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ABSTRACT
Side-channel analysis on complex SoC devices with high-frequency
microprocessors and multitasking operating systems presents sig-
nificant challenges in practice due to the high costs of trace acquisi-
tion and analysis, generally involving tens of thousands to millions
of traces. This work uses a cryptographic execution process on a
Broadcom 2837 SoC as a case study to explore ways to reduce costs
in electromagnetic side-channel analysis. In the data acquisition
phase, we propose an efficient electromagnetic probe positioning
strategy that does not require additional tool assistance, signifi-
cantly accelerating the collection of effective electromagnetic traces.
In the side-channel analysis phase, we investigate the combined use
of preprocessing techniques, where the optimal preprocessing ap-
proach successfully reduces the number of required electromagnetic
traces by 12 times, significantly improving the success rate of at-
tacks. Additionally, we implement profiling attacks on such devices
for the first time, including traditional template attacks, MLP-based,
and CNN-based side-channel analysis, demonstrating that even
minimal modeling costs can yield excellent analysis performance.
Our study confirms the feasibility of low-cost side-channel analy-
sis on complex SoCs and indicates that the sensitive applications
running on these devices still require protection.
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1 INTRODUCTION
Compared with microcontrollers, complex SoC devices equipped
with multi-core microprocessors and running modern operating
systems demonstrate higher levels of integration and more power-
ful functionalities, making them the ideal choice for applications
in industrial automation, high-end consumer electronics, smart In-
ternet of Things, advanced medical equipment, etc.. However, it is
not easy to ensure their security in real-world scenarios due to the
threats of side-channel analysis (SCA), which is capable of revealing
the sensitive information within devices from power consumption
[13], electromagnetic (EM) emissions [1], and timing information
during the execution of algorithms [5]. Therefore, it is essential to
study side-channel analysis for complex SoCs.

Recently, the scope of side-channel analysis has expanded be-
yond extracting cryptographic keys to include tasks such as recov-
ering hyperparameters in neural networks [24], memory data [2],
and APP recognition [3]. This paper specifically focuses on EM side
channels for cryptographic algorithms.

SoCs equipped with high-frequency processors (600MHz or
higher) and running modern operating systems present new chal-
lenges for side-channel analysis, with relatively few publications
focusing on such devices. In 2015, Longo et al. [15] conducted an
EM side-channel analysis against the T-table based AES implemen-
tation on the AM335x SoC ARM core, demonstrating the feasibility
of side-channel analysis on SoCs and noting that the complexity of
operating systems increases the difficulty of analysis. In 2017, Fries-
laar et al. [10] claimed to have recovered 12 AES subkeys using only
100 EM traces on a Raspberry Pi 2B v1.2. However, studies indicate
that the number of measurements required for a successful EM
side-channel analysis on SoCs far exceeds that needed on microcon-
trollers, typically ranging from tens of thousands to tens of millions.
For instance, Haas and Aysu [12] recovered the ARM CE AES key
on the Apple A10 Fusion SoC with 5 million to 30 million EM traces;
Barenghi et al. [4] recovered the AES key by analyzing 100,000 EM
traces on the Cortex-A7 processor, utilizing microarchitectural fea-
tures of the superscalar CPU. Thus, reducing the substantial attack
costs when evaluating the side-channel security of such devices
is particularly crucial. Notably, the aforementioned studies all em-
ployed non-profiling attacks, such as Correlation Power Analysis
(CPA) [6]; however, to the best of our knowledge, the effectiveness
of profiling SCA on such devices has not been validated yet.

In this paper, we select the Raspberry Pi 2B v1.2 as the device
under test, a widely recognized high-performance embedded device
based on the Broadcom 2837 SoC, with a maximum clock frequency
of 900MHz, running Raspberry Pi OS. This study comprehensively
evaluates the device’s resistance to side-channel analysis, covering
the entire process from trace acquisition, preprocessing and analysis.
We employ both non-profiling and profiling attacks through the
EM side channel to recover the AES-128 key. To reduce the cost
of attacks, we attempt a combination of various noise reduction
and alignment techniques, significantly decreasing the number
of traces required for key recovery. In addition, we validate the
effectiveness of profiling attacks on such devices. We also find that
effective EM trace acquisition is a critical and time-consuming step



in the evaluation process, and the importance of this step is often
underestimated.

The main contributions of this paper include:
• We explore preprocessing schemes based on time and fre-
quency domain, reducing the number of traces required for
key recovery by 12 times, greatly improving the efficiency
of side-channel analysis on such devices.

• Using the Broadcom BCM2837 SoC as a case study, we detail
the process for side-channel evaluation, thereby providing
the side-channel analysis community with a new practical
case study. The methods presented are easily adaptable to
other similar devices.

The remainder of this paper is organized as follows: Section 2
covers the background knowledge; Section 3 presents the details of
EM trace acquisition from SoCs, the preprocessing, and the analysis
of traces; Section 4 shows the experimental results and discussions;
finally, Section 5 concludes the work.

2 BACKGROUND
2.1 An Overview of Broadcom 2837 SoC

Figure 1: A simplified block diagram of the components of
the Broadcom 2837 SoC.

This subsection primarily introduces the components within
SoCs that are directly relevant to side-channel analysis. As illus-
trated in Figure 1, the Broadcom 2837 SoC is equipped with an ARM
Cortex-A53 multi-core microprocessor, based on the ARMv8-A 64-
bit instruction set, and supports operating system execution. This
SoC utilizes a dual-issue superscalar architecture and an 8-stage
pipeline design, capable of executing two independent instructions
simultaneously, offering a higher degree of parallelism compared
to microcontrollers, although this high parallelism tends to reduce
the signal-to-noise ratio (SNR) [19] of traces. The ARM Cortex-A53
is equipped with 32KB of L1 data and instruction cache and 512KB
of L2 cache, with cache hits or misses directly impacting the execu-
tion time of cryptographic algorithms and the synchronization of
traces. Moreover, the ARM Cortex-A53 supports modern operating

systems (e.g., Linux) and may therefore generate additional noise
during trace acquisition, such as interruptions by high-priority
processes, kernel switches, and the operation of other programs.
Similar to microcontrollers, GPIO and UART modules are com-
monly used to implement the triggering and communication for
EM trace acquisition.

In summary, complex SoCs result in the collected traces being out
of synchronization and accompanied by more noise, thus requiring
more traces to recover secret information.

2.2 Preprocessing
Prior to analysis, employing noise reduction and alignment strate-
gies can reduce the number of traces needed. Specifically, these
processes can be conducted from both the frequency domain and
the time domain.

2.2.1 Frequency Domain. In the frequency domain, it is possible to
implement noise reduction and alignment operations on traces. The
objective of noise reduction is to filter out low-frequency or high-
frequency noise that is unrelated to the cryptographic algorithm.
Initially, the Fast Fourier Transform (FFT) is employed to convert
traces from the time domain to the frequency domain, followed by
the selection of an appropriate filter type (such as low-pass, band-
pass, or high-pass filters) based on the requirements. The choice
of filter parameters can be determined by plotting the frequency
spectrum of multiple traces on the same plot and observing the
signal amplitude. The parameters are then enumerated from high
to low frequency. To address the issue of trace desynchronization, a
frequency domain-based analysis method is utilized. This involves
calculating the Power Spectral Density (PSD) of each trace [20].

2.2.2 Time Domain. For traces misaligned in the time domain, we
can first perform denoising in the frequency domain, followed by
using alignment strategies. We use elastic alignment [21] to align
traces in the time domain, using the Dynamic TimeWarping (DTW)
algorithm, which measures the similarity between two sequences.
In aligning a set of traces, a random trace is typically chosen as a
reference (denoted as 𝑋 ), and other traces in the set (such as the
trace 𝑌 ) are aligned to it. The optimal matching path (warp path)
determined by DTW, defines the best matching points between
the reference trace 𝑋 and target trace 𝑌 . To prevent an increase
in the length of the trace after alignment, asymmetric projections
(equations 14 and 15 in [21]) can be adopted, meaning the target
trace 𝑌 is adjusted to match the reference trace 𝑋 . In practice,
the FastDTW algorithm is used instead of the DTW algorithm to
reduce computational complexity and improve efficiency, while
maintaining accuracy similar to that of DTW. Additionally, the
setting of the radius parameter in the FastDTW, which controls
the size of the local search range for the warp path at each scale
level, must be considered. The radius defines the maximum distance
at which a point in one sequence can be aligned with a point in
another sequence during alignment. A smaller radius value leads
to faster computation speeds but may decrease the accuracy of
alignment; conversely, a larger radius value can enhance accuracy
but will increase computational costs.



2.3 Non-profiling and Profiling Attacks
Side-channel analysis can be categorized into two main types: non-
profiling attacks and profiling attacks. Non-profiling attacks, such
as Differential Power Analysis (DPA) [13], Correlation Power Anal-
ysis, and Mutual Information Analysis (MIA) [11], do not require
a prior detailed understanding of the specific leakage and noise
models of the target device when conducting the attack. In con-
trast, profiling attacks, such as template attacks (TA) [9], stochastic
attacks [18], and machine-learning based attacks [14], require the
attacker to obtain a replica of the target device in order to provide a
detailed characterization of the device’s leakage characteristics and
noise environment. For instance, template attacks typically utilize
multivariate Gaussian models to construct templates, which are
then used to facilitate subsequent attacks.

Recently, Deep Learning-Based Side-Channel Analysis (DLSCA)
[17] has attracted significant attention and is considered as one
of the most powerful profiling attacks. DLSCA is capable of per-
forming attacks directly on the original measurements, effectively
addressing challenges associated with trace misalignment, such as
random delays and clock jitter, while also enabling the evaluation
of cryptographic devices under worst-case scenarios. Among the
prevalent methods in DLSCA, models based on Multi-Layer Percep-
trons (MLP) [22] and Convolutional Neural Networks (CNN) [8]
are particularly common.In this work, we explore the effectiveness
of these two models on complex SoCs.

3 OUR METHODS
This section presents the side-channel evaluation of the Raspberry
Pi 2B. Initially, in Section 3.1, we discuss the experimental setup
for trace acquisition and the techniques for efficient EM probe po-
sitioning. Subsequently, in Section 3.2, we apply noise reduction
and alignment techniques to preprocess the traces. Finally, in Sec-
tion 3.3, we employ three profiling attacks—TA, MLP, and CNN—to
explore their effectiveness on complex SoC devices.

3.1 Acquisition
The Raspberry Pi 2B utilizes an advanced manufacturing process
with very compact dimensions, which makes it very challenging to
use jumpers to capture power consumption directly from the core
power area of the chip. An intuitive alternative is to monitor the
overall power consumption of the SoC, which is typically achieved
by inserting a small resistor into the power line circuit and observ-
ing the voltage changes across it. However, the power consumption
variations generated by a single AES encryption may be minor
compared to the SoC’s overall power consumption, resulting in a
lower SNR, which makes detection and analysis difficult. Given this,
we recommend the use of a magnetic field probe for localized and
precise acquisition of traces during the execution of encryption
algorithms, as this method proves to be more accurate and effective.

For the software implementation of cryptographic algorithms, it
is generally recommended to set the oscilloscope’s sampling rate
to at least four times the target device’s clock frequency to more
accurately capture the actual leakage. However, the clock frequency
of the Raspberry Pi 2B stably operates at 600MHz in most cases. We
conduct the experiment using the maximum supported sampling
rate of 1.25G/s with the PicoScope 6403E and observe that even

when the sampling rate is reduced to 625M/s, it is still possible to
successfully recover all AES subkeys, although this means that more
traces need to be collected. We try all probes from Langer’s RF1
set, RF2 set, and RF3 mini set. Based on the shape and amplitude of
the collected traces, the RF-U 2.5-2 near-field probe is proven to be
the best choice, which is also consistent with experimental results.
Compared to the circular probes used in the existing literature
[4, 7, 10], we find that these circular probes are unable to capture
effective leakage for the Raspberry Pi 2B.

The EM probe positioning is critical for trace acquisition, as
different positions capture varying leakage information and affect
the performance of the attack. For microcontrollers without op-
erating systems and operating at lower frequencies, probes are
typically placed in the core power supply area of the chip or on
the surface of the chip packaging. Typically, a characteristic EM
waveform generated by the 10-round operation of the AES-128
can be observed at multiple locations, often implying that leakage
exists at those locations. However, identifying AES waveforms on
a Raspberry Pi 2B, becomes more challenging. The resistors and
capacitors around the chip packaging can generate significant elec-
tromagnetic interference, such as radiated and conducted emissions
[16], obscuring effective leakage. A commonly used method is to
use a three-axis platform to automatically scan the chip surface and
locate the probe position based on the amplitude and waveform
of the captured electromagnetic traces. This approach suits probes
detecting vertical directions, which are simply positioned perpen-
dicular to the chip packaging but is not applicable to all probe types.
Our approach employs both high-power consumption programs
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Figure 2: An EM trace showing one RSA-1024 algorithm and
two usleep functions.

and low-power consumption programs to determine effective probe
positions. The underlying principle is that the EM traces generated
by high-power consumption programs and those generated by low-
power consumption programs will have significant differences in
waveform amplitude. Using this method, the chip surface can be
manually scanned without the need for an expensive three-axis
platform, quickly locating the areas with leakage. Upon identifying
a potential probe position, correlation-based known-key analysis
can be used to ascertain the presence of leakage. We employ the
RSA algorithm (as a high-power consumption program) and the
usleep function from the C standard library to locate effective probe
positions. As illustrated in Figure 2, despite considerable noise, we



still detect distinct waveform differences produced by the afore-
mentioned programs at certain locations. Subsequently, we collect
traces of the AES at these positions, where clear AES waveforms are
observable (see Figure 4). In our experiments, the optimal position
is shown in Figure 3.

In terms of communication , we adopt an asynchronous serial
communication protocol (UART) to facilitate communication be-
tween the PC and Raspberry Pi 2B. Memory-mapped GPIO is em-
ployed, further reducing trigger delays and enhancing the quality
of the traces.

Figure 3: The optimal probe position in our experiment.

3.2 Preprocessing and Analysis
3.2.1 Removing Outlier Traces. As shown in Figure 4, the collected
traces contain apparent random noise waveforms that need to be
eliminated to improve the quality of the dataset. The voltage range
of the sampling points in the traces is set from -32,512 to +32,512,
represented by a 16-bit integer. Since the voltage values of the noise
waveforms exceed the sampling range, they are truncated to ±32,512.
By counting the occurrences of voltage values at ±32,512 across
multiple traces and setting a threshold, noise traces exceeding this
threshold are filtered out, which results in a loss of about 5% of the
traces in our experiments.

Figure 4: An EM trace of AES-128 with noise.

3.2.2 Correlation-based known-key analysis. Known-key analysis
is employed to determine the presence of leakage in the collected
traces and to identify the optimal intermediate value selections

within the AES algorithm. The effective intermediate values in
side-channel analysis include: (1) the input of the first-round Sub-
Bytes; (2) the output of the first-round SubBytes; (3) the input of the
last-round SubBytes; (4) the input of the last-round AddRoundKey.
By mapping the algorithm’s intermediate values under the correct
key to the Hamming-weight model or the value model, we obtain
hypothetical leakages and compute the correlation coefficients be-
tween these and the actual leakages. As illustrated in Figure 5, the
correlation coefficients at leakage points are significantly higher
than those at non-leakage points, indicating that the optimal in-
termediate value position is the input of the last-round SubBytes,
where a distinct peak in the correlation coefficients is observed.
Although the input of the last-round AddRoundKey also exhibits a
discernible peak, its leakage level is lower than that of the input of
the last-round SubBytes, consistent with the theory that the non-
linearity of the S-box enhances the level of leakage. Additionally,
we observe that the intermediate values from the first round of AES
do not exhibit significant leakage, a finding corroborated by practi-
cal attacks. The Known-key analysis also facilitates dimensionality
reduction in the traces, thereby enhancing analytical efficiency. For
instance, we can opt to analyze only the sampling points around
the peaks of correlation.
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Figure 5: Results of correlation-based known-key analysis
under four different intermediate values.

3.2.3 Noise Reduction and Alignment. First, we employ digital fil-
tering techniques in the frequency domain, such as low-pass and
band-pass filters, to denoise the traces. Subsequently, we utilize
two mainstream alignment techniques: frequency domain-based
alignment and elastic alignment. These methods demonstrate a
higher degree of automation compared to traditional alignment
techniques like peak alignment and patternmatching, and so on.We
first denoise the traces, followed by alignment, given that alignment
techniques are generally more effective in a low-noise environment.
For instance, high-noise components in the time domain obscure
actual leakage, thereby diminishing the efficacy of the alignment
methods. In frequency domain-based alignment, we calculate the



PSD of the traces using the periodogram method. This involves
performing a discrete Fourier transform on the signal sequence,
squaring its amplitude spectrum, and dividing by the sequence
length 𝑁 . For elastic alignment, we utilize the FastDTW algorithm,
setting the radius parameter to 125 to balance performance and
alignment accuracy.

3.2.4 CPA Attack. CPA is one of the most powerful non-profiled
side-channel analysis methods, which describes the linear relation-
ship between hypothetical leakage and actual leakage by calculating
the correlation coefficient. At the trace samples corresponding to
the calculation of intermediate values, the hypothetical leakage
corresponding to the correct key guess exhibits a higher correlation
compared to that of the incorrect key guesses. Typically, by calculat-
ing the correlation coefficient between the hypothetical leakage and
actual leakage and constructing a correlation matrix, the guessed
key is determined, ultimately recovering all AES subkeys using a
divide-and-conquer strategy. We select the guessed key correspond-
ing to the maximum absolute value in the correlation matrix as
the correct key. However, we prefer the Hamming-weight model,
as it usually performs more accurately than the value model in
software implementations of cryptographic algorithms. According
to the known-key analysis, the input of the last-round SubBytes
represents the optimal intermediate value for conducting attacks.

3.3 Profiling Attacks
3.3.1 Template Attack. TA is a robust profiled method that utilizes
multivariate normal distributions to characterize actual leakages.
Unlike non-profiled methods, template attacks are typically divided
into two phases: initially, the construction of templates, which in-
cludes the computation of mean vectors and covariance matrices;
subsequently, these templates are employed to facilitate the attack.
Due to the quadratic growth of the covariance matrix dimensions
with the number of samples in the trace, the selection of points of
interest (POIs) is essential to reduce computational complexity [16].
Common techniques such as SNR, correlation, and Principal Com-
ponent Analysis (PCA) are employed to identify POIs. In this study,
we apply Analysis of Variance (ANOVA) [23] as the distinguisher
because it can effectively handle different data partitions in a way
that is highly consistent with the mechanism of template attacks.
To balance attack performance and modeling costs, we chose to
construct nine templates using the Hamming-weight model instead
of 256 templates based on 8-bit intermediate values.

3.3.2 MLP and CNN Based Attacks. In DLSCA, key recovery is
considered a classification problem. Hence, neural network models
are employed to learn the relationship between the actual leakages
and the hypothetical leakages, mapping the actual leakages to N
probability categories associated with the intermediate values. Sim-
ilar to TA, DLSCA consists of two phases: a training phase and an
attack phase. During the training phase, we apply correlation-based
feature selection to a dataset, using the extracted features as inputs
to the model to enhance both training efficiency and attack per-
formance. The model’s labels are hypothetical leakages, with the
labels encoded using One-Hot Encoding. The hypothetical leakage
of AES that we use is defined by Equation 1.

𝐹 (𝐶𝑖 , 𝐾𝑖 ) = 𝐼𝑁𝑉 _𝑆𝐵𝑂𝑋 (𝐶𝑖 + 𝐾𝑖 ) (1)

Table 1: Datasets under different preprocessing methods.

Datasets Preprocessing Methods Number of Traces
RawSet none 5,000,000
CleanSet removing outlier traces 4,760,256
PSDSet PSD only 4,760,256
AlignSet elastic alignment only 4,760,256
FilterSet band-pass filter only 4,760,256
FiltPSD band-pass filter + PSD 4,760,256
FiltAlign band-pass filter + elastic alignment 4,760,256

where 𝐾𝑖 is the 𝑖-th byte of the last-round key,𝐶𝑖 is the 𝑖-th byte of
the ciphertext, and 𝐼𝑁𝑉 _𝑆𝐵𝑂𝑋 is the inverse S-BOX of AES.

In practical attacks, the key difference between MLP-based and
CNN-based side-channel analysis lies in the neural network models
used, although their predicted labels and model inputs are the same.
We employ the same model architecture for all 16 bytes of the
AES key. The structures of the MLP and CNN models are shown
in Figures 6 and 7, respectively. Both models use the following
hyperparameters.

• Optimizer: Adam with a learning rate of 0.001,
• Loss function: Cross-entropy loss,
• Labels encoded using One-Hot Encoding,
• Batch size: 512,
• Epochs: 100,
• Early stopping strategy with a patience of 30, only saving
the best model,

• Activation function: relu,
• Weight Initialization: He normal initializer for MLP; Glorot
uniform initializer for CNN.

Input layer
Dense(512)
Dropout(0.25)

Dense(512)
Dropout(0.25)

Dense(512)
Dropout(0.25)

Dense(512)
Dropout(0.25)

Dense(512)
Dropout(0.25)

Dense(256)Traces after feature selection

Figure 6: MLP model architecture. The model input is the
trace after feature selection. The output layer consists of
256 neurons, corresponding to the 256 possible values of the
hypothetical leakage. A Dropout layer is added after each
fully connected layer to improve the model’s generalization
capability.

4 EXPERIMENTAL RESULTS
In the following sections, we first use CPA to evaluate the effective-
ness of various preprocessing schemes, then validate the feasibility
of profiling attacks on the Raspberry Pi 2B, and finally compare
the performance of the attacks between deep learning-based side-
channel analysis (e.g., MLP and CNN) and template attacks.
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Figure 7: CNN model architecture.The Conv1D layer has 4
filters with a kernel size of 1, and the padding is set to "same".
As for the AveragePooling1D layer, it has a pool size of 2 with
a stride of 2.

4.1 Setups
To ensure the reproducibility of this paper, this section introduces
the software and hardware platforms used in the experiments.

Target.

• Target Board: Raspberry Pi 2 Model B v1.2 (Broadcom 2837
SoC),

• CPU: a quad-core ARM Cortex A53 (ARMv8),
• Clock Frequency: fixed at 600 MHz,
• Memory: 1GB SDRAM operates at 450MHz,
• OS: Raspberry Pi OS Lite.

Acquisition and measurement equipments.

• PicoScope 6403E Oscilloscope, 1.25GHz sampling rate,
• A Langer RF-U 2,5-2 near-field probe,
• A Langer PA303 pre-amplifier,
• Trigger: Memory-mapped GPIO,
• Communication: UART.

4.2 Comparison of the preprocessing methods
By combining different denoising and alignment methods, we cre-
ate seven datasets (see Table 1). Notably, preprocessing for the third
through seventh datasets occurs after the removal of outliers. Based
on the results of known-key analysis, we insert a trigger signal be-
tween the AddRoundKey operations of the penultimate and final
round of AES to facilitate trace acquisition. In total, we collect 5
million traces, retaining 4,760,256 effective traces after removing
outliers. We evaluate the effectiveness of various preprocessing
schemes using CPA. As illustrated in Figure 8, the preprocessing
scheme combining band-pass filtering with elastic alignment (Fil-
tAlign) achieves a 100% success rate using 80,000 traces for attacks,
reducing the number of required traces by approximately 12 times
compared to the unprocessed dataset (RawSet). Digital filtering
reduces noise, and when combined with elastic alignment, sig-
nificantly improves the success rate of attacks. However, direct
alignment of traces without prior filtering decreases trace quality,
because the elastic alignment depends on matching the voltage

distances between traces, and high noise environments exacerbate
voltage fluctuations, reducing the SNR and disrupting the accuracy
of leakage point matching. We also find that frequency-domain
based CPA performs poorly with or without filtering, suggesting
that the method is extremely sensitive to noise.
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Figure 8: Success rate of AES with different preprocessing
methods.

4.3 Performance of the Template Attack
In this section, we evaluate the efficacy of TA under FiltAlign dataset.
Using the ANOVA distinguisher, we select the top 30 POIs based on
scores, which sufficiently encompass the primary leakage informa-
tion in the dataset. To evaluate the impact of using various numbers
of traces used for modeling (ranging from 150,000 to 2,000,000), we
employ guessing entropy as the metric and conduct 50 experimental
trials on a random subset of the attack set, consisting of 1,000,000
traces. As illustrated in Figure 9, modeling with 150,000 traces and
executing the attack with 10,000 traces yields a success rate of 100%.
Compared to the CPA, TA achieves high attack performance us-
ing fewer traces to model. The number of attack traces used for
successful key recovery is one-eighth that of CPA, although there
are some differences in the difficulty of attacking different bytes
(e.g., bytes 3 and 14 are more difficult). In addition, we note that
the attack performance does not improve significantly when the
number of traces used for modeling is increased from 500,000 to
2,000,000, indicating that the attack performance saturates as the
number of traces used for modeling increases.

4.4 TA vs DLSCA
To compare the performance between TA and DLSCA, we select the
FiltAlign dataset, with 500,000 traces used for training and 10,000
traces for attacking. For TA, templates are created using both the
Hamming-weight model (TA-HW) and the intermediate values (TA-
ID), and 30 POIs are selected using the ANOVA distinguisher. For
DLSCA, we apply correlation-based feature selection, extracting 30
POIs as the model input. We train the same model architecture for
the 16 last-round subkeys of AES (see Section 3.3.2), resulting in
16 MLP and CNN models. We continue to use guessing entropy as
the metric to measure the performance of the three attack methods.
As shown in Figure 10, the performance difference between TA-ID,
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Figure 9: Guess entropy of the last-round key of AES under
six different numbers of EM traces for modeling.

MLP, and CNN is minor. When using approximately 1,500 traces
for attacking, the guessing entropy of the 16 last-round subkeys of
AES reaches 0, which is better than TA-HW (which requires around
5,600 traces).
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Figure 10: Comparison of guessing entropy between TA,MLP,
and CNN on the FiltAlign dataset.

4.5 Discussion
Sampling Rate Setting. Our experiments show that using a sam-

pling rate lower than Nyquist frequency can still be successful when
performing side channel analysis on complex SoCs. This may be
due to the fact that in the software implementation of AES, the
execution of a program statement requires multiple processor clock
cycles to complete. Therefore, even if the sampling rate is below

the Nyquist frequency, it is sufficient to capture the electromag-
netic leakage of the operation. Since the operation continues over
multiple clock cycles, the leakage does not change rapidly over
multiple clock cycles. Theoretically, the higher the sampling rate
used, the better the analysis. We therefore recommend that the
oscilloscope sample rate be set to more than four times the target
clock frequency when performing side channel analysis on such
devices.

Electromagnetic Probe Selection. We use the Langer RF series
near-field probes and find that probes of different shapes exhibit
varying attack performance. In highly integrated SoCs with dense
circuit components, smaller EM probes provide higher spatial reso-
lution and lower sensitivity, allowing us to more accurately localize
specific circuit components, thereby reducing noise from nearby
components.

DLSCA. In our DLSCA experiments, we find that without feature
selection and directly analyzing the raw traces, only partial subkeys
from the last round could be recovered. However, using the same
dataset, TA with feature selection can successfully achieve key re-
covery. Therefore, we believe that feature selection is a crucial step
in DLSCA on complex SoCs, as it can significantly improve attack
performance. While it is feasible to directly recover keys from raw
traces in deep learning-based side-channel analysis on microcon-
trollers, this effectiveness is hard to replicate on complex SoCs. In
most cases, even if the model converges, the accuracy remains a
random prediction probability value. Therefore, this situation im-
plies that it is more difficult to perform side channel analysis on
complex SoCs.

5 CONCLUSION
In this paper, we detail the entire process of side-channel analysis
on complex SoC devices. To address the time-consuming issue of
probe positioning during EM trace acquisition for such devices, we
propose using high and low power consumption programs to iden-
tify leakage points and determine the presence of leakage based
on trace characteristics. Given the high noise and alignment is-
sues of such devices, we employ various preprocessing techniques,
with the most effective method reducing the required number of
attack traces by approximately 12 times. This indicates that trace
preprocessing is necessary when conducting side-channel analysis
on these devices. Furthermore, we implement profiling attacks on
these devices. The experimental results show that on the FiltAlign
dataset, template attacks based on intermediate value modeling,
MLP-based, and CNN-based side-channel analysis have comparable
attack performance. Future research directions include exploring
cross-device performance of deep learning-based side-channel anal-
ysis on such devices.
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