
HADES: Automated Hardware Design Exploration
for Cryptographic Primitives

Fabian Buschkowski1 , Georg Land1 , Jan Richter-Brockmann1 , Pascal
Sasdrich1 and Tim Güneysu1,2

1 Ruhr-University Bochum, Bochum, Germany, firstname.lastname@rub.de,mail@georg.land
2 DFKI GmbH, Bremen, Germany

Abstract. While formal constructions for cryptographic schemes have steadily evolved
and emerged over the past decades, the design and implementation of efficient and
secure hardware instances is still a mostly manual, tedious, and intuition-driven
process. With the increasing complexity of modern cryptography, e.g., Post-Quantum
Cryptography (PQC) schemes, and consideration of physical implementation attacks,
e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without
developers being able to weigh all design options.
This immediately raises the necessity for tool-assisted Design Space Exploration (DSE)
for efficient and secure cryptographic hardware. For this, we present the progressive
HADES framework, offering a customizable, extendable, and streamlined DSE for
efficient and secure cryptographic hardware accelerators. This tool exhaustively
traverses the design space driven by security requirements, rapidly predicts user-
defined performance metrics, e.g., area footprint or cycle-accurate latency, and
instantiates the most suitable candidate in a synthesizable Hardware Description
Language (HDL).
We demonstrate the capabilities of our framework by applying our proof-of-concept
implementation to a wide-range selection of state-of-the-art symmetric and PQC
schemes, including the ChaCha20 stream cipher and the designated PQC standard
Kyber, for which we provide the first set of arbitrary-order masked hardware imple-
mentations.
Keywords: Design Automation · Design Space Exploration · Hardware Implemen-
tations · High-order Masking · PQC · ML-KEM · ML-DSA · AES · SPN ·
ARX

1 Introduction
Cryptography is the main pillar for most of our digital security architectures, e.g., the
Internet of Things (IoT), that sustain our modern society and are predominantly built
and supported by physically accessible constrained and embedded devices. Nowadays,
cryptographic primitives are ubiquitously used in hardware and software systems and
continuously evolve and emerge through community efforts and standardization competi-
tions, e.g., the CAESAR competition for Authenticated Encryption (AE) [Ber19] (2013
– 2019), or the National Institute of Standards and Technology (NIST) standardization
for Post-Quantum Cryptography (PQC) [NIS17] (since 2017). Consequently, continuous
generation of secure and efficient implementations of emerging and existing cryptographic
primitives on a wide range of different devices is critical for our modern society to facilitate
the use of advanced cryptographic protocols within the security architectures.

Hardware implementations are particularly preferred for most high-assurance and
high-performance application scenarios due to their high design flexibility. Specifically,

https://orcid.org/0000-0003-2165-3564
https://orcid.org/0000-0002-1533-3583
https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-3293-4989
mailto:fabian.buschkowski@rub.de,mail@georg.land,jan.richter-brockmann@rub.de,pascal.sasdrich@rub.de,tim.gueneysu@rub.de

2 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

the modular structure of modern (asymmetric) cryptographic primitives, with numerous
adaptable sub-components, offers novel possibilities for combination and configuration
during implementation. Moreover, the sharing of primitives or their sub-components
between various systems and applications greatly expands the design space dimensions.

As a consequence, developers are often unable to accurately assess how design pa-
rameters and choices affect the overall efficiency and security of a system. Hence, as
design and system complexities increase, manual Design Space Exploration (DSE) rapidly
becomes infeasible, since optimization for specific constraints turns into a laborious and
incremental trial-and-error process, e.g., as demonstrated for the hardware implementations
of BIKE [RMG22, RBCGG22] and Dilithium [LSG21, BNG21, ZZW+22].

With this challenge in mind, the ATHENA project [Gaj] for the first time provides
a unified and comprehensive Application Programming Interface (API) that enables fair
comparison and automated performance number generation for hardware implementations.
Unfortunately, as demonstrated during its deployment in standardization competitions,
complex design configurations still need to be generated manually by the development
teams since no automated exploration process is available. This poses a particular challenge
for any team with excellent cryptographic expertise but no hardware background.

Evidently, there is an urgent need for automated tools that assist designers and engineers
in implementing and exploring primitives efficiently in hardware. Automating the DSE, i.e.,
automatically weighing design decisions and predicting efficiency outcomes, can accelerate
and optimize the development process and enable a faster deployment of new cryptographic
systems and protocols.

However, efficiency is not the only challenge for cryptographic implementations when
implemented in hardware and embedded systems. Physical implementation attacks are
well-known threats to our security architectures, targeting in particular their foundations,
i.e., the implementations of cryptographic primitives in hardware and software. More
precisely, Side-Channel Analysis (SCA) [KJJ99] enables adversaries to retrieve secret and
sensitive information through observation of the behavior and physical characteristics of a
device while performing cryptographic operations.

Although sound and effective protection mechanisms, such as masking [CJRR99], have
been thoroughly studied in detail and implemented many times, the practical realization of
these mechanisms remains a manual, fragile, and error-prone task, regardless of an expert’s
extensive experience in this field. Only recently, Knichel et al. [KMMS22] and Buschkowski
et al. [BSG23] presented computer-assisted tools that simplify and automate the protection
process – however, without support for automated exploration of corresponding design
parameters.

Consequently, enabling the automated design space exploration in combination with
automated circuit protection in order to find efficient and secure hardware instances for
cryptographic primitives is an open and urgent research challenge.

Our Contribution

In this work we present a novel approach to model, design, and describe cryptographic
hardware, paving the way for automated generation and design space exploration of
efficient and secure hardware accelerators. Moreover, we instantiate our concept as
a versatile tool which, due to its innovative abstraction and exploration methodology,
explores and generates side-channel protected and efficient hardware instances for all
kinds of contemporary cryptographic primitives. For this, our tool is particularly designed
to rapidly predict user-defined performance metrics during DSE, e.g., area, latency, or
randomness quantity, before ultimately instantiating the most suitable candidate in a
synthesizable Hardware Description Language (HDL) .

Our modular, extendable, and customizable proof-of-concept implementation of HADES
already provides an extensive library of frequently used basic building blocks (called

Buschkowski et al. 3

templates) that are required to construct and describe commonly deployed cryptographic
primitives. Further, to demonstrate its capabilities, we perform a wide-range case study
generating HDL files for efficient and protected symmetric and PQC primitives alike.
Eventually, this first comprehensive DSE provides, among others, pioneering results for
arbitrary-order masked Application-Specific Integrated Circuits (ASICs) of Add-Rotate-
XOR (ARX) ciphers such as ChaCha20 and the designated PQC standard Kyber.

2 Preliminaries

In this section, we briefly introduce the Hardware Construction Language (HCL) Spinal-
HDL, serving as essential basis for the proof-of-concept implementation of HADES, before
we introduce the formal background for our security design, including side-channel coun-
termeasures and protection principles.

2.1 SpinalHDL

SpinalHDL [Spi23] is an HCL embedded into the Object-Oriented Programming (OOP)
language Scala. In general, HCLs can describe the functionality of a hardware circuit at a
higher abstraction than traditional HDLs such as VHDL or Verilog. For this, HCLs are
equipped with powerful libraries and convenience features to ease the process of describing
hardware while still having full control over low-level implementation details such as the
insertion of registers.

SpinalHDL offers, among other features, dedicated functionalities to describe Finite
State Machines (FSMs) and counters. Together with Scala, SpinalHDL offers wide options
for the parametrization of designs. In order to integrate into the classical hardware design
flow, SpinalHDL provides the necessary translations to both standard VHDL and Verilog,
after which the established synthesis tools can be used. Through its black-boxing feature,
SpinalHDL is capable of including existing HDL Intellectual Property (IP) into a design
by only defining the interface.

2.2 Masking

After Kocher et al. presented the first side-channel attack on cryptographic implementations
in 1999 [KJJ99], many concepts to protect against this attack vector have been presented
over the last two decades. Masking, which is based on Shamir’s secret sharing [Sha79], has
been established as the most promising countermeasure. To share a secret x, it is split
up into d + 1 shares such that x = x0 ◦ x1 ◦ ... ◦ xd. For our work, we consider Boolean
masking where the operator ◦ is replaced by an XOR operation. A correct and secret
sharing is achieved by choosing d shares uniform at random (say the first d shares) and
computing the remaining share xd by xd =

⊕d−1
i=0 xi. Applying this approach ensures that

an adversary is not able to learn anything about the secret values by having access to up
to d shares.

Current state-of-the-art masked implementations usually follow composability notions,
most notably Probe-Isolating Non-Interference (PINI) [CGLS21], which allows the con-
struction of secure circuits from trivially composable atomic units, so-called gadgets. PINI
was introduced by Cassiers et al. with the concept of Hardware Private Circuit (HPC)
and the corresponding HPC1 and HPC2 gadgets. Knichel and Moradi recently proposed
HPC3 reducing the latency of the multiplication gadgets to one clock cycle [KM22b].

4 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

3 Concept
Implementing hardware modules for cryptographic primitives in constrained applications
often requires a rigorous design space exploration to identify optimal or suitable hardware
parameters and component configurations that fulfill specified design requirements. With
increasing design complexities and sophisticated system architectures, however, it becomes
more difficult to precisely determine the interaction of various parameters and configu-
rations, which makes it even more challenging if additional protection against physical
implementation attacks is required.

3.1 Problem Definition
To underline the need of new tool-supported concepts for cryptographic hardware design,
we start by recapitulating the common practice for developing hardware modules, which
commonly includes the following steps:

1. Specification: The design goals are defined, considering external constraints such as
area demand (cost optimization) and latency (constrained by the module application).
For cryptographic hardware, additionally, a careful consideration of the adversary
model must be carried out, especially regarding side-channel security. This results in
additional design goals, namely the targeted level of hardware security.

2. Functional Design: The developer writes HDL code to implement the desired
functionality, potentially following different approaches (e.g., top-down vs. bottom-
up). This process involves making many separate and ad-hoc design decisions –
several for symmetric cryptography but even more for asymmetric cryptosystems.
Each of those decisions impacts the overall performance metrics, and thus, also
whether and how well design goals can be achieved.

3. Synthesis: The hardware description is turned into a design implementation in
terms of a netlist. Subsequently, the functional correctness and a first post-synthesis
area and delay assessment can be carried out, potentially requiring reiterating to the
previous step.

4. Technology Mapping: Map the synthesized design onto the target technology,
ensuring compatibility and efficiency.

5. Place and Route: The physical layout of the design on the target device is optimized
under consideration of timing, power, and area factors.

6. Verification and Validation: In the iterative verification and validation phase, the
functional correctness of the final design is tested against diverse input conditions, and
the performance of the design is compared to the defined design goals. Simultaneously,
the scrutiny of hardware security extends to detecting vulnerabilities by physical
measurements but also verification tools. Feedback from each validation iteration
is used to adjust the HDL code until the design goals are met, thus requiring an
iteration starting from the second step.

7. Deployment.

With this current workflow that relies on HDL-based tool chains, two main challenges
remain: Firstly, whether or not design goals are achieved is determined at the very end of
the design process, at least after the first iteration of validation (Step 6). However, we
ideally want to be able to estimate whether a design meets its defined performance and
hardware security goals before synthesis (i.e., between Step 2 and Step 3) to reduce the
necessary amount of time-consuming iterations of Steps 3-5. Secondly, due to the lack of

Buschkowski et al. 5

security-by-design integration into the tool chains, fulfilling hardware security goals is an
error-prone process that leads to more validation iterations and thus, more development
costs. Both challenges have their foundation in the fact that the decision-making for
design options entirely relies on the developer’s experience and intuition, where ideally the
workflow should provide tools to enable informed decisions. While this is true for hardware
development in general, cryptographic modules having hardware security requirements adds
another dimension to the design space, magnifying the complexity of decision consequences.

Consequently, we have identified the following features that are necessary to solve
the two aforementioned challenges in the development process, which, however, are not
possible with conventional HDLs:

• Integration of security-by-design into the workflow (cf. Section 4.1).

• An automated iteration over different design options before synthesis while maintain-
ing functional correctness (cf. Section 4.2.1).

• Prediction of certain performance metrics before synthesis to enable a swift design
space traversal given many thousands or millions of design configurations (cf. Sec-
tion 4.2.2).

3.2 Templates
To address the above stated features, we introduce the concept of nested hardware templates
as a fundamental principle for abstract modeling and performance prediction of arbitrarily
complex hardware circuits for cryptographic primitives. The ensuing abstract and hier-
archical hardware model definition particularly enables our DSE concept and the rapid
traversal of the search space, as well as the efficient prediction of required performance
metrics.

Specifically, our hardware templates are characterized by their extendability and
customizability in terms of application-specific algorithm parameters, design-specific con-
figurations as well as the hardware security context, as depicted in Figure 1, enabling
prediction of performance characteristics without full instantiation of the system. Us-
ing a black-box representation, each template defines the interface (data transmission)
and functionality (data processing) of an abstract hardware component. This versatility
introduces the ability to address diverse use cases with their unique requirements. Addi-
tionally, the hardware security context enables replacing sensitive functionality with secure
counterparts.

The implementation of the functionality is covered by a configuration-dependent
hardware description (Section 4.1), potentially utilizing various sub-templates. In contrast
to modern HDL component representations, e.g., in terms of entities (VHDL) or modules
(Verilog), our concept has a hardware security context closely associated, which particularly
enables the generation of secure designs in replacing sensitive functionality with secure
counterparts. Most importantly, our concept intrinsically enables a performance prediction
through additional template metadata (Section 3.2.3), which conventional HDLs can only
achieve through the integration of new features. This integral capability streamlines the
design process by eventually enabling efficient DSE.

In addition to the advances in abstract modeling and performance prediction, our
modular approach brings a transformative change by promoting a clear separation between
template designers and template users (Section 4), thereby improving reusability and
modularity. Unlike the common practice workflow, where this separation is often implicit
and not actively encouraged, our framework promotes a more deliberate division of
responsibilities. The template designer, who has specialized knowledge of the intricacies of
the hardware and sensitive parts, focuses on creating extensible, customizable, and secure
hardware templates with a strong understanding of the various implementation options.

6 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

Exploration
Flow

D
es

ig
n

Fl
ow

Template

In
te

rf
ac

e

Design
Aspects

Aspect 1
Options

Aspect 2
...

■ ■ ■ · · ·
▲ ▲ · · ·

Hardware
Security
Aspect

µ1 µ2 · · ·
Config

Pe
rf

or
m

an
ce

Pr
ed

ic
tio

n

Sub-
Templates

Control
Logic

Secret
Data
Path

Public
Data
Path

Config

Pe
rf

or
m

an
ce

Pr
ed

ic
tio

n

Sub-
Templates

Control
Logic

Secret
Data
Path

Public
Data
Path

■ ▲ µ1 ■ ▲ µ1

■▲ µ1
■▲ µ2
■▲ µ2
■▲ µ2
■▲ µ1
■▲ µ1
■▲ µ1
■▲ µ2
■▲ µ2
■▲ µ2

...

Configuration
Extraction

Template
Configurations²

Hardware
Security
Context

Algorithm
Parameters

²

Performance
Predication
Accumulation

Figure 1. The concept of security-aware hardware templates. As a template can have a different
number of subtemplates, depending on the configuration, we refer to this concept also as nested
hardware templates.

On the other hand, the template user, liberated from concerns about functional correctness
of the template or its security features, can seamlessly integrate different options while
utilizing the designed templates.

The modular approach presented above promotes cryptoagility and an agile development
process in general, while ensuring functional correctness and supporting easy integration of
security features. In essence, this moves the concept of hardware development more in the
direction of hardware-security-aware, agile cryptographic libraries instead of static modules.
This shift is in line with the dynamic, tool-assisted nature of modern development practices
and allows for greater adaptability to new cryptographic requirements and facilitates a
more responsive and efficient development cycle.

3.2.1 Template Settings

During the process of hardware development, each template in the hierarchy of the hardware
model definition is parametrized and configured with three different kinds of settings, as
depicted in Figure 1:

Algorithm Parameters are immutable under DSE in defining the inherent algorithmic
functionality and external interface of each template in the cryptographic primitive.
For hierarchical hardware models and nested templates, this specifically requires
algorithm parameter inheritance to extend the parametrization consistently to all
child templates. Accordingly, the algorithm parameters mainly define the interface
of an instantiated template and its high-level functionality. Example: The key size
of an Advanced Encryption Standard (AES) instance.

Template Configurations are application-independent and mutable under DSE in solely
instantiating template internal data processing mechanisms to realize the requested

Buschkowski et al. 7

functionality. Consequently, template configurations do not affect the external tem-
plate functionality and interface, but exclusively determine how data is processed
within a template to ensure consistency throughout the DSE process. Hence, different
template configurations have no impact on the interface nor on the high-level function-
ality. Examples for hardware addition: Ripple-Carry vs. other adder constructions,
unrolled vs. serial, etc.

The Hardware Security Context enables a security-aware design flow. It describes the
security level of sensitive data processing or control parts within the template. As
such, it might impact the interface as data might be passed and returned redundatly.
Similar to the algorithm parameters, the hardware security context is immutable
under DSE. Example: The masking degree to counter side-channel attacks, or other
implementation security-related parameters.

Note that the settings are either application-specific and mutable under the DSE or
application-independent and immutable. This strict differentiation facilitates functional
correctness, as the template user only defines the application-specific settings and still can
be sure to have a functional design after DSE.

This nuanced and highly flexible approach significantly differs from traditional HDLs.
In VHDL/Verilog, the parametrization is often limited to static configurations, and even the
few dynamic options (e.g., generics) do not offer the degree of flexibility necessary for the
different application-specific requirements during DSE. Our approach, on the other hand,
not only allows for a more dynamic adjustment of configurations during DSE, but also
ensures that the template user’s input is focused on application-specific settings, promoting
a clearer and more user-friendly design process. The adaptability and granularity of our
parametrization and configuration model contribute to improved functional correctness
and ease of use, making it a more responsive and efficient alternative to traditional HDLs.

3.2.2 Design Space Exploration

In general, DSE can be employed to achieve the following two goals: (i) finding designs that
meet specific performance requirements, or (ii) selecting designs with optimal performance
prediction among all possible candidates. While DSE for the first approach may terminate
as soon as the predicted performance meets all requirements, the second goal strictly
requires exhaustive design space traversal. Consequently, our holistic concept of nested
hardware templates is particularly designed to enable both DSE objectives efficiently. In
our concept, the preprequisite for a traversal of the entire design space is to extract the full
set of design configurations from a template hierarchy. While template configurations are
configurations specific to one template, we refer to design configurations as the configuration
of the entire template hierarchy. We explain the configuration extraction detailedly in
Section 4.2. Accordingly, this procedure is applied to the top-level template to perform a
full traversal of the design space.

3.2.3 Performance Prediction

Estimation of Performance Metrics (PMs) is a fundamental process to guiding the DSE and
evaluating the suitability of different instantiations of the hardware model of a cryptographic
primitive with respect to the specified design requirements. For this, each template will
predict various user-defined PMs based on its algorithmic parametrization, template
configuration, and the hardware security context. For post-configuration performance
prediction, these PMs are eventually gathered and accumulated recursively in a bottom-
up procedure for each design configuration, i.e., starting with the lowest level before
proceeding to the top-level module. Moreover, each template either provides a customized,

8 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

user-defined aggregation function, or uses simple accumulation as default procedure for
the accumulation of PMs.

Furthermore, for appropriate choices of PMs and their estimation, we identified the
following requirements and conditions:

Accuracy: The precision and reliability of the PMs prediction is the cornerstone of se-
lecting model instantiations that meet the intended performance goals and targeted
requirements.

Efficiency: Estimation of PMs must be fast in order to explore different design options
efficiently during DSE. This not only includes computationally efficient prediction
routines of PMs but also utilization of minimal data on design characteristics (while
still ensuring accuracy).

Coverage: The more hardware module characteristics, e.g., latency, throughput, area
utilization, or power consumption, are taken into account, the better a holistic
exploration and the consideration of various design trade-offs are possible.

While PMs can generally be chosen and defined by the user, a cycle-accurate latency
metric is essential to generate and guarantee functional correctness. In particular, due to
our nested hardware template model, modifications to the template configuration of sub-
templates may also impact the latency of the parent template. Therefore, cycle-accurate
latency prediction is mandatory and must be implemented in any case.

When chosen accordingly, the PMs ideally provide quantitative performance measures
while their combination further enables trade-off analysis and balanced design decisions.
In contrast to existing manual DSE, which mostly relies on intuition, designer experi-
ence, iterative design enhancements, and post-synthesis evaluation, our pre-synthesis and
metric-based analysis objectively guides design space exploration and candidate selection.
Ultimately, pre-synthesis prediction of PMs enables advanced search space traversal strate-
gies alongside micro-optimizations, e.g., in terms of early-stage evaluation and sub-template
prioritization or iterative sub-template refinements (see Section 8.3). Particular examples
for PMs include, apart from the aforementioned cycle count latency, the area, power
consumption, or critical path delay.

4 Workflow
As depicted in Figure 1, we separate between the design and exploration flow. In this
section, we present further details of the internals of the nested hardware template concept
which, on the one hand, enable the efficient DSE, but on the other hand arise from this
separation of design and exploration flow.

We want to stress that our concept is not intended to be a replacement for the standard
workflows in hardware development, but rather an extension. With the final output
being standard VHDL or Verilog, our proposed workflow can be easily integrated into
the established hardware tool chain. In particular, the second step from the common
digital design flow (“Functional Design”, cf. Section 3.1) is extended in order to reduce the
necessary iterations that stem from Step 6, the verification and validation.

4.1 Template Internals
Recall that we differentiate between the template developer1 and its user. The former
defines the behavior of the instantiated hardware module depending on the algorithm
parameters, template configuration, and hardware security context. In principle, this

1We use the term designer synonymously.

Buschkowski et al. 9

process shares some similarities to writing hardware descriptions with generics. As a
consequence, experienced hardware developers can easily adapt to our new workflow.

To enable an efficient DSE with functional and security-aware hardware modules as
result, the following internals are defined by the template developer.

Design Aspects Depending on the intended functionality, the template designer defines a
list of design aspects that represent the freedoms in data processing. Each aspect
then has several options that can be selected. For example, the pipelining degree
could be a design aspect, with an integer range as the associated options. Since the
configuration extraction iterates over these aspect options, they must not interfere
with the high-level functionality nor the interface to ensure interoperability after
DSE. On the other hand, the algorithm parameters may impact the aspect options,
e.g., the available range of unrolling might depend on the AES security level.

Hardware Security Aspect Similar to the design aspects, template designers may define
options to instantiate the security-sensitive parts depending on the given security
context. For example, if the security context defines a masking degree, there might
be different kinds of gadget types to protect the secret data path, each of which
has the same masking degree, but different performance characteristics. Then, each
gadget type serves as a potential option.

Hardware Description The tuple of selections for (a) the design aspects, and (b) the
hardware security aspect is what we call a template configuration. Given a template
configuration, a template can be instantiated, which means that a specific hardware
description is generated. For this, the template designer gives a hardware description
relative to each design aspect such that any combination of options can be instantiated.
If a combination cannot be instantiated, the designer flags it as a conflict that will
be handled by the configuration extraction accordingly.

Performance Prediction Additionally, the template developer gives a generic formula
for performance prediction for each metric, which we explain in more detail in
Section 4.2. These formulas might depend on the algorithm parameters, hardware
security context, and the template configuration.

4.2 Design Space Exploration
As mentioned in Section 3.2.2, the foundation of the DSE is an efficient configuration
extraction. This is followed by the performance prediction accumulation, and the actual
DSE process is just an iteration over the list of design configurations yielded by the
extraction, taking into account the performance prediction as auxiliary information.

4.2.1 Configuration Extraction

Algorithm 1 presents the details of the configuration extraction procedure. There, a
comprehensive list of available template configurations and potential dependencies is
extracted for each (sub-)template, as some template configurations may contain mutually
exclusive choices of aspect options, yield non-functional designs, or are not yet implemented.
This check for conflicts is performed in Line 15.

Essentially, Algorithm 1 traverses a decision tree of configuring templates and their
subtemplates. This tree walk is depicted exemplarily in Figure 2. Note how the tree
in Figure 2b displays the order in which the templates are configured rather than the
template hierarchy, as particularly evident by the fact that D is no subtemplate of C. In
fact, the layers of the decision tree are exchangeable to a certain extent: In this example,
C and D can be exchanged, since they are independent of each other.

10 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

As explained before, continuously ensuring the functional correctness of each design
configuration under evaluation requires a strict top-down configuration procedure, which
is ensured by the recursion in Algorithm 1. The input template is parametrized with a
set of algorithm parameters and a hardware security context. Eventual subtemplates are
parametrized with the same hardware security context as it is immutable during DSE. On
the other hand, the algorithm parameters of the subtemplates are either chosen statically
by the template designer, or derived from the algorithm parameters and the hardware
security context of the current template, as shown in Line 11.

Algorithm 1 Configuration extraction procedure
1: procedure ExtractConfigs(template Pa,h parametrized with algorithm parameters

a and hardware security context h)
2: C := ∅ (the set of configuration tuples)
3: D := design aspects of Pa,h

4: for all d ∈ D do
5: Od := aspect options of d
6: H := hardware security options of Pa,h

7: CP := H × Od1 × . . . × Od|D| ▷ each element is one config
8: for all c ∈ CP do
9: Sc := subtemplates of Pa,h when configured with c

10: for all s ∈ Sc do
11: a′ := DeriveAlgorithmParametersc(a, h) ▷ defined by designer
12: Cs := ExtractConfigs(sa′,h)
13: Cc := Cs1 × . . . × Cs|Sc| ▷ each element in Cc is a tuple of subtemplate configura-

tions
14: for all γ ∈ Cc do
15: if γ is not flagged as conflict then
16: extend γ with (Pa,h, c)
17: C := C ∪ {γ}
18: return C

A

B C,D

B

C

C D

(a) Four exemplary templates, where the colored dots depict the configurations and the letters below
them decribe the subtemplates that are required in case the template is configured that way.

A

B

C

C D I3

I1

I2

(b) Decision tree that is traversed by Algorithm 1 when template A from Figure 2a is set as top-level
template.
Figure 2. Exemplary depiction of templates and configurations, and how the configurations are
extracted by Algorithm 1.

Buschkowski et al. 11

4.2.2 Performance Prediction Accumulation

Based on the list of generated conflict-free design configurations, the actual DSE procedure
iteratively selects design configurations and configures the hardware model accordingly. For
this, a top-down procedure is applied, ensuring that only those subtemplates are configured
that are eventually instantiated given its parents’ configuration. Upon completion of design
configuration, the templates estimate, accumulate, and report the user-specified PMs in a
bottom-up process until the top-level template is reached, yielding the final performance
prediction. Depending on the DSE objective, either the current configuration meets the
target requirements (i), the DSE procedure continues until a suitable candidate has been
found (i), or the design space has been explored exhaustively and the best candidate has
been identified (ii). Due to the inherent link between some PMs (e.g., a lower latency
often results in a higher area, and vice versa), optimizing all PMs independently is usually
not possible. Instead, the DSE optimizes either a single PM, or alternatively a meta-PM
that combines multiple PMs, e.g., the product of area and latency.

5 Proof-of-Concept
While Section 3 discusses our general concept for secure and efficient design space explo-
ration and Section 4 presents our proposed workflow, this section briefly introduces and
discusses essential aspects of our proof-of-concept implementationof HADES.

5.1 Language Embedding
To implement our proof-of-concept, we require a language or a set of languages that allow
us to (i) implement templates with their settings and internals, (ii) express the hardware
functionalities of a template, and (iii) perform the DSE.

We opted to follow the OOP paradigm, as it beneficially features the implementation
of templates (i) as well as the DSE (iii). In particular, when realizing templates as classes,
the template hierarchy can be represented using the instantiation of sub-classes, even when
multiple sub-templates of the same type are necessary. Using the inheritance functionality
of OOP, algorithm parameters can easily be inherited from the top-level template to its
sub-templates. Furthermore, template internals such as the design aspects with their
possible options or the PMs can be stored as fields inside the template class. This enables
an easy configuration extraction and template configuration during the DSE through
dedicated class methods, and allows to access and modify the PM during the performance
prediction.

Consequently, we decided to use a Hardware Construction Language embedded into
an OOP language to describe a template’s functionality (ii). Unlike conventional HDLs
that lack essential features for our concept of templates (cf. Section 3.1), HCLs enable an
easy hardware description through their rich features and the integration of the hardware
description into the respective template class. The OOP language Scala with its embedded
HCL, SpinalHDL, is an ideal choice as it is among the most feature-rich and well-maintained
HCLs, which makes it easy to learn. In addition, the translations to standard VHDL and
Verilog ensures that the generated designs can be further processed by the established tool
chain for synthesis and placement. Chisel [Chi23], a second HCL embedded into Scala, was
another possible choice. However, unlike Chisel, SpinalHDL (i) is strongly typed, removing
possible sources of errors in the template descriptions, and (ii) its black-boxing feature
supports generics, which is especially useful when including existing IP with generics into
a design.

We also considered the usage of High-Level Synthesis (HLS) to translate a description in
a high-level language such as C into a hardware description. This approach would allow for
a quick and easy implementation of designs through the rich features of high-level languages

12 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

and require little knowledge about hardware from template designers. However, as high-
level languages rely mostly on the HLS tools to optimize the performance of a design, it is
often impossible to achieve optimal performances, especially for complex cryptographic
designs. Furthermore, certain design aspects such as an unrolling or pipelining factor
are often not chosen by the designer, but instead determined by the HLS tools, limiting
the amount of different designs that can be explored during DSE. Finally, as high-level
languages lack the ability to express some low-level hardware features such as registers,
performance prediction prior to HLS would either be very inaccurate, or would require
reverse-engineering the HLS algorithms to know how registers are inserted. Given the
complexity of current HLS tools, this seems out of reach. Therefore, we deemed HLS to
be an unsuitable approach for the hardware description of templates.

5.2 Templates
When implementing templates as Scala classes, we have to ensure that the parametrization
settings and template internals are implemented in an appropriate way that matches the
requirements from Section 3.2 and Section 4.

To represent their immutability during DSE, algorithm parameters are implemented as
constructors to the template class. This also allows to inherit algorithm parameters to
potential sub-classes. The hardware security context, which is not only immutable, but
also identical for all templates for our proof of concept, is implemented as an object that
is created at the start of the DSE and shared between all templates. The design aspects
and the hardware security aspect with their possible options are realized as static fields
in the template class. This allows the design options to depend on algorithm parameters
(cf. Section 4.1) and to access the options during configuration extraction through a
dedicated class method. Finally, the PMs for each template are stored in mutable class
fields and can be accessed or modified through dedicated class methods.

5.3 Design Space Exploration
The DSE procedure first extracts a list of all possible design configurations according to
Algorithm 1 through a recursive extraction method that is called on the top-level template.
For every found design configuration, the design hierarchy is configured and the PMs
are accumulated in a bottom-up procedure. The PMs of the top-level template, which
correspond to the performance of the entire design, are stored in a hash table, using the
current design configuration as key and the PMs as value. When sorting this table by
a certain PM, it is possible to find the optimal design configuration in the respective
category. If multiple design configurations are tied for the best performance, the table can
be further sorted by a secondary PM to find the best-suited design.

Our proof-of-concept implementation of HADES currently supports three PMs, namely
Latency, Area, and Randomness. While the latency of a template is computed cycle-
accurately, the area of a template is estimated based on the amount of registers and logic
templates used in a template and a list containing their sizes after synthesis (in Gate
Equivalent (GE)). Our implementation is equipped with a list of logic gate and register
sizes for the NanGate 45 nm library and can be easily extended for arbitrary cell libraries.
The randomness demand of a design can be accurately calculated based on the amount
of logic gates used in each template and the current hardware security option. As an
unmasked design uses zero bits of randomness, this PM is only viable if a masking degree
of one or more is selected. To explore trade-offs between different PMs, the DSE procedure
additionally calculates the Area-Latency Product (ALP) and Area-Latency-Randomness
Product (ALRP) by multiplying the respective PMs, yielding designs that are balanced
between multiple PMs. Our tool focuses on the trade-offs between area and latency as

Buschkowski et al. 13

these are typically the most crucial PMs in hardware development. However, additional
trade-offs such as the Area-Randomness Product can easily be added to the DSE process.

6 Case Studies
In this section, we showcase the performance and versatility of our tool and perform DSEs
on various common cryptographic components and schemes. Notably, we not only provide
implementations of primitives with known implementations in the literature, but also novel
implementations, e.g., for ChaCha20 and Kyber, which demonstrates the adoptability of
our tool.

For DSE, we aim at an optimization towards five different goals: Latency, minimizing
the cycle count, Area, minimizing the area estimation, Randomness (only for masked
designs), Area-Latency-Randomness-Product (only for masked designs), and Area-
Latency-Product.

For the synthesis, we use Synopsis Design Compiler, version S-2021.06-SP4, with the
NanGate 45 nm library. Moreover, we do not perform an extensive synthesis optimization
but rather set the timing goal to 10 µs. Consequently, the reported performance numbers
below may be optimized by a more sophisticated synthesis routine.

6.1 Efficient Addition
Efficient addition has seen thorough scrutiny throughout the history of electrical engineering.
The simplest method is the Ripple-Carry Adder (RCA), which requires a cascade of n
Full Adders (FAs) to add two n-bit numbers. In contrast to this, the group of parallel
prefix adders achieves a better critical path delay, which can perform addition with
around log2(n) stages of so-called propagate-generate groups. Moreover, both types can
be implemented in a serial or pipelined fashion, achieving either a lower area footprint or
a higher throughput.

In the field of side-channel security, Schneider et al. [SMG15] introduced for the first
time arithmetic addition over Boolean-shared values, which makes use of such traditional
adder types. Bache and Güneysu [BG22] extended this to higher-order and gadget-based
masking. We refer to their works for a comprehensive comparison of different adder types.

Since adders are the base for various cryptographic primitives and higher-level templates,
we pre-provide three generic templates with configurable bit width:

1. Ripple-Carry Adder (RCA): This template can be instantiated as a serial or
pipelined module (further denoted as sRCA and pRCA). The former works with
a single FA that incrementally fills a register stage with its result, while the latter
deploys n full adders in parallel. Notably, our pRCA template does not feature a
dedicated register stage. Hence, without side-channel protection, the pRCA template
has a latency of zero cycles. Only when side-channel protection is activated, the
secure gadgets induce a cycle count latency, and thus a fully-pipelined design, which
has the same latency as the sRCA but, naturally, a higher throughput.

2. Sklansky Adder (SKA): The SKA has log2(n) propagate-generate stages. Analog
to the RCA, there are no dedicated register stages in the template, and only with
side-channel protection the latency increases to a minimum of log2(n) clock cycles.

3. Kogge-Stone Adder (KSA): The KSA has the same number of propagate-generate
stages as the SKA but requires more such groups in parallel which, positively, yields
a lower fanout.

The template library currently features both SKA and KSA as pipelined versions only. An
extension of the adder options is subject to future work.

14 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

Table 1 shows the results of the DSE on our adder templates and the synthesis results
up to the second masking order. It already highlights several tradeoffs that can be done
on a low level. In particular, the masked serial RCA modules are strictly smaller and
require less randomness compared to their parallel-prefix counterparts while having a
higher latency and delay. Besides, Table 1 shows that the area estimation is often very
close to the final area.

Additionally, we provide templates for modular addition, which are particularly inter-
esting for more complex use cases like Kyber. For further details and DSE results, we refer
to Appendix A.

Table 1. Adder DSE and synthesis results, exemplarily for 16- and 32-bit width. Generally, the
adder width is freely configurable.

d Opt. Design Config. Area Rand. Lat. Delay
gadget adder [est. kGE] [kGE] [bits] [cycles] [ns]

Algorithm Parameter: 16 bit
0 L/A/ALP — SKA 0.197 0.198 — 0 0.5

1
L/ALP HPC3 SKA 8.8 6.5 116 5 1.8

A HPC3 sRCA 1.4 1.3 4 16 42.0
R/ALRP HPC2 sRCA 1.5 1.4 2 32 55.5

2
L/ALP HPC3 SKA 18.9 13.4 348 5 2.1

A HPC3 sRCA 3.1 2.1 12 16 33.7
R/ALRP HPC2 sRCA 3.3 2.2 6 32 55.5

Algorithm Parameter: 32 bit
0 L/A/ALP — SKA 0.481 0.482 — 0 0.7

1
L/ALP HPC3 SKA 20.8 16.7 304 6 2.6

A HPC3 sRCA 2.5 2.4 4 32 73.9
R/ALRP HPC2 sRCA 2.6 2.5 2 64 107.8

2
L/ALP HPC3 SKA 48.2 34.8 912 6 3.4

A HPC3 sRCA 5.6 3.6 12 32 82.5
R/ALRP HPC2 sRCA 5.8 3.8 6 64 140.2

6.2 ARX Ciphers
Using only the adder templates, we can already securely instantiate a whole family of
cryptographic ciphers consisting only of addition, rotation, and XOR. Notably, the latter
two operations can be performed share-wise for PINI gadgets such as the HPC gadgets.
Exemplarily, we have implemented a template for ChaCha20, configurable for the adder
type (including serial vs pipelined), number of quarter rounds to be performed in
parallel (1, 2, or 4), and number of adders for the final addition of input and updated
state (1, 2, 4, 8, or 16).

Table 2 shows the result of our DSE and the synthesis. The number of adders in the
final addition only has a minor influence on the latency, but a major influence on area
and randomness. This becomes obvious when comparing the optimizations for latency and
ALP, which only differ in the number of adders used. While the latency optimization only
improves the latency by 13 %, the area increases by almost 200 %.

6.3 Keccak
The Keccak family of permutation functions can be used differently to instantiate hash
functions or Extendible Output Functions (XOFs), most notably SHA3 variations and
SHAKE. Masking is especially required for use cases in which Keccak processes secret
data, for example within Kyber.

Buschkowski et al. 15

Table 2. ChaCha20 DSE and synthesis results for up to the third masking degree.

d Opt. Design Config. Area Rand. Lat. Delay
QR # add. adder gadget [est. kGE] [kGE] [bit] [cycles] [µs]

0
L 4 16 SKA — 24 43 — 236 0.34
A 1 1 SKA — 13 29 — 611 0.96

ALP 4 2 SKA — 18 39 — 243 0.38

1

L 4 16 SKA HPC3 475 396 6 080 722 1.04
A 1 1 sRCA HPC3 55 53 8 22 787 30.55
R 1 1 sRCA HPC2 55 53 4 33 539 45.94

ALRP 2 1 pRCA HPC2 61 61 6 17 619 26.06
ALP 4 1 SKA HPC3 163 147 1 520 827 1.12

2

L 4 16 SKA HPC3 1 096 786 18 240 722 1.13
A 1 1 sRCA HPC3 123 76 24 22 787 42.12
R 1 1 sRCA HPC2 124 77 12 33 539 46.26

ALRP 2 1 pRCA HPC2 137 88 18 17 619 29.41
ALP 4 1 SKA HPC3 374 266 4 560 827 1.21

The permutation consists of five steps: the first three (θ, ρ, π) are linear in the Boolean
masking domain, while the χ step is a quadratic function and requires non-linear gates, and
the final ι is an affine function. The main parameter to explore during DSE, particularly
for masked designs, is the number of parallel χ operations performed. Currently, our
template is restricted to Keccak-f[1600] – a generalization is planned as future work –
and it supports 25, 50, 100, 200, 400, 800, or 1600 parallel χ operations. During each
permutation iteration, the first three steps θ, ρ, π are carried out simultaneously within a
single clock cycle, and the outcome is then stored in the state register. Subsequently, the
χ step is performed with the configured parallelism, and the ι step is performed in a final
clock cycle. This procedure is repeated 24 times, as given by the Keccak specification.

For masked designs, most area and all randomness is spent on the quadratic χ step,
which is the only one to require (costly) non-linear gadgets. Hence, a tradeoff exists
between low latency (many χ operations in parallel) and low area and randomness (few χ
operations). The tradeoff is noticeable in the results of the DSE shown in Table 3.

Table 3. Performance results for Keccak-f[1600], using different optimization targets for up to
third masking degree. Latency and delay are given for one permutation consisting of 24 rounds.

d Opt. Design Config. Area Rand. Lat. Delay
para. gadget [est. kGE] [kGE] [bit] [cycles] [ns]

0
L 64 — 12.9 22.0 — 96 30.72
A 1 — 6.7 16.2 — 1 608 916.76

ALP 32 — 9.8 19.3 — 120 115.16

1
L 64 HPC3 131.6 149.4 3 200 120 40.80
A 1 HPC3 15.1 30.1 50 3 144 1 792.47

R/ARLP 1 HPC2 15.9 34.6 25 4 680 3 744.00
ALP 16 HPC3 42.8 61.6 800 264 198.05

2
L 64 HPC3 299.3 325.9 9 600 120 40.80
A 1 HPC3 24.3 52.2 150 3 144 2 954.89

R/ARLP 1 HPC2 26.2 54.1 75 4 680 2 901.43
ALP 16 HPC3 89.8 117.7 2 400 264 211.20

6.4 AES
AES is one of the most widely used symmetric encryption algorithms, and there are various
implementation strategies with different performance characteristics. Therefore, finding the
best-suited implementation among all possible designs is of crucial importance, especially

16 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

when also considering security against physical attacks.
Our AES template that supports both encryption and decryption is parametrizable

for the key size, namely for 128, 192, and 256 bit keys. During DSE, the following design
aspects are explored: The architecture (round-based or unrolled), the types of S-Boxes
for the round function, and the key schedule (we currently support the Canright S-Box
and the Boyar-Peralta S-Box, and different choices for the round and the key schedule are
possible), and the number of parallel S-Boxes (1, 2, 4, 8, or 16) and MixColumns instances
(1, 2, or 4) in a round. Table 4 shows the results of the DSE. Most notably, at first and
second order, the unrolled architecture is chosen when optimizing for latency. Due to the
inherent register stages of masked non-linear gadgets, this architecture only improves the
latency by 8 % over the round-based ALP optimization, while increasing the area by over
600 %.

Table 4. DSE and synthesis results for AES-128. The chosen design configurations and further
results for AES-192 and AES-256 can be found in Table 14.

d Opt. Area Rand. Latency Delay
[est. kGE] [kGE] [bit] [cycles] [ns]

0 L/ALP 17.3 32.9 — 15 501
A 4.4 9.9 — 656 1 292

1
L 814.4 860.8 11 592 51 83
A 20.0 23.8 144 1 616 1 972

R/ALRP 22.1 26.1 68 2 576 3 503
ALP 119.5 125.9 1 224 55 100

2
L 1 819.3 1 670.8 34 764 51 115
A 44.1 40.0 408 1 616 2 101

R/ALRP 49.2 45.2 204 2 576 3 812
ALP 267.3 227.0 3 660 55 116

6.5 Polynomial Multiplication
Recently, Land et al. [LMRG24] showcased the feasibility of applying gadget-based masking
to modern Public-Key Cryptography (PKC), and particularly lattice-based PQC schemes,
by implementing Streamlined NTRU Prime completely with HPC2 gadgets. They observe
that polynomial multiplications, as often required by lattice-based schemes, are feasible
with Boolean masking if there is a public operand and the secret operand has only a small
number of possible coefficient values. In this case, it is possible to deploy Schoolbook
multiplication. This approach boils down to

1. multiplying the coefficient of the public operand by each potential secret coefficient
value (this can be done without side-channel protection), then

2. securely multiplexing each of these public values with the secret coefficient as the
“select” input, and finally

3. securely accumulating the mux result using an adder.

The downside of this approach is that implementations of most PQC schemes usually
deploy dedicated multiplication routines like NTT or Karatsuba, which are algorithmically
faster but infeasible to be used with Boolean masking due to the big intermediate coefficient
multiplications.

The template we implement follows the Schoolbook strategy to enable masking easily
and features configurability regarding the reduction polynomial, coefficient modulus, adder
types, and the number of adders that are instantiated in parallel. Notably, the list of

Buschkowski et al. 17

potential numbers of parallel adders is computed individually for each reduction polynomial,
such that the search complexity of the DSE remains reasonable. Table 5 contains the DSE
results for the polynomial multiplication for the Kyber-512 use case.

Sparse Multiplication

We extend the above-explained concept to another relevant case: sparse multiplication.
The use case for this is the signing procedure of Dilithium (cf. [LMRG24, Sec. 6.5]), the
designated PQC signature standard. Dilithium performs a sparse multiplication which
is highly vulnerable to side-channel analysis, as the so-called challenge polynomial c is
multiplied with the secret key s1, s2, and subsequently added to the signature nonce y. In
this case, c is sparse and public as pointed out in [KLRBG23, ABC+23], and the secret
key is a secret polynomial vector with small coefficients bounded by η ∈ {2, 4}. We observe
that – similar to the concept above – no coefficient multiplications between "big" integers
are required.

The template for our sparse multiplication is configurable for the reduction polynomial
(but currently only supports polynomials with the form xn ± 1), the sparsity, the range of
the secret. The template configuration consists of the adder type and the number of adders
that are instantiated. For further implementation details as well as DSE and synthesis, we
refer to Appendix B.

Table 5. DSE and synthesis results for polynomial multiplication. Exemplarily, we use the Kyber
reduction polynomial X256 + 1 with the modulus q = 3329 and a secret range η = 3 (Kyber-512).
Further results can be found in Appendix D (Table 15).

d Opt. Design Config. Area Rand. Latency Delay
add. adder gadget [est. kGE] [kGE] [bit] [cycles] [µs]

0
L 256 SKA — 450 n/s* — 1 281 n/s*
A 1 sRCA — 40 94 — 2 490 625 4 408

ALP 43 SKA — 108 1 192 — 2 561 16

1

L 256 SKA HPC3 7 647 n/s* 102 400 5 121 n/s*
A 1 sRCA HPC3 172 142 220 4 522 241 9 725
R 1 sRCA HPC2 178 148 110 6 553 857 12 319

ALRP 1 pRCA HPC2 192 178 158 81 921 144
ALP 8 SKA HPC3 391 344 3 200 13 057 23

2

L 256 SKA HPC3 17 621 n/s* 307 200 5 121 n/s*
A 1 sRCA HPC3 386 193 660 4 522 241 8 004
R 1 sRCA HPC2 403 204 330 6 553 857 11 600

ALRP 1 pRCA HPC2 435 248 474 81 921 144
ALP 8 SKA HPC3 893 580 9 600 13 057 25

*not synthesizeable within 72 hours

6.6 Kyber
Kyber is a PQC Key Encapsulation Mechanism (KEM), and will be standardized by NIST
under the name ML-KEM. Still, to the best of our knowledge, no fully masked – and
thus, comprehensively secured against side-channel attacks – implementation has yet been
published. For details about our implementation, we refer to Appendix C.

For KEMs in general, the decapsulation is the most critical operation from a side-
channel point of view. Since Kyber uses the Fujisaki-Okamoto transform, decapsulation
consists of a Chosen Plaintext Attack (CPA)-secure decryption and a deterministic re-
encryption. In fact, the re-encryption is particularly security-critical [ABH+22], and thus,
it must be weighed for each specific use case whether a CPA decryption is sufficient or
the Chosen Ciphertext Attack (CCA)-secure decapsulation is required. Indeed, Düzlü

18 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

et al. recently presented a lightweight identification protocol [DKPS23], which requires
side-channel security only for the CPA decryption.

Consequently, we provide implementations for both cases. Table 6 shows the DSE
and synthesis results for CPA decryption. Our template for decryption features a fully
configurable polynomial multiplication and the number of parallel compression steps.
Algorithmically, the template can be instantiated for each parameter set separately, but
also such that all three parameter sets are supported simultaneously.

For CCA decapsulation, Table 7 shows our DSE and synthesis results. Remarkably,
our template structure for Kyber-CCA yields more than one million valid design choices,
each of which we have explored.

Table 6. DSE and synthesis results for Kyber-512-CPA decryption. Results on the other
parameter sets and a design with runtime-configurable security level can be found in Appendix D
(Table 16).

d Opt. Design Config. Area Rand. Latency Delay
#comp. #add. adder gadget [e. kGE] [kGE] [bit] [cycles] [ms]

0
L 256 256 SKA — 454 n/s* — 3 333 n/s*
A 1 1 sRCA — 42 120 — 4 982 148 9.03

ALP 20 32 SKA — 93 247 — 6 929 0.02

1

L 256 256 SKA HPC3 7 737 n/s* 104 448 11 016 n/s*
A 1 1 sRCA HPC3 179 175 228 9 045 511 18.73
R 1 1 sRCA HPC2 186 180 114 13 108 746 25.45

ALRP 1 1 pRCA HPC2 200 211 162 164 874 0.29
ALP 4 8 SKA HPC3 399 380 3 232 26 951 0.05

2

L 256 256 SKA HPC3 17 834 n/s* 313 344 11 016 n/s*
A 1 1 sRCA HPC3 403 233 684 9 045 511 20.79
R 1 1 sRCA HPC2 419 244 342 13 108 746 28.68

ALRP 1 1 pRCA HPC2 451 289 486 164 874 0.29
ALP 3 8 SKA HPC3 910 642 9 672 26 973 0.06

*not synthesizeable within 72 hours

Table 7. DSE and synthesis results for Kyber-512-CCA decapsulation. Results for all parameter
sets that also include the design configurations can be found in Appendix D (Table 17).

d Opt. Area Rand. Latency Delay SRAM
[est. kGE] [kGE] [bit] [cycles] [µs] [bit]

0
L 490 n/s* — 19 612 n/s*

26 816A 75 316 — 19 960 068 75 321
ALP 91 459 — 72 036 541

1

L 7 869 n/s* 105 922 69 220 n/s*

28 608
A 259 447 326 36 368 922 136 213
R 268 454 163 52 707 120 205 887

ALRP 282 485 211 931 632 3 741
ALP 505 668 3 880 138 441 541

2

L 18 095 n/s* 317 766 69 220 n/s*

30 400
A 544 575 978 36 368 922 137 241
R 564 590 489 52 707 120 198 895

ALRP 596 635 633 931 632 3 516
ALP 1 113 1 013 11 640 138 441 543

*not synthesizeable within 72 hours

7 Evaluation
In order to demonstrate that the masked designs generated by our proof-of-concept
implementation of HADES are secure against side-channel attacks, we exemplary perform

Buschkowski et al. 19

a Test Vector Leakage Assessment (TVLA) on a 16-bit adder. More precisely, we configure
our tool to generate a first-order secure 16-bit Sklansky adder using HPC3 gadgets. We
synthesize the resulting Verilog file for the side-channel measurements board Sakura-G
which is equipped with a Spartan 6 Field-Programmable Gate Array (FPGA). To avoid
any recombination of shares in the FPGA fabric, we reimplemented the first-order HPC3
gadget directly using Xilinx primitives, i.e., Look-Up Tables (LUTs) and FDRE registers.
The measurement board is connected to a ZFL-2000GH+ Low Noise Amplifier (LNA)
configured with a gain of 22.5 dB and a Spectrum M4 oscilloscope (8 bit resolution). The
oscilloscope is configured to sample the power consumption with 2.5 GS/s. To provide the
required randomness for the underlying HPC3 gadgets of the adder, we instantiate a Keccak
core with a state width of 200 bits serving as Pseudorandom Number Generator (PRNG).

For the TVLA, we apply Welch’s t-test to investigate if possible leakage can be detected
within the power traces. Commonly, a threshold of ±4.5 is used to decide whether leakage
can be observed or not. To this end, Figure 3 presents the corresponding measurement
results. For reference, Figure 3a shows a sample trace of the addition performed by the
protected Sklansky adder. Figure 3b presents the t-test results based on the first-statistical
moment using 100 million power traces. As shown, no value exceeds the threshold which
means that variations in the mean do not leak information about the processed data. Since
the measured design is only protected against first-order attacks, the evaluation based on
the second-statistical moment shows some leakage (see Figure 3c).

Time [µs]sc
op

e
co

u
n

t

0 0.53 1.07 1.60
−100

0

100

(a) Sample trace.

Time [µs]

t
-v

al
u

e

0 0.53 1.07 1.60

−4.5
0

4.5

(b) First-order t-test results.

Time [µs]

t
-v

al
u

e

0 0.53 1.07 1.60

−20
−10

0

(c) Second-order t-test results.

Figure 3. Measurement results for a 16-bit Sklansky adder protected by HPC3 gadgets for d = 1
(100 Million traces).

8 Discussion and Comparison
This section briefly discusses the performance, capabilities, and limitations of our proof-of-
concept implementation.

8.1 DSE Performance
All experiments, exhaustively searching the design spaces, were performed on a virtual
machine running Ubuntu 22.04 with 32 CPUs and 128 GB of RAM. Table 8 shows the
number of configurations and the DSE runtime for all case studies in Section 6.

20 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

As expected, the number of configurations has a significant influence on the runtime of
the DSE. However, considering the large difference between the runtimes of Kyber-CPA
and Kyber-CCA, the higher complexity of the template hierarchy for Kyber-CCA clearly
influences the runtime as well.

Table 8. Number of configurations and DSE runtime for the algorithms from our case studies.
Algorithm # Configurations Time
Keccak 14 0.5s
AdderModQ 42 0.7s
Sparse Polynomial Multiplication 372 1.2s
ChaCha20 1 080 3.2s
AES 1 440 5.4s
Polynomial Multiplication 1 302 7.9s
Kyber-CPA 40 362 196.5s
Kyber-CCA 1 148 364 >150h

Table 9. Comparison to AGEMA, all designs synthesized with the NanGate 45 nm library under
the same synthesis options. The AGEMA results use the same hardware description as a starting
point.

d Gadget Tool
Ripple-Carry Kogge-Stone Sklansky
Area Delay Area Delay Area Delay
[kGE] [ns] [kGE] [ns] [kGE] [ns]

0 — HADES 1.2 33.7 0.7 0.55 0.5 0.68

1
HPC2 AGEMA 54.3 315.2 35.1 4.46 25.6 5.64

HADES 2.5 107.8 26.5 3.36 16.6 5.28
HPC3 AGEMA 37.3 210.8 23.0 2.46 16.2 3.30

HADES 2.4 73.9 18.7 1.86 11.7 2.64

2
HPC2 AGEMA 126.8 241.7 77.0 5.28 53.4 6.72

HADES 3.8 140.1 64.1 3.96 40.0 6.84
HPC3 AGEMA 89.9 153.0 51.1 2.82 34.7 3.60

HADES 3.6 82.5 44.7 2.22 27.9 3.48

8.2 Comparison
Due to the novelty of our approach, we are not aware of any other works that have a similar
concept and would thus be suited for a comparison. In the realm of design automation
for masked hardware, there is only AGEMA [KSM20], which is a pure netlist transformer,
allowing to automatically mask netlists of unprotected circuits. As AGEMA relies on
already synthesized designs, it does not enable DSE as HADES does. Essentially, AGEMA
works on a lower layer and only provides a subset of our functionality.

Nevertheless, a fair comparison is possible as both tools produce masked designs. For
the sake of simplicity, Table 9 compares selected synthesis and performance results for
masked addition units generated both with AGEMA and our tool. However, we assume
that the results also scale for more complex modules.

As a baseline, we synthesized three different non-protected addition modules, namely a
pipelined KSA and SKA, and a serial RCA, generated from our three addition templates.
Each adder has a width of 32 bit, and the Boolean gates were configured to have no
additional register stage. Using AGEMA, the synthesized netlists are then masked at first
and second order using both the HPC2 and HPC3 PINI-gadgets. Similarly, we generated
first-order and second-order masked instances for all three addition templates with the
same set of PINI-gadgets using our tool. For performance comparison, all masked designs
were synthesized again, providing accurate figures for area occupation and critical path
delay (cf. Table 9). Notably, across all adder types, security orders, and gadget types, the

Buschkowski et al. 21

results generated by our tool predominantly outperform the AGEMA-generated designs in
the acquired design metrics.

This clearly emphasizes the limitations of post-synthesis transformation (AGEMA)
compared to pre-synthesis instantiation (our tool) of gadget-based masking schemes. The
outcome of AGEMA is heavily dependent on the provided synthesized gate-level netlists,
i.e., the processing and optimization procedures of the employed synthesizer, while our
tool is directly operating on the pre-synthesis hardware model. Combined with a DSE, our
tool plays to its full strengths, as it rapidly configures and compares different designs to
find the best candidates, while AGEMA requires manual interaction and time-consuming
design iterations to improve efficiency. However, these benefits come at the expense of
reduced versatility, since custom template-based hardware model definitions are required,
while AGEMA is model-agnostic and handles arbitrary synthesized gate-level netlists.

For a comparison with related work regarding single case studies, we refer to the next
subsection (AES), Appendix E (Keccak), and Appendix F (Kyber).

8.3 Limitations and Future Work
Performance Metric Selection

As visible in Section 6, the SKA is constantly picked over the KSA as the configuration
for adders during DSE. Both adders yield the same cycle count latency, and the SKA has
a lower area estimate as a tie breaker, so this choice is reasonable for latency optimization.
However, synthesizing both adder types – KSA results are shown in Table 10 – leads to a
converse result regarding the delay: the KSA has a slightly but noteworthy lower delay
than the SKA because of the lower fan-out. This discrepancy between the DSE results
and the actual performance highlights that if the applied PMs reflect the desired model
characteristics insufficiently, they cannot be optimized during DSE.

Our case studies also highlight that the area estimation differs from the actual post-
synthesis area with varying margins of error. An underestimation, such as in most designs
in Table 7, occurs if the template has a complex FSM or large multiplexers, as these are
not entirely captured by the performance prediction. On the other hand, overestimations
of the area happen if the synthesis tool is able to optimize the design in terms of area
(cf. Table 6). Improving the accuracy of the area estimation would certainly be possible
with more sophisticated methods that capture FSMs and Multiplexers or consider possible
optimizations, however at the prize of less efficient performance prediction.

Table 10. Kogge-Stone Adder synthesis results for 16-bit addition, cf. Table 1.

d Gadget Area Rand. Latency Delay
[est. kGE] [kGE] [bit] [cycles] [ns]

0 — 0.277 0.277 — 0 0.45

1 HPC2 16.5 13.4 92 10 2.8
HPC3 10.2 8.7 184 5 1.6

2 HPC2 38.7 28.9 276 10 3.5
HPC3 23.9 19.0 552 5 1.9

Model Optimization

Table 11 exemplarily shows a comparison with a wide selection [MPL+11, GMK16,
CRB+16, SM21a, CBR+15] of state-of-the-art AES implementations, including designs
that were automatically masked by AGEMA. Strikingly, our gadget-based designs hardly
compete with the handcrafted designs, despite minimizing several PMs during DSE. In
fact, the handcrafted designs manually incorporate various low-level and algorithmic op-
timization techniques, e.g., the changing of the guards methodology [Dae17] to improve

22 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

Table 11. Comparison with previous work for masked AES implementations. Note that our
designs and the ones from [KSM20] are the only ones to use gadget-based masking, while all other
designs are handcrafted and manually optimized.

Ref. d
Area Rand. Latency Delay Technology[kGE] [bit] [bit] [ns]

[MPL+11] 1 11.1 48 266 UMCL18G212T3
[GMK16] 1 7.6 28 216 UMC 180 nm
[CRB+16] 1 6.7 54 276 NanGate 45 nm
[SM21a] 1 7.1 1 246 1 537 UMC 180 nm
[KSM20] 1 33.1 414 3 859 9 879 NanGate 45 nm
[KSM20] 1 10.0 34 2 043 4 310 NanGate 45 nm
[KSM20] 1 52.6 680 99 202 NanGate 45 nm
this 1 23.8 144 1 616 1 972 NanGate 45 nm
this 1 26.1 68 2 576 3 503 NanGate 45 nm
this 1 860.8 11 592 51 83 NanGate 45 nm
this 1 125.9 1 224 55 100 NanGate 45 nm
[CBR+15] 2 18.6 126 276 NanGate 45 nm
[GMK16] 2 12.8 84 216 UMC 180 nm
[KSM20] 2 17.6 102 2 043 5 434 NanGate 45 nm
[KSM20] 2 131.6 2 040 99 237 NanGate 45 nm
this 2 40.0 408 1 616 2 101 NanGate 45 nm
this 2 45.2 204 2 576 3 812 NanGate 45 nm
this 2 1 670.8 34 764 51 115 NanGate 45 nm
this 2 227.0 3 660 55 116 NanGate 45 nm

efficiency and performance. This, however, is not yet reflected by our tool and the DSE
which solely focuses on generation and exploration of hardware designs without further
consideration of design optimization.

Still, we would like to emphasize that this limitation only affects our proof-of-concept
implementation of HADES, not the general concept as discussed in Section 3. For this,
future versions of our tool could be enhanced, e.g., for randomness reduction [FKS+22,
KM22a] or masking conversion, to boost performance and efficiency of automatically
generated hardware instances even further.

Nevertheless, it is remarkable that our automatically generated designs achieve similar
or better performances compared to the ones from AGEMA. Also, it is important to note
that generating the wide variety of our AES designs took about five seconds (cf. Table 8),
whereas all other implementations featured in the table do not offer this flexibility at all.

9 Conclusion

In this work, we present a novel concept of describing cryptographic hardware, which is
incorporated by our versatile HADES framework. The accompanying template library
covers a wide range of use cases and is easily extensible, re-usable, and will be available
publicly. Most importantly, HADES enables designers to perform DSE rapidly and based
on objective PMs, rather than relying on intuition, experience, or trial-and-error.

Notably, our use case study yielded pioneering and competitive ASIC implementation
results for many algorithms. In particular, to the best of our knowledge, we present the
first set of masked hardware implementations of ChaCha20, and the first arbitrary-order
masked hardware modules for the designated PQC standard Kyber.

Buschkowski et al. 23

Acknowledgements
The work described in this paper has been supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972, and 510964147 (CAVE). Moreover, the authors have
been funded by the European Commission under the grant agreement number 101070374
(CONVOLVE), and by the German Federal Ministry of Education and Research (BMBF)
through the projects VE-HEP (16KIS1345) and 6GEM (16KISK038).

References
[ABC+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François-
Xavier Standaert, and Christine van Vredendaal. Protecting dilithium against
leakage revisited sensitivity analysis and improved implementations. IACR
TCHES, 2023(4):58–79, 2023.

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber Algorithm Specifications and Supporting Docu-
mentation. 2021.

[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,
Tobias Schneider, and François-Xavier Standaert. Systematic Study of De-
cryption and Re-encryption Leakage: The Case of Kyber. In Josep Balasch
and Colin O’Flynn, editors, Constructive Side-Channel Analysis and Secure
Design - 13th International Workshop, COSADE 2022, Leuven, Belgium,
April 11-12, 2022, Proceedings, volume 13211 of Lecture Notes in Computer
Science, pages 236–256. Springer, 2022.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and First-Order DPA Resistant Implemen-
tations of Keccak. In CARDIS, volume 8419 of Lecture Notes in Computer
Science, pages 187–199. Springer, 2013.

[Ber19] D. J. Bernstein. CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. online, 2019. https://competitio
ns.cr.yp.to/caesar.html.

[BG22] Florian Bache and Tim Güneysu. Boolean Masking for Arithmetic Additions
at Arbitrary Order in Hardware. Applied Sciences, 12(5), 2022.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021. https://tches.iacr.org/index.p
hp/TCHES/article/view/9064.

[BNG21] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. High-performance hardware
implementation of crystals-dilithium. In FPT, pages 1–10. IEEE, 2021.

[BSG23] Fabian Buschkowski, Pascal Sasdrich, and Tim Güneysu. EASIMask - To-
wards Efficient, Automated, and Secure Implementation of Masking in Hard-
ware. In 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1–6, 2023.

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064

24 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

[CBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and
Svetla Nikova. Higher-order threshold implementation of the AES s-box.
In Naofumi Homma and Marcel Medwed, editors, Smart Card Research
and Advanced Applications - 14th International Conference, CARDIS 2015,
Bochum, Germany, November 4-6, 2015. Revised Selected Papers, volume
9514 of Lecture Notes in Computer Science, pages 259–272. Springer, 2015.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verifica-
tion. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[Chi23] Constructing Hardware in a Scala Embedded Language (Chisel). online,
2023.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of the
ACM Workshop on Theory of Implementation Security, TIS 2016 Vienna,
Austria, October, 2016, page 43. ACM, 2016.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 137–153. Springer,
Heidelberg, September 2017.

[DKPS23] Samed Düzlü, Juliane Krämer, Thomas Pöppelmann, and Patrick Struck. A
lightweight identification protocol based on lattices. In Alexandra Boldyreva
and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS,
pages 95–113. Springer, Heidelberg, May 2023.

[FKS+22] Jakob Feldtkeller, David Knichel, Pascal Sasdrich, Amir Moradi, and Tim
Güneysu. Randomness optimization for gadget compositions in higher-order
masking. IACR TCHES, 2022(4):188–227, 2022.

[Gaj] Kris Gaj. ATHENa: Automated Tools for Hardware EvaluatioN. online.
https://cryptography.gmu.edu/athena/.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceed-
ings of the ACM Workshop on Theory of Implementation Security, TIS@CCS
2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-Order Side-
Channel Protected Implementations of KECCAK. In DSD, pages 205–212.
IEEE Computer Society, 2017.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

https://cryptography.gmu.edu/athena/

Buschkowski et al. 25

[KLRBG23] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. A
holistic approach towards side-channel secure fixed-weight polynomial sam-
pling. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,
Part II, volume 13941 of LNCS, pages 94–124. Springer, Heidelberg, May
2023.

[KM22a] David Knichel and Amir Moradi. Composable gadgets with reused fresh
masks first-order probing-secure hardware circuits with only 6 fresh masks.
IACR TCHES, 2022(3):114–140, 2022.

[KM22b] David Knichel and Amir Moradi. Low-latency hardware private circuits. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 1799–1812. ACM Press, November 2022.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
generation of masked hardware. IACR TCHES, 2022(1):589–629, 2022.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 787–816.
Springer, Heidelberg, December 2020.

[LMRG24] Georg Land, Adrian Marotzke, Jan Richter-Brockmann, and Tim Güneysu.
Gadget-based masking of streamlined NTRU prime decapsulation in hardware.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(1):1–26, 2024.

[LSG21] Georg Land, Pascal Sasdrich, and Tim Güneysu. A hard crystal - imple-
menting dilithium on reconfigurable hardware. In CARDIS, volume 13173 of
Lecture Notes in Computer Science, pages 210–230. Springer, 2021.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[NIS17] NIST. Call for Proposals – Post-Quantum Cryptography. Technical Report,
CSRC, 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptog
raphy/Post-Quantum-Cryptography-Standardization/Call-for-Propo
sals.

[RBCGG22] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu.
Racing BIKE: Improved polynomial multiplication and inversion in hardware.
IACR TCHES, 2022(1):557–588, 2022.

[RMG22] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. Folding BIKE:
scalable hardware implementation for reconfigurable devices. IEEE Trans.
Computers, 71(5):1204–1215, 2022.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov
1979.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes nullifying fresh randomness. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):305–342, 2021.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

26 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security
with almost no fresh randomness. IACR TCHES, 2021(3):708–755, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8990.

[SMG15] Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic addition over
Boolean masking - towards first- and second-order resistance in hardware.
In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis
Polychronakis, editors, ACNS 15, volume 9092 of LNCS, pages 559–578.
Springer, Heidelberg, June 2015.

[Spi23] SpinalHDL. online, 2023.

[ZZW+22] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu,
Zhengdong Li, Min Zhu, Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact
and high-performance hardware architecture for CRYSTALS-dilithium. IACR
TCHES, 2022(1):270–295, 2022.

https://tches.iacr.org/index.php/TCHES/article/view/8990

Buschkowski et al. 27

A Templates for Modular Addition
Several contemporary use cases, such as Kyber, require addition in Zq for non-power-of-two
q. For this, we implement a template that has freely configurable q. As proposed in
[LMRG24], the general idea is to add the inputs a and b and then subtract q while storing
the original addition result. As a result, we have a + b and a + b − q. Finally, we can use
the carry-out of the subtraction to select between both results.

The modular addition template employs the basic adder templates, automatically
choosing the correct bit widths. Consequently, this template can be instantiated as a serial
or pipelined module as well, depending on which basic adder is utilized. Table 12 shows
the DSE and synthesis results for the moduli of Kyber and Dilithium. Interestingly, for the
larger q, the serial RCA is chosen for d = 0 with area optimization. This can be explained
by the fact that for the big modulus, the size of generate/propagate groups outweighs the
size of the register stage.

Table 12. DSE and synthesis results for modular addition. Exemplarily, we choose the moduli
of Kyber and Dilithium, but the template allows parametrization of any modulus.

d Opt. Design Config. Area Rand. Lat. Delay
gadget adder [est. kGE] [kGE] [bits] [cycles] [ns]

Algorithm Parameter: q = 3329 (Kyber)
0 L/A/ALP — SKA 0.4 0.4 — 0 1.0

1
L HPC3 SKA 15.8 16.1 208 11 4.7

A/ALRP HPC3 sRCA 2.8 2.6 28 61 63.4
R/ALP HPC2 sRCA 3.5 3.2 14 88 81.0

2
L HPC3 SKA 36.4 34.5 966 11 5.6

A/ALRP HPC3 sRCA 6.3 4.7 84 61 60.4
R/ALP HPC2 sRCA 8.0 6.1 42 88 106.5
Algorithm Parameter: q = 8380417 (Dilithium)

0 L/ALP — SKA 0.8 0.8 — 0 1.2
A — sRCA 0.8 1.4 — 56 54.3

1
L/ALP HPC3 SKA 36.1 38.2 478 13 7.5

A HPC3 sRCA 4.9 4.7 50 105 105.0
R/ALRP HPC2 sRCA 6.2 5.8 25 154 163.3

2
L/ALP HPC3 SKA 83.4 82.0 1 434 13 6.8

A HPC3 sRCA 11.0 8.5 150 105 115.5
R/ALRP HPC2 sRCA 14.2 10.9 75 154 201.8

28 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

B Dilithium Multiplication Implementation Details
Recall from Section 6.5 that the Dilithium sparse multiplication (between the secret key
and the challenge polynomial c) is an operation that is highly vulnerable to side-channel
attacks. This multiplication can be carried out by accumulating the secret key coefficients
rotated by each public offset. Specifically for Dilithium, each offset has a sign associated
since the challenge is ternary (i.e., the non-zero coefficients are either one or minus one).
Since every adder can act as a subtracter simply by inverting the subtrahend and adding
one as carry-in, this scenario can also be covered easily with our already existing templates.
The resulting polynomial has signed integer coefficients which are not reduced modulo q.
However, the sparsity τ times the secret key range η (this product represents the maximum
possible result coefficient) is smaller than the modulus for each parameter set, so the
reduction can be performed together with the subsequent addition to the nonce y.

Remarkably, the multiplications of the secret key polynomials s1 and s2 with the
challenge are the only polynomial multiplications in Dilithium signing that must be
performed masked for a side-channel secure implementation. The only other multiplication
– Ay – has a public operand as well, but the secret operand has a wide distribution, making
a gadget-based approach infeasible. However, since the nonce y does not depend on the
secret key and is different for each message to be signed, it is likely that protection against
simple power analysis is sufficient and thus, masking may be optional. By all means, this
operation is less critical than the multiplication that involves the secret key. Overall, a
side-channel secure implementation of Dilithium only based on secure gadgets may be
feasible, but we leave this as future work.

Table 13 features DSE and synthesis results.

Buschkowski et al. 29

Table 13. Sparse polynomial multiplication for the Dilithium use case with different parameters
for η (the range of the secret input coefficients) and τ (the sparsity of the public polynomial).

d Opt. Design Cfg. Area Rand. Latency Delay
add. adder gadget [est. kGE] [kGE] [bit] [cycles] [µs]

Algorithm Parameters: sparsity τ = 39, range of secret η = 2

0
L 256 SKA — 24 n/s* — 79 n/s*
A 1 SKA — 1 16 — 10 024 6.8

ALP 16 SKA — 5 197 — 664 0.5

1
L 256 SKA HPC3 1 096 4 601 13 312 274 1.0
A 1 RCA HPC3 3 24 36 10 375 16.7

R/ALRP 1 RCA HPC2 5 28 18 10 726 17.3
ALP 2 RCA HPC3 4 48 72 5 383 10.9

2
L 256 SKA HPC3 2 522 n/s* 39 936 274 n/s*
A 1 RCA HPC3 6 35 108 10 375 19.4

R/ALRP 1 RCA HPC2 10 39 54 10 726 20.0
ALP 2 RCA HPC3 8 67 216 5 383 10.8

3
L 256 SKA HPC3 4 535 n/s* 79 872 274 n/s*
A 1 RCA HPC3 10 45 216 10 375 19.4

R/ALRP 1 RCA HPC2 15 51 108 10 726 20.0
ALP 2 RCA HPC3 14 87 432 5 383 10.9

Algorithm Parameters: sparsity τ = 49, range of secret η = 4

0
L 256 SKA — 27 n/s* — 99 n/s*
A 1 SKA — 1 19 — 12 594 8.7

ALP 16 SKA — 2 216 — 834 0.7

1
L 256 SKA HPC3 1 192 n/s* 14 336 344 n/s*
A 1 RCA HPC3 4 30 40 13 084 16.7

R/ALRP 1 RCA HPC2 6 32 20 13 574 17.3
ALP 2 RCA HPC3 4 55 80 6 812 13.6

2
L 256 SKA HPC3 2 744 n/s* 43 008 344 n/s*
A 1 RCA HPC3 7 40 120 13 084 24.3

R/ALRP 1 RCA HPC2 11 45 60 13 574 25.2
ALP 2 RCA HPC3 9 76 240 6 812 13.8

3
L 256 SKA HPC3 4 931 n/s* 86 016 344 n/s*
A 1 RCA HPC3 11 51 240 13 084 24.3

R/ALRP 1 RCA HPC2 18 58 120 13 574 25.2
ALP 2 RCA HPC3 16 99 480 6 812 13.8

Algorithm Parameters: sparsity τ = 60, range of secret η = 2

0
L 256 SKA — 24 n/s* — 121 n/s*
A 1 SKA — 1 17 — 15 421 10.5

ALP 16 SKA — 2 194 — 1 021 0.7

1
L 256 SKA HPC3 1 096 n/s* 13 312 421 n/s*
A 1 RCA HPC3 3 26 36 15 961 25.7

R/ALRP 1 RCA HPC2 5 28 18 16 501 26.6
ALP 2 RCA HPC3 4 49 72 8 281 16.7

2
L 256 SKA HPC3 2 522 n/s* 39 936 421 n/s*
A 1 RCA HPC3 6 36 108 15 961 29.7

R/ALRP 1 RCA HPC2 10 39 54 16 501 30.7
ALP 2 RCA HPC3 8 68 216 8 281 16.7

3
L 256 SKA HPC3 4 534 n/s* 79 872 421 n/s*
A 1 RCA HPC3 10 45 216 15 961 29.7

R/ALRP 1 RCA HPC2 15 51 108 16 501 30.7
ALP 2 RCA HPC3 14 88 432 8 281 16.8

*not synthesizeable within 72 hours

30 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

C Kyber Implementation Details
Kyber operates on the polynomial ring Rq = Zq[X]/(X256 + 1) with q = 3329 for all
parameter sets. All notation is borrowed from the official Kyber specification [ABD+21].
The central assumption under which this approach to implementing Kyber works is that
the secret key is not stored in Number-Theoretic Transform (NTT) representation, as we
want to avoid NTT operations on secrets. Importantly, this is reasonable as the Kyber
key generation can be performed using the very same secure multiplication that we deploy
for decryption and then storing the secret key Boolean-masked. Positively, this reduces
the memory footprint of the secret key by a factor of 4.

In the following, we detail about how to implement Kyber using secure Boolean gadgets
only. Generally, we follow the recent idea of using gadget-based masking for polynomial
multiplication, which has been introduced and shown practical for Streamlined NTRU
Prime in [LMRG24]. In this paper, the authors also discuss a potential applicability to
Kyber, yet leaving out many details.

CPA decryption

In our implementation, we start by reading the ciphertext polynomial v into the result
register of the polynomial multiplication module. During reading, we additionally

• decompose each coefficient (which is a multiplication by q where only some upper
result bits are computed),

• negate the decomposition result, and

• subtract ⌈q/4⌉.

This procedure is employed to prepare for the compression of the final result.
Subsequently, we perform the vector-vector multiplication of s and u, accumulating this

result to the preprocessed v. Thus, we compute su + (−v −
∑255

i=0⌈q/4⌉Xi), which deviates
from the Kyber specification. However, it enables omitting an explicit negation of the
secret vector-vector multiplication result. Notably, the Kyber compression is symmetric
and directly works on this inverted result. The constant offset is subtracted due to the
compression function presented by Bos et al. [BGR+21, Alg. 1], which we adapt to the
fully Boolean-masked setting.

CCA decapsulation

The decapsulation is considerably more complex as depicted in Algorithm 2. In addition
to the modules required by the decryption, it requires

• a side-channel secure Keccak for different SHA3 and SHAKE variations,

• side-channel secure Centered Binomial Distribution (CBD) sampling,

• an inverse NTT module for public data, and

• a Keccak module for expanding the matrix Â.

In principle, expanding Â with the side-channel secure Keccak module would also be
possible, but this would induce an unnecessary delay since Â is public. Moreover, the
polynomials in Â are always generated when the side-channel secure Keccak generates
secret polynomials in parallel. Besides, the inverse NTT is required for compliance with
the Kyber specification, where for performance reasons, Â is generated in NTT domain.
On the contrary, we assume t to be in non-NTT domain because a key generation module

Buschkowski et al. 31

Algorithm 2 Kyber-CCA decapsulation without NTT multiplication
1: procedure Decaps(ciphertext (v, u), secret key (s, ρ, t, h, z) ∈ Rk

q ×B32 ×Rk
q ×B32 ×

B32)
2: decompress (v, u) to (v, u) ∈ Rq × Rk

q

3: m ∈ B32 := DecryptCPA(v, u, s)
4: (K ′, coins) ∈ B32 × B32 := SHA3-512(m||h)
5: expand Â from ρ
6: A := NTT−1(Â)
7: sample r, e1, e2 deterministically from coins
8: u′ := AT r + e1
9: v′ := tT r + e2 + Decompress(m, 1)

10: if (v′, u′) ≈ (v, u) [BGR+21, Alg. 2] then
11: K := SHAKE-256(K ′||SHA3-256(c))
12: else
13: K := SHAKE-256(z||SHA3-256(c))
14: return K

that employs gadget-based masking with Schoolbook multiplication would produce t that
way.

As indicated in Line 10 of Algorithm 2, we use the decompressed comparison technique
by Bos et al. [BGR+21, Alg. 2] to perform the comparison between the received ciphertext
and the deterministic re-encryption. Adapting this method to a fully Boolean masking
setting, we instantiate an additional modular addition at the top level1, which is used for
the modular additions with the range constants that depend on the ciphertext coefficients.
These range constants are also the main source of SRAM usage for our designs, as there
are 1040 12-bit values for Kyber-512 and -768, and 2080 such values for Kyber-1024.

Moreover, we require an additional 12-bit adder module for a post-processing step after
CBD sampling. This sampling procedure is defined such that signed three-bit coefficients
are the results. For further computations, however, we require them to have the non-
negative modular representation. Consequently, we conditionally add q based on the sign
bit of the CBD sample.

1A more sophisticated template might be able to avoid this by re-using an adder from the polynomial
multiplication.

32 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

D Additional Results
Here, we include several other results from our case studies that we left out in the main
body, namely:

• full AES DSE and synthesis results (Table 14)

• additional parametrizations and third order masking syntheses for polynomial multi-
plication (Table 15)

• synthesis results for Kyber-768 and -1024 CPA decryption and a design that enables
runtime configurability regarding the parameter set (Table 16)

• full synthesis results for Kyber CCA decapsulation (Table 17)

In Table 17, we omit the SRAM usage for space reasons. Kyber-512 requires 26 816 bit,
28 608 bit, and 30 400 bit for d ∈ {0, 1, 2}. Kyber-768 requires 33 216 bit, 35 776 bit, and
38 336 bit for d ∈ {0, 1, 2}. Kyber-1024 requires 53 376 bit, 56 704 bit, and 60 032 bit for
d ∈ {0, 1, 2}.

Buschkowski et al. 33

Table 14. DSE and synthesis results for AES

d Opt. Design Configuration Area Rand. Latency Delay
architecture rSBox #rSBox #MC kSBox gadget [est. kGE] [kGE] [bit] [cycles] [ns]

Algorithm Parameter: AES-128

0 L/ALP round Can 16 4 Can — 17.3 32.9 — 15 501
A round Can 1 1 Can — 4.4 9.9 — 656 1 292

1
L unrolled Can 16 1 Can HPC3 814.4 860.8 11 592 51 83
A round Can 1 1 Can HPC3 20.0 23.8 144 1 616 1 972

R/ALRP round BP 1 1 BP HPC2 22.1 26.1 68 2 576 3 503
ALP round Can 16 1 Can HPC3 119.5 125.9 1 224 55 100

2
L unrolled Can 16 4 Can HPC3 1 819.3 1 670.8 34 764 51 115
A round BP 1 1 BP HPC3 44.1 40.0 408 1 616 2 101

R/ALRP round BP 1 1 BP HPC2 49.2 45.2 204 2 576 3 812
ALP round Can 16 4 Can HPC3 267.3 227.0 3 660 55 116

Algorithm Parameter: AES-192

0 L/ALP round Can 16 4 Can — 19.5 38.0 — 17 585
A round Can 1 1 Can — 5.1 12.2 — 778 1 533

1
L unrolled Can 16 1 Can HPC3 977.6 1 034.9 13 896 61 111
A round Can 1 1 Can HPC3 22.9 28.6 144 1 866 2 836

R/ALRP round BP 1 1 BP HPC2 25.0 30.8 68 2 954 4 549
ALP round Can 16 1 Can HPC3 128.2 135.9 1 224 65 118

2
L unrolled Can 16 1 BP HPC3 2 183.3 1 992.4 41 676 61 116
A round BP 1 1 BP HPC3 50.8 47.1 408 1 866 2 724

R/ALRP round BP 1 1 BP HPC2 55.8 52.2 204 2 954 5 849
ALP round Can 16 4 Can HPC3 286.9 242.4 3 660 65 124

Algorithm Parameter: AES-256

0 L/ALP round Can 16 4 Can — 21.3 41.4 — 19 636
A round Can 1 1 Can — 5.5 12.9 — 1 378 2 715

1
L unrolled Can 16 1 Can HPC3 1 139.2 1 205.3 16 200 71 133
A round Can 1 1 Can HPC3 24.4 29.9 144 2 946 3 948

R/ALRP round BP 1 1 BP HPC2 26.5 32.2 68 4 514 6 274
ALP round Can 16 4 Can HPC3 135.5 142.8 1 224 75 156

2
L unrolled Can 16 1 BP HPC3 2 545.1 2 321.1 48 588 71 135
A round BP 1 1 BP HPC3 53.9 49.1 408 2 946 4 419

R/ALRP round BP 1 1 BP HPC2 62.2 58.2 204 4 514 6 771
ALP round Can 16 1 Can HPC3 303.2 252.7 3 660 75 143

34 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

Table 15. Additional results for polynomial multiplication, cf. Table 5.

d Opt. Design Cfg. Area Rand. Latency Delay
add. adder gadget [est. kGE] [kGE] [bit] [cycles] [µs]

Algorithm Parameters: red. poly. X256 + 1, modulus q = 3329
range of secret η = 3 (Kyber-512)

3

L 256 SKA HPC3 31 697 n/s* 614 400 5 121 n/s*
A 1 sRCA HPC3 688 248 1 320 4 522 241 8 004
R 1 sRCA HPC2 717 266 660 6 553 857 11 600

ALRP 1 pRCA HPC2 774 329 948 81 921 144.2
ALP 8 SKA HPC3 1 599 884 19 200 13 057 22.99

Algorithm Parameters: red. poly. X256 + 1, modulus q = 3329
range of secret η = 2 (Kyber-768 and -1024)

0
L 256 SKA — 303 n/s* — 1 025 n/s*
A 1 sRCA — 40 94 — 2 425 089 3 251

ALP 64 SKA — 105 186 — 1 793 5

1

L 256 SKA HPC3 6 111 n/s* 83 968 4 609 n/s*
A 1 sRCA HPC3 167 138 148 4 391 169 7 772
R 1 sRCA HPC2 171 141 74 6 357 249 8 904

ALRP 1 pRCA HPC2 184 172 122 81 153 135
ALP 10 SKA HPC3 390 482 3 280 11 009 22

2

L 256 SKA HPC3 14 100 n/s* 251 904 4 609 n/s*
A 1 sRCA HPC3 376 184 444 4 391 169 6 583
R 1 sRCA HPC2 385 191 222 6 357 249 9 603

ALRP 1 pRCA HPC2 414 236 366 81 153 106
ALP 10 SKA HPC3 890 759 9 840 11 009 23

3

L 256 SKA HPC3 25 381 n/s* 503 808 4 609 n/s*
A 1 sRCA HPC3 668 234 888 4 391 169 6 633
R 1 sRCA HPC2 685 246 444 6 357 249 9 918

ALRP 1 pRCA HPC2 738 308 732 81 153 107.9
ALP 10 SKA HPC3 1 595 1 108 19 680 11 009 23.03

Algorithm Parameters: red. poly. X761 − x − 1,
modulus q = 4591, range of secret η = 1 (sNTRUp-761)

0
L 761 SKA — 530 n/s* — 2 284 n/s*
A 1 RCA — 122 144 — 480 644 721

ALP 254 SKA — 257 n/s* — 3 806 n/s*

1

L 761 SKA HPC3 18 748 n/s* 307 444 12 177 n/s*
A 1 sRCA HPC3 490 208 82 39 960 111 60 363
R 1 sRCA HPC2 492 211 41 57 912 862 84 916

ALRP 1 pRCA HPC2 506 454 93 626 305 1 040
ALP 35 SKA HPC3 1 194 1 306 9 870 28 158 55

2

L 256 SKA HPC3 43 601 n/s* 922 332 12 177 n/s*
A 1 sRCA HPC3 1 101 270 246 39 960 111 62 340
R 1 sRCA HPC2 1 106 275 123 57 912 862 87 482

ALRP 1 pRCA HPC2 1 139 543 279 626 305 821
ALP 32 SKA HPC3 2 588 1 890 27 072 29 680 61

3

L 256 SKA HPC3 78 774 n/s* 1 844 644 12 177 n/s*
A 1 sRCA HPC3 1 958 332 492 39 960 111 60 362
R 1 sRCA HPC2 1 968 339 246 57 912 862 90 348

ALRP 1 pRCA HPC2 2 025 631 558 626 305 833
ALP 32 SKA HPC3 4 636 2 468 54 144 29 680 65

*not synthesizeable within 72 hours

Buschkowski et al. 35

Table 16. Additional DSE and synthesis results for Kyber-CPA decryption, cf. Table 6

d Opt. Design Cfg. Area Rand. Lat. Delay
#comp. #add. adder gadget [e. kGE] [kGE] [bit] [kcycles] [ms]

Algorithm Parameter: Kyber-768 (k = 3, η = 2)

0
L 256 256 SKA — 307 n/s* — 4 102 n/s*
A 1 1 sRCA — 42 120 — 7 276 421 11.42

ALP 16 43 SKA — 85 1 180 — 7 957 0.05

1

L 256 256 SKA HPC3 6 201 n/s* 86 016 14 857 n/s*
A 1 1 sRCA HPC3 174 171 156 13 174 792 21.89
R 1 1 sRCA HPC2 178 174 78 19 073 035 34.12

ALRP 1 1 pRCA HPC2 191 205 126 244 747 0.34
ALP 3 10 SKA HPC3 398 518 3 304 34 142 0.07

2

L 256 256 SKA HPC3 14 314 n/s* 258 048 14 857 n/s*
A 1 1 sRCA HPC3 392 225 468 13 174 792 25.68
R 1 1 sRCA HPC2 401 232 234 19 073 035 36.82

ALRP 1 1 pRCA HPC2 431 277 378 244 747 0.44
ALP 3 10 SKA HPC3 908 821 9 912 34 142 0.07

Algorithm Parameter: Kyber-1024 (k = 4, η = 2)

0
L 256 256 SKA — 307 n/s* — 5 n/s*
A 1 1 sRCA — 42 120 — 9 702 14.2

ALP 16 43 SKA — 85 1 180 — 11 0.1

1

L 256 256 SKA HPC3 6 201 n/s* 86 016 20 n/s*
A 1 1 sRCA HPC3 174 171 156 17 566 31.8
R 1 1 sRCA HPC2 178 174 78 25 431 42.5

ALRP 1 1 pRCA HPC2 191 205 126 326 0.5
ALP 3 8 SKA HPC3 398 360 2 648 45 0.1

2

L 256 256 SKA HPC3 14 314 n/s* 258 048 20 n/s*
A 1 1 sRCA HPC3 392 225 468 17 566 37.9
R 1 1 sRCA HPC2 401 232 234 25 431 49.4

ALRP 1 1 pRCA HPC2 431 277 378 326 0.5
ALP 3 10 SKA HPC3 908 821 9 912 45 0.1

Algorithm Parameter:
runtime-configurable (k ∈ {2, 3, 4}, η ∈ {2, 3})

0
L 256 256 SKA — 454 n/s* — 6 n/s*
A 1 1 sRCA — 43 121 — 9 964 17.6

ALP 16 32 SKA — 93 213 — 14 0.1

1

L 256 256 SKA HPC3 7 738 n/s* 104 448 22 n/s*
A 1 1 sRCA HPC3 180 175 228 18 091 32.0
R 1 1 sRCA HPC2 186 181 114 26 217 46.4

ALRP 1 1 pRCA HPC2 200 212 162 329 0.6
ALP 2 8 SKA HPC3 399 381 3 216 54 0.1

2

L 256 256 SKA HPC3 17 836 n/s* 313 344 22 n/s*
A 1 1 sRCA HPC3 404 234 684 18 091 39.8
R 1 1 sRCA HPC2 420 245 342 26 217 57.4

ALRP 1 1 pRCA HPC2 452 290 486 329 0.6
ALP 2 8 SKA HPC3 910 623 9 648 54 0.1

*not synthesizeable within 72 hours

36 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

Table 17. DSE and synthesis results for Kyber-CCA decapsulation.

d Opt.
Design Configuration Area Rand. Latency Delay

poly.mul. poly.mul. comparison cond. add q Keccak
gadget [est. kGE] [kGE] [bit] [cycles] [µs]

adders adder type adder type adder type # χ

Algorithm parameter: Kyber-512 (k = 2, η = 3)

0
L 256 SKA SKA SKA 1600 — 490 n/s* — 19 612 n/s*
A 1 sRCA sRCA sRCA 25 — 75 316 — 19 960 068 75 321

ALP 10 SKA SKA SKA 100 — 91 459 — 72 036 541

1

L 256 SKA SKA SKA 1600 HPC3 7 869 n/s* 105 922 69 220 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 259 447 326 36 368 922 136 213
R 1 sRCA sRCA sRCA 25 HPC2 268 454 163 52 707 120 205 887

ALRP 1 pRCA sRCA sRCA 25 HPC2 282 485 211 931 632 3 741
ALP 8 SKA SKA sRCA 200 HPC3 505 668 3 880 138 441 541

2

L 256 SKA SKA SKA 1600 HPC3 18 095 n/s* 317 766 69 220 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 544 575 978 36 368 922 137 241
R 1 sRCA sRCA sRCA 25 HPC2 564 590 489 52 707 120 198 895

ALRP 1 pRCA sRCA sRCA 25 HPC2 596 635 633 931 632 3 516
ALP 8 SKA SKA sRCA 200 HPC3 1 113 1 013 11 640 138 441 543

Algorithm parameter: Kyber-768 (k = 3, η = 2)

0 L/ALP 256 SKA SKA SKA 1600 — 343 n/s* — 28 170 n/s*
A 1 sRCA sRCA sRCA 25 — 74 311 — 36 416 346 142 251

1

L 256 SKA SKA SKA 1600 HPC3 6 333 n/s* 87 486 107 005 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 254 433 250 66 103 166 250 391
R 1 sRCA sRCA sRCA 25 HPC2 260 439 125 95 698 594 359 769

ALRP 1 pRCA sRCA sRCA 25 HPC2 273 469 173 1 557 154 6 254
ALP 10 SKA SKA sRCA 200 HPC3 504 797 3 956 209 081 791

2

L 256 SKA SKA SKA 1600 HPC3 14 574 n/s* 26 245 107 005 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 532 553 750 66 103 166 265 475
R 1 sRCA sRCA sRCA 25 HPC2 546 564 375 95 698 594 359 769

ALRP 1 pRCA sRCA sRCA 25 HPC2 576 609 519 1 557 154 6 155
ALP 10 SKA SKA sRCA 200 HPC3 1 179 1 179 11 868 209 081 795

Algorithm parameter: Kyber-1024 (k = 4, η = 2)

0 L/ALP 256 SKA SKA SKA 1600 — 343 n/s* — 42 122 n/s*
A 1 sRCA sRCA sRCA 25 — 74 312 — 58 260 482 218 204

1

L 256 SKA SKA SKA 1600 HPC3 6 333 n/s* 87 486 159 596 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 254 433 250 105 694 008 395 858
R 1 sRCA sRCA sRCA 25 HPC2 260 439 125 153 015 406 577 417

ALRP 1 pRCA sRCA sRCA 25 HPC2 273 469 173 2 389 102 9 595
ALP 10 SKA SKA sRCA 200 HPC3 504 797 3 956 322 303 1 259

2

L 256 SKA SKA SKA 1600 HPC3 14 574 n/s* 262 458 159 596 n/s*
A 1 sRCA sRCA sRCA 25 HPC3 532 553 750 105 694 008 424 474
R 1 sRCA sRCA sRCA 25 HPC2 546 564 375 153 015 406 614 520

ALRP 1 pRCA sRCA sRCA 25 HPC2 576 609 519 2 389 102 9 595
ALP 10 SKA SKA sRCA 200 HPC3 1 110 1 179 11 868 322 303 1 207

*not synthesizeable within 72 hours

Buschkowski et al. 37

E Masked Keccak Comparison
A comparison of our Keccak designs with related work [BDN+13, SM21b, GSM17] is
shown in Table 18. As also pointed out for AES, our designs can hardly compete with the
handcrafted implementations because several low-level optimizations are not yet available
with our tool.

Table 18. Comparison with previous work for masked Keccak modules. Note that our design is
the first to employ gadget-based masking and an automated generation process, while all other
designs are handcrafted and manually optimized. Notably, our results have been generated within
less than a second of DSE (cf. Table 8).

Ref. d
Area Rand. Latency Delay Technology[kGE] [bit] [cycles] [ns]

[BDN+13] 1 116.6 4 25 42.2 NanGate 45 nm
[BDN+13] 1 39.0 4 1 625 2 561.2 NanGate 45 nm
[GSM17] 1 18.7 0 3 160 3 690.7 UMC 130 µm
[GSM17] 1 22.3 0 1 648 2 028.8 UMC 130 µm
[GSM17] 1 108.0 0 25 28.2 UMC 130 µm
[SM21b] 1 129.3 0 72 92.9 UMC 130 µm

this 1 149.4 3 200 120 40.8 NanGate 45 nm
this 1 30.1 50 3 144 1 792.5 NanGate 45 nm
this 1 34.6 25 4 680 3 744.0 NanGate 45 nm
this 1 61.6 800 264 198.1 NanGate 45 nm

[GSM17] 2 28.8 75 3 160 3 706.7 UMC 130 µm
[GSM17] 2 34.6 75 1 648 1 951.2 UMC 130 µm
[GSM17] 2 232.3 4 800 25 29.8 UMC 130 µm
[SM21b] 2 231.5 0 72 108.0 UMC 130 µm

this 2 325.9 9 600 120 40.8 NanGate 45 nm
this 2 52.2 150 3 144 2 954.9 NanGate 45 nm
this 2 54.1 75 4 680 2 901.4 NanGate 45 nm
this 2 117.7 2 400 264 211.2 NanGate 45 nm

38 HADES: Automated Hardware Design Exploration for Cryptographic Primitives

F Comparison to Streamlined NTRU Prime
Land et al. [LMRG24] recently presented a gadget-based implementation of Streamlined
NTRU Prime. Table 19 compares their implementation to ours of the lower two parameter
sets of Kyber-CCA decapsulation. Notably, our DSE is capable of generating designs that
are more performant regarding each metric. For the area, it is worth noting that their
implementation requires significantly more SRAM.

Table 19. Comparison between our Kyber-CCA implementation and Streamlined NTRU Prime
[LMRG24]. All implementations use the NanGate 45 nm library. We compare to Kyber-512 (NIST
level 1) and -768 (NIST level 3) only, which offer a similar security like sNTRUp-761 (NIST level
2).

d Scheme Area SRAM Rand. Latency Delay
[kGE] [bit] [bit] [cycles] [µs]

1

sNTRUp-761 201 189 440 310 1 870 049 9 034
Kyber-512 447 28 608 326 36 368 922 136 213
Kyber-512 454 28 608 163 52 707 120 205 887
Kyber-512 485 28 608 211 931 632 3 741
Kyber-512 668 28 608 3 880 138 441 541
Kyber-768 433 35 776 250 66 103 166 250 391
Kyber-768 439 35 776 125 95 698 594 359 769
Kyber-768 469 35 776 173 1 557 154 6 254
Kyber-768 797 35 776 3 956 209 081 791

2

sNTRUp-761 373 246 272 930 1 870 049 11 334
Kyber-512 575 30 400 978 36 368 922 137 241
Kyber-512 590 30 400 489 52 707 120 198 895
Kyber-512 635 30 400 633 931 632 3 516
Kyber-512 1 013 30 400 11 640 138 441 543
Kyber-768 553 38 336 750 66 103 166 265 475
Kyber-768 564 38 336 375 95 698 594 359 769
Kyber-768 609 38 336 519 1 557 154 6 155
Kyber-768 1 179 38 336 11 868 209 081 795

	Introduction
	Preliminaries
	SpinalHDL
	Masking

	Concept
	Problem Definition
	Templates

	Workflow
	Template Internals
	Design Space Exploration

	Proof-of-Concept
	Language Embedding
	Templates
	Design Space Exploration

	Case Studies
	Efficient Addition
	ARX Ciphers
	Keccak
	AES
	Polynomial Multiplication
	Kyber

	Evaluation
	Discussion and Comparison
	DSE Performance
	Comparison
	Limitations and Future Work

	Conclusion
	Templates for Modular Addition
	Dilithium Multiplication Implementation Details
	Kyber Implementation Details
	Additional Results
	Masked Keccak Comparison
	Comparison to Streamlined NTRU Prime

