
Quantum-safe Signatureless DNSSEC

Aditya Singh Rawat
Ashoka University

aditya.rawat phd21@ashoka.edu.in

Mahabir Prasad Jhanwar
Ashoka University

mahavir.jhawar@ashoka.edu.in

Abstract—We present SL-DNSSEC: a backward-compatible
protocol that leverages a quantum-safe KEM and a MAC to
perform signature-less (SL) DNSSEC validations in a single UDP
query/response style. Our experiments targeting NIST level I
security for QTYPE A query resolution show that SL-DNSSEC
is practically equivalent to the presently deployed RSA-2048
in terms of bandwidth usage and resolution speeds. Compared
to post-quantum signatures, SL-DNSSEC reduces bandwidth
consumption and resolution times by up to 95% and 60%,
respectively. Moreover, with response size < query size ≤ 1232
bytes, SL-DNSSEC obviates the long-standing issues of IP frag-
mentation, TCP re-transmits and DDoS amplification attacks.

I. INTRODUCTION

A cryptanalytically relevant quantum computer (CRQC)
running Shor’s algorithm [63] can efficiently solve the factor-
ing and the discrete logarithm problem (DLP) in polynomial
time. Asymmetric schemes, such as RSA and ECDSA, relying
on the foregoing hardness assumptions, thus stand in urgent
need to be replaced with their quantum-resilient counterparts.
While a CRQC can also mount Grover’s [33] quadratically
faster brute-force against symmetric algorithms (such as AES
and SHA family), the urgency for a post-quantum transition
in this case remains less pressing since a doubling of the key
or hash size restores the original n-bit security.

Many modern protocols deployed over the Internet, such
as TLS and SSH, rely on public-key cryptography 1) to
provide message confidentiality and integrity, and 2) to au-
thenticate the communicating participants. The DNS Security
Extensions (DNSSEC) [57], [59], [58], being one among
such protocols, facilitates the validation (origin authentication
and data integrity) of DNS responses with the aid of digital
signatures. Being the backbone of the Internet, the Domain
Name System (DNS) maps a human-readable domain name
(www.example.com) to a machine-understandable IP ad-
dress (1.2.3.4). At present, DNS services are also utilized
for email authentication [38], acquisition of TLS certificates
by proving a domain’s ownership [9], and supporting Internet
routing security (RPKI) [49], [20].

Without DNSSEC in place, DNS remains vulnerable to
cache poisoning attacks [10], [11], [1] wherein an adversary
can inject a false domain-to-IP mapping in a resolver’s cache,
thereby eventually re-directing the users of the poisoned re-
solver to a malicious website. In order to perform a successful
attack, an off-path adversary would need to simultaneously
guess the 16-bit UDP source port and the 16-bit DNS transac-
tion ID. However, recently researchers [50], [51] discovered
critical vulnerabilities in DNS software stacks that narrowed
this search space from 232 to 216 + 216, effectively enabling
them to compromise resolvers’ caches.

TABLE I: A size comparison (in bytes) of signature (sig) /
ciphertext (ct) and public key (pk) of various algorithms.

Algorithm Assumption Quantum-safe pk ct / sig
X25519 ECDLP ✗ 32 32

Kyber-512 Lattice ✓ 800 768
ECDSA P-256 ECDLP ✗ 64 64
RSA-2048 Factoring ✗ 260 256

Falcon-512 Lattice ✓ 897 666
Dilithium-2 Lattice ✓ 1312 2420

SPHINCS+-128s Hash ✓ 32 7856

Although DNS over TLS (DoT) [36], DNS over HTTPS
(DoH) [35], and DNS over QUIC (DoQ) [37] have been
proposed, it is important to note that they are not a replacement
for DNSSEC. The former, being privacy focused, establish
an encrypted and authenticated channel between a client and
a resolver (i.e. hop-by-hop security). On the other hand,
DNSSEC 1) operates between resolvers and nameservers, and
2) guarantees the veracity of DNS records by establishing a
chain of trust up to the root (i.e. end-to-end integrity).

In its endeavour to sustain Internet security in the face
of quantum computers, the National Institute of Standards
and Technology (NIST) has selected Crystals-Kyber [19] as
Key Encapsulation Mechanism (KEM) and Crystals-Dilithium
[28], Falcon [55] and SPHINCS+[16] as digital signature algo-
rithms. In comparison to their classical counterparts however,
these algorithms (colloquially referred to under the umbrella
acronym of PQC — designating Post-Quantum Cryptography),
have significantly larger public key and signature / ciphertext
sizes as elucidated in Table I above.

Size Constraints on DNS. With the quantum era on the
horizon, DNSSEC must soon transition to CRQC-resistant
algorithms so that it may continue to thwart cache poisoning
attempts. However, the relatively larger footprint of PQC
objects, as discussed above, will have major ramifications on
the global DNS infrastructure. A DNS message, as originally
specified, was restricted to a size of 512 bytes, with UDP being
its primary transport. With a view to DNSSEC’s higher space
requirements (for transferring signatures and public keys), this
size bound was eventually increased to a theoretical value
of 64 KB with Extension Mechanisms for DNS (EDNS0)
[24]. Unfortunately, a DNS packet exceeding the Path MTU
(Maximum Transmission Unit), which is usually 1500 bytes
(<< 64 KB), triggers IP fragmentation at the intermediate
routers. The ensuing UDP/IP fragments not only may never
arrive [67], [18] (for e.g., due to being blocked by stateless
firewalls) but also can be used to exhaust a resolver’s resources
[40] or to inject spoofed records in a DNS response [34].
Additionally, the study of [67] has shown that up to 10% of
the resolvers fail to handle these fragments correctly.



In order to circumvent the multitude of issues linked with
network layer fragmentation, DNS messages are recommended
to not exceed 1232 bytes in size [3], [67], [54]. This conser-
vative threshold, derived as 1280 (IPv6 minimum MTU) − 40
(IPv6 Header) − 8 (UDP Header), is deemed to prevent IP
fragmentation on almost all network links [8], [53].

For conveying DNS messages that do not fit within the
preceding size bracket, the proposed transport is TCP. In a
usual DNS flow, when a response size exceeds the resolver’s
advertised EDNS0 buffer (i.e. the maximum DNS message
size it is willing to receive), a truncated response (with TC bit
set in the header) is sent. Subsequently, the resolver discards
the TC response (resulting in a wasted UDP trip) and retries
the query (albeit with a different transaction ID) over TCP.
Unfortunately, up to 11% of nameservers have been found to
lack TCP support by [68], [54]. The report of [54] additionally
remarks that TCP/53 connections could even be blocked by
intruding middleboxes. In the surveys of [52], [26], a non-
trivial number of resolvers did not properly fall back to TCP
when requested by nameservers. Lastly, DNS over TCP has
been shown to be measurably slower (sometimes by a factor
of 4) and more resource intensive than DNS over UDP [5],
[41], thus putting a limit on the number of TCP connections
a DNS server might be able to handle concurrently.

Note that a properly implemented TCP support on name-
servers and resolvers still does not clear away the road to a
post-quantum DNSSEC. For e.g., a DNS message containing
just 3 SPHINCS+-256s level V signatures, a common scenario
with non-minimal QTYPE A (IPv4 address) responses, even
exceeds the maximum possible DNS message size of 64 KB.

A. Related Work

Out-of-Band Key Distribution. In [54], Müller et al.
propose an out-of-band distribution (i.e. transportation outside
the DNS infrastructure) of large public keys via HTTP or
FTP. Unfortunately, not only does this approach require zone-
operators to additionally maintain a web server, but it also has
been shown to create a resolution overhead of about 30% in
[13]. Furthermore, the size complications arising due to PQC
signatures still remain largely unaddressed.

Merkle Tree Ladder (MTL). Fregly et al. [30] recently
proposed a MTL mode which can reduce the size impact of
PQC signature schemes. Specifically, the signer signs Merkle
tree ladders that are derived from the messages to be validated.
Individual messages are then authenticated relative to the
ladder using a Merkle tree authentication path, while the ladder
itself is validated using the public key.

Application Layer Fragmentation. With an aim of avoid-
ing the fragility and the unavailability connected with IP
fragmentation and TCP fallbacks, respectively, many proposals
have been put forward that fragment large DNS messages at
the application (DNS) layer. In such a scenario, the nameserver
becomes responsible for the fragmentation of a DNS response
and the resolver for the subsequent reassembly thereof.

Sivaraman et al. [64] fragmented a large DNS response
across multiple UDP datagrams, transmitting each fragment
sequentially. On the other hand, ATR [65] (though not strictly
a fragmentation scheme) sent an additional TC response to

trigger an immediate TCP fallback on the client, in case the
original large response failed to arrive. Unfortunately, both of
these proposals failed to gain traction since multiple responses
were being sent out to a single request. Many firewalls are
configured with the policy of accepting one response packet
per query. Moreover, many resolvers close their sockets im-
mediately after receiving the first response packet. Thus, there
were concerns about ICMP flooding since for each trailing
response packet that could not be delivered, a destination
unreachable packet would be sent back to the nameserver.

Addressing the shortcomings of the previous drafts, ARRF
[32] fragments DNS resource records and sends an additional
response only upon an explicit request. Since each extra
response has its own query, prior concerns about firewalls
and ICMP flooding are mitigated. Unfortunately, ARRF frag-
ments, owing to their use of non-standard Type RRFRAG
pseudo-records, could be potentially dropped by inspecting
middleboxes. Secondly, ARRF remains vulnerable to memory
exhaustion attacks, as acknowledged by its authors in [32].
Finally, ARRF requires a minimum of two round-trips to
reconstruct the full DNS message.

A recent work, called QNAME-Based Fragmentation (QBF)
[56], achieves a one round-trip reassembly of post-quantum
DNSSEC messages while using only standard DNS record
Type(s). Unlike previous schemes, it fragments raw signature
and public key bytes stored in RRSIG and DNSKEY records,
respectively. The implication is that the fragments resemble
the original DNS response, except insofar as they carry partial
signatures / public keys. A fragment is explicitly requested
by encoding the desired fragment number in the QNAME field
of a query. Lastly, QBF is backwards-compatible and not
susceptible to memory-depletion attacks.

Discussion on ARRF / QBF. For fast query resolutions,
both ARRF (in 2nd round trip) and QBF (in 1st round trip)
send multiple DNS over UDP messages in parallel. On busy
resolvers and nameservers, handling thousands of queries per
second, this deluge of DNS packets could lead to a starvation
of network bandwidth. Moreover, such bursts in traffic can con-
ceivably overwhelm load balancers or trigger flood protection
in firewalls. This is because unlike its TCP sibling, UDP does
not have any built-in flow and congestion control mechanisms.

Furthermore, it is crucial to remember that UDP/IP does
not guarantee a reliable delivery of packets. In ARRF/QBF,
as the number of signatures to transmit or the sizes thereof
grow (from configuring higher NIST levels), the number of
DNS messages that need to be exchanged also inevitably rises.
Therefore, the probability of at least one DNS query/response
packet getting dropped during transit also increases, resulting
in unforeseen resolution delays or timeouts.

To give a perspective, given a 1% network loss rate and
SPHINCS+-128s as the zone signing algorithm, the probability
of at least one QBF packet being lost during transit can be
calculated as Pr = 1− (0.99)46 = 0.37, where 46 is the total
number of DNS packets exchanged during the session. This
implies that, with a one-third probability, a QBF SPHINCS+

session will require an extra round-trip. While the picture is
not as bleak with Falcon and Dilithium, it is circumspect to
be prepared for all circumstances, especially since SPHINCS+

still remains the most conservative choice among its siblings.

2



Another concern with ARRF/QBF is their potential to be
exploited for a DDoS attack [39], [69], [60], wherein small
DNS over UDP queries with a spoofed source IP address
cause large DNS responses (amplification) to be sent out
from a server to a target IP device (reflection), eventually
overwhelming the latter or the network thereof. In one of the
major DDoS events, the attackers were able to generate 300
Gbps of traffic on a Tier 1 provider using open DNS resolvers
[2]. On a related note, performing such type of attacks over
TCP is not feasible because of the three-way TCP handshake.
This is because client’s query is forwarded to the DNS software
only after receiving a valid1 client ACK to the server SYN.

Bearing the above apprehensions in mind, it appears that
fragmentation schemes may not be the panacea for DNSSEC’s
complications in the quantum age. Therefore, in this work,
we take a fundamentally different approach by performing
DNSSEC validations without PQC signatures. More precisely,
we leverage the concept of authentication via a key exchange.

Authenticated Key Exchange without Signatures. The
notion of an authenticated key exchange (AKE) follows a long
succession of works, with the very early proposals being [15],
[21]. In the SKEME protocol of Krawczyk [44] and the RSA
key-transport (in TLS versions up to 1.2), an entity is authen-
ticated via a successful decryption of a challenge message.
The protocol of Bellare et al. [14] obtained authentication
from long-term Diffie-Hellman (DH) keys. In particular, the
resulting shared secret is fed into the session key calculation to
derive an implicitly authenticated key (i.e. only the legitimate
parties could compute it). Other DH-based AKE protocols
include MQV [48], HMQV [45], NAXOS [47], Noise [6],
Signal [4] and WireGuard [27]. Constructions using generic
Key Encapsulation Mechanisms (KEMs) for AKE have also
been proposed in [25], [31].

In the domain of TLS 1.3, the OPTLS proposal [46] is a
DH-based AKE that offers a signature-free handshake. Specif-
ically, the server sends a certificate containing a DH public
key whilst combining the corresponding long-term secret key
with the ephemeral public key from the client. The resulting
shared key is then used to generate a MAC which authenticates
the server. Unfortunately, there does not yet exist an efficient
OPTLS instantiation for a post-quantum setting ([70], Ch. 12).
KEMTLS [61], which builds upon OPTLS, is a KEM-based
AKE that bypasses the usual signed-DH flow of TLS to achieve
a signature-less PQC handshake. More concretely, the client
performs an encapsulation against the server’s KEM public key
(obtained via the ServerCertificate message during the
handshake) to derive an implicitly authenticated shared secret,
which is then used to encrypt the first flight of application
data from the client. The server is later explicitly authenticated
with the ServerFinished message. Note that to validate
the server’s KEM public key, the client still unavoidably relies
upon a CA signature. A follow-up work by the same authors,
called KEMTLS-PDK [62], is a variant of KEMTLS that uses
pre-distributed keys for earlier authentication. This scenario
occurs when a web-browser caches certificates or in the case
of IoT (Internet of Things) devices or mobile applications that
come with pre-bundled certificates.

1With Acknowledgment Number = Server Sequence Number + 1

Resolver Nameserver

Validated: pk Static KEM: pk, sk

(ss, ct)
$←− KEM.encap(pk)

DNS Query

QUESTION : test.example

DNSKEY : ct

ss← KEM.decap(sk, ct)

ω ← MACk(ANSWER)

DNS Response

QUESTION : test.example

ANSWER : 1.2.3.4

RRSIG : ω

Verify ω′ ?
= ω

k← KDF(ss)

k← KDF(ss)

ω′ ← MACk(ANSWER)

Fig. 1: An abstracted view of SL-DNSSEC validating the
answer IP 1.2.3.4. The resolver has already fetched and
DNSSEC-validated the KEM public key of the nameserver.

B. Our Contributions

Given the practical size constraint on DNS(SEC) messages
that impedes a smooth adoption of post-quantum cryptography,
we illustrate how an authenticated key exchange (AKE) can
be used to achieve a signature-free validation of DNS resource
records. To this end, we propose SL-DNSSEC: an AKE-
based protocol for DNSSEC which uses 1) A quantum-safe
KEM to first establish a shared key between a resolver and
a nameserver, and 2) a Message Authentication Code (MAC),
computed under the shared key, to simultaneously authenticate
a DNS record’s origin and verify its integrity.

An overview of the protocol is illustrated in Figure 1. The
resolver holds a DNSSEC-validated KEM public key of the
nameserver. Using a series of KEM and KDF (Key Derivation
Function) operations, both parties derive a symmetric MAC
key. The nameserver sends a MAC authentication tag instead
of a digital signature on the answer record.

We now outline the salient benefits of SL-DNSSEC with a
summary thereof in Table II. All numerical values have been
inferred from Tables (XI, XII) in §V-B1 of this paper.

• Massive bandwidth savings. Compared to
SPHINCS+, Dilithium and Falcon, SL-DNSSEC
transfers about 95%, 86%, and 58% less data (Fig. 2)
during a typical QTYPE A query resolution.

• Fast 1-RTT resolution. SL-DNSSEC remains 50%−
60% faster than DNSSEC over Standard DNS (SD),
with the latter incurring the speed penalty of a wasted
UDP trip and then of a three-way TCP handshake.

• 1 packet sent/received. Although ARRF/QBF take
2 and 1 round-trip(s) (respectively), they exchange
multiple packets (up to 46) in parallel, thereby increas-
ing the chances of packet drops and UDP flooding.
SL-DNSSEC, however, sends a single query/response.

• DDoS mitigation. With smaller responses than
queries (Fig. 3), SL-DNSSEC fulfils the takeaway 6
in the vision paper [39] of being an “amplification-
resistant solution for post-quantum DNSSEC”.

3



Fig. 2: A total bandwidth usage comparison between Kyber-
HMAC (SL-DNSSEC) and signature-based DNSSEC methods.
SD denotes Standard DNS.

Fig. 3: A transmit (TX) / receive (RX) bandwidth usage com-
parison between Kyber-HMAC (SL-DNSSEC) and signature-
based DNSSEC methods. SD denotes Standard DNS.

• Backward compatibility. SL-DNSSEC uses standard
record Type(s) and wire format to ensure that mes-
sages pass through stringent firewalls. It also allows
for a graceful fallback to the regular DNSSEC flow
should one of the endpoints happen to be protocol-
oblivious. Moreover, a zone can deploy SL-DNSSEC
without requiring its parent to be protocol-aware.

To evaluate SL-DNSSEC, we program a daemon that can
run atop any DNS provider (such as BIND or PowerDNS). The
daemon performs all SL-DNSSEC-related operations on behalf
of the DNS software. In fact, no changes to the underlying
DNS stack are required, except for a small patch on the
resolver’s side to detect the Z-bit in the HEADER.

Availability. The software artifact germane to this work is
available at: https://github.com/b8b1/sl-dnssec.

TABLE II: A comparison between SL-DNSSEC and signature-
based DNSSEC methods. SD : Standard DNS (TCP fallback).

SL-DNSSEC DNSSEC over
SD

DNSSEC over
ARRF / QBF

No TCP fallback ✓ ✗ ✓

Low bandwidth usage ✓ ✗ ✗

Fast resolution ✓ ✗ ✓

DDoS amp. resistant ✓ ✓ ✗

No network flooding ✓ ✓ ✗

1 packet sent/recvd. ✓ ✗ ✗

Reliability ✓ ✓ ✗

II. PRELIMINARIES

Notations. The term resource record (RR) is often referred
to as simply a record. || represents concatenation. X→ Y
denotes member Y of an abstract structure X. In the context
of networking protocols, A/B indicates A over B (For e.g.,
DNS/UDP — DNS over UDP). RTT stands for round-trip time.
ANS is short for Authoritative Name Server. For presentation,
we omit the root label (i.e. the trailing period (.) as in
example.com.) while writing fully qualified domain names
(FQDNs). The word transfer is occasionally abbreviated as
xfer. The Bandwidth Amplification Factor (BAF) of a DNS
over UDP session is calculated as below:

BAF =
Number of bytes received (RX)

Number of bytes sent (TX)

A. Domain Name System (DNS)

We briefly review the relevant background on DNS. Con-
sider a canonical domain name: www.example.com. (with
the trailing dot). Each label: (www), (example), (com) and
(.)2 corresponds to a level within the DNS hierarchy, with
the root (.) being at the apex. Under the root come top-level
domains or TLDs (com), and within these are second-level
domains (example), and then subdomains (www). A name-
server that contains definitive information for the zone is said
to be authoritative for the zone. For eg., example.com ANS
is authoritative over the A record for www.example.com.

DNS Lookup. To retrieve the IP address of
www.example.com, the client (stub resolver) sends a
recursive QTYPE A DNS query to its resolver (local DNS
server). The resolver, in the event of not having the answer in
its cache, performs the following steps iteratively:

1) It sends a QTYPE NS query to a root (.) name-
server, which subsequently responds with the fol-
lowing glue (referral) records: 1) A Type NS record
containing the domain name of com nameserver 2) A
Type A record containing the IP of com nameserver.

2) It sends a QTYPE NS query to the com nameserver,
which then responds with the following glue records:
1) A Type NS record containing the domain name
of example.com nameserver 2) A Type A record
containing the IP of example.com nameserver.

2The root label is technically null.

4

https://github.com/b8b1/sl-dnssec


TABLE III: DNS HEADER Wire Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID

QR OpCode AA TC RD RA Z AD CD RCode

QDCount

ANCount

NSCount

ARCount

— ID: used by requester to match a response to its query
— QR: whether message is a query (0) or a response (1)
— AA: whether response is authoritative (1) or not (0)
— TC: whether response is truncated (1) or not (0)
— Z: a reserved bit set to 0 by default
— AD: whether response has authenticated data (1) or not (0)
— RCode: (0) NOERROR; (1) FORMERR – query format error; (2) SERVFAIL

– server failure; (3) NXDOMAIN – domain name does not exist

3) It sends a QTYPE A query to the example.com
nameserver, which finally responds with a Type A
record containing the IP of www.example.com.

4) It caches and forwards the received IP to the client.

DNS Wire Format. A generic DNS message is divided
into 5 sections: HEADER, Question, Answer, Authority, and
Additional. The HEADER is always present and has a constant
size of 12 bytes. Table III presents the wire format of a DNS
HEADER. The Question section consists of the following
fields: QNAME (specifies the domain name encoded in the
standard DNS name notation. For e.g., test.example is
encoded as [4]test[7]example[0]), QTYPE (specifies
the type of DNS records being requested), and QCLASS
(specifies the class of the query, by default set to IN i.e.
Internet). The last three sections have the same format: a
possibly empty list of concatenated DNS records.

The DNS resource records (RRs) are database entries that
provide information about a domain name. Each record has
the following sections: NAME (specifies the domain name
encoded in standard notation), TYPE (indicates the type of
RR), CLASS (specifies the class of data, defaults to IN),
TTL (time-to-live in seconds i.e. how long the RR can stay
cached), RDLENGTH (specifies the length in bytes of the
RDATA field), and RDATA (contains the actual data associated
with the record). The Type A and AAAA records contain IPv4
and IPv6 addresses in their RDATA fields, respectively. The
Answer section contains records that answer the question; the
Authority section contains records that point toward an ANS;
the Additional section contains records which relate to the
query, but are not strictly answers to the question.

OPT Record. EDNS0 [24] introduces a pseudo-record
called OPT (short for options) in the Additional section of
a DNS message. Note that unlike traditional resource records,
pseudo-records do not actually exist in a zone file and are
instead created on-the-fly. In queries, a requester specifies
the maximum DNS message size it is willing to accept
(also known as EDNS0 buffer size or UDP payload size)
in OPT → CLASS. In addition to this, the requester also
indicates its ability to handle DNSSEC records by setting the
DO (DNSSEC OK) bit in OPT→ TTL.

TABLE IV: RRSIG Wire Format

RRSIG Record
NAME TYPE = RRSIG CLASS TTL RDLENGTH
RDATA

Type Covered Type of records signed
Algorithm Signature algorithm used

Labels Number of labels in the signed name
Original TTL Original time-to-live of the records signed

Signature Expiration When the signature expires
Signature Inception When the records were signed

Key Tag ID of the key to be used for signature verification
Signer’s Name Name of the signer

Signature ← sign(RRSIG→ RDATA∥RR(1)∥RR(2)∥ . . .)
where RDATA excludes Signature
and RR(i) is the i-th record in the RRset

TABLE V: DNSKEY Wire Format

DNSKEY Record
NAME TYPE = DNSKEY CLASS TTL RDLENGTH
RDATA

Flags Specifies whether the key is a ZSK (256) or a KSK (257)
Protocol Always set to 0x03 to indicate DNSSEC

Algorithm Signature algorithm of the key
Public Key Contains the raw public key bytes

OPT→ RDATA contains DNS cookies [29] which provide
a limited security against certain off-path attacks such as
denial-of-service, cache poisoning, and answer forgery.

B. DNS Security Extensions (DNSSEC)

DNSSEC enhances the security of DNS by ensuring the au-
thenticity and integrity of resource records. To realize this aim,
it introduces three3 new types of resource records: Resource
Record Signature (RRSIG), DNS Public Key (DNSKEY), and
Delegation Signer (DS).

1) RRSIG. A digital signature is computed, using a
secret key (discussed below) over a set (called an RRset)
of DNS resource records that have the same NAME, CLASS
and TYPE. The resulting signature is stored in the RDATA→
Signature field of an RRSIG record (Table IV).

2) DNSKEY. A DNSKEY record (Table V) stores a public
key. Each zone employs two types of keys: Zone Signing Key
(ZSK) and Key Signing Key (KSK). KSK is used to sign only
DNSKEY RRsets while ZSK is used to sign all other RRsets.
Whenever a resolver receives a DNS response with an RRSIG
record, it uses the associated DNSKEY record to verify the
digital signature contained therein.

3) Delegation Signer (DS). The DS record (Table VI) plays
a pivotal role in recursively constructing a secure chain of trust
from a child zone to the DNS root (.).

Whenever a resolver verifies RRSIGs using the ZSKpk of a
child zone, it must also ascertain the authenticity of that key.
Recall that the DNSKEY RRset containing ZSKpk and KSKpk

is signed using the child’s KSKsk. Since KSK is ultimately self-
signed, a resolver must also connect the trust thereof with the
child’s parent. To specifically aid resolvers in this endeavour,
the child generates a cryptographic hash of its KSKpk and
shares it with its parent in a DS record.

3A fourth Type NSEC(3) record, used to verify the non-existence of a
record name and type, is outside the purview of this work.

5



TABLE VI: DS Wire Format

DS Record
NAME TYPE = DS CLASS TTL RDLENGTH
RDATA

Key Tag ID of the KSK which is hashed
Algorithm Signature algorithm of the key

Digest Type Hash algorithm
Digest ← hash(DNSKEY → NAME ∥ DNSKEY → RDATA)

During a DNS lookup, when a resolver is referred to a child
zone by its parent, the latter provides a DS record containing
the hash of the child’s KSKpk. This DS record is what indicates
to the resolver that the child zone is DNSSEC-enabled. More
importantly, the parent also furnishes an RRSIG on this DS
record using its own ZSKsk.

To validate the child zone’s KSKpk, the resolver hashes it
and compares it to the DS record from the parent. Additionally,
the resolver also verifies the associated RRSIG of that DS
record using the ZSKpk of the parent.

DNSSEC Lookup. This is similar to the DNS lookup
described in §II-A, except that the resolver now sets the DO
(DNSSEC OK) bit in its query. The following extra records
are therefore returned at each step:

1) The root (.) nameserver also sends com’s DS and
RRSIG thereon created with (.)’s ZSKsk. Additionally,
it sends (on an explicit QTYPE DNSKEY query)
(.)’s DNSKEYs and RRSIG thereon created with (.)’s
KSKsk. Here, we assume the resolver already holds
(.)’s KSKpk as the trust anchor.

2) The com nameserver also sends example.com’s
DS and RRSIG thereon created with com’s ZSKsk.
Additionally, it sends (on an explicit QTYPE
DNSKEY query) com’s DNSKEYs and RRSIG
thereon created with com’s KSKsk.

3) The example.com nameserver also sends RRSIG
created with its ZSKsk on the Type A record con-
taining the answer IP. Additionally, it sends (on an
explicit QTYPE DNSKEY query) its DNSKEYs and
RRSIG thereon created with its KSKsk.

On a successful DNSSEC validation, the resolver sends its
answer response to the client with HEADER→ AD set.

C. Key Encapsulation Mechanism (KEM)

Definition 1: A Key Encapsulation Mechanism (KEM) is
an asymmetric primitive that allows two parties to establish a
shared secret in a key space K.

A KEM instance defines three probabilistic operations:

• Key Generation: KEM.keygen() generates a public
and private keypair (pk, sk).

• Encapsulation: KEM.encap(pk) generates a shared
secret ss in a key space K and a ciphertext (encap-
sulation) ct against pk.

• Decapsulation: KEM.decap(sk, ct) takes as input sk
and ct, and decapsulates the shared secret ss′ ∈ K. In
a δ-correct scheme, Pr(ss = ss′) ≥ 1− δ.

Security Model. Shared secret (ss) should be indistin-
guishable from random (IND), given just pk (Chosen Plaintext
Attack (CPA)) or additionally given access to a decapsulation
oracle (Chosen Ciphertext Attack (CCA)).

III. THE SL-DNSSEC PROTOCOL

SL-DNSSEC is a backward-compatible and amplification-
resistant protocol for DNSSEC that validates DNS resource
records without signatures. Pursuant to this objective, it uses
as its primary building blocks: 1) A post-quantum KEM to first
establish a shared secret between a resolver and a nameserver
2) A KDF to derive a symmetric MAC key of an appropriate
length from the shared secret, and 3) A MAC to compute
authentication tags on DNS records.

On a high-level, a nameserver generates a KEM keypair
and adds the public key to its DNSKEY RRset, re-signing
the latter with its KSKsk. This RRset is fetched and DNSSEC-
validated by a resolver using the covering RRSIG and a signed
DS record from the zone’s parent. For any subsequent inter-
action, the resolver and the nameserver compute a symmetric
MAC key using KEM and KDF operations. The nameserver
then sends MAC tags instead of signatures on DNS RRsets.

We now demonstrate the execution of the SL-DNSSEC pro-
tocol between a resolver and an ANS. Note that SL-DNSSEC
can also be deployed on other zones, such as (.) or com.

The protocol is broadly divided into four phases.

A. Phase 1: KEM Key Generation

Assume a DNSSEC-enabled zone (say, example.com)
with a Key Signing Key (KSKpk,KSKsk) and a Zone Signing
Key (ZSKpk,ZSKsk). Therefore, the current public key RRset
of example.com comprises: 2 Type DNSKEY records con-
taining KSKpk and ZSKpk, respectively.

The zone operator now runs KEM.keygen() to generate a
Zone KEM Key: (ZKKpk,ZKKsk).

Thereafter, the operator performs the following steps:

1) Create a generic DNSKEY record.
2) Set DNSKEY → RDATA→ Flags = 258
3) Set DNSKEY → RDATA→ Algorithm = KEM
4) Set DNSKEY → RDATA→ PublicKey = ZKKpk

5) Add DNSKEY to the existing RRset of public keys.
6) Re-sign the RRset using KSKsk.

Here, the value 258 for Flags is one of the available
choices after turning off the SEP (secure entry point) bit (refer
RFC [59] §2.1.1). Note that the SEP flag is set only for a
KSK which has a DS record in the parent zone. Furthermore,
in some DNS software, the signature over a public key RRset
is computed using both KSKsk and ZSKsk, thus resulting in
two RRSIGs (consult [23], §4.7).

When a resolver now sends a QTYPE DNSKEY query to
example.com, it will receive a DNS response (consult Table
VII for its structure) containing the following records:

— Three DNSKEY records holding KSKpk, ZSKpk and
ZKKpk, together constituting 1 RRset

— One covering RRSIG using KSKsk on the RRset

6



TABLE VII: An abstracted view of a QTYPE DNSKEY re-
sponse containing the public keys of example.com zone

Header Section
Question Section

QNAME = example.com
QTYPE = DNSKEY

QCLASS = IN
Answer Section
DNSKEY KSKpk

DNSKEY ZSKpk

DNSKEY ZKKpk

RRSIG with KSKsk

Authority Section
Additional Section

OPT

The implication of the RRSIG is that the trust of the KEM
key (ZKK) can now be established with the zone’s parent and
then recursively with the root. This is easy to see since the
com zone (the parent of example.com) already holds a DS
record bearing the hash of KSKpk.

The resolver thereupon verifies the RRSIG using KSKpk

and then validates KSKpk itself via the signed DS record it had
earlier received from the com nameserver during the referral.

Finally, observe that the com zone and the root are not
required to be SL-DNSSEC-aware during the entire phase.

B. Phase 2: Preparing a SL-DNSSEC Query

Assume that a resolver intends to send a QTYPE A query
with a QNAME www.example.com to the example.com
ANS. We additionally presume that the resolver has already
fetched and validated the QTYPE DNSKEY response (as out-
lined in §III-A) from the ANS.

The aforesaid is a common scenario in DNS, wherein a
resolver already stores the DNSKEYs of previously contacted
zones in its cache. Alternatively, we suggest that resolvers
retrieve the public keys of an unacquainted zone first, before
dispatching their main query.

The resolver now executes the following operations:

1) Create a QTYPE A query message, say Q.
2) Perform a KEM encapsulation against ZKKpk of

example.com to probabilistically obtain a shared
secret ss and ciphertext ct.

(ss, ct)
$←−− KEM.encap(ZKKpk)

3) Create a generic DNSKEY record.
4) Set DNSKEY → RDATA→ Flags = ZKKID

5) Set DNSKEY → RDATA→ Algorithm = KEM
6) Set DNSKEY → RDATA→ Public Key = ct
7) Insert DNSKEY in Q→ Additional section.
8) Send Q.

In settings wherein a zone offers multiple KEM public
keys, a resolver additionally needs to include information about
the particular KEM key it has used for encapsulation. To this
end, we repurpose the 2-byte Flags field. Specifically, the
resolver computes the 2-byte Key Tag, say ZKKID, using the
Type DNSKEY record of the utilized KEM key (refer RFC [59],
Appendix B for the algorithm used for Key Tag computation)
and sets Flags = ZKKID as previously outlined.

TABLE VIII: Wire format: SL-DNSSEC Query Q containing
the KEM ciphertext ct

Header Section
Question Section
QNAME = www.example.com
QTYPE = A
QCLASS = IN
Answer Section
Authority Section
Additional Section
NAME = example.com
TYPE = DNSKEY
...
RDLENGTH = x
RDATA

Flags = ZKKID

Protocol = 0x03
Algorithm = KEM
Public Key = 0x2a4b. . . (ct)

OPT

TABLE IX: An abstracted view of a non-minimal DNS re-
sponse to a QTYPE A query

Header Section
Question Section

QNAME = www.example.com
QTYPE = A

QCLASS = IN
Answer Section
RR1 TYPE A

RRSIG1

Authority Section
RR2 TYPE NS

RRSIG2

Additional Section
RR3 TYPE A

RRSIG3

OPT

An example wire format of the resulting DNS query Q is
illustrated in Table VIII. Notice that Q transports ciphertext ct
using standard DNS records and wire format. Moreover, in-
serting DNSKEY record (bearing ct) in the Additional section
further improves backward compatibility, since a SL-DNSSEC-
oblivious ANS would ignore it and proceed with the usual flow.

C. Phase 3: Preparing a SL-DNSSEC Response

On receiving the DNS query Q, the example.com ANS
executes the following actions:

1) Prepare a traditional QTYPE A DNS response (say,
R) to Q. In this example, we assume R to be a non-
minimal DNS response (refer Table IX for its general
format) which contains the following records4:

a) 1 Type A resource record (RR1) in
Answer section containing the answer IP
address and 1 covering RRSIG1

b) 1 Type NS resource record (RR2) in
Authoritative section containing the name-
server’s name and 1 covering RRSIG2

c) 1 Type A resource record (RR3) in Additional
section containing the nameserver’s IP ad-
dress and 1 covering RRSIG3

2) Check if the size of R is within:
a) Resolver’s UDP receive limit, as publicized

in Q→ OPT→ CLASS
b) Nameserver’s own UDP send limit, as con-

figured in named.conf

4For simplicity, here each RRset contains only 1 resource record.

7



— If affirmative, the ANS has the option to send
R as it is (i.e. with signatures). In this example,
we presume this check to return negative (which is
expected with PQC signatures).

3) Check for a DNSKEY record containing a KEM
ciphertext in Q→ Additional section.
— If negative, continue with the regular DNSSEC
flow. Otherwise, proceed as below.

4) Extract the ciphertext ct from DNSKEY record and
perform a KEM decapsulation using ZKKsk to obtain
the shared secret ss.

ss←− KEM.decap(ZKKsk, ct)

— In case the ANS holds multiple KEM ZKKs, the
correct key for the decapsulation can be identified us-
ing the Key Tag (ZKKID) provided by the resolver
in the Flags field (see §III-B).

5) Feed ss to a secure KDF to derive a key k of the
requisite length.

k←− KDF(ss)

6) For every RRSIGi in response R, do:
a) Set RRSIGi → RDATA→ Alg. = KEM
b) Set RRSIGi → RDATA → Key Tag =

ZKKID

c) Let msg := RRSIGi → RDATA∥RRi(1)∥ . . .
— where RDATA excludes Signature and
RRi(j) is the j-th record in RRseti

d) Compute ω ←− MACk(msg)
e) Set RRSIGi → RDATA→ Signature = ω

7) Send R.

Table X depicts a comparison between the original
DNS response containing PQC signatures (here, Falcon)
and the SL-DNSSEC response containing MACs. Note that
RDLENGTH y << RDLENGTH x since MACs are usually
much smaller than post-quantum signatures. The implication
here is that as the number of RRSIGs increase, the size dispar-
ity between a signature-based response and its SL-DNSSEC
counterpart becomes even more exaggerated.

A noteworthy distinction between SL-DNSSEC and the
conventional DNSSEC flow is also herein encountered. While
in the latter approach, signatures are usually pre-generated
(i.e. the zone file is signed offline and then published on the
nameserver), the former computes MACs on-the-fly.

Finally, observe that a MAC is computed over exactly the
same message as that specified for a signature in the RFC
(refer §3.1.8.1. in [59]). Additionally, the response R, like the
query Q, uses standard record types and wire format.

D. Phase 4: Validating a SL-DNSSEC Response

In due course, when the resolver receives the DNS response
R, it proceeds to validate the resource records contained therein
in the following manner:

1) Fetch the shared secret ss from the state.
2) Feed ss to the KDF to derive the key k.

k←− KDF(ss)

TABLE X: Wire format: Original response with signatures
(Left), SL-DNSSEC response with MACs (Right)

Header Section
Question Section
QNAME = www.example.com
QTYPE = A
QCLASS = IN
Answer Section
NAME = www.example.com
TYPE = A
...
RDLENGTH = 4
RDATA = 1.2.3.4
NAME = www.example.com
TYPE = RRSIG
...
RDLENGTH = x
RDATA

Type Covered = A
Algorithm = FALCON
...
Key Tag = ZSKID

Signer’s Name = example.com
Signature = 0x1a2b. . . (σ1)

Authority Section
...

...
Signature = 0x3c4d. . . (σ2)

Additional Section
...

...
Signature = 0x5e6f. . . (σ3)

OPT

Header Section
Question Section
QNAME = www.example.com
QTYPE = A
QCLASS = IN
Answer Section
NAME = www.example.com
TYPE = A
...
RDLENGTH = 4
RDATA = 1.2.3.4
NAME = www.example.com
TYPE = RRSIG
...
RDLENGTH = y
RDATA

Type Covered = A
Algorithm = KEM
...
Key Tag = ZKKID

Signer’s Name = example.com
Signature = 0xfae5. . . (ω1)

Authority Section
...

...
Signature = 0xd4cf. . . (ω2)

Additional Section
...

...
Signature = 0xb2ac. . . (ω3)

OPT

3) For every RRSIGi in response R, do:
a) Check RRSIGi → RDATA→ Algorithm

— If a signature algorithm is detected, exe-
cute the usual signature validation flow. If a
KEM algorithm is found, proceed as below.

b) Let msg := RRSIGi → RDATA∥RRi(1)∥ . . .
— where RDATA excludes Signature and
RRi(j) is the j-th record in RRseti

c) Compute ω′ ←− MACk(msg)

d) Verify ω′
?
= RRSIGi → RDATA→ Signature

4) If all RRSIGs are verified, mark R as secure.

E. Backward Compatibility

In this subsection. we examine what happens when only
one of the end points implements the SL-DNSSEC protocol
while the other one does not.

• Protocol-aware Requester — Protocol-oblivious Re-
sponder: The requester will not find a KEM ZKKpk

in the QTYPE DNSKEY response from the responder.
It will then send a typical DNS query.

• Protocol-oblivious Requester — Protocol-aware Re-
sponder: A KEM ZKKpk (along with KSKpk and
ZSKpk) would be sent to the requester in the QTYPE
DNSKEY response. However, ZKKpk would be ignored
as a key with an unsupported algorithm. The requester
will then dispatch a usual DNS query.
The responder, on not finding a KEM ciphertext in
the query, will then proceed with the regular DNSSEC
flow. In due time, when the requester receives a DNS
response containing signatures, it will pick the relevant
key (i.e. ZSKpk) to perform the validation.

8



IV. SECURITY

We assess SL-DNSSEC’s security under the standard at-
tacker model as used in a previous DNSSEC study [12].
In particular, the adversary’s ultimate aim is to induce the
resolver to accept a malicious answer in Phase 4 (§III-D) of
the protocol. All the capabilities of the (on-path) adversary, or
lack thereof, are as listed below:

— It may eavesdrop on any exchanged packet.

— It may intercept, manipulate and re-send any ex-
changed packet as follows:
◦ It may modify any HEADER bits.
◦ It may modify the Question section.
◦ It may remove/add/modify any resource

record, including RRSIGs, DNSKEYs, or Type
A or NS records.

— It cannot access any secret cryptographic keys.

— It can only do polynomial order computations.

Since the deployment of SL-DNSSEC does not depend on
the zone’s parent, we omit the root (.) and the com TLD
from the analysis. We also assume that a secure chain of trust
exists from the root to example.com before SL-DNSSEC is
deployed. Concretely, this secure chain of trust exists when:

1) (.)’s KSKpk is the trust anchor on the resolver.
2) (.)’s KSKsk signs (.)’s ZSKpk

3) (.)’s ZSKsk signs com’s DS containing a hash of
com’s KSKpk

4) com’s KSKsk signs com’s ZSKpk

5) com’s ZSKsk signs example.com’s DS containing
a hash of example.com’s KSKpk

We now begin to scrutinize the SL-DNSSEC protocol
between the resolver and the example.com ANS under the
attacker model explicated earlier. Note that we only analyse
attack surfaces that are unique to SL-DNSSEC. Attacks also
applicable to regular DNSSEC, such as modifying HEADER
or unsigned glue records, have already been appraised in [12].

A. Attacker alters DNSKEYs sent by ANS

During phase 1 (§III-A) of the protocol, an adversary
runs KEM.keygen() to generate its own Zone KEM Key:
(ZKKadv

pk ,ZKKadv
sk ) pair. On intercepting a QTYPE DNSKEY

response sent by ANS to the resolver, the adversary may do
either of the following changes to the DNSKEY RRset:

— Insert ZKKadv
pk into the RRset.

— Replace the authentic ZKKpk with ZKKadv
pk .

— Delete ZKKpk from the RRset.

However, assuming an EUF-CMA-secure signature scheme
was used to sign the public key RRset, RRSIG validation will
ultimately fail at the resolver’s end. Informally, EUF-CMA
(Existential Unforgeability under Chosen Message Attack)
security specifies that a polynomial time adversary cannot
forge a signature on a new message, even after asking for
signatures on arbitrary messages of its choice.

Alternatively, the adversary generates its own Key Sign-
ing Key (KSKadv

pk ,KSKadv
sk ) pair, and substitutes KSKpk with

KSKadv
pk . Thereafter, it performs any of the three aforesaid

amendments, and re-signs the modified RRset with KSKadv
sk .

This time, the resolver will successfully verify the mali-
cious DNSKEY RRset with KSKadv

pk . However, assuming a
collision resistant hash was used to compute the DS record
of KSKpk, the resolver will not be able to connect the trust
of KSKadv

pk with the parent, thus failing to complete the full
validation. Note that the collision resistance of a hash function
measures the ability of a polynomial adversary to find two
distinct messages (here, KSKs) that hash to the same value.

B. Attacker alters SL-DNSSEC query sent by resolver

The usage of an IND-CCA-secure KEM (refer §II-C for the
security definition) restricts the adversary in phase 2 (§III-B)
to either of the manipulations underneath:

— Corrupt the ciphertext ct to ct′.

— Perform a KEM encapsulation against ZKKpk of ANS
to probabilistically obtain its own shared secret (ssadv)
and ciphertext (ctadv).

(ssadv, ctadv)
$←−− KEM.encap(ZKKpk)

Then substitute ct with ctadv in the query.

— Remove DNSKEY record holding ct from the query.

In the first case, the failure behaviour of
KEM.decap(ZKKsk, ct

′) depends on the underlying KEM.
In case of Kyber (refer [19], §4), if the re-encryption
fails, the decapsulation will return a pseudo-random key
ss′ = hash(z, ct′), where z is a random secret seed. On the
other hand, if ct′ is a valid ciphertext, the decapsulation
function will return a corresponding ss′. In either case, the
ANS will derive an incorrect MAC key from ss′, eventually
causing MAC failure on the resolver in phase 4 (§III-D).

Concerning the second scenario, the probability that the
adversary obtains a ssadv such that ssadv = ss is negligible.
Therefore, with ssadv ̸= ss, the outcome will be the same as
in the first case (i.e. MAC verification failure).

Finally, the last attempt will convert the query to a regular
one. The ANS will deem the resolver to be SL-DNSSEC-
oblivious, and thus revert to a signature-based flow.

C. Attacker alters SL-DNSSEC response sent by ANS

In phase 3 (§III-C), an adversary may tamper with the DNS
response in the following manner:

— Modify the resource records in any of the three
sections. For example, in case of a QTYPE A response,
an adversary may change the IPv4 addresses present
in Type A records.

Presuming an EUF-CMA-secure MAC was used to com-
pute authentication tags on RRsets, the resolver will fail to
validate the covering RRSIGs (containing MAC tags). Similar
to signature schemes, EUF-CMA security for a MAC implies
that even a polynomial attacker, which can query tags on
chosen messages, cannot create a valid tag for a new message.

9



V. EVALUATION

A. Implementation

To assess the performance of SL-DNSSEC, we develop a
daemon that runs on top of a DNS software (such as BIND
or PowerDNS). Additionally, the daemon is designed to be
agnostic to the said software (i.e. the underlying DNS provider
can be swapped with a different one). With the daemon in
place, no modifications are required to the DNS software
stack, except for a small patch on the resolver’s side to detect
whether the Z bit in the HEADER is on/off. The Z bit is
what signals to the DNS software that the response has been
successfully SL-DNSSEC-validated by the daemon. We now
succinctly discuss the functionality of the daemon in question.

Daemon. Figure 4 illustrates a SL-DNSSEC validation
being performed with the aid of the daemon. In all our
experiments, we pre-generate and hardcode the KEM keys in
the daemon. In actual practice, the KEM public key and the
corresponding signature would be fetched by the resolver via
a QTYPE DNSKEY query as discussed in §III-A.

The daemon performs all SL-DNSSEC related operations
independently of the DNS software (here, BIND). Observe that
the daemon on the ANS sets OPT → CLASS to 65507 (the
maximum UDP payload size over IPv4) before forwarding the
query to BIND. This is to allow the retrieval of the full DNS
response from BIND5 without truncation. If the size of BIND’s
response exceeds the resolver’s (originally) advertised EDNS0
buffer size (here, 1232), the daemon replaces the signatures
with MACs as outlined in §III-C.

On the resolver, the daemon performs the SL-DNSSEC
validation of DNS records (as elucidated in §III-D) and sets
HEADER→ Z = 1 in case of a successful outcome.

Software Setup. We use the source code of QBF [56] as
base to build the SL-DNSSEC daemon. The DNS software is
a BIND 9.19.17 fork [7] which supports NIST level I PQC
signatures. In the fork, we further add support for:

1) Level V Falcon and Dilithium schemes
2) Detecting the Z bit in the HEADER

The cryptographic stack is openssl 3.2, liboqs 0.10.0
[66] and oqs-provider 0.6.0. The daemon is written in C
and uses libnetfilter-queue to intercept incoming and
outgoing DNS packets. Docker 4.29 is used for constructing
the network scenario (described below). To simulate network
bandwidth and latency, we use Linux’s tc utility. DNS queries
are issued using dig. Communication statistics are obtained
with ip command. All experiments are run on a MacBook
Air M1 laptop with 8 GB of RAM.

Network Scenario. The DNS network contains the follow-
ing four participants: 1) A client 2) A resolver 3) A root (.)
nameserver 4) An example authoritative nameserver (ANS).
We skip configuring a com TLD to reduce complexity. Each
participant runs as a private Ubuntu 22.04 Docker container
with experiment-specific bandwidth and latency constraints.
Additionally, the SL-DNSSEC daemon is installed on both the
resolver and the ANS containers.

5Increases in BIND buffer sizes were also required.

The EDNS0 buffer size is set to the recommended value of
1232 bytes. For simplicity, each zone is signed with a single
algorithm and has one ZSK and one KSK. In addition, the
daemons on both the resolver and the ANS are pre-configured
with the requisite KEM ZKK keys.

The zone file served by the ANS contains 10 Type A
records, each with a unique domain name and an associated
RRSIG. In its named.conf, the ANS is configured with
minimal-responses no-auth-recursive; (the de-
fault setting that ships with BIND) which means that it will be
as complete as possible while generating responses for iterative
queries. Such a response is called non-minimal and represents
the worst-case scenario in terms of message size. Refer §III-C
for the number and the type of records contained in a non-
minimal QTYPE A response returned by the ANS in the
desribed setup. To facilitate modifications to DNS messages
without readjusting compression name pointers, we also set
message-compression no; in named.conf.

B. Experiments and Results

We now comprehensively assess SL-DNSSEC’s perfor-
mance against signature-based DNSSEC in terms of bandwidth
usage and resolution times. We conduct two experiments
targeting NIST security level I and V, respectively. Before
the start of an experiment, the resolver pre-fetches the Type
DNSKEY and NS of all the zones, including the DS record of
example zone. The implication is that the resolver directly
contacts the ANS in order to resolve the client’s query, rather
than starting the lookup process all the way up from the root.

Signature-based DNSSEC instances are run over two trans-
port mechanisms:

1) Standard DNS (SD) over UDP with a fallback to TCP
in case of a truncated (TC) response

2) An upper-layer UDP-only fragmentation scheme such
as ARRF/QBF

We exclude ARRF from our experiments as its performance
can be extrapolated from that of QBF. Both schemes (since
they only differ in the way fragments are packaged) have
roughly the same bandwidth usage, with QBF being a round
trip faster than ARRF. The number of packets sent and received
also remains within ±1 margin, respectively.

Each experiment consists of two main stages: 1) Measure
the bandwidth consumption during a single query resolution,
and 2) Measure the mean resolution time of 10 queries.

Measuring bandwidth usage. We send a QTYPE A DNS
query from the client to the resolver. At the resolver’s Ethernet
interface, we then assess the network communication with the
ANS in terms of:

• Number of packets (technically, frames) in transmit
(TX) and receive (RX)

• Number of bytes in transmit (TX) and receive (RX).
Note that these values include:

1) 14-byte Ethernet header
2) 20-byte IPv4 header
3) 8-byte UDP header or 32-byte TCP header

(40-byte in case of SYN and SYN-ACK)

10



Resolver
(BIND)

Daemon
(ZKKpk)

Daemon
(ZKKpk,ZKKsk)

example ANS
(BIND)

DNS Query
QNAME: test.example
QTYPE: A
EDNS0: 1232

→ (ss, ct)
$←−−

KEM.encap(ZKKpk)

DNS Query
QNAME: test.example
QTYPE: A
DNSKEY: ct
EDNS0: 1232

→

ss←−
KEM.decap(ZKKsk, ct)

DNS Query
QNAME: test.example
QTYPE: A
EDNS0: 65507

−→

Check HEADER→ Z
?
= 1

Mark as secure

k←− KDF(ss)
ω′ ←− MACk(ANSWER)

Verify ω′
?
= ω

Set HEADER→ Z = 1

←

DNS Response
Z: 1
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: ω

←

DNS Response
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: ω

k←− KDF(ss)
ω ←− MACk(ANSWER)
Replace signature σ with ω

←

DNS Response
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: σ

Fig. 4: An overview of SL-DNSSEC validation via Daemon (NIST Level I)

• Transport protocol used. Here, TCP* indicates a TCP
fallback wherein the first round trip is over UDP while
the subsequent ones are over TCP.

Measuring resolution time. We measure the query reso-
lution speed under two network conditions6:

1) High Bandwidth (100 Mbps), Low Latency (10 ms)
2) Low Bandwidth (1 Mbps), High Latency (100 ms)

Specifically, we issue 10 QTYPE A DNS queries from the
client to the resolver and calculate the mean resolution time.
That is, the average time elapsed between the client sending
its query and subsequently receiving a DNSSEC validated
response (with HEADER→ AD set) from the resolver.

1) Experiment 1: We target NIST level I parameters. To
instantiate SL-DNSSEC, we use the following primitives:

• Post-Quantum KEM: Kyber-512

• KDF: HKDF-SHA-256 [43]

• MAC: HMAC-SHA-256 [42]

To determine how SL-DNSSEC fares against signature-
based DNSSEC, we sign the zone file with the schemes below:

— Pre-Quantum: RSA-2048, ECDSA-P256

— Post-Quantum: Falcon-512, Dilithium-2, SPHINCS+-
128s

Results and Discussion. All the results of the experi-
ment are catalogued in Tables (XI, XII) and Figure 5. We
observe that the Kyber-HMAC instantiation of SL-DNSSEC,
while additionally providing a level I post-quantum security,
is virtually equivalent to RSA-2048 in terms of total bytes
exchanged and resolution times. In fact, out of all the tested
mechanisms, Kyber-HMAC has the smallest response size
(RX), even beating out ECDSA-SD.

6Network RTT = 2× Latency.

TABLE XI: A comparison of bandwidth usage. SD : Standard
DNS. TCP* : TCP fallback. (NIST Level I)

Method Via
Pkts.
Sent
TX

Pkts.
Rcvd.

RX

Bytes
Sent
TX

Bytes
Rcvd.

RX
BAF

Bytes
Xferred
TX+RX

ECDSA-SD UDP 1 1 84 512 6.1 596

RSA-SD UDP 1 1 84 1088 13 1172

Falcon-SD TCP* 8 6 598 2700 - 3298

Dilithium-SD TCP* 13 11 928 8292 - 9220

SPHINCS+-SD TCP* 24 24 1654 25389 - 27043

Falcon-QBF UDP 3 3 258 2788 10.8 3046

Dilithium-QBF UDP 8 8 693 9225 13.3 9918

SPHINCS+-QBF UDP 23 23 2012 28321 14.1 30333

Kyber-HMAC UDP 1 1 867 416 0.48 1283

Fig. 5: A visualization of Table XI

11



TABLE XII: A comparison of query resolution times. SD
denotes Standard DNS. (NIST Level I)

Method
100 Mbps, 10 ms

Avg. Resolution Time
(±1 ms)

1 Mbps, 100 ms
Avg. Resolution Time

(±2 ms)

ECDSA-SD 44 407

RSA-SD 44 408

Falcon-SD 89 811

Dilithium-SD 89 817

SPHINCS+-SD 111 1025

Falcon-QBF 45 410

Dilithium-QBF 46 415

SPHINCS+-QBF 48 436

Kyber-HMAC 44 408

Concerning NIST recommended signatures, Kyber-HMAC
requires less than half the bandwidth of Falcon instances. On
bringing Dilithium and SPHINCS+ into the picture, the band-
width savings become even more dramatic (i.e. 86% and 95%,
repectively). The upshot is that, with SL-DNSSEC, servers will
not need to upgrade to a higher bandwidth connection, thus
shrinking the operational costs.

Furthermore, Kyber-HMAC (SL-DNSSEC) remains im-
mune against being exploited as a DNS amplifier. Observe
that Kyber-HMAC transmits a large query owing to the KEM
ciphertext contained therein. Due to a response being smaller
than its query, the Bandwidth Amplification Factor (BAF)
becomes < 1, resulting in a negative return on bandwidth
investment for a prospective attacker. On the other hand.
all signature-based methods over UDP can be potentially
exploited by an attacker for DDoS amplifications attacks.

With reference to post-quantum signatures over Standard
DNS (SD), we observe a slowdown of at least 50% compared
to other setups. This because the DNS response containing
PQC signatures always exceeds the EDNS buffer size of 1232
bytes. Consequently, the initial UDP trip is wasted (due to the
response being marked truncated) and overall resolution times
further increased (due to the ensuing 3-way TCP handshake).

Interestingly, SPHINCS+-SD even incurs an extra round
trip compared to Falcon-SD and Dilithium-SD. This is because
the size of a SPHINCS+ QTYPE A response exceeds the
initcwnd (initial congestion window) of 10 segments set
in the TCP slow start algorithm [17], [22]. Given the default
MSS (Maximum Segment Size) of 1220 bytes, the size of
initcwnd comes out to be 10 × 1220 = 12.2 KB. The
repercussion of exceeding this initcwnd is that after sending
about 12.2 KB of data, the nameserver waits for the resolver
to ACK (acknowledge) the received packets before continuing
with the rest of the transmission.

While QBF matches the resolution speeds of classical
DNSSEC, it exchanges multiple DNS/UDP packets in propor-
tion to the size of the original (un-fragmented) response. Given
the absence of any flow and congestion control mechanisms
in UDP, this torrent of packets can potentially exhaust the net-
work resources of busy resolvers/nameservers and overwhelm
middleboxes, whilst also increasing the chances of the session
requiring more round-trips due to unanticipated packet drops.

TABLE XIII: A size comparison (in bytes) of signature (sig)
/ ciphertext (ct) and public key (pk) of various algorithms.

Algorithm sig / ct pk

Falcon-1024 1280 1793

Dilithium-5 4595 2592

Kyber-1024 1568 1568

Somewhat surprisingly, RSA-SD has a higher BAF than
Falcon-QBF, despite Falcon’s signature being almost 2.6× the
size of RSA’s. This is because QBF sends multiple full-fledged
DNS queries, which increases the amount of TX bytes (the
denominator), thereby amortizing BAF.

Finally, observe that QBF starts to consume slightly more
bandwidth than Standard DNS (SD) as the number of ex-
changed packets grow. This is because QBF first envelops
a signature fragment in an RRSIG record. This RRSIG is
then inserted in a conventional DNS message (along with its
concomitant 12-byte HEADER, Question section, OPT record,
etc.) resulting in a data overhead. TCP, on the other hand, is
a continuous byte-stream of the original DNS response.

2) Experiment 2: To assess SL-DNSSEC’s scalability, we
now target NIST level V. This is the highest security level on
offer and is likely excessive for DNSSEC [13].

Choice of Primitives. The updated parameters are:

• Post-Quantum KEM: Kyber-1024

• KDF: HKDF-SHA-512 [43]

• MAC: HMAC-SHA-512 [42]

To compare SL-DNSSEC with signature-based DNSSEC,
we sign the zone file with Falcon-1024 and Dilithium-5.

Table XIII compares the object sizes of various NIST level
V signature and KEM schemes. We omit testing SPHINCS+

since the resulting response would exceed 64 KB, the maxi-
mum possible size for a DNS message. Furthermore, since a
DNS query carrying a Kyber ciphertext of 1568 bytes would
exceed the recommended threshold of 1232, we adapt QBF
[56] to split ct into two DNS queries, as sketched in Fig. 6.

Results and Discussion. All the findings of Experiment 2
are rendered in Tables (XIV, XV) and Figure 7. Compared to
Falcon and Dilithium instances, Kyber-HMAC (SL-DNSSEC)
still manages to cut bandwidth consumption by about 56%
and 86%, respectively. Furthermore, thanks to small MACs,
the response size (RX) in Kyber-HMAC increases by only 96
bytes despite the big jump in security level. However, to meet
the UDP size constraints of 1232 bytes, the resolver daemon
unavoidably has to dispatch an extra query.

Lastly, while Falcon-SD remains consistent with its res-
olution speeds, Dilithium-SD suffers a penalty of an extra
round-trip because of exceeding TCP’s initcwnd. Notice
also that the BAF in Falcon-QBF and Dilithium-QBF is the
same, despite a large discrepancy in the underlying signature
sizes. Again, this is to be ascribed to the higher amount of TX
bytes (due to more DNS queries) in the latter case.

12



Resolver
(BIND)

Daemon
(ZKKpk)

Daemon
(ZKKpk,ZKKsk)

example ANS
(BIND)

DNS Query
QNAME: test.example
QTYPE: A
EDNS0: 1232

→

(ss, ct)
$←−−

KEM.encap(ZKKpk)

QBF
Fragment ct
into ct1 and ct2

DNS Query
QNAME: test.example
QTYPE: A
DNSKEY: ct1
EDNS0: 1232

→

DNS Query
QNAME: ?2?test.example
QTYPE: A
DNSKEY: ct2
EDNS0: 1232

→

QBF Reassemble ct

ss←−
KEM.decap(ZKKsk, ct)

DNS Query
QNAME: test.example
QTYPE: A
EDNS0: 65507

−→

Check HEADER→ Z
?
= 1

Mark as secure

k←− KDF(ss)
ω′ ←− MACk(ANSWER)

Verify ω′
?
= ω

Set HEADER→ Z = 1

←

DNS Response
Z: 1
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: ω

←

DNS Response
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: ω

k←− KDF(ss)
ω ←− MACk(ANSWER)
Replace signature σ with ω

←

DNS Response
QNAME: test.example
QTYPE: A
ANSWER: 1.2.3.4
RRSIG: σ

Fig. 6: An overview of SL-DNSSEC validation via Daemon (NIST Level V)

TABLE XIV: A comparison of bandwidth usage. SD : Stan-
dard DNS. TCP* : TCP fallback. (NIST Level V)

Method Via
Pkts.
Sent
TX

Pkts.
Rcvd.

RX

Bytes
Sent
TX

Bytes
Rcvd.

RX
BAF

Bytes
Xferred
TX+RX

Falcon-SD TCP* 10 8 730 4674 - 5404

Dilithium-SD TCP* 18 16 1258 15147 - 16405

Falcon-QBF UDP 4 4 345 4865 14.1 5210

Dilithium-QBF UDP 14 14 1220 17165 14.1 18385

Kyber-HMAC UDP 2 1 1766 512 0.29 2278

Fig. 7: A visualization of Table XIV

VI. OTHER CONSIDERATIONS

A. Fetching DNSKEYs from Nameservers

It is important to note that SL-DNSSEC relies upon a PQC
signature on the DNSKEY RRset to ascertain the authenticity
of the KEM public key (ZKKpk) contained therein.

TABLE XV: A comparison of query resolution times. SD
denotes Standard DNS. (NIST Level V)

Method
100 Mbps, 10 ms

Avg. Resolution Time
(±1 ms)

1 Mbps, 100 ms
Avg. Resolution Time

(±2 ms)

Falcon-SD 89 812

Dilithium-SD 111 1014

Falcon-QBF 45 411

Dilithium-QBF 47 426

Kyber-HMAC 44 409

Although DNS responses in SL-DNSSEC remain well
under 1232 bytes, the initial QTYPE DNSKEY response from
a nameserver containing multiple DNSKEYs and one or more
RRSIGs will likely not respect the aforesaid size ceiling.

Therefore, similar to regular DNSSEC, retrieving the
DNSKEYs of a zone may entail the use of either one of the
following methods:

1) An upper-layer fragmentation scheme (ARRF/QBF)
2) Standard DNS with a fallback to TCP
3) An out-of-band distribution via HTTP or FTP

Fortunately, this is not much of a concern since DNSKEYs are
fetched infrequently owing to their higher caching TTLs.

B. Managing Keys on Nameservers

Considerations that are pertinent to DNSSEC in live (on-
the-fly) signing mode also remain applicable to SL-DNSSEC.
Specifically, since KEM keys will be stored on nameservers
that connect to the Internet (which increases the overall attack
surface), a hardware security module (HSM) is therefore
recommended for securely managing the keys.

13



TABLE XVI: A comparison of cryptographic operations.

SL-DNSSEC DNSSEC
Offline Signing

DNSSEC
Live Signing

Resolver Query KEM.encap() - -

Nameserver Response
KEM.decap()

KDF()
MAC()

- SIG.sign()

Resolver Validation KDF()
MAC()

SIG.verify() SIG.verify()

C. Computational Requirements

Table XVI contrasts the computations performed in
SL-DNSSEC and conventional DNSSEC. Typically, KEM
and MAC operations are more efficient than their signature
counterparts (refer [70], pp. 197-198). However, concretely
comparing the computational time of the two protocols is
not straightforward, since implementations and hardware are
constantly improving over time. We therefore leave this as an
interesting avenue for further research.

VII. CONCLUSION

We presented the SL-DNSSEC protocol: a signature-free
alternative for performing DNSSEC validations in a single
query/response fashion. Leveraging a quantum-safe KEM and
a MAC, SL-DNSSEC achieves NIST level I security while
having analogous bandwidth usage and resolution speeds to
that of RSA-2048. Moreover, owing to smaller responses than
queries, SL-DNSSEC remains unusable as a DNS amplifier.

REFERENCES

[1] “Dan kaminsky, black ops 2008: It’s the end of the cache as we know it,”
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf, accessed: 2024-
07-09.

[2] “The ddos that almost broke the internet,” https://blog.cloudflare.com/
the-ddos-that-almost-broke-the-internet, accessed: 2024-07-09.

[3] “Dns flag day 2020,” https://www.dnsflagday.net/2020/.
[4] “The double ratchet algorithm,” https://signal.org/docs/specifications/

doubleratchet/.
[5] “Is large-scale dns over tcp practical?” https://ripe76.ripe.net/

presentations/95-jonglez-dns-tcp-ripe76.pdf, accessed: 2024-07-09.
[6] “Noise protocol framework,” https://noiseprotocol.org/noise.html.
[7] “Oqs-bind,” https://github.com/Martyrshot/OQS-bind.
[8] “Defragmenting dns - determining the optimal maximum udp response

size for dns,” 2020, accessed: 2024-07-09. [Online]. Available:
https://indico.dns-oarc.net/event/36/contributions/776/

[9] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-
López, J. A. Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla,
S. Schoen, and B. Warren, “Let’s encrypt: An automated certificate
authority to encrypt the entire web,” in SIGSAC CCS, 2019.

[10] S. Ariyapperuma and C. J. Mitchell, “Security vulnerabilities in dns
and dnssec,” in ARES, 2007.

[11] D. Atkins and R. Austein, “Threat analysis of the domain name system
(dns),” RFC 3833, 2004.

[12] J. Bau and J. C. Mitchell, “A security evaluation of DNSSEC with
NSEC3,” in NDSS, 2010.

[13] G. Beernink, “Taking the quantum leap: Preparing dnssec for post
quantum cryptography,” Master’s thesis, University of Twente, 2022.
[Online]. Available: http://essay.utwente.nl/89509/

[14] M. Bellare, R. Canetti, and H. Krawczyk, “A modular approach to the
design and analysis of authentication and key exchange protocols,” in
STOC, 1998.

[15] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in CRYPTO, 1994.

[16] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld,
and P. Schwabe, “The sphincs+ signature framework,” in SIGSAC CCS,
2019.

[17] E. Blanton, D. V. Paxson, and M. Allman, “Tcp congestion control,”
RFC 5681, 2009.

[18] R. Bonica, F. Baker, G. Huston, B. Hinden, O. Trøan, and F. Gont, “Ip
fragmentation considered fragile,” RFC 8900, 2020.

[19] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “Crystals - kyber: A cca-secure
module-lattice-based kem,” in EuroS&P, 2018.

[20] R. Bush and R. Austein, “The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1,” RFC 8210, 2017.

[21] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in EUROCRYPT, 2001.

[22] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing tcp’s initial
window,” RFC 6928, 2013.

[23] T. Chung, R. Van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, and C. Wilson, “A longitudinal,
end-to-end view of the dnssec ecosystem,” in USENIX, 2017.

[24] J. da Silva Damas, M. Graff, and P. A. Vixie, “Extension mechanisms
for dns (edns(0)),” RFC 6891, 2013.

[25] C. de Saint Guilhem, N. P. Smart, and B. Warinschi, “Generic forward-
secure key agreement without signatures,” in ISC, 2017.

[26] P. Dikshit, M. Kosek, N. Faulhaber, J. Sengupta, and V. Bajpai, “Eval-
uating dns resiliency and responsiveness with truncation, fragmentation
& dotcp fallback,” IEEE TNSM, 2024.

[27] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,”
in NDSS, 2017.

[28] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR TCHES, 2018.

[29] D. E. Eastlake and M. P. Andrews, “Domain name system (dns)
cookies,” RFC 7873, 2016.

[30] A. Fregly, J. Harvey, B. S. Kaliski Jr., and S. Sheth, “Merkle tree ladder
mode: Reducing the size impact of nist pqc signature algorithms in
practice,” in CT-RSA, 2023.

[31] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly secure
authenticated key exchange from factoring, codes, and lattices,” in PKC,
2012.

[32] J. Goertzen and D. Stebila, “Post-quantum signatures in DNSSEC via
request-based fragmentation,” in PQCrypto, 2023.

[33] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in STOC, 1996.

[34] A. Herzberg and H. Shulman, “Fragmentation considered poisonous,
or: One-domain-to-rule-them-all.org,” in IEEE CNS, 2013.

[35] P. E. Hoffman and P. McManus, “Dns queries over https (doh),” RFC
8484, 2018.

[36] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. E.
Hoffman, “Specification for dns over transport layer security (tls),” RFC
7858, 2016.

[37] C. Huitema, S. Dickinson, and A. Mankin, “Dns over dedicated quic
connections,” RFC 9250, 2022.

[38] P. Jeitner and H. Shulman, “Injection attacks reloaded: Tunnelling
malicious payloads over DNS,” in USENIX, 2021.

[39] P. Kampanakis and T. Lepoint, “Vision paper: Do we need to change
some things?” in SSR, 2023.

[40] C. Kaufman, R. Perlman, and B. Sommerfeld, “Dos protection for udp-
based protocols,” in SIGSAC CCS, 2003.

[41] M. Kosek, T. V. Doan, S. Huber, and V. Bajpai, “Measuring dns over
tcp in the era of increasing dns response sizes: a view from the edge,”
SIGCOMM CCR, 2022.

[42] D. H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing
for message authentication,” RFC 2104, 1997.

[43] D. H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key
derivation function (hkdf),” RFC 5869, 2010.

14

https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://www.dnsflagday.net/2020/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://ripe76.ripe.net/presentations/95-jonglez-dns-tcp-ripe76.pdf
https://ripe76.ripe.net/presentations/95-jonglez-dns-tcp-ripe76.pdf
https://noiseprotocol.org/noise.html
https://github.com/Martyrshot/OQS-bind
https://indico.dns-oarc.net/event/36/contributions/776/
http://essay.utwente.nl/89509/


[44] H. Krawczyk, “Skeme: a versatile secure key exchange mechanism for
internet,” in NDSS, 1996.

[45] ——, “Hmqv: A high-performance secure diffie-hellman protocol,” in
CRYPTO, 2005.

[46] H. Krawczyk and H. Wee, “The optls protocol and tls 1.3,” in EuroS&P,
2016.

[47] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of
authenticated key exchange,” in ProvSec, 2007.

[48] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An efficient
protocol for authenticated key agreement,” DCC, 2003.

[49] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet
Routing,” RFC 6480, 2012.

[50] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan, “Dns
cache poisoning attack reloaded: Revolutions with side channels,” in
SIGSAC CCS, 2020.

[51] K. Man, X. Zhou, and Z. Qian, “Dns cache poisoning attack: Resur-
rections with side channels,” in SIGSAC CCS, 2021.

[52] J. Mao, M. Rabinovich, and K. Schomp, “Assessing support for dns-
over-tcp in the wild,” in PAM, 2022.

[53] G. C. M. Moura, M. Müller, M. Davids, M. Wullink, and C. Hesselman,
“Fragmentation, truncation, and timeouts: Are large dns messages
falling to bits?” in PAM, 2021.

[54] M. Müller, J. de Jong, M. van Heesch, B. Overeinder, and R. van
Rijswijk-Deij, “Retrofitting post-quantum cryptography in internet pro-
tocols: a case study of dnssec,” SIGCOMM CCR, 2020.

[55] T. Prest, P. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Fal-
con. tech. rep., national institute of standards and technology,
available at,” https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022, 2022.

[56] A. S. Rawat and M. P. Jhanwar, “Post-quantum dnssec over udp via
qname-based fragmentation,” in SPACE, 2023.

[57] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “Dns
security introduction and requirements,” RFC 4033, 2005.

[58] ——, “Protocol modifications for the dns security extensions,” RFC
4035, 2005.

[59] ——, “Resource records for the dns security extensions,” RFC 4034,
2005.

[60] C. Rossow, “Amplification hell: Revisiting network protocols for ddos
abuse.” in NDSS, 2014.

[61] P. Schwabe, D. Stebila, and T. Wiggers, “Post-quantum tls without
handshake signatures,” in SIGSAC CCS, 2020.

[62] ——, “More efficient post-quantum kemtls with pre-distributed public
keys,” in ESORICS, 2021.

[63] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SICOMP, 1997.

[64] M. Sivaraman, S. Kerr, and L. Song, “Dns message fragments,” https:
//datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/.

[65] L. Song and S. Wang, “Atr: Additional truncation response for large dns
response,” https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/.

[66] D. Stebila and M. Mosca, “Post-quantum key exchange for the internet
and the open quantum safe project,” in SAC, 2017.

[67] G. Van Den Broek, R. Van Rijswijk-Deij, A. Sperotto, and A. Pras,
“Dnssec meets real world: dealing with unreachability caused by
fragmentation,” IEEE Communications Magazine, 2014.

[68] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A. Pras, “A high-
performance, scalable infrastructure for large-scale active dns measure-
ments,” IEEE JSAC, 2016.

[69] R. van Rijswijk-Deij, A. Sperotto, and A. Pras, “Dnssec and its potential
for ddos attacks: a comprehensive measurement study,” in IMC, 2014.

[70] T. Wiggers, “Post-quantum tls,” Ph.D. dissertation, Radboud University,
2024. [Online]. Available: https://thomwiggers.nl/publication/thesis/

15

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://thomwiggers.nl/publication/thesis/

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Domain Name System (DNS)
	DNS Security Extensions (DNSSEC)
	Key Encapsulation Mechanism (KEM)

	The SL-DNSSEC Protocol
	Phase 1: KEM Key Generation
	Phase 2: Preparing a SL-DNSSEC Query
	Phase 3: Preparing a SL-DNSSEC Response
	Phase 4: Validating a SL-DNSSEC Response
	Backward Compatibility

	Security
	Attacker alters DNSKEYs sent by ANS
	Attacker alters SL-DNSSEC query sent by resolver
	Attacker alters SL-DNSSEC response sent by ANS

	Evaluation
	Implementation
	Experiments and Results
	Experiment 1
	Experiment 2


	Other Considerations
	Fetching DNSKEYs from Nameservers
	Managing Keys on Nameservers
	Computational Requirements

	Conclusion
	References

