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ABSTRACT
Although having been popular for a long time, Byzantine Fault Tol-
erance (BFT) consensus under the partially-synchronous network is
denounced to be inefficient or even infeasible in recent years, which
calls for a more robust asynchronous consensus. On the other hand,
almost all the existing asynchronous consensus are too complicated
to understand and even suffer from the termination problem. Moti-
vated by the above problems, we propose SimpleFT in this paper,
which is a simple asynchronous consensus and is mainly inspired
by the simplicity of the Bitcoin protocol. With a re-understanding
of the Bitcoin protocol, we disassemble the life cycle of a block
into three phases, namely proposal, dissemination, and confirmation.
Corresponding to these phases, we devise or introduce the sortition
algorithm, reliable broadcast algorithm, and quorum certificate mech-
anism in SimpleFT, respectively. To make full use of the network
resources and improve the system throughput, we further introduce
the layered architecture to SimpleFT, which enables multiple blocks
to be confirmed at the same height. Comprehensive analysis is made
to validate the correctness of SimpleFT and various experiments are
conducted to demonstrate its efficient performance.
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1 INTRODUCTION
As the core component of blockchain systems, Byzantine Fault Tol-
erance (BFT) consensus protocols regain colossal interest during
the past few years [36]. In general, the BFT consensus protocol
(or consensus for short) enables a group of mutually distrustful
replicas to reach an agreement [40], thus contributing to building
replicated state machines [43]. According to different timing as-
sumptions of the network, consensus protocols can be divided into
three categories: synchronous consensus, asynchronous consensus,
and partially-synchronous consensus. On the one hand, the assump-
tion of a synchronous network can be easily violated, which may
compromise the liveness or even safety properties [39]. On the other
hand, as argued by the FLP theorem [19], it is impossible to design
a deterministic consensus protocol in the asynchronous network.
Therefore, for a long time, partial synchronization is picked as the
timing assumption for most consensus designs.

The best-known representative of the partially-synchronous con-
sensus protocols should be Practical Byzantine Fault Tolerance
(PBFT) [30], which has been the de facto standard of consensus
since its inception. Following PBFT, plenty of attempts are made to
improve the protocol performance, such as AZyzzyva [22], Aard-
vark [16], and HotStuff [46]. However, as pointed out by Miller et
al., partially-synchronous consensus protocols can be easily attacked
to be infeasible or inefficient [35]. First, it is easy to construct an
adversarial network scheduler to break the partially-synchronous
assumption, thereby causing the system to a halt. Second, even if
the partially-synchronous assumption is satisfied, it would take a
long time to recover from a network partition, which leads to low
performance.

To avoid the aforementioned problems of partially-synchronous
consensus protocols, a line of recent works refocus on the asynchro-
nous network assumption, such as HoneybadgerBFT [35], BEAT [17],
and Dumbo [24]. To steer clear of the FLP impossibility theorem,
these asynchronous consensus protocols usually introduce random-
ness to the protocol design. Concretely speaking, most of these
asynchronous protocols integrate the Asynchronous Byzantine Agree-
ment (ABA) algorithm [5], which is further based on the random
common coin primitive [9]. In this regard, asynchronous protocols
cannot guarantee the consensus to be reached in a deterministic
round. Instead, they can only promise a consensus with a larger and
larger probability.

However, the existing asynchronous consensus protocols are usu-
ally too complicated to understand, particularly compared with the
simplicity of the Nakamoto consensus of Bitcoin [37]. An obscure
protocol will also be difficult to implement, which usually brings
more bugs and security problems [38]. Besides, the ABA algorithm
widely adopted by existing asynchronous protocols suffers from
the termination problem. To be more specific, replicas involved in
an ABA algorithm cannot terminate in an elegant manner, some of
which may run forever.

In this paper, we are also aimed to propose an asynchronous
consensus protocol, named SimpleFT. Compared with the existing
asynchronous protocols, SimpleFT is easier for understanding, with-
out adopting the intricate and problematic ABA algorithm. On the
whole, the design of SimpleFT is mainly inspired by the Bitcoin
protocol, which inherits block and chain structures from Bitcoin.
Since consensus protocols of SimpleFT and Bitcoin rely heavily on
the blockchain structures, we henceforth use the terms ‘consensus
protocol’ and ‘blockchain protocol’ interchangeably, which is also
done by HotStuff [46] and Streamlet [13].
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With a re-understanding of the Bitcoin protocol, we first disassem-
ble the life cycle of a block into three phases, namely proposal, dis-
semination, and confirmation. Corresponding to these three phases,
we then devise or introduce a multiple-round sortition algorithm, the
Reliable Broadcast (RBC) algorithm, and the Quorum Certificate
(QC) mechanism in SimpleFT. Concretely speaking, we devise a
sortition algorithm to elect the block proposer at each height. Pro-
posed blocks are disseminated through the RBC algorithm, which is
then confirmed by the QC mechanism. The QC mechanism ensures
that only one block will be confirmed at each height.

To avoid the waste of network resources and increase the system
performance, we make an improvement to SimpleFT by enabling
multiple blocks to be confirmed at each height. The improved Sim-
pleFT is named layered SimpleFT, as a contrast to the basic Sim-
pleFT described above. In layered SimpleFT, blocks are divided into
two categories: vote blocks (VBlocks) and data blocks (DBlocks).
VBlocks function to reach the consensus, while DBlocks only con-
tain transactions. VBlocks are proposed after winning the multiple-
round sortition algorithm and only one VBlock can be confirmed at
each height, just like normal blocks in basic SimpleFT. By contrast,
DBlocks are proposed without running a sortition algorithm, whose
confirmations rely on the references by the confirmed VBlocks. In
this way, multiple DBlocks can be referenced and confirmed at each
height, thus improving the system performance.

We make a detailed analysis on the correctness of SimpleFT,
including the safety and liveness properties. To evaluate SimpleFT’s
performance, we implement prototype systems of both the basic
SimpleFT and layered SimpleFT. Various experiments are conducted
based on prototype systems, whose results demonstrate SimpleFT’s
feasibility and efficiency. Besides, by comparing the performance
of basic SimpleFT and layered SimpleFT, we can conclude that the
layered architecture increases the system throughput by a substantial
margin.

To sum up, this paper makes the following contributions:

• We carry out a disassembly of the Bitcoin protocol from
the perspective of a block’s life cycle, which includes three
phases, namely proposal, dissemination, and confirmation.

• Inspired by the simplicity of Bitcoin, we propose a simple
asynchronous consensus named SimpleFT.

• Corresponding to the three phases in Bitcoin, we devise or
introduce the sortition algorithm, reliable broadcast algo-
rithm, and quorum certificate mechanism in SimpleFT.

• Correctness analysis and various experiments are done
to validate SimpleFT’s correctness and efficiency, respec-
tively.

2 PRELIMINARIES & MOTIVATION
On the whole, we aim to design a new consensus protocol in the

asynchronous network. Before elaborating on our design, we first
present the background and preliminary knowledge in this section.
Particularly, we will discuss several timing assumptions to motivate
our target scenario of an asynchronous network. After that, some
algorithms integrated by SimpleFT are introduced.

2.1 Timing assumptions
In the context of distributed systems, the network can be divided into
three categories according to different timing assumptions: synchro-
nous network, asynchronous network, and partially-synchronous
network [18]. Although the assumption of a synchronous network
can greatly simplify the consensus design, this assumption can be
violated with a large probability, especially in a world-scale Wide
Area Network (WAN) deployment. Besides, the selection of the time-
out parameter (Δ) for the synchronous network is a non-trivial task.
If Δ is set too large, the consensus can be quite inefficient. On the
contrary, a value of Δ that is too small will cause the synchronization
assumption to be violated easily.

On the other hand, according to FLP impossibility theory, there
will never be a deterministic asynchronous consensus protocol in the
presence of one faulty replica [19]. As a result, for a long time, the
assumption of a partially-synchronous network is widely adopted by
researchers. The outstanding ones include PBFT [12], Zyzzyva [29],
and HotStuff [46]. However, as discussed in [35] and [24], almost
all the partially-synchronous consensus protocols are vulnerable to
attacks of network partitions. To be more specific, the adversary can
construct the network partitions when leaders are correct and repair
the partition when leaders are Byzantine. In this way, the assumption
of a partially-synchronous network is violated and no consensus can
be reached.

Our protocol (i.e., SimpleFT) adopts the assumption of an asyn-
chronous network, which promises better safety and liveness. Like
many other asynchronous consensus protocols [24, 35], SimpleFT
introduces randomness to the protocol design, thus circumventing
the FLP impossibility theorem.

2.2 Reliable broadcast
In an asynchronous network under a Byzantine environment, broad-
casting messages is not easy to do. In this regard, a Byzantine sender
may send a message𝑚 to some replicas and a contradictory message
𝑚′ to the others, which causes the correct replicas to deliver incon-
sistent messages. Besides, a sender may crash before sending the
message 𝑚 to all the replicas, where some correct replicas deliver 𝑚
while others do not.

To describe a benign broadcast process in the asynchronous
Byzantine network, an abstraction of Reliable Broadcast (RBC)
is defined [7]. Particularly, RBC is characterized by the following
three properties:

• Validity: If a correct replica broadcasts a message𝑚, each
correct replica will finally deliver𝑚.

• Consistency: If two correct replicas deliver two messages
𝑚 and𝑚′ respectively, then𝑚 =𝑚′.
• Totality: If a message𝑚 is delivered by some correct replica,

each correct replica will eventually deliver𝑚.

Intuitively, with an RBC algorithm, all the correct replicas will
eventually deliver the same messages. Besides, all the messages
broadcast by a correct replica will eventually be delivered by each
correct replica. The first practical RBC algorithm was proposed by
Bracha [5], which was later improved by Cachin et al. [11] with the
erasure code mechanism and Merkle tree structure [33]. Cachin’s
RBC algorithm opens a series of research on asynchronous consensus
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protocols, which functions as an integral part of many remarkable
works, such as HoneybadgerBFT [35] and Dumbo [24].

2.3 Verifiable random function
Verifiable Random Function (VRF) can be considered as a combi-
nation of random function and digital signature [34]. On one hand,
VRF can output a random number given an input message. On the
other hand, anyone can verify if the random number is created from
a particular replica. To be more specific, taking a message (𝑚) as the
input, GenVRF𝑠𝑘𝑖 (𝑚) is expected to output a random value (𝑥) and
a proof (𝜓 ), where 𝑠𝑘𝑖 denotes the private key of a particular replica
(𝑝𝑖 ). With the public key (𝑝𝑘𝑖 ) corresponding with 𝑠𝑘𝑖 , anyone re-
ceiving 𝑥 can run the verification function VerifyVRF𝑝𝑘𝑖 (𝑚,𝜓 ) to
check if it is created from a VRF function by 𝑝𝑖 .

VRF can be easily wrapped as a sortition function, which is
further used to choose the committee members, as done by Algo-
rand [21] and Blockene [42]. However, the existing sortition function
can hardly guarantee to generate a committee of an exact size. For
example, the VRF/sortition function in Blockene can only promise a
committee of approximate 2000, which may be more or less. As
for this paper, it is impossible for the VRF/sortition function to elect
exactly one winner.

3 DISASSEMBLY OF BITCOIN
As a pioneer of blockchain systems, Bitcoin [37] reopens a boom of
research on Byzantine consensus [30]. During the past decade, lots
of wonderful works have been proposed with various network as-
sumptions, such as SBFT [23] in the partially-synchronous network
and HoneybadgerBFT [35] in the asynchronous network. Although
these works promise better performance, they are becoming more
and more complicated, making it difficult for nonspecialists to un-
derstand or implement. By contrast, the Bitcoin protocol is concise
enough, which can be easily grasped by laymen in a short time.
In this section, we disassemble the Bitcoin protocol into three phases
according to the life cycle of a block, which inspires and instructs
our protocol design.

3.1 Block proposal
In a blockchain system with no leaders, each replica is responsible
for extending the chain. On the one hand, to guarantee the liveness
property, there must be at least one replica to propose the new block
at each height. On the other hand, to facilitate the safety property, it
would be best if exactly one block is proposed at each height. There-
fore, to resist the attacks of arbitrary block proposals at one height,
there should be an eligibility checking for the proposals. To achieve
these two objectives, Bitcoin makes a combination of the incentive
mechanism and the Proof of Work (PoW) algorithm [25]. The incen-
tive mechanism stimulates each replica to propose the new block by
giving rewards to the eligible proposer, thus providing the liveness.
A replica has to solve a PoW puzzle to prove its eligibility, which
prevents arbitrary proposals. Besides, since it is scarcely possible
for multiple replicas to solve the PoW puzzles simultaneously, the
probability of multiple proposals for the same height is controlled at
a low level.

INSIGHT 1. There must be at least one block proposal for each
height, preferably exactly one.

3.2 Block dissemination
To enable each replica to possess the same data, a newly proposed
block must be disseminated across the network. A proposer’s will-
ingness to broadcast a new block is also stimulated by the incentive
mechanism, since the rewards become valid only if the new block
is accepted by a majority of replicas. Another challenge is how to
prohibit a proposer from sending inconsistent blocks to different
replicas. Bitcoin deals with this by setting the PoW puzzle based
on the block contents. In this way, any modifications to the block
contents will create a totally different PoW puzzle. Therefore, it is
impossible for a replica to broadcast two inconsistent blocks with
only one pass of PoW computing. On the other hand, it would be
uneconomical to solve the PoW puzzle multiple times at a single
height. As for the data dissemination, Bitcoin adopts the Gossip
protocol [26], which ensures a block to be delivered eventually by
each replica.

INSIGHT 2. The newly proposed blocks must be disseminated
consistently and delivered eventually across the network.

3.3 Block confirmation
As mentioned in Section 3.1, there may be multiple eligible block
proposals at the same height. Further, these blocks of the same
height may contradict each other, as they may contain conflicting
transactions. In most blockchain systems (including Bitcoin), only
one of these blocks is confirmed as valid. Therefore, a new question
is how to confirm only one block for a height in a distributed manner
securely. The safety property requires that if two blocks (𝐵𝑘 and 𝐵′

𝑘
)

at the same height (𝑘) are confirmed by two correct replicas, then
𝐵𝑘 = 𝐵′

𝑘
. As for Bitcoin, it confirms the blocks based on the longest

chain rule, where the blocks led by the longest chain are considered
valid. As time goes by, the possibility that 𝐵𝑘 and 𝐵′

𝑘
(𝐵𝑘 ≠ 𝐵′

𝑘
) led

by two chains of the same length is becoming smaller and smaller,
thus guaranteeing the safety with overwhelming probability.

INSIGHT 3. At each height, only one block can be confirmed
consistently among all the correct replicas.

4 BASIC SIMPLEFT
In this section, we first clarify the model of our consensus protocol.

Following that, we elaborate on the basic version of SimpleFT, which
is inspired by the disassembly of Bitcoin.

4.1 Model description
4.1.1 Replica setup. We consider a system consisting of 3𝑓 +1

replicas, at most 𝑓 of which are controlled by the malicious adver-
sary, named as Byzantine replicas. Byzantine replicas can arbitrarily
deviate from the protocol, while the others (correct replicas) will
always conform with the protocol. We assume that the adversary is
static and all the Byzantine replicas are determined by the adversary
at the start of the protocol. Modern cryptography algorithms such as
hash functions or signatures are employed. Therefore, all the replicas
can be identified and certified by the public-key infrastructure (PKI).
A message (𝑚) signed by a replica (𝑝𝑖 ) is denoted by ⟨𝑚⟩𝑖 . To reduce
the message size of a collection of signatures, the threshold signa-
ture scheme is also adopted to merge the signatures from multiple
parties [4].
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4.1.2 Network assumption. The network is assumed to be
asynchronous, where messages between two replicas are not guaran-
teed to be delivered within a predefined period. Each pair of replicas
is connected via a peer-to-peer (P2P) link. Note that the adversary
can only delay the messages transmitted between any pair of replicas
but cannot remove them. Besides, the P2P link is pair-wised and
authenticated that a message 𝑚 received from the link connecting to
replica 𝑝𝑖 can be verified by the signature ⟨𝑚⟩𝑖 .

4.2 Protocol overview
Before describing the details, we give an overview of the basic

SimpleFT protocol, including data structures and the life cycle of a
block.

4.2.1 Data structures. Data structures in basic SimpleFT re-
semble Bitcoin to a great extent. To be more specific, transactions
are packaged in the form of blocks. Each block is indexed with a
height, which represents its distance from the genesis block. All the
blocks are linked like a chain where a block 𝐵𝑘 at height 𝑘 includes
the hash digest of its predecessor 𝐵𝑘−1. In terms of two blocks 𝐵𝑙
and 𝐵𝑘 , if 𝐵𝑙 is a descendant of 𝐵𝑘 , we say 𝐵𝑙 extends 𝐵𝑘 and denote
it by 𝐵𝑘 ≺ 𝐵𝑙 . Accordingly, 𝐵𝑘 ⊀ 𝐵𝑙 represents that 𝐵𝑙 does not
extend 𝐵𝑘 . If 𝐵𝑘 ≠ 𝐵 𝑗 and 𝐵𝑘 ⊀ 𝐵𝑙 and 𝐵𝑙 ⊀ 𝐵𝑘 , we say 𝐵 𝑗 is
contradictory to 𝐵𝑘 . Besides, we stipulate that the extension relation
between blocks is reflexive, namely 𝐵𝑘 ≺ 𝐵𝑘 .

Different from Bitcoin, SimpleFT requires a block proposer to
contain an eligibility proof instead of a PoW nonce in the block.
The eligibility proof is used to verify the qualification of the block
proposer. Therefore, a block 𝐵𝑘 proposed by an eligible replica 𝑝𝑖
has the data structure as follows:

𝐵𝑘 := ⟨𝑏𝑘 , 𝐻 (𝐵𝑘−1), 𝜋𝑘 ⟩𝑖 (1)

where𝑏𝑘 denotes the plain block which only contains the outstanding
transactions, 𝐻 represents the hash function, and 𝜋𝑘 denotes the
eligibility proof generated for the height 𝑘 .

4.2.2 Workflow of SimpleFT. SimpleFT operates in an epoch-
by-epoch manner and epochs are divided according to the heights of
blocks. In the remaining parts of this paper, we use the terms ‘epoch’
and ‘height’ interchangeably. Note that replicas in SimpleFT are not
required to enter into or depart from the same epoch at the same
pace, thus abiding by the assumption of an asynchronous network.
As stated before, basic SimpleFT is designed by drawing an analogy
to Bitcoin, where the epoch for each block is also divided into
three phases. Concretely speaking, the sortition algorithm based on
VRF is devised to propose the block, which is further disseminated
via the RBC algorithm and confirmed by the quorum certificate
mechanism. A comparison between Bitcoin and SimpleFT is shown
in Table 1.

As an example, Figure 1 depicts three phases of a block in basic
SimpleFT, where four replicas are involved. In the phase of block
proposal, each replica will run the sortition algorithm locally. The
sortition algorithm will return a boolean value, representing if the
replica is eligible to propose a block. A replica who gets the eligi-
bility is named as ‘winner’ to aid the presentation. Ideally, exactly
one replica wins the sortition, as exemplified by 𝑝1 in Phase 1. 𝑝1
will then disseminate the new block to others via the RBC algorithm,
as Phase 2 in Figure 1 shows. After receiving the new block, each

Figure 1: Three phases of a block in basic SimpleFT

Phases of a block Bitcoin SimpleFT
#1 Proposal PoW & incentive Sortition
#2 Dissemination PoW & gossip Reliable broadcast
#3 Confirmation Longest chain Quorum certificate

Table 1: Comparison between Bitcoin and SimpleFT

Algorithm 1 One-round sortition (for replica 𝑝𝑖 )

1: Let 𝑘 represent the epoch number and STR refer to the function
converting an integer to a string.

2: function ONERUDSORT𝑖 (𝑘)
3: 𝑏, 𝑥 ,𝜓 ← SORTITION𝑖 (STR(𝑘))
4: send ⟨𝑏, 𝑥,𝜓 ⟩ to BLKDISSEM𝑖 (𝑘)
5: return
6: end function

7: function SORTITION𝑖 (𝑚, 𝑒 = 1)
8: 𝑥 ,𝜓 ← GENVRF𝑠𝑘𝑖 (𝑚)
9: if 𝑥 𝑚𝑜𝑑 (𝑛/𝑒) = 0 then

10: return true, 𝑥 ,𝜓
11: else
12: return false
13: end function

replica will vote for the new block. If 2𝑓 +1 (i.e., 3 in this example)
or more votes from distinct replicas are received, one can confirm
the block. Besides, the 2𝑓 +1 votes constitute a Quorum Certificate
(QC), as shown by Phase 3 in Figure 1.

4.3 Block proposal
A simple sortition algorithm based on VRF is described as Algo-

rithm 1, where only one pass of the VRF function is executed. We
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refer to this simple algorithm as one-round sortition, namely the
ONERUDSORT function in Algorithm 1. We separate the core parts
of the sortition algorithm as the SORTITION function, which will
also be reused in Algorithm 2. The second argument 𝑒 to the SOR-
TITION𝑖 function is set as 1 by default, which denotes the easiness
for a replica to win the SORTITION𝑖 function in a round. Besides, 𝑒
also reflects the expected number of SORTITION𝑖 ’s winners when
all the replicas are correct. However, Byzantine replicas may deviate
from the protocol, such as refusing to run the SORTITION𝑖 algo-
rithm, which reduces the expected number of winners in a round
and increases the number of rounds needed to create a winner. This
can further increase the consensus latency and reduce the system
throughput. To remedy this problem, we enable the value of 𝑒 to be
adjusted dynamically, whose details will be presented in Section 7.1.
Generally speaking, the larger the number of Byzantine replicas is,
the larger the value of 𝑒 will be. Besides, the dynamical adjustment
of 𝑒 is pretty similar to the adjustment of mining difficulty in Bit-
coin. Note that if the SORTITION function outputs true, both the
random value 𝑥 and the proof𝜓 will be returned, seen as Line 10. By
contrast, if the SORTITION function outputs false, only the boolean
value needs to be returned, as Line 12 shows.

In the example taken by Figure 1, the sortition algorithm is as-
sumed to produce exactly one winner, which is elected as the eligible
block proposer. However, as discussed in Section 2.3, the simple
one-round sortition algorithm cannot promise this. To be more spe-
cific, on the one hand, Algorithm 1 may produce no winner, thereby
generating no blocks and compromising the liveness. On the other
hand, it may produce more than one winner, thus generating multiple
blocks for the same height/epoch. What’s worse, due to the presence
of Byzantine replicas, a Byzantine replica may deliberately refuse to
propose a block, even if it wins the sortition. The above problems
can be summarized as two challenges as follows:

CHALLENGE 1. How to avoid the situation where no block is
proposed, either because the sortition algorithm produces no winner
or because a Byzantine winner refuses to propose a block?

CHALLENGE 2. How to deal with the situation where the
sortition algorithm produces more than one winner?

We propose a multiple-round sortition algorithm in Section 4.3.1
to deal with Challenge 1, while leaving Challenge 2 to be resolved
in Section 4.4.

4.3.1 Multiple-round sortition. Given the SORTITION func-
tion is called with the default value of 𝑒, the probability that a replica
wins the one-round sortition is 1/𝑛, where 𝑛=3𝑓 +1 represents the
total number of replicas. The probability that at least one replica
wins the one-round sortition is 1-(1-1/𝑛)𝑛 . Moreover, the proba-
bility that at least one correct replica wins the one-round sortition
is 1-(1-1/𝑛)2𝑓 +1. Since a Byzantine replica may refuse to propose
a block, the probability (𝑃1+) that at least one replica proposes the
new block falls into an interval [1-(1-1/𝑛)2𝑓 +1, 1-(1-1/𝑛)𝑛]. The
lower bound of 𝑃1+ is 1-(1-1/𝑛)2𝑓 +1, whose minimum is 1-𝑒-2/3
where 𝑒 is the mathematical constant.

Since one pass of the one-round sortition can generate a new
block with a probability larger than 1-𝑒-2/3, a natural thought is
to keep running the one-round sortition over and over again, un-
til a new block is generated. Following this thought, we devise a

Algorithm 2 Multiple-round sortition (for 𝑝𝑖 )

1: Let CONCAT denote the function concatenating multiple strings
and BROADCAST denote the general broadcast function. Let 𝑠𝑖𝑔
refer to a message channel connected to Line 4 in Algorithm 3.

2: function MULRUDSORT𝑖 (𝑘)
3: 𝑟 ← 0; 𝜇← 𝜙 ; 𝑉 ← Φ;𝑚← STR(𝑘)
4: upon receiving 𝑠 from 𝑠𝑖𝑔 of BLKDISSEM𝑖 (𝑘)
5: return
6: while true do
7: upon receiving ⟨SORT, 𝑘, 𝑟 ⟩𝑗 from 𝑝 𝑗
8: 𝑉 ← 𝑉 ∪ ⟨SORT, 𝑘, 𝑟 ⟩𝑗
9: 𝑏, 𝑥 ,𝜓 ← SORTITION𝑖 (m)

10: if 𝑏 then
11: send ⟨𝑏, 𝑥,𝜓, 𝑟, 𝜇⟩ to BLKDISSEM𝑖 (𝑘)
12: return
13: else
14: BROADCAST(⟨SORT, 𝑘, 𝑟 ⟩𝑖 )
15: wait until |𝑉 | = 2𝑓 + 1
16: 𝑟 ← 𝑟+1; 𝜇← 𝑉 ; 𝑉 ← Φ
17: 𝑚← CONCAT(STR(𝑘), 𝐻 (𝜇), STR(𝑟 ))
18: end function

multiple-round sortition algorithm based on Algorithm 1, as shown
by Algorithm 2. Roughly speaking, given a replica is aware that
no valid block is proposed in the current round, it will strive to run
next-round sortition and propose the block, as the while loop in
Line 6 and 𝑟 ← 𝑟+1 in Line 16 show. In this way, Challenge 1 can
be addressed. However, a new issue is how to prevent the Byzan-
tine replicas from running the sortition algorithm round and round
infinitely, even if a valid block has been proposed for this epoch
before.

4.3.2 Prevention of infinite rounds by Byzantine. To pre-
vent a Byzantine replica from running the sortition in infinite rounds,
we require a replica to attach an extra proof named ‘round proof’
(𝜇), if it wants to run the 𝑟 -th (𝑟 ≥ 1) round sortition algorithm.
The round proof for 𝑟 -th round sortition is constructed based on the
collected sortition results of (𝑟-1)-th round.

To be more specific, if the sortition result of the (𝑟-1)-th round is
false, each replica will broadcast the result, as shown by Line 14. To
start the next round of sortition, a replica has to wait for messages
from others. When there are 2𝑓 +1 elements in 𝑉 , 𝑉 is taken as
the round proof (𝜇) and the input for the next round of sortition is
constructed based on the concatenation of 𝑘, 𝜇, and 𝑟 , as shown by
Lines 15-17 in Algorithm 2. If the SORTITION function outputs true,
not only 𝑏, 𝑥 and𝜓 will be sent to the BLKDISSEM function, which
is the same as Algorithm 1, but also the round number 𝑟 and the
round proof (𝜇) will be sent, as Lines 10-11 show. Besides, anytime
when the replica receives a valid block for the epoch 𝑘 from others,
it will stop running the MULRUDSORT function, as shown by Lines
4-5.

4.4 Block dissemination & confirmation
As presented in Section 4.2, block dissemination is implemented

based on RBC function, where the message type is set as BLK. The
values (𝑏, 𝑥 ,𝜓 , 𝑟 , and 𝜇) received from the MULRUDSORT function
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(a) Neither 𝐵𝑘 nor 𝐵𝑘 ′ gets confirmed

(b) 𝐵𝑘 gets confirmed by 𝐵𝑘+1

Figure 2: Forks can be dealt with by descendant blocks

constitute an eligibility proof (𝜋) for the block proposal. Not only
functioning to broadcast blocks from the replica (𝑝𝑖 ) to others, the
algorithm of the block dissemination also functions to receive blocks
from others and send the signal to the channel 𝑠𝑖𝑔 in Algorithm 2.
The pseudocode of the block dissemination is shown by Algorithm 3
in Appendix A.

A replica will vote for a block (𝐵𝑘 ) if (1) it has not voted for the
epoch 𝑘 before and (2) 𝐵𝑘 extends its local confirmed chain, whether
the block is received from the RBC function or generated on its own.
In other words, a replica will vote for one and only one block per
epoch. The vote is also broadcast through the RBC function, with the
message type as VOTE. During the RBC process for votes, correct
replicas will multicast the ECHO messages only once for a sender in
an epoch. In other words, it is impossible for a replica to broadcast
two contradictory votes in an epoch. After receiving 2𝑓 +1 votes for
the same block, the block can be confirmed. However, since each
replica runs the MULRUDSORT function in parallel, there may be
multiple valid blocks generated in the same epoch, as Challenge 2
presents. Each of these same-epoch blocks leads a chain, resulting
in forks just like Bitcoin. Furthermore, since there are at most 3𝑓 +1
votes in an epoch, maybe none of these blocks can get 2𝑓 +1 or more
votes, in which situation no block can be confirmed directly.

To deal with this challenge, we allow a replica to start the process
of the next epoch and strive to propose a new block to extend the
longest chain, even if the last block has not yet been confirmed. If
there are multiple longest chains with the same length, the replica can
randomly pick one or simply pick the first received. As long as the
new block can get 2𝑓 +1 votes, both this block and all its ancestors
can be confirmed. An example to demonstrate the challenge of chain
forks and their solution is shown in Figure 2. Assume there are
four replicas and two valid blocks (𝐵𝑘 and 𝐵′

𝑘
) are generated in

epoch 𝑘. However, each block can only get 2𝑓 (i.e., 2) votes and
cannot get confirmed directly, as Figure 2a shows. In this regard, a

(a) 𝐵𝑘 is extended and confirmed by 𝐵𝑘+1

(b) 𝐵′
𝑘

also gets confirmed

Figure 3: Multiple blocks in the same epoch are confirmed

replica having received 𝐵𝑘 or 𝐵′
𝑘

can attempt to propose the block in
epoch 𝑘+1. If a block 𝐵𝑘+1 is proposed to extend 𝐵𝑘 and gets at least
2𝑓 +1 votes, it and its predecessors can be confirmed, as shown by
Figure 2b. The mechanism that all the ancestors can be confirmed by
a descendant block is named as ancestor confirmation mechanism,
which deals with Challenge 2 successfully.

However, the aforementioned solution to Challenge 2 poses a new
challenge. An example is shown by Figure 3, where a replica 𝑝𝑖
proposes a new block 𝐵𝑘+1 after receiving the block 𝐵𝑘 . Although
𝐵𝑘 cannot be confirmed by 2𝑓 + 1 direct votes, it is confirmed by the
descendant 𝐵𝑘+1 indirectly, as Figure 3a shows. On the other hand,
a contradictory block 𝐵′

𝑘
can also get 2𝑓 + 1 votes to be confirmed.

In this manner, multiple contradictory blocks in the same epoch are
confirmed, as shown by Figure 3b, which compromises the safety.
This challenge can be summarized as follows:

CHALLENGE 3. How to avoid multiple contradictory blocks
in the same epoch from being confirmed, after taking the ancestor
confirmation mechanism?

To tackle Challenge 3, we require a replica to propose the block
of the next epoch (𝑘+1) only after it has collected 2𝑓 +1 (not nec-
essarily consistent) votes for epoch 𝑘, which constitute a set 𝑆 (𝑘).
Based on 𝑆 (𝑘), the replica chooses which precursor block to extend
according to the rules described in Equation 2. Once the precursor
block is chosen, the replica can start the block proposal for epoch
𝑘+1 immediately.

𝑃𝑟𝑒 (𝑘) =

{
𝐵𝑘 , |𝐿(𝑘) | ≥ 𝑓 +1 && 𝐿(𝑘) votes for 𝐵𝑘
RAN, otherwise

(2)

where 𝐿(𝑘) represents the largest subset of 𝑆 (𝑘) voting for the same
block and RAN denotes a randomly chosen block. To be more spe-
cific, if a block in the epoch 𝑘 gets 𝑓 +1 or more votes, it will be
chosen as the precursor block to extend. Otherwise, the precursor
block is chosen at random. In fact, once a replica receives 𝑓 + 1
consistent votes for a block, the replica can choose this block im-
mediately without collecting 2𝑓 + 1 votes, thus reducing the waiting
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Figure 4: The architecture of layered SimpleFT

latency. To prevent the Byzantine replicas from doing evil, the block
proposal must be attached with a proof for the precursor choice,
namely precursor proof 𝜉 , as shown by Line 7 in Algorithm 3 in
Appendix A. In fact, the combination of the sortition proof 𝜓 , the
proof 𝜇, and the precursor proof 𝜉 makes up the complete eligibility
proof 𝜋 in Equation 1.

5 LAYERED SIMPLEFT
In the basic SimpleFT protocol described in Section 4, only one

block in each epoch will be confirmed. In other words, all the blocks
except one will be discarded, which causes a waste of network re-
sources since each block has already been disseminated through
the expensive RBC function. To address this problem, we introduce
the layered architecture to SimpleFT, which reduces the network re-
source wastage and improves the system throughput largely. Blocks
in layered SimpleFT are divided into two categories, namely data
block (DBlock) and vote block (VBlock), where DBlocks are refer-
enced by VBlocks. If a VBlock is confirmed by 2𝑓 +1 votes, all its
referenced DBlocks are confirmed. Therefore, there can be only one
confirmed VBlock but multiple confirmed DBlocks in each epoch.
As shown by Figure 4, DBlocks (𝐷1, 𝐷2, and 𝐷3) are confirmed as a
result of the confirmed VBlock (𝐵𝑘 ). By contrast, either 𝐷4 or 𝐷5
has not yet been confirmed.

5.1 Data blocks
A data block (DBlock) contains only the plain transactions, which is
also broadcast through the RBC algorithm. Each replica can package
a DBlock based on the outstanding transactions without running the
sortition algorithms. To avoid a Byzantine replica from packaging
the DBlocks arbitrarily, the DBlock is required to be attached with
a sequence number, which equals the epoch number of its latest
received VBlock. Therefore, a DBlock (𝐷) packaged by replica 𝑝𝑖 is
in the format of ⟨𝑡𝑥𝑠, 𝑠𝑛⟩𝑖 , where 𝑡𝑥𝑠 and 𝑠𝑛 represent the packaged
transactions and sequence number respectively. Accordingly, the
RBC algorithm is modified by adding a validation mechanism, as
shown by Algorithm 6 in Appendix A. Concretely speaking, a replica
𝑝 𝑗 will respond to the VAL message for DBlock ⟨𝑡𝑥𝑠, 𝑠𝑛⟩𝑖 if (1) it
has not processed a VAL message for 𝑠𝑛 from 𝑝𝑖 before and (2)
𝑠𝑛 ≤ 𝑒 + 𝑤 , where 𝑒 represents the epoch number of 𝑝 𝑗 ’s latest
received VBlock. Besides, 𝑤 denotes an empirical value to control
how fast DBlocks are proposed, which can be simply set as 10. Each
replica will maintain a pool to store DBlocks that have been received
from the RBC algorithm but not yet confirmed by VBlocks.

5.2 Vote blocks
A vote block (VBlock) is quite similar to the normal block in

basic SimpleFT, except that it contains references to the DBlocks
rather than the outstanding transactions. Particularly, if a replica
gets the eligibility from the sortition algorithm, it will propose a
VBlock referencing all the DBlocks in its DBlock pool. However,
a Byzantine replica may maliciously reference a DBlock (e.g., 𝐷𝑏 ),
which is not yet broadcast through the RBC algorithm, leading other
correct replicas to be in a dilemma. On the one hand, the correct
replica should stop running the MULRUDSORT algorithm for the
current epoch due to the receipt of a VBlock. On the other hand, it
may not be able to receive and validate the DBlock 𝐷𝑏 referenced by
this VBlock, since 𝐷𝑏 is not broadcast through the RBC algorithm at
all. In this regard, the correct replica can never vote for this VBlock
and the system can be trapped in a halt.

To prevent the Byzantine replica from referencing a non-RBC

DBlock, we require the VBlock to contain proof for each referenced
block. Particularly, we make use of the Provable Reliable Broadcast
(PRBC) algorithm [24] to broadcast the DBlocks, which outputs
a threshold signature 𝜎 by combining share signatures from 𝑓 +1
replicas. The share signature from a replica indicates that the replica
has received the DBlock through the RBC algorithm. Since there
are at most 𝑓 Byzantine replicas, 𝜎 can be used as proof that all the
correct replicas will eventually receive the DBlock. Therefore, the
VBlock has a data structure as follows:

𝐵𝑘 := ⟨𝐻 (𝐵𝑘−1), 𝜋𝑘 , {⟨𝐻 (𝐷0), 𝜎0⟩, ..., ⟨𝐻 (𝐷𝑙 ), 𝜎𝑙 ⟩}⟩𝑖

Each confirmed DBlock 𝐷 referenced by a VBlock 𝐵 can be iden-
tified by a tuple ⟨𝑘,𝑑⟩, namely 𝐷⟨𝑘,𝑑 ⟩ , where 𝑘 and 𝑑 represent the
epoch number of 𝐵 and the serial number of 𝐷 in 𝐵. After receiving
𝐵𝑘 , each replica will vote for it only if both the eligibility proof 𝜋𝑘
and the PRBC proofs 𝜎 pass the validation.

5.3 Basic SimpleFT vs. layered SimpleFT
In fact, basic SimpleFT can be considered a special case of layered
SimpleFT. To be more specific, basic SimpleFT introduces several
simplifications or modifications to layered SimpleFT as follows:

• Each VBlock can only reference one DBlock.
• The DBlock and the VBlock are broadcast simultaneously,

through the same RBC algorithm.
• Neither the PRBC algorithm nor the PRBC proof 𝜎 in the

VBlock is needed.

Since basic SimpleFT is a special case of layered SimpleFT, we
carry out a generalization to the notions described in Section 4.2.
The extension relationship between VBlocks is defined similarly to
that between general blocks in basic SimpleFT. Namely, we say the
VBlock 𝐵𝑙 extends 𝐵𝑘 (𝐵𝑘 ≺ 𝐵𝑙 ), if 𝐵𝑙 is a descendant of 𝐵𝑘 . As for
two DBlocks 𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩ , we say 𝐷⟨𝑙,𝑒 ⟩ extends 𝐷⟨𝑘,𝑑 ⟩ (i.e.,
𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩) if the following condition is satisfied:

𝐵𝑘 ≺ 𝐵𝑙 | | (𝐵𝑘 = 𝐵𝑙 && 𝑑 < 𝑒) (3)

It is easy to find that all the confirmed DBlocks can be sorted by the
extension relationship (≺) in total order.
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5.4 Transaction execution
Since DBlocks are created in parallel, there may be duplicate or
even conflicting transactions being packaged in different DBlocks,
which are named conflicting blocks. In layered SimpleFT, we allow
the VBlock to reference these conflicting blocks. To resolve the
conflicting transactions, we further generalize the extension relation-
ship from DBlocks to transactions. Each confirmed transaction 𝑇

contained in the DBlock 𝐷⟨𝑘,𝑑 ⟩ can be identified by a tuple ⟨𝑘, 𝑑,𝑢⟩,
denoted by𝑇⟨𝑘,𝑑,𝑢 ⟩ , where 𝑢 represents the sequence number of𝑇 in
𝐷⟨𝑘,𝑑 ⟩ . As for two transactions 𝑇⟨𝑘,𝑑,𝑢 ⟩ and 𝑇⟨𝑙,𝑒,𝑣⟩ , we say 𝑇⟨𝑙,𝑒,𝑣⟩
extends 𝑇⟨𝑘,𝑑,𝑢 ⟩ (i.e., 𝑇⟨𝑘,𝑑,𝑢 ⟩ ≺ 𝑇⟨𝑙,𝑒,𝑣⟩), if the following condition
is satisfied:

𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ | | (𝐷⟨𝑘,𝑑 ⟩ = 𝐷⟨𝑙,𝑒 ⟩ && 𝑢 < 𝑣) (4)

It is also easy to conclude that all the confirmed transactions
can be sorted by the extension relationship (≺) in total order. With
this order, each confirmed transaction can be attached with an in-
dex 𝑥 and this transaction can be named as being confirmed at 𝑥 . If
𝑇⟨𝑘,𝑑,𝑢 ⟩ and𝑇⟨𝑙,𝑒,𝑣⟩ are confirmed at indexes 𝑥 and𝑦 respectively, and
𝑇⟨𝑘,𝑑,𝑢 ⟩ ≺ 𝑇⟨𝑙,𝑒,𝑣⟩ , we must have 𝑥 < 𝑦. Only the first one of the con-
flicting transactions will be executed. Take two conflicting transac-
tions𝑇⟨𝑘,𝑑,𝑢 ⟩ and𝑇⟨𝑙,𝑒,𝑣⟩ as an example. If𝑇⟨𝑘,𝑑,𝑢 ⟩ ≺ 𝑇⟨𝑙,𝑒,𝑣⟩ ,𝑇⟨𝑘,𝑑,𝑢 ⟩
will be considered as valid and executed, while 𝑇⟨𝑙,𝑒,𝑣⟩ will be dis-
carded without execution. In other words, the confirmed DBlocks in
layered SimpleFT will contain invalid transactions, which is similar
to Ethereum [45] and Hyperledger Fabric [2].

6 CORRECTNESS ANALYSIS

Since basic SimpleFT can be considered as a special case of lay-
ered SimpleFT, we analyze the correctness of layered SimpleFT
directly. The correctness of a consensus protocol includes two as-
pects, namely safety and liveness. To aid presentation, we say a
VBlock 𝐵 is confirmed directly, if it is confirmed by 2𝑓 +1 votes for
𝐵. On the contrary, we say 𝐵 is confirmed indirectly if it is confirmed
by its descendant. A VBlock being confirmed directly is also named
as QCVBlock.

6.1 Safety

LEMMA 1. If two VBlocks (𝐵𝑘 and 𝐵𝑙 ) are confirmed, then either
𝐵𝑘 = 𝐵𝑙 , 𝐵𝑘 ≺ 𝐵𝑙 , or 𝐵𝑙 ≺ 𝐵𝑘 .

PROOF. Let 𝐶𝑥 denote the lowest QCVBlock to confirm 𝐵𝑘 ,
where 𝑥 represents the QCVBlock’s epoch number. That means, if
𝐵𝑘 is confirmed directly,𝐶𝑥 = 𝐵𝑘 ; if not,𝐶𝑥 is the lowest QCVBlock
extending 𝐵𝑘 . Similarly, let 𝐶𝑦 denote the lowest QCVBlock to con-
firm 𝐵𝑙 . Apparently, 𝐵𝑘 ≺ 𝐶𝑥 and 𝐵𝑙 ≺ 𝐶𝑦 . If 𝑥 = 𝑦, it means
both 𝐶𝑥 and 𝐶𝑦 are directly confirmed, namely get 2𝑓 +1 votes, in
the same epoch. In this situation, 𝐶𝑥 must equal 𝐶𝑦 (𝐶𝑥 = 𝐶𝑦).
Otherwise, there must be at least one correct replica voting for two
contradictory VBlocks in the same epoch, which is impossible.

Without loss of generality, we assume 𝑥 < 𝑦. Next, we prove that
if 𝑥 < 𝑦, we must have 𝐶𝑥 ≺ 𝐶𝑦 . Suppose for contradiction that
𝐶𝑥 ⊀ 𝐶𝑦 . There must be an ancestor block of 𝐶𝑦 in the epoch 𝑥 ,
denoted by 𝐶′𝑥 . We have 𝐶′𝑥 ≺ 𝐶𝑦 and 𝐶′𝑥 ≠ 𝐶𝑥 . According to the
precursor choice rules defined in Equation 2, when 𝐶′𝑥 was chosen

as the precursor block to extend, either 𝐶′𝑥 gets at least 𝑓 +1 votes
(case 1) or none of the blocks gets 𝑓 +1 or more votes (case 2). As
for case 1, since 𝐶𝑥 is directly confirmed by 2𝑓 +1 votes, there must
be one replica vote for two contradictory blocks (i.e., 𝐶𝑥 and 𝐶′𝑥 ) in
the same epoch through the RBC function. However, according to
the definition of RBC function, a replica can only vote for one block
in an epoch. Therefore, case 1 is impossible. In terms of case 2, none
of the blocks gets 𝑓 +1 or more votes in the collected 2𝑓 +1 votes.
Taking the remaining 𝑓 votes into consideration, none of the blocks
can finally get 2𝑓 +1 or more votes. Therefore, it is impossible for𝐶𝑥
to get confirmed directly. To sum up, the assumption that 𝐶𝑥 ⊀ 𝐶𝑦

is invalid, thus 𝐶𝑥 ≺ 𝐶𝑦 .
On the one hand, when either 𝐶𝑥 = 𝐶𝑦 or 𝐶𝑥 ≺ 𝐶𝑦 , we have

𝐵𝑘 ≺ 𝐶𝑥 ≺ 𝐶𝑦 , namely 𝐵𝑘 is an ancestor of 𝐶𝑦 . On the other side,
since 𝐵𝑙 ≺ 𝐶𝑦 , 𝐵𝑙 is also an ancestor of 𝐶𝑦 . Combining two sides
together, we must have either 𝐵𝑘 = 𝐵𝑙 , 𝐵𝑘 ≺ 𝐵𝑙 , or 𝐵𝑙 ≺ 𝐵𝑘 .

LEMMA 2. If two DBlocks (𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩) are confirmed,
then either 𝐷⟨𝑘,𝑑 ⟩ = 𝐷⟨𝑙,𝑒 ⟩ , 𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ , or 𝐷⟨𝑙,𝑒 ⟩ ≺ 𝐷⟨𝑘,𝑑 ⟩ .

PROOF. Denote the VBlocks corresponding to these two DBlocks
as 𝐵𝑘 and 𝐵𝑙 respectively. Since 𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩ are confirmed,
both 𝐵𝑘 and 𝐵𝑙 must be confirmed as well. According to Lemma 1,
either 𝐵𝑘 = 𝐵𝑙 , 𝐵𝑘 ≺ 𝐵𝑙 , or 𝐵𝑙 ≺ 𝐵𝑘 . On the one hand, according
to Equation 3, if 𝐵𝑘 ≺ 𝐵𝑙 or 𝐵𝑙 ≺ 𝐵𝑘 , we have 𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ or
𝐷⟨𝑙,𝑒 ⟩ ≺ 𝐷⟨𝑘,𝑑 ⟩ . On the other hand, if 𝐵𝑘 = 𝐵𝑙 , it means 𝐷⟨𝑘,𝑑 ⟩
and 𝐷⟨𝑙,𝑒 ⟩ are referenced by the same VBlock. If 𝑑 = 𝑒, 𝐷⟨𝑘,𝑑 ⟩
and 𝐷⟨𝑙,𝑒 ⟩) refer to the same DBlock and thus 𝐷⟨𝑘,𝑑 ⟩ = 𝐷⟨𝑙,𝑒 ⟩ .
Otherwise, 𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ or 𝐷⟨𝑙,𝑒 ⟩ ≺ 𝐷⟨𝑘,𝑑 ⟩ , according to Equa-
tion 3. To sum up, if 𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩ are confirmed, then either
𝐷⟨𝑘,𝑑 ⟩ = 𝐷⟨𝑙,𝑒 ⟩ , 𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ , or 𝐷⟨𝑙,𝑒 ⟩ ≺ 𝐷⟨𝑘,𝑑 ⟩ .

LEMMA 3. If two transactions 𝑇⟨𝑘,𝑑,𝑢 ⟩ and 𝑇⟨𝑙,𝑒,𝑣⟩ are confirmed,
then either𝑇⟨𝑘,𝑑,𝑢 ⟩ = 𝑇⟨𝑙,𝑒,𝑣⟩ ,𝑇⟨𝑘,𝑑,𝑢 ⟩ ≺ 𝑇⟨𝑙,𝑒,𝑣⟩ , or𝑇⟨𝑙,𝑒,𝑣⟩ ≺ 𝑇⟨𝑘,𝑑,𝑢 ⟩ .

PROOF. Denote the DBlocks corresponding to these two trans-
actions as 𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩ respectively. Since 𝑇⟨𝑘,𝑑,𝑢 ⟩ and 𝑇⟨𝑙,𝑒,𝑣⟩
are confirmed, both 𝐷⟨𝑘,𝑑 ⟩ and 𝐷⟨𝑙,𝑒 ⟩ must be confirmed as well.
According to Lemma 2, either 𝐷⟨𝑘,𝑑 ⟩ = 𝐷⟨𝑙,𝑒 ⟩ , 𝐷⟨𝑘,𝑑 ⟩ ≺ 𝐷⟨𝑙,𝑒 ⟩ ,
or 𝐷⟨𝑙,𝑒 ⟩ ≺ 𝐷⟨𝑘,𝑑 ⟩ . Similar to the proof for Lemm2, according to
Equation 4, we have either 𝑇⟨𝑘,𝑑,𝑢 ⟩ = 𝑇⟨𝑙,𝑒,𝑣⟩ , 𝑇⟨𝑘,𝑑,𝑢 ⟩ ≺ 𝑇⟨𝑙,𝑒,𝑣⟩ , or
𝑇⟨𝑙,𝑒,𝑣⟩ ≺ 𝑇⟨𝑘,𝑑,𝑢 ⟩ .

THEOREM 4 (SAFETY). If two transactions 𝑇 and 𝑇 ′ are con-
firmed at the same index, then 𝑇 = 𝑇 ′.

PROOF. Since 𝑇 and 𝑇 ′ are confirmed, according to Lemma 3,
we have either𝑇 = 𝑇 ′,𝑇 ≺ 𝑇 ′, or𝑇 ′ ≺ 𝑇 . Suppose for contradiction
that 𝑇 and 𝑇 ′ are confirmed at the indexes 𝑥 and 𝑦, respectively.
If either 𝑇 ≺ 𝑇 ′ or 𝑇 ′ ≺ 𝑇 , we have 𝑥 < 𝑦 or 𝑦 < 𝑥 , which is
contradictory to the condition that 𝑇 and 𝑇 ′ are confirmed at the
same index. Therefore, 𝑇 must equal 𝑇 ′.
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Figure 5: Schematic diagram of 𝑔 and 𝑔−1 (𝑓 )

6.2 Liveness
Generally speaking, the liveness property of the blockchain system
requires that a transaction can be eventually confirmed. In the con-
text of SimpleFT, if the VBlocks can be confirmed after a while, new
transactions can be continuously confirmed. Furthermore, since a
VBlock is confirmed by itself being QCVBlock directly or by its
descendant QCVBlock indirectly, we transform the liveness property
as Theorem 6.

LEMMA 5. Denote 𝑃 as the probability that exactly one VBlock
is disseminated in an epoch. We have that 𝑃 is not a infinitely small
value, namely 𝑃 ̸→ 0.

PROOF. Let 𝑝 be the probability that the one-round sortition
algorithm (i.e., SORTITION in Algorithm 1) returns true. Let 𝑃0 be
the probability that exactly one correct replica wins in the 0-th round
(round 0) of the MULRUDSORT algorithm, which can be calculated
as follows:

𝑃0 =
2𝑓 +1∑︁
𝑖=1

𝑝 (1 − 𝑝)3𝑓 = (2𝑓 + 1) · 𝑝 (1 − 𝑝)3𝑓 (5)

Let 𝑃𝑟0 represent the probability that exactly one correct replica wins
in round 0 while all the other replicas fail in the rounds from 1 to
𝑟 of MULRUDSORT. We remark that a replica with no round proof
to run the sortition of round 𝑟𝑜 (1 ≤ 𝑟𝑜 ≤ 𝑟 ) is considered to fail in
round 𝑟𝑜 with a probability of 1. Besides, we stipulate that 𝑃00 = 𝑃0.

Let 𝑔(𝑟 ) be the number of correct nodes having not returned from
MULRUDSORT at the beginning of round 𝑟 . Consider the situation
where exactly one correct replica wins in round 0 of MULRUDSORT,
𝑔(𝑟 ) should decrease as 𝑟 increases. In other words, 𝑔(𝑟 ) is a concave
decreasing function of 𝑟 . Besides, 𝑔(0) = 2𝑓 + 1 and 𝑔(∞) = 0. Let
𝑔−1 (𝑣) be the inverse function of 𝑔(𝑟 ) and 𝑔−1 (𝑓 ) represents the
minimum round 𝑟 whose 𝑔(𝑟 ) is no more than 𝑓 . Since 𝑔(𝑟 ) is a
decreasing function, for each 𝑟 that 𝑟 ≥ 𝑔−1 (𝑓 ), we must have
𝑔(𝑟 ) ≤ 𝑓 . An example to demonstrate the function 𝑔(𝑟 ) and the
value 𝑔−1 (𝑓 ) is shown by Figure 5.

Recall that a replica is qualified to start the next round (𝑟+1) of
MULRUDSORT only if it collects 2𝑓 +1 SORT messages for 𝑟 . Once
𝑔(𝑟 ) ≤ 𝑓 , the number of correct replicas to broadcast SORT mes-
sages in round 𝑟 will be at most 𝑓 . Therefore, neither a correct replica
nor a Byzantine replica can start the round 𝑟 + 1 of MULRUDSORT.
In other words, for each 𝑟 satisfying the condition 𝑔(𝑟 ) ≤ 𝑓 , we have
𝑃𝑟+10 = 𝑃𝑟0 . On the other hand, for each 𝑟 satisfying the condition

𝑔(𝑟 ) ≥ 𝑓 +1, we have 𝑃𝑟+10 ≥ 𝑃𝑟0 · (1 − 𝑝)
𝑔 (𝑟 )+𝑓 . Namely, 𝑃𝑟0 can be

figured out as follows:

𝑃𝑟+10 ≥ 𝑃0 ·
𝑚𝑖𝑛(𝑟,𝑔−1 (𝑓 ))∏

𝑢=0

[
(1 − 𝑝)𝑔 (𝑢 )+𝑓

]
,∀𝑟 ≥ 0 (6)

Therefore, 𝑃 can be calculated according to Equation 7.

𝑃 ≥ lim
𝑟→∞

𝑃𝑟+10

≥ 𝑃0 ·
𝑔−1 (𝑓 )∏
𝑢=0

[
(1 − 𝑝)𝑔 (𝑢 )+𝑓

]
≥ 𝑃0 ·

𝑔−1 (𝑓 )∏
𝑢=0

[
(1 − 𝑝)2𝑓 +1+𝑓

]
= 𝑃0 ·

[
(1 − 𝑝)3𝑓 +1

]𝑔−1 (𝑓 )+1
= (2𝑓 + 1) · 𝑝 (1 − 𝑝)3𝑓 ·

[
(1 − 𝑝) (3𝑓 +1) ·(𝑔

−1 (𝑓 )+1)
]

(7)

Since 𝑝 is not infinitely small (i.e., 𝑝 ̸→ 0) and 𝑔−1 (𝑓 ) is not
infinitely large (i.e., 𝑔−1 (𝑓 ) ̸→ ∞), 𝑃 will never be infinitely small,
namely 𝑃 ̸→ 0.

THEOREM 6 (LIVENESS). Let 𝜆(𝑡) be the probability that there
will be at least one QCVBlock during the period 𝑡 after any time
point. We have lim𝑡→∞ 𝜆(𝑡) → 1.

PROOF. Without loss of generality, we represent the ‘any time
point’ by the time when a QCVBlock (e.g., with epoch number
as 𝑒) is constituted and denote the period 𝑡 by the number (𝑚) of
epochs after 𝑒. To prove Theorem 6, we only have to prove that
lim𝑚→∞ 𝛾 (𝑚) → 1, where 𝛾 (𝑚) represents the probability that there
will be at least one QCVBlock in the following𝑚 epochs after 𝑒.

If there is only one VBlock (𝐵𝑘 ) is disseminated in epoch 𝑘, 𝐵𝑘
will definitely receive 2𝑓 +1 votes, thus turning into a QCVBlock.
Therefore, for an epoch 𝑘 that 𝑘 > 𝑒, the probability (𝜁𝑘 ) that a
VBlock 𝐵𝑘 turns into a QCVBlock is at least 𝑃 (i.e., 𝜁𝑘 ≥ 𝑃), where
𝑃 is defined in Lemma 5. Thus, 𝛾 (𝑚) can be calculated according to
Equation 8.

𝛾 (𝑚) = 1 −
𝑒+𝑚∏
𝑘=𝑒+1

(1 − 𝜁𝑘 )

≥ 1 −
𝑒+𝑚∏
𝑘=𝑒+1

(1 − 𝑃)

≥ 1 − (1 − 𝑃)𝑚

(8)

Namely, we have:

lim
𝑚→∞

𝛾 (𝑚) ≥ lim
𝑚→∞

(
1 − (1 − 𝑃)𝑚

)
= 1 − lim

𝑚→∞
(1 − 𝑃)𝑚

(9)

According to Lemma 5 that 𝑃 ̸→ 0, we have 1 − 𝑃 ̸→ 1 and
lim𝑚→∞ (1 − 𝑃)𝑚 → 0. Therefore, 1 − lim𝑚→∞ (1 − 𝑃)𝑚 → 1
and lim𝑚→∞ 𝛾 (𝑚) → 1. Equivalently, lim𝑡→∞ 𝜆(𝑡) → 1 and thus
Theorem 6 is proved.
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7 IMPLEMENTATION AND EVALUATION
In this section, we talk about the experiments to evaluate both the

basic SimpleFT and layered SimpleFT. First, we detail the prototype
implementation and the experimental settings. Based on the proto-
types, we evaluate the performance of our design, whose metrics
mainly include throughput and latency.

7.1 Implementation
Prototypes of both the basic SimpleFT and layered SimpleFT are

implemented in Golang1, with a total of around 3,600 lines of code.
We implement the MULRUDSORT function based on Yoseplee’s
open-source VRF library2. The RBC algorithm is implemented ac-
cording to the improved version proposed by Bracha [5], which
absorbs the Merkle tree structure and erasure coding mechanism as
ingredients. Pseudocodes of RBC for VBlocks and votes are shown
as Algorithm 4 and Algorithm 5 in Appendix A, respectively. The
parts of erasure coding are implemented based on Reed-Solomon
library3. During the process of implementation, we also refer to the
project of HoneybadgerBFT4. As for the PRBC algorithm to dis-
seminate DBlocks, we adapt the algorithms of Dumbo [24], whose
pseudocodes are shown in Algorithm 6. To reduce the message com-
plexity, we introduce the threshold signature to combine signatures
from multiple replicas into one. Particularly, we employ the DEDIS
advanced crypto library5 to implement the threshold signatures.

Recall that in Section 4.3, the second argument 𝑒 to the SOR-
TITION function is adjusted dynamically to deal with the arbitrary
actions taken by Byzantine replicas and maintain the system through-
put. In the prototype implementation, we simply adjust the value of 𝑒
every 1,000 VBlocks. To be more specific, we calculate the average
(𝑟 ) of the rounds needed to win the MULRUDSORT algorithm in the
last 1,000 VBlocks. The value of 𝑒 for the next 1,000 epochs can be
calculated as follows:

𝑒 =𝑚𝑖𝑛(𝑒′ · 𝑟, 3
2
) (10)

where 𝑒′ represents the argument in the last 1000 epochs. The reason
why 𝑒 should be less than 3/2 is that there are at least ⌈(2𝑛)/3⌉
correct replicas. Therefore, to make the expected number of winners
be 1, the probability for a replica to win the SORTITION algorithm
should be roughly less than 3/(2𝑛) and 𝑒 should be less than 3/2.

7.2 Experimental setting
We deploy the prototype systems on the Alibaba cloud. Each replica
is run on an ECS.c6e.2xlarge instance, which contains 8 vCPU and
16 GB memory. To characterize the actual deployment environment,
replicas are uniformly distributed in five regions around the world.
All the replicas are connected via the link of 100 Mbps bandwidth.

Since we are the first to design the asynchronous consensus by
imitating Bitcoin, there is no perfect counterpart for comparison.
Worse still, we can hardly find the publicly available implementa-
tions of existing consensus works. As PBFT has been considered
the de facto standard of the consensus protocol for a long time,
which is proved to be efficient enough, we mainly take PBFT as our
1https://go.dev
2https://github.com/yoseplee/vrf
3https://github.com/klauspost/reedsolomon
4https://github.com/amiller/HoneyBadgerBFT
5https://github.com/dedis/kyber
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Figure 6: Throughput comparison between PBFT, basic Sim-
pleFT, and layered SimpleFT

comparison counterpart. Besides, although there is an open-source
implementation of PBFT (i.e., BFT-SMaRt6), it is reported to be
poorly scalable [44], which can only work in a WAN environment
consisting of no more than four replicas [23]. Therefore, we im-
plement a well-scalable version of PBFT by ourselves, which also
absorbs the threshold signature to optimize the message complexity,
as presented in SBFT [23].

7.3 Throughput comparison
To get an intuitive understanding of SimpleFT’s performance, we
first compare the throughput of PBFT, basic SimpleFT, and layered
SimpleFT. In this section, we simply set the batch size, namely
the number of transactions in a batch, as 2,000. Evaluation of the
throughput changes resulting from the increase in batch sizes re-
mains to be made in the next section. Besides, all the replicas are set
as correct ones.

Experimental results are shown in Figure 6, with the number of
replicas as 𝑥-axis. In general, the basic SimpleFT is a little inferior to
PBFT. The reason is that SimpleFT needs a sortition algorithm before
starting a consensus, which introduces higher latency and reduces
the throughput. However, compared with the benefits brought by the
asynchronous consensus, the performance penalty of basic SimpleFT
is acceptable, which obtains 71.7% throughput of PBFT. On the other
hand, layered SimpleFT substantially outperforms both PBFT and
basic SimpleFT. Particularly, when the system consists of 55 replicas,
layered SimpleFT delivers 8.2x and 11.8x throughput over PBFT and
basic SimpleFT, respectively. An abnormal phenomenon in Figure 6
is that the throughput of layered SimpleFT experiences a rise and
then a fall as the number of replicas increases. The throughput
rise results from more DBlocks being created and confirmed in
one epoch, while the fall is due to the limitation of the network
bandwidth. Too many DBlocks being propagated simultaneously
will cause network congestion, thus slowing down the consensus
process.

7.4 Robustness of throughput
As described in Section 7.1, to remedy the throughput reduction
problem resulting from the Byzantine replicas, we introduce an

6https://github.com/bft-smart/library
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(a) Basic SimpleFT with 7 replicas

200 500 1000 2000 5000 8000
Batch Size (#Tx)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro
ug

hp
ut
 (T

PS
)

×104

f=0, e=1
f=5, e=1
f=5, e=1.2

(b) Basic SimpleFT with 31 replicas
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(c) Layered SimpleFT with 7 replicas
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(d) Layered SimpleFT with 31 replicas

Figure 7: Variation of the throughput when the number of Byzantine replicas (𝑓 ) changes and the value of easiness (𝑒) is adjusted

argument of easiness 𝑒 to the SORTITION function and propose a
simple easiness adjustment mechanism to change the probability
of winning sortition, . In this section, we try to measure how can
Byzantine replicas reduce the throughput and whether the easiness
adjustment mechanism makes sense.

We conduct the experiments with 7 and 31 replicas, respectively.
For a system with 𝑛 replicas, we simply set the number of Byzantine
replicas as ⌊𝑛/6⌋ and model the actions of Byzantine replicas as
being non-responsive [23]. To show the variation of throughput
more clearly, we disable the automatic adjustment mechanism of 𝑒.
Instead, we adjust the value of 𝑒 manually. According to Equation 10,
to eliminate the effects brought by ⌊𝑛/6⌋ Byzantine replicas, 𝑒 should
be set as 1.2.

Experimental results are shown in Figure 7. By comparing two
lines (blue and green lines) with 𝑒 = 1 in each figure, we can find
that Byzantine replicas can obviously reduce the system throughput.
Particularly, in the experiment with 31 replicas and 8,000 transac-
tions within a batch, Byzantine replicas reduce the throughput of
layered SimpleFT by 23.3%, as shown in Figure 7d. On the other
hand, when the value of 𝑒 is increased from 1 to 1.2, the through-
put gets improved. To be more specific, as shown by the red and
blue lines in Figure 7a or Figure 7b, the system with 𝑓 = ⌊𝑛/6⌋
and 𝑒 = 1.2 achieves a nearly identical performance to that with
𝑓 = 0 and 𝑒 = 1. Therefore, we can conclude that the adjustment
mechanism of 𝑒 is exactly effective in eliminating the bad effects
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Figure 8: Latency vs. throughput

brought by Byzantine replicas, especially in basic SimpleFT. On
the other hand, from Figure 7c or Figure 7d, we can find that there
is still a gap between the blue and red lines. The reason for it can
be explained as follows. Byzantine replicas will refuse to broadcast
not only VBlocks but also DBlocks. Although the increase of 𝑒 can
lead the expected number of VBlocks in one round of sortition to
remain as 1, the DBlocks in one epoch will be less than 𝑛. Therefore,
the Byzantine replicas will slightly reduce the system throughput in
layered SimpleFT, even though the value of 𝑒 has been adjusted.
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7.5 Trade-off between latency and throughput
Generally speaking, the throughput of a system is impossible to
increase indefinitely. When the throughput reaches a threshold, not
only the throughput cannot increase anymore, but also the latency
will grow sharply. To avoid the system from delivering a fairly high
latency, the throughput should be limited within a threshold. In other
words, there is a trade-off between the latency and the throughput.
In this section, we do an analysis of this trade-off. Particularly, we
gradually increase the batch size to saturate the system throughput,
during which process pairs of throughput and latency are recorded.
Besides, all the replicas are set as correct ones.

Experimental results are shown in Figure 8. It is easy to find that
layered SimpleFT has a higher upper bound of the throughput than
basic SimpleFT. By comparing basic SimpleFT containing different
numbers of replicas, we find a larger number of replicas can bring
a higher upper bound, which demonstrates the good scalability of
basic SimpleFT. On the other hand, layered SimpleFT with different
numbers of replicas delivers a similar upper bound. The reason
for it is that the layered architecture enables massive DBlocks to
be propagated in parallel, which causes the network resources to
become the bottleneck easily. Therefore, both the layered SimpleFT
with 𝑛 = 7 and 𝑛 = 31 can only obtain the throughput limited by the
network bandwidth, which is roughly equal to each other. Besides,
we can find that the layered SimpleFT with 𝑛 = 31 delivers a higher
latency than the others. This is because the broadcast of VBlock
data and vote messages may be delayed, due to the propagation of
massive DBlocks. Maybe we can broadcast VBlock data and vote
messages via a separate network link, which remains to be our future
work.

8 RELATED WORK
According to different timing assumptions, the consensus protocols

can be divided into three categories, namely synchronous consensus,
partially-synchronous consensus, and asynchronous consensus. In
this section, we make a summary of these consensus-related works.

8.1 Synchronous consensus
Originated from the oral-message and signed-message solutions pro-
posed by Lamport et al. [30], quite a number of early consensus
protocols are designed under the assumption of the synchronous
networks, such as Rampart [41] and SecureRing [28]. Besides, some
wonderful works in recent years also take the synchronous-network
assumption, including Pili [15] and Sync HotStuff [1]. The greatest
advantage of the synchronous consensus is the protocol’s simplicity
and conciseness, which can be understood and implemented with
ease. However, as we have discussed in Section 2.1, the synchronous
assumption can be easily violated in an unstable network environ-
ment, for example in a worldwide WAN deployment. The violation
of the timing assumption may compromise the safety property, which
causes the consensus protocol to fail.

Besides, if the timeout parameter Δ is set very large to maintain
safety, the consensus efficiency can be dragged down to quite a low
level. The most representative of this line of work is Bitcoin [37],
which sets Δ (i.e., block interval) as ten minutes and can only process
at most 7 transactions per second (TPS). Although Ethereum [45]

makes an improvement to Bitcoin by reducing Δ to about fifteen
seconds, it can only offer at most 15 TPS.

8.2 Partially-synchronous consensus
As the first one to do a combination of synchronous network and
asynchronous network, Dwork et al. [18] pioneer the study of partially-
synchronous consensus. The best-known work in this category is
PBFT [12], which is considered the de facto standard of the consen-
sus protocol. PBFT successfully reduces the protocol complexity
from exponential level to polynomial level, which is adopted by a
large number of blockchain systems, including Hyperledger Fab-
ric [2] and ELASTICO [32]. Following PBFT, lots of wonderful
works strive to improve the performance of PBFT, either by intro-
ducing the fast-path commitment mechanism (e.g., Zyzzyva [29]
and SBFT [23]) or the trusted hardware (e.g., FastBFT [31] and
Hybster [3]). Besides, with the emergence of blockchain technol-
ogy, data structures of blocks and chains also bring new inspirations
to the consensus design, which spawns a line of works, such as
Tendermint [6], Pala [14], HotStuff [46], and Streamlet [13].

On the one hand, the partially-synchronous consensus can guar-
antee safety regardless of whether the network is synchronous or
asynchronous. On the other hand, once the network becomes syn-
chronous, the partially-synchronous consensus claims to promise
the liveness property. However, as analyzed in [35] and [24], the
partially-synchronous consensus is vulnerable to Byzantine replicas’
attacks, making the consensus unusable or inefficient. To be more
specific, an adversarial network scheduler can be constructed to
generate network partitions when the correct replicas are leaders,
and heal the partitions when the Byzantine replicas are leaders. In
this regard, the system cannot reach a consensus at any time. What’s
worse, even if the partitions are healed finally with correct leaders,
which satisfies the assumption of partial synchronization, it will take
a long period to recover from the network partitions, resulting in low
consensus efficiency.

8.3 Asynchronous consensus
Although the FLP theorem [19] proclaimed the impossibility of de-
signing a deterministic consensus in the asynchronous network with
even one faulty replica, a mass of research has been conducted to
circumvent this impossibility result. Apart from making a stronger
timing assumption as in the above sections, lots of works give up the
determinism characteristic. In other words, almost all of the asyn-
chronous consensus protocols introduce randomness in the protocol
design, the early representatives of which include SINTRA [10] and
CKPS01 [8]. Based on these early attempts, a range of recent works
strives to improve the efficiency to make the asynchronous consen-
sus practically usable, such as HoneybadgerBFT [35], BEAT [17],
Aleph [20], and DAG-Rider [27].

Although these asynchronous protocols promise much stronger
robustness, they are usually too difficult to understand and imple-
ment, especially for a non-expert learner. The more complicated a
protocol is, the more bugs its implementation will suffer from [38].
By contrast, Bitcoin proposes a new path to design the consensus
protocol, which is quite simple and understandable. Therefore, in
our work (i.e., SimpleFT), we inherit the design path from Bitcoin
to devise a simple asynchronous consensus. Besides, most of the
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existing asynchronous protocols take the Asynchronous Byzantine
Agreement (ABA) [5] algorithm as its core component. However,
the ABA algorithm is subject to the liveness problem that the repli-
cas involved in the ABA algorithm may not be able to terminate
graciously.

9 CONCLUSION
Inspired by the simplicity of the Bitcoin protocol, we propose Sim-
pleFT in this paper, which is a simple consensus protocol for the
asynchronous network. Corresponding to the three phases disassem-
bled from the Bitcoin protocol, we devise or introduce the sortition
algorithm, reliable broadcast algorithm, and quorum certificate mech-
anism to implement the functions of block proposal, dissemination,
and confirmation, respectively. Furthermore, to avoid the network re-
sources from being wasted, we introduce the layered architecture to
SimpleFT and divide the blocks into two types, namely vote blocks
and data blocks. Multiple data blocks can be confirmed in one epoch,
thus avoiding the waste of block propagation and increasing the
system throughput. Comprehensive analysis validates SimpleFT’s
correctness and experimental results demonstrate its efficiency. We
hope this work can open new ways of consensus design and bring
some insights to others in the future.
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[20] Adam Gągol, Damian Leśniak, Damian Straszak, and Michał Świętek. 2019.
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A PSEUDOCODE

Algorithm 3 Dissemination of blocks in basic SimpleFT or VBlocks
in layered SimpleFT (for 𝑝𝑖 )

1: Let 𝑘 represent the epoch number and 𝜉𝐵 represent the precursor
proof for 𝐵.

2: function BLKDISSEM𝑖 (𝑘)
3: upon receiving ⟨BLK, 𝑘, 𝐵𝑘 ⟩ from RBCBLOCK𝑖 then
4: send true to 𝑠𝑖𝑔 of MULRUDSORT𝑖
5: return
6: upon receiving ⟨𝑏, 𝑥,𝜓, 𝑟, 𝜇⟩ from MULRUDSORT𝑖 (𝑘) then
7: 𝜋𝑘 ← ⟨𝑏, 𝑥,𝜓, 𝑟, 𝜇, 𝜉𝐵𝑘−1 ⟩
8: if basic SimpleFT then
9: 𝐵𝑘 ← ⟨𝑏𝑘 , 𝐻 (𝐵𝑘−1), 𝜋𝑘 ⟩𝑖

10: else
11: 𝐵𝑘 ← ⟨𝐻 (𝐵𝑘−1), 𝜋𝑘 , {⟨𝐻 (𝐷0), 𝜎0⟩, ..., ⟨𝐻 (𝐷𝑙 ), 𝜎𝑙 ⟩}⟩𝑖
12: send ⟨BLK, 𝑘, 𝐵𝑘 ⟩𝑖 to RBCBLOCK𝑖

13: return
14: end function

Block dissemination algorithm: The process of block dissemina-
tion is described as Algorithm 3. A replica will wait for either a valid
block proposal from the RBCBLOCK function or a result from the
MULRUDSORT function. If the replica firstly receives a valid block
from others, it will send the signal to the MULRUDSORT function to
stop it (Lines 3-5). Otherwise, it will keep running the MULRUD-
SORT function to acquire the eligibility for the block proposal and
then broadcast the new block, as shown in line 6. According to the
type of SimpleFT, the replica will create a normal block (lines 8-9)
or a VBlock (lines 10-11). Note that except the sortition proof 𝜓
and round proof 𝜇 received from the MULRUDSORT function, the
replica will also attach the precursor proof 𝜉 for its parent block, as
Line 7 shows.

RBC algorithm for normal blocks or VBlocks: The RBC al-
gorithm for normal blocks in basic SimpleFT or VBlocks in lay-
ered SimpleFT is shown in Algorithm 4. In general, this algorithm
mainly implements the ideas from Bracha’s broadcast [5], which
has also been described in HoneybadgerBFT [35] and Dumbo [24].
We present it here to make a comparison with the RBC algorithm
for votes (Algorithm 5) or the PRBC algorithm for DBlocks (Algo-
rithm 6). An RBC algorithm mainly consists of four steps:

Algorithm 4 Reliable broadcast of normal blocks in basic SimpleFT
or VBlocks in layered SimpleFT (for 𝑝𝑖 )

1: Let MERKLETREE, BRANCH, and DECODE represent the func-
tions related to the merkle tree.

2: function RBCBLOCK𝑖 ( )
3: upon receiving ⟨BLK, 𝑘, 𝐵𝑘 ⟩𝑖 from BLKDISSEM𝑖 (𝑘) then
4: {𝑠 𝑗 | 1 ≤ 𝑗 ≤ 𝑛}← ERASURECODE(𝐵𝑘 , 𝑓 + 1, 𝑛)
5: 𝑇 ← MERKLETREE({𝑠 𝑗}); 𝑟 ← ROOT(𝑇 )
6: ∀1 ≤ 𝑗 ≤ 𝑛, 𝑏 𝑗 ← BRANCH(𝑇 , 𝑗)
7: send ⟨VAL_BLK, 𝑖, 𝑘, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑖 to 𝑝 𝑗
8: upon receiving ⟨VAL_BLK, 𝑗, 𝑘, 𝑟, 𝑏𝑖 , 𝑠𝑖 ⟩𝑗 from 𝑝 𝑗 then
9: if ! 𝑏𝑙𝑘𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑘] then

10: 𝑏𝑙𝑘𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑘] ← true
11: BROADCAST(⟨ECHO_BLK, 𝑗, 𝑘, 𝑟, 𝑏𝑖 , 𝑠𝑖 ⟩𝑖 )
12: upon receiving ⟨ECHO_BLK,𝑚, 𝑘, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑗 from 𝑝 𝑗 then
13: 𝑠ℎ𝑎𝑟𝑑𝑠 [𝑚] [𝑘]+ = ⟨ECHO_BLK,𝑚, 𝑘, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑗
14: if |𝑠ℎ𝑎𝑟𝑑𝑠 [𝑚] [𝑘] | = 2𝑓 + 1 then
15: BROADCAST(⟨RDY_BLK,𝑚, 𝑘, 𝑟 ⟩𝑖 )
16: 𝑏𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] ← true
17: upon receiving ⟨RDY_BLK,𝑚, 𝑘, 𝑟 ⟩𝑗 from 𝑝 𝑗 then
18: 𝑏𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑘]+ = ⟨RDY_BLK,𝑚, 𝑘, 𝑟 ⟩𝑗
19: if |𝑏𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑘] | = 𝑓 + 1 && ! 𝑏𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] then
20: BROADCAST(⟨RDY_BLK,𝑚, 𝑘, 𝑟 ⟩𝑖 )
21: 𝑏𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] ← true
22: if |𝑏𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑘] | = 2𝑓 + 1 then
23: 𝐵𝑘 ← DECODE(𝑠ℎ𝑎𝑟𝑑𝑠,𝑚, 𝑘)
24: send ⟨BLK, 𝑘, 𝐵𝑘 ⟩ to Line 3 of BLKDISSEM𝑖 (𝑘)
25: send ⟨BLK, 𝑘, 𝐵𝑘 ⟩ to channel 𝑐ℎ𝑖 of RBCVOTE𝑖 (𝑘)
26: end function

• Step 1 (lines 3-7): The sender initiates a process of RBC

by broadcasting the VAL messages. If the size of data is
too large, the sender can make use of the erasure code
mechanism and Merkle tree structure to reduce the network
overhead.

• Step 2 (lines 8-11): Each replica broadcasts the ECHO
messages once receiving a valid VAL message.

• Step 3 (lines 12-16): After receiving 2𝑓 + 1 or more ECHO
messages, a replica will broadcast the RDYmessages. Every
received ECHO message will be cached in a set 𝑠ℎ𝑎𝑟𝑑𝑠.

• Step 4 (lines 17-25): Once receiving 2𝑓 +1 RDYmessages, a
replica can decode 𝑠ℎ𝑎𝑟𝑑𝑠 to restore the original data, which
will be sent to the BLKDISSEM function in Algorithm 3
and RBCVOTE function in Algorithm 5.

We remark that some validation details, such as the validation of
received Merkle branches, are omitted in Algorithm 4 to make the
pseudocode more concise.

RBC algorithm for votes: The voting mechanism for normal
blocks in basic SimpleFT is quite similar to votes for VBblocks in
layered SimpleFT. The RBC algorithm for votes is described in Al-
gorithm 5. Since the size of a vote message is quite small, neither the
erasure-code mechanism nor the Merkle-tree structure is needed in
Step 1, in comparison with Algorithm 4. Each replica can only vote
for one block in basic SimpleFT (or VBlock in layered SimpleFT)
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Algorithm 5 Reliable broadcast of votes (for 𝑝𝑖 )

1: function RBCVOTE𝑖 ( )
2: upon receiving ⟨BLK, 𝑘, 𝐵𝑘 ⟩𝑖 from 𝑐ℎ𝑖 then
3: ℎ← ℎ𝑎𝑠ℎ(𝐵𝑘 )
4: BROADCAST(⟨VAL_VOTE, 𝑘, ℎ, 𝑖⟩𝑖 )
5: upon receiving ⟨VAL_VOTE, 𝑘, ℎ, 𝑗⟩𝑗 from 𝑝 𝑗 then
6: if ! 𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑘] then
7: 𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑘] = true
8: BROADCAST(⟨ECHO_VOTE, 𝑘, ℎ, 𝑗⟩𝑖 )
9: upon receiving ⟨ECHO_VOTE, 𝑘, ℎ,𝑚⟩𝑗 from 𝑝 𝑗 then

10: 𝑣𝑜𝑡𝑒𝑠 [𝑚] [𝑘]+ = ⟨ECHO_VOTE, 𝑘, ℎ,𝑚⟩𝑗
11: if |𝑣𝑜𝑡𝑒𝑠 [𝑚] [𝑘] | = 2𝑓 + 1 then
12: BROADCAST(⟨RDY_VOTE, 𝑘, ℎ,𝑚⟩𝑖 )
13: 𝑣𝑜𝑡𝑒𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] = true
14: upon receiving ⟨RDY_VOTE, 𝑘, ℎ,𝑚⟩𝑗 from 𝑝 𝑗 then
15: 𝑣𝑜𝑡𝑒𝑅𝑑𝑦 [𝑚] [𝑘]+ = ⟨RDY_VOTE, 𝑘, ℎ,𝑚⟩𝑗
16: if |𝑣𝑜𝑡𝑒𝑅𝑑𝑦 [𝑚] [𝑘] | = 𝑓 +1 && ! 𝑣𝑜𝑡𝑒𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] then
17: BROADCAST(⟨RDY_VOTE,𝑚, 𝑘, 𝑟 ⟩𝑖 )
18: 𝑣𝑜𝑡𝑒𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑘] = true
19: if |𝑣𝑜𝑡𝑒𝑅𝑑𝑦 [𝑚] [𝑘] | = 2𝑓 + 1 then
20: OUTPUT ⟨VOTE, 𝑘, ℎ,𝑚⟩
21: end function

in each epoch, which is checked by others, as Line 6 shows. In other
words, if a Byzantine replica maliciously initiates RBC votes for
multiple conflicting blocks in the same epoch, one of these votes
cannot pass the checking in Line 6. Therefore, only one vote can be
broadcast successfully. Besides, in the real implementation, multiple
non-conflicting votes can be broadcast in one process of RBC, which
can reduce the communication overhead.

PRBC algorithm for DBlocks: As discussed in Section 5.2, the
broadcast of DBlocks must be attached with the proof. We borrow
the idea from the Provable Reliable Broadcast (PRBC) algorithm
in Dumbo [24] to broadcast DBlocks, which is described in Al-
gorithm 6. The main body of Algorithm 6 resembles Algorithm 4
largely, except that Algorithm 6 adds an extra step to assemble the
proof. To be more specific, after restoring the DBlock from 𝑠ℎ𝑎𝑟𝑑𝑠,
a replica will further broadcast a DONE message indicating that it
has received the DBlock correctly. A threshold share signature on
this DBlock will be included in the DONE message, as shown by
Lines 24-25. After receiving 𝑓 + 1 DONE messages, the replica can
assemble the PRBC proof (𝜎) based on the threshold share signa-
tures. Both the DBlock data and the PRBC proof will be stored in
the DBlock pool, as Lines 29-30 show.

Recall that in Section 5.1, to avoid a Byzantine replica from broad-
casting VBlocks arbitrarily, we add an extra validation mechanism
to Step 2 of Algorithm 6. As shown by line 9, only the DBlock
with a sequence number 𝑠𝑛 that is no larger than 𝑒 +𝑤 can pass the
validation. 𝑤 is an empirical value, which can be adjusted according
to the transaction workloads. The higher the workload is, the larger
the value of 𝑤 should be set as.

Algorithm 6 Provable reliable broadcast of DBlocks (for 𝑝𝑖 )

1: Let SIGSHARE and COMBINE denote the functions relevant to
the threshold signature. Let 𝑒 be the epoch number of 𝑝𝑖 ’s latest
received VBlock and 𝑤 represent an empirical value to control
how fast blocks are proposed.

2: function PRBC𝑖 ( )
3: upon receiving ⟨DLK, 𝑡𝑥𝑠, 𝑠𝑛⟩𝑖 from 𝑝𝑖 itself then
4: {𝑠 𝑗 | 1 ≤ 𝑗 ≤ 𝑛}← ERASURECODE(𝑡𝑥𝑠, 𝑓 + 1, 𝑛)
5: 𝑇 ← MERKLETREE({𝑠 𝑗}); 𝑟 ← ROOT(𝑇 )
6: ∀1 ≤ 𝑗 ≤ 𝑛, 𝑏 𝑗 ← BRANCH(𝑇 , 𝑗)
7: send ⟨VAL_DLK, 𝑖, 𝑠𝑛, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑖 to 𝑝 𝑗
8: upon receiving ⟨VAL_DLK, 𝑗, 𝑠𝑛, 𝑟, 𝑏𝑖 , 𝑠𝑖 ⟩𝑗 from 𝑝 𝑗 then
9: if ! 𝑑𝑙𝑘𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑠𝑛] && 𝑠𝑛 ≤ 𝑒 +𝑤 then

10: 𝑑𝑙𝑘𝑉𝑎𝑙𝑅𝑒𝑐𝑣𝑑 [ 𝑗] [𝑘] ← true
11: BROADCAST(⟨ECHO_DLK, 𝑗, 𝑠𝑛, 𝑟, 𝑏𝑖 , 𝑠𝑖 ⟩𝑖 )
12: upon receiving ⟨ECHO_DLK,𝑚, 𝑠𝑛, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑗 from 𝑝 𝑗 then
13: 𝑠ℎ𝑎𝑟𝑑𝑠 [𝑚] [𝑠𝑛] += ⟨ECHO_DLK,𝑚, 𝑠𝑛, 𝑟, 𝑏 𝑗 , 𝑠 𝑗 ⟩𝑗
14: if |𝑠ℎ𝑎𝑟𝑑𝑠 [𝑚] [𝑠𝑛] | = 2𝑓 + 1 then
15: BROADCAST(⟨RDY_DLK,𝑚, 𝑠𝑛, 𝑟 ⟩𝑖 )
16: 𝑑𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑠𝑛] ← true
17: upon receiving ⟨RDY_DLK,𝑚, 𝑠𝑛, 𝑟 ⟩𝑗 from 𝑝 𝑗 then
18: 𝑑𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑠𝑛]+ = ⟨RDY_DLK,𝑚, 𝑠𝑛, 𝑟 ⟩𝑗
19: if |𝑑𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑠𝑛] | = 𝑓 + 1 && ! 𝑑𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑠𝑛] then
20: BROADCAST(⟨RDY_DLK,𝑚, 𝑠𝑛, 𝑟 ⟩𝑖 )
21: 𝑑𝑙𝑘𝑅𝑑𝑦𝐵𝑐 [𝑚] [𝑠𝑛] ← true
22: if |𝑑𝑙𝑘𝑅𝑑𝑦 [𝑚] [𝑠𝑛] | = 2𝑓 + 1 then
23: 𝑡𝑥𝑠 ← DECODE(𝑠ℎ𝑎𝑟𝑑𝑠,𝑚, 𝑠𝑛)
24: 𝜅 ← SIGSHARE𝑓 +1 (ℎ𝑎𝑠ℎ(𝑡𝑥𝑠))
25: BROADCAST(⟨DONE_DLK,𝑚, 𝑠𝑛, 𝜅⟩𝑖 )
26: upon receiving ⟨DONE_DLK,𝑚, 𝑠𝑛, 𝜅⟩𝑗 from 𝑝 𝑗
27: 𝑑𝑙𝑘𝐷𝑜𝑛𝑒 [𝑚] [𝑠𝑛] += 𝜅

28: if |𝑑𝑙𝑘𝐷𝑜𝑛𝑒 [𝑚] [𝑠𝑛] | = 𝑓 + 1
29: 𝜎 ← COMBINE𝑓 +1 (𝑑𝑙𝑘𝐷𝑜𝑛𝑒 [𝑚] [𝑠𝑛])
30: store ⟨DLK, 𝑡𝑥𝑠,𝑚, 𝑠𝑛, 𝜎⟩ to the local DBlock pool
31: end function
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