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Abstract. Framed within the general context of cyber-security, standard crypto-
graphic constructions often represent an enabling technology for associated solutions.
Alongside or in combination with their design, therefore, the implementation of such
constructions is an important challenge: beyond delivering artefacts that are usable
in practice, implementation can impact many quality metrics (such as efficiency and
security) which determine fitness-for-purpose. A rich design space of implementation
techniques can be drawn on in order to address this challenge, but threat- and
opportunity-driven innovation based on clear understanding and empirical evidence
remains vital.
In at least some use-cases, software-based implementation of cryptography is im-
portant, e.g., because it delivers an attractive trade-off or is mandated for some
reason. Such an implementation is heavily influenced both by 1) the Instruction Set
Architecture (ISA) it is expressed using, and 2) the micro-architecture it is executed
using. For example, the extent to which a general-purpose ISA can support more
domain-specific requirements of a cryptographic construction will influence how the
latter is mapped to the former (i.e., which implementation techniques are viable) and
behavioural properties of doing so (e.g., the execution latency stemming from use of
a given implementation technique).
This paper attempts to systematise the topic of cryptographic Instruction Set Ex-
tensions (ISEs), which represent an approach to provision of a platform where such
support is more explicit and extensive. At a high level, the goal is to improve
understanding of what is an extensive and somewhat inter-disciplinary body of lit-
erature (e.g., spanning academia and industry, hardware and software, as well as
cryptographic and non-cryptographic publication venues). We argue that doing so
will help to maximise the quality of subsequent work on this and associated topics.
Keywords: ISA, ISE, cryptographic engineering

1 Introduction
1.1 The micro-processor customisation design space
ISAs. The concept of an ISA is fundamentally important within the context of computer
systems. Acting as an interface between hardware, i.e., some compliant micro-architectural
implementation, and software executed by it, the ISA will usually define components such
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as 1) the accessible state, including general- and special-purpose registers and memory,
2) the encoding and semantics of instructions that act on said state, and 3) an execution
model for said instructions. The design of an ISA is, to some extent, a creative process
driven by a technical ethos informing design decisions and trade-offs. However, the large
design space, potential lifespan, and implications that features in an ISA have for hardware
and software, demand the process is also driven by robust empirical evidence. This is
often achieved through characterisation of software workloads, in order to motivate and
evaluate features in the design. To appeal to the largest possible market such workloads
are usually of a general-purpose composition (e.g., representative benchmark kernels and
suites thereof, or complete applications), with evaluation with respect to pertinent quality
metrics (e.g., instruction throughput) usually focusing on optimisation for the average-case.
Although this approach is rational, it may be viewed as conservative in the sense it neglects
opportunities related to special-purpose or domain-specific workloads.

The ISA is, and arguably [DB18] should remain an interface. This approach allows
specialisation of a micro-architecture to satisfy any pertinent quality metric, market, or
use-case, and thus, to some extent at least, workload. Beyond this fact, however, micro-
processor customisation [IL07] captures broader specialisation of both the implementation
and interface for a given domain. In short, a customisable micro-processor may be either
• parameterisable, in the sense that a template base ISA and micro-architecture are

instantiated based on user-selected options, and/or
• extensible, in the sense that a base ISA and micro-architecture can be extended with

user-defined functionality.

ISEs. ISEs have become a popular extensibility mechanism. In concept, the ISE design
process typically mirrors that for ISAs apart from a focus on some specific domain. That
is, one would 1) perform workload characterisation to identify functionality that could
yield an improvement with respect to pertinent quality metrics (over use of the base ISA
alone), 2) extend the base ISA with suitable state and instructions, thereby exposing
them to ISE-aware software, then, finally, 3) implement additional components in a base
micro-architecture, thereby allowing said software to be executed.

Other implementation options for a given workload include at least software-only (i.e.,
using the base ISA alone) and hardware-only (i.e., using a dedicated IP core) extremes.
ISEs are attractive specifically because they represent a hybrid that sits between such
extremes, suggesting they inherit characteristics of both; in a general sense, therefore, they
relate to the field of hardware/software co-design [DEWW01]. Whether or not they are
the right option is heavily dependant on the context, but, for example, an ISE-supported
solution will often be more compact and performant than a software-only option, while
also being more flexible and more efficient in terms of performance gain per additional
logic gate than a hardware-only option. Such characteristics can be important for both
high-end, performance-oriented and low-end, constrained platforms.

Although isolated examples1 existed previously, media processing, e.g., decoding image
and video formats such as JPEG and MPEG, was (arguably) the domain which popularised
ISE-supported solutions more broadly. Market demand for efficiency in relation to such
workloads led to development of ISEs [SS05] for most contemporary base ISAs, includ-
ing AMD 3DNow! [OFW99], DEC Motion Video Instructions (MVI) [CCM97], Hewlett
Packard Multimedia Acceleration eXtensions (MAX and MAX-2) [Lee95, Lee96, LH96],
Intel MultiMedia eXtensions (MMX) [PW96], Motorola Altivec [DDHS00], MIPS Digital
Media eXtension (MDMX) and MIPS-3D, and Sun Visual Instruction Set (VIS) [KMPZ95].

1One such example is support for computation of population count (i.e., Hamming weight), exemplified
by the x86 popcnt [Int22b, Pages 4-399–4-400] instruction. Motivation for what is a fairly niche operation
has an interesting (and in part alleged) history: see, e.g., https://groups.google.com/g/comp.arch/c/
UXEi7G6WHuU/m/Z2z7fC7Xhr8J.

https://groups.google.com/g/comp.arch/c/UXEi7G6WHuU/m/Z2z7fC7Xhr8J
https://groups.google.com/g/comp.arch/c/UXEi7G6WHuU/m/Z2z7fC7Xhr8J
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Subsequent examples highlight a subtlety, in the sense that the definition of an extension
of versus an addition to the base ISA is imprecise: several of the ISEs listed above would
arguably fall into the latter category. For example, what was initially Intel MMX has
evolved into several generations of Streaming SIMD Extensions (SSE) [TH99] and then
Advanced Vector Extensions (AVX). Such designs addressed market demand for efficient
numerical computation, offering support via a vector (or SIMD) versus scalar programming
model. Although support for them is detectable using the cpuid [Int22a, Chapter 20]
feature identification mechanism, Intel-based micro-architectures rarely remove features:
the ISEs effectively act as additions to the base ISA therefore. In contrast, ISAs such
as RISC-V emphasise modularity and extensibility as first-class, by-design goals (see,
e.g., [RV19, Section 26]). RV32I [RV19, Section 2], for example, defines a minimal base
ISA plus a suite of (orthogonal) extensions which can be categorised as 1) standard
extensions curated and ratified by RISC-V International; selected examples aim to support
additional functionality (e.g., floating-point, via the standard F [RV19, Section 11] and
D [RV19, Section 12] extensions), or satisfy specific optimisation goals (e.g., code density,
via the standard C [RV19, Section 16] extension), plus 2) non-standard (or custom)
extensions which are user-defined. Support for so-called “custom instructions” [CP20]
within ARMv8-M could be viewed as having a similar, although more limited remit.

ASIPs. The difference between extension of a base ISA which does or does not have
by-design support for extensibility is important. For example, where such support is
evident, a vendor can decide whether or not a given a set of orthogonal domains are
relevant to their intended market, then either include or exclude ISEs as need be.

This is taken to an extreme by the concept of an Application Specific Instruction
Processor (ASIP), definitions of which can vary but usually includes three features. First,
both the base ISA and micro-architecture are explicitly designed to support customisation.
Second, tasks relating to customisation of these artefacts are often supported by an
integrated suite of dedicated, (semi-)automatic tooling. Tensilica Xtensa [Gon00] is an
exemplar of both points. The platform includes an 80-instruction base ISA and associated
base micro-architecture which are both parameterisable (e.g., with respect to endianness,
register file size, cache geometry, bus width, etc.), and extensible (via extensions to the
base ISA, i.e., ISEs) by-design; the latter is supported by a proprietary language, namely
Tensilica Instruction Extension (TIE), and some associated tooling. Moreover, third,
trade-offs for an ASIP can be aggressive with respect to specialisation. Put simply, an
ASIP might only be used within a specific domain or for a specific task. This contrasts
with a non-ASIP, which must support general-purpose workloads and use, e.g., ISEs to
support special-purpose niches.

1.2 Toward principled, effective cryptographic ISE development
Cryptographic ISEs. The domain of cryptography shares various high-level characteristics
with that of media processing. For example, cryptographic workloads typically 1) involve
computationally intensive, somewhat niche functionality, 2) need to satisfy a range of
efficiency-related quality metrics such as throughput, latency, memory footprint, and
power and energy consumption, but, at the same time, also 3) form a central target in
what is a complex, evolving attack surface. This latter fact demands (see, e.g., [RKL+04,
RRKH04, BMT16]) security be viewed an important, additional quality metric. A rich
body of literature, capturing the field of cryptographic engineering, has explored techniques
which attempt to address associated implementation challenges (including those relating
to micro-processor design specifically: see, e.g., [Lee03]); this forms a significant design
space of options.

Nahum et al. [NOOS95] argue that, although cryptographic hardware can be a viable
option, various factors such as flexibility (or agility) mean that “we need cryptographic
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software”. Their work is among, if not the first to propose an ISE-supported solution as a
means of addressing that need in balance with other metrics. This suggests the field of
cryptographic ISEs [BGM09, HV11, RI16] spans at least a 25 year period, with support
for Advanced Encryption Standard (AES) [NIST01] an important exemplar. For example,
one can readily identify a significant body of literature [NIK04, TG05, TGS05, BBFR06,
MD07, TG06, TG07a, TG07b, Elb07, Elb08, BBGR09, SCS+09, JSG10, BOS11, APRJ11,
BEM+15, EMOC20, Saa20], patents [GFG], and broad support in deployed base ISAs:
examples include x86 [Int22a, Section 12.13] (see also [Gue09, DGK19]), POWER [Pow18,
Section 6.11.1], ARMv8-A [Arm20, Section A2.3], SPARC [SPA16, Sections 7.3+7.4], and
RISC-V [RVK22, RVK21, RIS24] (see also [MPP20, MNP+21]).

Remit and organisation. Nahum et al. [NOOS95] pondered whether, in 1995, it was
“practical to add instructions to a [RISC] processor”; they identify both technological
and economic dimensions to this question. Whether or not the answer was positive
then, we argue that two features of the contemporary technology landscape mean it
certainly is positive now. First, open ISAs such as RISC-V [Wat16], and associated
ecosystems (including open-source implementations, tooling, and crucially, community)
have matured to the point of being competitive. Hill et al. [HCP+16] explore advantages
and disadvantages of this approach, but, fundamentally, it has enhanced accessibility and
so innovation where it would previously, in a proprietary context, be far more difficult.
Second, concrete realisation of such implementations is now viable with relatively short,
relatively low-cost design cycles for a given ISE. At least two facts evidence this claim,
namely
• the availability and feature-sets of reconfigurable fabrics: this fact leads to viability

of customisable FPGA-based soft and hard (e.g., supported by eFPGAs2 and similar
technologies) implementations, and

• an evolution of business models: this fact leads to viability of customisable ASIC-based
hard micro-processor implementations, e.g., as the result of new vendors3 and initiatives4

which have lowered the barrier to entry versus traditional fabrication.
So, based on the argument that cryptographic ISEs are both practical and effective
(cf. [FLO18]), and mirroring [IL07, Section 1.4] for example, we suggest that the field is
entering a “golden age” in which maximising the quality of associated work is vital. This
paper attempts to assist in doing so, acting as a Systematization of Knowledge (SoK) for
the field of cryptographic ISEs. We organise the content as follows:
• In Section 2 and Section 3 we attempt to fix some notation and terminology, and, in

doing so, refine the technical scope of subsequent sections.
• In Section 4 we survey existing cryptographic ISEs. A specific aim of doing so is the

identification of high-level features which motivate their use, and thus promote reuse of
existing solutions and/or techniques in future work.

Throughout said content, we focus on two overarching aims. First, high quality crypto-
graphic engineering is inherently interdisciplinary. In line with advice from Paar [Paa02,
Point 5] that we “educate ourselves about other fields” and also “entice people from other
disciplines to work on problems in applied cryptography”, we therefore aim to consolidate
experience around cryptographic ISEs and so increase future understanding and accessibil-
ity of the field. The paper title is specifically motivated by this point, and so is written in
a similar spirit as, e.g., [GPS08, BGHZ11]. Second, consider that AES5 was instrumental
in popularising a standardisation process model where “algorithm and implementation

2See, e.g., https://flex-logix.com
3See, e.g., https://www.sifive.com
4See, e.g., https://efabless.com/chipignite
5See, e.g., https://www.govinfo.gov/content/pkg/FR-1997-09-12/pdf/97-24214.pdf

https://flex-logix.com
https://www.sifive.com
https://efabless.com/chipignite
https://www.govinfo.gov/content/pkg/FR-1997-09-12/pdf/97-24214.pdf


H. Cheng, J. Großschädl, B. Marshall, D. Page, and M.-J. O. Saarinen 5

characteristics” play a role in evaluation of candidates. Although seldom explicitly ruled out,
many such processes fix (a set of) non-customisable evaluation platforms which implicitly
ignore or undervalue the role ISEs can and eventually do play. We argue this gap is
problematic with respect to comprehensive evaluation, so aim to help shift best-practice
to include consideration of ISEs. Finally, note that we often try to articulate points
using examples which involve existing ISE designs. Although we critique such designs, for
example to highlight a feature that, in our opinion, could be deemed a positive or negative,
we categorically do not aim to criticise them.

2 Notation
Let x(b) denote x expressed in radix- or base-b. If the base is omitted, it is safe to assume
use of decimal (i.e., that b = 10). Let x ← y denote assignment of y to x. Let ¬, ∧,
∨, and ⊕ denote the Boolean NOT, AND, (inclusive) OR, and (exclusive OR, or) XOR
operators respectively, and x≪ y and x ≪ y (resp. x≫ y and x ≫ y) denote left-shift
and left-rotate (resp. right-shift and right-rotate) of x by y bits.

Let MEM[i]b denote a b-byte access to some byte-addressable memory, using the effective
address i; where b = 1, the access granularity may be omitted. Let GPR[i], for 0 ≤ i < r,
denote the i-th, w-bit entry in the r-entry general-purpose register file.

3 Terminology
Concept 1. An ISE comprises 1) a specification of an interface between hardware and
software, plus 2) a hardware-based implementation within some micro-architecture.

Concept 2. The terms base ISA and extended ISA (resp. base micro-architecture
and extended micro-architecture) are used to refer to the ISA (resp. micro-architecture)
excluding and including the ISE interface (resp. implementation) respectively.

As is the case with an ISA, the ISE interface allows diversity with respect to the associated
implementation. Versus an ISA, however, it is common to consider the ISE interface and
implementation simultaneously, i.e., as part of a single design. As a result, the term ISE is
often overloaded to mean either the interface and/or the implementation depending on
the context.

Concept 3. A bespoke ISA is explicitly domain-specific by nature, and so distinct from
some generic ISA being extended by a domain-specific ISE.

There is clearly overlap between the two approaches, and, up to a point, the end result
could be deemed similar. However, we distinguish between them in part to limit our
scope through a focus on the latter: doing so renders some examples of the former (e.g.,
ASIPs designs such as CryptoManiac [WWA01], Cryptonite [BHO04], MCCP [GBG+11],
CIARP [NRE+12], Cryptoraptor [SC14], CRISC [DR14], CDSP [YHMH19], plus related
tools such as [MA07], and work such as [GBG+03, Fou07, YYDZ08, BSP13]) out of scope.
Beyond this fact, however, focusing on the extension of a generic, ideally well established
base ISA affords (at least) two advantages. First, the use a generic base ISA makes it
possible to leverage both experience and infrastructure (e.g., libraries, tool-chains, etc.)
which already exist; in essence, it offers a lower barrier to entry. Second, the opportunity
to design a bespoke ISA is a rare occurrence. Focusing on a generic base ISA therefore
maximises the potential for technology transfer, i.e., there is more chance that an ISE
design will actually be deployed and used, and therefore has some impact.

Concept 4. A base ISA is deemed ISE-aware if it explicitly facilitates ISEs, or ISE-
oblivious otherwise.
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Of course, ASIPs take the concept of ISE-awareness to an extreme. However, due to the
overlap, we simply treat ASIP-based ISEs as any other ISE: doing so renders specific use
of related technologies (e.g., Garp [CHW00], Tensilica Xtensa [Gon00], Synopsys Processor
Designer [NST10], etc.) out of scope. Note that being ISE-oblivious does not mean
one cannot extend the base ISA, simply that doing so may be harder due to the lack of
facilitation.

Concept 5. An ISE is termed algorithm-specific when explicitly designed to support a
specific algorithm, or algorithm-agnostic otherwise.

Concept 6. A given algorithm-specific ISE is said to offer single-algorithm (resp.
multi-algorithm) support if the specificity involved relates to n = 1 (resp. a set of n > 1)
algorithm(s).

An ISE is, by definition, intended to support domain-specific workloads. In the context of
cryptography, however, specialisation within the domain, i.e., on a per-algorithm basis, can
be reasonable. Consider, for example, an ISE that supports use of an S-box in block ciphers:
it might support any block cipher which uses an S-box (algorithm-agnostic), a specific
family of block ciphers (algorithm-specific, multi-algorithm), or a specific block cipher
(algorithm-specific, single-algorithm). In part, adopting a per-algorithm approach can be
justified by the important role that standardisation play in cryptography. This means a
relatively small set of (standard) algorithms have strong practical relevance (e.g., NIST
FIPS-197 [NIST01] and Federal Information Processing Standard (FIPS)-180 [NIST15] for
AES and SHA256, and SP 800-38d [NIST07] for the GCM mode of operation). Selection
between them is further guided by their inclusion in standard parameter sets (e.g., the cipher
suite TLS_AES_128_GCM_SHA256 as specified by Transport Layer Security (TLS) [Res18,
Section B.4], then realised by OpenSSL6).

Note that multi-algorithm support may occur implicitly, if, for example, an algorithm
takes advantage of an existing ISE by using a platform-aware design approach. For
example, AES New Instructions (AES-NI) can be used beyond AES itself: Bos, Özen, and
Stam [BOS11] explore application within block cipher based hash function constructions,
Saarinen7 uses it to implement of the SM4 block cipher, the Grøstl hash function [GKM+11]
uses the S-box, and the YAES [BV14] authenticated encryption scheme uses a full round.
In a sense, therefore, the definitions relate more to the explicit, by-design support offered
by a given ISE.

Concept 7. An ISE is termed discoverable if the base ISA includes a mechanism by
which (non-)support for it can be programmatically determined.

Concept 8. In the same way as instructions in a given base ISA, those in an ISE are termed
stateful if they depend on some form of state; otherwise, they are termed non-stateful
(or stateless).

Note that the state here refers to something, e.g., control or status data, other than the
input operands; this means the action of instructions which are non-stateful are analogous
to pure functions. Either way, one could further classify stateful ISEs into cases where 1)
new state is added by the ISE versus 2) existing state is defined by the ISA and simply
used by the ISE.

Choquin and Piry [CP20, Page 2] use a definitional framework to classify acceler-
ator technologies. We use it as a starting point to to differentiate ISEs from related
technologies, and to classify their implementation. First, the ISE implementation must
be integrated with a base micro-architecture; this renders decoupled, memory mapped
peripherals and co-processors (e.g., Celator [FPP08], CCproc [TSP09], FastCrypto [SA10],

6https://www.openssl.org
7https://github.com/mjosaarinen/sm4ni

https://www.openssl.org
https://github.com/mjosaarinen/sm4ni
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and Falcon [KLA+19]) out of scope. Second, where such integration is evident, there are
(at least) two sub-classes:

Concept 9. A tightly-integrated ISE implementation exists “within” the base micro-
architecture, and so shares characteristics with the base ISA and micro-architecture:
• direct access to state defined by the base ISA; bandwidth and throughput limited by,

e.g., ports on general-purpose register file,
• instructions executed internally by the base micro-architecture, e.g., interleaved with

instructions from the base ISA,
• instruction execution has lower-latency, e.g., < 3 cycles.

Concept 10. A loosely-integrated ISE implementation exists “alongside” the base
micro-architecture, with interaction between the two occurring via an integration interface
between the two:
• indirect access to state defined by the base ISA; bandwidth and throughput limited by

the integration interface,
• instructions executed externally to the base micro-architecture,
• instruction execution has higher-latency, e.g., ≥ 3 cycles.

Concept 11. The ISE implementation is usually captured in a set of hardware components
then integrated into a base micro-architecture. The term used to describe said components
varies, but Application-specific Functional Unit (AFU) is a common example.

Discussion: ISE versus non-ISE? Beyond classification based on the above, precisely
differentiating an ISE from a non-ISE can be difficult and perhaps even counterproductive.
One approach would be to demand ISE-based instructions are “similar to” ISA-based
instructions, in the sense the former have no special-purpose features, e.g., in terms of
implementation constraints, execution semantics, etc., relative to the latter. However,
consider two examples:
• Steinegger and Primas [SP21] present an ISE for Ascon, based on RISC-V; [SP21, Figure

1] details implementation of a dedicated AFU for Ascon-p, i.e., the Ascon permutation,
which is tightly-integrated with the base micro-architecture. The ISE itself includes
one instruction, which essentially supports computation of an entire Ascon round via
the AFU. As a result, the AFU assumes the state is read from (resp. written to) a set
of 10 general-purpose registers; access to those registers is hard-wired, and must avoid
pipeline hazards (which are not resolved by existing forwarding logic).

• Kumar and Paar [KP04] present an ISE for arithmetic in F2163 , based on AVR; [KP04,
Figures 1+2] detail implementation of a dedicated AFU for said arithmetic, which is
tightly-integrated with the base micro-architecture. For example, although the AFU
appears tightly-integrated with other components, it 1) operates asynchronously: once
an operation is initiated, polling is used to test for completion (i.e., during which time
other instructions can be executed, although “the software has to take special care not
to call the custom hardware until the multi-cycle operation is completed”), and 2) has a
dedicated memory interface used to load and store 163-bit input and output words.

On one hand, the instructions specified in both designs clearly have special-case features
that are (arguably) more aligned with those of a co-processor than they are an ISE. On the
other hand, however, provided those features are acceptable, both designs are still viable
and may be effective whether deemed an ISE or not: [SP21, Table 1 + Section 4] highlight
that a factor of 1.1 area overhead affords a very significant, factor of 50 improvement in
execution latency for Ascon, for example. We therefore argue it is more productive to
define the term ISE as broadly as possible, e.g., as “any mechanism accessible via execution
of an instruction not included in the base ISA”, by emphasising the interface. Doing



8 SoK: Instruction Set Extensions for Cryptographers

so places a stricter demand on appropriate evaluation that includes the implementation,
allowing informed comparison and selection to match the requirements of a given use-case.

Discussion: RISC versus CISC? It seems reasonable to say that although the terms
Reduced Instruction Set Computer (RISC) and Complex Instruction Set Computer (CISC)
can be understood intuitively, there is room for interpretation with respect to their definition.
That is, when classifying a design as either RISC or CISC, it is often useful to consider a
set of indicative characteristics and/or an underlying design ethos, rather than a terse, rigid
definition. For example, Patterson and Séquin [PS81, PS82] offer a set of characteristics
stemming from the seminal Berkeley RISC project: these can be summarised as 1) single-
cycle instruction execution, 2) uniformity with respect to instruction encoding, 3) limited
addressing modes (e.g., memory access only via dedicated load and store instructions), and
4) support for high-level programming languages. Likewise, Waterman [Wat16, Chapter
3] states that the ethos guiding RISC-V “was to make an ISA suitable for nearly any
computing device”.

On one hand, a base ISA plus ISE is (still) an extended ISA, so can clearly be classified
using the same approach. On the other hand, however, it is crucial to avoid interpreting
“extended” as “more complex” and thus CISC-like. That is, although cryptographic ISE
designs exist which are complex, complexity is not an implication of being domain-specific:
designs also exist which align with the ISA design ethos, e.g., by retaining RISC-like
characteristics.

4 A rigorous, systematic survey of cryptographic ISEs
Analysis by Nahum et al. [NOOS95, Section 4] highlights “three basic problems” which
they proposed to address via an ISE, namely “operations on sub-wordsize units, operations
on super-wordsize units, and operations of groups other than that of integers”. Regazzoni
and Ienne [RI16] highlight ISEs focused on providing increased performance (see [RI16,
Section III]) and resilience against side-channel attack (see [RI16, Section IV]).

In this section, we update and expand existing studies such as [BGM09] and [RI16] via
a rigorous, systematic survey of cryptographic ISEs. At a high level, we follow Regazzoni
and Ienne [RI16] by considering a classification of ISEs which includes major classes for 1)
computation-oriented support, 2) storage-oriented support, and 3) security-oriented (or
enhancing) support. However, we present the content using a set of fine(r) grained minor
classes, since doing so allows us to highlight similar motivation, design approaches, etc. We
adopt a uniform structure for each class, by first providing an accessible explanation of the
underlying concept, and then, second, précising concrete example ISEs which realise said
concept. This (as any) approach naturally has advantages and disadvantages. For example,
on one hand it offers a best-effort attempt to usefully group similar ISEs together, but, on
the other hand, it means a given ISE may span several classes even where highlighted in
one.

4.1 Class C1: special-purpose data-types and computation
4.1.1 Concept

Section 1 cites a focus on general-purpose workloads in existing base ISAs, which typically
means support for integer (and perhaps floating-point) data-types plus arithmetic and
logic (or ALU-like) operations on them. In contrast, cryptographic workloads make often
use of data-types and representations (e.g., stemming from richer Mathematical structures)
which lack native support in the base ISA for associated operations. This fact provides
perhaps the most compelling motivation, which has led to a broad class of ISEs that
support special-purpose alternatives focused on cryptography.
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Note that some significant special cases are covered elsewhere, i.e., as dedicated classes.
For example, permutation-style operations are covered in Section 4.3, and substitution-style
operations (supporting application of an S-box) are covered in Section 4.4.

4.1.2 Examples

(Somewhat) algorithm-specific operations. The “killer application” of ISEs relates to
their ability to support domain-specific functionality. Based on this, a wide range of work
explores ISEs which support strongly algorithm-specific operations, i.e., operations included
in the specification of one algorithm but of limited or even no use beyond that. The bulk
of such work relates to algorithms for symmetric cryptography, i.e., block and stream
ciphers, and hash functions, where common instances include support for algorithm-specific
permutation and/or substitution steps.

A survey of instances would include (at least) AES, as already discussed in Section 1
and [MNP+21, Section 2.3] (with further evaluation in, e.g., [GM23]); Ascon [SP21, AO21];
ChaCha [MPP21]; DES [OE08, OE10, EMOC20]; NTRU [ITAO20]; PRESENT [GP12,
VSI+19, TGSD20, EAD+22]; PRINCE [EAD+22]; QARMA [DBB+23]; SEA [GP12];
SNEIK [Saa19]; SHA-1 [BEM+15]; SHA256 [EMOC20]; SHA-3 and/or Keccak [WSWH15,
EES+16, ESE+16]; SM4 [Saa20]; XTEA [GP12]; candidates in the NIST SHA-3 pro-
cess [CBG12a, CBG12b] (e.g., BLAKE, Grøstl, JH, Keccak, and Skein), and candidates in
the NIST Light-Weight Cryptography (LWC) process [CGM+22] (e.g., Ascon, Elephant,
GIFT-COFB, Grain-128AEADv2, PHOTON-Beetle, Romulus, Sparkle, TinyJAMBU, and
Xoodyak). Some instances represent multi-algorithm ISEs: [EKP+13] (supporting at
least CLEFIA, SERPENT, PRESENT, and AES); [TGSD20] (supporting at least GIFT,
MANTIS, Midori, PRINCE, Skinny, and Twine), and [BLCN20] (supporting at least DES,
AES, IDEA, A5-1, SM3, SM4, MD5, and SHA256, although with no clear instruction
semantics).

Bit-manipulation. Particularly within the context of algorithms for symmetric cryptogra-
phy, associated implementations often depend on support for bit-manipulation. One could
define operations of this type as directly manipulating bits in some word, rather than the
word itself (resp. bits which represent some value rather than the value itself).

Aiming to accelerate, e.g., implementations of the S-boxes for AES and Twofish
specifically, instructions in the ISE described by Majzoub and Diab [MD07, Table 2]
support somewhat more general-purpose bit-manipulation. For example, ANDALL supports
a “3-operand AND”, e.g., r ← x ∧ y ∧ z, whereas BWAX supports an “AND plus XOR
reduce”, i.e., t← x ∧ y; r ← t7 ⊕ t6 ⊕ · · · ⊕ t0.

More specific, although still general-purpose examples include left- and right-rotation.
Although such operations are similar to left- and right-shift, and could be viewed as
special-form permutations, they are not uniformly supported across ISAs. RISC-V ISAs,
for example, include shift but not rotate instructions. In this and other cases which lack
native support, the operation must be synthesised using instructions that exist in the base
ISA. Dinu [Din17, Section 5.2.3], for example, carefully explores how to do so on various
8-, 16-, and 32-bit platforms. Even when synthesised instances are as efficient as possible,
their use would typically imply some overhead versus a dedicated instruction. As such,
many proposed ISEs support for left- and/or right-rotate: RISC-V ISAs, for example, do
so via the standard B (bit manipulation) [RVB21, Section 1.3] extension. The designs of
Altınay and Örs [AO21] and Burke, McDonald, and Austin [BMA00, Section 5] represent
further examples; mirroring functionality offered by the ARM “flexible second operand”
mechanism, the latter also consider rotate-plus-XOR variants.

Arithmetic in Fq[x] for small q. Given the degree m binary polynomials x, y ∈ F2[x],
computation of the degree 2 · m product r = x × y is often described as carry-less
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multiplication: the computation is similar to integer multiplication, but with partial
products combined via addition in F2[x], i.e., without carries, rather than Z, i.e., with
carries. As a result, it is also reasonable to consider carry-less multiply-accumulate, i.e.,
computation of r = x× y + z.

Use of carry-less multiplication in cryptography and beyond (e.g., certain error cor-
recting codes) means an ISE-supported solution is attractive. Such support typically
takes the form of an instruction for carry-less multiplication of m-bit operands (i.e., de-
gree m − 1 polynomials), which can then be leveraged in higher-level implementation
strategies for a larger m (see, e.g., [HLL17]). Support of this type was first proposed
by Nahum et al. [NOOS95, Section 4] to facilitate computation in F2m and therefore
ECC-based Diffie-Hellman [DH76] key exchange. There is now broad support in deployed
base ISAs: examples include x86 (as pclmulqdq [Int22b, Pages 4-242–4-244]), ARMv8-A
(as pmull [Arm20, Section C6.3.189]), and RISC-V (as clmul [RVB21, Section 2.6]).

Fiskiran and Lee [FL04] explore ISEs of this type within the context of PLX [LF05]. As
well as exploring, e.g., how the multi-word result is dealt with, and if increased data-path
width or super-scalar execution is more effective, they make use of the shuffle instruction
to accelerate squaring in F2[x] (which involves “spacing out” coefficients in a given x
by interleaving them with zeros). Bartolini et al. [BBGM04, BBGM08] do more or less
likewise, but within the context of Intel XScale, i.e., the ARMv5TE base ISA.

Different trade-offs between latency and hardware cost of carry-less multiplication
have been proposed. Tillich and Großschädl [TG04] presented a multiply-step instruction
for binary-polynomial multiplication, called mulgfs, which is essentially a polynomial
variant of the integer multiply-step instruction mulscc of the SPARC V8 architecture.
The mulgfs instruction generates a 32-bit partial product and adds (i.e., xors) it to a
64-bit accumulator held in two registers, one of which is the dedicated multiply/divide
register %y. By taking advantage of this instruction, the product of two binary polynomials
of degree 31 can be computed in 32 clock cycles. Tillich and Großschädl also proposed
the mulgfs2 instruction, which is a variant of mulgfs that generates and adds a 33-bit
partial product, thereby reducing the execution time to 16 cycles. Puttmann, Shokrollahi
and Porrmann [PSP08] analysed and compared the resource-efficiency (i.e., performance
in relation to hardware cost) of three different approaches to support binary-polynomial
multiplication on a 32-bit RISC processor. The first approach consists of a set of three
custom instructions, two that combine a shift with an xor and one for address arithmetic.
The the second and third approach are based on the mulgfs instruction from [TG04]
(implemented as an ALU extension) and the carry-less carry-less multiply instruction,
respectively, the latter executed on a dedicated binary-polynomial multiplier with a 2-cycle
latency. It was concluded that the implementation of mulgfs offers the best trade-off
between performance improvement and hardware cost.

Focusing specifically on the implementation, Savas̆, Tenca, and Koç [STK00] define a
dual-field adder as “a full adder which is capable of performing addition both with carry
and without carry”. One could generalise this definition to consider an n-field adder which
supports n cases, using multi-field adder to refer to support for n > 1. Use of such adders
to combine partial products can, e.g., avoid the need for separate carry-based and carry-less
multiplier data-paths: instead, a single, unified data-path can cater for both cases. This
approach is explored by Großschädl and Kamendje, who consider a 2-field (Z and F2[x])
multiply [GK03b] and multiply-accumulate [GK03c] data-path and associated ISE as
motivated by Elliptic Curve Cryptography (ECC) over prime and binary fields; Tillich
and Großschädl [TG05] apply the same design to field arithmetic in AES. Großschädl
and Savaş [GS04] and Liao et al. [LWDZ15] both adopt a broadly similar approach, while
Vejda, Page, and Großschädl [VPG07] consider a 3-field (Z, F2[x], and F3[x]) alternative
as motivated by cryptographic pairings over elliptic curves.
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Arithmetic in Fq for small q. Burke, McDonald, and Austin [BMA00, Section 5] support
IDEA via a modmul instruction which computes a multiplication modulo 216 + 1, a special-
form modulus which affords efficient modular reduction.

Großschädl, Kumar, and Paar [GKP04] present an ISE for MIPS32 which supports
computation in Optimal Extension Fields (OEFs), i.e., Fpk for a pseudo-Mersenne prime
p = 2n − c. More specifically, the ISE supports the sub-field Fp: given support in MIPS32
for (32×32)-bit integer multiplication and multiply-accumulate, two additional instructions,
namely maddh (a variant of maddu) and subc (a conditional subtraction), allow the efficient
reduction modulo p of a 64-bit product held within special-purpose registers hi and lo.
In part due to the form of p, and approach to modular reduction it affords (cf. [Cra]), the
ISE can be viewed as general-purpose in the sense it is not specialised for any particular n
or c bar the requirement that p < 232.

Alkim et al. [AEL+20] present an ISE for RISC-V, which supports computation in Fq

for small, prime q. Examples include 12-bit q = 3329 and 14-bit q = 12289 motivated by
use in Kyber and NewHope. The ISE interface [AEL+20, Figure 5] includes instructions
for addition, subtraction, and multiplication in Fq, plus reduction modulo q. The ISE
implementation [AEL+20, Figure 4] is set within the context of the VexRiscv micro-
architecture; standard integer arithmetic is performed in the execute stage, with Barrett
reduction [Bar86] applied to the result during the memory access and write-back stages.

Kuo, Garcia-Herrero, and Maestro [KGM21] present an ISE for RISC-V which supports
computation in F2m for small m, e.g., m = 8 motivated by use in AES. In their words,
it represents an intermediate solution “between the RISC-V base ISA and the scalar
cryptographic K extension”, offering greater efficiency versus the former and greater
flexibility versus the latter. The ISE interface [KGM21, Figure 1] consists of three main
instructions 1) a clmul instruction for carry-less multiplication per the above, and 2) a
ffwidth instruction which configures the irreducible polynomial (storing it in “internal
registers”), 3) a ffred instruction which performs a reduction modulo said irreducible
polynomial. The ISE implementation [KGM21, Figure 2] is set within the context of the
SweRV-EL2 micro-architecture, essentially acting as an AFU within the execute stage. Kuo
et al. [KGRM23] further extend this idea to that m is up to the machine word size, i.e., 32
in their case (32-bit SweRV-EL2 core). A new instruction clmulh is added, which returns
the higher half of the result of carry-less multiplication. Plus clmul, ffwidth, and ffred,
four instructions altogether form an algorithm-agnostic ISE. Besides, an algorithm-specific
ISE variation is also proposed, which contains four instructions for respectively the field
addition, multiplication, squaring, and inversion. Each different algorithm supported by
this ISE needs a dedicated multiplier/inversion/square, e.g., three of which are required for
respectively AES, Reed-Solomon error correcting code, and Classic McEliece post-quantum
KEM (as shown in [KGRM23, Section 5]).

Cui and Balasch [CB23] present an ISE for RISC-V which supports computation in
F28 , which is motivated by inefficiency of masked implementation of, e.g., AES; the ISE
implementation is set within the context of the VexRiscv micro-architecture. Beyond the
application outside unmasked AES, an interesting feature of the ISE is support for both
scalar and vectorised, or SWAR-like cases. Specifically, the latter packs four 8-bit field
elements into a 32-bit word (rather than one). By using this capability to exploit Instruction
Level Parallelism (ILP) which is evident in the masked software implementations, execution
latency can be reduced at the cost of higher area.

Computation on matrix-like structures. Elbirt [Elb07] presents an ISE for SPARCv8
which supports arithmetic in F2[x]/p(x). More specifically, it supports the computation of
a field multiplication r(x) = a(x)× c(x) (mod p(x)) involving a constant polynomial c and
a degree-8 irreducible polynomial p. Expressing the action of c and p as an (8× 8)-entry
matrix, the field multiplication is expressed as a matrix-vector multiplication over F2 (with
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a then representing the vector). The AES MixColumns round function is a motivating
use-case: within that context, p = x8 + x4 + x3 + x + 1 and c ∈ {1, x, x + 1}. However,
the ISE is more general-purpose in the sense that the matrix stemming from c and p is
parameterisable. The (abstract) analysis in [Elb07, Section III.A] considers storage of
the matrix in Static RAM (SRAM), with the (concrete) evaluation in [Elb07, Section
IV] considers use of an Field Programmable Gate Array (FPGA) block Random Access
Memory (RAM). The ISE could therefore be viewed as a more general mechanism for
matrix-vector multiplication over F2.

Targeting “a generic solution that would apply to any (lightweight) cipher”, Engels
et al. [EKP+13] present what they term a Non-linear/Linear Unit (NLU) which allows
evaluation of 1) “operations expressed in binary matrix multiply-and-add form” in linear
mode, or 2) “operations expressed in their [A]lgebraic [N]ormal [F]orm (ANF)” in non-
linear mode; [EKP+13, Table 1] details a 4 instruction ISE that exposes the NLU to
software; although based on an assumed word size of w = 8 bits, the underlying principles
generalise to other choices of w. NND shifts some data x into the configuration register c.
NNL takes an 8-bit input x, then computes ri = c(xi) to form the output r; c is determined
by the configuration register, with xi and ri represent 4-bit sub-words of x and r (meaning
i ∈ 0, 1). NMU (resp. NMA) takes an 8-bit input x, then computes the output r = c × x
(resp. r = c × x + y). The operand c is determined by the configuration register, with
the computation best described as a matrix-vector multiplication over F2 (making it
functionally analogous to the approach of Elbirt [Elb07]). [EKP+13, Figure 1] details
the high-level NLU data-path implementation, which highlights a depth-d First-In First-
Out (FIFO) buffer allowing accumulation-like use of NMU and NMA; [EKP+13, Figure 2]
and [EKP+13, Figure 3] detail low-level components used to support linear and non-linear
modes. The design and implementation is evaluated, and shown effective for a range of
block ciphers including PRESENT, CLEFIA, SERPENT, and AES. Although NLU is
originally proposed for 8-bit platform (e.g., AVR microcontrollers), Engels et al. state that
“its modular architecture allows it to be used in 16, 32, 64 and even 4-bit CPUs”. Uzuner
and Kavun [UK24] validate (part of) the statement by extending the design of NLU on
the 32-bit RISC-V, where the new ISE is named NLU-V.

Tehrani et al. present ISEs for RISC-V which support computation of 1) bit-wise
matrix-vector multiplication [TGSD20, Section III.C] and 2) nibble-wise matrix-vector
multiplication [TGSD20, Section III.D], as used within a suite of light-weight, 64-bit block
ciphers. The former is special-purpose, supporting the diffusion layer in PRINCE, whereas
the latter is general-purpose, supporting the same layer in, e.g., Midori, Twine, Skinny,
and MANTIS. [TGSD20, Figure 3] highlights some central features of the nibble-wise
matrix-vector multiplication ISE. Specifically, note that the (compressed) 256-bit matrix
operand is specified by the content of 8 special-purpose registers; the 64-bit vector operand
is specified by the content of 2 general-purpose registers. [TGSD20, Figure 4] illustrates
the associated data-path, which acts to decompress the matrix and compute the result.
Two instructions are required, which produce the more- and less-significant 32-bit halves
of the result respectively.

Computation on bit-sliced representations. As introduced by Biham [Bih97], bit-slicing
is based on 1) a non-standard representation of data, and 2) a non-standard implementation
of functions, which operate on said representations. It essentially describes a given
cryptographic primitive as a “software circuit” comprising a sequence of bit-wise instructions
(e.g., NOT, AND, and OR). Although not a general-purpose technique, when applicable,
use of bit-slicing can offer advantages that include data-oblivious execution latency and
hence immunity from cache-based side-channel attacks (see, e.g., [KS09]). In the design of
Serpent [BAK98, Page 232], there is a suggestion for accelerating bit-sliced implementations
via a “BITSLICE instruction” or ISE; the suggestion was later investigated in detail by
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Grabher, Großschädl, and Page [GGP08]. In both cases, the idea is to compress a sub-
circuit, i.e., the sequence of bit-wise instructions representing an n-input Boolean function,
into a Look-Up Table (LUT): the LUT is first configured with a truth table for the
function, then accessed to apply said function. Note that similar functionality is offered
by, e.g., the x86 vpternlogd [Int22b, 5-616–5-618] instruction.

Kiaei et al. [KMD+20] present SKIVA, an extension of the SPARC-V compliant
LEON3 core designed to support implementations based on the use of (aggregated)
bit-slicing. More specifically, an ISE [KMD+20, Table 1] is used to efficiently support 1)
conversion to and from bit-sliced representation, 2) higher-order masking (via an instruction
that aligns aggregated slices), and 3) data-redundant computations. Kiaei, Conroy, and
Schaumont [KCS23] later port the SKIVA design concept to RISC-V.

Computation in post-quantum constructions. In recent years, Post-Quantum Cryptog-
raphy (PQC) has been one of the fastest-growing areas in cryptography and, meanwhile,
has motivated many related ISE designs. Among various PQC algorithms, the ones based
on hard lattice problems have received the most ISE design proposals, partly driven by
the fact that at present three out of four standard PQC algorithms selected by NIST
are lattice-based [AAC+22], i.e., Kyber, Dilithium, and Falcon. In optimised software
implementations of lattice-based cryptosystems, hashing (based on Keccak-f [1600]) and
polynomial arithmetic are often identified as the two major bottlenecks. About the latter,
the polynomial multiplication is the most performance-critical, and the Number Theoretic
Transform (NTT) is a widely-used method to accelerate its computation. To further
improve the practical performance of NTT implementation, a number of optimisation
methods are studied and cover the different aspects, e.g., various NTT butterflies, modular
arithmetic, NTT layer merging, etc. Given NTT is a core and bottleneck operation, it is
reasonable that almost all existing ISE proposals for lattice-based cryptosystems involve
the custom instructions for NTT and/or the underlying arithmetic of NTT.

Targeting three lattice-based algorithms NewHope, Kyber, and Saber, Fritzmann, Sigl,
and Sepúlveda [FSS20b] develop and integrate a set of tightly-coupled hardware accelerators
into a 32-bit RISC-V CV32E40P core, and provide an associated ISE. The accelerators cover
all the performance-bottleneck subroutines, e.g., NTT, modular arithmetic, Keccak-f [1600]
permutation, and binomial sampling. Inside the NTT accelerator [FSS20b, Figure 2],
several units are designed and target the different internal operations of NTT: 1) a modular
arithmetic unit to support NTT butterfly and packed modular arithmetic operations; 2) a
twiddle update unit to accelerate the computation of twiddle factors; 3) an address unit to
accelerate NTT layer merging.

Nannipieri et al. [NDZ+21] present an ISE to accelerate Kyber and Dilithium on 64-bit
RISC-V, which focuses on particularly the NTT in both algorithms. For each algorithm,
there are five custom instructions for respectively the modular multiplication, modular
reduction, twiddle factor setting, Cooley-Tukey (CT) butterfly [CT65] (used in forward-
NTT), and Gentleman-Sande (GS) butterfly [GS66] (used in inverse-NTT). In the ISE
implementation, a CAV6 core is used as the base core, and two PQ ALUs (for respectively
Kyber and Dilithium) are added to support the custom instructions. Given this strategy
uses two distinct PQ ALUs, Miteloudi et al. [MBB+23] explore the design of a unified PQ
ALU for the same two algorithms to further reduce the hardware overhead. In detail, in
the multiplication unit [MBB+23, Figure 5], the integer multiplication circuit is shared,
whereas two reduction circuits are separated for two different moduli. Additionally, an
associated RV32 ISE (named PQVALUE) is presented, and for each algorithm there are
also five instructions: 1) three for modular operations (i.e., addition, subtraction, and
multiplication) and 2) two for NTT butterflies (i.e., CT and GS). Instead of packing two
polynomial coefficients in one register, each of their single-cycle butterfly instructions
accepts three operands and outputs two results, which 1) overwrites the source registers
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and 2) is only possible when the register file has three read ports and two write ports (e.g.,
their experimental platform PULPino SoC meets this condition). If the required number
of ports is not available, one can instead use three modular arithmetic instructions to
compute a NTT butterfly (see detail in [MBB+23, Figure 8]).

Li et al. [LQYW24] propose an ISE for 32-bit RISC-V to accelerate the GS butterfly,
which is used in the inverse-NTT of Kyber. Due to the speed-up by ISE, the GS butterfly
becomes a more efficient option than CT butterfly and therefore is used for also the
forward-NTT in their case. The dedicated instruction for GS butterfly is called butterfly
(see, e.g., [LQYW24, Figure 2]), which accepts two 16-bit polynomial coefficients (packed
in one 32-bit register) and a twiddle factor as inputs, and outputs two 16-bit results (again
packed). Notably, the associated coefficient reduction utilises an optimised version of the
k2-reduction [LN16], which, per their experiments, has a lower area overhead than other
alternatives such as Montgomery and Barrett reduction. Furthermore, with the same base
core (Hummingbrid E203), Li et al. [LTQ+24] present an ISE also for Dilithium. Based
on also the k2-reduction but using a different set of parameters, three custom instructions
(for respectively modular addition, subtraction, multiplication) are designed to facilitate
the CT/GS butterfly. Another major custom instruction is named keccak that performs a
single round permutation of Keccak-f [1600], and it relies on a dedicated Keccak accelerator
and an extra 1600-bit inner register file to store the whole state.

Based on a 32-bit RISC-V Ibex core, Geweher, Luza, and Moraes [GLM24] propose
an ISE named Xkyber to assist the Kyber polynomial operations. Since they follow the
wider RISC-V design principles, in all their custom instructions, the Kyber modulus p is
not input as an source operand so that they can keep “2 rs + 1 rd” instruction encoding
format. In addition, to assist the Barret reduction which is used in coefficient multiplication
instruction, a special 5039 constant multiplier is developed, which is then further reused
by a coefficient compression instruction. Remaining four instructions are designed to aid
the coefficient addition and subtraction, and two CBD samplings, respectively.

In addition to NTT-based cases, Fritzmann, Sigl, and Sepúlveda[FSS20a] design and
implement several accelerators and an associated ISE for LAC, in whose polynomial
multiplications one polynomial is general but the other is ternary (i.e., coefficients are
in {−1, 0, 1}). The coefficient-wise multiplication thus can be simplified to addition
or subtraction, and based on this a dedicated ternary multiplier is presented [FSS20a,
Figure 2]. The multiplier accepts the polynomials with a degree up to 255, decided by the
trade-off between area and performance, which means before using it the splitting needs to
be performed for LAC polynomials. Each of the remaining bottleneck subroutines, namely
polynomial generation, BCH decoder, and modular reduction, is also assisted with an
accelerator, yielding totally four custom instructions (one instruction per accelerator).

Motivated by the fact that the hybrid approach (i.e., PQC plus classical cryptography)
is becoming a standard method to integrate PQC into real-world applications, Oberhansl
et al. [OFP+24] explore the design of a uniform accelerator that can assist both pre-
quantum X25519 and post-quantum Saber. The accelerator is based on the schoolbook
multiplication, thus named Extended Schoolbook Multiplier (XSMUL), and is integrated
into a 32-bit CV32E40P RISC-V core. The XSMUL works with 256-bit input/output
(either 16 16-bit polynomial coefficients or a 256-bit integer), relying on a large set of
fixed registers to store them. An ISE related to XSMUL is presented, e.g., the pq.xsmul
instruction can choose different operations to be performed by XSMUL such as polynomial
multiplication, F2255−19 multiplication, etc.

Apart from the above, we note that some ISE designs for post-quantum cryptography are
discussed elsewhere in this paper, e.g., [AEL+20, LMP22, KGRM23, YSZ+24, AOP+24].
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4.2 Class C2: increased input and/or output bandwidth
4.2.1 Concept

Consider a base ISA with an n-address instruction format: it allows instructions to specify
upto n general-purpose register addresses, such that n = ns + nd for ns sources and nd

destinations (or targets). Although the case where n = 2 + 1 = 3 is common, support for
n-address instruction formats more generally, e.g., cases where n > 3, involves a non-trivial
trade-off between a variety of factors. For example, increasing n can increase data-flow
bandwidth which, in turn, facilitates richer forms of computation as a result of access to
more data. Crucially, however, increasing n can also 1) increase encoding pressure (in the
sense that more bits are required to encode the associated register addresses, and hence
instruction), and 2) increase data-flow complexity (in the sense that either n register file
ports or multi-cycle execution must be supported). In order to realise the clear advantage
therefore, any challenges related to the associated disadvantages must be addressed.

Lee, Yang, and Shi [LYS04] observe that cryptographic workloads can be well positioned
to take advantage of this potential, because they are naturally specified in terms of Multi-
word Operands, Multi-word Results (MOMR) operations. When those operations are
mapped more directly onto instructions, their execution will typically be more efficient
than otherwise.

4.2.2 Examples

If n-address instruction formats are attractive, either per the above or in general, an
approach to support them must exist in the base ISA or be specified as part of an ISE. On
one hand, some candidate approaches could be viewed as tackling the challenge indirectly.
For example, reducing encoding pressure could indirectly render an n-address instruction
format viable. One could imagine 1) reducing the number, or restrict access to a subset
of registers (cf. ARM Thumb or RV32E), thereby reducing the number of bits required
to encode each register address, or 2) using a variable-length encoding (cf. x86), thereby
increasing the effective number of bits available for a given format. On the other hand,
other candidate approaches could be viewed as tackling the challenge directly. For example:
1. One could make all register addresses explicit. For example, the XS1 lmul [May09, Page

146] instruction uses n = 4 + 2 = 6, i.e., an 6-address instruction format [May09, Page
246].

2. One could make some register addresses implicit. For example, the x86 mul [Int22b,
Page 4-146–4-147] instruction suggests n = 1 + 0 = 1, due to use of eax as an implicit
source and both eax and edx as implicit destinations.
Steinegger and Primas [SP21] present an ISE for RISC-V, which supports Ascon by
adopting this approach. The ISE implementation [SP21, Figure 1] is set within the
context of the RI5CY micro-architecture; an Ascon-specific AFU operates in the decode
stage, implicitly accessing 10 out of the 32 general-purpose registers.

3. One could make some register addresses overloaded. For example, the ARMv8-M
umaal [Arm22, Section C2.4.267] instruction encoding suggests n = 2 + 2 = 4, even
though the semantics show that 4 sources are used: the two destinations have an
overloaded role as additional sources, which characterises the instruction as destructive
(wrt. the content in those sources) as a result.

4. One could make some register addresses derived. For example, Lee and Choi [LC08]
propose the Register File Extension for Multi-word and Long-word Operation (RFEMLO)
where a group of n = 2l contiguous register addresses are derived from a single register
address i plus a level l, i.e., (i, l) 7→ ⟨i, i + 1, i + 2, . . . , i + 2l − 1⟩. Note that any
register with special-case semantics may plausibly complicate such an approach. For
example, various RISC-like ISAs fix the 0-th general-purpose register to 0, e.g., to
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support synthesis of pseudo-instructions. It may be difficult, therefore, to (selectively)
include or exclude that register in or from a group as need be.
Gao et al. [GGM+21] present an ISE for RISC-V, which supports masked software
implementations by adopting this approach. The ISE implementation [GGM+21, Figure
3] is set within the context of the SCARV micro-architecture; a masking-specific AFU
operates in the execute stage, deriving n = 4 + 2 = 6 addresses using a pair-based
scheme [GGM+21, Page 7], i.e., an instance of RFEMLO where l = 1.

5. One could make some register addresses distributed across multiple instructions. For
example, the RISC-V mul and mulh instructions [RV19, Section 7.1] use n = 2 + 1 = 3.
However, the 2 destinations that capture a (2 ·w)-bit product are distributed across two
instructions: by reusing the same 2 sources, mul and mulh compute and then write-back
the w LSBs and MSBs of said product espectively.
Many instances of ISEs for carry-less multiplication adopt this approach. For exam-
ple, Fiskiran and Lee [FL04] present an ISE is set within the context of the PLX
micro-architecture; their case-2 variant defines two instructions, namely bfmul.lo and
bfmul.hi, which respectively write the LSBs and MSBs of a computed product into a
general-purpose register.

4.3 Class C3: mismatched word size and data-path widths
4.3.1 Concept

Given a base ISA which specifies a w-bit word size, the first two problems identified by
Nahum et al. [NOOS95, Section 4] relate to the use of operations whose natural word
size is either less-than (i.e., “sub-wordsize”) or greater-than (i.e., “super-wordsize”) w.
Put another way, such operations would be more naturally processed by a data-path,
and so natural word size of some w′ ̸= w bits. For example, the state (or block size)
of a block cipher design might be 64-bit (e.g., PRESENT [BKL+07]) or 128-bit (e.g.,
AES [NIST01]) and so w′ > w = 32; the computation performed on that state might be
1-bit (e.g., DES [NIST99]), 4-bit (e.g., PRESENT [BKL+07]), 8-bit (e.g., AES [NIST01]),
or 16-bit (e.g., IDEA [LM90]) oriented and so w′ < w = 32. In the case of AES, for
example, the choice is explicitly rationalised: although still a compromise, specifying 8-bit
oriented computation supports versatility [DR02, Section 5.1.4], i.e., “the ability to be
implemented efficiently on different platforms”. In other cases (e.g., Speck [BSS+13] and
Simon [BSS+13], RC5 [Riv94] and RC6 [RRSY98]), this approach is taken further by
allowing specification of the natural word size as a parameter.

In the w′ > w case, it is common to represent a w′-bit operand using a sequence of
w-bit words; associated challenges include efficiently dealing with any interaction, e.g.,
carries, between those words. In the w′ < w case, it is common to harness existing support
for Single Instruction Multiple Data (SIMD) or SIMD Within A Register (SWAR) (i.e.,
packed) operations. However, non-orthogonality in that support is a common challenge: in
early work of this type Acar [Aca97, Section 5.4.1] noted, for example, that MMX “lacks
certain instructions such as 16-bit and 32-bit unsigned multiply and multiply-add” which
made harnessing it in cryptographic use-cases more difficult. Arguably this issue has
improved over time, but, even now, support for w′ < 8 is not common.

4.3.2 Examples

Permutation for w′ = 1 bit sub-words. Particularly within the context of algorithms for
symmetric cryptography, permutation of bits within a larger word is a common operation.
In hardware, this operation has essentially no (computational) overhead in the sense that
one simply “rewires” the inputs to form the outputs. In software, however, said overhead can



H. Cheng, J. Großschädl, B. Marshall, D. Page, and M.-J. O. Saarinen 17

be significant. Standard implementations8 of Data Encryption Standard (DES) commonly
exhibit two approaches to addressing the challenge which results. First, they capitalise on
special structure some permutations, e.g., IP and FP (the initial and final permutations);
in modern alternatives to DES, such special structure might in fact exist by-design, so
as to actively facilitate efficient implementation. Both Warren [War12, Chapter 7] and
Knuth [Knu11, Section 7.1.3] survey a range of fairly generic techniques of a similar type.
Second, they effectively pre-compute the action of some permutations, e.g., P and E (the
P-box and expansion permutations), by “folding” them into existing S-box look-up tables.

Beyond such techniques, however, bit permutation is an obvious target for support
ISEs which fall into one of two high-level classes. The first class are algorithm-specific ISEs
in the sense they support one specific permutation. For example, Tehrani et al.[TGSD20,
Section III.B] define ISEs intended to support the specific bit permutations used within
the diffusion layer in PRESENT and GIFT. The second class are algorithm-agnostic
ISEs in the sense they support any permutation: see, e.g., [SL00, YL00, ML01, LSY01,
SL02, SYL03, LSY+04, Shi04, LYS05, HYL08, HL08, SYL08, Hil08, KKRM13, KAMS19].
Often, the instructions in such an ISE support a somewhat special-purpose permutation
building-block which can be iterated in a structured manner (e.g., via a permutation
network, such as omega-flip) to yield an arbitrary, general-purpose permutation; the
building-block permutation is sometimes configurable, as in the case of Burke, McDonald,
and Austin [BMA00, Section 5] which allow (partial) permutation of one register based on
specification held in another.

Permutation for w′ > 1 bit sub-words. The x86 pshufb [Int22b, Page 4-416–4-419] and
RISC-V Zbkx extension [RIS24, Section 34.3.3.] (including xperm8 and xperm4) adopt a
similar design, which performs an in-place permutation of bytes (i.e., pshufb and xperm8)
or nibbles (i.e., xperm4) in an operand register according to the other control register.
This feature is beneficial for parallel implementations of (small) S-boxes, e.g., one can
use one or more control registers to form a complete look-up table of an S-box. Cheng
et al. [CGM+22, Section 3.3] present a parallel implementation of the 4-bit S-box of
Spongent-π[160] [BKL+13], which is realised by xperm4 on RV32. Eight simultaneous
S-box look-ups take two xperm4 and two xor instructions, plus three extra registers to
hold the constants (i.e., S-box look-up tables and a mask), whose cost is much less than a
pure software counterpart.

May, Penna, and Clark [MPC00, Section 3.1] are among the first9 to specify a
permutation-like operation termed SWAPMOVE. The most general form of SWAPMOVE could
be viewed as an inter-word permutation, in the sense that some bits in an w-bit operand
x are swapped with some bits in another w-bit operand y with further operands n and
m controlling which bits. Although SWAPMOVE and variants thereof (e.g., as an intra-word
permutation where x = y) can be applied in many use-cases, perhaps the most common
is within fix-sliced [ANP20, AP20b] implementations: Adomnicai and Peyrin [AP20a]
explore this fact in detail. Cheng et al. [CGM+22] present a special-purpose ISE design
for SWAPMOVE, which employs a hardcoded set of n and m to obey the standard RISC-V
instruction encoding format. Since only one destination register address can be used,
their ISE includes 1) 1-operand instructions involving only x, i.e., a single instruction
performs an intra-word SWAPMOVE permutation, and 2) 2-operand instructions, i.e., a pair
of instructions together performs an inter-word SWAPMOVE permutation. In addition, they
discuss a potential, more general-purpose ISE design for SWAPMOVE is possible, which should

8For example, the implementation of Outerbridge is widely available online and reproduced in print
by Schneier [Sch96, Part V]; see Osvik [Osv03, Chapter 4]. for an accessible overview of the techniques
involved.

9Their goal is efficient software implementation of permutations, such as those used by DES; they cite
some prior art, e.g., noting “[t]his technique is utilised in versions of DES available from the Internet (for
example Eric Young’s libdes)”.
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use a somewhat general-purpose set of n and m.

Arithmetic in Z, ZN , and Fp. Most software libraries for Multi-Precision Integer (MPI)
arithmetic represent the operands (which are integers of a length of n bits) via arrays of
w-bit digits or limbs, where w equals the word-size of the underlying processor (called “full-
radix” representation) or is a few bits below the word-size (“reduced-radix” representation).
In general, a radix-2w representation splits an n-bit integer A into l = ⌈n/w⌉ digits/limbs
so that A =

∑l−1
i=0 ai2iw where 0 ≤ ai < 2w for 0 ≤ i < l. The most common word-sizes of

general-purpose processors (resp. microcontrollers) are 8, 16, 32 and 64 bits. Algorithms
for MPI arithmetic operate on the digits or limbs of such arrays by executing w-bit
instructions supported by the processor, e.g., w-bit addition or (w × w)-bit multiplication.
The most basic techniques for MPI multiplication, namely the so-called operand-scanning
method [MOV96] and product-scanning method [Com90], have complexity O(l2) for l-
digit operands, i.e., the number of (w × w)-bit multiply instructions increases with the
square of the operand length. Besides the length of the operands, the execution time
of an MPI multiplication is also influenced by certain features of the Instruction Set
Architecture (ISA), e.g., the actual semantics of the (w × w)-bit multiplication and some
other instructions, and the micro-architecture, e.g., the latency of the (w×w)-bit multiply
instruction.

The (w × w)-bit multiply instruction is “special” in the sense that its result (i.e., the
product of two w-bit digits or limbs) has a length of 2w bits and does, hence, not fit into
a single register. This contrasts with most other arithmetic/logical instructions, such as
instructions for Boolean operations like AND, OR, and XOR, which follow (at least in the
case of RISC ISAs) the common 3-register instruction format, i.e., two source registers
and one destination register. Over time, computer architects have come up with a broad
and highly diverse range of approaches on how to deal with the “widening” aspect of the
multiply instruction. For example, the multiply instructions of the 8-bit AVR and the
MIPS32 architecture allows one to specify only the two source registers; the product is
placed in either two fixed general-purpose registers (e.g., r0 and r1 in AVR) or special
registers (e.g., hi and lo in MIPS32). In the latter case, the ISA provides instructions
(e.g., mvlo, mvhi) that allow one to transfer the content of these two special registers to
a general-purpose register. The SPARC V8 architecture implements a mix of these two
approaches since its multiply instruction puts the lower half of the 2w-bit product into
a general-purpose register and upper half in a special register named %y. There are also
some ISAs that offer separate multiply instructions for the lower and upper half of the
product; well-known examples are the PowerPC architecture and RISC-V [RV19]. The
ARM ISA provides the most flexible support for “widening” multiplication and includes
also some other instructions that are useful for MPI arithmetic. For example, ARMv7-M
contains the umull instruction for integer multiplication, which allows a programmer to
specify two general-purpose registers for storing the 64-bit product, see [Arm21, Section
A4.4.3]. However, this flexibility comes at a price, namely when single-cycle execution is
desired (as is the case for Cortex-M4 microcontrollers), a total of four buses between the
register file and the multiplier are needed and the register file has to provide a second
write port (i.e., two read ports and two write ports altogether).

One of the first proposals of ISEs to speed up multi-precision arithmetic on a general-
purpose RISC architecture was presented in [Gro02]. The target architecture was MIPS32,
which, as explained above, uses two architecturally visible special-purpose registers (hi
and lo) to store the 64-bit result of a multiplication. In order to speed up the inner loop
of the operand-scanning method for multi-precision multiplication, the instruction macil
is introduced, which executes an operation of the form (u, v) ← a × b + p + u, i.e., two
32-bit words are multiplied and another two 32-bit words are added to the product. The
result of this operation is at must 64 bits long and fits into two 32-bit registers. Normally,
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an instruction for this operation would require four read-accesses and two write accesses to
the register file, but by re-using hi and lo as local storage elements, only two read accesses
and one write access are necessary. Consequently, the macil instruction adheres to the
standard three-register instruction format of the MIPS32 architecture. Thanks to this
instruction, the number of instructions executed in the inner loop of the operand scanning
method can be reduced from 12 to only six.

Reference [Gro03] builds on [Gro02] and extends the ISE design to also support multi-
precision squaring as well as Montgomery squaring. The squaring operation can be
optimized so that is has to execute only about half of the word-level (i.e., single-precision)
multiply instructions compared to a multiplication. In order to facilitate squaring on
MIPS32, a special instruction called macsq (MAC for SQuaring) for computations of
the form (u, v) ← a × b + p + u is introduced. Similar to macil, all operands have a
length of 32 bits, but the result exceeds 64 bits since the product a× b is shifted left by
one bit before the two additions are performed. Due to this left-shift, the result of this
operation can have a length of up to 65 bits. In order to accommodate the extra bit, the
result-accumulation register hi is extended to 33 bits and also the multiplier is modified.
Thanks to these modifications, the inner loop of the squaring operation can be performed
with only six instructions. A full 1024-bit Montgomery squaring can be executed in about
10,500 clock cycles on an extended MSP32 core, which is about 2,500 cycles faster than a
1024-bit Montgomery multiplication.

While the above two papers are based on the operand-scanning method for multiplication
and squaring (resp., Montgomery multiplication and Montgomery squaring), the work
described in [GK03a] uses the product-scanning method as foundation of an ISE design.
The operation performed in the inner loop of product-scanning multiplication has the form
(t, u, v)← (t, u, v)a× b, i.e., two words are multiplied and the 64-bit product is added to a
cumulative sum (t, u, v). This is a classical MAC operation, well-known from, e.g., digital
signal processing. When several such 64-bit products are added up, the sum exceeds 64
bits and can, therefore, not stored in two 32-bit registers anymore, which explains the
purpose of t. In order to speed up this operation, [GK03a] proposes to (i) a modification of
the native MIPS32 instruction maddu, (ii) and extension of the hi register to accommodate
up to 40 bits, and (iii) and instruction sha to shift the cumulative sum in hi and lo 32
bits to the right, with the 32 least significant bit written to a general-purpose register.
Furthermore, an instruction m2addu for squaring is proposed; it simply doubles the 64-bit
product before it is added to the cumulative sum. The main advantage of these ISE for
prudct-scanning multiplication is that the overall execution time is that a single-cycle
multiplier is not needed to reach peak performance, i.e., the inner-loop operation can, to
some extent, “hide” the latency of the multiplier.

Besides prime fields, elliptic curve cryptosystems can also be constructed over a binary
extension field. The paper [GS04] presented a set of five custom instructions to accelerate
arithmetic operations in both types of field. Multiplication and squaring are based on the
product scanning technique and MIPS32 served again as based architecture. However, the
paper also considered optimizing the modular reduction operation for a 192-bit generalized-
Merseenne prime and an irreducible polynomial of degree 191, but standardized by the
NIST. It was demonstrated that the proposed instructions can be easily integrated into
MIPS32 and require only little extra hardware. The customn instructions enabled an
extended MIPS32 core to perform an elliptic curve scalar multiplication over a 192-bit
prime field in 36 msec, assuming a clock speed of 33 MHz. An elliptic curve scalar
multiplication over the binary field GF(2191) required only 21 msec, which is approximately
six times faster than a software implementation on a standard MIPS32 processor.

Using SPARV V8 as base architecture, reference [GTS07] analyzed the performance
of instruction set extensions for long integer arithmetic. The authors focussed more on
the software side rather than instruction-set designor integration and discussed various
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implementation options and optimization opportunities for both modular multiplication and
exponentiation. In particular, they introduced a partial loop unrolling (PLU) technique for
modular multiplication which allowed them to achieve large performance gains at the cost
of a moderate increase in code size, while maintaining the full flexibility of a “rolled-loop”
implementation. In addition, they studied window methods for modular exponentiation
and analyzed their impact on performance and memory requirements. Experimental
results, obtained with an FPGA prototype of the LEON-2 SPARC V8 core, showed that a
full 1024-bit modular exponentiation can be performed in about 12.5 · 106 clock cycles.

Cheng et al. [CFG+24] presented two small sets of custom instructions for 64-bit
RISC-V to accelerate multi-precision integer arithmetic, one for full-radix representation
and the other for a reduced number-representation radix. Both adopt the R4 instruction
encoding format for the custom integer multiply-add instructions, accepting the two
operands to be multiplied and a third operand to be added to the product as inputs. The
reduced-radix multiply-add instructions madd57lu and madd57hu operate on a fixed radix
of 257 (indicated by the instruction names), which was chosen according to the operand
length of 511 bits of the target application. Both multiply two operands held in registers
and add either the lower part (i.e., the 57 LSBs) or the upper part of the product to a
third operand. The upper part is 64 bits long to avoid the so-called multiplier saturation
problem when the operands are not fully reduced (i.e., exceed 57 bits).

SIMD-like operations. The SIMD extension is shown to be beneficial for accelerating
various cryptographic constructions, e.g., [Cla97, BS12, MM12, GM13]. Rawat and Schau-
mont [RS16] propose a set of six custom SIMD instructions, targeting ARMv7 NEON
unit, for accelerating Keccak-p permutation. The design is mainly integrating several bit-
manipulations (e.g., logical, rotation, lane-wise permutation) into one instruction. Using a
different element length in the NEON registers, their ISE can speed up the permutation
that uses a state of 1600, 800, 400, or 200 bits. Li, Mentens, and Picek [LMP23] target
also Keccak-p permutation (i.e., Keccak-f [1600], more specifically) and propose a SIMD
ISE designed for the RISC-V vector unit. Their ISE relies on the large vector lengths, e.g.,
1024 bits on the 64-bit RISC-V, and consists of the instructions to 1) efficiently permute
and/or blend the elements across vectors, 2) accelerate various bitwise computations, and
3) speed up some specific steps in the permutation such as π step and ι step.

The designs of SIMD ISE have been extended to also PQC area, which usually introduce
some mechanisms to speed up the associated (slow) data transfer (e.g., between the SIMD
registers and the memory). Li, Mentens, and Picek [LMP22] present a RISC-V vector ISE
to accelerate the polynomial arithmetic of Kyber, where they introduced three register
pools to the vector unit for efficiently accessing the intermediate values (i.e., polynomial
coefficients, coefficient indices, and twiddle factors). The custom vector instructions include
mainly 1) polynomial load/store (data transfer between the RAM and a register pool)
and read/write (data transfer between a register pool and the vector register file), 2)
multiplication configuration, and 3) finite field computation (with a hardcoded Kyber
modulus). Ye et al. [YSZ+24] extend a 32-bit RISC-V scalar core to make it support
SIMD computing, and then based on this core present a SIMD ISE to aid the computation
of Kyber and Dilithium. To enable the SIMD functionality, the modifications on the
ISA side include: adding the SIMD register files and the associated PALU (Proposed
ALU, for parallel operations), extending LSU to increase the datapath width, and using
dual-issue design. On the ISE side, it consists of three categories of custom instructions
(see [YSZ+24, Table 10]), namely SIMD arithmetic, SIMD Keccak-related, and SIMD
load/store. In particular, the SIMD arithmetic instructions contain some special-purpose
instructions to assist, e.g., modular operations (relying on a special register file named FIX
to store the modulus q) and the centered binomial distribution sampling. Abdulrahman
et al. [AOP+24] propose an ISE to assist the computation of Kyber and Dilithium for
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OpenTitan Big Number (OTBN) ISA10. In OTBN ISA, there are 32 256-bit wide data
registers (w0 to w31) and a special modulus register MOD that holds the used modulus.
Given the Keccak permutation can be accelerated by an existing KMAC core in OpenTitan,
the ISE contains five SIMD instructions that are all related to polynomial arithmetic:
three are respectively for coefficient addition, subtraction, and multiplication, one for data
interleaving between two registers, and one for bit shifting.

4.4 Class C4: special-purpose state and access mechanisms
4.4.1 Concept

This general class of ISE covers a range of more specific cases, namely 1) support for
special-purpose access to existing general-purpose state, and 2) addition of and support
for access to special-purpose state. Considering the execution of some instruction defined
as part of an ISE, the latter might be considered to serve various different purposes.
• Type-1 special-purpose state is introduced because it facilitates instruction execution. For

example, the MIPS32 mul [MIPS01b, Page 169] instruction has the following semantics

GPR[rd]← LSB32(GPR[rs]× GPR[rt]).

In contrast, the mult [MIPS01b, Page 169] instruction has the following semantics

(GPR[lo], GPR[hi])← GPR[rs]× GPR[rt].

Put simply, the former explicitly uses one 32-bit general-purpose register to capture
the least-significant 32 bits of the full product; the latter implicitly uses two 32-bit
special-purpose registers hi and lo to capture the full product (hi captures the more-
and lo the less-significant 32-bits respectivly). As such, the latter is facilitated by
addition of these registers plus a suite of assoicated instructions, i.e. mfhi [MIPS01b,
Page 146], mflo [MIPS01b, Page 147], mthi [MIPS01b, Page 166], and mtlo [MIPS01b,
Page 167], which support access.

• Type-2 special-purpose state is introduced because it configures instruction execution.
That is, one can distinguish between 1) dynamic state that is operated on by the
instruction, or 2) static state that configures (or controls) the instruction, but is not
operated on per se. The latter case could be further characterised as begin either semi-
static, e.g., held within a register, memory, or some special-purpose, or fully-static, e.g.,
encoded as an immediate within the instruction. Within the context of cryptographic
ISEs, a common use-case for such state is to provide a compromise between general-
purpose and special-purpose behaviour: the idea is to use the state as an additional
input which parameterises an otherwise special-purpose operation, thus rendering it
more broadly applicable.

4.4.2 Examples

Type-1 state. Many ISEs which support multiplication use implicitly addressed type-1
state to cope with the challenge of increased output bandwidth (per Section 4.2); as
alluded to above, instances relating to both integer multiplication (cf. Section 4.3) and
carry-less multiplication (cf. Section 4.1) can be readily identified. For example, Fiskiran
and Lee [FL04, Section 3.3] explore variants of the bfmul instruction which differ with
respect to how the (2 ·m)-bit product of a carry-less multiplication is written-back to the
general-purpose register file. What they refer to as case-1 introduces 2 special-purpose
registers, RH and RL, which capture the most-significant (resp. least-significant) half of
said product.

10https://opentitan.org/book/hw/ip/otbn/doc/isa.html

https://opentitan.org/book/hw/ip/otbn/doc/isa.html
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Type-2 state. There are a wide variety of ISE designs which involve some form of type-2
state, which could be further separated into examples where said state is tightly-integrated
(or internal to the micro-architecture, e.g., using a register) or loosely-integrated (or
external to the micro-architecture, e.g., using memory). Although various designs of this
are also presented in other Section, a set of exemplars would include the following:
• Grabher, Großschädl, and Page [GGP08] propose an ISE that supports configurable

4-input, 2-output Boolean functions, vs. fixed 2-input, 1-output alternatives such as
NOT, AND, OR, and XOR, e.g., for bit-sliced [Bih97] block cipher implementation;
semi-static configuration for the function is held in a special-purpose register.

• Tehrani et al. propose an ISE that supports parallel application of a 4-bit S-box [TGS+19,
Section III.A], i.e., a mapping {0, 1}4 → {0, 1}4, to each nibble in a 32-bit word, e.g.,
for block cipher implementation; semi-static configuration for the S-box is held in “three
CSR registers”. Likewise, they propose an ISE that supports nibble-wise matrix-vector
multiplication [TGS+19, Section III.D], the (compressed) matrix operand is held in
“eight 32-bit CSR registers”.

• In their ISE design which supports arithmetic in Fq, Alkim et al. [AEL+20] explore
variants where q and associated parameters are either 1) static, or 2) dynamic: the latter
case is supported by state stored in “internal registers” and accessed by special-purpose
instructions (namely ffset and ffget).

• In their ISE design which supports arithmetic in F2m , Kuo, Garcia-Herrero, and Mae-
stro [KGM21, Figure 1] use “internal registers” to store an irreducible polynomial
required to define the finite field: this state is fixed via the ffwidth instruction, and
used via the ffred instruction.

Specialist look-up addressing. Fiskiran and Lee [FL01] observe that availability of
appropriate addressing modes, i.e., the ability to specify an effective address then used to
access data, have an important role in the efficiency of cryptographic implementations.
In [FL01, Section 3] they assess various addressing modes, including one ISE-like “[load]
instruction which combines index extraction, index scaling and [the] memory access”.
Burke, McDonald, and Austin [BMA00, Figures 8+9] introduce a similar ISE via their
sbox instruction.

The RISC-V compliant CV32E40P (formerly RI5CY) core supports11 an optional,
general-purpose ISE for auto-increment and register-based (versus immediate-based, per
the ISA) index load and store instructions; this has various use-cases in cryptographic
workloads.

Specialist look-up resourcing. Fiskiran and Lee [FL05b, FL05a] introduce an ISE to
support efficient look-up table access, which is later improved by Lee and Chen [LC10].
The idea is that a so-called Parallel Table Lookup (PTLU) module houses 8 on-chip, 256-
entry look-up tables with 32-bit entries; access to said tables (plus optional “in memory”
computation, limited to logical operations, at the output port) can occur in parallel and
with data-oblivious execution latency, with the effective addresses automatically extracted
from sub-words of a register. Fiskiran and Lee [FL05b, Section 5.1] use the PTLU to
store pre-computed S-boxes and thereby accelerate AES, with basically the same approach
applied to the Whirlpool hash function by Hilewitz, Yin, and Lee [HYL08].

Altınay and Örs [AO21] introduce an ISE with similar motivation, intended to support
computation of the Ascon S-box. Their instruction for doing so is CISC-like, in the sense
it operates on data resident in memory: using an input register address rs1, it loads five
32-bit inputs xi ← MEM[GPR[rs1] + 4 · i]4, applies the S-box to produce outputs ri from
the inputs xi, then stores five 32-bit outputs MEM[GPR[rs1] + 4 · i]4 ← ri, where 0 ≤ i < 5

11See, e.g., https://docs.openhwgroup.org/projects/cv32e40p-user-manual

https://docs.openhwgroup.org/projects/cv32e40p-user-manual
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throughout. Put another way, the specialisation is more related to the load and store
semantics, i.e., the input and output rather than content of the S-box.

To support their sbox instruction, Burke, McDonald, and Austin [BMA00, Section
5] propose an implementation which include (various configurations) of cache memory
which are dedicated to S-box access. Writes through the cache are explicitly not visible to
subsequent sbox instructions; the associated sboxsync instruction is therefore included to
allow the enforcement of consistency.

Specialist support for instruction fetch. Within the context of cryptographic workloads,
various authors have observed the utility of a mechanism for hardware-supported loops:
although some kernels allow loops to be unrolled (e.g., a block cipher, based on a fixed
number of rounds), others (e.g., an algorithm for multi-precision integer arithmetic, based
on a variable number of limbs in the representation) often have short loop bodies so
benefit from reduction of any loop overhead. Although not cryptography-specific, such
mechanisms could be classified as implicit, e.g., a hardware-managed loop buffer or cache,
or explicit, i.e., a managed manually in software via some form of ISE.

The RISC-V compliant CV32E40P (formerly RI5CY) core supports12 an optional,
general-purpose ISE for hardware loops which fits the latter class; this has various use-cases
in cryptographic workloads. Grabher et al. [GGH+11, Section 3.2] investigate the concept
of an Instruction Register File (IRF), as originally introduced by Hines et al. [HGTW05]:
their approach allows a loop body to be “recorded” into the IRF and then “played back”
multiple times without the overhead of memory access.

4.5 Class C5: security-critical properties
4.5.1 Concept

Per Section 1, a distinguishing characteristic of cryptographic workloads is their need to
consider security as a quality metric. Consideration of this fact within the context of ISEs
has positive and negative implications, both of which are explored in work arguably more
diverse than that surveyed by other Sections.

From a positive perspective, for example, note that the implementation of an ISE
is necessarily set within the context of some micro-architecture. Use of the ISE can
therefore allow 1) access to or 2) control over resources that would be impossible using
the ISA, and can be leveraged to provide functionality or enforce behaviour which is
security-enhancing in some way. From a negative perspective, however, note that Saab,
Rohatgi, and Hampel [SRH16] concluded that naive use of AES-NI allows a specific form of
attack. One can argue reasonably that a similar attack applies to an implementation that
use the ISA alone, so one cannot “blame” the ISE. However, there is a crucial difference,
in the sense that various countermeasures are viable in an ISA-based implementation but
non-viable in an ISE-based implementation: this fact stems from flexibility of software
versus hardware (i.e., micro-architectural implementation of the ISE), leading to the
challenge of designing ISEs which can be composed with countermeasures.

4.5.2 Examples

Security-informed design philosophy. Some work can be classified as taking a broader,
and higher-level approach, in the sense it addresses challenges in (cyber-)security more
generally (which then impact cryptography in specific instances) by fundamentally re-
evaluating what an ISA should be or do within that context. Most examples are arguably
better framed as altering versus extending the base ISA, although intersect with reasonable
definitions of ISE even so.

12See, e.g., https://docs.openhwgroup.org/projects/cv32e40p-user-manual

https://docs.openhwgroup.org/projects/cv32e40p-user-manual
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• Ge, Yarom, and Heiser [GYH18] present the case for a “new security-oriented hard-
ware/software contract” they dub the augmented ISA (aISA): see also [Hei18, LPAF+18].
Their argument, in essence, is that normal ISAs are failing to provide an appropriate
abstraction because they abstract details that would otherwise allow provision of time
protection (i.e., the prevention of unauthorised temporal interaction). Based on the
high-level principle that it should be possible to 1) partition, and/or 2) reset resources in
the micro-architecture, the aISA demands lower-level properties that render the ISA less
opaque, but, as a trade-off, able to provide time protection and hence prevent associated
micro-architectural attacks.

• Zagieboylo, Suh, and Myers [ZSM19] present a RISC-V based variant that supports
enforcement of information-flow control and hence mitigation of side-channel attacks
that leverage execution latency.

• Yu et al. [YHHF19] aim to “present ISA design principles to block microarchitectural side
channels” while also offering “support for efficient memory oblivious computation, and
with safety features that allow modern hardware optimizations”, doing so in a concrete,
RISC-V based variant they dub the Data Oblivious ISA extension (OISA).

• Escouteloup et al. [EFLL20] aim to “prevent timing side-channels, strengthen control
flow integrity and ensure micro-architectural state isolation” using RISC-V as a base
ISA; they propose RV32S, a “secure” ISA design based on RV32I, which embodies
principles such as simplicity, principle of least privilege, transparency, defence in depth,
etc. In concrete terms, they do so via a series of recommendations organised under
3 headings: these are 1) semantics of “SCA hardened” instructions (a “confidential”
sub-set of the register file, automatic memory encryption, availability of an RNG), 2)
improved security guarantees via stricter control-flow (fixed-length instruction encoding,
removal of forward indirect jumps, availability of a dispatch instruction), and 3) support
for Hardware Security Contexts (HSCs).

• Stolz et al. [SFSG23] aim to “augment the RISC-V instruction set architecture with
instructions to deter against the threats analyzed in this work” using a variant of RISC-
V. Per [SFSG23, Section 2], their scope spans embedded-focused threats including 1)
software-based attacks via code injection and re-use, and 2) fault attacks via glitching.
In concrete terms, they do so via a series of recommendations spanning 3 levels of
granularity: these are the basic block level (e.g., hardware-assisted instruction hashing),
the function level (e.g., extension to cater for inter- rather than intra-block control flow),
and the global level (e.g., pointer protection).

Countermeasures: hiding. A hiding [MOP07, Chapter 7] style countermeasure can be
characterised as attempting to prevent an associated side-channel attack by decreasing
the Signal-to-Noise Ratio (SNR); this can be achieved by 1) decreasing signal (e.g., make
observed samples constant), and/or 2) increasing noise (e.g., make observed samples
random).

An example of the first class is support for data-oblivious (also “constant-time”) versus
data-dependant execution latency. In a generic sense, one could make the argument that
ISEs often make this and similar approaches easier. ISEs for AES such AES-NI [Gue09,
DGK19] can replace look-up style implementation techniques such as T-tables [DR02,
Section 4.2], and thereby avoid data-dependant execution latency implied by memory
access as a side-effect. Either way, however, more specific support is an emerging feature
in ISAs and/or ISEs. First, via a processor mode: such an approach is taken by the the
ARM Data Independent Timing (DIT) and the Intel Data Operand Independent Timing
(DOIT) mechanisms, both of which enforce data-oblivious execution latency for a subset of
instructions while the associated mode is enabled. Second, via stricter instruction semantics
which constrain the micro-architectural implementation: such an approach is taken by
the RISC-V Data Independent Execution Latency (DIEL) (meta-)extensions Zkt and
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Zvkt [RIS24, Sections 34.6 and 35.2.15]. These extensions do not define functionality per
se, but with them the processor “attests that the machine has data-independent execution
time for a safe subset of instructions.” In other words, the Zkt and Zvkt extensions expand
the hardware-software contract to include data-independent latency for some instructions.

An example of the second class is support for various forms of diversified (i.e., ran-
domised) instruction execution, with a common sub-class being temporal reordering (or
“shuffling”). In a generic sense, one could make the argument that ISEs often make this
and similar approaches harder: an ISE-based implementation will typically comprise fewer
instructions, for example, which implies less ILP to harness via shuffling; in turn, this acts
to limit the security improvement possible. Either way, however, more specific support
is considered by various ISEs. Bayrak et al. [BVIB12] focus on reordering instructions,
in the sense their aim is to support execution instructions in a randomised order. They
do so by adding an additional unit on the instruction fetch path between the core and
memory (or instruction cache, more specifically). This unit is tasked with interpreting a
pseudo-instruction which describes a subsequent block of instructions (see, e.g., [BVIB12,
Figure 2]), then delivering those instructions to the fetch unit in a constrained random
order. Zhou et al. [ZQL+23] focus on reordering data, in the sense their aim is to support
permutation of indices then used, e.g., to randomised access to and hence operations on
register- or memory-resident data. They do so by adding an additional unit to house and
permute the content of dedicated shuffling registers (see, e.g., [ZQL+23, Table 2]), plus
various instructions to, e.g., invoke the permutation and access said registers.

Countermeasures: masking. A masking [MOP07, Chapter 10] style countermeasure can
be characterised as attempting to prevent an associated side-channel attack by employing
a randomised representation, harnessing the underlying concept of secret sharing [Sha79];
doing so eliminates the relationship between data used during execution and that specified
within the underlying (i.e., unmasked) algorithm.

At a high level, a given masking scheme specifies a masked representation, plus a means
of performing masked computation. So, first, a d-th order masking scheme represents
a variable x as x̂ = ⟨x̂[0], x̂[1], . . . , x̂[d]⟩, i.e., as d + 1 statistically independent shares: a
Boolean masking scheme demands that x = x̂[0]⊕ x̂[1]⊕ · · · ⊕ x̂[d], whereas an arithmetic
masking scheme (typically) demands that x = x̂[0] + x̂[1] + · · ·+ x̂[d] (mod 2k) for some k.
Second, some functionality f which would be applied to x is translated into a compatible,
masked alternative f̂ applied to x̂. The realisation of f̂ can be categorised as either
circuit-based or table-based: the former expresses the entire computation, i.e., both linear
and non-linear components, as a (Boolean and/or an arithmetic) circuit of nodes termed
gadgets, whereas the latter supports any non-linear components (e.g., the S-box) by using
a look-up table.

ISEs for masking have thus far focused on circuit-based implementations, and therefore
provision of instructions with gadget-like semantics. In the case of a Boolean masking
scheme, for example, instructions might include masked variants of Boolean operators such
as AND and OR which realise the SecAnd (or secure, masked AND) and SecOr (or secure,
masked OR) gadgets described by Biryukov et al. [BDLU17, Table 1] for d = 1. This
approach was proposed by Kiaei and Schaumont [KS20] and realised soon after by Gao
et al. [GGM+21]. The evaluation presented in [GGM+21, Section 5] focuses on various
symmetric primitives; Krausz et al. [KLS+23] used this as motivation, further expanding the
ISE design and implementation to cater for various asymmetric, post-quantum primitives.

However, a limitation of such work is the focus on first-order masking where d = 1.
Generalisation to higher-order masking where d > 1 is attractive, but challenging for
various reasons including the number of input and output shares for a given gadget: this
is essentially an instance of the increased input and/or output bandwidth challenge per
Section 4.2. Marshall and Page [MP21] address the challenge by framing it as an instance
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of vector processing, i.e., by treating x̂ as a (d + 1)-element vector then specifying an ISE
which operates on a vector register file. Lozachmeur and Tisserand [LT23] address the
challenge by framing it as an instance of scalar processing, instead “packing” blocks of
shares into scalar registers. Consider application of a masked AND gadget to x̂ and ŷ in a
case where d = 3. The ISE supports standard 3-address instructions for such gadgets, but
assumes blocks of the d + 1 = 4 shares are packed into each input (resp. output) operand.
So, rather than a single (complex) executed instruction with 2 · (d + 1) input operands,
the idea is to have multiple (simple) executed instructions with 2 input operands.

Countermeasures: suppression. Rather than being a countermeasure per se, some
mechanisms are better classified as offering support for countermeasures. Mechanisms for
leakage suppression fall into this class: their goal could be described as controlling or even
eliminating certain leakage effects, which (ideally) means they cannot be exploited. At a
high level, one could imagine at least two strategies: one could task hardware (e.g., the
micro-architecture) with doing so implicitly, or software (stemming from, e.g., a developer
or compiler) with doing so explicitly purely using the ISA or with support of an ISE.
Numerous leakage effects (see, e.g., [CBCH23, Table 1]) relate to micro-architectural
behaviour which is abstracted from, and thus inaccessible to software by design. In such
cases, use of ISEs as a way to to selectively allow such access is therefore attractive. At a
lower level, the mechanism employed by such an ISE might involve 1) spatial isolation,
i.e., partitioning, and 2) temporal isolation, i.e., flushing (or resetting) to prevent abuse
of shared micro-architectural state. For coarse-grained resources (which are, e.g., shared
at a process granularity) both strategies are viable, but for fine-grained resources (which
are, e.g., shared at an instruction granularity) the overheads typically associated with
partitioning render it less so. flushing becomes the only viable option.

In existing literature, two broad classes of leakage suppression ISE can be identified.
First, Cheng, Page, and Wang [CPW24] present an ISE that exemplifies leakage suppression
via somewhat implicit resource flushing. The underlying idea is that general-purpose
instructions are equipped with an additional “hint”. Use of the hint results in the same
functional properties, but different behavioural properties: specifically, the hint signals
to the micro-architecture that overwriting should be prevented, e.g., by pre-flushing
the destination resource. Second, various authors present ISEs that exemplify leakage
suppression via somewhat explicit resource flushing. The underlying idea is that special-
purpose instructions are added, which allow some form of control over resources in the
micro-architecture. At least two approaches could be considered:
1. A lower-level approach focuses on the resources themselves. An example of such an

approach would be allowing dedicated instructions to flush specific resources. Instances of
this approach are adopted by flavours of x86 (e.g., instructions such as clflush [Int22b,
Page 3-161] and invd [Int22b, Page 3-521]) and ARM (e.g., memory-mapped maintenance
operations [Arm21, Section B2.2.7]).

2. A higher-level approach focuses on instruction execution. An example of such an approach
would be support for fence (or barrier) instructions. When defined with respect to some
class of instructions, a given fence will guarantee all instructions in said class before
it (in program order) complete execution before any instructions after it; for the class
of memory access instructions, for example, fences are often used to enforce a specific
memory ordering model. Instances of this approach are adopted by flavours of x86 (e.g.,
via mfence [Int22b, Page 4-22], sfence [Int22b, Page 4-620], and lfence [Int22b, Page
3-585]), ARM (e.g., via dmb [Arm21, Section A7.7.33]), SPARC (e.g., via membar [SPA16,
Section 8.4.3]), MIPS (e.g., via sync [MIPS01b, Pages 407–411]), and RISC-V (e.g., via
fence [RV19, Section 2.7]). The same concept could be applied to enforce separation of
instructions with respect to any micro-architectural resource, however, so, for example,
a suitable fence instruction could be framed as a way to flush them.
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For example, Gao et al. [GMPP20] focus on fine-grained resources (e.g., pipeline registers),
and analogue forms of leakage (e.g., power or EM). Using RISC-V as a platform, they
introduce the fenl.fence instruction: execution of said instruction flushes resource(s)
specified at run-time by a special-purpose register (although an immediate variant is
discussed in [GMPP20, Section 2.2.2]). Wistoff et al. [WSG+20] focus on coarse-grained
resources (e.g., caches) and discrete forms of leakage (i.e., execution latency). Using RISC-
V as a platform, they introduce the fence.t instruction: execution of said instruction
flushes resource(s) specified at run-time by an immediate operand. Li, Hopkins, and
Parameswaran [LHP20] focus on coarse-grained resources (e.g., caches) and discrete forms
of leakage (i.e., execution latency). Using RISC-V as a platform, they introduce the flushx
instruction: execution of said instruction flushes resource(s) specified at design-time which
is termed the “sphere of flushing”. Interestingly, architectural (e.g., the general-purpose
register file) as well as micro-architectural resources can be included in that specification.

Countermeasures: hybrid. Although the term hybrid can be viewed as implying some
combination of two (or more) techniques, it is overloaded in the sense that it depends on
the techniques in question. In this Section we treat it as a catch-all for the combination of
ISE-related countermeasure techniques, versus the non-hybrid or dedicated alternatives
described elsewhere.
• Tillich, Herbst, and Mangard [THM07] taken an existing ISE for AES, namely [TG06],

and consider how software-focused countermeasures against side-channel attack can be
applied, i.e., how security can be enhanced through a focus on use versus implementation
of the ISE. Per [THM07, Page 154] the outer-most rounds of AES are implemented using
the ISA with countermeasures, whereas the outer-most rounds of AES are implemented
using an ISE without countermeasures; doing so addresses the challenge of compsability
of ISEs and countermeasures, allowing the outer-most, more vulnerable rounds to be
more secure and the inner-most, less vulnerable rounds to be more efficient. This strategy
mirrors wider study of non-uniform countermeasure use, e.g., by Verhamme, Cassiers,
and Standaert [VCS22].

• Tillich and Großschädl [TG07a] taken an existing ISE for AES, namely [TG06], and
consider how hardware-focused countermeasures against side-channel attack can be
applied, i.e., how security can be enhanced through a focus on implementation versus
use of the ISE. Their options #1 [TG07a, Section 4] and #2 [TG07a, Section 5] are more
focused on the physical, i.e., more micro-architectural, implementation, in the sense
they are based on use of a secure logic style and randomised pre-charging respectively;
option #3 [TG07a, Section 6] is more focused on the logical, i.e., more architectural,
implementation, in the sense it is based on use of an additional mechanism (a design
concept later expanded upon in [TKS10]) which semi-automatically ensures inputs
to and outputs from the AFU are masked. Note that [TG07a, Section 3] identifies
AFU-related fowarding logic as a potential source of leakage, and removes this from the
micro-architecture (based on the argument that for use of the ISE, forwarding is not
required).

• Regazzoni et. al [RCS+09] investigate the hybridisation of option #1 presented by Tillich
and Großschädl [TG07a, Section 4]. That is, they consider ISE implementations in which
security-agnostic components are implemented using a standard Complementary Metal
Oxide Semi-conductor (CMOS) logic style, whereas security-concious components are
implemented using a secure MOS Current Mode Logic (MCML) [REP+09] logic style;
doing so is framed within the context of security-aware Electronic Design Automation
(EDA) tool and workflow.

• Kiaei et al. [KMD+20] present SKIVA, an extension of the SPARC-V compliant LEON3
core designed to support implementations based on the use of (aggregated) bit-slicing.
More specifically, an ISE [KMD+20, Table 1] is used to efficiently support 1) hiding via
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data-oblivious computation, 2) higher-order masking, 3) data-redundant computation,
and 4) time-redundant computation: these act to harden an implementation, in the sense
that 1) and 2) are framed as side-channel countermeasures while 3) and 3) are framed
as fault induction countermeasures. SKIVA, and so the associated ISE, could therefore
be described as hybrid in the sense it supports various forms of countermeasure.

Entropy sources, TRNGs, etc. Campbell-Kelly [Cam80] credits Alan Turing with the
introduction of a random number instruction in Ferranti Mark I, built in 1949-51:

At the request of Turing an instruction to generate a random number from a
noise source was provided. Unfortunately, the numbers turned out to be not
particularly random [..]

This quote also illustrates one unique property of random number generators and entropy
sources as instructions; one has to specify their quality and security properties as well.

Mainstream Intel x86 ISA gained a cryptographic random number generator with the
RDRAND instruction of Ivy Bridge processors (2012) [HKM12]. RDRAND is a user-mode
instruction that is directly available to applications. Failure is signaled with the carry flag.
Intel’s implementation was intended to comply with NIST’s recommendations for Random
Bit Generation: SP 800-90A [BK15] and SP 800-90B [TBK+18].

Intel’s RDRAND implementation uses CTR_DRBG [BK15] that is frequently reseeded
from a Physical Entropy Source [TBK+18]. Early versions used AES-128 internally; hence,
output strings from RDRAND were limited to 128 bits of entropy until the next reseed
occurs after 511 blocks [Int18]. Generating keys above this 128-bit security level with
RDRAND required gathering enough random words to force a reseed. With Broadwell
(2014), Intel introduced a second instruction, RDSEED, whose output is intended to be
“full entropy” in accordance with the relevant NIST standard SP 800-90C [BKM+24]; any
n-bit output string from RDSEED should have close to n bits of entropy.

AMD started supporting the x86 RDRAND and RDSEED instructions in 2016 with
their Cryptographic Coprocessor (CCP) 5.0 [AMD17]. AMD also makes raw noise samples
available via a restricted MMIO interface, which is required in the NIST RBG validation
process. Access to similar internal diagnostic resources of Intel DRNG is only possible in
cooperation with Intel (the processor needs to “unlocked”.)

The DARN (Deliver A Random Number) instruction first appeared in Power ISA 3.0
in 2015 [IBM15, Ope24]. Three modes are supported: 32-bit conditioned (SP 800-90C
[BKM+24]), 64-bit conditioned, and 64-bit unconditioned (raw SP 800-90B [TBK+18]
entropy samples for testing.) The return value 0xFFFFFFFF_FFFFFFFF is not considered a
random number but is used to signal both non-fatal and fatal errors, creating a slight (but
cryptanalytically significant) bias if not used very carefully. It is likely that ISA designers
were not aware that it is a compliance requirement that error conditions can be signalled.
Still, the caller can’t know if the noise source is depleted (“busy”) or if the operating
conditions are such that SP 800-90B health tests are failing.

There were early RISC-V “RNG ISA” proposals such as [LCW18] that largely ignored
standards compliance requirements and hence would be limited to non-commercial use.

The development of the RISC-V Entropy Source (ES) interface is documented in
[SNM22]. The ES interface was ratified in 2021 as the Zkr extension and later merged into
the main RISC-V ISA specification [RIS24]. The Zkr extension defines an Entropy Source
CSR (Control and Status Register) with specific entropy properties. On application-class
processors, the physical RISC-V entropy source CSR is not intended to be available to
user-level processes for multiple security reasons outlined [SNM22]; the expectation is that
the obtained entropy is used to seed a (Kernel) RBG of arbitrary type, such as a fast
DRBG that uses scalar or vector cryptography instructions. User applications then use
operating system interfaces to obtain random bits of desired quality.
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To avoid perceived problems with previous ISA approaches, the RISC-V Zkr interface
can signal fatal and non-fatal errors via status bits reserved for that purpose. NIST
SP 800-90A/B [BK15, TBK+18] and BSI AIS 20/31 [KS11] largely drow the technical
randomness and self-monitoring features of Zkr. FIPS 140-3 and various Common Criteria
protection profiles stipulate compliance with these standards. The [RIS24] specification
also suggests an interface for testing and characterization to avoid the product certification
problems caused by the unavailability or “lockdown” of such interfaces on some processors.

5 Conclusion
In general terms, one might expect a SoK-like paper on some topic to 1) survey, analyse,
and evaluate associated work spanning historical development plus the state-of-the-art (at
the time of writing), 2) systematise said work, e.g., via taxonimisation of concepts and
results, and 3) provide insight with respect to said work and the broader field, e.g., by
identifying trends, plus open research directions and challenges. In this paper, we focused
on the specific topic of cryptographic ISEs. We claim that the body of associated work
captures an important point in what is a large, complex design space of implementation
options for cryptography; this claim is evidenced by a rich history, and a vast corpus of both
associated literature (e.g., per our 259-entry bibliography, and including notable theses
such as [Shi04, Fis05, Hil08, Til08, Man11, Raw16, Nis21, Nis21, Fri22]) and concrete
hardware and software artefacts. Within the paper, Section 3 focused on point 2), e.g., by
systematising associated concepts and terminology. Section 4 focused on points 1) and 2),
e.g., by surveying and systematising associated work.

Throughout the paper, but under point 2) in particular, there is significant volume of
and diversity in the surveyed work; coupled with the design space, we attribute this fact
to the topic spanning multiple disciplines. For example, the ISE design process involves
a wide range of technical concepts, e.g., both hardware and software, and a wide range
of stakeholders including 1) policy and decision makers, who fix constraints and select
between options, e.g., based on pertinent use-cases, 2) cryptographers, who focus on design
of the underlying constructions, 3) digital design engineers (cf. [BMT16]), who focus on
hardware designs and implementations, 4) cryptographic engineers, who focus on software
designs and implementations. One one hand, this fact could be viewed as a negative, or
at least a challenge. On the other hand, however, it could also be viewed as a positive:
cryptographic ISEs represent an accessible, active, and impactful topic, with the most
effective work able encapsulating many different technical and non-technical perspectives
and contributions.
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