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Abstract
In a typical network, a DNS(SEC) message over 1232 bytes would
either be fragmented into several UDP/IP packets or require a re-
transmit over TCP. Unfortunately, IP fragmentation is considered
unreliable and a non-trivial number of servers do not support TCP.

We present QNAME-Based Fragmentation (QBF): a DNS layer frag-
mentation scheme that fragments/re-assembles large post-quantum
DNS(SEC) messages over UDP in just 1 round-trip while using only
standard DNS records. Our experiments show that DNSSEC over
QBF, with either Falcon-512, Dilithium-2 or SPHINCS+ as the zone
signing algorithm, is practically as fast as the currently deployed
ECDSA-P256 and RSA-2048 setups in resolving QTYPE A queries.

1 Introduction
A series of developments in quantum computing has prompted
the need to replace the cryptographic algorithms based on the
believed hardness of integer factorization and discrete logarithm
problem (DLP). Currently, many Internet protocols rely on these
algorithms to 1) ensure message confidentiality and integrity, and
2) to authenticate the communicating parties.

DNS Security Extensions (DNSSEC) [21–23], being one such pro-
tocol, provides authenticity and integrity for messages exchanged
in the Domain Name System (DNS). In its main capacity, DNS
translates a human-readable domain name (www.example.com) to
a machine-understandable IP addresses (1.2.3.4).

Without DNSSEC, the recipients of a DNS response cannot verify
the integrity of the IP address contained therein, and thus risk being
misdirected to a malicious website [1, 4]. Unfortunately DNSSEC,
owing to its use of classical algorithms, can be rendered completely
ineffective by a sufficiently capable quantum computer.

Although DNS over TLS [14], DNS over HTTPS [13], and DNS
over QUIC [15] have been proposed, they are not a substitute for
DNSSEC. The former establish an encrypted and authenticated
channel between a client and a resolver. On the other hand, DNSSEC
1) works between resolvers and nameservers, and 2) guarantees the
veracity of DNS records by forming a chain of trust up to the root.

In its efforts to sustain digital security in the face of quantum com-
puters, the National Institute of Standards and Technology (NIST)
has selected Crystals-Kyber [7] as Key Encapsulation Mechanism
(KEM) and Crystals-Dilithium [10], Falcon [20] and SPHINCS+ [5]
as signature algorithms. In comparison to their classical siblings
however, these algorithms (colloquially referred to as PQC (i.e. Post-
Quantum Cryptography), have strikingly larger public key and
signature sizes as elucidated in Table 1.

Table 1: A comparison of signature (sig) and public key (pk)
sizes (in bytes) of various signature schemes.

Algorithm Assump. Quantum-safe pk sig
ECDSA-P256 ECDLP ✗ 64 64
RSA-2048 Factoring ✗ 260 256
Falcon-512 Lattice ✓ 897 690
Dilithium-2 Lattice ✓ 1312 2420

SPHINCS+-128s Hash ✓ 32 7856

1.1 DNS Size Constraints
This increase in sizes of signatures and public keys (and conse-
quently of DNS messages) bears major implications for DNSSEC
[16]. A DNS over UDP message, as originally standardized, was
restricted to a maximum size of 512 bytes. Bearing in mind the
headroom required by DNSSEC (for conveying signatures and pub-
lic keys), this size ceiling was later increased to a theoretical value
of 64 KB with Extension Mechanisms for DNS (EDNS0) [8].

However, a DNS over UDP message exceeding 1232 bytes in size
usually triggers IP fragmentation on most network links [2, 19].
This upper bound of 1232 has been derived as follows: 1280 (IPv6
minimum MTU) − 40 (IPv6 Header) − 8 (UDP Header).

It is evident that DNSSEC messages carrying post-quantum data
will easily exceed 1232 bytes in size, and thus be fragmented by the
network. Unfortunately, IP fragmentation is considered to be both
unreliable (fragments may never arrive) and insecure (fragments
can be spoofed) [6]. Moreover, Broek et al. [27] have noted that up
to 10% of the resolvers fail to handle fragments correctly.

The other alternative for sending large DNS messages without
resorting to IP fragmentation is via TCP. In a usual DNS flow,
when a response size exceeds the resolver’s advertised EDNS0
buffer size (i.e. the maximum DNS message size it is willing to
receive), a truncated response (with TC bit set in the header) is sent.
Subsequently, the resolver discards the TC response (resulting in a
wasted UDP trip) and retries the query over TCP.

Unfortunately, up to 11% of nameservers have been found to lack
TCP support by [28]. The report of [19] additionally remarks that
TCP/53 connections could even be blocked by intruding middle-
boxes. In the surveys of [9, 18], a non-trivial number of resolvers
did not properly fall back to TCP when requested by nameservers.
Lastly, DNS over TCP has been shown to be measurably slower
(sometimes by a factor of 4) and more resource intensive than DNS
over UDP [3, 17], thus putting a limit on the number of TCP con-
nections a DNS server might be able to handle concurrently.
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Related Work
Many proposals have been put forward that address the two forego-
ing issues of network layer fragmentation and TCP non-availability,
respectively, by fragmenting at the application (DNS) layer. The
implication of this approach is that the nameserver becomes re-
sponsible for the fragmentation of a DNS response and the resolver
for the subsequent reassembly thereof.

Sivaraman et al. [24] fragmented a large DNS response across
multiple UDP datagrams and transmitted each fragment sequen-
tially. On the other hand, though not strictly a fragmentation
scheme, ATR [25] sent an additional TC response to trigger a TCP
fallback on the client, in case the original response failed to arrive.

Unfortunately, both of these schemes failed to get standardized
because they sent multiple responses to a single request. Many
firewalls are configured to accept only one response packet per
query. Moreover, many resolvers close their sockets immediately
after receiving the first response packet. In such a case, there was
also a risk of ICMP flooding since the dropped packets will generate
multiple destination unreachable messages.

A recent work, called ARRF [11], fragmented DNS resource
records and addressed the principal shortcoming of earlier ap-
proaches by sending additional messages only upon request. Since
each extra response has its own query, concerns about intruding
firewalls and ICMP flooding are mitigated.

Unfortunately, ARRF suffers from various limitations, as ac-
knowledged by its authors in [11]. Firstly, ARRF introduces a new
type of DNS resource record called Resource Record Fragment
(RRFRAG), which being non-standard, has the potential to be re-
jected by certain middleboxes. Secondly, ARRF is vulnerable to
memory exhaustion attacks. Lastly, ARRF needs a minimum of two
round-trips to reconstruct the full DNS message.

1.2 Our Contributions
In this work, we propose a fragmentation scheme called QNAME-
Based Fragmentation (QBF). Similar to previous approaches, QBF
also performs fragmentation at the application (DNS) layer, thus
obviating concerns of IP fragmentation and lack of TCP support.
Moreover, QBF is request-based like ARRF [11] in that each extra
response has its own related query. Hence, messages sent by QBF
are not prone to the issues of firewall filtering or ICMP flooding.

In contrast to ARRF however, QBF offers the following benefits:

• Backward Compatibility: Unlike ARRFwhich uses a non-
standard resource record called RRFRAG, QBF uses only
standard DNS records. Thus, QBF messages are not suscep-
tible to getting blocked by strict middleboxes which inspect
the resource records of a DNS message.

• Security against Memory Exhaustion Attacks: Owing
to its design, ARRF exposes an attack surface wherein an
adversary can deplete resolver’s memory by injecting ma-
licious RRFRAGs in the initial response. However, QBF is
not vulnerable to such attacks.

• 1-RTT Resolution: DNSSEC over QBF is ∼ 2× as fast as
Standard DNS (SD) in resolving QTYPE A queries. Moreover
QBF, being 30% faster than ARRF, matches the resolution
speeds of the presently deployed RSA-2048. See Fig. 1.

Figure 1: A comparison of DNSSEC resolution times

Our implementation of QBF is a daemon that runs on top of
the DNS software (such as BIND9 or PowerDNS) of nameservers
and resolvers. It fragments/reassembles large DNS messages (as
and when needed) and requires no modifications to the underlying
DNS stack or zone files. The source code germane to this work is
available at: https://github.com/aditya-asr/qbf_src.

2 Preliminaries
Notations. The term resource record (RR) is often referred to as
simply a record. | | represents concatenation. X→ Y denotesmember
Y of an abstract structure X. RTT stands for Round Trip Time. ANS
is short for Authoritative Name Server. For presentation, we omit
the root label (i.e. the trailing period (.) as in example.com.) while
writing fully qualified domain names (FQDNs).

2.1 Domain Name System (DNS)
Consider a canonical domain name: www.example.com. (with the
trailing dot). Each label: (www), (example), (com) and (.) corresponds
to a level within the DNS hierarchy, with the root (.) being at the
apex. Under the root come top-level domains or TLDs (com), and
within these are second-level domains (example), and then subdo-
mains (www). A server that contains definitive information for the
zone is said to be authoritative for the zone. For e.g., example.com
ANS is authoritative over the A record for www.example.com.

DNS Lookup. To retrieve the IP address of www.example.com,
the client (stub resolver) sends a recursive QTYPE A DNS query to its
resolver (local DNS server). The resolver, in the event of not having
the answer in its cache, performs the following steps iteratively:

(1) It sends a QTYPE NS query to a root (.) ANS, which subse-
quently responds with the following glue (referral) records:
1) A Type NS record containing the domain name of com
ANS 2) A Type A record containing the IP of com ANS.

(2) It sends a QTYPE NS query to the com ANS, which then
responds with the following glue records: 1) A Type NS
record containing the domain name of example.com ANS
2) A Type A record containing the IP of example.com ANS.

(3) It sends a QTYPE A query to the example.com ANS, which
finally responds with a Type A record containing the IP of
www.example.com.

(4) It caches and forwards the received IP to the client.

https://github.com/aditya-asr/qbf_src


QNAME-Based Fragmentation

Table 2: DNS HEADER Wire Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID

QR OpCode AA TC RD RA Z AD CD RCode

QDCount

ANCount

NSCount

ARCount

— ID: used by requester to match a response to its query
— QR: whether message is a query (0) or a response (1)
— AA: whether response is authoritative (1) or not (0)
— TC: whether response is truncated (1) or not (0)
— AD: whether response has authenticated data (1) or not (0)
— RCode: (0) - no error; (1) or FORMERR - query was malformed;

(3) or NXDOMAIN - domain name does not exist

Wire Format. A DNS message is divided into five sections:
HEADER, Question, Answer, Authority, and Additional. HEADER
is always present and has a constant size of 12 bytes. Table 2 presents
the wire format of a DNS HEADER. The Question section consists
of the following fields: QNAME (specifies the domain name encoded in
the DNS name notation. For example, test.example is encoded as
[4]test[7]example[0]), QTYPE (specifies the type of DNS records
being requested), and QCLASS (specifies the class of the query, by
default set to IN for Internet). The last three sections have the same
format: a possibly empty list of concatenated DNS records.

The DNS resource records (RRs) are database entries that provide
information about a domain name. Each record has the following
sections: NAME (specifies the domain name), TYPE (indicates the type
of RR), CLASS (specifies the class of data, defaults to IN), TTL (time-
to-live in seconds i.e. how long the RR can stay cached), RDLENGTH
(specifies the length in bytes of the RDATA field), and RDATA (con-
tains the actual data associated with the record). The Type A and
AAAA records contain IPv4 and IPv6 addresses in their RDATA fields,
respectively. The Answer section contains records that answer the
question; the Authority section contains records that point toward
an ANS; the Additional section contains records which relate to the
query, but are not strictly answers to the question.

DNS Message Size. DNS messages are sent over the Internet us-
ing a series of layers. Initially, they are placed into UDP datagrams,
which in turn are placed inside IP packets. These IP packets become
the payload of frames at the link layer. However, there is a limit to
the payload size of these frames based on the Maximum Transmis-
sion Unit (MTU) of the link they are travelling over. If a frame’s
payload is too large for the link’s MTU, a router must break it into
smaller IP packets, resulting in fragmentation. These fragmented
IP packets travel independently to their destination. Since DNS
relies on UDP, which does not guarantee a reliable communication
like TCP, any loss of fragmented IP packets can cause transmis-
sion failures. Even when fragmentation does work, it may not be
secure. It is theoretically possible to spoof parts of a fragmented
DNS message, without an easy detection by the receiver.

To address these issues, there are two solutions: a) configure
servers to limit the size of DNS messages sent over UDP to ensure
that they do not trigger fragmentation on typical network links; b)
ensure that DNS servers can switch from UDP to TCP when a DNS
response is too large to fit within the limited buffer size of UDP.
Initially, DNS messages were limited to 512 bytes, a size that pre-
vented IP fragmentation. Most standard network links have MTUs
large enough to accommodate these DNS messages (considering an
8-byte UDP header and a 40-byte IPv6 header, resulting in a maxi-
mum payload size of 560 bytes for link layer frames). However, with
the introduction of the Extension Mechanisms for DNS (EDNS0),
this limit theoretically increased to 64 kilobytes. Using EDNS0, one
can increase the size of DNS messages up to any k bytes, provided
the MTU of the network link is greater than k + 8 + 40 bytes.

Thus, the optimum DNS message size to avoid IP fragmentation
while minimizing the use of TCP will depend on the MTU of all
the network links connecting two endpoints. Unfortunately, there
is not yet a standard mechanism for DNS server implementors to
access this information. Until such a standard exists, it is usually
recommended that the EDNS0 buffer size should, by default, be set
to a value small enough to avoid fragmentation on the majority of
network links in use today. An EDNS0 buffer size of 1232 bytes will
avoid fragmentation on nearly all current networks. This is based on
an MTU of 1280, which is required by the IPv6 specification, minus
48 bytes for the IPv6 and UDP headers. Therefore, the currently
recommended DNS message size over UDP is 1232 bytes.

EDNS0. Extension Mechanisms for DNS (EDNS0) [8] facilitates
the transfer of DNSmessages larger than 512 bytes. For this purpose,
EDNS0 introduces a pseudo-record called OPT (Options) in the
Additional section of a DNS message. Unlike traditional records,
pseudo-records do not actually exist in a zone file and are created on-
the-fly. In queries, a requester specifies the maximum UDP payload
size it is capable of handling (known as EDNS0 buffer size) in
OPT→ CLASS. Additionally, the requester also indicates its support
for DNSSEC by setting the DO (DNSSEC OK) bit in OPT→ TTL.

OPT → RDATA also contains DNS cookies which provide a
limited security against certain off-path attacks such as denial-
of-service, cache poisoning, and answer forgery.

2.2 DNS Security Extensions (DNSSEC)
DNSSEC enhances the security of DNS by ensuring the authenticity
and integrity of resource records. To realize this aim, it introduces
three1 new types of resource records: Resource Record Signature
(RRSIG), DNS Public Key (DNSKEY), and Delegation Signer (DS).

1) RRSIG. A digital signature is computed using a secret key
(discussed below) over a set (called an RRset) of DNS records that
have the same NAME, CLASS and TYPE. The resulting signature is
stored in the RDATA field of an RRSIG record (consult Table 3).

2) DNSKEY.ADNSKEY record (refer Table 4) stores a public key.
Each zone employs two types of keys: Zone Signing Key (ZSK) and
Key Signing Key (KSK). KSK is used to sign only DNSKEY RRsets
whileZSK is used to sign everything else.When a resolver receives a
DNS response with anRRSIG record, it uses the associatedDNSKEY
record to verify the signature contained therein.

1A fourth Type NSEC(3) record, used to verify the non-existence of a record name and
type, is outside the scope of this work.
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Table 3: RRSIGWire Format

RRSIG Record
NAME TYPE = RRSIG CLASS TTL RDLENGTH

RDATA
Type Covered Type of records signed

Algorithm Signature algorithm used
Labels Number of labels in the signed name

Original TTL Original time-to-live of the RRs signed
Signature Expiration When the signature expires
Signature Inception When the records were signed

Key Tag ID of the key that can verify the sig.
Signer’s Name Name of the signer

Signature sign(RRSIG→ RDATA∥RR(1)∥RR(2)∥ . . .)
where RDATA excludes Signature
and RR(𝑖) is the 𝑖-th record in the RRset

Table 4: DNSKEY Wire Format

DNSKEY Record
NAME TYPE = DNSKEY CLASS TTL RDLENGTH

RDATA
Flags Specifies whether the key is a ZSK or a KSK

Protocol Always set to 0x03 to indicate DNSSEC
Algorithm Signature algorithm of the key
Public Key Contains the raw public key bytes

Table 5: DS Wire Format

DS Record
NAME TYPE = DS CLASS TTL RDLENGTH

RDATA
Key Tag ID of the KSK which is hashed

Algorithm Signature algorithm of the key
Digest Type Hash algorithm

Digest hash(DNSKEY→ NAME ∥ DNSKEY→ RDATA)

3) Delegation Signer (DS). TheDS record (Table 5) plays a vital
role in establishing a secure chain of trust between parent and child
zones. Whenever a resolver verifies RRSIGs using the ZSKpk of a
child, it must also ascertain the authenticity of that key. Recall that
the DNSKEY RRset containing ZSKpk and KSKpk is signed using
the child’s KSKsk. Since KSK is ultimately self-signed, a resolver
must also connect the trust thereof with the child’s parent. To aid
resolvers in this endeavour, the child generates a hash of its KSKpk
and shares it with its parent in a DS record.

During a DNS lookup, when a resolver is referred to a child by
its parent, the latter provides aDS record containing the hash of the
child’s KSKpk. This DS record is what indicates to the resolver that
the child zone is DNSSEC-enabled. More importantly, the parent
also furnishes an RRSIG on this DS record using its own ZSKsk.

To validate the child zone’s KSKpk, the resolver hashes it and
compares it to the DS record from the parent. Additionally, the
resolver also verifies the associated RRSIG of that DS record using
the ZSKpk of the parent.

Table 6: RRFRAGWire Format

RRFRAG Record
NAME = (.) TYPE =

RRFRAG
CLASS =
RRID

TTL =
CURIDX

RDLENGTH =
FRAGSIZE

RDATA
RRSIZE Specifies the size of the original resource record

FRAGDATA Contains the raw fragment bytes

— NAME: must always be root (.)
— TYPE: identifies RRFRAG type
— Class: contains RRID identifying the particular resource

record that is being fragmented
— TTL: contains CURIDX specifying the current index in the

byte array of the original record which is being fragmented
— RDLENGTH: contains FRAGSIZE specifying the total number

of bytes contained in RDATA

DNSSEC Lookup. This is similar to the DNS lookup described
in §2.1, except that the resolver now sets the DO bit in its query. The
following extra records are therefore returned at each step:

(1) The root (.) nameserver also sends com’s DS and RRSIG
thereon created with (.)’s ZSKsk. Additionally, it sends (on
an explicit QTYPE DNSKEY query) (.)’sDNSKEYs andRRSIG
thereon created with (.)’s KSKsk. Here, we assume the re-
solver already holds (.)’s KSKpk as the trust anchor.

(2) The com nameserver also sends example.com’s DS and
RRSIG thereon created with com’s ZSKsk. Additionally, it
sends (on an explicit QTYPE DNSKEY query) com’sDNSKEYs
and RRSIG thereon created with com’s KSKsk.

(3) The example.com nameserver also sends RRSIG created
with its ZSKsk on the Type A record containing the answer
IP. Moreover, it sends (on an explicit QTYPE DNSKEY query)
its DNSKEYs and RRSIG thereon created with its KSKsk.

On a successful DNSSEC validation, the resolver sends its answer
response to the client with HEADER→ AD set.

2.3 ARRF
DNSSEC works seamlessly when the size of the DNS message does
not exceed the recommended UDP limit. However, post-quantum
signature schemes have larger public key and signature sizes that
cannot fit within these constraints.

To handle post-quantum cryptography in DNSSEC without rely-
ing on IP fragmentation or TCP fallback, a recent solution called
ARRF was introduced by Goertzen and Stebila [11]. This approach
conducts fragmentation at the application layer using a daemon
running on top of the DNS software of resolvers and nameservers.

ARRF introduces a new type of DNS resource record called Re-
source Record Fragment (RRFRAG), similar to the existing pseudo-
resource recordOPT.RRFRAGs are not explicitly part of DNS zones;
they are created when needed and use a generic DNS resource
record wire format with some fields repurposed (see Table 6).

Whenever a DNS response size is too large to fit within the
resolver’s advertised UDP limit, RRFRAGs are used to split the
resource records across multiple queries, ensuring that each re-
sponse’s size remains below the specified threshold.



QNAME-Based Fragmentation

RRFRAGs replace resource records in place, maintaining the orig-
inal message format. However, theOPT resource record, containing
important metadata like the DNS cookie, is not fragmented.

The initial response containing at least one RRFRAG acts as a
map of the non-fragmented message. Requesters use this map to
determine how to reassemble the original large DNS message. They
can identify missing fragments and send new queries for those
missing RRFRAGs. To specify which fragment they want, the size
of those fragments, and their starting positions, requesters add
RRFRAGs for each distinct RRID in the query’s Additional section.
When responders receive queries with RRFRAGs, they construct a
standard DNS response by inserting the corresponding RRFRAGs
into the Answer section. The FRAGDATA being sent is a copy of the
desired resource record’s bytes, starting at CURIDX and ending at
CURIDX+FRAGSIZE. This request/response cycle continues until the
requester successfully reassembles the original large message. Also,
after receiving the initial response with the map, requesters can
make subsequent RRFRAG requests in parallel.

Unfortunately, ARRF suffers from two major limitations, as ac-
knowledged by its authors in [11]. Firstly,RRFRAG is a non-standard
DNS record type, which can potentially cause middle boxes to reject
the DNS message. Secondly, ARRF is vulnerable to memory exhaus-
tion attacks. An on-path adversary can insert many RRFRAGs in the
initial response with very large RRSIZEs. Since DNSSEC validation
cannot take place until the full DNS message is reconstructed, the
requester has no choice but to allocate memory for storing interme-
diate fragments. ARRF also needs a minimum of two round-trips
to reconstruct the full DNS message. This is because the resolver
requires RRIDs for fetching additional fragments. However, it only
learns the RRIDs after receiving the initial response.

3 QNAME-Based Fragmentation (QBF)
We now present our solution for retro-fitting post-quantum cryp-
tography in DNSSEC over UDP. Our scheme, called QNAME-Based
Fragmentation (QBF), fragments and reassembles large DNS mes-
sages using a daemon running on top of the DNS software (here,
BIND9) of resolvers and nameservers. The daemon intercepts and
modifies (if necessary) all the incoming and outgoing DNS packets.
It is also able to construct and send a DNS query of its own.

Unlike previous schemes, which fragmented the whole DNS mes-
sage [24] or the DNS records [11], the QBF daemon fragments only
the following: 1) Raw signature bytes stored in the field RRSIG→
RDATA → Signature, and 2) Raw public key bytes stored in the
field DNSKEY → RDATA → Public Key. Thus, QBF fragments
resemble the original DNS response except insofar as they carry
partial signatures or public keys. To fetch an additional fragment,
the requester daemon constructs a new DNS query and provides
information about the desired fragment in QUESTION→ QNAME.

QBF can be configured with the following modes: 1) Sequen-
tial: Wait to receive a requested fragment before sending another
request; 2) Parallel 2-RTT: Request and receive the first fragment.
Then request and receive all other fragments in parallel; and 3)
Parallel 1-RTT: Request and receive all fragments in parallel. We
now proceed to delineate QBF in the following subsections.

3.1 Fragment Wire Format
When a DNSSEC response size exceeds the requester’s advertised
EDNS0 buffer size, the responder daemon puts partial signature or
public key bytes while keeping the rest of the message intact. We
illustrate this by means of the following example scenario.

Consider a requester that sends a DNSSEC query asking for
a Type A DNS record containing the IPv4 address of a domain
test.example. Assume that the requester specifies a maximum
EDNS0 buffer size of𝑦 bytes (e.g.,𝑦 = 1232 bytes, the recommended
DNS message size over UDP) in OPT→ CLASS.

On the responder side, the generated DNS response is shown in
Table 7 (Left). Assume that the size of this response is 𝑧 bytes. The
Answer section contains one Type A record holding the IPv4 address
1.2.3.4 for test.example and one RRSIG holding a signature
over the former Type A record. The rest of the sections are empty
(except for OPT in the Additional section).

The responder daemon observes that the response size exceeds
the requester’s UDP payload limit by 2 bytes (i.e. 𝑧 = 𝑦 + 2). Hence,
it removes 2 bytes from RRSIG → RDATA → Signature (i.e. if
RRSIG→ RDLENGTH is 𝑥 bytes, then after removing 2 bytes from
Signature, it becomes 𝑥 − 2) and sets the HEADER→ TC flag to 1.
The DNS response, referred to as Fragment 1, is displayed in Table 7
(Middle). Simultaneously, the responder daemon prepares another
DNS response, known as Fragment 2, containing the remaining
2 bytes of the signature. At this juncture, the responder stores
Fragment 2 in its cache. When the requester subsequently queries
the additional fragment, the daemon retrieves it from its cache and
transmits it back. Further details regarding the format of additional
fragments are elaborated upon in the subsequent discussion. Note
that the OPT record (which may hold important DNS cookies)
remains intact after fragmentation.

Note that when a generated DNS response contains multiple
RRSIG records, the QBF fragmenter removes an equal number of
raw signature bytes from each RRSIG. A similar logic is applied in
case of multiple DNSKEY records.

3.2 Requesting Fragments
After receiving Fragment 1, a requester daemon requests for ad-
ditional fragments by constructing a new DNS query and setting
QUESTION→ QNAME in the following format:

⟨DELIMITER⟩ ⟨fragnum⟩ ⟨DELIMITER⟩ ⟨domain⟩

DELIMITER is a non-valid domain name character such as ?, #,
*, etc. The first delimiter indicates to the responder daemon that
the DNS query is for a fragment. The second delimiter is used to
mark the end of fragnum field since domain names can also start
with a number. We use ? asDELIMITER throughout this paper. The
fragnum is the desired fragment number and must be > 1 since
Fragment 1 is received as response to the original DNS query. The
domain is the domain name for which the fragment is required.

In the running example, to retrieve Fragment 2, the requester
daemon sends a new DNS query with the QUESTION → QNAME
set to ?2?test.example (or in general, set to ?i?test.example
for fetching the 𝑖-th fragment).
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Header Section
Question Section
QNAME = test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE = A
.
.
.

RDLENGTH = 4
RDATA = 1.2.3.4

NAME
TYPE = RRSIG
.
.
.

RDLENGTH = 𝑥

RDATA
Type Covered
Algorithm
.
.
.

Signer’s Name
Signature = 0x3a4b5c6d

Authority Section
Additional Section
OPT

Header Section
Question Section
QNAME = test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE = A
.
.
.

RDLENGTH = 4
RDATA = 1.2.3.4

NAME
TYPE = RRSIG
.
.
.

RDLENGTH = 𝑥 − 2
RDATA

Type Covered
Algorithm
.
.
.

Signer’s Name
Signature = 0x3a4b

Authority Section
Additional Section
OPT

Header Section
Question Section
QNAME = ?2?test.example
QTYPE = A
QCLASS
Answer Section
NAME
TYPE = RRSIG
.
.
.

RDLENGTH = 𝑥 − 2
RDATA

Type Covered
Algorithm
.
.
.

Signer’s Name
Signature = 0x5c6d

Authority Section
Additional Section
OPT

Table 7: Wire format: Original response (Left), Fragment 1 (Middle), Fragment 2 (Right)

The resulting DNS response is shown in Table 7 (Right). This
specific DNS response, referred to as Fragment 2, was originally pre-
pared by the responder daemon during the fragmentation process
and subsequently cached.

Note that the responder daemon sets HEADER → TC flag in
all the fragments for maintaining backward compatibility. Further-
more, for all fragnum > 1, the responder daemon removes all
records except RRSIG, DNSKEY and OPT. This is an efficiency
measure to reclaim the space taken by the redundant records that
were already sent in Fragment 1.

If a requester daemon sends a fragment query that cannot be
answered (e.g., a fragment with number fragnum is desired, but
the entire message requires only (fragnum − 1) fragments), the
responder daemon returns an error response with HEADER →
RCODE set to FORMERR (indicating a problem with query format).

3.3 Execution Modes
We now describe the functionality of the QBF daemon in both the
Parallel 2-RTT and Parallel 1-RTT modes.

We begin with Parallel 2-RTT, as it lays the foundation for
the Parallel 1-RTT mode. These execution modes explain how a
DNSSEC query initiated at a resolver is managed by the client-side
QBF daemon deployed on the resolver and the server-side QBF
daemon running on a DNS server. In this context, we assume the
DNS server to be an Authoritative Name Server (ANS).

3.3.1 Parallel 2-RTT. Consider a scenario in which the resolver
sends a DNSSEC query, requesting a Type A DNS resource record
with QUESTION→ QNAME set to test.example. The resolver, op-
erating under the constraint of processing DNS responses of a
recommended size, specifically, a maximum of 1232 bytes, config-
ures the EDNS0 buffer size to 1232 within the OPT→ CLASS field.
We now describe how QBF operates in its Parallel 2-RTT mode to
resolve the aforesaid query. The execution in Parallel 2-RTT pro-
ceeds as follows (Fig. 2 gives a schematic view of the QBF daemon
operating in Parallel 2-RTT mode):

(1) The resolver daemon forwards the outgoing query as it is.
(2) Upon receiving the query, theQBF daemon on the ANS sets

OPT→ CLASS to a large value (here 65507, the maximum
UDP payload size over IPv4) before forwarding the query
to BIND9, the DNS server software. This value should be
large enough to allow the retrieval of the full DNS response
from BIND9 without truncation.

(3) The ANS daemon observes that the size of the full response
exceeds 1232 bytes. Hence, it removes the requisite number
of bytes from RRSIG → RDATA → Signature and marks
the response as truncated (TC) before sending it to the re-
solver as Fragment 1. Note that from the complete BIND9
response, the ANSQBF daemon also prepares and caches all
other fragments for a time interval (say, 5 seconds) within
which it expects the resolver daemon to reach out for them.
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Cached
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Figure 2: QBF in Parallel 2-RTT mode

In case, the ANS daemon does not receive any fragment re-
quests from the resolver daemon within the time duration,
it removes the fragments from its cache.

(4) On intercepting the first fragment, the resolver daemon cal-
culates the required number of extra fragments as follows:
(a) It retrieves the signature algorithm from RRSIG →

RDATA → Algorithm and infers the size of a full sig-
nature (say, 690 bytes in case of Falcon-512).

(b) It computes the size of the original DNS response by
counting RRSIG → RDATA → Signature as having
full size (690) instead of the partial size.

(c) Subsequently, it calculates the number of additional
fragments required based on the EDNS0 buffer limit.

(5) The resolver QBF daemon constructs the required number
of extra fragment queries (2 in this case, see Fig. 2) in the
format described in §3.2 and sends them in parallel.

(6) On the nameserver side, the QBF daemon responds to the
fragment queries from its cache.

(7) On receiving all the fragments, the resolver QBF daemon
appends RRSIG→ RDATA→ Signature from Fragment 2
and 3 (in sequence) to the corresponding place in Fragment
1. It then forwards the complete DNSSECmessage to BIND9
for signature validation.

A similar process is followed for a response containing DNSKEY
resource records. In that case, the relevant sections are DNSKEY→
RDATA→ Algorithm/Public Key.

3.3.2 Parallel 1-RTT. It is important to note that the resolver’s
QBF daemon has the flexibility to send additional fragment requests
in parallel with the original query. The primary variable to consider
is the precise number of these supplementary queries to dispatch.
Should the daemon send more queries than necessary, it will simply
receive a FORMERR response for each surplus query.
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QTYPE RR Type Num. RRs Falcon Dilithium SPHINCS+

A

A
NS

RRSIG
OPT

2
1
3
1

1* 6 22

DNSKEY
RRSIG

DNSKEY
OPT

2
2
1

2* 6 14

Table 8: Number of additional queries required for QTYPE A
DNSSEC query for test.example under a UDP constraint of
1232 bytes. Minimal responses and DNS cookies are disabled.
* indicates that the last fragment has < 100 bytes of free space.

Conversely, if the daemon sends an inadequate number of queries,
it can always calculate the exact count of fragments based on the
information provided in the first fragment (as elaborated in §3.3.1)
and subsequently retrieve any remaining fragments.

Assuming that the daemon is cognizant of the nameserver’s
signing algorithm, possibly from prior interactions, it is feasible
to estimate an upper-bound on the number of fragments. This
estimation can be based on factors such as QUESTION→ QTYPE
and the EDNS0 UDP limit. In Table 8, we present the calculated
number of extra queries needed in the running example of a QTYPE
A DNSSEC query for test.example, for all NIST recommended
post-quantum signature algorithms. Note that this represents a
worst-case scenario (i.e. with minimal-responses disabled on the
nameserver). For an overview of the structure of a non-minimal
DNS response to a QTYPE A DNSSEC query, refer Table 9.

While the values in Table 8 will suffice for the majority of real-
world DNSSEC queries, it is to be kept in mind that the total length
of a domain name (i.e. label bytes and label length bytes) can be up
to 255. Considerations also have to bemade for QTYPE AAAA queries
since the size of an IPv6 address is 4× the size of an IPv4 address.
Additionally, a joint client-server DNS cookie inOPT→ RDATA can
occupy up to 40 bytes of space.

Fortunately, the resolver a priori knows the length of the domain
name and the type of query from the QNAME and QTYPE fields of
the DNS query, respectively, and the decision to use DNS cookies
also rests with the resolver (i.e. a server inserts its cookie only if
the client has provided its own). Thus, the resolver daemon should
account for longer than average domain names, QTYPE AAAA IPv6
queries and usage of DNS cookies when determining the number
of additional queries. If deemed necessary, it should increment the
numbers marked with * in Table 8 by 1.

Figure 3 gives a schematic view of the QBF daemon operating
in Parallel 1-RTT mode. Ideally, the resolver daemon should send
the additional queries after a slight delay from the original one so
as to give sufficient time to the responder daemon for preparing
the fragment cache. Alternatively, the responder daemon should
forward only the original query to the BIND9 software and prepare
the cache from the resulting response as shown in Figure 3.

3.4 Backward Compatibility
We now discuss what happens when one of the end points imple-
ments QBF while the other one does not.

• QBF-unaware Requester | QBF-aware Responder: On re-
ceiving the first fragment, the requester will detect that the
HEADER→ TC flag is set. It will then discard this response
and retry the query over TCP.

• QBF-aware Requester | QBF-unaware Responder: If the
requester daemon sends queries in Parallel 1-RTT mode, it
will receive the first response with TC flag set and the rest
of the responses with HEADER→ RCODE set to NXDOMAIN
(Non-Existent Domain). It will then infer that the responder
does not support QBF and repeat the query over TCP.
In case the requester daemon is running in Sequential or
Parallel 2-RTT mode, it will receive the initial response
with TC flag set. However, responses truncated by the DNS
software only contain the HEADER section, theQuestion
section and an OPT record in the Additional section (i.e.
the response is identical to the query but with TC set). On
detecting this, the daemon will conclude that the responder
is QBF-unaware and fallback to TCP.

3.5 Security Considerations
Cache Poisoning. Since the daemon forwards the complete re-
sponse to the resolver for DNNSEC validation, DNS cache poisoning
is not a concern assuming a secure algorithm is used for signing.

UDPUnreliability. SinceQBFmessages (requests or responses)
ultimately travel over UDP, it is possible that some messages may
fail to reach their destination. The two immediate solutions for
this would be: 1) If the resolver does not get a response from its
QBF daemon within 800 ms (the default BIND9 timeout), it sends
a fresh query again and the whole process starts over; 2) If the
QBF daemon does not receive a fragment response within a shorter
timeout (say, 100 ms), it re-sends the fragment query.

DNSSEC Downgrade Attacks. Heftrig et al. [12] found that
45% of DNS resolvers do not perform DNSSEC validation when a
new signing algorithm is used in the DNS responses. Therefore,
unless IETF standardizes the correct behaviour of resolvers in such a
scenario, this vulnerability can possibly continue to affect DNSSEC
when post-quantum algorithms are deployed.

Denial of Service (DoS). Off-path attacks: Because each frag-
ment has to be explicitly requested for, a requester daemon can
reject any unexpected fragment it receives. Thus, with the aid of
DNS cookies, off-path attacks are rendered infeasible. On-path at-
tacks: If an adversary or a malicious middlebox tampers with the
data in the resource records, it’ll eventually cause DNSSEC valida-
tion to fail on the resolver’s end.

Memory Exhaustion Attacks. An on-path adversary cannot
cause a QBF requester daemon to allocate an arbitrarily large
amount of memory for fragments. Recall that Fragment 1 is identical
to the original DNS response, except that it carries only partial raw
signature or public key bytes. If parallel 2-RTT or sequential mode
is being used, the only way the adversary can cause the requester
daemon to over-compute the number of additional fragments is 1)
by changing RDATA→ Algorithm or 2) by inserting many resource
records containing fewer raw signature or public key bytes.
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Figure 3: QBF in Parallel 1-RTT mode

In the first attack, the adversary is limited to changing the algo-
rithm to the one with the largest signature or public key footprint
(For example, SPHINCS+ which has 7856 bytes of signature). On
the other hand, the resolver daemon can easily detect the second
type of attack based on the response it is expecting for a particular
QTYPE. For example, even in the worst-case, a QTYPE A/AAAA DNS
response cannot have more than three1 RRSIGs as shown in Table
8. Note that in Parallel 1-RTT, the number of fragments (and hence,
the memory allocated) is fixed as discussed in §3.3.2.

4 Evaluation
In this section, we provide implementation details of QBF and
compare its DNS resolution performance with Standard DNS with
TCP fallback and Parallel ARRF [11].

4.1 Setup
We use the source code of ARRF [11] as base to build the QBF
daemon. The DNS software is BIND 9.17.12. The cryptographic
stack is openssl 1.1.1 and liboqs 0.7.2 [26]. The daemon is written
in C and uses libnetfilter-queue 1.0.5-2 to intercept incoming
and outgoing DNS packets.
1If multiple NS records are sent in the Authority section, then the Additional section
can contain multiple RRSIGs. However, the count thereof is generally 2-3.

Docker 4.22 is used for constructing the network scenario (de-
scribed below). To simulate network bandwidth and latency, we
use Linux’s tc utility. DNS queries are issued using dig. All experi-
ments are run on a MacBook Air M1 with 8 GB of RAM.

4.2 Network Setting
We design a DNS network with the following four participants: 1)
A client 2) A resolver 3) A root nameserver 4) An example authori-
tative nameserver (ANS). We skip configuring a com TLD to reduce
complexity. Each participant is running as a private Ubuntu 22.04
Docker container having a networking constraint of 50 Mbps band-
width and 10 ms latency. Additionally, the resolver is configured
with send-cookie no; in its named.conf.

For simplicity, each zone is signed with a single algorithm and
has one ZSK and one KSK. The zone file of ANS contains 10 Type
A records, each with a unique domain name and an associated
RRSIG. The ANS is configured with minimal-responses no; in
its named.conf which means that it will be as complete as possible
when generating responses. This represents the worst-case scenario
in terms of response size. Table 9 illustrates the format of non-
minimal responses generated by the ANS’s BIND9 software.
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Header Section
Question Section
Answer Section

Type A RR
RRSIG

Authority Section
Type NS RR

RRSIG
Additional Section

Type A RR
RRSIG
OPT

Header Section
Question Section
Answer Section

DNSKEY
DNSKEY
RRSIG
RRSIG

Authority Section
Additional Section

OPT

Table 9: Structure of non-minimal DNS responses to a QTYPE
A query (left) and to a QTYPE DNSKEY query (right)

Table 10: Average resolution time (±1 ms) of 10 QTYPE A
queries in a 10 ms latency and 50 Mbps network setting. *
indicates a TCP fallback. The parallel variants of ARRF and
QBF show high scalability under growing signature sizes
because of sending the fragment requests in parallel.

Algorithm Standard
DNS

ARRF
(Parallel)

QBF
(2-RTT)

QBF
(1-RTT)

ECDSA-P256 42 - - -

RSA-2048 42 - - -

Falcon-512 83* 63 63 43

Dilithium2 83* 64 64 44

SPHINCS+-128s 85* 65 66 46

4.3 Experiment and Results
In this experiment, we measure the average resolution time of
QTYPE A DNSSEC queries when the resolver already has DNSKEY
and NS records of the nameservers. In such a case, the resolver
directly contacts the ANS with QTYPE A queries. The results of this
experiment for the three NIST recommended signature algorithms 2:
Falcon-512 at security level 1, Dilithium2 at level 2, and SPHINCS+
at level 1 are tabulated in Table 10.

All parallel variants of QBF yield substantially lower resolution
times than Standard DNS for post-quantum DNSSEC queries. More
concretely, QBF in 1-RTT and 2-RTT mode is approximately 50%
and 25% faster than Standard DNS, respectively. This is because
DNS, as standardized, incurs the penalty of 1) the (initial) wasted
trip over UDP and 2) the ensuing 3-way TCP handshake.

On the other hand, QBF in 1-RTT mode shows an improvement
of about 30% over parallel ARRF because of requiring only 1 round-
trip compared to two of the latter.

2Higher security levels are currently not supported by the OQS-BIND9 fork.

5 Conclusion
In this paper, we presented QNAME-Based Fragmentation (QBF): a
backward-compatible solution for integrating post-quantum cryp-
tography into DNSSEC over UDP. QBF achieves its goal using only
standard DNS records and requires a single round-trip to recon-
struct the full DNS message. We developed the QBF daemon which
operates atop the DNS software of resolvers/nameservers. It man-
ages the fragmentation/reassembly of large DNS messages without
requiring any changes to DNS stack or zone files. Our experiments
show that in resolving QTYPE A queries, QBF is about 50% and 30%
faster than Standard DNS and Parallel ARRF, respectively.
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