p + · · ·+mp, (1)

is a polynomial in m with leading term mp+1

p+1 .

2.2 Lattices, SVP, and LLL

Let m ≥ 2 be an integer. A lattice is a discrete additive subgroup of Rm. A
more explicit definition is presented as follows.

Definition 7 (Lattice). Let v1,v2, . . . ,vn ∈ Rm be n linearly independent
vectors with n ≤ m. The lattice L spanned by {v1,v2, . . . ,vn} is the set of all
integer linear combinations of {v1,v2, . . . ,vn}, i.e.,

L =

{
v ∈ Rm | v =

n∑
i=1

aivi, ai ∈ Z

}
.

The integer n denotes the rank of the lattice L, while m represents its dimen-
sion. The lattice L is said to be full rank if n = m. We use the matrix B ∈ Rn×m,
where each vector vi contributes a row to B. The determinant of L is defined
as det(L) =

√
det (BBt), where Bt is the transpose of B. If L is full rank, this

reduces to det(L) = |det (B)|.

Definition 8 (Fundamental domain). For a lattice basis v1,v2, . . . ,vn ∈
Rm, the space generated by all real number combinations in [0, 1)n is called the
fundamental domain of the lattice L. It is denoted as

P(L) =

{
n∑

i=1

aivi|0 ≤ ai < 1

}
.

The volume of the fundamental domain P is equal to the determinant of the
lattice, that is vol(P) = det(L).

In lattice theory, numerous hard problems are used to secure several cryp-
tosystems. The Shortest Vector Problem (SVP) is one of them.

Definition 9 (Shortest Vector Problem (SVP)). Given a lattice L, the
Shortest Vector Problem (SVP) asks to find a non-zero lattice vector v ∈ L of
minimum Euclidean norm, i.e., find v ∈ L\{0} such that ∥v∥ ≤ ∥w∥ for all
non-zero w ∈ L.

Although SVP is NP-hard under randomized reductions [1], there exist al-
gorithms that can find a relatively short vector, instead of the exactly short-
est vector, in polynomial time, such as the famous LLL algorithm proposed by
Lenstra, Lenstra, and Lovász [18] in 1982. The following result is useful for our
analysis [21].

Newton Polytope 9

Theorem 1 (LLL). Let L be a lattice spanned by a basis (u1, . . . ,uω). In poly-
nomial time, the LLL algorithm finds a new basis (v1, . . . ,vω) of L satisfying

∥v1∥ ≤ . . . ≤ ∥vi∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for i = 1, . . . , ω.

The following result [14] is useful to find the small solutions of a multivariate
modular polynomial equation, where, for h(x1, . . . , xk) =

∑
ai1,...,ikx

i1
1 · · ·xikk ,

the Euclidean norm of h(X1x1, . . . , Xkxk) is

∥h(X1x1, . . . , Xkxk)∥ =
√∑

a2i1,...,ikX
2i1
1 · · ·X2ik

k .

Theorem 2 (Howgrave-Graham). Let h(x1, . . . , xk) be a polynomial with
at most ω monomials, and let m,M,X1, . . . , Xk ∈ N. Suppose h has a root
r = (r1, . . . , rk) modulo Mm, satisfying |ri| ≤ Xi for every i = 1, . . . , k. If

∥h(X1x1, . . . , Xkxk)∥ <
Mm

√
ω
,

then h(r1, . . . , rk) = 0 holds over the integers.

2.3 Growth of sumsets

For any given finite subset A of an abelian group G, suppose 0 ∈ A, we
consider the sumset mA := {a1 + a2 + · · · + am : ai ∈ A}. Khovanskii’s 1992
theorem [17] states that if A ⊂ Zk is finite, then there exists p(x) ∈ Q[x] of
degree k and NKh(A) such that if m ≥ NKh(A), then |mA| = p(m). Moreover, if
the difference set A−A generates all of Zk additively, then deg(p) = k and the
leading coefficient of p is the volume of the convex hull of A, which we define as
H(A).

To make things more straightforward, we introduce the Newton polytope.

Definition 10 (Set of points). Let G = ZK . For a polynomial f , consider
A(f) as the set of points corresponding to the monomials of f as follows:

A(f) = {(i1, . . . , ik)|xi11 · . . . · xikk is a monomial of f}.

Definition 11 (Newton polytope). Let f be a polynomial in Z[x1, . . . , xk].
The Newton polytope N(f) of f is defined as the convex hull of A(f)

Obviously, the Newton polytope has the following property:

Property 1. For all polynomials f1, f2 in Z[x1, . . . , xk], it holds that

N(f1 · f2) = N(f1) +N(f2).

Definition 12 (Saturated Newton polytope). We say that a polynomial f
has Saturated Newton Polytope if every integer point of the convex hull of its
exponent vectors corresponds to a monomial of f .

10 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

For example, when supp{f} = {x21, x1, x2, 1},A(f) is {(0, 0), (1, 0), (2, 0), (0, 1)},
corresponding to {1, x, x2, y} and the Newton Polytope of f is a triangle with
{(0, 0), (2, 0), (0, 1)}. Then |mA(f)| corresponds to supp{fm}. For simplicity, we
write A(f) as A. So Khovanskii’s 1992 theorem [17] can be stated as follows:

Lemma 3 (Khovanskii, [17]). There exists a value Nkh such that if m > Nkh,
then there exists a polynomial p(x) ∈ Q[x] of degree k such that |

⋃m
j=0 supp{f j}| =

p(m).

Khovanskii proved this by constructing a finitely generated graded moduleM
over the polynomial ring C[t1, . . . , ts], where the cardinality of set A is denoted
by s. This module possesses the characteristic that its homogeneous component
Mm forms a vector space over C with precisely supp{fm} dimensions for all
m ≥ 1. Therefore, the dimension of Mm over C is exactly the Hilbert Function.
According to Hilbert’s theorem, the dimension of Mm over C is a polynomial in
m for sufficiently large m, thereby yielding the desired result.

Suppose A ⊂ Zk is full rank, which means there exist v1, . . . ,vk that are lin-
early independent. We denote the linear space spanned by A over Z as span(A),
that is

span(A) = {a1v1 + . . .+ akvk|a1, . . . , ak ∈ Z}.

Moreover, if span(A) = Zk additively, then deg(p) = k and the leading coefficient
of p is the volume of N(f).

When span(A) ̸= Zk, we use the following definition to calculate the leading
coefficient of p:

Definition 13. For a polynomial f , let A(f) be the set of points corresponding
to the monomials of f , and span(A) be the corresponding lattice over Z. Then
we denote the fundamental domain of span(A) as P(f).

See Fig 2 as an example, suppose f = a1x1 + a2x2 +C. We have supp{f} =
{x1, x2, 1}. NowA(f) = {(1, 0), (0, 1), (0, 0)} and span(A) = {(1, 0)z1+(0, 1)z2|z1, z2 ∈
Z} is a lattice over Z. Then P(f) is a unit square.

(0, 0)

(0, 1)

(1, 0)

v2

v1(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fig. 2: A(f) and P(f): we can see that A(f) is a triangle and P(f) is a unit
square.

Therefore, we can rewrite Corollary 2 in [17] as follows:

Newton Polytope 11

Lemma 4. There exists a value Nkh such that if m > Nkh, then there exists a
polynomial p(x) ∈ Q[x] of degree k such that |

⋃m
j=0 supp{f j}| = p(m) and the

leading coefficient of p is the volume of V (N(f))
V (P(f)) .

Proof. The idea of the proof is as follows: since the points in the fundamental
domain are unreachable, we consider Zk mod P(f). In this case, it is equivalent
to the situation where span(A) = Zk, and thus the proof is completed.

Remark 2. If f has a constant term and all coefficients are positive, i.e., 0 belongs
to A(f), then it holds that:

⋃m
j=0 supp{f j} = supp{fm}.

Regarding the size of Nkh, in 2023, Granville et al. [11] provided the first
effective upper bounds for this threshold for arbitrary A. For any such A in
terms of the width of A, w(A) = width(A) := maxa1,a2∈A ∥a1 − a2∥∞. Then the
upper bound proposed by Granville et al. is as follows:

Lemma 5 (Granville et al., [11]). If A ⊂ Zk is finite, then
∣∣∣⋃m

j=0 supp{f j}
∣∣∣ =

p(m) for all m ≥ (2|A| · width(A))(k+4)|A|.

We note that the former upper bound is too large. When |A| = n, it tends
to be at least nn!

2.4 Jochemsz-May Strategy 2 and Automated Coppersmith Method

At Asiacrypt’06, Jochemsz and May [16] described a strategy to find small
modular and integer roots of multivariate polynomials. Recently, Meers and
Nowakowski [23] generalized the idea of the Jochemsz-May strategy and pro-
posed a new method called Automated Coppersmith. Their idea is based on the
notion of (M,≺)-suitability of a set of polynomials.

Definition 14. Let M be a finite set of monomials, and let ≺ be a monomial
order on M. A set of polynomials F is called (M,≺)-suitable if:

1. Every polynomial f ∈ F is defined over M.
2. For every monomial λ ∈ M, there is a unique polynomial f ∈ F with a

leading monomial λ with respect to ≺.

If F is (M,≺)-suitable and λ ∈ M, then we denote by F [λ] the unique
polynomial f ∈ F with the leading monomial λ.

Therefore, it is crucial to understand how to generate an (M,≺)-suitable set
of polynomials F from M. Unlike in all other Coppersmith-type results, simply
construct F using so-called shift-polynomials, i.e., polynomials of the form

fj1,...,jk,i1,...,in := xj11 · . . . · xjkk · f i11 · . . . · f inn ·Mm−(i1+...+in), (2)

2 Because the Jochemsz-May strategy can be viewed as Automated Coppersmith’s
method when n = 1, we will only provide a detailed introduction to the latter.

12 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

for some appropriately chosen integers j1, . . . , jk, i1, . . . , in ∈ N. For a monomial
λ ∈ M, Meers and Nowakowski define the polynomials of the form

f[λ,i1,...,in] :=
λ

LM(f1)i1 · . . . · LM(fn)in
· f i11 · . . . · f inn ·Mm−(i1+...+in), (3)

and provide the following algorithm in [23]:

Algorithm 1: Constructing an (M,≺)-suitable set F
Input: Set of monomialsM, monomial order ≺ onM, monic polynomials

f1, . . . , fn, and integer m ∈ N
Output: (M,≺)-suitable set of shift-polynomials F , satisfying

ZM,X1,...,Xk (f1, . . . , fn) ⊆ ZMm,X1,...,Xk (F), and minimizing∑
λ∈M |LC(F [λ])|

1 F ← ∅;
2 for λ ∈M do
3 Enumerate all shift-polynomials f[λ,i1,...,in] as in Equation (3) such that

LM(fi1) · . . . · LM(fin) divides λ and f[λ,i1,...,in] is defined overM;
4 Among all such f[λ,i1,...,in], pick one that maximizes i1 + . . .+ in and

include it in F ;
5 end
6 return F ;

Meers and Nowakowski also provide a way to choose monomials set M.
Denote mi = i · n. Let f1, . . . , fn ∈ Z[x1, . . . , xk]. For i ∈ N, define

Mmi
:=

⋃
0≤j1,...,jn≤i

supp{f j11 · . . . · f jnn }.

This is a breakthrough idea, but it introduces a new heuristic. Suppose we
want to find the small modular roots as ZM,X1,...,Xk

(f1, . . . , fn) with an (M,≺)-
suitable set of polynomials F ⊆ ZMm [x1, . . . , xk]. We need the following condi-
tion before applying the LLL algorithm:

det(L) =
∏
λ∈M

λ(X1, . . . , Xk) ·M
∑

λ∈M |LC(F [λ])| ≤M (m−k)|M|, (4)

When i is sufficiently large, the termsM (m−k)|Mi| and
∏

λ∈Mi
λ(X1, . . . , Xk)

in Equation (4) grow as MpM(mi), X
p1(mi)
1 · . . . · Xpk(mi)

k , where pM, p1, . . . , pk
are polynomials of degree k + 1. Therefore, we need

∏
λ∈Mi

|LC(Fi[λ])| to be

writable as MpF (mi) when i is sufficiently large, where pF is also a polynomial
of degree k + 1. Although it often holds true in experiments, it is challenging
to prove that the set F obtained from Algorithm 1 satisfies this property for
arbitrary f1, . . . , fn. Hence, the following heuristic is used in Algorithm 2, and
we call it the Heuristic in Automated Coppersmith in the sequel.

Newton Polytope 13

Heuristic 1. Let f1, . . . , fn ∈ Z[x1, . . . , xk], let ≺ be a monomial order on
x1, . . . , xk. Define an increasing sequence M1 ⊂ M2 ⊂ M3 ⊂ . . . of sets of
monomials and mi := i · n. Then there exists a polynomial pF (m) of degree
k + 1, such that for any set Fi, that is obtained from Algorithm 1 on input
(Mi,≺, (f1, . . . , fn),mi), it holds that∏

λ∈Mi

|LC(Fi[λ])| =MpF (mi).

After constructing the lattice L and applying the LLL algorithm, Copper-
smith’s method needs to assume the following assumption.

Assumption 1. The polynomials obtained from the LLL-reduced basis in Cop-
persmith’s method generate an ideal of a zero-dimensional variety.

Assumption 1 is often used in connection with Coppersmith’s method in
the multivariate scenario [3,19,21,28,31], the heuristic holds for most instances
arising in practice.

Finally, we give a formal description of the Automated Coppersmith Method
by the following algorithm.

Algorithm 2: Coppersmith’s Method

Input: Integers M , m ∈ N, polynomials f1, . . . , fn ∈ Z[x1, . . . , xk], bounds
0 ≤ X1, . . . , Xk, set of monomialsM, monomial order ≺ onM, and a
(M,≺)-suitable set of polynomials F ⊆ ZMm [x1, . . . , xk] satisfying
Equation (4).

Output: All roots r ∈ ZM,X1,...,Xk (f1, . . . , fn).
1 Construct an |M| × |M| basis matrix B, whose columns are the coefficient

vectors of the polynomials F [λ](X1x1, . . . , Xkxk), where λ ∈M;
2 LLL-reduce B;
3 Interpret the first k columns of the resulting matrix as the coefficient vectors

of polynomials hi(X1x1, . . . , Xkxk);

4 return all r ∈ Zk(h1, . . . , hk) ∩ ZM,X1,...,Xk (f1, . . . , fn).

3 Algorithms related to Newton Polytope

3.1 Algorithm for quickly calculating LC(pM)

Next, we will associate the leading coefficient of pM and pj with the volume
of the convex hull by analyzing the Hilbert Function of some graded algebra.
Therefore, we only need to calculate the volume of the convex hull to obtain
the desired value, which is a very fast operation. In [23], since m needs to be
sufficiently large to ensure that pM, pj , pF are polynomials about m, it is nec-
essary to calculate the values of pM, pj , pF when m is relatively large, and then

14 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

calculate the results of pM, pj , pF using Lagrange interpolation based on these
values. When m is relatively large, the computation of the values of pM and pj
is time-consuming, so our method avoids this operation, which is very useful.

When we consider the case n = 1, which means considering that m is suffi-
ciently large, supp{fm} = pM(m). Recall from Lemma 4 that we know that the
leading coefficient of pM is the volume of the convex hull of A divided by the

volume of fundamental domain of L(f), that is LC(pM) = V (N(f))
V (P(f)) = V (N(f))

det(L(f)) .

For example, when we consider a modular polynomial equation f ≡ 0 (mod M)
with supp{f} = {x1, x2, 1}, we use supp{fm} as the dimension of L. In Copper-

smith’s method, we usually compute
∑m

i1=0

∑m−i1
i2=0 1 ≈ m2

2 . For Automated Cop-
persmith method, we have to choose a large value m, then calculate |supp{fm}|
and use Lagrange interpolation.

However, with our new method, we have an easier way to compute it. What
we need is just LC(pM), so we do not need the other coefficients of pM.

From Fig 2, we have N(f) is a triangle of {(0, 0), (0, 1), (1, 0)} and P(f) is a
unit square. Then we can compute LC(pM) as follows:

LC(pM) =
V (N(f))

V (P(f))
=

1

2
.

When we select a polynomial f which is slightly more complex, the advantage
of our method is more obvious because it does not require finding fm, which is
time-consuming.

Next, when considering n > 1 and the corresponding situations for f1, . . . , fn,
we consider two generalizations. The first one is proposed in Automated Cop-
persmith, using supp{f i11 · . . . ·f inn |i1, . . . , in ≤ m

n }. The second one is introduced

in [9] using supp{f i11 · . . . ·f inn |i1+ . . .+in ≤ m}. It performs better computations
for linear modular equations.

For the first generalization, we have the following result.

Theorem 3. There exists a polynomial f such that∣∣∣supp{f i11 · . . . · f inn | 0 ≤ i1, . . . , in ≤ m

n
}
∣∣∣ = |supp{f m

n }|.

Moreover, when m is sufficiently large, there exists a polynomial pM with degree
k + 1 such that

m|supp{f i11 · . . . · f inn | 0 ≤ i1, . . . , in ≤ m

n
}| = m|supp{fm}| = pM(m),

where the leading coefficient of pM is V (N(f))
nkV (P(f))

Proof. Consider f = f1·. . .·fn. DefineM(1)
m = supp{f i11 ·. . .·f inn | 0 ≤ i1, . . . , in ≤

m
n }, we have

M(1)
m = supp{f

m
n
1 · . . . · f

m
n
n } = supp{f m

n }.

This way, we reduce it to the case of n = 1. Hence, the leading coefficient of pM
is V (N(f))

nkV (P(f))
.

Newton Polytope 15

Remark 3. This can also be seen as a special case of Theorem 1 in [27] with
B = 0, h1 = ... = hk.

By Lemma 4, we can quickly compute the leading coefficient of the corre-
sponding pM by computing the volume of the convex hull of f . We provide the
following algorithm for the corresponding calculation process.

Algorithm 3: Calculate LC(pM)

Input: Set of monic polynomials F = {f1, . . . , fn}
Output: LC(pM), satisfying Theorem 3

1 Define N(f) = ∅;
2 for j ∈ 1, . . . , n do
3 Compute N(fj);
4 N(f)← N(f) +N(fj);

5 end
6 Compute V (N(f)) and V (P(N(f)));

7 return V (N(f))

nkV (P(f))
.

Next, for the second case, we have the following result.

Theorem 4. There exists a polynomial f such that∣∣supp{f i11 · . . . · f inn | 0 ≤ i1 + . . .+ in ≤ m}
∣∣ = |supp{fm}|.

Moreover, when m is sufficiently large, there exists a polynomial pM with degree
k + 1 such that

m|supp{f i11 · . . . · f inn | 0 ≤ i1 + . . .+ in ≤ m}| = m|supp{fm}| = pM(m).

The leading coefficient of pM is V (N(f))
V (P(f)) .

Proof. Consider f = f1 + . . . + fn. Define M(2)
m = supp{f i11 · . . . · f inn | 0 ≤

i1 + . . .+ in ≤ m}. We have

M(2)
m = supp{(f1 + . . .+ fn)

m} = supp{fm}.

This way, we also reduce it to the case of n = 1. Hence, the leading coefficent of

pM is V (N(f))
V (P(f)) .

Similarly, we can provide an upper bound for m, but we can still devise an
algorithm to directly compute the leading coefficient of the corresponding pM.

16 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Algorithm 4: Calculate LC(pM)

Input: Set of monic polynomials F = {f1, . . . , fn}
Output: LC(pM), satisfying Theorem 3

1 Define f = 0 so N(f) = {0};
2 for j ∈ 1, . . . , n do
3 f ← f + fj ;
4 end
5 Compute V (N(f)) and V (P(N(f)));

6 return V (N(f))
V (P(f))

.

3.2 An Algorithm to efficiently compute LC(pj)

Through the analysis above, for p1, . . . , pk when n > 1, we can also reduce
it to the case when n = 1. Before giving an algorithm to compute the leading
coefficient of pj , we introduce a new definition called High dimension duplicate
in Definition 15.

The idea is to transform pj ofMm into a number of elements in a higher New-
ton polytope. For example, we choose f with supp{f} = {x1, x2, 1}. If we want

to directly calculate px, we need to calculate
∑m

i1=0

∑m−i1
i2=0 i1 ≈ m3

6 . However,
we can use the following method to compute LC(pj). Now we think about the
convex hull of {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)} instead of {(0, 0), (0, 1), (1, 0)}.
To introduce the above idea more formally, we introduce the following definition.

A tetrahedron of {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)},

Volume of tetrahedron
1

6
· 1 · 1 · 1 =

1

6
,

V (P(f)) = 1,

LC(p1) =
1

6
.

Fig. 3: supp{f} = {x1, x2, 1}

Definition 15 (High dimension duplicate). Suppose λ is a monomial in
Z[x1, . . . , xk], we use the following map from Z[x1, . . . , xk] to Zk+h to generate
a h-dim duplicate over the j-th coordinate:

Hh,j : f −→ Zk+h

xi11 · . . . · xikk 7−→ (i1, . . . , ik)⊕ {0, ij}h

Here ⊕ means direct sum, for example, (1, 1)⊕ (0, 0) = (1, 1, 0, 0).

Newton Polytope 17

Definition 16 (Full High dimension duplicate). Suppose λ is a monomial
in Z[x1, . . . , xk], we use the following map from Z[x1, . . . , xk] to Zk+h to generate
a h-full dim duplicate over the j-th coordinate:

Hh,j : f −→ Zk+h

xi11 · . . . · xikk 7−→ (i1, . . . , ik)⊕ {0, 1, . . . , ij}h

We choose f with supp{f} = {x21, x2, 1} as an example.

– A(f) = {(2, 0), (0, 1), (0, 0)};
– N(f) = {(2, 0), (1, 0), (0, 1), (0, 0)};
– H0,j(f) = H0,j(f) = A(f)
– H1,1(f) = {(2, 0, 0), (2, 0, 2), (0, 1, 0), (0, 0, 0)};
– H1,1(f) = {(2, 0, 0), (2, 0, 1), (2, 0, 2), (0, 1, 0), (0, 0, 0)};
– H1,2(f) = {(2, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 0)};
– H1,1(f) = {(2, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 0)}.

There are some useful properties related to Definition 15 and Definition 16. The
first property gives a relation between Definition 15 and Definition 16.

Lemma 6. For f ∈ Z[x1, . . . , xk], denote the 1-dimension duplicate of f and
the full 1-dimension duplicate of f as H1,j(f) and, H1,j(f) respectively. Then,
we have

H(H1,j(f)) = H(H1,j(f)), (5)

where H(x) is the convex hull of x.

The proof of this lemma is provided in Appendix A. The second property is
related to span(A), span(H1,j(f)), or span(H1,j(f)).

Lemma 7. For f ∈ Z[x1, . . . , xk], we have

[Zk+1 : H(H1,j(f))] = [Zk : A(f)].

Moreover, if span(A) = Zk, then

span(H1,j(f)) = span(H1,j(f)) = Zk+1.

The proof of this lemma is provided in Appendix B. Another useful property
is as follows.

Lemma 8. Let f ∈ Z[x1, . . . , xk]. Then

H1,j(f
m) = mH1,j(f). (6)

The proof of this lemma is provided in Appendix C.
We also have the following result.

Theorem 5. Consider f ∈ Z[x1, . . . , xk]. Suppose Nj is the convex hull of 1-
dim duplicate of f over the j-th coordinate, that is Nj = H(H1,j(f)), then

LC(pj) =
V (Nj)

V (P(f)) .

18 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Proof. Define the j-th coordinate projection mapping as:

ψj : Zk −→ Z
(i1, . . . , ik) 7−→ ij

We want to prove that there exists polynomial pj , such that
∑

λ∈mA ψj(λ) =
pj(M), when m is large enough.

From the definition of H1,j , we have∑
λ∈H1,j(fm)

1 =
∑

λ∈mA

(ψj(λ) + 1) =
∑

λ∈mA

ψj(λ) +
∑

λ∈mA

1.

So we have ∑
λ∈mA

ψj(λ) =
∑

λ∈H1,j(fm)

1−
∑

λ∈mA

1. (7)

Then we analysis the growth of
∑

λ∈H1,j(fm) 1. From Lemma 8, we have∑
λ∈H1,j(fm)

1 =
∑

λ∈mH1,j(f)

1.

And we know that there exists a polynomial p′j(m), when m is large enough,
such that

∑
λ∈mH1,j(f)

1 = p′j(m), that is∑
λ∈H1,j(fm)

1 =
∑

λ∈mH1,j(f)

1 = p′j(m),

where the leading coefficient of p′j is the volume of the convex hull of H1,j(f)

divided by the volume of the fundamental domain generated by H1,j(f), that is

LC(p′j) =
V (H(H1,j(f)))

V (P(H1,j(f)))
,

and the degree of p′j is k + 1.

From Lemma 6, we have H(H1,j(f)) = H(H1,j(f)). Then

LC(p′j) =
V (H(H1,j(f)))

V (P(H1,j(f)))
=

V (Nj)

V (P(H1,j(f)))
.

Besides, using Lemma 7, we have

V (P(H1,j(f))) = V (P(f)).

Therefore, we have

LC(p′j) =
V (Nj)

V (P(H1,j(f)))
=

V (Nj)

V (P(f))
.

Newton Polytope 19

When m is large enough, there exists a polynomial pM with degree k, such that∑
λ∈mA

1 = pM(m).

Therefore, using Equation (7), there exists a polynomial pj with degree k + 1,
such that ∑

λ∈mA

ψj(λ) = pj(m),

and the leading coefficient of pj is
V (Nj)

V (P(f)) .

We provide the following Algorithm 5 for the corresponding calculation.

Algorithm 5: Calculate LC(pj)

Input: Set of monic polynomials F = {f1, . . . , fn}
Output: LC(pj), satisfying Theorem 5

1 LC(pj) = 0;

2 if Mm is chosen asM(1)
m in Theorem 3 then

3 Compute f =
∏n

j=1 fj ;

4 Compute the convex hull of H1,j(f) as Nj in Definition 15;
5 Compute V (Nj) and V (P(f));
6 LC(pj)← V (Nj)

nk+1V (P(f))
;

7 else
8 Compute f =

∑n
j=1 fj ;

9 ChooseM(2)
m in Theorem 4 asMm;

10 Compute the convex hull of H1,j(f) as Nj in Definition 15;
11 Compute V (Nj) and V (P(f));
12 LC(pj)← V (Nj)

V (P(f))
;

13 end
14 return LC(pj).

Remark 4. Here we require A to be full rank. Otherwise, we can use an isometric
projection mapping to achieve this, for example, f with supp{f} = {x1x2, 1}.
Although it corresponds to a convex hull of Z2, it is not actually two-dimensional.
We consider another polynomial g with supp{g} = {x1, 1} as a full rank version
of f .

Remark 5. Obviously, computing LC(pM),LC(pj) when m is large enough is as
hard as computing V (N(f)), V (H(H1,j(f))).

Remark 6. There exists a O(n4) estimate algorithm to compute V (N(f)) if f
has n monomials with error ϵ.

20 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Remark 7. Using the same idea, we can prove that there exists a polynomial p
with degree k + h such that ∑

λ∈mA

ψj(λ)
h = p(m), (8)

when m is large enough. We can use the same idea to calculate LC(p(m)), which
is the volume of Hh,j(f). We think it is an interesting problem whether the
threshold of Equation (8) changes when h changes.

Remark 8. Observe that Automated Coppersmith requires more than one equa-
tion. Therefore, we can generalize Lemma 5 and provide similar results. However,
since Lagrange interpolation method are no longer considered at this time, we
will not elaborate on the bound of threshold Nkh further.

4 Algorithm for efficient calculation of LC(pF)

When we use Coppersmith’s method, we require that each coefficient of fm is
used to construct the lattice. This implies that each monomial of fm must be in
the lattice. However, we know through the theory of sumset that when m is large
enough, A(fm) tends to N(fm). This means that the monomial corresponding
to each point of the convex hull can be obtained.

In [21], regarding f being a univariate polynomial, May selected the poly-
nomials xjf iMm−i and xfm, x2fm, ..., xtfm. If we only look at the first part,
we actually need to find the corresponding optimal polynomial for each set of
monomials {xj | 0 ≤ j ≤ δm}, and this is the monomial set corresponding to
supp{fm}. The latter part is looking for whether xtLM(fm) will be smaller than
Mm, which is certainly possible. This is called Extended Strategy in [16].

However, for these shift polynomials, we can use another method to replace
them, that is, choose m− (i1 + . . .+ in) as max{t− (i1 + . . .+ in), 0} with the
optimal parameter t in Equation (3), which can also achieve the bound of the
shift polynomial. It is worth to be noticed that the dimension in max{t− (i1 +
. . .+ in), 0} is smaller than the one using the Extended Strategy. The detail can
be found in Appendix D.

In the next part, we mainly perform two tasks. The first one is to use the
fact that when m is large enough, A(fm) tends to N(fm). This enables us to
prove Heuristic 2 (n = 1) in [23]. This also enables us to solve the open problem
of this paper. The second part is to introduce a new variable t to achieve the
effect of replacing part of the Extended Strategy in [16]. We propose our result
in Theorem 7 and Corollart 2, which shows that introducing t is effective when
the modular is an unknown modular.

4.1 Proof of Heuristic 2 of Automated Coppersmith

Following the growth of mA, we know that the set of the monomials tends to
mN(f). This implies that we can assume that A is a Saturated Newton Polytope,
as in the following definition, showing the partition of mA.

Newton Polytope 21

Definition 17 (Partition of mA). Suppose A(f) ⊂ Zk is finite and saturated,
LM(f) is related to α ∈ A, then we define Sℓ = ℓA + (m − ℓ)α. We define
Tℓ = Sℓ\Sℓ−1 for ℓ = 1, . . . ,m and T0 = mα. Therefore, we can write mA as
follows:

mA = T0 ∪ T1 ∪ . . . ∪ Tm.
We call {Tℓ}0≤ℓ≤m as a partition of mA.

Using m = 2 as an example, we have

T0 = 2α,

T1 = (A+ α)\2α,
T2 = 2A\(A+ α).

Then the following holds: 2A = T0 ∪ T1 ∪ T2.
The following result is directly connected to the former definition, which is

useful to understand Algorithm 1.

Corollary 1. Therefore, we can estimate pF as follows, when m is large enough:

pF (m) =

m∑
ℓ=0

(m− ℓ)|Tm−ℓ|

The following theorem characterizes pF very well.

Theorem 6. If m is sufficiently large, then pF is a polynomial of m with degree

k + 1, and its leading coefficient is kV (A(f))
(k+1)V (P(f)) .

Proof. Suppose {Tℓ}0≤ℓ≤m is a partition of mA denoted in Definition 17 and
LM(f) is related to α ∈ A. Then we have mA =

⋃m
ℓ=0 Tℓ.

For finite A ⊂ Nk, we have V (mA(f)) = mkV (A(f)). Then

|Tℓ| = (ℓk − (ℓ− 1)k)
V (A(f))

V (P(f))
= (kℓk−1 +O(ℓk−2))

V (A(f))

V (P(f))
. (9)

Using Corollary 1 and Equation (9), we can estimate pF as follows

pF =

m∑
ℓ=0

(m− ℓ)|Tm−ℓ| =
m∑
ℓ=0

ℓ|Tℓ|

=

m∑
ℓ=0

ℓ(ℓk − (ℓ− 1)k)
V (A(f))

V (P(f))

=
V (A(f))

V (P(f))

m∑
ℓ=0

ℓ(ℓk − (ℓ− 1)k)

=
V (A(f))

V (P(f))

m∑
ℓ=0

ℓ(ℓk −
k∑

i=0

(−1)i
(
k

i

)
ℓk−i)

=
V (A(f))

V (P(f))

m∑
ℓ=0

(
k−1∑
i=0

(−1)i
(

k

i+ 1

)
ℓk−i

)
.

22 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

From Lemma 2, we know that, for each i0, the sum

m∑
ℓ=0

(−1)i0
(

k

i0 + 1

)
ℓk−i0

is a polynomial of m with degree k+1− i0. Therefore, when m is large enough,
pF is a polynomial of degree k + 1 in m and the leading coefficient of pF is

kV (A(f))
(k+1)V (P(f)) .

4.2 Benefit of introducing the parameter t

We introduce a parameter t to partially overcome the Extended Strategy of
Jochemsz and May [16] without altering the dimension of the lattice L.

We replace m− (i1 + . . .+ ik) by max{t− (i1 + . . .+ ik), 0} with the optimal
parameter t in Equation (3). Sometimes, we have f(x1, . . . , xk) ≡ 0 mod M̂
instead of f(x1, . . . , xk) ≡ 0 mod M , where M̂ is an unknown divisor of M . We
need to make full use of this condition. For an unknown divisor, we will show
that the extremum point of t is not t

m = 1, which means that introduction t is
beneficial. Suppose the known modular M is a multiple of the unknown divisor
M̂ . In our scenario, we want to solve ZM̂,X1,...,Xk

(f1, . . . , fn). To be more precise,
it takes the following form

f[λ,ℓ] :=
λ

LM(f)ℓ
· f ℓ ·Mmax{t−ℓ,0}. (10)

Now we have the following results.

Theorem 7. If m is sufficiently large, then there exists a polynomial pF (t,m)
with total degree k + 1 such that

∑
λ∈Mm

max{t − ℓ, 0} = pF (t,m), and the
leading term of pF is

V (A(f))

V (P(f))

(
mkt− mk+1 − (m− t)k+1

k + 1

)
.

Proof. We only need to sum up to t instead of m. We adopt a similar approach
to the proof of Theorem 6, thus only considering the leading term. ”≈” indicates
that only the leading term is considered. For example, 2m10 +O(m9) ≈ 2m10.

For a finite A ⊂ Nk, we have V (mA(f)) = mkV (A(f)). By Equation (9) it
holds that

|Tℓ| =
(
ℓk − (ℓ− 1)k)V (A(f)

)
≈ kℓk−1V (A(f))

V (P(f))
.

Newton Polytope 23

Therefore, we can estimate pF as follows:

pF =

t∑
ℓ=0

(t− ℓ)|Tm−ℓ|

≈
t∑

ℓ=0

(t− ℓ) · k · (m− ℓ)k−1 V (A(f))

V (P(f))

=
V (A(f))

V (P(f))
(I1 − I2),

where I1 =
∑t

ℓ=0(m− ℓ) · k · (m− ℓ)k−1 and I2 =
∑t

ℓ=0(m− t) · k · (m− ℓ)k−1.

First, we calculate I1 =
∑t

ℓ=0(m− ℓ) · k · (m− ℓ)k−1 using Lemma 2 as follows:

I1 = k

t∑
ℓ=0

(m− ℓ)k

= k

m∑
ℓ=0

ℓk − k

m−t∑
ℓ=0

ℓk

≈ k

(
mk+1

k + 1
− (m− t)k+1

k + 1

)
.

Second, we calculate I2 =
∑t

ℓ=0(m− t) ·k · (m− ℓ)k−1 using Lemma 2 as follows:

I2 = (m− t)k

t∑
ℓ=0

(m− ℓ)k−1

= (m− t)k

(
m∑
ℓ=0

ℓk−1 −
m−t∑
ℓ=0

ℓk−1

)

≈ (m− t)k

(
mk

k
− (m− t)k

k

)
.

Therefore, we continue to calculate pF as

pF ≈ V (A(f))

V (P(f))

(
mkt− mk+1 − (m− t)k+1

k + 1

)
.

So the leading term of pF is V (A(f))
V (P(f))

(
mkt− mk+1−(m−t)k+1

k+1

)
.

Moreover, we show that the introduction of t will lead to a better result when
the modulus is an unknown divisor of a known integer.

Corollary 2. For unknown disivor, the extremum point of t is not t
m = 1, which

means the introduction of t is useful.

24 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Proof. Suppose p = Mβ is an unknown divisor of M , now we consider the
following inequality

Xp1

1 · . . . ·Xpk

k ·MpF < pt dim (L).

Only focus on terms that contain t, we have

mkt− mk+1 − (m− t)k+1

k + 1
< βtmk.

Suppose t
m = δ, the above inequality can be rewritten as

(k + 1)δ − (1− (1− δ)k+1)− (k + 1)βδ < 0.

The optimal value for δ is δ0 = 1 − (1 − β)
1
k . Hence, when β ̸= 1, we have

δ0 ̸= 1.

Remark 9. The leading term of pF is the most important part. Considering at
kV (A(f))

(k+1)V (P(f)) in the leading coefficient of pF , choosing a polynomial f whose

Newton Polytope is smaller yields better results.
If we have more than one equation, we must carefully select the polynomials

with different leading monomials. Additionally, a smaller Newton Polytope leads
to better results.

Note our Newton Polytope based Coppersmith’s method isn’t only used to
compute the bound for small roots but used to design the lattice for Copper-
smith’s method.

5 Experiments

Our experiments were performed using Sagemath 10.3 on a MacBook Pro
with an M1 chip, boasting a maximum CPU clock rate of 3.2 GHz. We first
present an example to illustrate the phenomenon of local convergence in Sec-
tion 5.1. Then, we provide details of the example mentioned in the abstract in
Section 5.2. Finally, we provide more examples to validate the efficiency of our
algorithm in Section 5.3.

5.1 Example for Local Convergence

Let’s illustrate the phenomenon of local convergence encountered when using
the interpolation method proposed in [23]. Consider the following polynomial f
with

supp{f} = {x31, x1x2, x1x3, x2, x23x24, x54, 1}.

We compute fm and then track the corresponding pM(m) and pj(m). Here, f
has four variables, i.e., k = 4. According to the results of [17], we know that

Newton Polytope 25

pM(m) and pj(m) should be polynomials in m with degree 5 when m > N∥⟨.
However, according to the result in [11], the upper bound,

Nkh = (2× 7× 5)8×7 ≈ 2343,

is extremely large, making it impractical.
A natural idea is to consider the values of pM and pj at m − 5,m − 4,m −

3,m − 2,m − 1,m when m ≥ 5, and then interpolate to obtain a fifth-degree
polynomial, recording the leading coefficient. The relevant numerical values are
presented in Figure 4. In Figure 4a, we observe that as m increases, the leading
coefficient of pM stabilizes at 25/12. However, this is incorrect. Continuing to
increase m, we eventually find that the leading coefficient of pM stabilizes at 2.
All the information can be found in Figure 4b, where the part to the left of the
gray dashed line corresponds to Figure 4a.

(a) No.1 (b) No.2

Fig. 4: An example for Local Convergence

In practical applications of the interpolation method, one might encounter
issues with results getting stuck in local convergence. Additionally, the utilization
of Nkh as proposed in [11] may lead to overly large computations. However, our
method effectively tackles these challenges.

5.2 A Toy Example

We conducted experiments to demonstrate the significant reduction in com-
putational time achieved by our new method.

For a slightly more complex example:{
f1 with supp{f1} = {x33x24, x22, x1x2, 1}
f2 with supp{f2} = {x54, x23x1, x31, x2, 1}.

We must choose m > 40 if we select Mm as in Theorem 3, which costs more
than 20 minutes! However, if we just compute the volume of Newton Polytope,
the time costs is less than 0.5s!

26 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

The leading coefficient of pM is 583/192,
The leading coefficient of p1 is 431/256,
The leading coefficient of p2 is 317/256,
The leading coefficient of p3 is 769/384,
The leading coefficient of p4 is 2437/768.

Now we see the following figure to see how large m needs to be to satisfy the
interpolation and get the value we want, that is, when the leading coefficient
remains stable.

The leading coefficient of pM is 583/192,
The leading coefficient of p1 is 431/256,
The leading coefficient of p2 is 317/256,
The leading coefficient of p3 is 769/384,
The leading coefficient of p4 is 2437/768.

Seeing the above figure, we must choose m > 40 if we select Mm as in
Theorem 3, that is why it costs about 10 minutes!

5.3 More Experiments

We propose a metric for polynomials. This metric is the ratio of the number of
monomials in f to the number of points in the corresponding saturated Newton
polytope. Intuitively, the smaller this ratio, the larger m needs to be chosen to
approach the Hilbert function, and the more apparent our advantage becomes.
We call this metric the saturation of f , denoted as sat(f). Formally speaking, we
define the saturation of f as follows:

sat(f) =
|supp{f}|

the number of points in A(f)
. (11)

We conducted experiments for different saturations. It is worth noting that this
result also depends on the number of variables involved. We restrict our analysis
to cases with up to four variables. Naturally, as the number of variables increases,
the complexity grows, making our advantage more pronounced.

In Section 3, there are two ways to select the monomial sets: one is to multiply
all the polynomials together (Theorem 3), and the other one is to add them
(Theorem 4). Therefore, we compared these two approaches. For our previously
mentioned toy example in Sec. 5.2, we chose to multiply the polynomials. Now
we record the time needed for the method that adds them together, which is
shown in (Table 1, No. 2). No. 3 represents the toy example mentioned earlier,
facilitating the comparison.

The required values ofm can be found in Fig 5 in Appendix E. Asm increases,
we select new m along with their corresponding values to compute Lagrange

Newton Polytope 27

sat(f) Method for choosingM Time for [23] (s) Time for our method (s)

1 Theorem 3 0.027 0.063
<1 Theorem 4 23.507 0.078
<1 Theorem 3 681.299≈10 minutes 0.271

Table 1: Experimental results for Section 3.

interpolation and record the leading coefficients. Hence, when m is sufficiently
large, the leading coefficient remains constant. It can be observed that when f is
saturated, there is no need to compute fm for large m. Consequently, sometimes
our algorithm may be slower, but it still manages to compute the solution very
quickly, less than one second.

We also conducted experimental simulations for the results in Section 4,
focusing solely on the case where n = 1. Since we characterized the polynomials
constructing the lattice, there is no need to search for the optimal polynomial
for each monomial, unlike in the Automated Coppersmith method. This saved
a significant amount of time.

sat(f) Time for [23] (s) Time for our method (s)

1 10.886 0.223
<1 46.157≈ 1 minute 0.037
<1 2238.237≈ 2 hours 0.069
<0.5 828.326≈ 14 minutes 0.073

Table 2: Experimental results for Section 4.

The required values of m can be found in Fig 6 in Appendix E. The de-
tailed information about the polynomials used in our experiments in Table 3 in
Appendix E. It is worth noting that a higher proportion of randomly selected
polynomials f are not saturated. When f is not saturated, the Automated Cop-
persmith method requires selecting a largem, leading to increased computational
time.

6 Conclusion

In this paper, we introduced a new and powerful mathematical tool called
Growth of Sumsets Theory from Additive Combinatorics. We revisited the Jochemsz-
May strategy as well as the work of Meers and Nowakowski and pointed out
that their bounds can be obtained by calculating the leading coefficient of some
Hilbert function, which is exactly the volume of the corresponding Newton poly-
tope. To this end, we introduced the concept of Sumsets theory and proposed

28 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

a series of related results and algorithms that improve the former methods for
solving modular polynomial equations.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: Symposium on the Theory of Computing (1998)

2. Blömer, J., May, A.: A tool kit for finding small roots of bivariate polynomials
over the integers. In: Cramer, R. (ed.) Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3494, pp. 251–267. Springer (2005). https:
//doi.org/10.1007/11426639_15, https://doi.org/10.1007/11426639_15

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key less than n0.292.
In: EUROCRYPT ’99. Lecture Notes in Computer Science, vol. 1592, pp. 1–11.
Springer (1999). https://doi.org/10.1007/3-540-48910-X_1

4. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Advances in Cryptology—ASIACRYPT 2001: 7th International
Conference on the Theory and Application of Cryptology and Information Security
Gold Coast, Australia, December 9–13, 2001 Proceedings 7. pp. 36–51. Springer
(2001)

5. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Annual International Cryp-
tology Conference. pp. 129–142. Springer (1996)

6. Coppersmith, D.: Finding a small root of a univariate modular equation. In: EURO-
CRYPT ’96. Lecture Notes in Computer Science, vol. 1070, pp. 155–165. Springer
(1996). https://doi.org/10.1007/3-540-68339-9_14

7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997). https://doi.org/10.1007/

s001459900030
8. Curran, M.J., Goldmakher, L.: Khovanskii’s theorem and effective results on sum-

set structure (Dec 2021). https://doi.org/10.48550/arXiv.2009.02140
9. Feng, Y., Nitaj, A., Pan, Y.: Provable Automated Coppersmith for linear equations

and its applications (2024)
10. Granville, A., Shakan, G.: The frobenius postage stamp problem, and beyond (Apr

2020)
11. Granville, A., Shakan, G., Walker, A.: Effective results on the size and structure

of sumsets. Combinatorica 43(6), 1139–1178 (Dec 2023). https://doi.org/10/
gtf3bf

12. Granville, A., Walker, A.: A tight structure theorem for sumsets (Mar 2021)
13. Heninger, N., Ryan, K.: The hidden number problem with small unknown multi-

pliers: Cryptanalyzing MEGA in six queries and other applications. In: Boldyreva,
A., Kolesnikov, V. (eds.) Public-Key Cryptography - PKC 2023 - 26th IACR In-
ternational Conference on Practice and Theory of Public-Key Cryptography, At-
lanta, GA, USA, May 7-10, 2023, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13940, pp. 147–176. Springer (2023). https://doi.org/10.

1007/978-3-031-31368-4_6, https://doi.org/10.1007/978-3-031-31368-4_6
14. Howgrave-Graham, N.: Approximate integer common divisors. In: CaLC 2001.

Lecture Notes in Computer Science, vol. 2146, pp. 51–66. Springer (2001). https:
//doi.org/10.1007/3-540-44670-2_6

https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.48550/arXiv.2009.02140
https://doi.org/10.48550/arXiv.2009.02140
https://doi.org/10/gtf3bf
https://doi.org/10/gtf3bf
https://doi.org/10/gtf3bf
https://doi.org/10/gtf3bf
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6

Newton Polytope 29

15. Jacobi, C.G.J.: De usu legitimo formulae summatoriae maclaurinianae. (1834)

16. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: ASIACRYPT 2006. Lecture
Notes in Computer Science, vol. 4284, pp. 267–282. Springer (2006). https://doi.
org/10.1007/11935230_18

17. Khovanskii, A.G.: Newton polyhedron, Hilbert polynomial, and sums of finite sets.
Functional Analysis and Its Applications 26(4), 276–281 (1992). https://doi.
org/10/dsb2rr

18. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982)

19. Lu, Y., Peng, L., Zhang, R., Hu, L., Lin, D.: Towards optimal bounds for implicit
factorization problem. In: SAC 2016. pp. 462–476. Springer (2016)

20. May, A.: Cryptanalysis of unbalanced RSA with small crt-exponent. In: Yung,
M. (ed.) Advances in Cryptology - CRYPTO 2002, 22nd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings. Lecture Notes in Computer Science, vol. 2442, pp. 242–
256. Springer (2002). https://doi.org/10.1007/3-540-45708-9_16, https://

doi.org/10.1007/3-540-45708-9_16

21. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
University of Paderborn (2003)

22. May, A., Nowakowski, J., Sarkar, S.: Approximate divisor multiples - factoring
with only a third of the secret crt-exponents. IACR Cryptol. ePrint Arch. p. 271
(2022), https://eprint.iacr.org/2022/271

23. Meers, J., Nowakowski, J.: Solving the hidden number problem for CSIDH and
CSURF via Automated Coppersmith (2023)

24. Micheli, G.D., Heninger, N.: Recovering cryptographic keys from partial informa-
tion, by example. Cryptology ePrint Archive, Paper 2020/1506 (2020), https:

//eprint.iacr.org/2020/1506, https://eprint.iacr.org/2020/1506

25. Mumford, D.: Algebraic geometry I: complex projective varieties, vol. 221. Springer
(1976)

26. Nathanson, M.B.: Sums of finite sets of integers. The American Mathematical
Monthly 79(9), 1010–1012 (1972), http://www.jstor.org/stable/2318072

27. Nathanson, M.B.: Growth of sumsets in abelian semigroups (Feb 2000)

28. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Trans. Inf. Theory 57(6), 4002–4013 (2011). https:
//doi.org/10.1109/TIT.2011.2137270

29. Stanley, R.P.: Hilbert functions of graded algebras. Advances in Mathematics
28(1), 57–83 (1978)

30. Takayasu, A., Lu, Y., Peng, L.: Small crt-exponent rsa revisited. Cryptology ePrint
Archive, Paper 2017/092 (2017), https://eprint.iacr.org/2017/092, https://
eprint.iacr.org/2017/092

31. Wang, S., Qu, L., Li, C., Fu, S.: A better bound for implicit factorization problem
with shared middle bits. Sci. China Inf. Sci. 61(3), 032109:1–032109:10 (2018).
https://doi.org/10.1007/s11432-017-9176-5

32. Wu, J.D., Chen, F.J., Chen, Y.G.: On the structure of the sumsets. Discrete Math-
ematics 311(6), 408–412 (2011). https://doi.org/https://doi.org/10.1016/

j.disc.2010.11.014, https://www.sciencedirect.com/science/article/pii/

S0012365X10004449

https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/11935230_18
https://doi.org/10/dsb2rr
https://doi.org/10/dsb2rr
https://doi.org/10/dsb2rr
https://doi.org/10/dsb2rr
https://doi.org/10.1007/3-540-45708-9_16
https://doi.org/10.1007/3-540-45708-9_16
https://doi.org/10.1007/3-540-45708-9_16
https://doi.org/10.1007/3-540-45708-9_16
https://eprint.iacr.org/2022/271
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
http://www.jstor.org/stable/2318072
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1109/TIT.2011.2137270
https://eprint.iacr.org/2017/092
https://eprint.iacr.org/2017/092
https://eprint.iacr.org/2017/092
https://doi.org/10.1007/s11432-017-9176-5
https://doi.org/10.1007/s11432-017-9176-5
https://doi.org/https://doi.org/10.1016/j.disc.2010.11.014
https://doi.org/https://doi.org/10.1016/j.disc.2010.11.014
https://doi.org/https://doi.org/10.1016/j.disc.2010.11.014
https://doi.org/https://doi.org/10.1016/j.disc.2010.11.014
https://www.sciencedirect.com/science/article/pii/S0012365X10004449
https://www.sciencedirect.com/science/article/pii/S0012365X10004449

30 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

A Proof of Lemma 6

Proof. We take this proof into two parts. One is

H(H1,j(f)) ⊂ H(H1,j(f))

and the other is
H(H1,j(f)) ⊂ H(H1,j(f)).

For the first part, we know A(f1) ⊂ A(f2) implies H(f1) ⊂ H(f2). It is
obvious that H1,j(f) ⊂ H1,j(f), so we have

H(H1,j(f)) ⊂ H(H1,j(f)).

For the second part, suppose (i1, . . . , ik) ∈ A(f), we know

{(i1, . . . , ik, 0), (i1, . . . , ik, ij)} ∈ H1,j(f),

so {(i1, . . . , ik, 0), (i1, . . . , ik, 1), . . . , (i1, . . . , ik, ij)} exist in H(H1,j(f)).
Therefore, we have H1,j(f) ⊂ H(H1,j(f)). Then we have

H(H1,j(f)) ⊂ H(H(H1,j(f))).

We know H(H(·)) = H(·), so we have H(H1,j(f)) ⊂ H(H1,j(f)). Therefore, we
know H(H1,j(f)) = H(H1,j(f)) holds.

B Proof of Lemma 7

Proof. From the definition of H1,j(f), we known it is saturated at the k + 1-th
coordinate. So [Zk+1 : H(H1,j(f))] = [Zk : A(f)] holds true.

Obviously, the k + 1-th coordinate is generated by j-th coordinate, when
(0, 0, ..., 1, ..., 0) ∈ span(A), we know (0, 0, ..., 1, ..., 0, 1) and (0, 0, ..., 1, ..., 0, 0)
are exist in H1,j(f) and H1,j(f). So do (0, 0, ..., 0, ..., 0, 1).

C Proof of Lemma 8

Proof. Here we prove a stronger conclusion, where the ”+” represents Minkowski
sum:

H1,j(f1 · f2) = H1,j(f1) +H1,j(f2).

If this holds, then considering the m-fold addition of H1,j(f), we have

H1,j(f
m) = mH1,j(f).

First, let’s consider the scenario where A(f1)\{0} and A(f2)\{0} are both single
points. Assuming A(f1)\{0} = {(i1, . . . , ik)} and A(f2)\{0} = {(i′1, . . . , i′k)}, if
we only consider the first k components, thenH1,j(f1 ·f2) andH1,j(f1)+H1,j(f2)
are equal.

Newton Polytope 31

For the (k + 1)-th component, which is generated by a full high dimension
duplicate, we know that for (i1, . . . , ik) ∈ A(f1·f2), we haveH1,j({(i1, . . . , ik)}) ∈
H1,j(f1) +H1,j(f2).

Conversely, for λ ∈ H1,j(f1) + H1,j(f2), suppose its first components is
(i′1, . . . , i

′
k), then we know (i′1, . . . , i

′
k) ∈ A(f1 · f2). Therefore

H1,j(f1 · f2) = H1,j(f1) +H1,j(f2).

Hence, H1,j(f
m) = mH1,j(f).

D More results for Section 4

In Section 4, we said for univariate shift polynomials, we can use another
method to replace them, that is, choose m− (i1+ . . .+ in) as max{t− (i1+ . . .+
in), 0} with the optimal parameter t in Equation (3), which can also achieve the
bound of the shift polynomial. Besides, it is worth to be motioned that the dim
in this method is smaller than using Extended Strategy. Now we give detailed
proof to show its correctness.

Theorem 8. Let N be an integer of unknown factorization, which has a divisor
p ≥ Nβ. Let f(x) be a univariate monic polynomial of degree δ. We can choose
m − (i1 + . . . + in) as max{t − (i1 + . . . + in), 0} with the optimal parameter t
in Equation (3) to achieve the bound of solving f(x) ≡ 0 mod p in Theorem 6
in [21].

Proof. For f(x) ∈ Z[x] with degree δ, we know N(f) = [0, δ]. And we need to
compute pM, p1, pF in the following equation:

Xp1NpF < ppM . (12)

From Section 3, we know that the leading coefficient satisfy

pM ≈ V (N(f))

V (P(f))
mt =

δ

gcd(A(f))
mt,

p1 ≈ V (N1)

V (P(f))
m2 =

δ2

2 gcd(A(f))
m2.

From Theorem 7, we know the leading term of pF is

LC(pF) =
V (A(f))

V (P(f))
(mt− m2 − (m− t)2

2
)

=
δ

gcd(A(f)
(mt− m2 − (m− t)2

2
)

32 Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan

Suppose X = Nγ and t
m = α, then we can rewrite Equation (12) is as follows:

γ · δ
2

+ α− 1− (1− α)2

2
< β · α, (13)

where the extremum point for α is α = β.
Therefore, Equation (13) yields

γ <
β2

δ
,

which is the same as the bound in Theorem 6 in [21].

E Details for f in Section 5

The required values of m in Table 1.

(a) No.1 (b) No.2

Fig. 5: Corresponding values of m in Table 1.

The required values of m in Table 2.
We also provide detailed information about the polynomials used in our ex-

periments in Table 3.

Newton Polytope 33

(a) No.1 (b) No.2

(c) No.3 (d) No.4

Fig. 6: Corresponding values of m in Table 2.

No. supp{f}

f in Table 1

No.1

f1 with supp{f1} = {x1 ∗ x2, x1, x2, 1}
f2 with supp{f2} = {x2 ∗ x3, x2, x3, 1}
f3 with supp{f2} = {x1 ∗ x3, x1, x3, 1}

No.2

{
f1 with supp{f1} = {x3

3x
2
4, x

2
2, x1x2, 1}

f2 with supp{f2} = {x5
4, x

2
3x1, x

3
1, x2, 1}

No.3

{
f1 with supp{f1} = {x3

3x
2
4, x

2
2, x1x2, 1}

f2 with supp{f2} = {x5
4, x

2
3x1, x

3
1, x2, 1}

f in Table 2

No.1 supp{(x1 ∗ x2 + x1 + x2 + 1) ∗ (x2 ∗ x3 + x2 + x3 + 1) ∗ (x1 ∗ x3 + x1 + x3 + 1)}

No.2 supp{x3
1 + x1 ∗ x2 + x1 ∗ x2

3 + x2
2 ∗ x3

3 + x2
2 + x2 + 2}

No.3 supp{(x3
3 ∗ x2

2 + x2
2 + x1 ∗ x2 + 1) ∗ (x2

3 ∗ x1 + x3
1 + x2 + 1)}

No.4 supp{(x2
2 + x3

1 ∗ x2 + 1) ∗ (x2
1 + x2 ∗ x3 + x4

3 + 1)}
Table 3: Details of f in Experiments.

	New Results for Coppersmith's Method from the Perspective of Sumsets Theory
	Introduction
	Our Contribution.
	Roadmap.

	Notations and Preliminaries
	Polynomials
	Lattices, SVP, and LLL
	Growth of sumsets
	Jochemsz-May Strategy Because the Jochemsz-May strategy can be viewed as Automated Coppersmith's method when n=1, we will only provide a detailed introduction to the latter. and Automated Coppersmith Method

	Algorithms related to Newton Polytope
	Algorithm for quickly calculating LC(pM)
	An Algorithm to efficiently compute LC(pj)

	Algorithm for efficient calculation of LC(pF)
	Proof of Heuristic 2 of Automated Coppersmith
	Benefit of introducing the parameter t

	Experiments
	Example for Local Convergence
	A Toy Example
	More Experiments

	Conclusion
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	More results for Section 4
	Details for f in Section 5

