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Abstract

We describe two new classes of functions which provide the presently best known trade-offs be-
tween low computational complexity, nonlinearity and (fast) algebraic immunity. The nonlinearity
and (fast) algebraic immunity of the new functions substantially improve upon those properties of
all previously known efficiently implementable functions. Appropriately chosen functions from the
two new classes provide excellent solutions to the problem of designing filtering functions for use in
the nonlinear filter model of stream ciphers, or in any other stream ciphers using Boolean functions
for ensuring confusion. In particular, for n ≤ 20, we show that there are functions in our first family
whose implementation efficiences are significantly lower than all previously known functions achiev-
ing a comparable combination of nonlinearity and (fast) algebraic immunity. Given positive integers
` and δ, it is possible to choose a function from our second family whose linear bias is provably
at most 2−`, fast algebraic immunity is at least δ (based on conjecture which is well supported by
experimental results), and which can be implemented in time and space which is linear in ` and δ.
Further, the functions in our second family are built using homomorphic friendly operations, making
these functions well suited for the application of transciphering.
Keywords: Boolean function, stream cipher, nonlinearity, algebraic immunity, efficient implemen-
tation.

1 Introduction

Many cryptosystems, such as stream ciphers, use Boolean functions for providing what C. Shannon called
confusion in [32]. Concretely, confusion has been specified in the nineties into a series of cryptographic
criteria (see e.g. [6]).

The nonlinear filter model is a several decades old model for stream ciphers. This model consists of
two components, namely a state machine which maintains and updates a state, and a filtering function
which is a Boolean function that is applied to a subset of the bits of the state. The state machine
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typically updates the state using a linear feedback function, while the filtering function is chosen to be
a nonlinear function. The sequence of outputs of the filtering function on the successive states of the
state machine constitutes the keystream produced by the stream cipher. A basic requirement on the
Boolean function is that it is balanced so that there is no statistical bias in the keystream produced by
the stream cipher and so between the plain-text and the cipher-text.

Extensive research has shown several approaches to cryptanalysing the filter model of stream ciphers.
The two main approaches are fast correlation attacks and algebraic attacks of various types. Necessary
properties of the Boolean filtering function have been identified for thwarting such attacks. These
properties are a high nonlinearity and a high algebraic resistance. While these are security properties,
from the point of view of implementation, a Boolean function is required to be efficiently implementable
for the resulting stream cipher to be useful for real life applications, which requires it to be faster than
any block cipher in counter mode for example. (Depending upon the application, the implementation
may be required in hardware or software.)

The design challenge for a Boolean function to be used in the filter model of stream ciphers is the
following. Construct a large family (if possible an infinite one) of Boolean functions all of which are
balanced and achieve a good combination of high nonlinearity and high algebraic resistance and further
are efficient to implement. In [7], this design challenge was referred to as “the big single-output Boolean
problem” (similarly, in the domain of Boolean functions for stream ciphers, to the “big APN problem”
in the domain of vectorial functions).

There are several known constructions of families of Boolean functions which achieve some, but
not all of the above properties. We discuss these families in details in Section 3. For the present, we
briefly mention some of these families. The Carlet-Feng functions [9] are balanced, achieve optimal
algebraic immunity (and also almost optimal fast algebraic immunity) and high nonlinearity, but are
not efficient to implement. The hidden weight bit (HWB) function [4] is very efficient to implement and
in [33] it was shown that the HWB function has good algebraic immunity, but the nonlinearity is too
low. Subsequently, a sequence of works [34, 7, 25] have generalised the HWB function to improve the
nonlinearity while retaining the properties of good algebraic immunity and being efficient to implement.
The trade-offs achieved by these works are not completely satisfactory.

In this paper, we revisit the above mentioned design problem for Boolean functions. We describe
two new families of functions as solutions to the problem. Functions from both the families are very
efficient to implement and achieve a good combination of high nonlinearity and high algebraic immunity.
Below we provide a top-level overview of the two families.

Our first family of functions builds on the HWB function. To improve the nonlinearity, we intro-
duce post-processing and pre-processing steps. For the post-processing step, we first extend the HWB
function to a vectorial function by extracting a few bits and then apply a highly nonlinear function to
these bits. The number of extracted bits is small (in fact, a constant) and so it is feasible to apply
a highly nonlinear function to these bits without affecting the efficiency of implementation. For the
pre-processing step, we design a novel bijection from n-bit strings to n-bit strings. The bijection is
constructed by a combination of changing the representation from Fn2 to Z2n (which is directly imple-
mented in computers and is then very fast), partitioning Z2n into a number of intervals, and using simple
arithmetic operations over Z2n . The net effect of applying both the pre and post processing steps is a
significant improvement of both nonlinearity and algebraic resistance over HWB without compromising
on the issue of efficient implementation. Our experimental results show that for all n ≤ 20, both non-
linearity and algebraic resistance of suitably chosen n-variable functions from the new family are better
than the corresponding values of n-variable functions from all previously known families [34, 7, 25] that
are efficient to implement.
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Our second family builds on the well known Maiorana-McFarland class of bent functions which is
defined as follows. For m ≥ 1, let X and Y be two vectors of m variables. Then a 2m-variable Maiorana-
McFarland bent function is defined to be 〈π(X),Y〉⊕h(X), where π is a bijection from m-bit strings to
m-bit strings and h is any m-variable Boolean function. For odd n, we use Maiorana-McFarland bent
functions to instantiate a previously proposed [31] construction of highly nonlinear balanced functions
with optimal algebraic degree. For even n = 2m, we modify a construction due to Dobbertin [15] to
construct highly nonlinear balanced function with optimal algebraic degree. For both odd and even
n, we obtain provable assurance of high nonlinearity. In fact, the nonlinearity is substantially higher
than the nonlinearity of the Carlet-Feng functions. Our main novelty is in the choice of h and π. It is
well-known that the bentness of Maiorana-McFarland functions (defined as above) does not depend on
the choice of h nor on that of permutation π. Similarly, the nonlinearities of functions that we construct
do not depend either on the choices of h and π. We show that the resistance to algebraic attacks does
depend on the choice of h and π. So we put forward the suggestion that h be chosen as the majority
function since it achieves maximum algebraic immunity [13]. For the choice of π we show how to build
a simple bijection based on the HWB function. This combination of majority and the HWB function
results in good a (fast) algebraic immunity of the constructed functions. Based on experimental results,
we conjecture that for n ≥ 6, the algebraic immunity of an n-variable function in our second family
is at least bn/3c and the fast algebraic immunity is equal to 1 + bn/2c. We show that given a pair of
positive integers (`, δ), it is possible to choose a function such that the linear bias is provably at most
2−` and the fast algebraic immunity is (conjectured to be) at least δ. Further, the function can be
computed very efficiently in time linear in ` and δ. This provides both an excellent theoretical as well as
a practical solution to the design problem for Boolean functions to be used in the filter model of stream
ciphers, or in other stream ciphers using Boolen functions to ensure confusion. Further, the functions
in our second family are built using homomorphic friendly operations and the resulting stream ciphers
can be used for transciphering [28].

The paper is organised as follows. In Section 2 we describe the preliminaries. The relevant previous
constructions are discussed in Section 3. The post-processing step of the first family of functions is
described in Section 4, while the pre-processing step and the family itself are described in Section 5.
The second family of functions is described in Section 6. Finally, Section 7 concludes the paper.

Remark 1 We report a number of experimental results. We used simple (and non-optimised) C code to
construct the functions and compute their nonlinearities and algebraic degrees. For computing algebraic
immunity we used the Boolean function library1 of the SageMath software. For computing fast algebraic
immunity, we used a program written by Simon Fischer which was kindly provided to us by Deng Tang.

2 Preliminaries

In this section, we introduce the notation and provide the definitions of the properties of Boolean
functions that we consider in this work. For further details and more elaborate discussion on these
issues we refer to [6].

The cardinality of a finite set S will be denoted by #S. For a prime power q, Fq denotes the finite
field of order q consisting of q elements. In particular, F2 denotes the finite field of two elements. For a
positive integer n, Fn2 is the vector space of dimension n over F2. The addition operation over both F2

and Fn2 will be denoted by ⊕. Elements of Fn2 are considered to be n-bit binary strings.

1https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/boolean_function.html#sage.

crypto.boolean_function.BooleanFunction.annihilator
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For an n-bit binary string x = (x1, . . . , xn), wt(x) = #{i : xi = 1}. Given two strings x and y
of the same length, the distance between them, denoted d(x,y), is defined to be the number of places
where x and y are unequal. Given x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , their inner product 〈x,y〉 is
defined to be 〈x,y〉 = x1y1 ⊕ · · · ⊕ xnyn. For an n-bit string x, by int(x) we denote the unique integer
i ∈ {0, . . . , 2n− 1} whose n-bit binary representation is x. Conversely, for 0 ≤ i ≤ 2n− 1, by binn(i) we
denote the binary string given by the n-bit binary representation of i. The n-bit all-zero and all-one
strings will be denoted as 0n and 1n respectively. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , we say
x ≤ y if xi ≤ yi for i = 1, . . . , n.

An n-variable Boolean function f is a map f : Fn2 → F2. By supp(f) we denote the set {x ∈ Fn2 :
f(x) = 1}. The weight of f , denoted wt(f), is the size of supp(f), i.e. wt(f) = #supp(f). An n-variable
function f is said to be balanced if wt(f) = 2n−1. An n-variable function f is uniquely represented by
a binary string f0 · · · f2n−1, where for i ∈ {0, . . . , 2n − 1}, fi = f(binn(i)). Such a string representation
of f is also called the truth table representation of f .

An n-variable function f can be written as a multivariate polynomial in F2[X1, . . . , Xn]/(X2
1 ⊕

X1, . . . , X
2
n ⊕Xn) as follows. Let X = (X1, . . . , Xn). Then

f(X1, . . . , Xn) =
⊕
α∈Fn2

aαXα, (1)

where aα ∈ F2, and for α = (α1, . . . , αn), Xα = Xα1
1 · · ·Xαn

n . The representation given by (1) is called
the algebraic normal form (ANF) representation of f . The algebraic degree (or simply the degree) of
f is defined to be deg(f) = max{wt(α) : aα = 1}. Functions of degree at most 1 are said to be affine
functions. Affine functions having a0n = 0 are said to be linear functions. It is known that if f is
balanced, then deg(f) ≤ n − 1. A balanced function f with deg(f) = n − 1 is said to have optimal
degree.

The following equations relate the coefficients aα in the ANF of f to the truth table representation
of f (see for example Pages 49 and 50 of [6]). For x,α ∈ Fn2 ,

f(x) =
⊕
β≤x

aβ and aα =
⊕
z≤α

f(z). (2)

Nonlinearity. For two n-variable functions f and g, the distance between them is denoted by d(f, g)
and is defined to be the distance between their truth table representations. The nonlinearity of an
n-variable function f is denoted by nl(f) and is defined to be nl(f) = min d(f, g), where the minimum
is over all n-variable affine functions g.

The Walsh transform of an n-variable function f is a map Wf : Fn2 → Z, where for α ∈ Fn2 ,

Wf (α) =
∑
x∈Fn2

(−1)f(x)⊕〈α,x〉.

The function f is balanced if and only if Wf (0n) = 0. The nonlinearity of a function f is given by its
Walsh transform as follows.

nl(f) = 2n−1 − 1

2
max
α∈Fn2

|Wf (α)|.

A function f such that Wf (α) = ±2n/2 for all α ∈ Fn2 is said to be a bent function [30]. Clearly such
functions can exist only if n is even. The nonlinearity of an n-variable bent function is 2n−1 − 2n/2−1

and this is the maximum nonlinearity that can be attained by n-variable functions.
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By LLB(f) we will denote the logarithm (to base two) of the linear bias of the function f . We would
like to underline that we work with the logarithm of the linear bias rather than the linear bias itself.
This is because for cryptographic applications, the linear bias is likely to be a small number and for
small numbers it is more convenient to work with their logarithms than the numbers themselves.

LLB(f) = log2

(
1

2
− nl(f)

2n

)
. (3)

For a positive integer n, the covering radius bound CRn is defined as follows.

CRn = 2n−1 − b2n/2−1c. (4)

For an n-variable function f , we have nl(f) ≤ CRn, where equality holds for bent functions. By LCRBn
we will denote the following quantity.

LCRBn = log2

(
1

2
− CRn

2

)
. (5)

Algebraic resistance. The algebraic immunity of a function f , denoted by AI(f), is defined in the
following manner [12, 27].

AI(f) = min
g 6=0
{deg(g) : either gf = 0, or g(f ⊕ 1) = 0}. (6)

For an n-variable function f , it is known [12] that AI(f) ≤ dn/2e. So a function f has optimal AI if
AI(f) = dn/2e. It was proved in [14] that a random n-variable function almost surely has AI at least
bn/2− log nc.

Algebraic immunity quantifies the resistance of a function to algebraic attacks. In practice, it is also
required to provide resistance to fast algebraic attack (FAA) [11]. Given an n-variable function f , let g
be an n-variable function of degree e such that gf has degree d. If for small e, d is not too high then
the function f is susceptible to an FAA. It is known [11] that for e + d ≥ n, there exists functions g
and h with deg(g) = e and deg(h) ≤ d such that gf = h. Based on this observation, we provide the
following definition. For each e ∈ {1, . . . ,AI(f) − 1}, let d ≤ n − 1 − e be the maximum integer such
that there do not exist n-variable functions g and h with deg(g) = e, deg(h) = d and gf = h. We call
the list of all such pairs (e, d) as the FAA-profile of f .

A combined measure of resistance offered by a function f to both algebraic and fast algebraic attacks
is captured by the following notion called fast algebraic immunity (FAI).

FAI(f) = min

(
2AI(f),min

g 6=0
{deg(g) + deg(fg) : 1 ≤ deg(g) < AI(f)}

)
. (7)

Note that FAI(f) = min(2AI(f),min{e+d+1}), where the second minimum is taken over all pairs (e, d)
in the FAA-profile of f . Further, it is clear that for any function f , 1 + AI(f) ≤ FAI(f) ≤ 2AI(f).

If AI(f) = dn/2e and for each pair (e, d) in the FAA-profile of f , e + d = n − 1, then f is said to
have perfect algebraic immunity (PAI) [23]. We introduce a relaxed version of the notion of optimal AI
and PAI. We say that a function f has almost optimal AI if AI(f) ≥ bn/2c and f is said to have almost
perfect FAA-profile if for each pair (e, d) in the FAA-profile of f , e+ d ≥ n− 2.
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Implementation efficiency. The complexity of implementing a Boolean function is measured with
respect to space and time. For example, a truth table representation of an n-variable Boolean function
requires 2n bits and can be computed at a single point in O(1) time (assuming that a look-up into
the truth table requires constant time which need not be true if n is large). More generally, we say
that a Boolean function has an (S, T )-implementation if it can be implemented using S bits/gates and
can be computed using T bit operations. In an asymptotic sense, we say that an infinite family of
Boolean functions has an efficient implementation if any n-variable function in the family has an (S, T )-
implementation where both S and T are bounded above by polynomials in n. From a concrete point of
view, on the other hand, we will be interested in further details of the implementation.

Vectorial functions. For positive integers n and m, an (n,m)-vectorial Boolean function (also called
an S-box) F is a map F : Fn2 → Fm2 . If m = 1, then we get back a Boolean function. An (n,m)-vectorial
Boolean function F can be written as F = (f1, . . . , fm), where each fi, i = 1, . . . ,m, is an n-variable
Boolean function. The fi’s are said to be the coordinate functions of F . For α = (α1, . . . , αm) ∈ Fm2 ,
let Fα = 〈α, (f1, . . . , fm)〉 = α1f1 ⊕ · · · ⊕ αmfm. Then Fα is an n-variable Boolean function, and the
Fα’s are called the component functions of F . For n ≥ m, an (n,m)-vectorial function F is said to
be balanced if for each β ∈ Fm2 , #F−1(β) = 2n−m. Equivalently, it is known that (see e.g. [6]) F is
balanced if and only if all non-zero component functions of F are balanced.

Let F be an (n,m)-vectorial Boolean function and g be an m-variable Boolean function. The
composition g ◦F is an n-variable Boolean function given by (g ◦F )(X1, . . . , Xn) = g(F (X1, . . . , Xn)) =
g(f1, . . . , fm). The Walsh transform of f ◦ F is the following [18]. For β ∈ Fn2 ,

Wf◦F (β) =
1

2m

∑
α∈Fm2

Wf (α)WFα(β). (8)

The following simple result can be proved directly by counting pre-images and also follows from (8).

Proposition 1 Let n and m be positive integers with n ≥ m, and let F be a balanced (n,m)-vectorial
function. Let f be an m-variable Boolean function. Then f ◦ F is balanced if and only if f is balanced.

3 Relevant Previous Constructions

In this section, we briefly outline some previous relevant constructions.

Carlet-Feng (CF) functions. Any polynomial a(x) = a0⊕ a1x⊕ · · ·+ an−1x
n−1 ∈ F2[x] is uniquely

determined by the coefficient vector a = (an−1, . . . , a0) ∈ Fn2 . So the elements of Fn2 can be considered
to be polynomials in F2[x] of degree at most n − 1. Let τ(x) be a primitive polynomial of degree n
over F2. An n-variable CF-function is defined by its support which is the following set of polynomials
of degrees at most n− 1:

{0, 1, x mod τ(x), x2 mod τ(x), . . . , x2
n−1−2 mod τ(x)}.

It was shown in [9] that such a Boolean function is balanced, has degree n − 1 and AI dn/2e. (This
class of functions was earlier considered in [16] for showing the tightness of bounds on the algebraic
immunity of vectorial functions and the nonlinearity was earlier studied in [3].) Further, it was shown
in [23] that when n is one more than a power of two, such functions possess PAI. A lower bound on the
nonlinearity of such functions was proved in [9]. For concrete values of n, the actual nonlinearities are
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much higher than the lower bound. Further, the nonlinearity depends on the choice of the primitive
polynomial τ(x). We computed the nonlinearities of CF functions for certain values of n. The primitive
polynomials that we used are given in Appendix A.

A drawback of the CF functions is that these are not very efficient to implement. Evaluating the
value of a CF function on a particular input a(x) amounts to computing i such that a(x) ≡ xi mod p(x).
This is the discrete logarithm problem in F2n . A truth table implementation of CF-functions requires
O(2n) bits. Using polynomial space the discrete logarithm problem can be solved in asymptotically sub-
exponential time. However, for concrete instances, the function is less slow to compute than it could
seem: for particular choices of n, it may be possible to use the Pohlig-Hellman algorithm to obtain a
faster algorithm. If 2n − 1 is the product of small factors (this is the case of n = 18 and n = 20 for
instance), it is possible to compute one output bit per cycle with 40,000 transistors, as indicated in [5].

Hidden weight bit (HWB) functions. For n ≥ 1, let HWBn : {0, 1}n → {0, 1} be the hidden
weight bit function [4] defined as follows. For x = (x1, . . . , xn) ∈ Fn2 ,

HWBn(x) = xwt(x), (9)

where we assume that x0 = 0. The HWB functions are clearly efficiently implementable. Cryptographic
properties of HWB functions were studied in [33]. It was shown that the AI of HWBn is at least bn/3c+1
and for n in the set {6, . . . , 13}, the actual AI is either the lower bound or one more than the lower
bound. For n in the set {6, . . . , 13}, the FAA-profiles were reported in [33] and turned out to be
significantly away from the profile of a PAI function.

The nonlinearity of HWBn was shown to be 2n−1 − 2
(

n−2
d(n−2)/2e

)
. This value is quite low. So even

though HWB functions are efficiently implementable, they do not possess sufficiently high nonlinearity
for cryptographic applications. Concatenations of HWB functions have been studied in [34] producing
functions with higher nonlinearities than the HWB functions, but still not high enough for use in
practical systems.

Binary decision diagrams (BDD) have been used to propose attacks on stream ciphers [21, 22]. A
positive feature of HWB functions is that these functions have high BDD complexity [4, 1, 20].

Generalised HWB (GHWB) functions. A generalisation of HWB functions was introduced in [7]
with the goal of improving their nonlinearity and algebraic immunity while retaining the efficiency of
implementation. The concrete results for n = 13, 14, 15 and 16 presented in [7] show that the AI of
GHWB is almost optimal and is greater than the AI of HWB. There is also improvement in nonlinearity.
This improvement, however, is not substantial and the obtained nonlinearities of GHWB functions are
still significantly lower than that of the CF functions.

Cyclic weightwise functions. Another generalisation of the HWB function was made in [25]. Let
g0, . . . , gn be n-variable functions. Using these n + 1 functions, an n-variable weightwise function f is
constructed as follows: for x ∈ Fn2 , f(x) = gw(x), where w = wt(x). The function f is uniquely defined
by the sequence of functions (g0, . . . , gn). Note that the function gw is applied only to strings of weight
w. In particular g0 is applied only to the string 0n.

Since implementing n + 1 functions may be difficult in practice, the notion of cyclic weightwise
functions was introduced in [25], where the functions gi’s are defined from a single n-variable function
g as follows: g0 = g1 = g, and for i ∈ {2, . . . , n}, gi is defined to be gi(x) = g(x �> (i − 1)),
where �> is the cyclic right shift operator. The resulting function f is called a cyclic weightwise
function, which we denote as f = CWn(g). Lower bounds on the nonlinearities of CWn(g) was obtained

7



in [25] for the case when g is linear and for a particular quadratic function g. For the choice of

g(x1, . . . , xn) = x1 ⊕
(⊕b(n−1)/2c

i=1 x2ix2i+1

)
, actual nonlinearities, degrees and algebraic immunities of

CWn(g) were provided in [25]. These functions achieve both the highest nonlinearities and the highest
algebraic immunities among all the functions presented in [25]. Later we compare these functions to
the functions that are obtained from the new constructions that we propose.

Inverse map. Let ρ(x) ∈ F2[x] be an irreducible polynomial of degree n. Then for any nonzero
polynomial a(x) ∈ F2[x] of degree at most n− 1, there is a polynomial b(x) also of degree at most n− 1
such that a(x)b(x) ≡ 1 mod ρ(x), i.e. b(x) = a(x)−1 mod ρ(x). As in the case of the CF functions, we
identify polynomials in F2[x] of degrees at most n− 1 with the elements of Fn2 . We can then define an
(n, n)-vectorial function inv : Fn2 → Fn2 as follows: inv(0n) = 0n and for any a(x) ∈ F2[x] of degree at
most n − 1, inv(a(x)) = a(x)−1 mod ρ(x). This is the well known inverse map which was introduced
to cryptography in [29]. A nonzero component function of inv is an n-variable Boolean function. Such
functions are balanced and have degrees equal to n−1. Further, it is known [29, 10] that the nonlinearity
of any non-zero component function is at least 2n−1 − 2n/2. The AI of such a function, however, is not
good. It was shown in [17], that the AI is equal to d2

√
ne − 2. From an implementation point of view,

computing a(x)−1 mod ρ(x) requires about O(n3) bit operations.

4 Construction of λ-HWB Functions

The HWB function is efficient to implement. Its major drawback, however, is its low nonlinearity.
One possible way to improve the cryptographic properties of the HWB function is to perform some
post-processing of its output. Recall that the HWB function produces a single bit of output. It is not
meaningful to perform any post-processing on a single bit. So as a first step, we consider a vectorial
version of the HWB function which produces more than one bit of output. Let r be the number of
bits that are to be produced. The question then is how should these r bits be extracted. On an input
x = (x1, . . . , xn), the HWB function produces as output xi, where i is the weight of (x1, . . . , xn). To
extract r bits, we extract a window of r bits of x centered at xi. This creates a difficulty if indices of
the window fall outside the range {1, . . . , n}. There are two ways to tackle this situation, namely the
null and the cyclic boundary conditions which we define as follows. Let x = (x1, . . . , xn) and suppose
i is an integer which is not in {1, . . . , n}. Under the null boundary condition, we define xi to be 0,
while under the cyclic boundary condition, we define xi to be equal to xj , where j is the unique integer
in {1, . . . , n} such that i ≡ j mod n. From experimental results we find that the nonlinearities of the
functions obtained using the cyclic boundary condition is more than the nonlinearities of the functions
obtained using the null boundary condition (see Remark 4 later). In view of this, we do not formally
introduce the construction using the null boundary condition.

Given positive integers n and r with r ≤ n, we define an (n, r)-vectorial function HWBn,r as follows.
For x ∈ Fn2 , let w = wt(x). Let ` = w − br/2c if r is odd and let ` = w − r/2 + 1 if r is even. Then

HWBn,r = (x`, x`+1, . . . , x`+r−1) with cyclic boundary condition. (10)

Note that HWBn,1 = HWBn. We have the following result regarding the balancedness of HWBn,r.

Proposition 2 Let n and r be positive integers with 1 ≤ r ≤ n. Then HWBn,r is balanced.

Proof: Let β ∈ Fr2. We count the number of preimages of β under HWBn,r. For x ∈ Fn2 with
w = wt(x), suppose HWBn,r(x) = β. Then (x`, x`+1, . . . , x`+r−1) = β, where ` = w − br/2c if r is odd
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and let ` = w − r/2 + 1 if r is even. Let k = wt(β). Then #{i ∈ {1, . . . , n} \ {`, . . . , ` + r − 1} : xi =
1} = w−k. So the number of x’s such that wt(x) = w and (x`, x`+1, . . . , x`+r−1) = β is equal to

(
n−r
w−k

)
.

Consequently, the number of preimages of β under HWBn,r is
∑n

w=0

(
n−r
w−k

)
= 2n−r, since n− k ≥ n− r.

�
Let λ be an r-variable Boolean function. We define an n-variable Boolean function λ-HWBn,r in the

following manner.

λ-HWBn,r = λ ◦ HWBn,r. (11)

So for x ∈ Fn2 , λ-HWBn,r(x) = λ(HWBn,r(x)).

Remark 2 Let `1 = 1 − br/2c if r is odd and let `1 = 1 − r/2 + 1 if r is even. Define an n-variable
function g, where for (x1, . . . , xn) ∈ Fn2 , g(x1, . . . , xn) = λ(x`, x`+1, . . . , x`+r−1) with cyclic bound-
ary condition. Let g0, g1, . . . , gn be n-variable functions where g0 = g1 = g and for i ∈ {2, . . . , n},
gi(x1, . . . , xn) = g((x1, . . . , xn) <� (i−1)), where <� is the cyclic left shift operator. Then λ-HWBn,r is
a weightwise function defined by the sequence of functions (g0, g1, . . . , gn). Note that the notion of cyclic
weightwise functions is defined using right cyclic shifts, whereas λ-HWBn,r is obtained from g using left
cyclic shifts2.

Proposition 3 Let λ be an r-variable Boolean function. Then λ-HWBn,r is balanced if and only if λ
is balanced.

Proof: Proposition 2 shows that HWBn,r is a balanced (n, r)-vectorial function. From Proposition 1
we have that the composition of a balanced (n, r)-vectorial function and an r-variable Boolean function
λ is balanced if and only if λ is balanced. �

Let π1, . . . , πn be permutations of {1, . . . , n} and for i = 1, . . . , n, let Pi : Fn2 → Fn2 be defined as
Pi(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). Let g be an n-variable Boolean function and f be another n-variable
Boolean function defined using g and P1, . . . , Pn in the following manner: f(x) = g(Pw(x)), where
w = wt(x). Proposition 4 of [25] shows that f is balanced if and only if g is balanced. Proposition 3
can be seen as a corollary of Proposition 4 of [25]. On the other hand, Proposition 4 of [25] itself can
be seen as a corollary of Proposition 1 in the following manner. Given P1, . . . , Pn, define a bijection
S : Fn2 → Fn2 by S(x) = Pw(x), where w = wt(x). Then f = g ◦ S, and by Proposition 1, f is balanced
if and only if g is balanced.

Proposition 4 For any r-variable function λ, (1 ⊕ λ)-HWBn,r = 1 ⊕ λ-HWBn,r. More generally, for
any invertible affine transformation A : Fr2 → Fr2, nl(λ ◦A ◦ HWBn,r) = nl(λ ◦ HWBn,r).

The nonlinearity of λ-HWBn,r is determined by the Walsh transform of λ-HWBn,r. In principle,
using (8), the Walsh transform of λ-HWBn,r can be determined from the Walsh transforms of λ and
HWBn,r. So in principle, using (8), the nonlinearity of λ-HWBn,r can be determined from the Walsh
transforms of λ and HWBn,r. The form of (8), however, does not provide any easy method to identify
conditions on the Walsh transform of λ such that the nonlinearity of λ-HWBn,r is high.

Remark 3 Lower bounds on the nonlinearties of certain cyclic weightwise functions have been obtained
in [25]. These lower bounds also provide lower bounds on the nonlinearities of λ-HWBn,r in the case
where λ is a linear function, or when λ is a particular quadratic function. As mentioned in [25], the
lower bounds obtained in [25] are not tight and the actual nonlinearities are higher.

2We were unaware of the paper [25] when we obtained the function λ-HWBn,r. It is only later that we realised that
λ-HWBn,r is a special case of (left) cyclic weightwise functions.
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Our goal is to choose λ such that λ-HWBn,r has high nonlinearity. As discussed above, the expression
for the Walsh transform of λ-HWBn,r given by (8) does not provide any guidance. Further, as discussed
in Remark 3 the analysis in [25] provides loose lower bounds for some very special choices of λ. Faced
with this scenario, we decided to search for choices of λ to determine the set of λ’s having the highest
possible nonlinearity. Since we are interested in balanced functions, using Proposition 3, we focused
only on balanced λ’s. Algorithm 1 describes our search strategy. It takes as input n, r and a list S of
r-variable balanced functions and produces as output a set of functions λ such that the corresponding
λ-HWBn,r function has algebraic degree n− 1 and as such, has maximal nonlinearity among all visited
functions.

Algorithm 1: The search procedure for λ-HWBn,r.

Input: n, r and S, where S is a subset of the set of all balanced r-variable functions
Output: A list L of r-variable functions such that for any λ ∈ L, λ-HWBn,r is balanced, has

degree n− 1 and λ ∈ argmaxµ∈S nl(µ-HWBn,r)

1 maxnl← 0; L ← ∅
2 for λ ∈ S do
3 let f = λ-HWBn,r
4 compute nl(f) and deg(f)
5 if deg(f) = n− 1 and maxnl < nl(f) then
6 maxnl← nl(f); L ← {λ}
7 else
8 if deg(f) = n− 1 and maxnl = nl(f) then
9 L ← L ∪ {λ}

10 return L

Proposition 5 For positive integers n and r with 1 ≤ r ≤ n and S a subset of balanced r-variable
functions, let L be returned by Algorithm 1 on input n, r and S. Then for any λ ∈ L, λ-HWBn,r is a
balanced n-variable function having degree n− 1. The time taken by Algorithm 1 is O(#S n2n).

Proof: Suppose L is the output of Algorithm 1. From Proposition 3 it follows that any λ ∈ L is
balanced. From the algorithm, it directly follows that the degree is n− 1.

For each λ in S, the algorithm constructs the n-variable function λ-HWBn,r and computes its
nonlinearity and degree. So the time for each λ is O(n2n), and the total time is O(#S n2n). �
If S is the set of all balanced r-variable functions, then the time required by Algorithm 1 is O(

(
2r

2r−1

)
n2n).

For r = 2, 3 and 4, and for n = 13, . . . , 20, we have run Algorithm 1 with S to be the set of all
r-variable balanced Boolean functions. (Note that for r = 2 the only balanced functions are the non-
constant affine functions.) A summary of our observations of these executions of Algorithm 1 are as
follows.

1. For n = 13, . . . , 20 and r = 2, for the λ’s produced by Algorithm 1, the nonlinearities of λ-HWBn,2
are equal to the nonlinearities of the corresponding HWBn. This though is not true in general.
For example, for n = 8, taking λ(X1, X2) = X1 ⊕X2, the nonlinearity of λ-HWB8,2 is 92, while
the nonlinearity of HWB8 is 88.

2. For a fixed value of n, the nonlinearity of λ-HWBn,r with λ produced by Algorithm 1 increases
with the value of r.
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For r = 5, the number of balanced r-variable functions is equal to
(
32
16

)
≈ 229.163. So if in Algorithm 1

we put S to be the set of all 5-variable balanced functions, then the time taken will be proportional to
n2n+29.163. On the computing resources available to use, for n = 13 this computation is barely feasible
while it is out of our reach for n = 20. Accordingly, we decided to take S to be a proper subset of
5-variable balanced functions. The first condition that we imposed is to consider only functions having
degree 4. This, however, does not significantly reduce the size of S. Next we imposed the condition
that along with degree 4, the functions should have nonlinearity 12, which is the maximum possible
nonlinearity among all 5-variable balanced functions. This condition is motivated by our finding that
for r = 3 and r = 4, the λ’s which are returned by Algorithm 1 have the maximum possible nonlinearity
among all balanced r-variable functions. (At present, however, this is only an observation from the
experimental results, and we do not have a proof.) The number of 5-variable functions having degree 4
and nonlinearity 12 is 1666560 ≈ 220.668. With #S = 1666560, it becomes feasible to run Algorithm 1 for
n = 13, . . . , 20 on our computers. The nonlinearities that are obtained are higher than the nonlinearities
obtained for r = 2, 3 and 4. The following proposition states the results that we obtained.

Proposition 6 Let r = 5. For n = 13, . . . , 20, the maximum nonlinearities, along with the correspond-
ing λ’s and 1 ⊕ λ’s, achieved by balanced λ-HWBn,r functions having degree n − 1, where λ runs over
all 5-variable balanced functions having degree 4 and nonlinearity 12, are as follows.

• n = 13, nl(λ-HWBn,r) = 3780, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 14, nl(λ-HWBn,r) = 7572, where λ, 1⊕ λ ∈ {λ5,3, λ5,4}.

• n = 15, nl(λ-HWBn,r) = 15236, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 16, nl(λ-HWBn,r) = 30526, where λ, 1⊕ λ ∈ {λ5,5, λ5,6}.

• n = 17, nl(λ-HWBn,r) = 61284, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 18, nl(λ-HWBn,r) = 122758, where λ, 1⊕ λ ∈ {λ5,7, λ5,8}.

• n = 19, nl(λ-HWBn,r) = 246368, where λ, 1⊕ λ ∈ {λ5,9, λ5,10}.

• n = 20, nl(λ-HWBn,r) = 493476, where λ, 1⊕ λ ∈ {λ5,11, λ5,12}.

In the above, λ5,i, i = 1, . . . , 12, given by their 32-bit string representations are the following. (The
ANFs of these functions are given in Appendix B.)

λ5,1 = 10111111010100010001101000001110, λ5,2 = 10101000011010110100111001001110

λ5,3 = 10010011011000111011010111010000, λ5,4 = 10000100110100111010100111110100

λ5,5 = 10101011011010110001101100011000, λ5,6 = 10000101111110111000101000001110

λ5,7 = 11100001010111110000101001001110, λ5,8 = 10101011001100100001111000011110

λ5,9 = 10001001010111110010110011101000, λ5,10 = 10101011100100111011010100000110

λ5,11 = 01100010101011111110000111000100, λ5,12 = 01100000110010110101011101001110

Proof: We have run Algorithm 1 with r = 5 and S to be the set of all balanced r-variable functions
having degree 4 and nonlinearity 12. The stated result lists the outputs of Algorithm 1 for n = 13, . . . , 20.
�

11



Remark 4 For null boundary condition, to obtain a balanced function it is not required that λ be

balanced. Let λ-HWB
(n)
n,r denote the function constructed using the null boundary condition. For r = 3, 4

and n = 13, . . . , 20, we constructed all possible n-variable functions λ-HWB
(n)
n,r using the null boundary

condition corresponding to all the 22
r

possible r-variable functions λ, computed their Walsh transforms to
determine whether they are balanced and obtained their nonlinearities. The best nonlinearities obtained
by this procedure turned out to be less than the best nonlinearities obtained for λ-HWBn,r. For r = 5,
we let λ vary over all 5-variable balanced functions having degree 4 and nonlinearity 12. For each such

λ, we constructed the corresponding λ-HWB
(n)
n,r using the null boundary condition, computed its Walsh

transform and determined its nonlinearity and whether it is balanced. Again for r = 5, this experiment
resulted in functions whose nonlinearities are less than the functions obtained for r = 5 using cyclic
boundary condition. Since for r = 3, 4 and 5, the best nonlinearities obtained using the null boundary
condition are less than the best nonlinearities obtained using the cyclic boundary condition, we do not
report the results of our experiments for the functions obtained using the null boundary condition.

We computed the algebraic immunities of the functions given by Proposition 6. The results are
given in the following proposition.

Proposition 7 For r = 5 and n = 13, . . . , 18, the algebraic immunities of the functions described in
Proposition 6 are the following.

1. AI(λ5,1-HWB13,5) = AI(λ5,2-HWB13,5) = 6.

2. AI(λ5,3-HWB14,5) = AI(λ5,4-HWB14,5) = 7.

3. AI(λ5,1-HWB15,5) = AI(λ5,2-HWB15,5) = 7.

4. AI(λ5,5-HWB16,5) = AI(λ5,6-HWB16,5) = 7.

5. AI(λ5,1-HWB17,5) = AI(λ5,2-HWB17,5) = 8.

6. AI(λ5,7-HWB18,5) = AI(λ5,8-HWB18,5) = 8.

We compare properties of λ-HWBn,r with the properties of HWB, GHWB and the highest nonlin-
earities reported in [25]. For λ-HWBn,r the highest nonlinearities are achieved for r = 5 and hence we
do not report the nonlinearties achieved for r = 2, 3 and 4. The nonlinearities are compared in Table 1.
In the table, for each function f , along with nl(f) we also provide the value of LLB(f). In Table 2, we
compare the degrees and algebraic immunities of λ-HWBn,r functions with those of HWB, GHWB and
Table 7 of [25]. Each entry of Table 2 is of the form (d, a), where d is the degree and a is the algebraic
immunity.

Based on Tables 1 and 2, we make the following observations.

1. The nonlinearities of the functions given by Proposition 6 are higher than those of GHWB, but
lower than those reported in Table 7 of [25].

2. The algebraic immunities of the functions given by Proposition 6 are at least the optimum minus
one.

3. The algebraic immunities of the functions given by Proposition 6 are never less than those of
GHWB. Compared to Table 7 of [25], the algebraic immunities of the functions given by Propo-
sition 6 are equal for n = 13 and n = 16, but higher for n = 14 and n = 15.
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HWB [33] GHWB [7] Table 7 of [25] Proposition 6
n nl LLB nl LLB nl LLB nl LLB
13 3172 −3.15 3284 −3.33 3862 −5.13 3780 −4.70
14 6344 −3.15 6668 −3.43 7816 −5.45 7572 −4.72
15 12952 −3.26 14604 −4.20 15748 −5.69 15236 −4.84
16 25904 −3.26 29128 −4.17 31616 −5.83 30526 −4.87
17 52666 −3.35 – – – – 61284 −4.95
18 105332 −3.35 – – – – 122758 −4.98
19 213524 −3.43 – – – – 246368 −5.05
20 427048 −3.43 – – – – 493476 −5.09

Table 1: Comparison of nonlinearities achieved by λ-HWBn,r with the nonlinearities of HWB, GHWB
and Table 7 of [25].

n HWB GHWB Table 7 of [25] Proposition 7
13 (12,5) (12,6) (12,6) (12,6)
14 (13,5) (13,6) (12,6) (13,7)
15 (14,6) (14,7) (14,6) (14,7)
16 (15,6) (15,7) (14,7) (15,7)
17 – – – (16,8)
18 – – – (17,8)

Table 2: Comparison of degrees and algebraic immunities of λ-HWBn,r functions with those of HWB,
GHWB and Table 7 of [25].

4. The degrees of the functions given by Proposition 6 are always optimal, while the degrees of the
functions reported in Table 7 of [25] are optimal for n = 13 and n = 15 and one less than the
optimal for n = 14 and n = 16.

To summarise, compared to the functions reported in Table 7 of [25], the functions given by Proposition 6
represent a different trade-off, i.e. while the nonlinearities are lower, the algebraic immunities and the
degrees are the same or higher.

5 Construction of Interval λ-HWB Functions

The function λ-HWBn,r improves the properties of the HWB function by first extending the HWB
function to a vectorial function and then applying λ to the output of the vectorial function. This
constitutes a post-processing of the output of the HWB vectorial function. The functions that are
obtained using this approach provide a different trade-off from the functions reported in Table 7 of [25],
while the nonlinearities are lower, the degrees and the algebraic immunities are the same or higher.
To further improve the nonlinearity, we consider a pre-processing of the input to λ-HWBn,r. In more
details, we construct a nonlinear bijection φ : Fn2 → Fn2 , so that before applying λ-HWBn,r to an input
x ∈ Fn2 , we first apply φ to x to obtain y and then apply λ-HWBn,r to y.

Let Z2n be the set of integers modulo 2n. To improve the nonlinearity, we need to construct φ
such that it is both fast and highly nonlinear. There exist maps which are very fast to compute since
they are directly implemented in computers, and which allow to change the structure of F2n into that
of the residue class ring Z2n and vice versa (conversions between the representations F2n and Z2n are
done using the functions int(x) and binn(i), as described in Section 2.) The fact that each structure
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is complex with respect to the other is used in the so-called ARX cryptosystems. We shall build our
preprocessing on these functions.

The core of our construction of φ is based on the idea of partitioning Z2n into intervals. We first
describe this partitioning strategy.

Partition of Z2n : Let n ≥ 2 and s < n be a positive integer. Let 0 ≤ w0, . . . , w2s−1 ≤ 2n− 1
be integers such that wk+1 = wk + 2n−s mod 2n. For 0 ≤ k ≤ 2s − 1, let Ik = {wk, wk +
1, . . . , wk + 2n−s − 1} where the elements of the set Ik are computed modulo 2n.

Proposition 8 The collection of sets {Ik} with k = 0, . . . , 2s − 1 forms a partition of Z2n.

Proof: Note that the number of Ik’s is 2s, and each Ik is a subset of Z2n containing 2n−s elements.
So to show the result it is sufficient to show that for 0 ≤ k < ` ≤ 2s−1, Ik and I` are disjoint. From the
definition of the wk’s, we have w` = wk + (`−k)2n−s mod 2n. Suppose that Ik and I` have a non-empty
intersection. Then there are integers a and b with 0 ≤ a, b ≤ 2n−s−1 such that wk +a ≡ w`+ b mod 2n,
i.e. (`−k)2n−s+(b−a) ≡ 0 mod 2n. Note that 1 ≤ `−k ≤ 2s−1 and so 2n−s ≤ (`−k)2n−s ≤ 2n−2n−s.
Further, −2n−s + 1 ≤ b − a ≤ 2n−s − 1. So 1 ≤ (` − k)2n−s + (b − a) ≤ 2n − 1. Consequently,
(`− k)2n−s + (b− a) 6≡ 0 mod 2n, which is a contradiction. �

Proposition 9 For n ≥ 2, w0 ∈ Z2n and positive integer s < n, define In,w0,s : Z2n → Z2s as follows.

In,w0,s(i) =


⌊
i−w0
2n−s

⌋
if i ≥ w0,⌊

i+2n−w0
2n−s

⌋
if i < w0.

(12)

Let k = In,w0,s(i). Then wk = w0 + k2n−s mod 2n and k is the unique integer such that i is in
Ik = {wk, wk + 1, . . . , wk + 2n−s − 1}.

Using the collection of intervals {Ik}, we define a bijection B of Z2n . The idea is the following. Let
i ∈ Z2n . Then i is in one of the intervals Ik, and from i, the value of k can be found using Proposition 9.
Suppose then that i = wk + a, for some a ∈ Z2n−s . Let b = (2k + 1)a mod 2n−s. Since 2k + 1 is odd,
the map a 7→ (2k + 1)a mod 2n−s is a bijection of Z2n−s . So b ∈ Z2n−s . Let j = wk + b. We set B(i) to
be equal to j. In the following result we provide a more formal description of the bijection B.

Proposition 10 For n ≥ 2, positive integer s < n and w0 ∈ Z2n, define Bn,w0,s : Z2n → Z2n as follows.
For i ∈ Z2n, the value of Bn,w0,s(i) is determined by the following sequence of steps.

1. k ← In,w0,s(i);
2. wk ← w0 + k2n−s mod 2n;
3. a← (i− wk) mod 2n;
4. b← a(2k + 1) mod 2n−s;
5. j ← b+ wk mod 2n;
6. set Bn,w0,s(i) to be equal to j.

The map Bn,w0,s defined above is a bijection.

Proof: From Proposition 9, k is the unique integer such that i is in Ik. Since w0 is given, wk is
uniquely determined by k and hence wk is uniquely determined by i. So a = i−wk mod 2n is an element
of Z2n−s , which is uniquely determined by i. Since 2k+ 1 is odd, the map a 7→ a(2k+ 1) mod 2n−s is a
bijection from Z2n−s to itself. So b is in Z2n−s and is uniquely determined by a. Since j = b+wk mod 2n,
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b is uniquely determined by a, a itself is uniquely determined by i, and wk is uniquely determined by
i, it follows that j is also uniquely determined by i. This shows that Bn,w0,s is an injection and hence a
bijection. �

Given x = (x1, x2, . . . , xn−1, xn) ∈ Fn2 , let reverse(x) denote the string (xn, xn−1, . . . , x2, x1), i.e.
reverse(x) reverses the string x. Using B and reverse, we define a bijection φ from Fn2 to itself. The
idea is the following. Given x ∈ Fn2 , change the representation to i ∈ Z2n . Let j = B(i). Change the
representation of j from Z2n to F2n , use reverse, and then change the representation back to Z2n . Apply
B once again and change the representation to F2n and produce as the output of φ. The description is
made precise in the following result.

Proposition 11 Given n ≥ 2, positive integer s < n and w0 ∈ Z2n, define a map φn,w0,s : Fn2 → Fn2 as
follows. For x ∈ Fn2 , the following defines φn,w0,s(x).

i← int(x); j ← Bn,w0,s(i); y← binn(j);
w← reverse(y);
i← int(w); j ← Bn,w0,s(i); z← binn(j);
set φn,w0,s(x) to be equal to z.

The map φn,w0,s described above is a bijection.

Using φn,w0,s and λ-HWBn,r we define a Boolean function IntHWBn,w0,s,λ : Fn2 → Fn2 as follows.

IntHWBn,w0,s,λ = λ-HWBn,r ◦ φn,w0,s = λ ◦ HWBn,r ◦ φn,w0,s. (13)

So for x ∈ Fn2 ,

IntHWBn,w0,s,λ(x) = λ(HWBn,r(φn,w0,s(x))). (14)

One may note that the application of φn,w0,s to x corresponds to a pre-processing of the input to
λ-HWBn,r.

The parameters to the map IntHWBn,w0,s,λ are the integers w0 ∈ Z2n , s < n and the r-variable
function λ. The number of bits required to store w0 is n and the number of bits required to store
s is dlog2 ne. Assuming that λ is stored in its truth table representation, IntHWBn,w0,s,λ requires
n+ dlog2 ne+2r bits to be stored. If r � n, and in particular if r is constant, then IntHWBn,w0,s,λ has a
very efficient space representation. Computing φn,w0,s requires a few simple arithmetic operations, and
computing λ-HWBn,r requires computing the weight of a string and an application of λ. So the time
complexity of IntHWBn,w0,s,λ is also very efficient. In other words, IntHWBn,w0,s,λ is a very efficiently
implementable function.

Proposition 12 Let n ≥ 2, w0 ∈ Z2n, s, r < n be positive integers, and λ be an r-variable function.
Then IntHWBn,w0,s,λ is balanced if and only if λ is balanced.

Proof: Since φn,w0,s is a bijection, φn,w0,s ◦ λ-HWBn,r is balanced if and only if λ-HWBn,r if and
only if λ is balanced. �

The requirement is to choose w0, s and λ in a manner so that IntHWBn,w0,s,λ has high nonlinearity.
Since IntHWBn,w0,s,λ is constructed using the composition operator, using (8) the Walsh transform of
IntHWBn,w0,s,λ can be expressed in terms of the Walsh transforms of φn,w0,s, HWBn,r and λ. The result-
ing expression, however, does not provide guidance on how to choose the parameters of IntHWBn,w0,s,λ

to ensure high nonlinearity. Further, we are also not aware of any other analytical method for ensuring
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that IntHWBn,w0,s,λ has high nonlinearity. In view of this, we decided to search for appropriate param-
eters so that IntHWBn,w0,s,λ has high nonlinearity. Letting w0 ∈ Z2n , s ≤ bn/2c and λ to be a balanced

r-variable function make the size of the parameter space O(n2n
(

2r

2r−1

)
). For each selection of parameters

in this space, it is required to construct the function IntHWBn,w0,s,λ and compute its nonlinearity. This

requires O(n2n) time. So the total time for the search becomes O(n222n
(

2r

2r−1

)
). This is computationally

infeasible. So we decided to fix r = 5 and consider the functions λ5,i corresponding to the values of n
given by Proposition 6. This reduces the search time to O(n222n). For n = 13, . . . , 20 we were able to
carry out this search. The search algorithm is given in Algorithm 2.

Algorithm 2: The search procedure for IntHWBn,w0,s,λ.

Input: n, L, where L is the list of λ5,i corresponding to n as given in Proposition 6
Output: A list P of triplets (λ, s, w0).

1 maxnl← 0; P ← ∅
2 for λ ∈ L do
3 for s in {1, . . . , bn/2c do
4 for w0 in Z2n do
5 let f = IntHWBn,w0,s,λ

6 compute nl(f) and deg(f)
7 if deg(f) = n− 1 and maxnl < nl(f) then
8 maxnl← nl(f); P ← {(λ, s, w0)}
9 else

10 if deg(f) = n− 1 and maxnl = nl(f) then
11 P ← P ∪ {(λ, s, w0)}

12 return P

Proposition 13 Suppose P is returned by Algorithm 2 on input n. For each (λ, s, w0) ∈ P, the function
IntHWBn,w0,s,λ is a balanced n-variable function having degree equal to n− 1.

The results of running Algorithm 2 for n = 13, . . . , 20 are stated in the following proposition.

Proposition 14 For n = 13, . . . , 20 and λ is one of λ5,i given by Proposition 6, the maximum nonlin-
earities achieved by IntHWBn,w0,s,λ are as follows.

1. n = 13: for s = 4, w0 = 254, nl(IntHWBn,w0,s,λ5,2) = 3952.

2. n = 14: for s = 5, w0 = 13090, nl(IntHWBn,w0,s,λ5,4) = 7974.

3. n = 15: for s = 7, w0 = 21272, nl(IntHWBn,w0,s,λ5,2) = 16062.

4. n = 16:
for s = 4, w0 = 16699, nl(IntHWBn,w0,s,λ5,5) = 32290;
for s = 4, w0 = 27429, nl(IntHWBn,w0,s,λ5,5) = 32290.

5. n = 17: for s = 4, w0 = 105883, nl(IntHWBn,w0,s,λ5,1) = 64834.

6. n = 18: for s = 5, w0 = 118924, nl(IntHWBn,w0,s,λ5,7) = 130042.
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7. n = 19: for s = 5, w0 = 200085, nl(IntHWBn,w0,s,λ5,9) = 260606.

8. n = 20: for s = 5, w0 = 353518, nl(IntHWBn,w0,s,λ5,12) = 522046.

5.1 Resistance to Algebraic Attacks

For n = 13, . . . , 19, the algebraic immunities of the functions given in Proposition 14 could be computed
on our servers, but for n = 20, the process exited abnormally and did not return the value of AI. The
values of AI for n = 13, . . . , 19 are stated in the following proposition.

Proposition 15 The algebraic immunities of the functions in Proposition 14 are as follows.

1. n = 13: for s = 4, w0 = 254, AI(IntHWBn,w0,s,λ5,2) = 6.

2. n = 14: for s = 5, w0 = 13090, AI(IntHWBn,w0,s,λ5,4) = 7.

3. n = 15: for s = 7, w0 = 21272, AI(IntHWBn,w0,s,λ5,2) = 7.

4. n = 16:
for s = 4, w0 = 16699, AI(IntHWBn,w0,s,λ5,5) = 8;
for s = 4, w0 = 27429, AI(IntHWBn,w0,s,λ5,5) = 8.

5. n = 17: for s = 4, w0 = 105883, AI(IntHWBn,w0,s,λ5,1) = 9.

6. n = 18: for s = 5, w0 = 118924, AI(IntHWBn,w0,s,λ5,7) = 9.

7. n = 19: for s = 5, w0 = 200085, nl(IntHWBn,w0,s,λ5,9) = 9.

Note that except for n = 13, 15 and 19, in all other cases the algebraic immunities are optimal, and for
n = 13, 15 and 19, the algebraic immunities are one less than the optimal. We conjecture that the value
of AI for the function in Proposition 14 for n = 20 is 10. This is based on our further study of algebraic
immunities as discussed below.

To further understand the algebraic immunities of the functions in the class IntHWBn,w0,s,λ, we con-
ducted some more experiments. For n = 13, . . . , 19, we fixed λ and s as in Proposition 15 and for 100
randomly chosen values of w0, we constructed the function IntHWBn,w0,s,λ and computed its nonlinearity
and algebraic immunity. For n = 14, 16 and 18, in all the 100 cases the algebraic immunities came out
to be n/2, i.e. optimal. For n = 13, 15, 17 and 19, in all the 100 cases the algebraic immunities came out
to be either bn/2c or dn/2e. Letting a1 and a2 to be the number of cases where the algebraic immunities
came out to be bn/2c and dn/2e respectively, we obtained (a1, a2) = (70, 30), (65, 35), (73, 27), (62, 38)
for n = 13, 15, 17 and 19 respectively. So the experiments provide evidence that for even n func-
tions in the class IntHWBn,w0,s,λ have optimal algebraic immunity, while for odd n, functions in the
class IntHWBn,w0,s,λ have either optimal or almost optimal algebraic immunity, with optimal algebraic
immunity occuring for about 30% or more of the cases.

For n = 17, the function in Proposition 14 has optimal algebraic immunity. For n = 13, 15 and 19,
the functions in Proposition 14 have algebraic immunity one less than the optimal. From the results of
our above mentioned experiments with 100 random values of w0, we provide examples of functions for
n = 13, 15 and 19 with optimal algebraic immunity.

Example 1

• n = 13: for s = 3, w0 = 3204, nl(IntHWBn,w0,s,λ5,7) = 3950, AI(IntHWBn,w0,s,λ5,7) = 7.
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• n = 15: for s = 4, w0 = 51, nl(IntHWBn,w0,s,λ5,7) = 16036, AI(IntHWBn,w0,s,λ5,7) = 8.

• n = 19: for s = 5, w0 = 471438, nl(IntHWBn,w0,s,λ5,9) = 260502, AI(IntHWBn,w0,s,λ5,7) = 10.

Note that for n = 13, the nonlinearity of the above example is 3950, while the maximum nonlinearity
reported in Proposition 14 is 3952. For n = 15, the nonlinearity of the above example is 16036, while
the maximum nonlinearity reported in Proposition 14 is 16062. For n = 19, the nonlinearity of the
above example is 260502, while the maximum nonlinearity reported in Proposition 14 is 260606. So for
n = 13, 15 and 19, optimal AI can be obtained with a small decrease in nonlinearity.

To assess the resistance of the class of functions to fast algebraic attacks, we computed the FAA-
profile for the functions given in Proposition 14 for n = 13, 14, 15 and 16 and also for the functions in
Example 1. These are given below.

• n = 13, s = 4, w0 = 254:
FAA-profile for IntHWBn,w0,s,λ5,2 : (1, 11), (2, 9), (3, 9), (4, 7), (5, 7).

• n = 13, s = 3, w0 = 3204:
FAA-profile for IntHWBn,w0,s,λ5,7 : (1, 10), (2, 9), (3, 9), (4, 7), (5, 7), (6, 6).

• n = 14, s = 5, w0 = 13090:
FAA-profile for IntHWBn,w0,s,λ5,4 : (1, 11), (2, 11), (3, 10), (4, 8), (5, 7), (6, 7).

• n = 15, s = 7, w0 = 21272:
FAA-profile for IntHWBn,w0,s,λ5,2): (1, 13), (2, 11), (3, 11), (4, 9), (5, 9), (6, 7).

• n = 15, s = 4, w0 = 51:
FAA-profile for IntHWBn,w0,s,λ5,7 : (1, 13), (2, 11), (3, 10), (4, 9), (5, 8), (6, 7), (7, 7).

• n = 16, s = 4, w0 = 16699:
FAA-profile for IntHWBn,w0,s,λ5,5 : (1, 13), (2, 12), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7).

• n = 16, s = 4, w0 = 27429:
FAA-profile for IntHWBn,w0,s,λ5,5 : (1, 13), (2, 12), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7).

We find that almost perfect FAA-profile is achieved in all cases. Consequently, for all such functions f ,
FAI(f) ≥ n− 1. This indicates good resistance of these functions to fast algebraic attacks.

For n = 17, . . . , 20, due to high memory requirement, it was not possible to compute the complete
FAA-profiles for the functions in Proposition 14 and Example 1. Below we provide the partial FAA-
profiles that could be computed.

• n = 17, s = 4, w0 = 105883:
partial FAA-profile for IntHWBn,w0,s,λ5,1 : (1, 14), (2, 14), (3, 13), (4, 12), (5, 11).

• n = 18, s = 5, w0 = 118924:
partial FAA-profile for IntHWBn,w0,s,λ5,7 : (1, 15), (2, 15), (3, 13), (4, 12).

• n = 19, s = 5, w0 = 200085:
partial FAA-profile for IntHWBn,w0,s,λ5,9 : (1, 16), (2, 15), (3, 14).

• n = 19, s = 5, w0 = 471438:
partial FAA-profile for IntHWBn,w0,s,λ5,9 : (1, 17), (2, 15), (3, 15).
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Table 7 of [25] Proposition 14 CF [9] c.r. (4)
n nl LLB nl LLB nl LLB CRn LCRBn

13 3862 −5.13 3952 −5.83 3988 −6.25 4051 −7.51
14 7816 −5.45 7974 −6.23 8072 −7.09 8128 −8.00
15 15748 −5.69 16062 −6.67 16212 −7.57 16294 −8.51
16 31616 −5.83 32290 −7.10 32530 −8.11 32640 −9.00
17 – – 64834 −7.54 65210 −8.65 65355 −9.50
18 – – 130042 −7.99 130594 −9.10 130816 −10.00
19 – – 260606 −8.41 261294 −9.27 261782 −10.50
20 – – 522046 −8.87 523234 −9.96 523776 −11.00

Table 3: Comparison of nonlinearities achieved by IntHWBn,w0,s,λ with Table 7 of [25], the CF functions
and the covering radius bound.

n Table 7 of [25] Proposition 15 CF [9]
13 (12,6) (12,6) (12,7)
14 (12,6) (13,7) (13,7)
15 (14,6) (14,7) (14,8)
16 (14,7) (15,8) (15,8)
17 – (16,9) (16,9)
18 – (17,9) (17,9)
19 – (18,9) (18,10)

Table 4: Comparison of degrees and algebraic immunities of IntHWBn,w0,s,λ functions with Table 7
of [25] and the CF functions.

• n = 20, s = 5, w0 = 353518:
partial FAA-profile for IntHWBn,w0,s,λ5,12 : (1, 17), (2, 16), (3, 15).

We observe that in all cases for (e, d) in the above partial FAA-profiles, the relation e+ d ≥ n− 2 holds
and we conjecture that for any of these functions f , the relation FAI(f) ≥ n− 1 hold.

Remark 5 From the experimental results we observe that for all the n-variable functions f of the type
IntHWB, for which we were able to compute the algebraic immunities and the FAA-profiles, we have
AI(f) ≥ bn/2c, and FAI(f) ≥ n− 1. Further, AI(f) = dn/2e in several of the cases. This suggests that
functions of the type IntHWB provide good resistance to algebraic and fast algebraic attacks.

5.2 Comparison

From Table 1, we note that the nonlinearities reported in Table 7 of [25] are the highest. So we compare
the nonlinearities reported in Table 7 of [25] with those of IntHWBn,w0,s,λ and with the nonlinearites of
the CF functions as well as to the values of the covering radius bound. We constructed the CF functions
using the primitive polynomials in Appendix A and then computed their nonlinearities. For n = 13,
the nonlinearity of the CF function that we obtained is higher than the nonlinearity reported in [7].
This is not surprising since the actual function and hence the value of the nonlinearity depends upon
the actual primitive polynomial that was used.

The comparison of nonlinearities is shown in Table 3. The comparison of degrees and algebraic
immunities are shown in Table 4. Each entry of Table 4 is of the form (d, a), where d is the degree and
a is the algebraic immunity. Based on Tables 3 and 4 we make the following observations.
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1. The nonlinearities of the IntHWB functions reported in Proposition 14 are higher than the non-
linearities reported in Table 7 of [25]. For n = 13, the algebraic immunity of the IntHWB function
given by Proposition 15 is equal to the algebraic immunity of the function reported in Table 7
of [25]. For n ≥ 14, the algebraic immunities of the IntHWB functions reported in Proposition 15
are higher than the algebraic immunities reported in Table 7 of [25]. In view of improvements in
both nonlinearities and algebraic immunities, we do not consider the functions reported in Table 7
of [25] any further.

2. For both the CF functions as well as IntHWB, the value of LLB decreases as n increases. The
resistance against linear/correlation attacks is determined by the value of LLB rather than the
actual value of the nonlinearity. So increasing n provides better resistance to correlation attacks.

3. The nonlinearities of IntHWB functions are lower than those of CF functions. The LLB’s of IntHWB
functions are about 1.5 bits more than the LLB’s of CF functions. Suppose a target value of LLB
is fixed and the value is achieved by CF functions for a particular value of n. By choosing a higher
value of n, the same value of LLB can be also be achieved by IntHWB functions. To take a concrete
example, suppose it is desired that the value of LLB should be at most −8.00. If CF functions are
to be used, then the value of n should be at least 16, while if IntHWB functions are to be used,
then the value of n should be at least 19. This may seem like a disadvantage for IntHWB functions.
Note, however, that IntHWB functions are efficiently implementable. Implementing the 19-variable
IntHWB function from Proposition 14 requires a space complexity of 19+5+32 = 56 bits, whereas
thousands of bits will be required to implement a 16-variable CF function. So IntHWB functions
provide the option of very cheaply increasing the value of n to achieve a target value of LLB. An
additional advantage of using a higher value of n is the increased resistance to algebraic attacks.
In the above example, for n = 16, CF functions have optimal algebraic immunity of 8, while for
n = 19 the IntHWB function given in Proposition 14 has algebraic immunity 9 (see Proposition 15).

5.3 Higher Values of n

It becomes very time consuming to run Algorithm 2 for n greater than 20. To obtain an idea of the
nonlinearity achieved by IntHWBn,w0,s,λ for higher values of n we conducted some experiments. We
fixed s = 5 and λ = λ5,7 and constructed IntHWBn,w0,s,λ for a number of random choices of w0. For
n = 21, . . . , 24, we chose 10000 values for w0, while for n = 25, . . . , 30, we chose 1000 values for w0. For
each n = 21, . . . , 30, in the following example, we report the maximum nonlinearity that was achieved.

Example 2

• n = 21, s = 5, w0 = 1948971: nl(IntHWBn,w0,s,λ5,7) = 1045280.

• n = 22, s = 5, w0 = 223972: nl(IntHWBn,w0,s,λ5,7) = 2092280.

• n = 23, s = 5, w0 = 2179192: nl(IntHWBn,w0,s,λ5,7) = 4187200.

• n = 24, s = 5, w0 = 11878200: nl(IntHWBn,w0,s,λ5,7) = 8378102.

• n = 25, s = 5, w0 = 17211712: nl(IntHWBn,w0,s,λ5,7) = 16761306.

• n = 26, s = 5, w0 = 45478445: nl(IntHWBn,w0,s,λ5,7) = 33530292.

• n = 27, s = 5, w0 = 67070690: nl(IntHWBn,w0,s,λ5,7) = 67070690.
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Example 2 CF [9] c.r. (4)
n nl LLB nl LLB CRn LCRBn

21 1045280 −9.31 1046846 −10.24 1047852 −11.50
22 2092280 −9.75 2094936 −10.89 2096128 −12.00
23 4187200 −10.21 4190834 −11.24 4192856 −12.50
24 8378102 −10.64 8383446 −11.67 8386560 −13.00
25 16761306 −11.04 16769938 −12.17 16774320 −13.50
26 33530292 −11.44 33545384 −12.86 33550336 −14.00
27 67070690 −11.78 67097318 −13.50 67103072 −14.50
28 134157910 −12.13 134201202 −13.99 134209536 −15.00
29 268332760 −12.35 268409892 −14.36 268423871 −15.50
30 536691884 −12.55 536833704 −14.82 536854528 −16.00

Table 5: Comparison of nonlinearities achieved by the functions in Example 2 with those of CF functions
and the covering radius bound.

• n = 28, s = 5, w0 = 95163654: nl(IntHWBn,w0,s,λ5,7) = 134157910.

• n = 29, s = 5, w0 = 224553125: nl(IntHWBn,w0,s,λ5,7) = 268332760.

• n = 30, s = 5, w0 = 378168951: nl(IntHWBn,w0,s,λ5,7) = 536691884.

In Table 5, we compare the nonlinearities in Example 2 with those of the CF-function. Note that for
n = 21, . . . , 30, even though we were able to explore a very limited portion of the parameter space of
IntHWB functions, the nonlinearities and the values of LLB that are achieved compare quite well to the
corresponding values of the CF functions. In particular, the values of LLB for the IntHWB functions is
at most about 2 more than those of the CF functions. As explained in Section 5.2, the main advantage
of IntHWB functions is their very efficient implementation. So a target value of LLB can be cheaply
achieved by increasing the value of n. While a CF function would achieve the same value of LLB for a
smaller value of n, it would be much more efficient to implement an IntHWB function with a higher value
of n. Further, based on our experiments for n = 13 to n = 20 reported in Section 5.1, we conjecture
that even for n > 20, the IntHWB functions provide good resistance to algebraic attacks (see Remark 5).

6 A Construction with Provably High Nonlinearity

The CF functions enjoy provable guarantees. They are known to have optimal algebraic immunity [9]
and good resistance to fast algebraic attacks [23]. Further, a lower bound on the nonlinearity of the
CF function is known [9] (though the lower bound is loose and the actual nonlinearity is substantially
higher than the lower bound).

In this section, we provide a construction which yields functions whose provable properties are in
some sense a dual of those of the CF functions. The functions constructed in this section have provably
high nonlinearity. In fact, for a fixed value of n, the nonlinearity of the function constructed in this
section is higher than the nonlinearities of the CF function on n variables. On the other hand, we are
only able to prove a general lower bound on the algebraic immunity of the functions. Our claim on
algebraic immunities of the constructed functions is a conjecture which is based on experimental results.
Similar to the functions constructed in Section 5, the crucial advantage of the functions constructed in
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this section over the CF functions is their very efficient implementation. Later we discuss this issue in
details.

The construction described in this section is obtained by combining several known components.
This results in balanced nonlinear functions with maximum degree, provably high nonlinearity and
conjectured high algebraic immunity.

6.1 Maiorana-McFarland Bent Functions

The Maiorana-McFarland class of bent functions is defined as follows. For m ≥ 1, let π : {0, 1}m →
{0, 1}m be a bijection and h : {0, 1}m → {0, 1} be a Boolean function. Let π1, . . . , πm be the coordinate
functions of π. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym). For m ≥ 1, MM2m is defined to be the
following.

MM2m(X,Y) = 〈π(X),Y〉 ⊕ h(X)

= π1(X)Y1 ⊕ · · · ⊕ πm(X)Ym ⊕ h(X). (15)

We extend the definition of MM to all positive integers in the following manner.

MM1(W ) = W,

MM2m+1(W,X,Y) = W ⊕MM2m(X,Y), for m ≥ 1. (16)

The nonlinearity of MMn stated in the following result is well known, while the result on the degree is
simple to obtain.

Proposition 16 For m ≥ 1,

1. nl(MM2m) = 22m−1 − 2m−1, and nl(MM2m+1) = 22m − 2m.

2. deg(MM2m+1) = deg(MM2m) = max(deg(π1) + 1, . . . , deg(πm) + 1, deg(H)).

Remark 6 Note that the nonlinearity of MMn does not depend on the choices of the bijection π and
the function h. We exploit this feature later.

To the best of our knowledge the following result on the algebraic immunity of MMn is new.

Theorem 1 Suppose m ≥ 1.

1. AI(MM2m) ≤ AI(MM2m+1) ≤ 1 + AI(MM2m).

2. There is an ω? ∈ Fm2 such that AI(MM2m) ≥ wt(ω?) + AI
(
〈ω?, π(X)〉 ⊕ h(X)

)
.

Proof: We start with the proof of the first point. For brevity, let us write Z = (X,Y). Clearly if
g(Z) is an annihilator for MM2m (resp. 1 ⊕MM2m), then (1 ⊕W )g(Z) is an annihilator for MM2m+1

(resp. 1 ⊕ MM2m+1). This shows the upper bound. Next we consider the lower bound. Suppose
g(W,Z) 6= 0 is an annihilator for MM2m+1(W,Z). We write g(W,Z) as g(W,Z) = Wg1(Z) + g0(Z).
Noting that MM2m+1(W,Z) = W ⊕MM2m(X,Y), we obtain

0 = g(W,Z)MM2m+1(W,Z) = g0(Z)MM2m(Z)⊕W
(
g0(Z)⊕ g1(Z)(1⊕MM2m(Z))

)
.

So g0(Z)MM2m(Z) = 0 and g0(Z)⊕g1(Z)(1⊕MM2m(Z)) = 0. If g0 is non-zero, then g0 is an annihilator
for MM2m and so deg(g) ≥ deg(g0) ≥ AI(MM2m). If g0 = 0, then since g 6= 0, it follows that g1 6= 0. In
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this case, g1 is an annihilator for 1⊕MM2m, and so deg(g) ≥ 1+deg(g1) ≥ 1+AI(MM2m). Consequently,
in both cases deg(g) ≥ AI(MM2m).

On the other hand, if g(W,Z) 6= 0 is an annihilator for 1 ⊕ MM2m+1(W,Z), then noting that
W (1 ⊕W ) = 0, we obtain g0(Z)(1 ⊕MM2m(Z)) = 0 and g0(Z) ⊕ g1(Z)MM2m(Z) = 0. If g0 6= 0, then
g0 is an annihilator for 1⊕MM2m, and if g0 = 0, then g1 is an annihilator for MM2m. So again we have
deg(g) ≥ AI(MM2m).

Next we consider the proof of the second point. Suppose g(X,Y) is an annihilator for MM2m(X,Y).
Recall that for ω = (ω1, . . . , ωm) ∈ Fm2 , by Yω we denote the monomial Y ω1

1 · · ·Y ωm
m . Using this

notation, we write g(X,Y) =
⊕
ω∈Fm2

Yωgω(X), for some functions gω(X)’s. We have

0 = g(X,Y)MM2m(X,Y)

=

⊕
ω∈Fm2

Yωgω(X)

(π1(X)Y1 ⊕ · · · ⊕ πm(X)Ym ⊕ h(X)
)
. (17)

Since the right hand side of (17) is equal to 0, for ω ∈ Fm2 , the coefficient of Yω in the expansion on
the right hand side of (17) must be equal to 0. Since g(X,Y) 6= 0, let w ≥ 0 be the minimum integer
such that there is an ω? with wt(ω?) = w and gω?(X) 6= 0. In (17), equating the coefficient of Yω? to
0, we have

0 = gω?(X)

h(X)⊕

 ⊕
i∈supp(ω?))

πi(X)


= gω?(X)

(
〈ω, π(X)〉 ⊕ h(X)

)
.

So gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕ h(X). Consequently, deg(g) ≥ wt(ω?) + deg(gω?) ≥
wt(ω?) + AI

(
〈ω?, π(X)〉 ⊕ h(X)

)
.

If, on the other hand, g(X,Y) is an annihilator for 1 ⊕ MM2m(X,Y), then a similar argument
shows that gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕ 1 ⊕ h(X), and again we have deg(g) ≥ wt(ω?) +
AI
(
〈ω?, π(X)〉 ⊕ h(X)

)
. �

6.2 Construction of Balanced Functions

Note that MM2m+1 is a balanced function having nonlinearity 22m − 2m and degree at most m. We
next provide a construction of a balanced function on 2m+ 1 variables which has nonlinearity 22m−2m

and degree 2m. This construction is given in Theorem 10(a) of [31]. The description is in terms of
the string representation of Boolean functions. We provide an equivalent description in terms of the
algebraic normal form.

For m ≥ 0, we define Bal2m+1. Let λ1(U, V ), λ2(U, V ) and λ3(U, V ) be the three distinct non-
constant linear functions on two variables. Let h1 be a bent function on 2m − 2 variables, h2 be a
balanced function on 2m− 3 variables having nonlinearity 22m−4 − 2m−2, and for m ≥ 3, let h3 and h4
be bent functions on 2m− 4 variables.

Definition 1 For m = 0, 1, we define Bal1(X1) = X1 and Bal3(X1, X2, X3) = X1 ⊕X2X3 respectively.
For m ≥ 2, define

Bal2m+1(X1, . . . , X2m+1)

= (1⊕X1)
(
h1(X2, . . . , X2m−1)⊕ λ1(X2m, X2m+1)

)
⊕X1f1(X2, . . . , X2m+1),
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where f1(X2, . . . , X2m+1) = (1⊕X2)h2(X3, . . . , X2m−1) +X2f2(X3, . . . , X2m+1).
For m = 2, f2(X3, X4, X5) = (1⊕X3)λ2(X4, X5)⊕X3λ3(X4, X5) and for m ≥ 3,

f2(X3, . . . , X2m+1)

= (1⊕X3)
(
h3(X4, . . . , X2m−1)⊕ λ2(X2m, X2m+1)

)
⊕X3f3(X4, . . . , X2m+1), where

f3(X4, . . . , X2m+1)

= (1⊕X4) · · · (1⊕X2m−1)λ2(X2m, X2m+1)

⊕
(
1⊕ (1⊕X4) · · · (1⊕X2m−1)

)(
h4(X4, . . . , X2m−1)⊕ λ3(X2m, X2m+1)

)
.

Proposition 17 (Theorem 10(a) of [31]) For m ≥ 1, Bal2m+1 is a balanced function having degree
2m and nonlinearity 22m − 2m. Consequently, LLB(Bal2m+1) = −m.

For concreteness, we make the following choices.

Concrete choices of λ1, λ2, λ3, h1, h2, h3 and h4 in Bal2m+1, m ≥ 2:

λ1(U, V ) = U, λ2(V ) = V, λ3(U, V ) = U ⊕ V,
h1 = MM2m−2, h2 = MM2m−3, and for m ≥ 3, h3 = h4 = MM2m−4.

}
(18)

Next we define Bal2m for m ≥ 1. The construction that we describe is essentially due to Dob-
bertin [15]. Later we describe the differences between Dobbertin’s construction and the construction
that we consider in this paper.

Suppose π is the permutation used to define MM2m. Let a = (a1, . . . , am) = π−1(0m). We define
1a(X) = (1⊕ a1⊕X1) · · · (1⊕ a1⊕Xm). For m ≥ 1, Bal2m is defined as follows. Let X = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym). Then

Bal2m(X,Y) = MM2m(X,Y)⊕ 1a(X)Balm(Y). (19)

Note that the definition of Bal2m involves the definition of MM2m and several other MM’s on smaller
number of variables. Each of these MM’s has its own π and h. So the construction of Bal2m is parame-
terised by the bijections π’s and the functions h’s that are used to construct the various MM’s..

Proposition 18 For m ≥ 1, nl(Bal2m) = 22m−1 − 2m + nl(Balm). Consequently, for n = 2n1n2, with
n1 ≥ 1 and n2 odd

nl(Baln) = 2n−1 − 2n/2−1 − 2n/4−1 + · · · − 2n2−1 − 2bn2/2c,

LLB(Baln) = log2

(
2n/2−1 + 2n/4−1 + · · ·+ 2n2−1 + 2bn2/2c

2n

)
.

Remark 7 Note that the nonlinearity of Bal2m does not depend on the choices of the bijections π and
the functions h. Remark 6 makes a similar observation regarding MM2m.

Relation to Dobbertin’s construction. Dobbertin [15] had proposed a general construction of
balanced Boolean functions on an even number of variables. The proposal was to modify a normal bent
function on 2m variables by inserting a balanced function on m variables on the flat where the bent func-
tion is constant. Since Maiorana-McFarland bent functions are normal bent functions, the construction
that we considered above is essentially due to Dobbertin. Our reason for choosing Maiorana-McFarland
bent functions is that such functions are easy to implement, while it is not clear whether there are
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CF [9] Bal c.r. (4)
n nl LLB nl LLB CRn LCRBn

13 3988 −6.25 4032 −7.00 4051 −7.51
14 8072 −7.09 8120 −7.83 8128 −8.00
15 16212 −7.57 16256 −8.00 16294 −8.51
16 32530 −8.11 32628 −8.87 32640 −9.00
17 65210 −8.65 65280 −9.00 65355 −9.50
18 130594 −9.10 130800 −9.91 130816 −10.00
19 261294 −9.27 261632 −10.00 261782 −10.50
20 523234 −9.96 523756 −10.94 523776 −11.00

Table 6: Comparison of nonlinearities of Bal with that of CF functions and the covering radius bound.

efficient methods to implement a general normal bent function. A difference between Dobbertin’s con-
struction and ours is in the choice of the function f on an odd number n of variables which terminate
the recursive construction. Dobbertin was interested in maximising nonlinearity, and consequently, his
suggestion was to choose f having the highest possible nonlinearity among all balanced functions on n
variables. Efficieny of implementation was not a goal in Dobbertin’s construction. So it is not ensured
that the f which has the highest possible nonlinearity is also efficiently implementable. On the other
hand, our goal is to ensure efficiency of implementation. Hence, we choose f to be Baln which can
be implemented quite efficiently. For n = 1, 3, 5 and 7, choosing f to be Baln also ensures maximum
achievable nonlinearity. For odd n ≥ 9, however, there are balanced functions with nonlinearity higher
than Baln (see [31] for the first example of such a function for n = 15), though the maximum achievable
nonlinearity for n-variable balanced functions is not known.

In Table 6 we compare the nonlinearities of CF functions, Baln and CRn for n = 13, . . . , 20. One
may note that the nonlinearities of Baln are always greater than the nonlinearities of the CF functions.
In fact, for even n the gap between LLB(Baln) and LLB(CFn) increases, whereas the gap between
LLB(Baln) and LCRBn decreases. In any case, for either even n or odd n, the gap between LLB(Baln)
and LLB(LCRBn) is small. This indicates that the nonlinearities achieved by LLB(Baln) are quite close
to the covering radius bound.

The following result provides the degree of Bal2m.

Proposition 19 For m ≥ 1, deg(Bal2m) = 2m− 1.

Proof: From the definition of Bal2m, it follows that deg(Bal2m) = m+ deg(Balm). The stated result
follows by induction on m ≥ 1 where we need to use the fact from Proposition 17 that if n is odd, then
deg(Baln) = n− 1. �

From Propositions 17 and 19, we see that for n ≥ 1, Baln is a balanced function having degree
n − 1. The nonlinearities of Baln are also quite high and in fact higher than the nonlinearities of the
CF functions.

Next we consider the algebraic immunity of Bal2m.

Theorem 2 Suppose m ≥ 1. There is an ω? ∈ Fm2 such that

AI(Bal2m) ≥ wt(ω?) + AI
(
〈ω?, π(X)〉 ⊕ h(X)⊕ Balm(ω?)1a(X)

)
.

Proof: Suppose g(X,Y) is an annihilator for Bal2m(X,Y), where g(X,Y) =
⊕
ω∈Fm2

Yωgω(X) for

some functions gω(X). Also, we write Balm(Y) =
⊕
ω∈Fm2

bωYω, where bω ∈ F2. We have

0 = g(X,Y)Bal2m(X,Y)
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=

⊕
ω∈Fm2

Yωgω(X)

π1(X)Y1 ⊕ · · · ⊕ πm(X)Ym ⊕ h(X)⊕ 1a(X)
⊕
ω∈Fm2

bωYω

 . (20)

Since the right hand side of (20) is equal to 0, all coefficients of Yω in the expansion on the right hand
side of (20) must be equal to 0. Since g(X,Y) 6= 0, let w ≥ 0 be the minimum integer such that there
is an ω? with wt(ω?) = w and gω?(X) 6= 0. In (20), equating the coefficient of Yω? to 0, we have

0 = gω?(X)

h(X)⊕

 ⊕
i∈supp(ω?))

πi(X)

⊕
1a(X)

⊕
ω≤ω?

bω


= gω?(X)

(
〈ω, π(X)〉 ⊕ h(X)⊕ Balm(ω?)1a(X)

)
.

Here we have used Balm(ω?) =
⊕
ω≤ω? bω (see (2)). So gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕

h(X)⊕Balm(ω?)1a(X). Consequently, deg(g) ≥ wt(ω?) + deg(gω?) ≥ wt(ω?) +AI(〈ω?, π(X)〉⊕h(X)⊕
Balm(ω?)1a(X)).

If, on the other hand, g(X,Y) is an annihilator for 1 ⊕ MM2m(X,Y), then a similar argument
shows that gω?(X) is an annihilator for 〈ω?, π(X)〉 ⊕ 1 ⊕ h(X) ⊕ Balm(ω?)1a(X), and again we have
deg(g) ≥ wt(ω?) + AI(〈ω?, π(X)〉 ⊕ h(X)⊕ Balm(ω?)1a(X)). �
Theorem 2 provides a lower bound on the AI of Bal2m. We were not able to find any nice lower bound
on the AI for Bal2m+1.

Remark 8 The lower bound on AI(MM2m) is in terms of the AI of the function f = 〈ω?, π(X)〉⊕h(X),
while the lower bound on AI(Bal2m) is in terms of the AI of the function g = 〈ω?, π(X)〉 ⊕ h(X) ⊕
Balm(ω?)1a(X). Note that f and g differ in at most one bit, which shows that the AI of AI(MM2m) and
AI(Bal2m) are quite close (as we will later see from experimental results).

6.3 Choices of π and h in MM

The nonlinearity and degree of MM2m and Bal2m (and also MM2m+1 and Bal2m+1) do not depend on
the choice of π and h. On the other hand, the following simple result shows that not all choices of h
and π provide good algebraic immunity.

Proposition 20 Suppose in the construction of MM2m, π is chosen to be the identity permutation and
h is chosen to be the constant function zero. Then AI(MM2m) = 2 and AI(Bal2m) ≤ 3.

Proof: With the stated choice of π and h, MM2m(X,Y) = 〈X,Y〉 which is a quadratic function.
Hence its algebraic immunity is at most 2. It is easy to argue that the algebraic immunity cannot be 1.

Since Bal2m(X,Y) = MM2m(X,Y)⊕10m(X)Balm(Y), it follows that for any annihilator g(X,Y) of
MM2m(X,Y) and for any i ∈ {1, . . . ,m}, Xig(X,Y) is an annihilator of Bal2m(X,Y). So AI(Bal2m) ≤ 3.
�

From Theorems 1 and 2, the AI of MM2m and Bal2m are lower bounded by the AI of some function
determined from h and π. This suggests that properly choosing h and π can result in good AI for Bal2m.
A simple function which achieves the maximum possible AI is the majority function [13]. Based on this
fact we make the following concrete choice.

Concrete choice of h in MM2m: Choose the m-variable function h in the construction of
MM2m given by (15) to be Majm, which is the m-variable majority function.
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There are other functions which achieve maximum algebraic immunity [8] and these could also be chosen
to instantiate h. Our choice of Majm is arguably the simplest choice of a function achieving maximum
algebraic immunity.

We also need to choose π. To this end, for a positive integer n ≥ 1, we define n-HWBP : Fn2 → Fn2
as follows. For (x1, . . . , xn) ∈ Fn2 , let w = wt(x1, . . . , xn). Then n-HWBP(x1, . . . , xn) is defined to be
the following.

n-HWBP(x1, . . . , xn) =

{
(0, . . . , 0) if w = 0,
(xw, xw+1, . . . , xn, x1, . . . , xw−1) otherwise.

From the definition, it easily follows that n-HWBP is a bijection from Fn2 to Fn2 . Note that n-HWBP1,
i.e. the first coordinate function of n-HWBP is the HWB function. In fact, for i ≥ 1, n-HWBPi returns
the bit xw+i−1 (where the subscript is taken modulo n in the set of residues {1, . . . , n}). We define the
following concrete choice of π.

Concrete choice of π in MM2m: Choose the m-bit to m-bit permutation π in the construction
of MM2m given by (15) to be m-HWBP.

Note that m-HWBP−1(0m) = 0m, and so the function 1a(X) in the construction of Bal2m is simply
10m(X) = (1⊕X1) · · · (1⊕Xm).

BDD complexity. Binary decision diagrams (BDD) have been used to attack stream ciphers [21]. It
is known that the HWB function has high BDD complexity [4, 1, 20]. So an additional advantage of
choosing π = m-HWBP is that with this choice the functions MM and Bal provide good resistance to
BDD attacks.

Remark 9 Since the degree of the HWBn function is known to be n− 1 [33], with the above choice of
π, we obtain the degree of MM2m to be m which is the highest possible degree for a bent function.

Remark 10 The function Majm has algebraic immunity dm/2e. So the choice of h = Majm in the
construction of MM2m is heuristically motivated by the consideration that the algebraic immunity of
MM2m and Bal2m (see Remark 8) will be at least dm/2e. More generally, we heuristically expect the
algebraic immunity of Baln to be at least dn/4e.

With the choices of h = Majm and π = m-HWBP, the values of algebraic immunity of MMn and
Baln for various n are given in Table 7. In the table, for illustrating the point made by Remark 10, we
also provide the values of the algebraic immunity of Majdn/2e and HWBdn/2e. The values in Table 7 go
beyond our heuristic expectation stated in Remark 10. In Table 8, we provide the FAA-profiles and
FAI of MMn and Baln, for n = 4, . . . , 20. For 4 ≤ n ≤ 17, the complete FAA-profiles are provided. For
n = 18, 19, 20, we could compute only the partial FAA-profiles and these are provided. For n = 4 and
n = 6, . . . , 17, we find that FAI(Baln) = 1 + bn/2c, whereas for n = 5, we have FAI(Bal5) = 2 + bn/2c.
From the complete FAA-profiles for n = 4, . . . , 17, we see that FAI(Baln) is equal to 2+d, where (1, d) is
in the FAA-profile of Baln. Based on these experimentally observed values, we put forward the following
conjecture which is stronger than Remark 10.

Conjecture 1 For m ≥ 1, let MM2m and MM2m+1 be defined as in (15) and (16) respectively, where
h = Majm and π = m-HWBP in the definition of MM2m given by (15). For m ≥ 1, let Bal2m be
defined as in (19), and for m ≥ 0, let Bal2m+1 be given by Definition 1 with the concrete choices of the
component functions given by (18). Then for all n ≥ 6, we have the following.
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1. bn/3c ≤ AI(MMn) ≤ AI(Baln) ≤ 1 + bn/3c.

2. bn/2c ≤ FAI(MMn) ≤ FAI(Baln) = 1 + bn/2c.

From Table 7, note that other than n = 16, the upper bound on AI(Baln) stated in Conjecture 1 is
achieved for all n in {4, . . . , 20}. For n = 16, we have AI(Baln) = bn/3c = 5.

6.4 Efficiency of Computing Baln

Bal2m+1 is built from MM2m−2, MM2m−3 and MM2m−4. On the other hand, Bal2m is built from MM2m

and Balm. So in both cases, the efficiency of computing Baln boils down to computing MMn. Since
MM2m+1 is defined from MM2m, it is sufficient to consider the efficiency of computing MM2m.

The computation of MM2m requires computing h and π, and an inner product of two m-bit strings.
The computations of both h and π require the computation of the weight of an m-bit string. Since
h = Majm, apart from the weight of its input, the computation of h additionally requires the computation
of a threshold function. For the computation of π = HWBP, other than the weight of its input, a cyclic
shift is required. The number of bit operations (or gates) required to compute MM2m is Wm+Tm+Cm+Im,
where
• Wm is the number of bit operations (or gates) required to compute the weight of an m-bit string.
• Tm is the number of bit operations (or gates) required to compute the threshold operation for an
m-bit input.
• Cm is the number of bit operations (or gates) required to compute a cyclic shift of an m-bit string.
• Im is the number of bit operations (or gates) required to compute an inner product of two m-bit

strings.
From [2], we have Wm = O(m). Also, it is easy to see that Tm, Cm, and Im are all O(m). Computing
MM2m+1 requires computing MM2m and a XOR operation. So we have the following result.

Proposition 21 The number of bit operations (or gates) required to compute either MM2m or MM2m+1

is O(m).

The following result states the efficiency of computing Baln.

Proposition 22 The number of bit operations (or gates) required to compute either Bal2m or Bal2m+1

is O(m).

Proof: Let T (n) be the number of bit operations required to compute Baln.
First we consider Bal2m+1. This requires the computation of MM2m−2, MM2m−3 and MM2m−4. The

computation of MM2m−3 it turn also requires the computation of MM2m−4. So from Proposition 21, we
have T (2m+ 1) is O(m).

To compute Bal2m, it is required to compute MM2m, the function 10m and Balm. Clearly, the
number of bit operations required to compute 10m is O(m), and from Proposition 21, the number of
bit operations required to compute MM2m is O(m). So we have the relation

T (2m) = O(m) + T (m).

Expanding the recursion and using the above proved fact that for odd n, T (n) is O(n/2), we have the
required result. �
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n AI(Majdn/2e) AI(HWBdn/2e) AI(MMn) AI(Baln)

4 1 1 2 2
5 1 1 2 2
6 2 2 3 3
7 2 2 3 3
8 2 2 3 3
9 2 2 3 4
10 3 2 4 4
11 3 2 4 4
12 3 3 5 5
13 3 3 5 5
14 4 3 5 5
15 4 3 6 6
16 4 4 5 5
17 4 4 6 6
18 5 4 7 7
19 5 4 7 7
20 5 4 7 7

Table 7: Algebraic immunities of MM and Bal.

n FAA-profile of MMn FAI(MMn) FAA-profile of Baln FAI(Baln)
4 (1,1) 3 (1,1) 3
5 (1,1) 3 (1,2) 4
6 (1,2), (2,2) 4 (1,2), (2,2) 4
7 (1,2), (2,2) 4 (1,2), (2,2) 4
8 (1,3), (2,2) 5 (1,3), (2,2) 5
9 (1,3), (2,2) 5 (1,3), (2,3), (3,3) 5
10 (1,4), (2,3), (3,3) 6 (1,4), (2,3), (3,3) 6
11 (1,4), (2,3), (3,3) 6 (1,4), (2,4), (3,3) 6
12 (1,4), (2,4), (3,4), (4,4) 6 (1,5), (2,4), (3,4), (4,4) 7
13 (1,4), (2,4), (3,4), (4,4) 6 (1,5), (2,4), (3,4), (4,4) 7
14 (1,6), (2,5), (3,5), (4,5) 8 (1,6), (2,6), (3,5), (4,5) 8
15 (1,6), (2,5), (3,5), (4,5), (5,5) 8 (1,6), (2,5), (3,5), (4,5), (5,5) 8
16 (1,7), (2,6), (3,5), (4,5) 9 (1,7), (2,6), (3,5), (4,5) 9
17 (1,7), (2,6), (3,5), (4,5), (5,5) 9 (1,7), (2,6), (3,5), (4,5), (5,5) 9
18 (1,8), (2,7), (3,7), (4,6) – (1,8), (2,7), (3,7), (4,6) –
19 (1,8), (2,7), (3,7) – (1,8), (2,7), (3,7) –
20 (1,8), (2,8) – (1,9), (2,8) –

Table 8: (Partial) FAA-profiles and FAI of MM and Bal.
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Suppose n = 2n1n2, with n1 ≥ 1 and n2 odd. Then the actual number of bit operations required to
compute Baln is

Xn2 +

n1∑
i=1

(Wn/2i + Tn/2i + Cn/2i + In/2i),

where Xn2 is the number of bit operations required to compute Baln2 . If the value of n2 is not too large
(say n ≤ 5), then the computation of this Baln2 will be done using either a table look-up or a simple
combinational circuit.

6.5 Cryptographic Considerations

From a cryptographic point of view, the number of variables in the function is not an overriding con-
cern. Rather, it is the efficiency of implementation that is the major issue. For example, an 80-variable
function which can be implemented very efficiently would be much more preferable to a 20-variable
function which cannot be implemented more efficiently than essentially implementing the truth table.
Comparison between constructions have typically fixed the number of variables and then compared the
cryptographic properties of functions obtained from different constructions. Such a comparison implic-
itly assumes that functions with the same number of variables obtained from different constructions
have roughly the same level of efficiency in implementation. While this is true for small n, the assump-
tion is invalid when n is even of moderate size. For example, the implementation of Baln is much more
efficient than the implementation of an n-variable CF function.

In view of the above discussion, we adopt the following approach. For security, we consider two
parameters, namely LLB and FAI. The parameter LLB is the major component in quantifying the
resistance to (fast) correlation attacks, while the parameter FAI is the major component in determining
resistance to algebraic attacks.

Given positive integers ` and δ, we say that a Boolean function f provides (`, δ)-security if LLB(f) ≤
−` and FAI(f) ≥ δ. A stream cipher designer would set forth the pair (`, δ) based on the desired level
of resistance to known attacks and then be interested in obtaining a function f which is (`, δ)-secure.
We tie up efficiency of implementation with security by requiring that f is implementable in time and
space which is polynomial in ` and δ.

Next, we argue that the construction Bal2m satisfies the above stated goal of a stream cipher designer.

Proposition 23 Let ` be a positive integer. Then for bn/2c ≥ `, LLB(Baln) ≤ −`.

Proof: First suppose n = 2m+ 1, with m ≥ `. We have LLB(Bal2m+1) = −m ≤ −`.
Now suppose n = 2m, with m ≥ `. Writing n = 2n1n2, we have

LLB(Baln) = log2

(
2m−1 + 2m/2−1 + · · ·+ 2n2−1 + 2bn2/2c

22m

)

< log2

(
2m−1 + 2m−1

22m

)
= −m ≤ −`.

�
Conjecture 1 states that for n ≥ 6, FAI(Baln) = 1 + bn/2c. Given a value of δ, we propose choosing

n = 2δ and then by Conjecture 1, we have FAI(Baln) = 1 + bn/2c = 1 + δ.
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Suppose now that we require an (`, δ)-secure function. Choose n = 2 ·max{`, δ}. Then Baln is an
(`, δ)-secure function, where LLB(Baln) ≤ −` is guaranteed by Proposition 23, while FAI(Baln) = 1 + δ
is based upon Conjecture 1. Proposition 22 shows that Baln can be computed in time and space linear
in ` and δ. So the construction Baln provides a good theoretical as well as a practical solution to the
stream cipher designer’s problem.

Remark 11 We note that in practical applications where a Boolean function is used as the filtering
function in the nonlinear filter model of stream ciphers, it may not be possible to arbitrarily increase
the value of n. This is due to the constraint that the number of variables n of the Boolean function is
at most the number of bits required to store the state of the underlying state machine. Further, it may
not be desirable to extract too many bits from the state.

Transciphering. One of the applications of stream ciphers is to transciphering in the context of
homomorphic encryption [28]. See for example the stream cipher FiLIP [19, 24]. This application
requires the filtering function of the stream cipher to be homomorphic friendly. Both the majority
and the HWB functions are homomorphic friendly [19, 24, 26]. Since Baln is built based on these two
functions and other very simple bit operations, the function Baln is also homomorphic friendly.

Concrete examples. We consider three concrete examples.
Suppose it is desired to construct a (20, 20)-secure function f , i.e. LLB(f) ≤ −20 and FAI(f) ≥ 20.

We choose n = 2·max{20, 20} = 40. Then Bal40 is (20, 20)-secure, where LLB(Bal40) ≤ −20 is guaranteed
by Proposition 23, while FAI(Bal40) = 21 is based upon Conjecture 1. The number of bit operations
required for computing Bal40 is

X5 +

2∑
i=0

(W5·2i + T5·2i + C5·2i + I5·2i),

where X5 is the number of bit operations required to compute Bal5.
Suppose it is desired to construct a (40, 40)-secure function f , i.e. LLB(f) ≤ −40 and FAI(f) ≥ 40.

We choose n = 2·max{40, 40} = 80. Then Bal80 is (40, 40)-secure, where LLB(Bal80) ≤ −40 is guaranteed
by Proposition 23, while FAI(Bal80) = 41 is based upon Conjecture 1. The number of bit operations
required for computing Bal80 is

X5 +

3∑
i=0

(W5·2i + T5·2i + C5·2i + I5·2i).

Suppose it is desired to construct a (64, 64)-secure function f , i.e. LLB(f) ≤ −64 and FAI(f) ≥
64. Choose n = 128. Then Bal128 is (64, 64)-secure, where LLB(Bal128) ≤ −128 is guaranteed by
Proposition 23, while FAI(Bal128) = 65 is based upon Conjecture 1. The number of bit operations
required to compute Bal128 is

6∑
i=1

(W2i + T2i + C2i + I2i).

To utilise an n-bit Boolean function in the nonlinear combiner model, the number of bits used to
represent the state has to be at least n. (See Remark 11.) For the examples above, the values of n
are 40, 80 and 128. In practice, we expect state machines to be have states with substantially larger
number of bits.
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6.6 Comparison to IntHWB Functions

Comparing the nonlinearities of Bal given in Table 3 with the nonlinearities of IntHWB given in Table 6,
we see that the nonlinearities of Bal are substantially higher. On the other hand, comparing the algebraic
immunities of Bal given in Table 7 with the algebraic immunities of IntHWB given in Table 4, we find
that the algebraic immunities of IntHWB are higher. So while both Bal and IntHWB are efficiently
implementable functions, for a fixed value of n, the choice between the two types of functions, i.e. Bal
and IntHWB represents a trade-off between nonlinearity and algebraic resistance. If a function on 20 or
less variables is required with excellent algebraic resistance and good nonlinearity, then IntHWB will be
preferable. If nonlinearity is to be given priority, then Bal will be preferable. If the number of variables
is not a constraint, then as discussed in Section 6.5, by appropriately choosing n, Baln can be used to
achieve any given target resistance against (fast) correlation attacks as well as (fast) algebraic attacks.

7 Conclusion

We have described two families of functions which are efficient to implement and achieve a good com-
bination of nonlinearity and algebraic resistance making them excellent choices for use as the filtering
function in the filter model of stream ciphers. The nonlinearity and algebraic resistance achieved by
functions in the first family are both substantially better than what is achieved by all previously known
families which are efficient to implement. Given a pair of positive integers (`, δ) we show that it is pos-
sible to select a function from the second family such that linear bias is provably at most 2−` and the
fast algebraic immunity is at least δ (based on a conjecture). Further, the function can be implemented
in time and space linear in ` and δ. This provides a good theoretical as well as a very efficient practical
solution to the design problem for Boolean functions to be used in the filter model of stream ciphers.
There are, however, several questions that remain.

For the first family we provide experimental results on nonlinearities for n up to 30 and on algebraic
resistance for n up to 20. It would be good to obtain proofs which apply for general values of n. To the
best of our understanding, the presently known proof techniques are difficult to apply to the functions
in the first family. So obtaining proofs may require developing new proof techniques.

For the second family, the main open problem is to settle Conjecture 1. Again, due to the com-
bination of the majority and the HWB functions, the known proof techniques seem to be difficult to
apply.

From an implementation point of view, it would be of interest to actually propose stream cipher
designs based on the functions that have been introduced in this paper. Given the recent interest in
transciphering, functions from the second family may provide a good solution to design of stream ciphers
for transciphering.
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A Primitive Polynomials Used to Construct CF Functions

For n = 13 to 30, the following primitive polynomials were used in the construction of the CF functions.

x13 ⊕ x4 ⊕ x3 ⊕ x⊕ 1
x14 ⊕ x12x11 ⊕ x⊕ 1
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x15 ⊕ x⊕ 1
x16 ⊕ x5 ⊕ x3 ⊕ x2 ⊕ 1
x17 ⊕ x3 ⊕ 1
x18 ⊕ x7 ⊕ 1
x19 ⊕ x6 ⊕ x5 ⊕ x⊕ 1
x20 ⊕ x3 ⊕ 1
x21 ⊕ x2 ⊕ 1
x22 ⊕ x⊕ 1
x23 ⊕ x5 ⊕ 1
x24 ⊕ x4 ⊕ x3 ⊕ x⊕ 1
x25 ⊕ x3 ⊕ 1
x26 ⊕ x6 ⊕ x2 ⊕ x1 ⊕ 1
x27 ⊕ x5 ⊕ x2 ⊕ x1 ⊕ 1
x28 ⊕ x3 ⊕ 1
x29 ⊕ x2 ⊕ 1
x30 ⊕ x23 ⊕ x2 ⊕ x1 ⊕ 1

B ANFs of λ5,i, i = 1, . . . , 12

λ5,1(X1, X2, X3, X4, X5) = X1X2X3 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3 ⊕X1X5 ⊕X1 ⊕X3X5

⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,2(X1, X2, X3, X4, X5) = X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X3X5 ⊕X1 ⊕X2X3X5 ⊕X2X3 ⊕X2X4X5

⊕X2X4 ⊕X3X4X5 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,3(X1, X2, X3, X4, X5) = X1X2X3X5 ⊕X1X2X5 ⊕X1X3X5 ⊕X1X3 ⊕X1X4X5 ⊕X1 ⊕X2X3X4X5 ⊕X2X4X5

⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X3X4 ⊕X3 ⊕X4X5 ⊕X4 ⊕ 1

λ5,4(X1, X2, X3, X4, X5) = X1X2X3X4 ⊕X1X2X5 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X4 ⊕X1 ⊕X2X3X4 ⊕X2X3

⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X3X5 ⊕X3 ⊕ 1

λ5,5(X1, X2, X3, X4, X5) = X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X3X5 ⊕X1X5 ⊕X1 ⊕X2X3X4 ⊕X2X4X5

⊕X2X4 ⊕X3X4X5 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,6(X1, X2, X3, X4, X5) = X1X2X3 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3X4 ⊕X1X4 ⊕X1 ⊕X2X3X4

⊕X2X3 ⊕X2X4 ⊕X2 ⊕X3X4 ⊕X3X5 ⊕X3 ⊕X4X5 ⊕ 1

λ5,7(X1, X2, X3, X4, X5) = X1X2X4 ⊕X1X2X5 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3X4 ⊕X1X3X5 ⊕X1X4 ⊕X3

⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,8(X1, X2, X3, X4, X5) = X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X4X5 ⊕X1X4 ⊕X1X5 ⊕X1 ⊕X2X4X5

⊕X2X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,9(X1, X2, X3, X4, X5) = X1X2X3X4 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4 ⊕X1X5 ⊕X1

⊕X2X3X4X5 ⊕X2X4 ⊕X2 ⊕X3X4 ⊕X3X5 ⊕X4 ⊕X5 ⊕ 1

λ5,10(X1, X2, X3, X4, X5) = X1X2X3X4 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X5 ⊕X1X3X4 ⊕X1X4X5 ⊕X1 ⊕X2X3X4X5

⊕X2X4X5 ⊕X2X4 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕ 1

λ5,11(X1, X2, X3, X4, X5) = X1X2X3X4 ⊕X1X2X3X5 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X5 ⊕X1X3X4X5 ⊕X1X3X5 ⊕X1X3

⊕X1X5 ⊕X1 ⊕X2X3X4X5 ⊕X2X4 ⊕X2X5 ⊕X2 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5

λ5,12(X1, X2, X3, X4, X5) = X1X2X3X4 ⊕X1X2X3X5 ⊕X1X2X4X5 ⊕X1X3X4X5 ⊕X1X3X5 ⊕X1X3 ⊕X1X4X5 ⊕X1X4

⊕X1 ⊕X2X3X4X5 ⊕X2X3 ⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X4X5 ⊕X4
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