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Abstract. At CRYPTO 2019, A. Gohr introduced Neural Differential Cryptanalysis
by applying deep learning to modern block cipher cryptanalysis. Surprisingly, the
resulting neural differential distinguishers enabled a new state-of-the-art key recovery
complexity for 11 rounds of SPECK32. As of May 2024, according to Google Scholar,
Gohr’s article has been cited 178 times. The wide variety of targets, techniques,
settings, and evaluation methodologies that appear in these follow-up works grants a
careful systematization of knowledge, which we provide in this paper. More specifically,
we propose a taxonomy of these 178 publications and focus on the 50 that deal with
differential neural distinguishers to systematically review and compare them. We then
discuss two challenges for the field, namely comparability of neural distinguishers and
scaling.
Keywords: Neural Differential Cryptanalysis, Systematization of Knowledge

1 Introduction
Deep learning has experienced significant advancements in recent years, leading to remark-
able achievements in various domains. Initially, Frank Rosenblatt introduced Multi-Layer
Perceptrons (MLPs) in his book Perceptron in 1958 and laid the foundation for modern
neural networks. The introduction of Convolutional Neural Networks (CNNs) in the
1980s [Fuk80] led to a breakthrough in computer vision by the introduction of LeNet in
1998 [LBBH98], achieving human-level performance in digit recognition. In the game
of Go, advancements in Monte Carlo Tree Search (MCTS) and reinforcement learning
led to remarkable achievements, such as Google’s AlphaGo surpassing human capabil-
ities [SHM+16, SHS+18, SAH+20]. More recently, transformer-based Large Language
Models (LLMs) [VSP+17], like GPT, have revolutionized natural language processing,
demonstrating near-human capabilities in tasks like machine translation and language
generation.

At CRYPTO’19, Gohr’s seminal paper [Goh19a] was “the first to show that neural
networks can be used to produce attacks quite competitive to the published state of the art
against a round-reduced version of a modern block cipher”. A cryptanalytic distinguishing
attack discerns encrypted data from random data by detecting distinctive features within
the input data, enabling the differentiation of their respective distributions. In the context
of differential cryptanalysis, the objective of the distinguisher is to discriminate between
ciphertext pairs C0, C1 derived from plaintext pairs P0, P1 with a fixed input difference
(δ) versus those originating from a random input difference (rand). Such a distinguisher
can be used to mount a key recovery attack on a block cipher: When partially decrypting
an (r + 1)-round ciphertext pair using a guessed round key, the r-round distinguisher
can differentiate between a valid key guess, which yields the characteristic distribution
of the case δ, and an invalid key guess, which yields the uniform distribution of the case
rand. A higher-accuracy distinguisher enhances the effectiveness of the key recovery attack.
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In Neural Differential Cryptanalysis, the distinguisher is a deep neural network N D.
Gohr’s work challenged conventional belief by demonstrating the remarkable cryptographic
distinguishing capabilities of machine learning techniques. Notably, neural networks applied
to SPECK32 reduced to 8 rounds exhibit superior accuracy compared to pure differential
distinguishers. Additionally, Gohr achieved significant improvements in the time complexity
of the 11-round key recovery attack. Gohr’s success has motivated extensive follow-up
research in Neural Differential Cryptanalysis over the last five years.

Figure 1 a) shows the basic scheme for a neural differential distinguisher experiment as
introduced in [Goh19a].

Figure 1: a) Neural Differential Distinguisher: Basic Pipeline. Start with two
plaintext P0, P1, where P0 ⊕ P1 = δ or P0 ⊕ P1 = rand. Encrypt them using a symmetric
key K to obtain ciphertexts C0, C1. Concatenate the ciphertexts C0|C1 and input them
into a neural distinguisher N D. The neural distinguisher’s output is a neuron with a
sigmoid activation function. The sigmoid curve indicates a binary decision output to
answer if P0 ⊕ P1

?= δ. b) Neural Differential Cryptanalysis: Research Areas.

Figure 1 b) gives a broad overview of the research directions in Neural Differential
Cryptanalysis.
Researchers have explored every part of the basic pipeline. A majority of the works citing
Gohr that focus on differential neural distinguishers have attempted to apply the scheme
to other symmetric primitives or to use other neural network architectures.
Variations of the initial experiment have been proposed, for which classification was
proposed at FSE 2024 [BGH+23], based on the number of input ciphertexts n, the number
of used input differences m, the applied feature engineering E and the distinguishing
experiment type T . A general open question for deep neural networks is the one of
explainability, i.e., cryptographic features the neural distinguisher is actually learning.
Gohr’s work was analyzed in detail by Benamira et al. at EUROCRYPT 2021 [BGPT21],
and more recently by Bao et al. at ASIACRYPT 2023 [BLYZ23]. Finally, we also
observe some efforts into making the neural distinguisher process a more automated
process [BGH+23].

Our Contributions. In our systematization of knowledge, we have achieved the following:

1. Comprehensive Field Review: We have conducted an exhaustive survey of the
follow-up work (Section 3). In this process, we have identified the full body of
research in the field of Neural Differential Cryptanalysis. We analyzed the directions
of the field, resulting in a detailed taxonomy of Differential Neural Cryptanalysis
(Section 3).
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2. Rigorous Classification and Comparison: We systematically classified and
compared the outcomes of peer-reviewed research on differential neural distinguishers
(Section 6). Our analysis reveals that, over the past five years, the research commu-
nity has investigated differential neural distinguishers spanning diverse symmetric
primitives and neural network architectures. We also identify severe methodological
issues in some peer-reviewed papers and challenge their results.

3. Best Practice Recommendations: Evaluating research involving the training of
neural networks presents significant challenges. We have developed a comprehensive
set of best-practice guidelines specifically tailored for reviewers of Neural Differential
Cryptanalysis research (Section 7).

4. Future Challenges: We identify and discuss two major challenges set to shape the
next five years of neural cryptanalysis (Section 8).

Organization. We start with a short historical overview of works that connect Artificial
Intelligence (AI) and Cryptography before Gohr’s work [Goh19a] in Section 2. We iden-
tify the full body of research and taxonomy of research directions of Neural Differential
Cryptanalysis in Section 3. The comparative review of all differential neural distinguishers
published to date is provided in Section 6. Based on our observations in the compara-
tive review, we give best practice recommendations for training (and reviewing) neural
distinguishers in Section 7. We formulate two future challenges for the field of Neural
Differential Cryptanalysis in Section 8.

2 AI and Cryptography in the Beginnings
The popularity and widespread adoption of neural differential distinguishers (more precisely,
deep learning-based cryptanalysis) can be credited to the seminal work of A. Gohr [Goh19a].
However, even in that work, the author mentioned a number of related works at the
intersection between cryptanalysis and AI. What distinguishes Gohr’s work from previous
ones is that it considers relevant (modern) ciphers and manages to obtain results that
surpass state-of-the-art conventional cryptanalysis techniques. The following section is
not meant to provide an exhaustive list of works connecting AI and cryptology but rather
provide a brief historical overview of various approaches.

Already in 1947, researchers started considering connections between cryptography and
artificial intelligence [Wea47]. While this attempt was devoid of any technical details, it
still showcases the interest of the scientific community in combining these two domains. In
1984, L. Valiant discussed learnable Boolean functions and mentioned the evidence from
cryptography that the whole class of functions computable by polynomial-size circuits is not
learnable [Val84]. In 1994, R. Rivest wrote a paper on connections between cryptography
and machine learning [Riv91]. Already there, he mentioned the possibility of using machine
learning for cryptanalysis.

Klimov et al. analyzed the security of a key exchange protocol based on mutually
learning neural networks [KMS02]. While the authors showcase it is unlikely that the
attacker using a similar neural network is unlikely to converge to the same key, they
showed it is possible to break the protocol in several ways. Castro et al. used evolutionary
algorithms to construct a cryptanalytic tool that can distinguish between the two-round
TEA algorithm and random permutations [CSIR02]. Laskari et al. considered the ap-
plication of diverse computational intelligence techniques to the cryptanalysis of known
cryptosystems, including public key cryptosystems and Feistel ciphers [LMSV07]. Tapiador
et al. used heuristics to conduct nonlinear cryptanalysis and applied it to the MARS cipher
S-box [TCHC07]. Chou et al. experimented with machine learning techniques to mount
distinguishing attacks and concluded it is not possible to extract useful information from



4 SoK: 5 Years of Neural Differential Cryptanalysis

ciphertexts produced by modern ciphers operating in secure modes, nor to distinguish
them from random data [CLC12].

On the other hand, Svenda et al. used evolutionary algorithms to construct empirical
tests for randomness [SSUM14]. Awad and El-Alfy provided a survey of computational in-
telligence applications in cryptography, focusing on the automated design and cryptanalysis
of ciphers [AEA17].

3 Neural Differential Cryptanalysis: A Taxonomy of Re-
search Directions

3.1 Selected Literature
As of May 13, 2024, a total of 178 works cite Gohr’s work [Goh19a] on Google Scholar.
Out of these, 25 references are written in languages other than English and are not
considered further. Additionally, 30 references are not peer-reviewed, being published
only on platforms such as arXiv or ePrint [BBCD20, BBDH21, BBC+23, BGL+21, ElS21,
GJS20, GLN22, Goh22, HRC21a, HRC21b, HRC21d, JKM20, JKM21, Jun05, KJL+22,
LTJ+20, LSW+23, LRC22, PMC+22, PMK20, SM23a, SWL+24, Sug24, WNB+23, ZL20a,
ZL20b, ZW22a, ZW+22b, ZZW24, ZDW+23]. After excluding these, we are left with 123
peer-reviewed references, which we systematically categorize as shown in Figure 2.

Figure 2: Taxonomy of the peer-reviewed publications in English that cite Gohr’s
work [Goh19a] to date.

We consider the following references outside the field of research on Neural Differential
Cryptanalysis as they are surveys, overviews, or book chapters that treat the use of “ML in
cryptography” [BHR+22, Bru21, CDS22, NR23, PJ21, PJ22, Som23, Tan23, Tu22, ZG24],
or their research focuses on other topics such as: classical cryptanalysis [Bak21, BCdST+23,
ELR20, FLW+23, GPT21, KS22, KY21, SLL24, WW22, YK21b, YK22], cryptanalysis of
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historic or toy ciphers [GZDAL22, KSJS21, KLK+23, LMK+21, PMDC22, PKM23], deep
learning-supported design of cryptographic algorithms [CS21, HLG+23, ITYY21, LTJ+21,
MJBHC22], neural side-channel attacks [GJS21, TDD22, YBBP23, ZZC+22], building dis-
tinguishers between different ciphers [BPS22, DM23, MPM+21, XLC+22], neural preimage
attacks [JMTD22, LLL+21, PTD22a], the introduction of a new tool or library [BGG+23,
Ess23, Hal22], the proposal of a new cipher [BSL21, DCW23], neural output prediction
attacks [KEI+22, KEI+23], neural integral distinguishers [HLLL, ZL22], neural attacks on
protocols [TD21, ZKL20], post-quantum schemes [LWAZ+24, WCCL22], or pseudorandom
number generators [Boa24, EAZD23], or other unrelated topics [KLJW23, ZZS21, PYW24,
AAEK22, MGKMP21, PTD22b, HLZW20, DZF+21, AABAA22, DDK+23, RRSM22b,
So20, TDF+22, MKMP21, MLYW22, Kar23].

This leaves us with a total of 49 peer-reviewed publications in the field of Neural
Differential Cryptanalysis.

The Body of Peer-Reviewed Research in Neural Differential Cryptanalysis

The full body of peer-reviewed publications that focus specifically on advanc-
ing research of Neural Differential Cryptanalysis is [BB22, BBD+23, BGL+22,
BLYZ23, BR21, BGH+23, BGPT21, BBP22, CSY23, CSYY23, DCC23, ERP22,
EGP23, HGH+23, HRC21c, HRC23, KJL+23, KKJ+24, LCLH22, LLHC23, LRC23,
LRCL23, LLS+24, LTZ22a, LTZ22b, MLR+23, MPKM+22, Pal, PPWR23, PSM23,
RLS23, RRSM22a, SM23b, SCL24, SSL+24, SZM21, SSL+22, TTJ23, TH21, WW21,
WWH21, WTZ+22, WQW+24, YK21a, YW23, ZZY+21, ZZ21, ZLWL23, ZWC23].

3.2 Taxonomy of Research Directions

We found contributions to the explainability (or interpretability) of neural distinguishers in
the following nine works [Goh19a, BGPT21, CSY23, BBP22, DCC23, HGH+23, LRC23,
YW23, BLYZ23], and will discuss their respective contributions in Section 4.
We found contributions to neural-aided key recovery attacks in the following 16 works [Goh19a,
BGL+21, HRC21a, TH21, ERP22, LTZ22a, BGL+22, CSY23, CSYY23, BLYZ23, KLK+23,
LCLH22, LLHC23, TTJ23, YW23, ZLWL23], and will give an overview of these works in
Section 5.

The majority (44/49) of peer-reviewed research on Neural Differential Cryptanalysis
involves the training of differential neural distinguishers. More precisely, differential neural
distinguishers are trained in [BGPT21, BB22, YK21a, CSY23, CSYY23, BR21, BGL+22,
SZM21, HRC21c, BBP22, TH21, BGH+23, LLS+24, WW21, RRSM22a, ERP22, WWH21,
ZLWL23, BBD+23, LTZ22a, TTJ23, KJL+23, LCLH22, HRC23, LTZ22b, BLYZ23, HGH+23,
LRC23, EGP23, LRCL23, YW23, DCC23, LLHC23, WTZ+22, SSL+22, RLS23, ZWC23,
ZZY+21, PSM23, MPKM+22, SSL+24, WQW+24, KKJ+24, SM23b]. We will provide a
comparative review of all peer-reviewed differential neural distinguishers to date in Subsec-
tion 6.3.

Research Directions in Neural Differential Cryptanalysis

In the following sections, we will give a survey-like overview of the work-to-date on
explainability (Section 4) and neural-aided key recovery (Section 5). The main part of
our remaining work will focus on a critical, comparative review of trained differential
neural distinguishers (Section 6). Based on this discussion, we will provide best
practice recommendations for neural distinguisher training (Section 7) and formulate
the future challenges (Section 8) for the field of Neural Differential Cryptanalysis.
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4 Overview: Explainability of Differential Neural Distin-
guishers

Neural distinguishers enabling new attacks, potentially better than manual cryptanalysis,
motivated researchers to try to understand what made these attacks so powerful and to
learn new properties from these. The lack of explainability is the “machine’s inability to
explain its decisions and actions to human users” [GVWT21]. One of the major efforts
in research on explainability was the 4-year program (2017-2021) “XAI” by the Defense
Advanced Research Projects Agency (DARPA) of the United States Department of Defense
“DARPA’s Explainable Artificial Intelligence (XAI) Program” [GA19]. A more recent
review of the research in XAI is given in “Interpreting Black-Box Models: A Review on
Explainable Artificial Intelligence” [HCM+24]. To this day, explainability is an active
research field in AI and has resulted in various ways to add some explainability to a neural
network, e.g. by pruning, ablation studies, or visualization techniques.

A. Gohr investigated the capabilities of provided neural networks by introducing a
differential cryptanalytic task called the real differences experiment [Goh19a]. Then,
the author looks at the feature importance and gives some evidence that the neural
distinguishers exploit features outside the difference distribution table.

In [BGPT21], Benamira et al. studied the properties of pairs that were correctly
classified and proposed that Gohr’s neural distinguishers learn differential-linear features.
In particular, the authors observed that the pairs for which the score of the neural
distinguisher at round 5 is high often follow a specific truncated differential pattern at
round 3; a similar observation is made for rounds 6 and 4, leading to the authors proposing
that the features learned by the neural distinguisher are differential-linear in nature. The
authors further modified the neural network to use a Heaviside activation function, which
forces its output to be 0 or 1, to study the Boolean functions learned on SPECK. From these,
they derived advanced features that could be used to replace the initial 1D convolutions of
Gohr’s network. Later, the truncated differential observations from [BGPT21] were used
by [BGH+23] to automatically identify good input differences for neural distinguishers.

In [BBP22], Bacuieti et al. further investigated the structure of the neural network
itself. In particular, they used the lottery ticket hypothesis to prune Gohr’s neural network
to a minimal working version, on which they used feature visualization techniques to obtain
a visual representation of the neural network’s behavior. They additionally show that,
for the case of SPECK32, there is no significant accuracy difference between the depth 1
neural network and the depth 10 version for Speck reduced to 7 and 8 rounds.

Ablation studies are routinely performed for neural networks to understand their
sensitivity and fidelity under small perturbations on either the network itself or its
input data. Ablation studies can give insights into the explainability of neural network
models, as detailed, for example, in “BASED-XAI: Breaking Ablation Studies Down for
Explainable Artificial Intelligence” [HSB+22], or “Logic Rule Guided Attribution with
Dynamic Ablation” [ALH22]. In [YW23], Yue et al. performed a data ablation study
to observe trade-offs between improved accuracy and overfitting when using multiple
ciphertext pairs per sample for differential neural distinguishers.

Chen et al. proposed a new concept named Informative Bit and a test called a Bit
Sensitivity Test to identify those [CSY23]. The authors defined an informative bit as the
ciphertext bit that is helpful in distinguishing between the cipher and a pseudo-random
permutation. As such, this can be seen as an interpretability approach.

Deng et al. introduced the attention mechanism into the differential cryptanalysis
on SPECK [DCC23]. The authors used a visualization algorithm to demonstrate the
effectiveness of the attention mechanism and further analyze the features extracted from
the ciphertext by deep learning. With this visualization technique, the authors evaluate on
which bits the attention mechanism focuses most, which in turn provides interpretability
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results.
Hambitzer et al. introduced deep learning ensemble (NNBits) as a tool for bit-profiling

and evaluation of cryptographic (pseudo) random bit sequences [HGH+23]. From the
bit-level information provided by NNBits, the authors managed to partially explain the
accuracy obtained by Gohr’s depth-1 neural distinguisher in round 6 for SPECK32/64.

Liu et al. performed an interpretability analysis of two new neural distinguishers whose
results are mainly reflected in the relationship between the neural distinguishers, truncated
differential, and advantage bits [LRC23]. The authors considered the interpretability of
the algorithm named the advantage bits search and investigated the types of bit positions
preferred by the distinguisher.

Bao et al. developed explicit rules to be used alongside DDTs to enhance the effectiveness
of distinguishers [BLYZ23]. The rules are based on strong correlations between bit values in
the right pairs of XOR-differential propagation through addition modulo 2n. The authors
also show that those rules can be closely linked to the previous studies of the multi-bit
constraints and the fixed-key differential probability. Finally, the authors concluded that
by leveraging the value-dependent differential probability, it is possible to add additional
knowledge to DDT-based distinguishers.

5 Overview: Neural Aided Key Recovery Attacks
As already stated, the turning point in the development of AI-based distinguishers was the
work by A. Gohr that managed to obtain results rivaling (and surpassing) state-of-the-art
results with manual cryptanalysis [Goh19a]. More precisely, Gohr obtained high accuracy
for 6-round and 7-round neural distinguishers of Speck32/64 and achieved 11-round and
12-round key recovery attacks based on the neural distinguishers.

Bao et al. introduced the generalized neutral bits techniques and the framework of
conditional differential neural cryptanalysis [BGL+21]. The authors improved the success
rate of deep learning-assisted key recovery attacks, considering accuracies and the number
of rounds of neural distinguishers, as well as the classical differential paths spliced in front
of neural distinguishers. Moreover, they explored data complexity for deep learning-assisted
key recovery attacks. Finally, they managed successful key recovery attacks on 13-round
Speck32/64 and 16-round Simon32/64.

Hou et al. trained 9-round and 8-round differential distinguisher of SIMON32 based on
deep residual neural networks. The authors managed to construct a last subkey recovery
attack on 11-Round SIMON32 with practical data and time complexities [HRC21a].

Tian and Hu trained a residual neural network to get the 7-, 8-, and 9-round neural
distinguishers for SIMON32/64 [TH21]. Moreover, they performed a distinguishing attack
and key-recovery attack against 15-round SIMON32/64.

Yadav and Kumar used an r-round classical differential distinguisher to build an
(r + s)-round ML-based differential distinguisher, where s denotes the rounds covered
by the ML-based distinguisher [YK21a]. The authors demonstrated a reduction in data
complexities of distinguishers for 9-round SPECK32, 12-round SIMON32, and 8-round
GIFT64.

Ebrahimi et al. presented a Partial Differential (PD) ML-distinguisher and demon-
strated its effectiveness on lightweight cipher SPECK32/64 [ERP22]. With this approach,
the authors managed to train a partial ML distinguisher over 8-bits, which is almost
as accurate as an equivalent ML distinguisher over the entire 32 bits for six rounds of
SPECK32/64.

Lyu et al. improved upon Gohr’s framework and applied it to Simeck32/64 [LTZ22a].
The authors obtained 8/9/10-round neural differential distinguishers for Simeck32/64 and
recovered the penultimate round and last round subkeys for 13/14/15-round Simeck32/64
with low data complexity and time complexity.
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Bao et al. developed ML-based key-recovery attacks on more extended round-reduced
Speck32/64 [BGL+22]. With their approach, the authors achieved an improved 12-round
and the first practical 13-round attacks. Moreover, the authors provided the first practical
16-round-based key-recovery attack on Simon32/64.

Chen et al. proposed a Neural-Aided Statistical Attack (NASA) running experiments
on round reduced Speck32/64, DES, and Speck96/96 [CSY23]. With this approach, the
authors break 10-round DES while Gohr’s attack breaks 8-round DES.

Chen et al. proposed a neural distinguisher that considers multiple ciphertext pairs
simultaneously and builds multiple ciphertext pairs from different keys [CSYY23]. The
authors consider five round-reduced ciphers: Speck32/64, Chaskey, PRESENT, DES, and
SHA3-256, and show reduced data complexity of the attack.

Bao et al. provided explicit rules to be used alongside DDTs to enhance the effectiveness
of distinguishers compared to pure DDT-based distinguishers [BLYZ23]. The authors
successfully conducted a 14-round key recovery attack on Speck32/64.

Kim et al. considered lightweight block ciphers (S-DES, S-AES, and S-SPECK) and
showed a reduction in the number of parameters required for training and an increase in the
average of bit accuracy probability compared with previous state-of-the-art work [KLK+23].

Lin et al. presented practical key recovery attacks on KATAN ciphers [LCLH22]. More
precisely, the authors provided practical key recovery attacks on the 125-round KATAN32,
106-round KATAN48, and 95-round KATAN64.

Lin et al. proposed a conditional differential analysis framework that is based on
deep learning with the multi-differential neural distinguishers [LLHC23]. The authors
presented practical key recovery attacks on the 97-round KATAN32, 82-round KATAN48,
and 70-round KATAN64.

Teng et al. constructed neural distinguishers for the LBC-IoT and SLIM block ci-
phers [TTJ23]. The authors showed a practical-time key recovery attack on LBC-IoT for
up to 8 rounds.

Yue and Wu showed a better accuracy of the 7-round differential neural distinguisher
for Speck32/64 compared to the one from A. Gohr [YW23]. The authors demonstrated a
key recovery attack on 8 rounds of Speck32/64.

Zhang et al. provided practical key recovery attacks on SIMECK32/64, improved the
15-round attack, and launched the first practical 16-, 17-round key recovery attacks for
SIMECK32/64 [ZLWL23].

6 Comparative Review: Differential Neural Distinguishers

In the following, we provide a comparative review of all trained differential neural dis-
tinguishers to date. First, all investigated neural network architectures to date are
reviewed (Subsection 6.1), then we detail the classification scheme (Subsection 6.2) and
finalize with a comparative review of the best differential neural distinguishers for each
symmetric primitive (Subsection 6.3).
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6.1 Architectures
In deep learning, various specialized layers and mechanisms1 optimize neural networks. To
date, a number of different neural network architectures have been employed in Neural
Differential Cryptanalysis.

N DGohr N DGohr is the original neural network architecture as introduced by Gohr
in [Goh19a]. It consists of an initial reshaping that “mirrors the word-oriented structure of
the cipher”, a single bit-sliced convolution, a residual convolutional tower of two different
possible depths (depth-1, depth-10), and, finally, a fully connected prediction head. A
staged training approach in combination with an elaborate additional training procedure
is required to obtain the 8-round distinguisher for SPECK. N DGohr has subsequently
been used on ten primitives (CHASKEY, DES, KATAN, LBCIoT, PRESENT, SIMECK,
SIMON, SLIM, SPECK, SHA3) by [BGPT21, HRC21c, SZM21, TH21, WW21, BB22,
LCLH22, LTZ22b, WTZ+22, CSY23, CSYY23, EGP23, HGH+23, LLHC23, LRCL23,
RLS23, TTJ23, ZWC23, ZLWL23, WQW+24]. A non-peer-reviewed work by Gohr, Lean-
der, and Neumann [GLN22] provides a thorough investigation of relevant hyperparameters
when adapting N DGohr to a new primitive. Variants of Gohr’s original network have been
created: N Dpruned

Gohr is a pruned version of N DGohr for SPECK introduced in [BBP22].
N Dattntn.

Gohr was introduced in [DCC23] and adds an attention mechanism to N DGohr and
applies it to SPECK. [HGH+23] uses an ensemble of N DGohr (N Densmbl.

Gohr ) to explain the
accuracy of Gohr’s network on SPECK. A variant of Gohr’s network that uses a separable
convolution instead of the traditional one (N Dsep.conv.

Gohr ) was introduced in [LRC23] and
applied to SPECK with the motivation to save training cost.

Convolutional Neural Networks without residual connections (CNNs) have been in-
vestigated in [BB22], and it was concluded that “CNNs are not suitable for the purpose
of finding a distinguisher”. This is contradicted in [BR21]. Moreover, [WWH21] builds
CNN-based neural differential distinguishers for PRESENT and SPECK. [MPKM+22]
compares CNNs and MLPs on GIFT and PRIDE, where MLPs give better accuracies.
DenseNet is a variant of CNNs in which every convolutional layer is directly connected to
all following downstream layers. It has been used by [SM23b] on SPECK-32.

DBitNet DBitNet was introduced in [BGH+23] as a “cipher-agnostic” neural network
that aims to avoid SPECK-dedicated features of N DGohr. It is based on dilated convolu-
tional layers. In a dilated convolution, the convolution kernel is not learning dependencies
between neighboring neurons but between neurons that are farther apart. In this way,
DBitNet aims to avoid the input reshaping and bit-slicing convolution of N DGohr. No-
tably, using a simple staged2 training pipeline, and a simple additional polishing step,
the same accuracy as Gohr is obtained for SPECK. It has been employed in [BGH+23]

1We give a short introduction to the needed vocabulary to understand the various architectures used for
Neural Differential Cryptanalysis: MLPs employ densely connected layers in which every neuron in layer i
is connected to all neurons in layer i − 1. This leads to a large number of parameters. A convolutional
layer, the basis for CNNs (Convolutional Neural Networks), uses filters to scan the input, requiring more
computations (FLOPs or MACs) than densely connected layers but excelling in capturing spatial hierarchies.
The inception module enhances feature capture by using multiple parallel convolutional operations with
different kernel sizes, concatenating the outputs for richer feature extraction. Residual connections allow
information to bypass layers in RESNets (Residual Neural Networks), preventing blockages and enhancing
information flow during training. LSTM is a type of RNN (recurrent neural network) that captures
long-term dependencies in sequential data with memory cells and gating mechanisms and is effective
in tasks like time-series prediction. Attention mechanisms are the basis for modern transformer neural
networks, dynamically focusing on important input parts and improving tasks like translation or generative
AI.

2Staged training refers to the method to continue training the best r − 1 round neural differential
distinguisher in round r.
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to automatically generate distinguishers for seven primitives (SPECK, SIMON, HIGHT,
PRESENT, KATAN, TEA and XTEA, LEA).

MLP The MLP (Multi-Layer Perceptron) is a neural network architecture in which
subsequent layers are densely connected. MLPs are often outperformed by residual
networks and CNNs. However, they are generally computationally more lightweight,
which motivates many works [BR21, YK21a, ZZY+21, BB22, ERP22, RRSM22a, SSL+22,
BBD+23, PSM23, KKJ+24, SSL+24] on diverse primitives (ASCON, FF1 and FF3, GIFT,
GIMLI, KNOT, PRESENT, SIMECK, SIMON, SPECK, TEA and XTEA, TinyJAMBU)
to investigate their potential as a differential neural distinguisher.

Long-short term memory cells (LSTMs) were used in [BB22, SSL+22] on GIMLI,
TinyJAMBU, and GIFT. [BB22] investigated CNNs in comparison to Long Short-Term
Memory Networks (LSTMs) and MLPs on the GIMLI-PERMUTATION and found that
MLPs perform best. In contrast, [SSL+22] compared LSTMs and MLPs on TinyJAMBU
and GIFT and obtained better neural distinguishers using LSTMs.

Inception In the Inception architecture (INC), a layer inspired by GoogLeNet’s Incep-
tion module replaces at least one of the (convolutional) layers of the original N DGohr
architecture. The Inception module consists of multiple parallel convolutional layers that
process the module input using a variety of kernel sizes. This might allow for extracting
features that could not be extracted with one specific kernel size.

[ZWC23, ZLWL23] construct the INC architecture by replacing the initial convolutional
block of N DGohr and obtain neural distinguishes for SIMECK, PRESENT, CHASKEY,
and DES. [YW23] construct INC by replacing the convolutional layers in the residual
blocks of N DGohr and apply this architecture to SPECK.

[BLYZ23] introduces the idea of staged training together with a partially frozen network
(INCfreeze) . The underlying idea for the freezing of particular layers is that “convolutional
layers are viewed as feature extractors” (which can be reused in subsequent rounds and
can therefore be frozen), while “fully connected layers are viewed as a classifier” (which
have to be updated when training a new round).

Others. In [KJL+23], the first quantum neural network based distinguisher (Quantum)
is built for SPECK. SENet stands for Squeeze-and-Excitation network and was used
for the first time as a neural differential distinguisher in [BGL+22]. SENet introduces
a new building block for CNN that improves the finding of channel interdependencies
at almost no computational cost. [BGL+22] applied SENet to SPECK and SIMON.
SE-ResNet was first used as differential neural distinguisher by [LLS+24], motivated by
“the success of N DGohr on SPECK [Goh19a] and SENet on SIMON [BGL+22]”. [LLS+24]
apply SE-ResNet to SIMON and SIMECK.

Note that [BGL+22] also investigates DenseNet; it is, however, surpassed by SENet
and, therefore, does not appear in the following compilation of best neural distinguishers.
Gohr’s analysis was performed within the secret key chosen-plaintext attack (SK / CPA)
model. We do not consider the following neural distinguisher that was trained under a
different attack model: [PPWR23] uses generative AI trained in an adaptively chosen
ciphertext or known key scenario to distinguish 10-round SPECK32/64. We report
Classical ML results, such as SVM in [BBD+23], on the rare occasion that they are
competitive with neural distinguishers.

6.2 Classification Scheme n-m-T -E for Neural Distinguishers
The abundance of different settings used to train neural distinguishers sometimes makes
it difficult to compare two results. In [BGH+23], the authors propose a classification of
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neural distinguishers based on their distinctive features, labeled n, m, T , and E. We use
that classification in our review.

6.2.1 Number of ciphertexts per sample: n

In [Goh19a], the scores output by a distinguisher trained to recognize single pairs are
combined for multiple pairs with the same labels during the key recovery process, effectively
increasing the strength of the signal and resulting classification accuracy. In [GLN22],
the authors note that this notion was rediscovered in several papers and propose a score
combining formula to transform a single pair classifier into a multiple pair classifier, while
other works, such as [BGPT21], used the less effective score averaging. In [SSL+24], the
authors propose to replace scores aggregation with an MLP to classify based on the scores
of multiple pairs.

In this classification, we consider the number of ciphertexts per sample used in the
distinguisher training, independently of external scores aggregation through averaging
or otherwise. This notion was introduced in [BGPT21], who built a neural distinguisher
accepting multiple pairs at once. The Multiple Output Difference (MOD) format, in-
troduced in [HRC21c], consists in concatenating not multiple pairs, but their respective
differences, i.e., C0 ⊕ C1||C2 ⊕ C3 . . .. In [CSYY23], two different settings are explored:
one where the k pairs that form a sample share the same key and one where they do not.
The authors note that compared to [GLN22], no additional features seem to be learned by
gathering multiple pairs, compared to a single pair distinguisher and score aggregation.
They also propose the data reuse strategy, in which the number of multi-pair samples
created from a set of pairs is increased through picking with replacement. In [ZWC23], the
authors raise the question of the number of samples to use when the number of pairs per
sample increases and consider two scenarios for training: one where the number of pairs is
fixed to 107 and one where the number of (multi-pair) samples is set to 107. The authors
conclude that fixing the number of pairs to 107 (and hence obtaining a training set with
107

n entries) leads to overfitting, fluctuations in validation accuracy, and slow convergence
of the model. Finally, in e.g., [SSL+22], the authors consider polytopic samples with
multiple input differences, where the used plaintexts are (P, P ⊕ δ0, P ⊕ δ1 . . .), effectively
building k relevant pairs from k +1 plaintexts. A similar technique is referred to as mixture
differential in [WQW+24].

6.2.2 Number of input differences: m

Baksi et al. [BB22] explore a setting where a set of m input differences are considered. This
setting was applied to various permutations: KNOT, ASCON, CHASKEY, and GIMLI,
with m = 2 for GIMLI. Su et al. [SZM21] introduced a model called polytope differential
neural network distinguisher. In this model, multiple differences are used, keeping one
plaintext fixed among the differences and changing the other. In [WTZ+22], propose a
multiple input difference scheme called NDam, where the first ciphertext is the encryption
of a random plaintext P0, each subsequent ciphertext Ci is the encryption of Pi−1 ⊕ ∆i−1
so that n = m + 1.

6.2.3 Feature engineering type: T

Feature engineering is often used in machine learning to derive advanced features from the
raw dataset, e.g., [GBC17]. A natural feature to use for differential neural cryptanalysis
is to replace the ciphertext pairs (T = CT) by their XOR difference (T = δ ). This
approach, used by works such as Baksi et al. [BB22], Zezhou et al. [HRC21c], and Yadav
et al. [YK21a], simplifies the training process, at the cost of losing some information.
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Advanced types of feature engineering (T = A) include, e.g., partial decryption of
the ciphertexts. For instance, in the case of SPECK32, the right half of the previous
round state can be computed without the key by XORing the two halves and rotating.
This type of feature engineering was used in [BGPT21]. A similar technique permits
the retrieval of the difference in the previous round for SIMON-like ciphers; [BGL+22]
showed that this transformation could significantly improve the accuracies of neural
distinguishers, and [LLS+24] exhibited even better distinguishers on SIMON by exploiting
inferred information from two rounds ahead; their data format is composed of the two
ciphertexts, the difference at the previous round, and the difference two rounds before using
subkey 0 for decryption. We refer to such types of feature engineering as A for Advanced.
Finally, in [LRCL23], two formats labeled by the authors as MRMSD (Multiple Rounds
Multiple Splicing Differences) and MRMSP (Multiple Rounds Multiple Splicing Pairs) use
partial decryption with a random key for one round; in the first case, the output difference
and this estimated previous round difference are given to the neural distinguisher; in the
second case, the corresponding ciphertexts are given. In [YW23], the authors use data
format (Rr−1, R′

r−1, dl, C0, C1) for SPECK, where dl is an estimation of the difference in
the left part at round r − 1, computed as ((Lr ⊟Rr−1) ⊕ (L′

r ⊟R′
r−1), equivalent to partial

decryption with key 0.

6.2.4 Type of distinguishing experiment: E

In the initial setting [Goh19b] (E = R ), the samples are EK(P0)||EK(P0 ⊕ x), and the
label is x

?= δ. Gohr additionally defines the real ciphertext experiment (E = RM ), where
the samples are EK(P0) ⊕ x||EK(P0 ⊕ δ) ⊕ x, and the label is x

?= 0, i.e., the distinguisher
determines whether the ciphertext pair has been XORed with a random mask. The success
of neural distinguishers in this experiment shows that information beyond a simple XOR
difference is learned.

In [BB22]’s model 1, the samples are formed as (EK(P ) ⊕ EK(P ⊕ δi)), i ∈ [0; m − 1],
and the label is i (E = D).

In [BR21], the samples are built using modular addition difference, rather than XOR,
to analyze the ciphers TEA and RAIDEN (E = R+ ).

In [EGP23], the samples are built through rotational-XOR differences rather than
XOR, which we denote by E = R+.

6.3 Comparative Review
Based on the full body of research in Neural Differential Cryptanalysis (Subsection 3.1),
this section provides a comparative review of all best published neural distinguishers,
classified according to the previously introduced scheme, together with their neural net-
work architecture (Subsection 6.1). The comparative review for all symmetric primitives
(ASCON, CHASKEY, DES, FF1 and FF3, GIFT, GIMLI, HIGHT, KATAN, KNOT,
LBCIoT, LEA, PRESENT, PRIDE, SHA3, SIMECK, SIMON, SKINNY, SLIM, SPECK,
TEA and XTEA, TinyJAMBU) can be found in the appendix. Here, we show several
examples.

The neural differential distinguishers of each publication were selected as follows: i) We
present the best result of each work, either the standard setting (2-1-CT-R or 2-1-δ-R)
or an alternative setting (n-m-T -E). If additionally a result in the standard setting is
given, we will present it as well. ii) In most works, no error margins on the results are
provided, preventing us from displaying them. Ideally, the accuracies shown should be test
accuracies on sets of several fresh samples. However, in many works, only the validation
accuracy is reported. iii) Some works, such aa [YK21a], consider the concatenation of an
r-round probabilistic differential distinguisher and an s-round neural distinguisher. In
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this table, we focus solely on the neural distinguisher part. Note that from a machine
learning and a statistical perspective, the number of training and validation samples is very
important. However, from a cryptographic perspective, the number of needed encryptions,
i.e., ciphertexts, is more relevant. Accordingly, the numbers reported in the following
under Trn. (training data) and Val. (validation data) are the number of ciphertexts.

6.3.1 ASCON

ASCON is an SPN-based permutation with an input size of 320 bits. It can be used within
a sponge construction to build the authenticated ciphers ASCON-128 and ASCON-128a,
both using 128 bit keys and 12 rounds in the initialisation, and respectively 64 and 128 bit
messages, and 6 and 8 rounds in the encryption process. The hash function ASCON-hash,
also based on sponge construction, hashes 64-bit messages over 12 rounds. ASCON was
announced as the winner of the NIST Lightweight Cryptography Competition in February
2023.

[SSL+24] train neural differential distinguishers for the 4-round ASCON-PERMUTATION
with an accuracy of 0.5069 in the standard setting (2-1-δ-R), and can improve the accuracy
to 0.6925 by training another neural network to classify based on the distribution of
multiple scores. We do not include this result in the table, as it is a system where the
neural distinguisher part is run separately on single pairs rather than a neural distinguisher
accepting multiple pairs.

Table 1: Overview of the Differential Neural Distinguishers for ASCON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
ASCON-PERM MLP 2-2-δ-D 1.1M 1.1M - 3 0.9861 [BB22]

Classical ML 2-2-δ-D 64K (2 · 214.96) 16K (2 · 212.96) - 3 1 [BBD+23]
MLP 2-1-δ-R 20M 20M - 4 0.5069 [SSL+24]

ASCON (Rate) Classical ML 2-2-δ-D 64K (2 · 214.96) 16K (2 · 212.96) - 3 0.916 [BBD+23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

6.3.2 GIFT

GIFT is a PRESENT-inspired SPN cipher, using 128-bit keys to encrypt 64-bit (GIFT64)
or 128-bit (GIFT128) blocks for 28 and 40 rounds, respectively. GIFT was one of the
finalists of the NIST Lightweight Cryptography Competition.

In [ZZY+21]†, the authors claim a distinguisher on 7 rounds because the training
accuracy is 0.6487, despite the validation accuracy being non-significant (0.5002); in the
table, we report this 7 rounds distinguisher as it is the best one claimed by the authors,
but also their 6-round distinguisher, which has a significant validation accuracy.

In [MPKM+22]†, the authors claim a full round distinguisher on GIFT-64 with over
90% accuracy, using 220 polytopic samples (composed of 3 ciphertexts each) in total, of
which 15% are kept for validation, respectively testing, and a simple MLP architecture; they
also claim a full round distinguisher on PRIDE with 100% accuracy. Full-round attacks
on modern and reputable ciphers are an extraordinary claim and require extraordinary
evidence, which the author’s manuscript does not provide.

In [RRSM22a], only 10K samples are used for training and testing; as a result, the
distinguishers in Table 5 exhibit significant overfitting (e.g., 92% training accuracy and
25% testing accuracy for M1 on 6 rounds).
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Table 2: Overview of the Differential Neural Distinguishers for GIFT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GIFT-64 MLP 2-1-δ-R 67M (2 · 225) 67M - 4 0.65 [YK21a]

LSTM 3-2-CT-R 17M (2 · 223) 4M (2 · 221) - 6 0.5754 [SSL+22]
MLP 3-2-δ-R 2.2M 0.5M - FULL 0.96 [MPKM+22]†

GIFT-128 MLP 2-1-δ-R 20M 2M - 7 0.5542 [SSL+24]
TweGIFT-128 MLP 2-1-CT-R 2M 200K - 6 0.5675 [ZZY+21]

MLP 2-1-CT-R 2M 200K - 7 0.5002 [ZZY+21]†

GIFT-COFB MLP 2-4-δ-D 20K 20K - 4 0.615 [RRSM22a]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

† A critical discussion of these results is provided in the text.

6.3.3 KATAN

KATAN is a family of FSR-based block ciphers with block sizes 32, 48, or 64, key size 80,
and 254 rounds. For KATAN32, [BGH+23] reaches statistically significant accuracies up to
69 rounds in an automatically generated distinguisher, and note that this can be improved
to a 71-round distinguisher with 0.5034 ± 0.0002 accuracy using their simple polishing
step. In contrast, [LCLH22] reaches 51 rounds in the standard setting, and 59 when
using 64 pairs. In [LLHC23, LCLH22], the authors prepend a conditional probability 1
differential on r rounds (which holds based on conditions on the equality of some plaintext
and key bits) to an s rounds neural distinguisher. For these distinguishers, we write
(r + s) to highlight which part is purely neural. In [LLHC23], these distinguishers lead to
practical key recovery on 97, 82, 70 rounds of KATAN32, 48 and 64 in the single key model.
In [LCLH22], practical key recoveries are obtained for 125, 106 and 95 rounds respectively,
in the related key scenario. Single-key conditional neural distinguishers are also mentioned
in [LCLH22] for 85, 72 and 61 rounds respectively, but the r + s decomposition is not
given so we omit them in the table.

Table 3: Overview of the Differential Neural Distinguishers for KATAN.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
KATAN32 N DGohr 2-1-δ-R 20M 2M - 51 0.533 [LCLH22]

N DGohr 64-1-δ-R 64M 6.4M - 84∗ (26+58) 0.602 [LLHC23]
N DGohr 128-1-δ-R 1280M 128M - 59 0.575 [LCLH22]
DBitNet 2-1-CT-R 20M 2M ✓ 69 0.505 [BGH+23]

KATAN32 RK N DGohr 128-1-δ-R 1280M 128M - 112∗ (66+46) 0.647 [LCLH22]
KATAN48 N DGohr 64-1-δ-R 64M 6.4M - 72*(25 + 47) 0.5820 [LLHC23]

N DGohr 2-1-δ-R 20M 2M - 40 0.58 [LCLH22]
N DGohr 96-1-δ-R 960M 96M - 50 0.54 [LCLH22]

KATAN48 RK N DGohr 48-1-δ-R 960M 96M - 96*(57+39) 0.625 [LCLH22]
KATAN64 N DGohr 64-1-δ-R 64M 6.4M - 61*(25+26) 0.6130 [LLHC23]

N DGohr 2-1-δ-R 20M 2M - 31 0.718 [LCLH22]
N DGohr 128-1-δ-R 1280M 128M - 36 0.548 [LCLH22]

KATAN64 RK N DGohr 128-1-δ-R 1280M 128M - 86∗ (54+32) 0.728 [LCLH22]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

RK Related key setting.
* (r + s) means an s-round neural distinguisher with r are prepended rounds.
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6.3.4 PRESENT

PRESENT is an SPN-based block cipher, encrypting 64-bit blocks with 80 (PRESENT-80)
or 128-bit keys (PRESENT-128) for 31 rounds.

In [BGH+23], a 9-round distinguisher with an accuracy of 0.5092 is given, which
favorably compares to the 7-round distinguishers of [CSYY23], despite [CSYY23] using 4
pairs per sample; on the other hand, [ZW22a] obtains a slightly higher accuracy, at the
cost of using 32 ciphertexts per samples. In comparison, the best differential characteristic
for PRESENT reduced to 9 rounds has probability 2−36 [Wan07].

Table 4: Overview of the Differential Neural Distinguishers for PRESENT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
PRESENT CNN 2-1-CT-R 20M 2M - 7 0.533 [WWH21]

N DGohr 2-1-CT-R 20M 2M ✓ 7 0.563 [GLN22]
N DGohr 8-1-CT-R 20M 2M - 7 0.5853 [CSYY23]
CNN 2-2-δ-D 20M 2M - 8 0.515 [WWH21]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.512 [BGH+23]
INC 32-1-CT-R 320M 32M - 8 0.5416 [ZWC23]

PRESENT-64/80 RK MLP 6-1-δ-R 6.3M∗ 1.6M∗ - 5 0.614 [PSM23]
CNN 2-2-δ-D 20M 2M - 10 0.517 [WWH21]

RK Related key setting.
∗ [PSM23] uses 220 samples, each composed of 3 pairs, i.e., 6.3M ciphertexts for training, and one quarter

as many pairs, i.e., 1.6M ciphertexts for validation.
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-). The work [GLN22] of Gohr, Leander, and Neumann was
not peer-reviewed.

6.3.5 SPECK

SPECK is a family of ARX block ciphers, denoted SPECK-B/K, that encrypt blocks of size
B with a key of size K. SPECK-32/64, SPECK-48/96, SPECK-64/128, SPECK-96/96,
and SPECK-128/256 have 22, 23, 27, 29, and 34 rounds, respectively. Neural differential
distinguishers have been built for a versions of SPECK.

For SPECK-32, the best accuracies are reported when multiple the number of ci-
phertexts n is increased, as is done in [BBD+23] (n = 2), [HRC21c, CSYY23] (n = 64),
[LRCL23] (n = 128). Currently, the best accuracy of 93.9% in round 8 of SPECK-32 is
obtained by [CSYY23] when using n = 64. In the standard setting (2-1-CT-R) [BGH+23]
reach the same accuracy as [Goh19b] with an automated pipeline that is not dedicated to
SPECK3. In terms of larger state experiments, two automated pipelines reach 7, respec-
tively 8 rounds of SPECK-64 [WW21, BGH+23]. The 8-round accuracies can be improved
when increasing the number of ciphertext pairs to n = 128, respectively n = 256, and
using MRMSD feature engineering [HRC21c, LRCL23]. For SPECK-96, [CSY23] obtains
the first 7-round distinguisher, while for SPECK-128, [BGH+23] obtains the first 10-round
neural distinguisher in an automated pipeline.

3We note that [BLYZ23] states that “the simple training pipeline [of [BGH+23]] did not produce N Ds
with the same accuracy as Gohr’s on 8-round Speck32/64; it needs a further polishing step to achieve
similar accuracy, demanding more time and data” which is not entirely correct: While in [BGH+23], a
polishing step is indeed needed to achieve the same accuracy, the polishing step is a highly simplified
version of the 8-round training scheme used by Gohr (in conclusion, it does not demand more time or
data).
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Table 5: Overview of the Differential Neural Distinguishers for SPECK.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SPECK-32 MLP 2-1-δ-R 209M 105M - 3 0.79 [YK21a]

Quantum 2-1-CT-R / 2K - 5 0.53 [KJL+23]†
CNN 2-2-δ-D 20M 2M - 5 0.959 [WWH21]
N Densmbl.

Gohr 2-1-CT-R 20M 2M - 6 0.781 [HGH+23]
MLP 2-1-δ-R 20M 2M - 6 0.72 [ERP22]
N DGohr 100-1-A-R 20M 2M - 6 1 [BGPT21]
N Dpruned

Gohr 2-1-CT-R 20M 2M - 7 0.596 [BBP22]†
DenseNet 2-1-δ-R 2M 2M - 7 0.531 [SM23b]†
CNN 2-2-δ-D 20M 2M - 7 0.599 [WWH21]
N DGohr 2-1-CT-R 20M 2M ✓ 7 0.614 [WW21]
N Dattntn.

Gohr 2-1-CT-R 20M 2M - 7 0.6169 [DCC23]
CNN 2-1-CT-R 20M 2M - 7 0.618 [WWH21]
N Dattntn.

Gohr 16-1-CT-R 160M 16M - 7 0.728 [DCC23]
N Dsep.conv.

Gohr 8-1-CT-R 80M 8M - 7 0.6939 [LRC23]
INC 64-1-PD-R 64M 6.4M - 7 0.9713 [YW23]
MLP 2-2-δ-D 21M 12M - 8 0.51413 [BBD+23]
INCfreeze 2-1-CT-R 20M 2M - 8 0.5135 [BLYZ23]
N DGohr 2-1-CT-R 20M 2M - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.514 [BGH+23]
MLP 2-2-δ-D 14M 8M - 8 0.515 [BBD+23]
N DGohr 64-1-δ-R 64M / - 0.64M 0.564 [HRC21c]
N DGohr 128-1-MRMSD-R 128M 12.8M - 8 0.6502 [LRCL23]
N DGohr 64-1-CT-R 20M 2M - 8 0.939 [CSYY23]

SPECK-32 RK CNN 2-2-δ-D 20M 2M - 7 0.559 [WWH21]
CNN 2-1-CT-R 20M 2M - 7 0.576 [WWH21]
INCfreeze 2-1-CT-R 20M 2M - 10 0.5562 [BLYZ23]

SPECK-48 N DGohr 2-1-CT-R 20M 2M ✓ 7 0.726 [WW21]
N DGohr 96-1-MRMSD-R 96M 9.6M - 8 0.5462 [LRCL23]

SPECK-64 N DGohr 2-1-CT-R 20M 2M ✓ 7 0.632 [WW21]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.537 [BGH+23]
N DGohr 128-1-δ-R 128M 1.28M - 8 0.632 [HRC21c]
N DGohr 128-1-MRMSD-R 128M 12.8M - 8 0.7181 [LRCL23]

SPECK-96 N DGohr 2-1-CT-R 20M 2M - 7 0.850‡ [CSY23]
SPECK-128 DBitNet 2-1-CT-R 20M 2M ✓ 10 0.593 [BGH+23]
RK Related key setting. / means unknown.
‡ In [CSY23], the accuracy of the teacher network for SPECK-96 was not given, but we were able to

retrieve it by running the model on the authors’ repository; we give the average of 10 runs, each with
106 samples.

† [KJL+23]report an accuracy of 53% (round 5) on only 1,000 validation samples. The experimental
mean or standard deviation is not given. For a binomial experiment on 1k samples, the statistically
expected standard deviation is 1/(2

√
n) = 1.6%. Therefore, the reported result is only 1.9σ away from

random and is likely not statistically significant. [SM23b]report an accuracy of 53.1% (round 7) on 2M
training, respectively validation samples, and provide a comparison in which DenseNet outperforms
N DGohr. At such a small number of training samples, both networks show heavy overfitting ([SM23b,
Table 2]), and the authors themselves call the result only “marginal”.

† In [BBP22], the authors evaluate several pruned neural distinguishers; we report the smallest one,
Gohr’s N DGohr with depth 1, 7 channels removed from C1, 21 from C2, 25 from C3, 46 neurons from
D1, and 36 from D2.
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6.3.6 SIMON

SIMON is a family of AND-RX block ciphers, denoted SIMON-B/K, that encrypt blocks of
size B with a key of size K. SIMON-32/64, SIMON-48/96, SIMON-64/128, and SIMON-
128/256 have 32, 36, 44, and 72 rounds, respectively. For the case of SIMON, some authors
experimented with a vast amount of data: [HRC21c] uses 225 (33.6M) pairs for training,
and [BGL+22] obtain an 11-round distinguisher for SIMON32 at the cost of staged trained
in two steps, with respectively 228 (268M) and 230 (1074M) pairs. In [BGH+23], the
authors propose a polishing step, retraining a neural distinguisher initially trained with 107

pairs with an additional 109 pairs. In [LLS+24], Lu et al. use advanced feature engineering
and 320M ciphertexts (2 · 107 samples, each composed of 8 pairs), and reach 12 rounds of
SIMON32 in the single-key scenario. In the related key scenario, the same authors reach
13 rounds, whereas [EGP23] only reaches 11 rounds with a rotational XOR distinguisher.

Table 6: Overview of the Differential Neural Distinguishers for SIMON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMON-32/64 MLP 2-1-δ-R 67M 8M - 5 0.570 [YK21a]

N DGohr 2-1-CT-R 20M 2M - 9 0.5907 [HRC21c]
N DGohr 2-1-CT-R 20M 2M - 9 0.6263 [SZM21]
N DGohr 2-1-CT-R / / - 9 0.6320 [TH21]
N DGohr 4-3-CT-R 40M 4M - 9 0.6373 [SZM21]
N DGohr 4-3-CT-R 40M 4M - 9 0.923 [WQW+24]
N DGohr 64-1-δ-R 640M 6.4M - 10 0.6109 [HRC21c]
SENet 2-1-A-R 2684M 268.435M - 11 0.517 [BGL+22]
DBitNet 2-1-CT-R 20M 2M ✓ 11 0.518 [BGH+23]
N DGohr 64-1-MRMSD-R 640M 64M - 11 0.6081 [LRCL23]
SE-ResNet 16-1-A-R 320M 32M - 12 0.514 [LLS+24]

SIMON-32/64RK N DGohr 2-1-CT-RRX 20M 2M - 11 0.5445 [EGP23]
SE-ResNet 16-1-A-R 320M 32M - 13 0.5262 [LLS+24]

SIMON-48/96 N DGohr 2-1-CT-R 20M 2M - 10 0.5789 [HRC21c]
N DGohr 96-1-δ-R 960M 9.6M - 11 0.6143 [HRC21c]
N DGohr 96-1-MRMSD-R 960M 96M - 12 0.6159 [LRCL23]

SIMON-64/128 N DGohr 2-1-CT-R 20M 2M - 11 0.59.72 [HRC21c]
N DGohr 128-1-δ-R 1280M 12.8M - 12 0.6957 [HRC21c]
DBitNet 2-1-CT-R 20M 2M ✓ 13 0.518 [BGH+23]
N DGohr 128-1-MRMSD-R 1280M 128M - 13 0.701 [LRCL23]
SE-ResNet 16-1-A-R 320M 32M - 14 0.519 [LLS+24]

SIMON-64/128RK N DGohr 2-1-CT-RRX 20M 2M - 13 0.5151 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 14 0.5788 [LLS+24]

SIMON-128/256 DBitNet 2-1-CT-R 20M 2M ✓ 20 0.507 [BGH+23]
SIMON-128/256RK N DGohr 2-1-CT-RRX 20M 2M - 16 0.5062 [EGP23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-). / means unknown.

7 Neural Distinguisher Training: Best Practices
Neural network training is not a deterministic process: It is subject to significant variations
in the outcome that are caused, for example, by the (random) network parameter initializa-
tion process, and the batch process of training data and corresponding differing movement
through the optimization plane. Further, the training outcome is heavily influenced by the
chosen hyperparameters and neural network architectures.

To interpret the success of neural network training correctly, it is important to carefully
distinguish between training, validation, and test data. Each dataset has an important
role: The training data is used to calculate the loss of the model and to update the model
parameters. However, the goal of neural network training is not good performance (low
loss) on known data but instead, generalization to previously unseen data. To monitor the
performance of the model on previously unseen data during training, validation data is
used. To accurately measure the model’s performance on unseen data, it is crucial never to
train it on the validation data. A commonly observed phenomenon during neural network
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training is overfitting. At some point during the training, the model does not learn new
generalizable features of the training data but instead uses its parameters to learn the
training dataset “by heart”. This leads to an increasing validation data loss. Instead of
using the model that has been trained for the maximum number of epochs, in this case, one
better uses the model with the minimum validation data loss. However, now the validation
data has been used in model optimization, and can no longer be used to characterize the
performance on previously unseen data. For the final characterization, fresh testing data
should be used instead. For example, Gohr first trains on 107 samples, and after each
epoch, the training success is validated on 106 validation samples. After 200 epochs, the
distinguisher with the best accuracy on the validation data is tested on several fresh sets
of 106 test samples. The result is a neural distinguisher with minimal overfitting and a
robust accuracy including error margins, e.g., 0.788 ± 8.17 · 10−4 [Goh19a, Table 2], on
previously unseen test data.

The number of parameters of a deep neural network does not relate to its computational
training cost in a straightforward way. Instead, it depends on the computations required by
the particular layers used in the network model. The computational training cost should be
measured in terms of the required number of FLOPs (floating point operations) or MACs
(multiply-accumulate operations). Popular deep learning libraries such as TensorFlow and
PyTorch provide routines to obtain neural network parameter counts as well as FLOPs.
For example, FLOPs can be evaluated with the TensorFlow Keras module keras-flops,
and the TensorFlow native routine model.count_params() provides the parameter count.

Summary of Best Practices for Neural Distinguisher Training

1. Results Reporting I: Clearly indicate the results obtained on training,
validation, and test datasets, as well as the size of each dataset.

2. Results Reporting II: Denote accuracy (or any other metrics) with error
margins on multiple sets of freshly generated testing data.

3. Neural Network Reporting: Indicate the network’s memory requirements
using FLOPs and the number of neural network parameters, and training time
per epoch on the specific computational environment (e.g., number and type
of GPUs or CPUs).

4. Open Reproducibility: Publish the code and trained model parameters to
enable review, replication, and future comparisons.

8 Future Challenges
8.1 The Benchmarking Challenge
As the field of neural cryptanalysis grows, it is becoming more difficult to compare different
works on a given primitive due to significant variability in the architectures used, training
regimes, distinguishing experiments, or feature engineering. In order to gain a better
understanding of neural distinguisher, we see the creation of a benchmarking platform
as an important challenge in the medium term. The goal of such a platform would be
to compare neural architectures submitted by authors on sets of standard problems and
compare them in a leaderboard. This objective is, however, not straightforward, and we
discuss some friction points below.

Defining Problems In a broad sense, a problem can be defined as an n − M − T − E
configuration, a primitive, a training pipeline, and a dataset size. A first step would be to



David Gerault, Anna Hambitzer, Moritz Huppert and Stjepan Picek 19

run all the models on the initial SPECK32 problem in the 2-1-CT-R setting to gain a better
overview of which architectures perform best when given the same conditions and training
data. However, changing the input format of architecture may not be trivial [BGH+23], so
an effort would be required from developers to provide instructions on running their model
with a generic input size. From there, problems with various input sizes and cardinality
could be compared.

While neural distinguishers’ learning features from multiple pairs have not been demon-
strated yet [GLN22, CSYY23], feature engineering techniques have been shown to have a
strong impact on the distinguisher’s performance [LLS+24]. Such features include partial
decryption or mixing ciphertext values and difference-related features; standardizing them
and building the corresponding benchmarking instances would provide valuable insight.

In addition, the training regime of a neural distinguisher has been known to be critical
from the start: in [Goh19a], an advanced training pipeline is presented as required to
reach 8 rounds. In this pipeline, a neural distinguisher is pre-trained on the most likely
difference after some rounds and then re-trained for the whole number of rounds with
100 times more samples than the other distinguishers. Further research often uses a
similar polishing step on the final round to improve accuracy. There is, therefore, a
distinction between raw performance, where the neural distinguisher is trained from
scratch for each round in the same conditions, and enhanced accuracy, where techniques
such as pretraining [Goh19b], freezing layers [GLN22], retraining of the previous rounds
distinguishers [BR21], or increased number of samples in the last rounds may be used. For
these reasons, the design of a standard, generic pipeline to compare enhanced distinguishers
would be beneficial.

In addition to training pipelines, the number of samples is another choice to make. A
lot of the literature follows the reasonable choices of [Goh19a] (107 samples for training,
106 for testing), as lowering these numbers seems to have a dramatic effect on performance.
However, neural distinguishers trained on multiple-pair samples (e.g., [BBCD20]) are less
easy to compare. On the one hand, one can choose to fix the number of samples; in this
case, the neural distinguisher will see more pairs than one with single-pair samples, which
provides an unfair advantage. On the other hand, one can fix the number of pairs; in this
case, the resulting distinguisher may have an unfair disadvantage, as it is trained on fewer
samples. An extreme example would be samples composed of 107 pairs; in that case, the
second distinguisher is trained on a single sample and has little chance of learning anything.
While some works use over 1 billion ciphertexts during training, little has been studied on
using that order of magnitude of data in the 2-1-CT-R scenario (as compared to multiple
pairs per sample), and it would be interesting to include this axis in a benchmarking study.

Metrics The first challenge to comparing different models is to define what is to be
compared. As of now, the main metrics used to compare neural distinguishers are accuracy,
true positive rate, and true negative rate. More recently [BGH+23], the number of floating
point operations (FLOPS) of a neural network was added as an additional metric. It
relates to the complexity of evaluating inputs to the neural network, which itself has an
impact on the training time and complexity of the corresponding key recovery attack.
What is missing is a metric that relates the accuracy of the neural distinguisher with its
performance, which is related to accuracy per flop. This metric should say something
about the final complexity of the key recovery and answer questions such as: Does doubling
the FLOPS to gain 1% accuracy improve the attacks?. Furthermore, an important notion
in key recovery attacks is the wrong key response profile, which relates the confidence of
the distinguisher with the error in the decryption of the last round with the wrong key. It
has not been studied how it correlates with other metrics of a neural distinguisher, and it
is unclear whether a slightly worse (in terms of accuracy) neural distinguisher may become
slightly better for key recovery due to a better wrong key response profile. Finally, it is
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not clear how to weigh the ability of a distinguisher to be extended by probabilistic rounds
to reach a longer key recovery.

8.2 The AI-N D Challenge
The neural network architectures currently employed in Neural Differential Cryptanalysis
have origins that trace back several years. For instance, the Inception Module by Google
researchers was introduced in a seminal paper in 2014 [SLJ+15]. Similarly, Kaiming
He et al. [HZRS16] won the ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge) 2015 using ResNet. Attention was introduced in “Attention is all you need” at
NeurIPS 2017 [VSP+17], and Squeeze-and-Excitation Networks at CVPR 2018 [HSS18].

In recent years, deeper and more complex models led to a larger parameter count.
Figure 3 illustrates the general trend of the increasing parameter count in deep learning
models. This is particularly evident in the case of Large Language Models (LLMs) like
GPT, which contain billions of parameters. The deep learning models used to date in
Neural Differential Cryptanalysis have low parameter counts when compared to more
modern “Deep Learning Era” models. Challenges when increasing the parameter count of
the models are higher computational load, longer training times, and overfitting.

Figure 3: Adapted from [Epo24] with added data for Gohr’s N DGohr on SPECK, and
DBitNet on GIMLI from [BGH+23, Table 5].

However, the advancement of AI technologies such as transformers and reinforcement
learning, coupled with increased computational power, holds significant potential for en-
hancing cryptographic neural differential distinguishers. Transformers, with their capability
to handle long-range dependencies and their effectiveness in capturing complex patterns,
offer a robust framework for analyzing cryptographic data. Reinforcement learning, on
the other hand, provides a powerful approach for optimizing neural network performance
through iterative feedback and learning from interactions. These advanced AI methodolo-
gies, when applied to cryptographic neural differential distinguishers, can lead to more
accurate models. The increased computational power available today allows for training
deeper and more complex networks, which can explore a larger hypothesis space and
uncover subtle cryptographic weaknesses that simpler models might miss.

Up until now, cryptographers have mainly attempted to apply AI models. As illustrated
in The Benchmarking Challenge, a leaderboard with cryptographically meaningful metrics
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should be established. Based on the existence of transparent metrics, the AI-N D Chal-
lenge aims at (i) motivating cryptographers to use more advanced AI technologies, but also
at (ii) motivating cryptographers to establish an AI-competition4 to allow AI researchers
and engineers to apply state-of-the-art methods to Neural Differential Cryptanalysis.

9 Conclusion
In this paper, we perform a systematic review of the follow-ups to Gohr’s seminal paper on
neural distinguishers. In the process, we identify and classify works focusing on training
neural distinguishers. This systematic review uncovered a young, yet vast body of research,
and a need for common methodological guidelines to grow the field, which we attempt to
provide. We also identified two challenges, namely that of comparing neural distinguisher
results and that of scaling up to much larger and ambitious architecture.

Over the past 5 years, multiple new settings have been explored for differential crypt-
analysis, using multiple pairs per sample or polytopic differences, with the same or varied
keys across samples. In addition, various types of feature engineering, particularly through
partial inversion, have been explored. These address the question of what clues we can
give the neural distinguisher, and multiple avenues are left to explore in that direction.
But more fundamentally, what matters perhaps more is what question we ask the neural
distinguisher, given this clue, or said differently, what task we ask the neural network to
perform. So far, a large portion of the literature has focused on differential-based property
for one pair and one input difference, but many variations could be built, as well as tasks
related to different types of cryptanalysis or entirely new distinguishing experiments.
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A Comparative Review of all Differential Neural Distin-
guishers

A.1 ASCON
ASCON is an SPN-based permutation with an input size of 320 bits. It can be used within
a sponge construction to build the authenticated ciphers ASCON-128 and ASCON-128a,
both using 128 bit keys and 12 rounds in the initialisation, and respectively 64 and 128 bit
messages, and 6 and 8 rounds in the encryption process. The hash function ASCON-hash,
also based on sponge construction, hashes 64-bit messages over 12 rounds. ASCON was
announced as the winner of the NIST Lightweight Cryptography Competition in February
2023.

[SSL+24] train neural differential distinguishers for the 4-round ASCON-PERMUTATION
with an accuracy of 0.5069 in the standard setting (2-1-δ-R), and can improve the accuracy
to 0.6925 by training another neural network to classify based on the distribution of
multiple scores. We do not include this result in the table, as it is a system where the
neural distinguisher part is run separately on single pairs rather than a neural distinguisher
accepting multiple pairs.

Table 7: Overview of the Differential Neural Distinguishers for ASCON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
ASCON-PERM MLP 2-2-δ-D 1.1M 1.1M - 3 0.9861 [BB22]

Classical ML 2-2-δ-D 64K (2 · 214.96) 16K (2 · 212.96) - 3 1 [BBD+23]
MLP 2-1-δ-R 20M 20M - 4 0.5069 [SSL+24]

ASCON (Rate) Classical ML 2-2-δ-D 64K (2 · 214.96) 16K (2 · 212.96) - 3 0.916 [BBD+23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).
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A.2 CHASKEY
CHASKEY is a 128-bit ARX-based permutation on 8 rounds.

In [CSYY23], the best distinguisher uses 16 pairs per sample, though the authors
present a valid single-pair distinguisher for CHASKEY as well.

Table 8: Overview of the Differential Neural Distinguishers for CHASKEY.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
CHASKEY N DGohr 2-1-CT-R 17M (2 · 223) 40K (2 · 214.3) - 4 0.6161 [BB22]

N DGohr 2-1-CT-R 20M 2M - 4 0.6161 [CSYY23]
N DGohr 32-1-CT-R 320M 32M - 4 0.7712 [CSYY23]
INC 16-1-CT-R 20M 10M - 5 0.5181 [ZWC23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.3 DES
DES (Data Encryption Standard) is a 16-round SPN block cipher working with 56-bit
keys and 64-bit blocks.

Table 9: Overview of the Differential Neural Distinguishers for DES.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
DES N DGohr 2-1-CT-R 20M 2M - 5 0.58 [CSY23]

INC 4-1-CT-R 40M 4M N 6 0.5653 [CSYY23]
N DGohr 32-1-CT-R 320M 32M - 7 0.5114 [ZWC23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.4 FF1 and FF3
FF1 and FF3 are format-preserving encryption algorithms, with respectively 10 and 8
rounds, respective block size of 32 and 128 bits, and key size 128 bits. We use the notations
FFX-D when the domain is digits, and FFX-L when the domain is lowercase characters.

In [KKJ+24], the authors perform neural cryptanalysis of FF1 and FF3, for digits
(FFX-D) and lowercase letters (FFX-L). We report the best results in the 2-1-CT-R setting
but note that the authors additionally performed experiments in the m-2-CT-D setting,
with similar, yet not directly comparable, results. The number of samples for training and
testing is not given, nor the source code (/-entries in Table 10).

Table 10: Overview of the Differential Neural Distinguishers for FF.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
FF1-D MLP 2-1-CT-R / / - 10 0.85 [KKJ+24]
FF1-L MLP 2-1-CT-R / / - 2 0.522 [KKJ+24]
FF3-D MLP 2-1-CT-R / / - 8 0.98 [KKJ+24]
FF3-L MLP 2-1-CT-R / / - 2 0.55 [KKJ+24]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-). / means unknown.
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A.5 GIFT
GIFT is a PRESENT-inspired SPN cipher, using 128-bit keys to encrypt 64-bit (GIFT64)
or 128-bit (GIFT128) blocks for 28 and 40 rounds, respectively. GIFT was one of the
finalists of the NIST Lightweight Cryptography Competition.

In [ZZY+21]†, the authors claim a distinguisher on 7 rounds because the training
accuracy is 0.6487, despite the validation accuracy being non-significant (0.5002); in the
table, we report this 7 rounds distinguisher as it is the best one claimed by the authors,
but also their 6-round distinguisher, which has a significant validation accuracy.

In [MPKM+22]†, the authors claim a full round distinguisher on GIFT-64 with over
90% accuracy, using 220 polytopic samples (composed of 3 ciphertexts each) in total, of
which 15% are kept for validation, respectively testing, and a simple MLP architecture; they
also claim a full round distinguisher on PRIDE with 100% accuracy. Full-round attacks
on modern and reputable ciphers are an extraordinary claim and require extraordinary
evidence, which the author’s manuscript does not provide.

In [RRSM22a], only 10K samples are used for training and testing; as a result, the
distinguishers in Table 5 exhibit significant overfitting (e.g., 92% training accuracy and
25% testing accuracy for M1 on 6 rounds).

Table 11: Overview of the Differential Neural Distinguishers for GIFT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GIFT-64 MLP 2-1-δ-R 67M (2 · 225) 67M - 4 0.65 [YK21a]

LSTM 3-2-CT-R 17M (2 · 223) 4M (2 · 221) - 6 0.5754 [SSL+22]
MLP 3-2-δ-R 2.2M 0.5M - FULL 0.96 [MPKM+22]†

GIFT-128 MLP 2-1-δ-R 20M 2M - 7 0.5542 [SSL+24]
TweGIFT-128 MLP 2-1-CT-R 2M 200K - 6 0.5675 [ZZY+21]

MLP 2-1-CT-R 2M 200K - 7 0.5002 [ZZY+21]†

GIFT-COFB MLP 2-4-δ-D 20K 20K - 4 0.615 [RRSM22a]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

† A critical discussion of these results is provided in the text.

A.6 GIMLI
GIMLI is a 24-round permutation acting on 384 bits, from which a hash function GIMLI-
HASH and an authenticated cipher GIMLI-CIPHER are derived.

Table 12: Overview of the Differential Neural Distinguishers for GIMLI.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GIMLI MLP 2-2-δ-D 0.4M 0.04M - 8 0.510 [BB22]

DBitNet 2-1-CT-R 20M 2M ✓ 11 0.524 [BGH+23]
GIMLI-HASH MLP 2-2-δ-D 0.4M 0.04M - 8 0.5219 [BB22]
GIMLI-CIPHER MLP 2-2-δ-D 0.4M 0.04M - 8 0.5099 [BB22]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.7 HIGHT
HIGHT is a 32-round ARX-based block cipher, operating on 64-bit blocks and 128-bit
keys.



38 SoK: 5 Years of Neural Differential Cryptanalysis

Table 13: Overview of the Differential Neural Distinguishers for HIGHT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
HIGHT DBitNet 2-1-CT-R 20M 2M ✓ 10 0.751 [BGH+23]
HIGHT RK DBitNet 2-1-CT-R 20M 2M ✓ 14 0.563 [BGH+23]

RK Related key setting.
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.8 KATAN
KATAN is a family of FSR-based block ciphers with block sizes 32, 48, or 64, key size 80,
and 254 rounds. For KATAN32, [BGH+23] reaches statistically significant accuracies up to
69 rounds in an automatically generated distinguisher, and note that this can be improved
to a 71-round distinguisher with 0.5034 ± 0.0002 accuracy using their simple polishing
step. In contrast, [LCLH22] reaches 51 rounds in the standard setting, and 59 when
using 64 pairs. In [LLHC23, LCLH22], the authors prepend a conditional probability 1
differential on r rounds (which holds based on conditions on the equality of some plaintext
and key bits) to an s rounds neural distinguisher. For these distinguishers, we write
(r + s) to highlight which part is purely neural. In [LLHC23], these distinguishers lead to
practical key recovery on 97, 82, 70 rounds of KATAN32, 48 and 64 in the single key model.
In [LCLH22], practical key recoveries are obtained for 125, 106 and 95 rounds respectively,
in the related key scenario. Single-key conditional neural distinguishers are also mentioned
in [LCLH22] for 85, 72 and 61 rounds respectively, but the r + s decomposition is not
given so we omit them in the table.

Table 14: Overview of the Differential Neural Distinguishers for KATAN.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
KATAN32 N DGohr 2-1-δ-R 20M 2M - 51 0.533 [LCLH22]

N DGohr 64-1-δ-R 64M 6.4M - 84∗ (26+58) 0.602 [LLHC23]
N DGohr 128-1-δ-R 1280M 128M - 59 0.575 [LCLH22]
DBitNet 2-1-CT-R 20M 2M ✓ 69 0.505 [BGH+23]

KATAN32 RK N DGohr 128-1-δ-R 1280M 128M - 112∗ (66+46) 0.647 [LCLH22]
KATAN48 N DGohr 64-1-δ-R 64M 6.4M - 72*(25 + 47) 0.5820 [LLHC23]

N DGohr 2-1-δ-R 20M 2M - 40 0.58 [LCLH22]
N DGohr 96-1-δ-R 960M 96M - 50 0.54 [LCLH22]

KATAN48 RK N DGohr 48-1-δ-R 960M 96M - 96*(57+39) 0.625 [LCLH22]
KATAN64 N DGohr 64-1-δ-R 64M 6.4M - 61*(25+26) 0.6130 [LLHC23]

N DGohr 2-1-δ-R 20M 2M - 31 0.718 [LCLH22]
N DGohr 128-1-δ-R 1280M 128M - 36 0.548 [LCLH22]

KATAN64 RK N DGohr 128-1-δ-R 1280M 128M - 86∗ (54+32) 0.728 [LCLH22]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

RK Related key setting.
* (r + s) means an s-round neural distinguisher with r are prepended rounds.

A.9 KNOT
KNOT is an SPN-based permutation acting on a 256, 384, or 512-bit state; when used in
a MonkeyDuplex construction to build a cipher, it uses 28 to 52 rounds, depending on
the version. In [BB22], the authors use a neural distinguisher to recognize whether a 1
difference is introduced in the first or the second byte.
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Table 15: Overview of the Differential Neural Distinguishers for KNOT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
KNOT-256 MLP 2-2-δ-D 1.048M 1.048M - 10 0.5912 [BB22]
KNOT-512 MLP 2-2-δ-D 1.048M 1.048M - 12 0.6032 [BB22]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.10 LEA
LEA is an ARX-based block cipher, encrypting 128-bit plaintexts with 128-, 192- or 256-bit
keys for 24, 28, or 32 rounds, respectively. For LEA, [BGH+23] propose the first neural
differential distinguisher, reaching 11 rounds with accuracy 0.5109. In comparison, the
proposal of LEA [HLK+14] presents a differential characteristic with probability 2−98 for
11 rounds, and 2−128 for 12 rounds.

Table 16: Overview of the Differential Neural Distinguishers for LEA.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
LEA-128 DBitNet 2-1-CT-R 20M 2M ✓ 11 0.512 [BGH+23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.11 LBCIoT
LBCIoT is a 32-round block cipher encrypting 32-bit plaintexts with an 80-bit key.
In [TTJ23], the authors propose a neural distinguisher on 7 rounds and build a practical
key recovery attack for 8 rounds.

Table 17: Overview of the Differential Neural Distinguishers for LBCIoT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
LBC-IoT N DGohr 2-1-CT-R 2M 200K - 7 0.607 [TTJ23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.12 PRESENT
PRESENT is an SPN-based block cipher, encrypting 64-bit blocks with 80 (PRESENT-80)
or 128-bit keys (PRESENT-128) for 31 rounds.

In [BGH+23], a 9-round distinguisher with an accuracy of 0.5092 is given, which
favorably compares to the 7-round distinguishers of [CSYY23], despite [CSYY23] using 4
pairs per sample; on the other hand, [ZW22a] obtains a slightly higher accuracy, at the
cost of using 32 ciphertexts per samples. In comparison, the best differential characteristic
for PRESENT reduced to 9 rounds has probability 2−36 [Wan07].
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Table 18: Overview of the Differential Neural Distinguishers for PRESENT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
PRESENT CNN 2-1-CT-R 20M 2M - 7 0.533 [WWH21]

N DGohr 2-1-CT-R 20M 2M ✓ 7 0.563 [GLN22]
N DGohr 8-1-CT-R 20M 2M - 7 0.5853 [CSYY23]
CNN 2-2-δ-D 20M 2M - 8 0.515 [WWH21]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.512 [BGH+23]
INC 32-1-CT-R 320M 32M - 8 0.5416 [ZWC23]

PRESENT-64/80 RK MLP 6-1-δ-R 6.3M∗ 1.6M∗ - 5 0.614 [PSM23]
CNN 2-2-δ-D 20M 2M - 10 0.517 [WWH21]

RK Related key setting.
∗ [PSM23] uses 220 samples, each composed of 3 pairs, i.e., 6.3M ciphertexts for training, and one quarter

as many pairs, i.e., 1.6M ciphertexts for validation.
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-). The work [GLN22] of Gohr, Leander, and Neumann was
not peer-reviewed.

A.13 PRIDE
PRIDE is a 20-round SPN cipher using 64-bit blocks and 128-bit keys. In [MPKM+22],
the authors claim a full-round distinguisher on the cipher with 100% accuracy, which seems
likely to be attributed to a methodology issue than an actual break, as a perfect accuracy
is often a sign of, especially considering the lack of evidence provided in the paper.

Table 19: Overview of the Differential Neural Distinguishers for PRIDE.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
MLP 2-1-δ-R 734K 157K - 20 1 [MPKM+22]†

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

† A critical discussion of these results is provided in the text.

A.14 SHA3
SHA3-256 is a 24-round sponge-based hash function with an output size of 256.

Table 20: Overview of the Differential Neural Distinguishers for SHA3.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SHA3-256 N DGohr 2-1-CT-R 20M 2M - 3 0.7228 [CSYY23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.15 SIMECK
SIMECK is a variant of SIMON using a key schedule similar to that of SPECK. SIMECK-
32/64, SIMECK 48/96, and SIMECK-128/256 have 32, 36, and 44 rounds, respectively.

In [ZLWL23], the authors use an inception-based architecture, and m samples per pair
(between 1 and 256), with format (∆xr, ∆yr, xr, yr, x′

r, y′
r, ∆yr−1, p∆yr−2); the training

is done on 2 · 107 samples. Their best distinguisher reaches 13 rounds of SIMECK32.
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In [WTZ+22], the authors investigate 2 variations of a multiple input differences scenario,
where the samples are the concatenations of pairs with differences δi. In NDrm, a sample
is the concatenation of a pair of ciphertexts for each difference (resulting in n = 2m); in
NDam, the first ciphertext is the encryption of a random plaintext P0, each subsequent
ciphertext Ci is the encryption of Pi−1 ⊕ ∆i−1 so that n = m + 1. The distinguishers
are trained on 224 (16.8M) samples, and tested on 218 (0.3M). The accuracy of 50.42%
may not be statistically significant, and should be indicated with a mean and standard
deviation on fresh sets of test samples.

Table 21: Overview of the Differential Neural Distinguishers for SIMECK.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMECK-32 N DGohr 2-1-CT-D 20M 2M - 10 0.5407 [LTZ22b]

N DGohr 2-1-CT-R 20M 2M - 10 0.5438 [LTZ22b]
N DGohr 4-3-NDam-R 67M 1M - 11 0.5042 [WTZ+22]
INC 16-1-A-R 320M 32M - 12 0.5161 [ZLWL23]
INC 512-1-A-R 1024M 124M - 13 0.5086 [ZLWL23]

SIMECK-32(Unkeyed) MLP 2-2-δ-D 66k 66k - 9 0.526 [BBD+23]
SIMECK-32/64RK SE-ResNet 16-1-A-R 160M 16M - 15 0.5467 [LLS+24]

N DGohr 2-1-CT-RRX 20M 2M - 15 0.5134 [EGP23]
SIMECK-48/96RK N DGohr 2-1-CT-RRX 20M 2M - 17 0.5206 [EGP23]
SIMECK-64(Unkeyed) MLP 2-2-δ-D 33k 33k - 14 0.55 [BBD+23]
SIMECK-64/128RK SE-ResNet 16-1-A-R 160M 16M - 22 0.5180 [LLS+24]

N DGohr 2-1-CT-RRX 20M 2M - 20 0.5212 [EGP23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.16 SIMON
SIMON is a family of AND-RX block ciphers, denoted SIMON-B/K, that encrypt blocks of
size B with a key of size K. SIMON-32/64, SIMON-48/96, SIMON-64/128, and SIMON-
128/256 have 32, 36, 44, and 72 rounds, respectively. For the case of SIMON, some authors
experimented with a vast amount of data: [HRC21c] uses 225 (33.6M) pairs for training,
and [BGL+22] obtain an 11-round distinguisher for SIMON32 at the cost of staged trained
in two steps, with respectively 228 (268M) and 230 (1074M) pairs. In [BGH+23], the
authors propose a polishing step, retraining a neural distinguisher initially trained with 107

pairs with an additional 109 pairs. In [LLS+24], Lu et al. use advanced feature engineering
and 320M ciphertexts (2 · 107 samples, each composed of 8 pairs), and reach 12 rounds of
SIMON32 in the single-key scenario. In the related key scenario, the same authors reach
13 rounds, whereas [EGP23] only reaches 11 rounds with a rotational XOR distinguisher.
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Table 22: Overview of the Differential Neural Distinguishers for SIMON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMON-32/64 MLP 2-1-δ-R 67M 8M - 5 0.570 [YK21a]

N DGohr 2-1-CT-R 20M 2M - 9 0.5907 [HRC21c]
N DGohr 2-1-CT-R 20M 2M - 9 0.6263 [SZM21]
N DGohr 2-1-CT-R / / - 9 0.6320 [TH21]
N DGohr 4-3-CT-R 40M 4M - 9 0.6373 [SZM21]
N DGohr 4-3-CT-R 40M 4M - 9 0.923 [WQW+24]
N DGohr 64-1-δ-R 640M 6.4M - 10 0.6109 [HRC21c]
SENet 2-1-A-R 2684M 268.435M - 11 0.517 [BGL+22]
DBitNet 2-1-CT-R 20M 2M ✓ 11 0.518 [BGH+23]
N DGohr 64-1-MRMSD-R 640M 64M - 11 0.6081 [LRCL23]
SE-ResNet 16-1-A-R 320M 32M - 12 0.514 [LLS+24]

SIMON-32/64RK N DGohr 2-1-CT-RRX 20M 2M - 11 0.5445 [EGP23]
SE-ResNet 16-1-A-R 320M 32M - 13 0.5262 [LLS+24]

SIMON-48/96 N DGohr 2-1-CT-R 20M 2M - 10 0.5789 [HRC21c]
N DGohr 96-1-δ-R 960M 9.6M - 11 0.6143 [HRC21c]
N DGohr 96-1-MRMSD-R 960M 96M - 12 0.6159 [LRCL23]

SIMON-64/128 N DGohr 2-1-CT-R 20M 2M - 11 0.59.72 [HRC21c]
N DGohr 128-1-δ-R 1280M 12.8M - 12 0.6957 [HRC21c]
DBitNet 2-1-CT-R 20M 2M ✓ 13 0.518 [BGH+23]
N DGohr 128-1-MRMSD-R 1280M 128M - 13 0.701 [LRCL23]
SE-ResNet 16-1-A-R 320M 32M - 14 0.519 [LLS+24]

SIMON-64/128RK N DGohr 2-1-CT-RRX 20M 2M - 13 0.5151 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 14 0.5788 [LLS+24]

SIMON-128/256 DBitNet 2-1-CT-R 20M 2M ✓ 20 0.507 [BGH+23]
SIMON-128/256RK N DGohr 2-1-CT-RRX 20M 2M - 16 0.5062 [EGP23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-). / means unknown.

A.17 SKINNY
SKINNY is an SPN-based block cipher; SKINNY128 processes 128-bit plaintexts with 128,
256, and 384-bit keys for 40, 48, and 56 rounds, respectively.

In [BBD+23], the authors reach 6 rounds of SKINNY-128; however, this result is
obtained on an unkeyed version of the cipher, and using a classical machine learning
algorithm rather than deep learning.

Table 23: Overview of the Differential Neural Distinguishers for SKINNY.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SKINNY128(Unkeyed) Classical ML 2-2-δ-D 2M 1.2M - 6 0.546 [BBD+23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.18 SLIM
SLIM is a 32-round block cipher encrypting 32-bit plaintexts with an 80-bit key.

In [RLS23], the authors perform experiments with low key entropy (10 and 100 keys
respectively, for 1M samples), as well as with one random key per sample. We report
the last one for comparability and note that the results were very close in the 3 cases.
In [TTJ23]†, the reported accuracy is 0.5036 on 105 samples, which corresponds to less
than 3 standard deviations and has a probability over 1% of occurring for distinguisher
making predictions at random; we question the relevance of this result, as testing on more
data is required to prove statistical significance.
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Table 24: Overview of the Differential Neural Distinguishers for SLIM.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SLIM N DGohr 2-1-CT-R 2M 200K - / 0.5036 [TTJ23]†

N DGohr 2-1-CT-R 2M 2M - 5 0.814 [RLS23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

† A critical discussion of these results is provided in the text.

A.19 SPECK
SPECK is a family of ARX block ciphers, denoted SPECK-B/K, that encrypt blocks of size
B with a key of size K. SPECK-32/64, SPECK-48/96, SPECK-64/128, SPECK-96/96,
and SPECK-128/256 have 22, 23, 27, 29, and 34 rounds, respectively. Neural differential
distinguishers have been built for a versions of SPECK.

For SPECK-32, the best accuracies are reported when multiple the number of ci-
phertexts n is increased, as is done in [BBD+23] (n = 2), [HRC21c, CSYY23] (n = 64),
[LRCL23] (n = 128). Currently, the best accuracy of 93.9% in round 8 of SPECK-32 is
obtained by [CSYY23] when using n = 64. In the standard setting (2-1-CT-R) [BGH+23]
reach the same accuracy as [Goh19b] with an automated pipeline that is not dedicated to
SPECK5. In terms of larger state experiments, two automated pipelines reach 7, respec-
tively 8 rounds of SPECK-64 [WW21, BGH+23]. The 8-round accuracies can be improved
when increasing the number of ciphertext pairs to n = 128, respectively n = 256, and
using MRMSD feature engineering [HRC21c, LRCL23]. For SPECK-96, [CSY23] obtains
the first 7-round distinguisher, while for SPECK-128, [BGH+23] obtains the first 10-round
neural distinguisher in an automated pipeline.

5We note that [BLYZ23] states that “the simple training pipeline [of [BGH+23]] did not produce N Ds
with the same accuracy as Gohr’s on 8-round Speck32/64; it needs a further polishing step to achieve
similar accuracy, demanding more time and data” which is not entirely correct: While in [BGH+23], a
polishing step is indeed needed to achieve the same accuracy, the polishing step is a highly simplified
version of the 8-round training scheme used by Gohr (in conclusion, it does not demand more time or
data).
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Table 25: Overview of the Differential Neural Distinguishers for SPECK.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SPECK-32 MLP 2-1-δ-R 209M 105M - 3 0.79 [YK21a]

Quantum 2-1-CT-R / 2K - 5 0.53 [KJL+23]†
CNN 2-2-δ-D 20M 2M - 5 0.959 [WWH21]
N Densmbl.

Gohr 2-1-CT-R 20M 2M - 6 0.781 [HGH+23]
MLP 2-1-δ-R 20M 2M - 6 0.72 [ERP22]
N DGohr 100-1-A-R 20M 2M - 6 1 [BGPT21]
N Dpruned

Gohr 2-1-CT-R 20M 2M - 7 0.596 [BBP22]†
DenseNet 2-1-δ-R 2M 2M - 7 0.531 [SM23b]†
CNN 2-2-δ-D 20M 2M - 7 0.599 [WWH21]
N DGohr 2-1-CT-R 20M 2M ✓ 7 0.614 [WW21]
N Dattntn.

Gohr 2-1-CT-R 20M 2M - 7 0.6169 [DCC23]
CNN 2-1-CT-R 20M 2M - 7 0.618 [WWH21]
N Dattntn.

Gohr 16-1-CT-R 160M 16M - 7 0.728 [DCC23]
N Dsep.conv.

Gohr 8-1-CT-R 80M 8M - 7 0.6939 [LRC23]
INC 64-1-PD-R 64M 6.4M - 7 0.9713 [YW23]
MLP 2-2-δ-D 21M 12M - 8 0.51413 [BBD+23]
INCfreeze 2-1-CT-R 20M 2M - 8 0.5135 [BLYZ23]
N DGohr 2-1-CT-R 20M 2M - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.514 [BGH+23]
MLP 2-2-δ-D 14M 8M - 8 0.515 [BBD+23]
N DGohr 64-1-δ-R 64M / - 0.64M 0.564 [HRC21c]
N DGohr 128-1-MRMSD-R 128M 12.8M - 8 0.6502 [LRCL23]
N DGohr 64-1-CT-R 20M 2M - 8 0.939 [CSYY23]

SPECK-32 RK CNN 2-2-δ-D 20M 2M - 7 0.559 [WWH21]
CNN 2-1-CT-R 20M 2M - 7 0.576 [WWH21]
INCfreeze 2-1-CT-R 20M 2M - 10 0.5562 [BLYZ23]

SPECK-48 N DGohr 2-1-CT-R 20M 2M ✓ 7 0.726 [WW21]
N DGohr 96-1-MRMSD-R 96M 9.6M - 8 0.5462 [LRCL23]

SPECK-64 N DGohr 2-1-CT-R 20M 2M ✓ 7 0.632 [WW21]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.537 [BGH+23]
N DGohr 128-1-δ-R 128M 1.28M - 8 0.632 [HRC21c]
N DGohr 128-1-MRMSD-R 128M 12.8M - 8 0.7181 [LRCL23]

SPECK-96 N DGohr 2-1-CT-R 20M 2M - 7 0.850‡ [CSY23]
SPECK-128 DBitNet 2-1-CT-R 20M 2M ✓ 10 0.593 [BGH+23]
RK Related key setting. / means unknown.
‡ In [CSY23], the accuracy of the teacher network for SPECK-96 was not given, but we were able to

retrieve it by running the model on the authors’ repository; we give the average of 10 runs, each with
106 samples.

† [KJL+23]report an accuracy of 53% (round 5) on only 1,000 validation samples. The experimental
mean or standard deviation is not given. For a binomial experiment on 1k samples, the statistically
expected standard deviation is 1/(2

√
n) = 1.6%. Therefore, the reported result is only 1.9σ away from

random and is likely not statistically significant. [SM23b]report an accuracy of 53.1% (round 7) on 2M
training, respectively validation samples, and provide a comparison in which DenseNet outperforms
N DGohr. At such a small number of training samples, both networks show heavy overfitting ([SM23b,
Table 2]), and the authors themselves call the result only “marginal”.

† In [BBP22], the authors evaluate several pruned neural distinguishers; we report the smallest one,
Gohr’s N DGohr with depth 1, 7 channels removed from C1, 21 from C2, 25 from C3, 46 neurons from
D1, and 36 from D2.
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A.20 TEA and XTEA
TEA and its successor XTEA are 64-round block ciphers encrypting 64-bit plaintexts
with a 128-bit key. In [BR21], the authors consider modular addition-based differentials,
where the input difference is injected by modular addition, which we denote by R+ as the
experiment. [BGH+23] automatically finds distinguishers for both TEA and XTEA for 5
cycles (10 rounds), respectively, with accuracies 0.5634 and 0.5984; the authors note that
they interestingly share the same input difference. For TEA, [BGH+23] reaches two more
rounds than [BR21].

Table 26: Overview of the Differential Neural Distinguishers for TEA and XTEA.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
TEA MLP 2-1-CT-R+ 2M 10k - 8 0.545 [BR21]

DBitNet 2-1-CT-R 20M 2M ✓ 10 0.563 [BGH+23]
XTEA DBitNet 2-1-CT-R 20M 2M ✓ 10 0.598 [BGH+23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

A.21 TinyJAMBU
TinyJambu-128 is an authenticated encryption algorithm based on a 640 rounds NLFSR-
based permutation, which encrypts 128-bit blocks. TinyJambu-128 was among the ten
NIST’s lightweight cryptography finalists.

Table 27: Overview of the Differential Neural Distinguishers for TinyJAMBU.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
TinyJAMBU-128 MLP 2-1-δ-R 2.097M (2 · 220) 262K (2 · 217) - FULL 0.9958 [SSL+22]†

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are 2-1-CT-
R, and the results obtained in greyed out settings n-m-T -E are not directly comparable. AutoND:
indicates if the neural distinguisher was automatically generated (✓) or is the result of an elaborate,
manually designed training procedure (-).

† A critical discussion of these results is provided in the text.

In [SSL+22]†, the authors claim a full-round distinguisher on TinyJambu, which we
challenge. In the provided code, the ciphertexts in a sample use the same key, nonce, and
associated data, which would provide a trivial distinguisher. As noted by the designers of
TinyJambu6: ’When nonce is reused, an attacker is able to decrypt the ciphertext since
the encryption of TinyJAMBU is somehow similar to the Cipher Feedback mode.’.

6https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/
finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
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