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ABSTRACT
Redis (Remote Dictionary Server) is a general purpose, in-memory

database that supports a rich array of functionality, including var-

ious Probabilistic Data Structures (PDS), such as Bloom filters,

Cuckoo filters, as well as cardinality and frequency estimators.

These PDS typically perform well in the average case. However,

given that Redis is intended to be used across a diverse array of

applications, it is crucial to evaluate how these PDS perform under

worst-case scenarios, i.e., when faced with adversarial inputs. We

offer a comprehensive analysis to address this question. We begin

by carefully documenting the different PDS implementations in Re-

dis, explaining how they deviate from those PDS as described in the

literature. Then we show that these deviations enable a total of 10

novel attacks that are more severe than the corresponding attacks

for generic versions of the PDS. We highlight the critical role of Re-

dis’ decision to use non-cryptographic hash functions in the severity

of these attacks. We conclude by discussing countermeasures to

the attacks, or explaining why, in some cases, countermeasures are

not possible.

1 INTRODUCTION
Probabilistic Data Structures (PDS) are becoming ubiquitous in

modern computing applications that deal with large amounts of

data, especially when the data is presented as a stream. Their key

property in this setting is that they provide approximate answers to

queries on data without needing to store all the data. For example, a

user may wish to estimate the cardinality of a datastream (in which

case the HyperLogLog cardinality estimator could be used), find the

most frequent elements in the stream (in which case a so-called top-

𝐾 PDS is available), or just ask whether a particular data item has

been seen before in the stream (where Bloom and Cuckoo filters are

the tool for the job). Manymodern datawarehousing and processing

systems provide access to PDS as part of their functionality.

A prominent example of such a system is Redis, a general pur-

pose, in-memory database. Redis is integrated into general data

analytics and computing platforms offered by AWS, Google Cloud,

IBM Cloud, and Microsoft Azure, amongst others. Redis supports

a variety of PDS: HyperLogLog (HLL), Bloom filter, Cuckoo fil-

ter, t-digest, Top-K, and Count-Min sketch [3]. While Redis was

mostly used as a cache in the past, it is now a fully general system,

used by a companies like Adobe [31], Microsoft [32], Facebook [29]

and Verizon [30] for a variety of purposes. These include security-

related applications, such as traffic analysis and intrusion detection

systems [36].

As the functionality of Redis has broadened, so has its maturity

with respect to security. Initially, the Redis developers stated that no

security should be expected from Redis: The Redis security model
is: “it’s totally insecure to let untrusted clients access the system,
please protect it from the outside world yourself” [35]. In reality,

users failed to comply with this [18]. Today, Redis has a number

of security features, and has adopted a different model, with a

protected mode as default, user authentication, use of TLS, and

command blocklisting amongst other features [5]. Redis now also

recognise security and performance in the face of adversarially-

chosen inputs as being a valid concern, stating that “an attacker
might insert data into Redis that triggers pathological (worst case)
algorithm complexity on data structures implemented inside Redis
internals” and then going on to discuss two potential issues, namely

hash table exhaustion and worst-case sorting behaviour triggered

by crafted inputs [5]. The first issue is prevented in Redis by using

hash function seeding; the second issue is not currently addressed.

However, Redis’ consideration of malicious inputs does not seem

to extend to their PDS implementations.

1.1 Our contributions
Given its prominence in the marketplace and the many other sys-

tems that rely on it, we contend that the PDS used in Redis are

deserving of detailed analysis. Moreover, in view of the broad set

of use cases for these PDS, including those where adversarial in-

terference is anticipated and would be damaging if successful, this

analysis should be done in an adversarial setting. This approach

follows a line of recent work on PDS analysis [11, 14, 20, 24, 28, 33].

In this paper, we make a comprehensive security analysis of the

suite of PDS provided by Redis, with a view to understanding how

its constituent PDS perform in adversarial settings. As argued in [6],

we regard the observation, documentation, and analysis of such

security phenomena “in the wild” as constituting scientific contri-

butions in their own right.

Following prior work, we assume only that the adversary has ac-

cess to the functionality provided by the PDS (eg. via the presented

API). The adversary’s aim is then to subvert the main goal of the

specific PDS under study. We deliberately remain agnostic about

precisely which application is running on top of Redis, since the

relevant applications will change over time and are anyway largely

proprietary. The real-world effects of a successful attack will vary

across applications, but might include, for example, false statistical

information being presented to users (in the case of frequency esti-

mation), wrongly reporting the presence of certain data items in
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a cache (in the case of Bloom filters or Cuckoo filters) leading to

performance degradation, or the evasion of network attack detec-

tion (in the case of cardinality estimation being used in network

applications). Instead of making application-specific analyses, we

focus on the core PDS functionalities in Redis and how their goals

can be subverted in general. Naturally, our analyses are specific

to each of the different PDS supported in Redis, and depend on

various low-level implementation choices made by Redis. These

choices lead us to develop novel attacks that are more powerful

than the known generic attacks against the different PDS in Redis.

Since HLL in Redis was already comprehensively studied in [28],

we do not consider it further here. We note only that [28] showed

how to manipulate data input to Redis HLL to distort cardinality

estimates in severe ways, in a variety of adversarial settings.

The t-digest is a data structure first introduced in [16]; it uses

a k-means clustering technique [21] to estimate percentiles over

a collection of measurements. The structure is an outlier in the

Redis PDS suite as it does not work in the streaming setting, but

necessitates the batching of data in memory, and it is not really

probabilistic in the same sense as the other PDS in Redis. For these

reasons, we omit a security evaluation of t-digest (both in general

and in the case of the Redis implementation).

This leads us to focus on the remaining four PDS in Redis: Bloom

filter, Cuckoo filter, Top-K, and Count-Min sketch. For each PDS, we

discuss how the PDS was originally described in the literature and

lay out how the Redis implementation differs from this “theoretical”

description. We then develop attacks for each of these four PDS,

with the attacks in most cases exploiting specific features of the

Redis implementations and being more efficient for this reason

(simultaneously, we have to deal with the many oddities of the Redis

codebase in our attacks). In total, we present 10 different attacks

across the four PDS.We compare our attacks with known attacks for

these PDS from the literature. We also look at how the PDS in Redis

can be protected against attacks, drawing on existing literature that

considers this question for PDS more generally [11, 19, 24, 28].

We give a brief flavour of our attacks on the Redis PDS suite.

For the Bloom filter implementation, we show how to make any

target data item a false positive with few insertions. For the Cuckoo

filter, we show how to launch an attack that disables insertions

after only a few insertions have been made, far fewer than the

filter’s expected capacity. For Count-Min sketch, we can inflate

the frequency estimate of any target data item to any target level.

For Top-K, we can block the PDS from reporting the true 𝐾 most

frequent data items in a stream.

1.2 Responsible disclosure
We notified Redis of our findings on 29.04.2024. This version of our

paper is identical to the document we sent to Redis on 29.04.2024

aside from changes made in this subsection. We offered to engage

in a coordinated approach to vulnerability disclosure and suggested

a 90-day period before any public distribution of our research paper.

Redis acknowledged our findings immediately and then gave a de-

tailed response on 16.05.2024. In this response, Redis disputed the

validity of analysing Redis’ PDS in adversarial settings; naturally

we disagree with their viewpoint. However, they also committed

to consider changes to their implementation in future versions,

including using random seeds instead of fixed seeds, considering

alternative hash functions, and adding disclaimers to their docu-

mentation. They did not commit to a timeline for this consideration.

They decided not to handle our disclosure as a “Redis vulnerability".

1.3 Related work
We are not the first to ask how PDS perform under adversarial

inputs. Early work in this direction includes [13, 22]. In particu-

lar, [13] addresses hash-table exhaustion, a threat that is actually

recognised and addressed by Redis. There is now a rich and growing

literature studying the performance of PDS in adversarial settings.

Prominent works include [11, 20], which considered the case of

Bloom filters, [14, 28, 33] which examined the privacy and security

of the HyperLogLog cardinality estimator in adversarial settings

(including in [28] an analysis of Redis), and [24] which focussed

on attacks on the Count-Min sketch frequency estimator and the

HeavyKeeper PDS (for solving the top-𝑘 problem). At the same

time, researchers have begun to examine the question of how to

provably protect PDS against attacks [9, 11, 19, 26].

In comparison to the previous work, our attacks exploit imple-

mentation choices of Redis, especially their choice of weak hash

functions, to strongly improve the known attacks on PDS. Further,

we present new attacks on PDS, such as the insertion failure attack

on Cuckoo Filters, using novel techniques to attack these structures.

To the best of our knowledge, we are the first to present any attacks

on scalable Bloom and Cuckoo Filters.

1.4 Paper organisation
In Section 2 we discuss each of the four PDS from Redis that we

study here, both as presented in the literature, and as implemented

in Redis. In Section 3 we present our attacks on the Redis imple-

mentations of these PDS. Section 4 covers countermeasures, and

we conclude in Section 5 with a discussion of our findings and open

problems.

2 PDS IN REDIS
We start by introducing the PDS that we consider in this work. For

each PDS, we will describe their original specification, the proba-

bilistic guarantees they provide, and give a detailed description of

their Redis implementation.

2.1 Bloom filters
A Bloom filter is a commonly-used PDS for answering membership

queries in an approximate manner [10], allowing insertions (but

not deletions) of elements. It is represented by an𝑚-bit vector 𝜎 ,

along with a collection of 𝑘 independent hash functions ℎ1, ..., ℎ𝑘 .

An element 𝑥 is inserted into the Bloom filter by setting bits at

positions ℎ1 (𝑥), ..., ℎ𝑘 (𝑥) to 1. A membership query on an element

𝑥 checks if all bits at positions ℎ1 (𝑥), ..., ℎ𝑘 (𝑥) are set to 1.

A scalable Bloom filter, proposed in [7], is composed of an assem-

bly of one or more Bloom filters. The Redis PDS module implements

such a scalable variant. So we will focus our discussion there. A

standard Bloom filter is then a special case of a scalable Bloom filter.

In Redis, a scalable Bloom filter is initialised by the user specify-

ing a desired false positive probability (𝜀), capacity (𝑐 , the number

of elements they expect to store), and an expansion factor (ef ) by
2
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calling BF.setup(𝜀, 𝑐, ef ). (The analogous function in Redis is called

BF.RESERVE.) We refer to the resulting filter as BF[𝜀, 𝑐, ef ]. First, the
number of bits per element is derived from this as bpe← − log (𝜀/2)

ln 2
.

The size of the Bloom filter is then calculated as𝑚 ← ⌈𝑐 · bpe/64⌉ ·
64, and the number of hash functions as 𝑘 ← ⌈ln 2 · bpe⌉. This
follows the standard settings in the literature, except that the use

of 𝜀/2 in defining bpe implicitly sets the target false positive prob-

ability to 𝜀/2 instead of 𝜀. To implement a standard (non-scaling)

Bloom filter, the user can set a no-scaling flag.

In a Redis Bloom filter, the bit positions to be set for an input 𝑥

are calculated as follows. First, two values 𝑎, 𝑏 are derived using a

hash function ℎ as 𝑎 ← ℎ(𝑥, seed), 𝑏 ← ℎ(𝑥, 𝑎), for a fixed seed =

0xc6a4a7935bd1e995. The 𝑘 bit positions corresponding to 𝑥 are

then derived as 𝑝𝑖 ← (𝑎 + (𝑖 − 1) · 𝑏) mod 2
64

mod𝑚 for 𝑖 ∈ [𝑘].
The first modular reduction here is implicit, and comes from storing

the summation result in an integer of type unsigned long long.
To insert an element, its bit positions are first checked if they are

already all set to 1, returning 0 if so; if not, all are set to 1. To query

an element, its bit positions are simply checked if all are set to 1,

returning 1 if so and 0 if not. Redis sets ℎ to MurmurHash64A, a
fast (but weak) hash function.

When the Redis Bloom filter reaches its capacity (i.e. when 𝑐

elements have been inserted), a new subfilter is added. The parame-

ters of the new subfilter are calculated as follows. The false positive

probability of the 𝑖𝑡ℎ subfilter is derived as 𝜀𝑖 ← 𝜀 · 2−𝑖 , and its

capacity as 𝑐𝑖 ← 𝑐 · (ef )𝑖−1. Then,𝑚𝑖 , 𝑘𝑖 are computed from these

in the same manner as before, and the internal representation 𝜎 is

extended with a new bit vector 𝜎𝑖 of size𝑚𝑖 . Further elements will

only be inserted into the new (or some subsequent) subfilter. Redis

has no limit on the number of subfilters that can be created.

When multiple subfilters are in use, a membership query on 𝑥

is made by testing for the presence of 𝑥 in each subfilter until it

is found. Each new subfilter is created with a target false positive

probability that half of the previous one and the first has this value

set to 𝜀/2, so the false positive probability over thewhole assembly is

well-approximated by a geometric series converging to the desired

value of 𝜀. Of course, this only holds in the honest setting where

inserted values are assumed to be independent of any randomness

used to construct the filter (i.e. the hash function used). In Redis,

there is no randomness (the hash function has a fixed seed), the

hash function is weak, and its outputs have additional structure.

In the following, we will refer to the Redis implementations of

the insertion and query algorithms on element 𝑥 as BF.ins(𝑥, 𝜎)
and BF.qry(𝑥, 𝜎) respectively, where 𝜎 is the assembly of currently

instantiated bit vectors. (In Redis, the analogous functions are called

BF.ADD and BF.EXISTS, respectively.) We note that Redis does not

allow users to view 𝜎 (the so-called internal state of the PDS); this

observation holds for all Redis PDS. For full details of the Redis

implementation of Bloom filters, see Fig. 3 in the Appendix.

2.2 Cuckoo filters
A Cuckoo filter, proposed in [17], supports approximate member-

ship queries. In contrast to a Bloom filter, it allows both insertions

and deletions of elements, and offers improved performance. It

is represented by a collection 𝜎 of 𝑛𝐵 buckets, each with 𝑠 slots,

containing compact fingerprints of elements.

In the original specification of the Cuckoo filter [17], an element

𝑥 is inserted by computing its fingerprint fp = ℎfp (𝑥), finding its

two bucket indices 𝑖 = ℎ1 (𝑥) mod 𝑛𝐵 , 𝑗 = (𝑖 ⊕ ℎ2 (fp)) mod 𝑛𝐵 ,

and inserting the fingerprint into either bucket. Here, ℎfp, ℎ1, ℎ2 are

hash functions. If there is no space in either bucket for 𝑥 , an eviction

process begins: one of 𝑥 ’s buckets is chosen at random, along with

a random slot. The fingerprint in this slot is moved to its alternative

bucket if there is space, and the fingerprint of 𝑥 is inserted in its

place. This eviction process can happen a maximum of num times

before the insertion is said to fail. Under an “honest" assumption

that insertions are independent of the hash functions, [17] showed

that Cuckoo Filters can be filled to a very high proportion (eg.

load factor of 95% for 𝑠 = 4) before insertions are expected to fail.

An element is deleted by removing its fingerprint from one of its

buckets, and a membership query simply checks for the presence

of 𝑥 ’s fingerprint in either of its buckets.

A loose upper-bound on the false positive probability of the

Cuckoo filter was derived in [17] as 1−(1−2−𝜆fp )2𝑠 ≤ 2𝑠 · 2−𝜆fp ,
where 𝜆fp is the size of the fingerprint in bits. This implicitly as-

sumes a worst-case scenario of every bucket being filled with dis-

tinct fingerprints. Then, a membership query on 𝑥 compares the

fingerprint of 𝑥 with 2𝑠 fingerprints in total (i.e. those stored in the

two buckets of 𝑥 ).

The Redis implementation of Cuckoo filters differs from the

original description in multiple ways. We will highlight some of

the major differences here, but for the full specification of the Redis

Cuckoo filter, see Fig. 4 in the Appendix.

First, Redis Cuckoo filters are scalable, similar to the case of

Bloom filters. That is, the Cuckoo filter is composed of a sequence

of subfilters, where the number of buckets in each subfilter is larger

than (or equal to) that of the previous subfilter, depending on some

specified expansion factor ef .
To initialise a Cuckoo filter in Redis, the user needs to specify

a desired capacity, number of slots per bucket (𝑠), maximum num-

ber of evictions (num), and the expansion factor (ef ) by calling

CF.setup(𝑐, 𝑠, num, ef ). (The analogous function in Redis is called

CF.RESERVE.)Wewill refer to the resulting filter as CF[𝑐, 𝑠, num, ef ].
To calculate the capacity, the user takes into account the number of

elements they wish to insert, the fingerprint length (fixed to 𝜆fp = 8

bits in Redis) and their desired load factor. The number of buckets

in the first subfilter, 𝑛𝐵1 , is calculated by dividing the capacity by

the number of slots, 𝑠 . These parameter choices are determined

following [17]. Both 𝑛𝐵1 , ef are rounded up to the nearest power of

two.

An element 𝑥 is inserted into the Redis Cuckoo filter by calcu-

lating its corresponding buckets in the last subfilter using ℎ1, ℎ2,

and inserting its fingerprint calculated using ℎfp . However, if there

is no space in either bucket, Redis attempts to insert the element

into its corresponding buckets in the previous subfilter, and so on,

until it reaches the first subfilter. If there is no space in 𝑥 ’s buckets

in previous subfilters, the eviction process is carried out in the

last subfilter. We point out that, in contrast to the original Cuckoo

filter, evictions are deterministic (and not randomised) in the Redis

implementation. That is, the element in the first slot of the first

bucket of 𝑥 is evicted, followed by the second, and so on (rather

than choosing a random slot each time). If, even after evictions, the
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element cannot be inserted, Redis reverts all evictions and creates a

new subfilter to insert 𝑥 . The number of buckets in the ℓ𝑡ℎ subfilter

is computed as 𝑛𝐵ℓ←𝑛𝐵1 · (ef )ℓ−1. Up to 32 subfilters can be created
but only a single element can be inserted into the last one; crucially,

after this, all future insertions are disabled.

We will refer to the Redis Cuckoo filter insertion algorithm as

CF.ins(𝑥, 𝜎, unique), with the parameter unique ∈ {⊤,⊥} allow-
ing to switch between Redis’ two modes of insertion CF.ADD,
CF.ADDNX. In the first mode (unique = ⊥), 𝑥 is inserted as de-

scribed above, returning 1 if successfully inserted and ⊥ if inser-

tions are disabled. In the second mode (unique = ⊤), 𝑥 is queried

before it is inserted. If 𝑥 ’s fingerprint is already present in one of

its buckets, 0 is returned; otherwise, insertion proceeds as in the

first mode.

Deletion of an element 𝑥 removes its fingerprint from one of

its buckets. The CF.del(𝑥, 𝜎) algorithm searches for 𝑥 ’s fingerprint

starting in the last subfilter all the way down to the first, returning 1

if successfully deleted and 0 if not found. A membership query on 𝑥 ,

CF.qry(𝑥, 𝜎), simply checks for its fingerprint in either of its buck-

ets, but starts from the first subfilter and runs to the last, returning 1

if found and 0 if not. The Redis API further gives users access to the

parameters of the Cuckoo filter through CF.info(𝜎), in particular

the current number of subfilters, but in addition 𝑛𝐵1 , 𝑠, ef , num, and

the number of insertions and deletions made so far. (The analo-

gous functions in Redis are called CF.DEL, CF.EXISTS and CF.INFO,
respectively.)

The original paper on Cuckoo filters [17] does not specify choices

of hash functions. Redis setsℎfp (𝑥) ← (ℎ1 (𝑥) mod 255)+1,ℎ1 (𝑥) ←
MurmurHash64A(𝑥), andℎ2 (𝑥)←const·𝑥 , where const=0x5bd1e995
is a constant taken from the 32-bit variant of MurmurHash. As we
will show, the invertibility ofMurmurHash64A has have significant

consequences for the security of Redis Cuckoo filters.

The false positive probability of the Redis Cuckoo filter is higher

than that of the original version, due to the presence of subfilters.

With ℓ subfilters, we now compare against ℓ ·2𝑠 fingerprints instead
of 2𝑠 in the worst case, leading to an upper-bound of ℓ · 2𝑠 · 2−𝜆fp .
Note that this bound requires all fingerprints to be equally likely in

every bucket. In Redis, fingerprints and buckets are computed from

the same hash value but the moduli involved, 𝑛𝐵𝑖 and 255 (number

of possible fingerprints), are always co-prime because 𝑛𝐵𝑖 must be

a power of two. This can be used to show that the probability for a

fingerprint collision is actually the required value 2
−𝜆fp

.

2.3 Count-Min sketches
A Count-Min sketch supports frequency estimates, i.e. estimates

of the number of times a particular element occurs in a data set.

Originally introduced in [12], a Count-Min sketch consists of a𝑘×𝑚
array 𝜎 of (initially zero) counters, and 𝑘 pairwise independent hash

functions ℎ1, ..., ℎ𝑘 that map between the universeU of data items

and [𝑚].
An element 𝑥 is added to a Count-Min sketch by computing

(𝑝1,..., 𝑝𝑘 ) ← (ℎ1 (𝑥),..., ℎ𝑘 (𝑥)), then adding 1 to each of the coun-

ters at 𝜎 [𝑖] [𝑝𝑖 ] for 𝑖 ∈ [𝑘]. This extends in the obvious way to

insertions of 𝑣 instances of an element at a time. A frequency esti-

mate for 𝑥 is computed as �̂�𝑥 = min𝑖∈[𝑘 ] {𝜎 [𝑖] [𝑝𝑖 ]}. A Count-Min

sketch may produce overestimates of the true frequency, but never

underestimates.

For any 𝜀, 𝛿 ≥ 0, any 𝑥∈U, and any collection of data C stored by

the Count-Min sketch (overU) of length 𝑁 , it can be guaranteed by

appropriate setting of parameters that Pr[�̂�𝑥 −𝑛𝑥 > 𝜀𝑁 ] ≤ 𝛿 , where
𝑛𝑥 is the true frequency of 𝑥 . Specifically, we can take𝑚 ← ⌈𝑒/𝜀⌉,
𝑘 ← ⌈ln (1/𝛿)⌉. This correctness bound holds when the individual

hash functions are sampled from a pairwise-independent hash fam-

ily 𝐻 (see [12] for a proof). It further assumes that insertions are

done in the honest setting. That is, C and the queried element 𝑥

are independent of the internal randomness of the structure (the

random choice of the hash functions).

In Redis, a Count-Min sketch is initialised by the user calling

CMS.setup(𝜀, 𝛿). We will refer to the resulting sketch as CMS[𝜀, 𝛿].

The dimensions𝑚,𝑘 of the Count-Min sketch are then calculated as

above, and a 𝑘×𝑚 array of zeros is initialised. We note that it is also

possible to initialise the structure from the dimensional parameters

𝑚,𝑘 , rather than deriving them from 𝜀, 𝛿 . Insertions and member-

ship queries on any element 𝑥 are carried out in the same way as

in the original structure, using the commands CMS.ins(𝑥, 𝜎, 𝑣) and
CMS.qry(𝑥, 𝜎); both return the frequency estimate of 𝑥 . The analo-

gous functions in Redis are calledCMS.INITBYPROB,CMS.INCRBY
and CMS.QUERY, respectively.

To instantiate the 𝑘 pairwise independent hash functions, Redis

uses MurmurHash2 with a per row seed equal to the row index,

i.e. ℎ1 (𝑥) ← ℎ(𝑥, 1), ..., ℎ𝑘 (𝑥) ← ℎ(𝑥, 𝑘), where the syntax ℎ(𝑥, 𝑖)
means MurmurHash2 evaluated on input 𝑥 with seed 𝑖 . For full

details of Count-Min sketches in Redis, see Fig. 5 in the Appendix.

We point out that using fixed hash functions violates the hon-

est setting assumptions that are required for the guarantees on

frequency estimation errors in [12]. We will leverage this and the

properties ofMurmurHash2 in our attacks to cause large frequency

overestimates.

2.4 Top-K
ATop-K structure, originally introduced as the HeavyKeeper in [37],

solves the approximate top-𝐾 problem.

The exact version of the problem is defined as follows: given

elements of a data collection C ⊆ {𝑒1, 𝑒2, ..., 𝑒𝑚} with associated fre-
quencies (𝑛𝑒1 , 𝑛𝑒2 , ..., 𝑛𝑒𝑚 ), we can order the elements {𝑒∗

1
, 𝑒∗
2
, ..., 𝑒∗

𝑀
}

such that (𝑛∗𝑒1 ≥ 𝑛
∗
𝑒2
≥ ... ≥ 𝑛∗𝑒𝑀 ). Then, for some 𝐾 ∈ Z+, we

output the set of elements {𝑒∗
1
, 𝑒∗
2
, ..., 𝑒∗

𝐾
} with the 𝐾 largest fre-

quencies (𝑛∗𝑒1 ≥ 𝑛
∗
𝑒2
≥ ... ≥ 𝑛∗𝑒𝐾 ). Given space linear in the stream

this is trivial to solve exactly. However, by the pigeonhole principle,

it is not possible to find an exact solution with space less than linear

(see [34] for a formal impossibility argument). A common technique

is to place a small data structure of size 𝑂 (𝐾), like a heap or list,

on top of a compact frequency estimator. By updating this small

structure at most once upon an insertion of each element, we can

approximate this top-𝐾 set [23, 25]. Using this technique we will

obtain the 𝐾 elements with the largest estimated frequencies.

The Top-K structure is represented by a 𝑘×𝑚 matrix 𝜎 . Each

entry in 𝜎 is an (fp, cnt) pair, where fp is a fingerprint of the element

that “owns” the counter, and cnt is said element’s recorded count.

These entry pairs are initialised to the distinguished symbol ★ and

zero, respectively. Associated with each row is a hash function that
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maps elements in U to [𝑚], i.e. 𝑘 hash functions ℎ1, ..., ℎ𝑘 . The

fingerprint hash function ℎfp maps elements inU to {0, 1}𝜆fp , for
some desired fingerprint length 𝜆fp . Further, we initialise a min-

heap 𝐻 of maximal size 𝐾 to store the elements with the 𝐾 largest

estimated frequencies. Lastly, a decay value is set, which is used to

decrement a counter when a specific condition is hit.

To insert an element 𝑥 , we start by computing (𝑝1, ..., 𝑝𝑘 ) ←
(ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥)). We then compute the fingerprint fp𝑥 associated

with the element 𝑥 as ℎfp (𝑥). We also set a variable cnt𝑥 ← 0. We

then go row by row (indexed by 𝑖 ∈ [𝑘]), with the following cases:

(1) if fp∗ = ★, where fp∗ is the current fingerprint value at

matrix position (𝑖, 𝑝𝑖 ), then we set the counter value to 1,

the fingerprint to fp𝑥 , and if cnt𝑥 < 1 : cnt𝑥 ← 1.

(2) else if fp𝑥 = fp∗, we add 1 to the counter value, and if cnt𝑥 <

𝑐 : cnt𝑥 ← 𝑐 , where 𝑐 is the current counter value at matrix

position (𝑖, 𝑝𝑖 ).
(3) else we select a random value 𝑟 ←$ [0, 1). If 𝑟 < decay

𝑐
,

where 𝑐 is the current counter value at matrix position (𝑖, 𝑝𝑖 ),
we decrement the counter value stored at this position. If,

after decrementing, this value is 0, we then set the counter

value to 1, the fingerprint to fp𝑥 , and if cnt𝑥 < 1 : cnt𝑥 ← 1.

This is the so-called probabilistic decay process.

If, after this procedure, it is such that 𝑥 ∈ 𝐻 , we update the

entry in the heap based on the current value of cnt𝑥 . Else, we
check that cnt𝑥 > 𝐻.min, and if so we remove the min entry in 𝐻

and replace it with (𝑥, cnt𝑥 ). This ensures that we are keeping an
accurate account of the 𝐾 highest estimated frequencies in 𝐻 .

Top-K provides approximate answers to frequency queries for

any element 𝑥 , by computing (𝑝1, . . . , 𝑝𝑘 ) ← (ℎ1 (𝑥), . . . , ℎ𝑘 (𝑥))
and fp𝑥 ← ℎfp (𝑥), and returning �̂�𝑥 = max𝑖∈[𝑘 ] {𝜎 [𝑖] [𝑝𝑖 ]} where
𝜎 [𝑖] [𝑝𝑖 ] .fp = fp𝑥 . If none of the fingerprints in this set of buckets

equals fp𝑥 , then 0 is returned. Top-K returns the estimated top-𝐾

elements by returning all the pairs of items and estimated counts

stored in 𝐻 .

In [37], a probabilistic guarantee for estimation error magnitude

is presented, assuming that each 𝜎 [𝑖] [ 𝑗] has a sole owner through-
out the processing of the entire stream. However, the statement

lacks precision, and its proof is flawed, thus we will not restate

it (see instead [24] for a meaningful result). Moreover, the results

in [37] rely on a no-fingerprint collision (NFC) assumption, ensur-

ing that all frequency estimates satisfy �̂�𝑥 ≤ 𝑛𝑥 , where 𝑛𝑥 is the

true frequency of 𝑥 , i.e. Top-K strictly underestimates frequencies.

While not formally defined in the original paper, a rigorous defi-

nition is given in [24], characterising NFC as the assumption that

elements hashing to the same row position in any row do not share

a fingerprint. This assumption is reasonable for practical sizes of

U and a sufficiently large fingerprint space.

To initialise a Top-K structure in Redis, the user specifies 𝑘,𝑚,

decay, and 𝐾 , by calling TK.setup(𝑘,𝑚, decay, 𝐾). (The analogous
function in Redis is called TOPK.RESERVE.) We refer to the result-

ing structure as TK[𝑘,𝑚, decay, 𝐾]. The hash functions for each

row are again computed as ℎ1 (𝑥) ← ℎ(𝑥, 1), ..., ℎ𝑘 (𝑥) ← ℎ(𝑥, 𝑘),
with ℎ set to MurmurHash2 mod𝑚. The fingerprint hash function

is computed as ℎfp ← ℎ(𝑥, seed), with ℎfp set to MurmurHash2
(𝜆fp = 32) with a fixed seed = 1919. The decay value is by default

set to 0.9.

Insertions and frequency queries on an element 𝑥 then proceed

as described above, through the TK.ins(𝑥, 𝜎) and TK.qry(𝑥, 𝜎) func-
tionalities. Similar to the Count-Min sketch, multiple instances of

an element can be added to the Top-K, however this is implemented

through repeated invocations of the insert algorithm described

above. To return the top-𝐾 elements, one invokes TK.list(𝜎). (The
analogous functions in Redis are called TOPK.ADD, TOPK.COUNT
and TOPK.LIST, respectively.) For full details of the Redis Top-K
structure, see Fig. 6 in the Appendix.

We will show that the specific implementation choices that Redis

makes leads to security issues. Specifically, we give attacks that

block the true 𝐾 most frequent elements from being reported in

the top-𝐾 estimation (with overwhelming probability) whether

or not these elements are known to the attacker before the attack.

Further, we show that one is able to trivially violate the NFC assump-

tion and cause the Redis Top-K structure to allow for frequency

overestimates.

3 ATTACKS ON THE REDIS PDS SUITE
In this section, we construct attacks against the Redis implemen-

tations of Bloom filters, Cuckoo filters, Count-Min sketches and

Top-K structures. While our attacks vary in their goals and com-

plexity, at their core, they all exploit Redis’ choice of weak hash

functions (from the MurmurHash family) and their invertibility.

By implementing our attacks and giving experimental results, we

demonstrate that malicious Redis users can severely disrupt the

performance of each PDS. Code for our attacks can be found at [2].

3.1 MurmurHash
The Redis PDS suite relies heavily on two different MurmurHash
hash functions: MurmurHash64A and MurmurHash2. Both func-

tions accept an element, a length parameter and a seed as input.

The functions have, respectively, 64-bit and 32-bit outputs. In Redis,

all inputs must have valid ASCII encoding, as the length field is

set to the character length of the string representation of the input.

Seeds are usually set to fixed values.

The MurmurHash family of hash functions are designed to be

fast but are not cryptographically secure. Indeed, starting with

a target hash value ℎ and a given seed, it is easy to find one or

many elements that hash to ℎ under either MurmurHash64A or

MurmurHash2, so these functions are not even one-way.We refer to

these resulting elements as pre-images of ℎ, and the algorithms that

compute them as inversion algorithms. Our inversion algorithms for

MurmurHash64A andMurmurHash2 are about as fast as computing

the hash functions in the forward direction. They are based on the

deterministic approach in [1]. However, we adapt this method to

make our algorithms randomised and to be able to produce many

pre-images for the same target hash value ℎ. For MurmurHash64A,
our inversion algorithm outputs strings consisting of two 64-bit

blocks 𝐵1, 𝐵2 in which 𝐵2 is chosen arbitrarily and 𝐵1 is then deter-

mined by 𝐵2 and the seed. Similarly, for MurmurHash2, but with
32-bit blocks. In both cases, the algorithms can be modified to pro-

duce inversions that are 𝑡-block messages for any 𝑡 ; then any 𝑡 − 1
of the blocks can be freely chosen (with the remaining one then

being determined). However, pre-images that comprise two 64-bit

or 32-bit blocks suffice for our attacks.
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For attacks on Redis, we must also further modify our algorithms

to ensure the pre-images are valid ASCII-encoded strings. Meeting

this additional requirement incurs extra cost. ForMurmurHash64A,
given a valid ASCII-encoded 𝐵2, ensuring that 𝐵1 has the correct for-

mat requires on average 2
8
trial inversions, hence costing roughly

the same as 256 forward hash function computations. Here, the fac-

tor of 2
8
comes from a 64-bit string representing 8 ASCII characters,

each of which must have a single bit set to zero. ForMurmurHash2,
an average of 16 trial inversions is needed to obtain a 2-block pre-

image respecting the ASCII constraint. Additionally, we enforce

the leading byte of 𝐵1 to be non-zero to ensure that the length of

the pre-image, when viewed as a string, is exactly 16 or 8 bytes.

This is important as MurmurHash64A and MurmurHash2 outputs
depend on the input length. Overall, this results in an average num-

ber of an equivalent of 256 · 128
127
≈ 258 and 16 · 128

127
≈ 16 hash

function calls to compute a correctly formatted 2-block pre-image

for MurmurHash64A and MurmurHash2.
It is also possible to construct so-called universal multi-collisions

for certain hash functions in theMurmurHash family [8]. These are

large sets of input values that all hash to the same output, irrespec-

tive of the seed. For MurmurHash64A, such inputs could be useful

in our targeted false positive attack on Redis’ Bloom filter below;

however, they seem to be difficult to construct while respecting

the ASCII encoding requirement. We leave the construction and

exploitation of such collisions to future work.

3.2 Bloom filters
We focus on two attacks: a targeted false positive attack and a

pollution attack.

3.2.1 Targeted false positive attack. Let 𝜀, 𝑐, ef be Bloom filter pa-

rameters. After initialising BF[𝜀, 𝑐, ef ] 𝜎 , the adversary A has ac-

cess to insertion and query oracles: Qry(·) := BF.qry(·, 𝜎) and
Ins(·) := BF.ins(·, 𝜎). In a targeted false positive attack, the ad-

versary receives a target element 𝑥 as input and wins if 𝑥 ever

becomes a false positive, i.e. [BF.qry(·, 𝜎) = 1] without Ins(𝑥)
being executed.

Letℎ denoteMurmurHash64A, and seed←0xc6a4a7935bd1e995
(as in Redis). For simplicity, we assume that only a single subfilter

has been instantiated, but the attack easily extends to the situation

where there are multiple subfilters. Let 𝑘 be the number of bit

positions set during insertion and𝑚 the size of the Bloom filter bit

vector. Set 𝑎←ℎ(𝑥, seed) and 𝑏←ℎ(𝑥, 𝑎). The bit positions 𝑝𝑖 that
are set when 𝑥 is inserted are calculated as𝑞𝑖 ← 𝑎+(𝑖−1)·𝑏 mod 2

64

and 𝑝𝑖 ← 𝑞𝑖 mod𝑚 for 𝑖 ∈ [𝑘].
Let 𝑥 𝑗 be ASCII formatted pre-image of 𝑞 𝑗 under ℎ and the above

seed. So, ℎ(𝑥 𝑗 , seed) = 𝑞𝑖 . Hence if 𝑥 𝑗 is inserted, then the value of

𝑎 that is used equals 𝑞 𝑗 and so the bit positions set in the Bloom

filter are equal to 𝑞 𝑗 + (𝑖 − 1) · 𝑏 𝑗 mod 2
64

mod𝑚 for 𝑖 ∈ [𝑘] and
some 𝑏 𝑗 (which is not material to our attack). Taking 𝑖 = 1, we see

that the bit position that is set is equal to 𝑞 𝑗 mod 2
64

mod𝑚 = 𝑝𝑖 .

Therefore, by using 𝑘 insertion queries Ins(𝑥1), ..., Ins(𝑥𝑘 ), the
adversary can set all the bits 𝑝𝑖 for 𝑖 ∈ [𝑘], forcing 𝑥 to be a false

positive.

The pre-images 𝑥 𝑗 are obtained using our MurmurHash64A in-

version algorithm introduced above. This costs on average 258 hash

inversions per target. So, in addition to making 𝑘 insertion queries,

our attack requires about 258𝑘 hash inversions. We implemented

this attack and it worked with the expected complexity.

The cost of our attack can be contrasted with that of the standard

targeted false positive attack, cf. [20], in which the attacker chooses

random inputs, computes the hash forwards on them, and tries

to “cover” all 𝑘 positions in the Bloom filter for target input 𝑥 .

Modelling this attack as a coupon collector problem, with𝑘 coupons

being tested for each hash computation, it is easy to show that its

expected cost is ≈ 2𝑚(𝐻𝑘 )/𝑘 forward hash computations. Here

the factor of 2 comes from the need to compute MurmurHash64A
twice to calculate a set of bit positions, while 𝐻𝑘 denotes the 𝑘-th

harmonic number, i.e. 𝐻𝑘 =
∑𝑘
𝑗=1 1/ 𝑗 ≈ 𝛾 + ln(𝑘) where 𝛾 ≈ 0.577

is the Euler-Mascheroni constant. Comparing the costs, we see

that our attack has lower computational cost when 129𝑘2/𝐻𝑘 < 𝑚.

While 𝑘 is small in practice, the bit-size of the filter𝑚 is potentially

large, in which case the condition for our attack to have lower cost

will be satisfied.

We can further reduce the number of insertions required in our

attack above, namely 𝑘 , by choosing pre-images 𝑥𝑖 more carefully.

In particular, we can try to select 𝑥𝑖 such that inserting it covers not

only position 𝑝𝑖 but also at least one other bit position for target 𝑥 .

Doing so reduces the number of insertion queries to at most ⌈𝑘/2⌉
at the cost of increasing the number of hash computations required.

Alternatively, the number of insertion queries needed could be

reduced to just 1 (the minimum possible) if we could construct uni-

versal (seed-independent) second pre-images for MurmurHash64A.
Such pre-images for target 𝑥 would result in identical 𝑎 and𝑏 values,

and hence an identical set of positions in the Bloom filter, as for 𝑥 .

As we remarked above, finding such pre-images that are also ASCII

encoded seems difficult.

3.2.2 Pollution attack. Let 𝜀, 𝑐, ef be Bloom filter parameters. After

initialising BF[𝜀, 𝑐, ef ] 𝜎 , an adversaryA is given access to insertion

and query oracles:Qry(·):=BF.qry(·, 𝜎) and Ins(·):=BF.ins(·, 𝜎). In
a pollution attack, the adversary does not receive input and is tasked

with setting the false positive probability significantly above the

target value of 𝜀. This can be achieved by setting as many bits as

possible in the Bloom filter, via careful insertions [20].

The maximal number of bits one can set when the capacity is 𝑐

insertions is 𝑐 · 𝑘 . A naïve approach to obtain this optimal result

is as follows, cf. [20]. Start with an empty insertion set 𝑆 . Keep

testing distinct (random) inputs and adding to 𝑆 only the ones

mapping to 𝑘 new positions in the filter, i.e. 𝑘 positions not hit

by elements already in 𝑆 , until 𝑆 reaches capacity 𝑐 . Insert all of 𝑆

into the Bloom filter. The approach requires 𝑐 Ins oracle calls and
2(∑𝑐−1𝑖=0 𝑚

𝑘/[(𝑚 − 𝑖𝑘) (𝑚 − 𝑖𝑘 − 1) ...(𝑚 − (𝑖 + 1)𝑘 + 1)]) forward
hash computations on average for Redis.

Each step in this naïve attack becomes more expensive as 𝑆 in-

creases in size, as sets of 𝑘 new bits become harder and harder to

collect. However, we can reduce the total number of hash compu-

tations by exchanging some number of forward computations for

a significantly smaller number of hash inversions, as we explain

next.

Let 𝑗 be any bit position in a Bloom filter of size𝑚. Similarly as

for the targeted false positive attack above, we can obtain inputs

whose corresponding first bit position in the filter is equal to 𝑗 ,

by inverting the hash function at 𝑗 . Consider the following attack.
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Initialise 𝑆 to be the empty set. Using hash inversion, find 𝑡 ASCII-

encoded inputs having as their first bit position a value that none

of the elements already in 𝑆 covers. Add the pre-image that maps to

the maximal number of positions not already covered by elements

from 𝑆 . Repeat until |𝑆 | = 𝑐 . With this approach, adding each new

element to 𝑆 costs 258𝑡 inversions, and 𝑡 forward hash computations.

Each step adds at least one and at most 𝑘 new covered bits.

We now combine this approach with the naïve one. We start with

the naïve approach and switch to the inversion-based one when

|𝑆 | = 𝑧, with 𝑧 minimising the hash computation cost function

𝑔(𝑧) := 2(∑𝑧−1𝑖=0 𝑚
𝑘/[(𝑚 − 𝑖𝑘) (𝑚 − 𝑖𝑘 − 1)...(𝑚 − (𝑖 + 1)𝑘 + 1)]) +

259𝑡 (𝑐 − 𝑧). Our combined approach caps the growing cost of the

naïve approach while still achieving a false positive probability

significantly higher than 𝜀.

For example, take 𝜀← 0.02, 𝑐← 2
10, ef ← 1, 𝑡← 10. Then, the

first Redis Bloomfilter is of size𝑚 = 9856, each element is associated

with 𝑘 = 7 bit positions, and we find 𝑧 = 902. Running the combined

approach attack 100 times and averaging, we get that the resulting

set 𝑆 sets 6899 out of 9856 bit positions. This implies an expected

false positive probability of (6899/9856)7 ≈ 0.08. Our combined

approach reduces the number of offline hash computations by 53.2%

compared to the naïve approach. On the other hand, the naïve

approach sets 7168 bits, yielding a higher expected false positive

probability of (7168/9856)7 ≈ 0.11.

The presented attack can be optimised further and can be ex-

tended to the case of multiple subfilters as in Redis. It is an inter-

esting open problem to find an attack that makes every possible

input a false positive in the case of multiple subfilters (this is not

possible with a single filter because 𝑐𝑘 < 𝑚 always in Redis). This is

non-trivial because of how the parameters change across subfilters.

3.3 Cuckoo filters
We give four attacks against Cuckoo filters in Redis. The first attack

creates targeted false positives, while the second creates targeted

false negatives. The third and fourth attacks focus on causing in-

sertion failures.

3.3.1 Targeted false positive attack. For a Cuckoo filter with pa-

rameters 𝑐, 𝑠, num, ef , we define our attack model as follows. After

initialising CF[𝑐, 𝑠, num, ef ] 𝜎 , an adversaryA is given access to in-

sertion, deletion, query and info oracles: Ins(·, unique ∈ {⊤,⊥}) :=
CF.ins(·, 𝜎, unique),Del(·) := CF.del(·, 𝜎),Qry(·) := CF.qry(·, 𝜎),
and Info := CF.info(𝜎). In a targeted false positive attack, the adver-
sary receives a target element 𝑥 as input and wins if 𝑥 ever becomes

a false positive, i.e. [CF.qry(𝑥, 𝜎) = 1] without Ins(𝑥, unique) being
executed for any unique ∈ {⊤,⊥}.

We use the invertibility ofMurmurHash64A (ℎ1 in Redis) to con-

duct this attack. First, A calls Info to obtain 𝑛𝐵 . Then, it com-

putes the first bucket and fingerprint of the target element 𝑥 by

𝑖←ℎ1 (𝑥) mod 𝑛𝐵 and fp←(ℎ1 (𝑥) mod 255) + 1. Its goal is to then

find an element 𝑦 ≠ 𝑥 corresponding to the same bucket and finger-

print. For this, it can use the Chinese Remainder Theorem on the fol-

lowing system of equations: ℎ′ mod 𝑛𝐵 = 𝑖 and ℎ′ mod 255 = fp−1,
to get a set of values for ℎ′. It picks a value that is different from
ℎ1 (𝑥), and then inverts this value under ℎ1. This yields a 𝑦 ≠ 𝑥

satisfying ℎ1 (𝑦) mod 𝑛𝐵 = 𝑖 and ℎ1 (𝑦) mod 255 = fp−1. A then

calls Ins(𝑦, unique) for any unique ∈ {⊤,⊥}, which makes 𝑥 a false

positive. The cost of this attack is dominated by that of inverting

MurmurHash64A, so on average 258 hash function evaluations.

Note that polluting the filter does not constitute an attack for

Cuckoo filters in the same way as it does for Bloom filters. The

derivation of the honest setting bound on the false positive probabil-

ity implicitly assumes the worst possible Cuckoo filter with distinct

fingerprints in each slot (see Section 2.2). Thus, one cannot violate

this bound when querying a randomly sampled element: even with

knowledge of the hash function and unbounded precomputation

we cannot create a worse filter.

3.3.2 Targeted false negative attack. We again consider a Cuckoo

filter with parameters 𝑐, 𝑠, num, ef , and define our attack model as

follows. After initialising CF[𝑐, 𝑠, num, ef ] 𝜎 , an honest user makes

some number of insertions, deletions and membership queries.

Let X be the set of elements that the honest user inserted, but

did not delete. Then, an adversary A is given access to inser-

tion, deletion, query and info oracles: Ins(·, unique ∈ {⊤,⊥}) :=
CF.ins(·, 𝜎, unique),Del(·) := CF.del(·, 𝜎),Qry(·) := CF.qry(·, 𝜎),
and Info := CF.info(𝜎). In a targeted false negative attack, the

adversary receives a target element 𝑥 ∈ X as input, and wins if

𝑥 ever becomes a false negative, i.e. [CF.qry(𝑥, 𝜎) = 0] without
Del(𝑥) being executed.

Since an honest user has already made some number of inser-

tions, 𝜎 might be composed of multiple subfilters. First, A calls

Info to find ef , 𝑛𝐵1 (the number of buckets in the first subfilter),

and the number of subfilters subf . It then computes the number of

buckets in the last (subf 𝑡ℎ) subfilter as 𝑛𝐵subf ← 𝑛𝐵1 · (ef )subf −1.
Then,A proceeds in the same manner as the targeted false positive

attack with 𝑛𝐵 ← 𝑛𝐵subf . This results in an element 𝑦 ≠ 𝑥 corre-

sponding to the same bucket and fingerprint as 𝑥 in every subfilter.

By calling Del(𝑦), A can make 𝑥 a false negative. The attack cost

is the same as the one above.

3.3.3 Insertion failure attack with chosen unique. Consider a Cuckoo
filterwith parameters 𝑐, 𝑠, num, ef . After initialising CF[𝑐, 𝑠, num, ef ]
𝜎 , an honest user makes some number of insertions, deletions and

membership queries. Then, an adversary A is given access to in-

sertion, deletion, query and info oracles: Ins(·, unique ∈ {⊤,⊥}) :=
CF.ins(·, 𝜎, unique),Del(·) := CF.del(·, 𝜎),Qry(·) := CF.qry(·, 𝜎),
and Info := CF.info(𝜎). In an insertion failure attack, the adver-

sary does not receive input and is challenged with modifying the

filter such that all future insertions will fail. The adversary wins if

[CF.ins(𝑥, 𝜎, unique) = ⊥] for all 𝑥 ∈ U and unique ∈ {⊤,⊥}.
Since the Redis API allows users to freely choose the parameter

unique, A can launch a very simple attack to cause insertion fail-

ures with probability 1. We start by assuming the filter is empty.

A first calls Info to obtain 𝑠 . Then, it picks any element 𝑥 and

inserts it 2𝑠 + 1 times with Ins(𝑥,⊥). The first 𝑠 insertions fill 𝑥 ’s
first bucket, and the second 𝑠 insertions fill its second bucket. The

(2𝑠 + 1)𝑡ℎ insertion leads to an eviction process in this subfilter.

However, since evictions will only move elements between these

two (already filled) buckets, it will not succeed. We call this an

overflow of the subfilter; it triggers the creation of a second subfilter

and 𝑥 is inserted into its first bucket in this second subfilter. Then,

A calls Ins(𝑥,⊥) another 2𝑠 + 1𝑠 times. The first 2𝑠 insertions fill

𝑥 ’s buckets in the second subfilter. The (2𝑠 + 1)𝑡ℎ insertion leads to
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the CF.ins algorithm attempting to insert 𝑥 into its buckets in the

previous subfilter, but this will not succeed as they are full. It then

attempts evictions in the second subfilter, which will fail as before.

Thus, a third subfilter is created to insert 𝑥 .

A repeats this process to overflow all 31 subfilters, with a final

Ins(𝑥,⊥) call to create the 32𝑛𝑑 subfilter, therefore requiring a total

of 31·2𝑠+1 calls to Ins(𝑥,⊥). After this, all future insertions will fail.
This is because once we reach the maximum number of subfilters,

CF.ins returns ⊥ no matter what we insert. Note that, instead of

inserting the same element repeatedly, A can also insert different

elements with colliding hash values to achieve the same effect.

We can apply the same strategy to cause an insertion failure after

some number of honest insertions. However, in this case, there may

already exist multiple prefilled subfilters, and possibly elements in

𝑥 ’s buckets. Then, we may require fewer than 2𝑠 Ins(𝑥,⊥) calls to
fill 𝑥 ’s buckets in each subfilter.

3.3.4 Insertion failure attack with unique=⊤. In light of the simple

attack above, a simple countermeasure would be for the Redis API

to enforce unique=⊤, rather than allowing the user to choose it.

To model this setting, we will consider a similar attack model to

Section 3.3.3 but with A’s insertion oracle replaced with Ins(·):=
CF.ins(·, 𝜎,⊤). We show that, even with this fix, A can cause in-

sertion failures, though at a higher cost.

With this change, when an element is inserted, it is first queried

to check if its fingerprint is already in either of its buckets. The

insertion proceeds only if the query returns 0. Consequently, A
can no longer repeatedly insert the same element, or elements

with colliding hash values, as their fingerprints will not be added

to the filter. Further, since there can only exist one fingerprint

connecting any two buckets, we cannot apply the same strategy as

in Section 3.3.3; we will need many more elements and many more

buckets. So constructing an insertion failure attack in this setting is

much more involved. However, we will show that it is still possible

to do so efficiently, by finding the smallest set of buckets that we

need to fill in order to cause an overflow of a subfilter.

We start by formulating this problem more concretely, assuming

an empty subfilter for now. The problem can be stated as follows:

find a subset of buckets 𝑉 ′ and at least |𝑉 ′ |𝑠 + 1 elements both of

whose buckets are all members of 𝑉 ′. Since each bucket has 𝑠 slots,

at most |𝑉 ′ |𝑠 elements can fit into 𝑉 ′. Then any further insertions

that require buckets in𝑉 ′ will not fit into this subfilter. This problem
can be reformulated in terms of a Cuckoo Graph. Various definitions
of Cuckoo Graphs exist in the literature [15, 38] for the analysis

of Cuckoo Hashing schemes [27]. To analyse Cuckoo filters, we

will use the following definition for a Cuckoo Graph: each vertex

in the graph corresponds to a bucket, and each edge corresponds

to a fingerprint connecting two buckets. We formally define this

grpah below.

Definition 1 (Cuckoo Graph). Consider a Cuckoo filter with
𝑛𝐵 buckets, mapping each element 𝑥 ∈ U to fingerprint fp = ℎfp (𝑥),
and buckets 𝑖 = ℎ1 (𝑥) mod 𝑛𝐵 , 𝑗 = (𝑖 ⊕ ℎ2 (fp)) mod 𝑛𝐵 . We define
a Cuckoo Graph 𝐺 = (𝑉 , 𝐸) associated with the Cuckoo filter with
𝑉 := {1, . . . , 𝑛𝐵} and 𝐸 := {(𝑖, 𝑗) : ∃𝑥 ∈ U, fp = ℎfp (𝑥), 𝑖 = ℎ1 (𝑥)
mod 𝑛𝐵, 𝑗 = (𝑖 ⊕ ℎ2 (fp)) mod 𝑛𝐵}.

To obtain the Cuckoo Graph for the Redis Cuckoo filter, we

set ℎfp (𝑥) ← (ℎ1 (𝑥) mod 255) + 1, ℎ1 (𝑥) ← MurmurHash64A(𝑥),
ℎ2 (𝑥) ← const ·𝑥 in Def. 1. Note that if the number of buckets is less

than or equal to the number of possible fingerprints (i.e. if𝑛𝐵 ≤ 255),

there exists a fingerprint connecting every pair of buckets. In this

case, the Cuckoo Graph is a complete graph. However, in practice,

𝑛𝐵 > 255, and so there may not exist elements mapping to every

combination of bucket pairs (or equivalently, edges between every

pair of vertices).

Armed with Def. 1, we rewrite the problem of overflowing a

subfilter as follows: given a Cuckoo Graph 𝐺 = (𝑉 , 𝐸), find a sub-
graph 𝐺 ′ = (𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸) such that |𝐸′ | ≥ |𝑉 ′ |𝑠 + 1. To do

this efficiently, 𝑉 ′ should be as small as possible, therefore we are

interested in finding the smallest subgraph with an edge density

strictly greater than 𝑠 .

Once we have found 𝐺 ′, we can convert each bucket pair (𝑖, 𝑗)
in 𝐸′ to an element with first bucket 𝑖 and second bucket 𝑗 . Redis’

choices of ℎfp, ℎ1, ℎ2 allow us to easily find an element 𝑥 that maps

to a particular bucket pair (𝑖, 𝑗) in a subfilter with 𝑛𝐵 buckets: we

first find a fingerprint fp ← ( 𝑗 ⊕ 𝑖)·const−1, then solve the pair

of equations 𝑖=ℎ′mod𝑛𝐵 and fp−1=ℎ′mod255 using the Chinese

Remainder Theorem, and finally invert MurmurHash64A at ℎ′ to
recover 𝑥 . We will call the set of elements corresponding to 𝐺 ′ the
overflow set of the subfilter.

With the above concrete formulation of our problem, we are

ready to describe our attack in detail. Recall that A gets access

to a Redis Cuckoo filter after some number of honest insertions,

thus there may exist multiple prefilled subfilters, of which the last

subfilter is partially prefilled. At the start, A calls Info to get val-

ues of 𝑛𝐵1 , 𝑠, num, ef , as well as the index of the last subfilter. Our
attack is then comprised of three main stages for each subfilter: (1)

finding an overflow set, (2) sorting the overflow set, and (3) finding

a blocking set. We explain each stage in detail below, and give a

full pseudocode description in the full version.

Finding an overflow set. To find the subgraph𝐺 ′ (and therefore

the overflow set) for a subfilter, wewill construct a greedy algorithm.

Our algorithm first chooses a random vertex 𝑟 ∈ 𝑉 and adds it to

𝑉 ′. It then goes through all the neighbouring vertices of 𝑉 ′ (i.e. all
vertices connected by a fingerprint to 𝑉 ′) to find the vertex 𝑣

best

with the most connections to𝑉 ′. It adds 𝑣
best

to𝑉 ′. Further, all new
edges from 𝑣

best
to 𝑉 ′ are added to 𝐸′. We then repeat the above

steps for our updated 𝑉 ′, thus growing our subgraph 𝐺 ′ until we
reach sufficient density (i.e. |𝐸′ | ≥ |𝑉 ′ |𝑠 + 1).

We then make a number of pruning steps, to compensate for the

random choice of the initial vertex 𝑟 and to remove any sparsely

connected vertices. In each step, we shrink 𝐺 ′ by removing the

vertex with the least connections to 𝑉 ′. If the density of 𝐺 ′ is now
lower than required, we add a new vertex by finding the most well-

connected neighbour to 𝑉 ′, as above. The end result is a subgraph

𝐺 ′ with sufficient density, which can be converted to elements that,

when inserted, will not fit into the last subfilter.

Wemention a few considerations that must be taken into account.

Firstly, recall that when elements are inserted with unique = ⊤,
any element whose fingerprint is already present in any subfilter

will not be inserted, since the CF.ins algorithm first queries the

element in all subfilters. Therefore, in order for the elements in the

8



Probabilistic Data Structures in the Wild: A Security Analysis of Redis , ,

overflow set to be successfully inserted and cause an overflow, we

must ensure that they do not overlap with the honestly inserted

elements, or with elements that we inserted as part of our attack.

For this, when choosing the best neighbouring vertex to add to 𝑉 ′,
we eliminate those corresponding to elements that return 1 when

queried, and those that we have already inserted.

Secondly, we will remove the assumption that the subfilter is

empty, and consider the case where there exist prefilled elements

(eg. if we are overflowing the last, partially prefilled filter). We

would like to avoid these elements interfering with our attack, but

in reality they might reside in buckets that we wish to overflow.

Since we cannot determine exactly which buckets these elements

are in, we will simply delete all possible fingerprints in any bucket

of 𝑉 ′ by calling Del(·) on appropriate inputs.

At this stage, we have found a set of ( |𝑉 ′ |𝑠+1) elements such

that there exists no allocation of the elements to their buckets in

the subfilter. Let 𝑥 be an element that does not fit into either of

its buckets in the subfilter. The CF.ins algorithm tries two more

techniques to insert 𝑥 : first, it attempts to insert 𝑥 into either of its

buckets in previous subfilters, followed by up to num evictions in

the last subfilter. If either of these operations succeed, 𝑥 may not go

into our desired bucket or cause an overflow. In the following, we

demonstrate how to find a subset of𝑛 insertions, where𝑛 ≤ |𝑉 ′ |𝑠+1,
along with an order of inserting them, such that the first (𝑛−1)
elements will be successfully inserted, and the 𝑛𝑡ℎ element will fail

to be inserted after executing CF.ins. In other words, we will sort

the elements of our overflow set such that they will actually cause

an overflow.

Sorting the overflow set. For this, we will simulate the insertion of

the ( |𝑉 ′ |𝑠+1) elements, by inserting each element one-by-one into

an empty test subfilter, containing the same number of buckets as

the actual subfilter. If there is no room in an element’s buckets, we

carry out maximally num evictions. Recall that, unlike in the origi-

nal Cuckoo filter, evictions in Redis are deterministic. Therefore, we

are able to perfectly simulate the eviction steps that would happen

upon insertion of an element. We stop inserting elements in our

simulation as soon as we find an element that cannot be inserted

even after num evictions. In the worst case, this will happen at the

last, or ( |𝑉 ′ |𝑠+1)𝑡ℎ , insertion. Due to our perfect simulation of the

eviction process, this gives us the following guarantee: given the

allocation of the (𝑛−1) elements to buckets in our test subfilter,

insertion of the 𝑛𝑡ℎ element will not succeed after the eviction steps

in CF.ins, where 𝑛 ≤ |𝑉 ′ |𝑠+1. We call the 𝑛𝑡ℎ element the overflow
element of this subfilter.

In the third stage, we block the buckets corresponding to the

overflow element of a particular subfilter in all previous subfilters,

by filling themwith dummy fingerprints. We refer to these elements

as the blocking set. Then, if we insert the 𝑛 elements in the same

order as in our simulation, there will be no space for the overflow

element in either of its buckets in the last or previous subfilters, and

from the previous stage the eviction process is guaranteed to not

succeed. This creates a new subfilter to insert the overflow element.

Finding a blocking set. Let us outline in more detail how to find a

set of blocking elements. Consider blocking a bucket 𝑖 in a subfilter

𝑤 , where 𝑖 is not in 𝑉 ′ (i.e. 𝑖 will not be filled due to the overflow

set, in which case no blocking would be necessary). We generate

a random fingerprint fp, calculate the second bucket 𝑗 = (𝑖 ⊕
ℎ2 (fp)) mod 𝑛𝐵𝑤 (where 𝑛𝐵𝑤 is the number of buckets in subfilter

𝑤 ), and find the element corresponding to (𝑖, 𝑗). Note that a user
can only directly insert elements into the last subfilter. Therefore,

we must insert this element into subfilter𝑤 at the point where it is

the last subfilter, i.e. before we insert its overflow element. Then,

the blocking element will be inserted into its first bucket 𝑖 , since

it will be empty. We repeat this process to generate and insert 𝑠

blocking elements to fill bucket 𝑖 .

However, this procedure onlyworks if subfilter𝑤 is empty. Block-

ing buckets in prefilled subfilters is more challenging, since we

cannot directly insert elements into subfilters smaller than the last

(partially prefilled) subfilter. Consider blocking a bucket 𝑖 in a pre-

filled subfilter𝑤 (again where 𝑖 ∉ 𝑉 ′). To ensure that our blocking

element is actually inserted into subfilter𝑤 , both of its buckets must

be full in all larger prefilled subfilters, so that the CF.ins algorithm
even reaches subfilter𝑤 . Now, bucket 𝑖 must indeed be full, since

we must have already blocked it in all later subfilters. However, this

may not be true for the second bucket 𝑗 of our blocking element.

In this case, the blocking element might be inserted into bucket 𝑗

in a later prefilled subfilter, rather than into bucket 𝑖 in subfilter

𝑤 . To overcome this, we require additional blocking elements to

further block 𝑗 in all later prefilled subfilters. Nevertheless, this can

be optimised by various methods (eg. by choosing a 𝑗 that will be

filled in the process of overflowing the next subfilter, or a 𝑗 that is

strongly connected to the set of full buckets in the next subfilter).

After choosing (and possibly blocking) a suitable 𝑗 , we find the

element corresponding to (𝑖, 𝑗), and repeat this process 𝑠 times to

block bucket 𝑖 .

We now have all the ingredients for our attack. We demonstrated

how to construct an overflow set, which is a set of elements that

will not fit into a subfilter. We determined an order of inserting

the overflow set such that inserting the final overflow element

will not succeed, even with evictions. And we showed how to find

a blocking set, which is a set of elements that fill the buckets of

the overflow element in all previous subfilters. In combination,

inserting the overflow and blocking sets will lead to the creation of

a new subfilter.

Our final step is to insert all required elements for all 31 subfilters.

We begin with the last subfilter that currently exists, and insert both

its blocking and overflow sets (we exclude its overflow element

for now). Next, we insert the blocking sets of all previous prefilled

subfilters. (Note that they do not need to be overflowed, as later

subfilters already exist.) We then insert the overflow element of

the last subfilter, triggering the creation of a new empty subfilter.

Finally, we insert the blocking and overflow sets for all empty

subfilters up to the 31
𝑠𝑡

subfilter. Note that the insertion order of

overflow and blocking sets within a subfilter does not matter, as

we carefully avoid placing blocking elements in buckets belonging

to an overflow set.

We emphasise that A can construct overflow and blocking sets

for various parameter choices offline, since Redis uses fixed hash

functions. Then, in the online phase of the attack,A simply inserts

each element through Ins(·) calls, overflowing all subfilters and

leading to insertion failures.

We present experimental results for the number of insertions

required for an insertion failure attack for different parameters
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of the Cuckoo filter in Fig. 1. The number of insertions strongly
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Figure 1: Experimental number of insertions required (av-
eraged over 100 trials) to achieve an insertion failure attack
for varying 𝑛𝐵1 with 𝑠 = 4, ef = 1,num = 100.

depends on the number of prefilled filters, due to our expensive

blocking strategy, and increases with the number of initial buckets

𝑛𝐵1 . We compare our results with the number of insertions required

to cause insertion failures in the honest setting, whichwould require

all 31 subfilters to be filled to capacity. From [17], if 𝑠=4 then the

filter can reach load factors of 95% before insertions are expected to

fail. Let 𝑛𝐵1=2
25
, ef =1 in an initially empty filter. We would then

expect to need at least 2
25·4·(0.95)·31 ≈ 2

31.5
insertions to cause an

insertion failure in the honest setting, while our attack only requires

8507 ≈ 2
13

insertions on average. So, our attack reliably causes

insertion failures using a relatively small number of insertions.

3.4 Count-Min sketches
We give an attack against Count-Min sketches in Redis that causes

large frequency overestimates for any target element.

3.4.1 Overestimation attack. Consider a Count-Min sketch with

parameters 𝜀, 𝛿 . After initialising CMS[𝜀, 𝛿] 𝜎 , an adversary A is

given access to insertion and query oracles: Ins(·) := CMS.ins(·, 𝜎)
and Qry(·) := CMS.qry(·, 𝜎). In a frequency overestimation attack,

the adversary is given a target element 𝑥 as input and is challenged

with causing the frequency of 𝑥 to be overestimated. A metric for

the adversary’s success is the value CMS.qry(𝑥, 𝜎) − 𝑛𝑥 , where 𝑛𝑥
is the number of times 𝑥 was actually inserted into the Count-Min

sketch.

We begin by recalling that, for a frequency estimation query

on an element 𝑥 ∈ U, the response given by a Count-Min sketch

has one-sided error, i.e. it only overestimates. In the honest set-

ting, this error can be bounded according to the number of items

inserted into the structure and the parameters of the structure (see

Section 2.3). We will show that in an adversarial setting, we can

exploit knowledge of the internal randomness of the structure to

cause the sketch to make massive overestimates of the frequency

of a target element 𝑥 .

Markelon et al. [24] presented attacks against the general struc-

ture. We could directly apply their “public hash” attack to the Redis

implementation of the Count-Min sketch, as the seeds used for

each row hash function are hard-coded. However, Redis’ choice

to use MurmurHash2 for row position hash functions allows us to

exploit the invertibility of the function to speed up the attack. As

MurmurHash2 is invertible, we can generate an arbitrary number

of multicollisions for a fixed hash output and seed. This allows us

to carry out the attack more efficiently.

To create an overestimation error on 𝑥 , one must find a cover

for 𝑥 , which (with respect to the parameters of a given Count-Min

sketch) is a set of elements {𝑦1,...,𝑦𝑘 } such that∀𝑖∈[𝑘]:ℎ(𝑥, 𝑖)=ℎ(𝑦𝑖 , 𝑖)
and ∀𝑖∈[𝑘]:𝑦𝑖≠𝑥 . We use the fact that MurmurHash2 is invertible
to find our cover. Let 𝑝𝑖 denote ℎ𝑖 (𝑥) for 𝑖 ∈ [𝑘], where ℎ𝑖 (·) is
instantiated using MurmurHash2(·, 𝑖) as in Redis. We then set 𝑦𝑖
by inverting MurmurHash2(·, 𝑖) at 𝑥 for 𝑖 ∈ [𝑘]. Respecting Redis’
ASCII encoding constraint, we expect this to cost an equivalent of

about 16 hash function evaluations for each 𝑖 (as per Section 3.1).

Therefore, we expect a total cost of about 16𝑘 MurmurHash2 com-

putations. Once the cover is found, we simply repeatedly insert it,

using Ins calls on 𝑦𝑖 for 𝑖 ∈ [𝑘]. Since we never insert 𝑥 and our

covers are always of size 𝑘 , after 𝐼 insertions we observe an error on

𝑥 equal to ⌊ 𝐼
𝑘
⌋, i.e. CMS.qry(𝑥, 𝜎)−𝑛𝑥 ≥ ⌊ 𝐼𝑘 ⌋. For a full description

of our attack, see Fig. 7 in the Appendix. We remark that the attack

also works against structures that already have elements stored in

them.

𝜖, 𝛿 (𝑚,𝑘) Ours [24]

2.7 × 10−3, 1.8 × 10−2
(1024, 4) 66.85 8533.32

6.6 × 10−4, 1.8 × 10−2
(4096, 4) 61.11 34133.36

2.7 × 10−3, 3.4 × 10−4
(1024, 8) 124.22 22264.72

6.6 × 10−4, 3.4 × 10−4
(4096, 8) 128.8 89058.72

Table 1: Experimental number (average over 100 trials) of
equivalent MurmurHash2 calls needed to find a cover for a
random target 𝑥 . We compare the average to the expected
number of MurmurHash2 calls needed in the attack of [24],
namely 𝑘𝑚𝐻𝑘 .

We implemented the attack andmeasured the computation needed

for a variety of 𝜀, 𝛿 . We compare the error to the forward hash com-

putation based attack in [24] with the one we present here. The

results are summarised in Table 1. As we can see our experimental

results tightly match our analysis, and our attack is at least an order

of magnitude less expensive than previous best attack in [24]. Fur-

ther, to verify the correctness of our attack we mounted it against

the Redis Count-Min sketch and selected a random target element.

We found a cover for said element and verified that for a fixed

number of insertions 𝐼 we obtained the expected error on the target,

i.e. achieved error ⌊ 𝐼
𝑘
⌋ in all trials.
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3.5 Top-K
We present three attacks on the Top-K structure in Redis. The first

two attacks suppress the reporting of the true top-𝐾 elements, while

the third attack causes frequency overestimates by violating the

no-fingerprint collision assumption.

3.5.1 Known top-𝐾 hiding attack. Consider a Top-K structure with

parameters𝑚,𝑘, decay, 𝐾 . After initialising TK[𝑚,𝑘, decay, 𝐾] 𝜎 , a

collection of data C with true top-𝐾 elements 𝐹 is generated from

some honest distribution (that is, a distribution that does not depend

on the internal randomness of the structure). In practice, we can

take this to be some collection of network traffic or a collection of

items in a large database.

Then, an adversary A is given access to insertion and query or-

acles Ins(·) := TK.ins(·, 𝜎) and Qry(·) := TK.qry(·, 𝜎). In a known

top-𝐾 hiding attack, the adversary receives 𝐹 as input and wins

if it suppresses the reporting of the true top-𝐾 elements 𝐹 . The

adversary’s success can be checked by inserting C and checking

whether [𝑓 ∉TK.list(𝜎)] for all 𝑓 ∈ 𝐹 . Due to the probabilistic decay
mechanism, we need the adversary to be able to insert elements into

the structure before the honest collection is processed. In practice

this is reasonable, as adversaries can time their attacks to ensure

they have early access to the structure.

To carry out this attack, we adapt the strategy from [24]. We

begin by computing a cover using the inversion strategy for every

element in 𝐹 . We then insert every element in the cover 𝑡 times

through Ins(·) calls, where 𝑡 is computed such that there exists

negligible probability that, after the cover is inserted, any element

from 𝐹 will ever own any of their counters. The algorithm to com-

pute 𝑡 takes inputs 𝑝, 𝑛, where 𝑝 is the probability that a cover

element will relinquish ownership of its counters and 𝑛 is the num-

ber of colliding insertions we expect. We set 𝑝 = 2
−128

and 𝑛 to

the frequency of the maximum 𝑓 ∈ 𝐹 for this attack. Once C is

inserted after the attack phase, all elements in 𝐹 will have estimated

frequency equal to zero, and will in turn not be reported in the

top-𝐾 list as they should.

In practice, 𝑡 will be quite small compared to the frequencies of

the elements in 𝐹 for a real-world data collection 𝐶 . The frequency

of all 𝑓 ∈ 𝐹 is often of the order of 10
5
or greater, yielding 𝑡 of the

order of 10
3
for 𝑝 = 2

−128
. Thus, the true top-K of C equals the top-

K of the new stream consisting of our attack elements concatenated

with C. For more details on this attack (including the calculation of

𝑡 ), see Fig. 8 in the Appendix.

We expect an equivalent of 16𝑘 |𝐹 | calls to MurmurHash2 to find

a cover for known true top-K list 𝐹 . To test our attack, we initialised

a TK[4096, 20, 0.9, 20], selected our data collection C as the indi-

vidual words in the English language version of War and Peace,
and computed 𝐹 for 𝐾=20 for C. Our choice of C was inspired by

Redis’ blog post introducing the structure [4]. We then computed

a cover on 𝐹 using our technique described above. Averaged over

100 trials, we made an equivalent of 2580 calls to MurmurHash2,
matching our analysis. We then inserted each element in the cover 𝑡

times for 𝑡=206 based on input parameters 𝑝=2−128, 𝑛=34577 (the
frequency of the most frequent element). After this, the entirety

of C was inserted. In every trial, the reported top-𝐾 and 𝐹 were

disjoint as desired.

3.5.2 Hidden top-𝐾 hiding attack. We consider a similar attack

model to Section 3.5.1 with the modification that the adversary A
receives no input. Since A does not know 𝐹 , it must compute a

cover for the entire structure, i.e. all 𝑘×𝑚 counters. We go counter-

by-counter and use hash inversion to compute a cover element for

each counter. Note, however, that when computing a cover element

for a particular counter, we collect additional positions in other

rows that the element touches (if we have not yet covered said

positions). In this way, we actually do less work than the expected

equivalent of 16𝑚𝑘 calls to MurmurHash2.
After computing this cover for the entire structure, A then in-

serts each element in the cover 𝑡 times through Ins(·) calls, with
𝑡=500 (corresponding to 𝑝=2−128, 𝑛=1011 from the previous method

of computing 𝑡 ). In practice, setting 𝑡=500 means that with over-

whelming probability no true top-K element will ever own its coun-

ters for any realistic data collection. Then, for any subsequent items

inserted that are not part of the cover, their estimated frequency will

be zero. In practice, this blocks any 𝐹 from any realistic data collec-

tion C from being reported in the top-𝐾 list. This attack can be seen

as a denial-of-service attack, as after the attack phase the structure

is prevented from making accurate frequency estimates for any

elements that are subsequently inserted into the Top-K. Our full

attack is given in Fig. 9 in the Appendix. We verified the correctness

of the attack as in Section 3.5.1, except again now setting 𝑡=500.

3.5.3 NFC assumption violation attack. Consider a Top-K structure

with parameters𝑚,𝑘, decay, 𝐾 . After initialising TK[𝑚,𝑘, decay, 𝐾]

𝜎 , an adversary A is given access to insertion and query oracles:

Ins(·) := TK.ins(·, 𝜎) and Qry(·) := TK.qry(·, 𝜎). The adversary’s
goal in an NFC assumption violation attack equates to the same

goal as of that in Section 3.4.1. That is, A receives 𝑥 as input and

is challenged with causing the frequency of 𝑥 to be overestimated.

Again we can use TK.qry(𝑥, 𝜎) − 𝑛𝑥 as a metric of success, where

𝑛𝑥 is the number of times 𝑥 was actually inserted into the Top-K

structure.

Recall that under the no-fingerprint collision assumption, the

Top-K structure only underestimates frequencies of elements. We

will show that, with the Redis implementation of Top-K, it is trivial

to violate this assumption, and thus create large frequency overesti-

mation errors. To create large error on a given target 𝑥 , we compute

(𝑚,𝑘) MurmurHash2 inversions MurmurHash2 calls
(1024, 4) 4296.69 1072.52

(4096, 4) 18489.68 4602.56

(1024, 8) 1849.71 905.44

(4096, 8) 10058.16 5031.52

Table 2: Experimental number (averaged over 100 trials)
of MurmurHash2 inversion trials and MurmurHash2 calls
needed to find a cover element for a randomly selected tar-
get 𝑥 . Recall that the cost of each is about the same.

multicollisions on the fingerprint of 𝑥 , stopping when we find a

collision such that it shares one row position with 𝑥 . Unlike the

attack against the Count-Min sketch, we only need to find such

a collision in one row, as the Top-K takes the maximum count

over all owned counters. Therefore, we are now finding a single
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cover element 𝑦. Then, by inserting the cover element 𝐼 times using

Ins(𝑦), A can expect to create error 𝐼 on the frequency estimation

of 𝑥 , i.e. TK.qry(𝑥, 𝜎) −𝑛𝑥 ≥ 𝐼 . Experimental results measuring the

cost for this attack are given in Table 2. We need MurmurHash2
computations (𝑘 per successful inversion) to check if the collision

element we found matches any of the row positions to which our

target maps. We verified the correctness of the attack in the same

way as in Section 3.4.1, obtaining the expected error 𝐼 on the ran-

domly select target 𝑥 over all trials. For more details of our attack,

see Fig. 10 in the Appendix.

4 COUNTERMEASURES
4.1 Bloom filters
Replacing MurmurHash64A with a cryptographic hash function

would prevent our attacks based on inversion. However, the generic

attacks (based on computing the hash forwards) would remain. The

implementation should also be updated to generate the 𝑘 indices

independently of one another, instead of the current “𝑎+(𝑖−1)·𝑏”
approach. A more comprehensive solution would be to replace the

hash function with a keyed PRF. As shown in [19], this leads to

Bloom filters that are provably protected against a broad range

of attacks, at the cost of roughly doubling𝑚 (the filter’s size) and

introducing the need to manage cryptographic keys. Microbench-

marks in [28] show that a keyed function (PRF) like SipHash is only

roughly 2 times slower than MurmurHash3. Therefore, the use of a

PRF is feasible, even in a high performance system. Note that the

analysis of [19] does not cover the case of an array of subfilters as

in Redis; it is an interesting open problem to extend their analysis

to this setting.

4.2 Cuckoo filters
Switching from MurmurHash64A to a cryptographic hash function

for ℎ1 would make our attacks more difficult, as the pre-image re-

sistance of ℎ1 prevents us from inverting the function. However,

repeated forward computation of ℎ1 allows us to build a table of

bucket pairs and corresponding pre-images, after which our attacks

are still possible. We can model the construction of the table as

a coupon collector problem for 𝑛𝐵 ·255 different combinations of

fingerprint and bucket. We expect 𝑛𝐵 ·255·𝐻𝑛𝐵 ·255 (forward) hash
computations in the worst case, where 𝑛𝐵 is the number of buck-

ets in a subfilter and 𝐻𝑥 refers to the 𝑥 th harmonic number. This

formula corresponds to the computation of a complete table, while

for our attack, we only need to find pre-images for specific bucket

pairs, reducing the precomputation effort required in practice.

The use of a cryptographic hash function for ℎ2 complicates our

attacks slightly, as we cannot trivially find fp such that 𝑗=(𝑖⊕ℎ2 (fp))
mod𝑛𝐵 for given 𝑖, 𝑗 and 𝑛𝐵 . However, since fp∈[1, 255] in Redis,

finding such fp requires at most 255 trials. Additionally, this coun-

termeasure can greatly complicate the insertion failure attack if

the new function distributes its values more uniformly than the ℎ2
in Redis. A more uniform distribution leads to fewer densely con-

nected subgraphs in the Cuckoo Graph. Therefore, the algorithm

for finding an overflow set with the required density will return

larger subgraphs. This greatly increases the number of required

insertions for the insertion failure attack (Fig. 2).
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Figure 2: Experimental size of the overflow set |𝑉 ′ | (averaged
over 100 trials) required to overflow one subfilter, for 𝑠 ∈
{1, 2, 4}. Solid lines are for Redis’ choice of ℎ2 (◦) ← const · ◦,
dotted lines are for ℎ2 (◦) ← SHA256(◦).

PRF-wrapped Cuckoo filters, introduced in [19], preprocess in-

puts to all the filter’s algorithms with a PRF. This introduces the

need to manage keys, but would prevent our attacks: the adversary

can no longer compute ℎ1, and therefore cannot make targeted

insertions into the filter. While a proof of correctness under adver-

sarial inputs for PRF-wrapped Cuckoo filters was provided in [19],

a security proof for a PRF-wrapped Redis variant is left to future

work.

4.3 Count-Min sketches and Top-K
Protecting the Count-Min sketch and Top-K against frequency esti-

mation attacks is more challenging. In [24], some countermeasures

are explored, such as switching the hash functions to keyed PRFs,

or keeping the structure’s internal state private. However, efficient

attacks resulting in massive frequency estimation errors were still

possible. This implies the leakage from insertions and queries to a

black-boxed structure is sufficient to carry out the style of attacks

we present in this paper. The choices of Redis facilitate these at-

tacks. One could use some public-key infrastructure to only allow

insertions from authenticated parties, or explore new ways of con-

structing frequency estimation PDS, such as the Count-Keeper [24].

While this structure is susceptible to the types of attacks we pre-

sented, the attacks become less effective, and it has the ability to

flag suspicious frequency estimates.

5 CONCLUSIONS
We made a comprehensive security analysis of the Redis PDS suite,

developing 10 different attacks across four PDS. Our attacks can

be used to cause severe disruptions to the performance of systems

relying on these PDS, ranging from mis-estimation of data statistics

to triggering denial-of-service attacks. Our work illustrates the

importance of low-level algorithmic choices and the dangers of

using weak hash functions in PDS.
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Our work opens up interesting directions for future work. Vari-

ous other PDS suites exist in the wild, such as in Google BigQuery

and Apache Spark, and could also be subjected to detailed secu-

rity analysis as we have done for Redis here. Methods to provably

protect PDS against attacks have been proposed in [11, 19, 26, 28].

However, these analyses tend to focus on textbook versions of the

PDS. Adapting these analyses to cater to the specifics of different

implementations would help improve confidence in the deployed

variants.

At a higher level, there still seems to be a lack of understanding

in the broader developer community about the risks of using PDS

in potentially adversarial settings. Work is needed to educate de-

velopers about these risks; we hope this paper can play a part in

this effort. As an alternative, in an effort to shield developers from

these risks, one could develop new PDS implementations that are

secure by default and package them in the form of easily consumed

libraries with safe APIs. Such an effort could leverage the expe-

rience that the research community has gained from developing

“safe by default” cryptographic libraries.
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A PDS IN REDIS
We give more details on the specifications of PDS in Redis. The

algorithms of Redis Bloom filters are given in Fig. 3, Count-Min

sketches in Fig. 5, and Top-K structures in Fig. 6.

B ATTACKS ON THE REDIS PDS SUITE
We present the pseudocode descriptions of some of our attacks.

The overestimation attack against the Redis Count-Min sketch is

given in Fig. 7. For attacks against the Redis Top-K structure, the

known top-𝐾 hiding attack is given in Fig. 8, the hidden top-𝐾

hiding attack in Fig. 9, and the NFC assumption violation attack in

Fig. 10.
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BF.setup(𝑝𝑝)
1 𝜀, 𝑐1, ef ← 𝑝𝑝

2 𝑠𝑒𝑒𝑑 ← 0xc6a4a7935bd1e995

3 subf ← 1 // no. of subfilters

4 𝑛1 ← 0 // no. of elements in subfilter

5 𝜀1 ← 𝜀 · 0.5

6 bpe
1
← −

log
2
𝜀1

ln 2

// bits per element

7 𝑚1 ←
⌈
𝑐1 · bpe1/64

⌉
· 64 // size in bits

8 𝑘1 ←
⌈
ln 2 · bpe

1

⌉
// number of hashes

9 ℎ (◦) ← MurmurHash64A(◦)
10 𝜎1 ← 0

𝑚1

11 return ⊤

BF.qry(𝑥, 𝜎)
1 𝑎 ← ℎ (𝑥, seed )
2 𝑏 ← ℎ (𝑥, 𝑎)
3 for ℓ ∈ [subf , . . . , 1]
4 unset ← 0

5 for 𝑖 ∈ [𝑘ℓ ]
6 𝑝𝑖 ← (𝑎 + (𝑖 − 1) · 𝑏 ) mod 2

64
mod𝑚ℓ

7 if 𝜎ℓ [𝑝𝑖 ] = 0

8 unset ← 1

9 if unset = 0

10 return 1

11 return 0

BF.ins(𝑥, 𝜎)
1 if 1← BF.qry(𝑥, 𝜎 )
2 return 0

3 𝑎 ← ℎ (𝑥, seed )
4 𝑏 ← ℎ (𝑥, 𝑎)
5 if 𝑛subf ≥ 𝑐subf
6 subf ← subf + 1
7 𝜀subf ← 𝜀subf −1 · 0.5

8 bpesubf ← −
log

2
𝜀subf

ln 2

9 𝑐subf ← 𝑐subf −1 · ef

10 𝑚subf ←
⌈
𝑐subf · bpesubf /64

⌉
· 64

11 𝑘subf ←
⌈
ln 2 · bpesubf

⌉
12 𝜎subf ← 0

𝑚subf

13 for 𝑖 ∈ [𝑘subf ]
14 𝑝𝑖 ← (𝑎 + (𝑖 − 1) · 𝑏 ) mod 2

64
mod𝑚subf

15 𝜎subf [𝑝𝑖 ] ← 1

16 𝑛subf ← 𝑛subf + 1
17 return 1

Figure 3: Redis Bloom filter algorithms. The analogous functions in the Redis API are: BF.setup is BF.RESERVE, BF.qry is
BF.EXISTS, and BF.ins is BF.ADD. We refer to a Redis Bloom filter initialised with pp=𝜀1, 𝑐1, ef as BF[𝜀1, 𝑐1, ef ].
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CF.setup(𝑝𝑝)
1 𝑐, 𝑠, num, ef ← 𝑝𝑝

2 𝑓 ← 256 // fingerprint length 8 bits

3 const ← 0x5bd1e995 // MurmurHash constant

4 fmax ← 32 // max. no. of subfilters

5 subf ← 1 // no. of subfilters

6 𝑛𝐵1 ← next_power_of_two(𝑐/𝑠 ) // no. of buckets

7 ef ← next_power_of_two(ef ) // expansion, rounded

8 ℎ1 (◦) ← MurmurHash64A(◦)
9 ℎ2 (◦) ← const · ◦
10 ℎfp (◦) ← (ℎ1 (◦) mod 𝑓 −1) + 1
11 for 𝑖 ∈ [0, 𝑛𝐵1−1]
12 𝜎 (1,𝑖 ) ← ⊥𝑠

13 return ⊤

CF.del(𝑥, 𝜎)
1 fp← ℎfp (𝑥 )
2 for ℓ ∈ [subf , ..., 1]
3 𝑖 ← ℎ1 (𝑥 ) mod 𝑛𝐵ℓ

4 𝑗 ← (𝑖 ⊕ ℎ2 (fp) ) mod 𝑛𝐵ℓ

5 for slot ∈ [0, 𝑠−1]
6 if 𝜎 (ℓ,𝑖 ) [slot ] = fp

7 𝜎 (ℓ,𝑖 ) [slot ] ← ⊥
8 return 1

9 for slot ∈ [0, 𝑠−1]
10 if 𝜎 (ℓ,𝑗 ) [slot ] = fp

11 𝜎 (ℓ,𝑗 ) [slot ] ← ⊥
12 return 1

13 return 0

CF.qry(𝑥, 𝜎)
1 fp← ℎfp (𝑥 )
2 for ℓ ∈ [1, ..., subf ]
3 𝑖 ← ℎ1 (𝑥 ) mod 𝑛𝐵ℓ

4 𝑗 ← (𝑖 ⊕ ℎ2 (fp) ) mod 𝑛𝐵ℓ

5 for slot ∈ [0, 𝑠−1]
6 if 𝜎 (ℓ,𝑖 ) [slot ] = fp

7 return 1

8 for slot ∈ [0, 𝑠−1]
9 if 𝜎 (ℓ,𝑗 ) [slot ] = fp

10 return 1

11 return 0

CF.info(𝜎)
1 return 𝑛𝐵1 , subf , 𝑠, ef , num

CF.ins(𝑥, 𝜎, unique)
1 if subf = fmax :

2 return ⊥
3 if unique

4 if 1← CF.qry(𝑥, 𝜎 )
5 return 0

6 fp← ℎfp (𝑥 )
7 for ℓ ∈ [subf , ..., 1]
8 𝑖 ← ℎ1 (𝑥 ) mod 𝑛𝐵ℓ

9 𝑗 ← (𝑖 ⊕ ℎ2 (fp) ) mod 𝑛𝐵ℓ

10 for slot ∈ [0, 𝑠−1]
11 if 𝜎 (ℓ,𝑖 ) [slot ] = ⊥
12 𝜎 (ℓ,𝑖 ) [slot ] ← fp

13 return 1

14 for slot ∈ [0, 𝑠−1]
15 if 𝜎 (ℓ,𝑗 ) [slot ] = ⊥
16 𝜎 (ℓ,𝑗 ) [slot ] ← fp

17 return 1

18 // swap in last subfilter

19 𝑧 ← ℎ1 (𝑥 ) mod 𝑛𝐵subf

20 𝑠𝑙𝑜𝑡 ← 0

21 for 𝑔 ∈ [1, num]
22 fp′ ← 𝜎 (subf ,𝑧) [𝑠𝑙𝑜𝑡 ]
23 𝜎 (subf ,𝑧) [𝑠𝑙𝑜𝑡 ] ← 𝑓 𝑝

24 fp← fp′

25 𝑧 ← (𝑧 ⊕ ℎ2 (fp) ) mod 𝑛𝐵subf

26 for slot′ ∈ [0, 𝑠−1]
27 if 𝜎 (subf ,𝑧) [slot′ ] = ⊥
28 𝜎 (subf ,𝑧) [slot′ ] ← fp

29 return 1

30 slot ← (𝑠𝑙𝑜𝑡 + 1) mod 𝑠

31 for 𝑔 ∈ [1, num] // revert evictions

32 𝑠𝑙𝑜𝑡 ← (𝑠𝑙𝑜𝑡 + 𝑠 − 1) mod 𝑠

33 𝑧 ← (𝑧 ⊕ ℎ2 (fp) ) mod 𝑛𝐵subf

34 fp′ ← 𝜎 (subf ,𝑧) [𝑠𝑙𝑜𝑡 ]
35 𝜎 (subf ,𝑧) [𝑠𝑙𝑜𝑡 ] ← 𝑓 𝑝

36 fp← fp′

37 subf ← subf + 1

38 𝑛𝐵subf ← 𝑛𝐵1 · ef
subf −1

39 for 𝑖 ∈ [0, 𝑛𝐵subf −1]
40 𝜎 (subf ,𝑖 ) ← ⊥𝑠 // new empty subfilter

41 𝑖 ← ℎ1 (𝑥 ) mod 𝑛𝐵subf

42 𝜎 (subf ,𝑖 ) [0] ← fp

43 return 1

Figure 4: Redis Cuckoo filter algorithms. The analogous functions in the Redis API are: CF.setup is CF.RESERVE, CF.del is
CF.DEL, CF.qry is CF.EXISTS, CF.info is CF.INFO, and CF.ins combines both CF.ADD and CF.ADDNX. We refer to a Redis
Cuckoo filter initialised with pp=𝑐, 𝑠,num, ef as CF[𝑐, 𝑠,num, ef ]. For 𝑎 ∈ R, we use next_power_of_two(𝑎) to denote a function
that rounds up 𝑎 to the next power of two. 16



Probabilistic Data Structures in the Wild: A Security Analysis of Redis , ,

CMS.setup(𝑝𝑝)
1 𝜀, 𝛿 ← 𝑝𝑝

2 𝑚 ←
⌈𝑒
𝜀

⌉
3 𝑘 ←

⌈
ln( 1

𝛿
)
⌉

4 ℎ (◦) ← MurmurHash2 (◦) mod𝑚

5 𝜎 ← zeros(𝑘,𝑚)
6 return ⊤

CMS.ins(𝑥, 𝜎, 𝑣)
1 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 )
2 for 𝑖 ∈ [𝑘 ]
3 𝜎 [𝑖 ] [𝑝𝑖 ]+ = 𝑣
4 return min𝑖∈ [𝑘 ] {𝜎 [𝑖 ] [𝑝𝑖 ] }

CMS.qry(𝑥, 𝜎)
1 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 )
2 return min𝑖∈ [𝑘 ] {𝜎 [𝑖 ] [𝑝𝑖 ] }

Figure 5: Redis Count-Min sketch algorithms. The analogous functions in the Redis API are: CMS.setup is CMS.INITBYPROB,
CMS.ins is CMS.INCRBY, and CMS.qry is CMS.QUERY. We refer to a Redis Count-Min sketch initialised with 𝑝𝑝 = 𝜀, 𝛿 as
CMS[𝜀, 𝛿].

TK.setup(𝑝𝑝)
1 𝑚,𝑘, decay, 𝐾 ← 𝑝𝑝

2 seed ← 1919

3 ℎ (◦) ← MurmurHash2 (◦) mod𝑚

4 ℎfp ← MurmurHash2 (◦)
5 for 𝑖 ∈ [𝑘 ]
6 𝜎 [𝑖 ] ← [ (★, 0) ] ×𝑚
7 𝐻 ← initminheap(𝐾 )
8 return ⊤

TK.qry(𝑥, 𝜎)
1 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 )
2 fp𝑥 ← ℎfp (𝑥, seed )
3 cnt𝑥 ← 0

4 for 𝑖 ∈ [𝑘 ]
5 if 𝜎 [𝑖 ] [𝑝𝑖 ] .fp = fp𝑥
6 cnt←𝜎 [𝑖 ] [𝑝𝑖 ] .cnt
7 cnt𝑥←max {cnt𝑥 , cnt}
8 return cnt𝑥

TK.list(𝜎)
1 𝑇 ← 𝐻.list( )
2 return𝑇

TK.ins(𝑥, 𝜎)
1 𝑟 ← nil

2 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 )
3 fp𝑥 ← ℎfp (𝑥, seed )
4 cnt𝑥 ← 0

5 for 𝑖 ∈ [𝑘 ]
6 if 𝜎 [𝑖 ] [𝑝𝑖 ] .fp ∉{fp𝑥 ,★}
7 𝑟 ←$ [0, 1)

8 if 𝑟 ≤ decay
𝜎 [𝑖 ] [𝑝𝑖 ] .cnt

9 𝜎 [𝑖 ] [𝑝𝑖 ] .cnt −= 1

10 if 𝜎 [𝑖 ] [𝑝𝑖 ] .cnt = 0

11 𝜎 [𝑖 ] [𝑝𝑖 ] .fp← fp𝑥
12 if 𝜎 [𝑖 ] [𝑝𝑖 ] .fp = fp𝑥
13 𝜎 [𝑖 ] [𝑝𝑖 ] .cnt += 1

14 if 𝜎 [𝑖 ] [𝑝𝑖 ] .cnt > cnt𝑥
15 cnt𝑥 ← 𝜎 [𝑖 ] [𝑝𝑖 ] .cnt
16 if cnt𝑥 ∈ 𝐻
17 𝐻.update(𝑥, cnt𝑥 )
18 elseif cnt𝑥 > 𝐻.getmin( )
19 𝑟 ← 𝐻.getmin( )
20 𝐻.poppush(𝑥, cnt𝑥 )
21 return 𝑟

Figure 6: Redis Top-K structure algorithms. The analogous functions in the Redis API are: TK.setup is TOPK.RESERVE,
TK.ins is TOPK.ADD, TK.qry is TOPK.COUNT, and TK.list is TOPK.LIST. We refer to a Redis Top-K structure initialised with
𝑝𝑝 =𝑚,𝑘, decay, 𝐾 as TK[𝑚,𝑘, decay, 𝐾].
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overestimation_attack
Ins (𝑥, 𝑝𝑝, 𝐼 )

1 cover← find_cover(𝑥, 𝑝𝑝 )
2 until 𝐼 insertions are made

3 for 𝑒 ∈ cover: Ins(𝑒 )
4 return done

find_cover(𝑥, 𝑝𝑝)
1 𝜀, 𝛿 ← 𝑝𝑝

2 𝑘 ←
⌈
ln( 1

𝛿
)
⌉

3 cover← ∅
4 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 )
5 for 𝑖 ∈ [𝑘 ]
6 𝑦 ← MurmurHash2Inverse (𝑝𝑖 , 𝑖 )
7 cover← cover ∪ {𝑦}
8 return cover

Figure 7: The Count-Min sketch overestimation attack. We
use the invertibility of MurmurHash2 to find a cover. We then
repeatedly insert the cover to create error. Note that we abuse
notation and assume that MurmurHash2Inverse is run until a
validly encoded pre-image is found.

known_F_attack
Ins (𝐹, 𝑛, 𝑝, 𝑝𝑝)

1 𝑡 ← get_t(𝑛, 𝑝, 𝑝𝑝 )
2 F_cover← find_F_cover(𝐹, 𝑝𝑝 )
3 for 𝑒 ∈ F_cover
4 for 𝑖 ∈ [𝑡 ]
5 Ins(𝑒 )
6 return done

get_t(𝑛, 𝑝, 𝑝𝑝)
1 𝑚,𝑘, decay, 𝐾 ← 𝑝𝑝

2 𝑔 (𝑡 ) ← log
2
(𝑘 · 𝑛𝑡 · decay𝑡 (𝑡+1)/2 ) − log

2
(𝑝 )

3 𝑡1, 𝑡2 ← FindRootsOf(𝑔)
4 if 𝑡1 > 1 or 𝑡2 < 1 : 𝑡 ← 1

5 if 𝑡2 > 1 : 𝑡 ← ⌈𝑡2 ⌉
6 if 𝑡2 = 1 : 𝑡 ← 2

7 return 𝑡

find_F_cover(𝐹, 𝑝𝑝)
1 𝑚,𝑘, decay, 𝐾 ← 𝑝𝑝

2 F_cover← ∅
3 for 𝑓 ∈ 𝐹
4 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑓 , 1), . . . , ℎ (𝑓 , 𝑘 )
5 for 𝑖 ∈ [𝑘 ]
6 𝑦 ← MurmurHash2Inverse (𝑝𝑖 , 𝑖 )
7 F_cover← F_cover ∪ {𝑦}
8 return F_cover

Figure 8: The Top-K known top-𝐾 hiding attack.

hidden_F_attack
Ins (𝑛, 𝑝, 𝑝𝑝)

1 𝑡 ← 500

2 S_cover← find_S_cover(𝑝𝑝 )
3 for 𝑒 ∈ S_cover
4 for 𝑖 ∈ [𝑡 ]
5 Ins(𝑒 )
6 return done

find_S_cover(𝑝𝑝)
1 𝑚,𝑘, decay, 𝐾 ← 𝑝𝑝

2 𝜂 ← zeros(𝑘,𝑚)
3 S_cover← ∅
4 for 𝑖 ∈ [𝑘 ]
5 for 𝑗 ∈ [𝑚]
6 if 𝜂 [𝑖 ] [ 𝑗 ] = 0

7 𝑦 ← MurmurHash2Inverse ( 𝑗, 𝑖 )
8 S_cover← S_cover ∪ {𝑦}
9 (𝑝1, . . . , 𝑝𝑘 ) ← ℎ (𝑦, 1), . . . , ℎ (𝑦, 𝑘 )
10 for 𝑟 ∈ [𝑘 ]
11 𝜂 [𝑟 ] [𝑝𝑟 ] ← 1

12 return S_cover

Figure 9: The Top-K hidden top-𝐾 attack.

nfc_violation_attack
Ins (𝑥, 𝑝𝑝, 𝐼 )

1 𝑦 ← find_cover_element(𝑥, 𝑝𝑝 )
2 until 𝐼 insertions are made

3 Ins(𝑦)
4 return done

find_cover_element(𝑥, 𝑝𝑝)
1 𝑚,𝑘, decay, 𝐾 ← 𝑝𝑝

2 seed ← 1919

3 done← ⊥
4 𝑃 ← (ℎ (𝑥, 1), . . . , ℎ (𝑥, 𝑘 ) )
5 fp𝑥 ← ℎfp (𝑥 )
6 while done = ⊥
7 𝑦 ← MurmurHash2Inverse (fp𝑥 , seed )
8 𝐶 ← (ℎ (𝑦, 1), . . . , ℎ (𝑦, 𝑘 ) )
9 for 𝑖 ∈ [𝑘 ]
10 if 𝑃 [𝑖 ] = 𝐶 [𝑖 ]
11 done← ⊤
12 return 𝑦

Figure 10: The Top-K no-fingerprint collision violation at-
tack. We use the invertibility ofMurmurHash2 to find a single
fingerprint collision and row pair element for the target 𝑥 .
We then repeatedly insert the element to create error.
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