
Point (de)compression for elliptic curves over
highly 2-adic finite fields

Dmitrii Koshelev[0000−0002−4796−8989] ⋆

dimitri.koshelev@gmail.com

University of Lleida, Department of Mathematics
Catalonia, Spain

Abstract. This article addresses the issue of efficient and safe (de)compression
of Fq-points on an elliptic curve E over a highly 2-adic finite field Fq of
characteristic 5 or greater. The given issue was overlooked by cryptog-
raphy experts, probably because, until recently, such fields were not in
trend. Therefore, there was no difficulty (with rare exceptions) in finding
a square Fq-root. However, in our days, fields with large 2-adicities have
gained particular popularity in the ZK (zero-knowledge) community, de-
spite the fact that

√
· ∈ Fq should be computed via more sophisticated

square-root algorithms such as (Cipolla–Lehmer–)Müller’s one. The ar-
ticle explains why the classical x-coordinate (de)compression method
based on Müller’s algorithm often contains Achilles’ heel to successfully
perform a novel fault attack, which also fits the definition of a (D)DoS
attack. In a nutshell, the trouble stems from the non-deterministic ini-
tialization of Müller’s algorithm.

Moreover, the article suggests a countermeasure, namely an alternative
(still simple) (de)compression method that completely prevents the dis-
covered attack whenever the curve E/Fq is of even order. In particular, all
twisted Edwards (i.e., Montgomery) curves are relevant. The decompres-
sion stage of the new method equally suffers from one square-root extrac-
tion in Fq. But the corresponding quadratic residue is inherently equipped
with additional information, providing an opportunity to launch Müller’s
algorithm immediately from its main deterministic part. In turn, the
compression stage of the new method remains (almost) free as well as
for the x-coordinate method.

Keywords: Châtelet surfaces · Müller’s square-root algorithm · conic
bundles · (D)DoS attacks · elliptic curve cryptography · highly 2-adic
finite fields · point (de)compression · quadratic covers · quartic polyno-
mials

⋆ https://www.researchgate.net/profile/dimitri-koshelev
This paper is a part of the project “Avances en criptograf́ıa post-cuántica apli-
cados al desarrollo de un sistema de cupones”, financed by “European Union
NextGeneration–UE, the Recovery Plan, Transformation and Resilience”. This re-
search was also partially funded by the Spanish Ministry of Science, Innovation and
Universities through the project PID2021-124613OB-I00.

https://www.researchgate.net/profile/dimitri-koshelev

2 D. Koshelev

1 Introduction

It is not a secret that ECC (elliptic curve cryptography) plays a significant role
in today’s digital security architecture. As usual, let E : y2 = f(x) be an el-
liptic curve in the Weierstrass form over a finite field Fq of characteristic > 3.
To optimize the performance of cryptographic protocols, one often resorts to
compressing Fq-points (x, y) ∈ E. There is the classical method consisting in
the projection prx : E → A1

x of a point to its x-coordinate. Also, one additional
bit is introduced to distinguish the two square roots y = ±

√
f(x) in the de-

compression stage. The presence of this method in the NIST ECC standard [18,
Appendix D.2.1] (among others) emphasizes its ubiquity. Analogous square-root
(de)compression methods for other popular forms of E are specified, e.g., in [61,
Appendix H].

As suggested already in (the last paragraph of) Miller’s pioneering paper
[46], some elementary cryptographic schemes (like Diffie–Hellman key exchange)
can be deployed exclusively on the level of the x-coordinate. This happens when
a scheme needs solely a scalar multiplication on E rather than the group op-
eration + itself. Therefore, such protocols can entirely avoid (de)compression.
It is only sufficient to check that f(x) is a square in Fq to thwart a secret key
leakage on the quadratic twist of E. More details on the theme are found, e.g.,
in [26]. Nonetheless, more complicated protocols (even the standard ECDSA)
truly require the two coordinates x, y, otherwise + is not defined.

It is worth stressing that the unique bottleneck of the x-coordinate (de)compression
method is extracting one square Fq-root. The choice of how to compute this op-
eration should depend on the 2-adicity ν of the field Fq, i.e., on the 2-valuation
of the number q − 1. For many decades real-world elliptic curves were mostly
considered over finite fields with ν ⩽ 2. As is well known (see, e.g., [38, Lemma
4]), a square root in Fq for such ν can be expressed via one exponentiation in
Fq with at least ℓ and at most 2ℓ field multiplications, where ℓ := ⌈log2(q)⌉.
Consequently, implementers of ECC were more or less satisfied by the speed.

Meanwhile, a lot of elliptic curves over highly 2-adic fields have emerged in
practice in the last years. The point is that such curves are actively utilized
in so-called recursive (ZK-)SNARKs (zero knowledge succinct non-interactive
argument of knowledge) underlying advanced blockchain technologies. In princi-
ple, SNARKs can be deployed on conventional elliptic curves, but at the price of
catastrophic slowdown. In this regard, curves over fields with large 2-adicities are
sometimes called SNARK-friendly. An excellent survey of them is represented
in [8].

It is impossible not to mention separately the curve NIST P-224 from [18,
Section 3.2.1.2] for which ν = 96. As far as the author knows, this is the only
standardized curve (from around the world) over a highly 2-adic field. For this
curve, finding

√
f(x) ∈ Fq is discussed in the patent [43] (with questionable

legal force). It is based on Müller’s square-root algorithm [49] improving earlier
ones of Cipolla [21] and Lehmer [44]. Müller’s original algorithm costs ≈ 2ℓ
multiplications in Fq regardless of ν, which is slightly slower than a general
exponentiation in Fq. In fact, a quite folklore trick employed in [33,43] diminishes

Point (de)compression for elliptic curves over highly 2-adic finite fields 3

the number of multiplications to ≈ 2ℓ − ν, which is essential speed up in the
highly 2-adic setting.

The first step of Müller’s algorithm (as opposed to its subsequent steps) has
non-deterministic behavior. More precisely, the algorithm starts with searching
for an element u ∈ F∗

q such that u2 − f(x) is a non-square in Fq. For a random
x ∈ Fq outside the roots of f , it is clearly enough (see [39, Lemma 1] to be sure) to
iterate u on average solely two times until the desired condition holds. Moreover,
quadratic (non-)residuosity of any element from Fq can be checked with a (sub-
)quadratic bit complexity O(ℓ2) according to today’s state of the art (see, e.g.,
[9]). Since x is public information in 99, 9 . . .% of realistic scenarios, determinism
is not an important property in the context of side-channel attacks. Thus, the x-
coordinate method in combination with Müller’s algorithm seems at first glance
an universal (de)compression solution.

However, the above solution is still insecure concerning fault attacks. First,
advanced protocols of ECC mostly operate with huge numbers of elliptic curve
Fq-points. Second, a malicious user can try to execute a DoS (denial-of-service)
attack [32] by sending to a honest user a series of “poisoned” x-coordinates.
More generally, a group of adversaries can cooperate with the aim to perform a
DDoS (distributed DoS) attack. It turns out that there is a possibility for such
a (D)DoS attack whenever the element u runs over Fq without strong pseudo-
random generation. For example, it is periodically proposed in various sources
to simply assign u := u+ 1 if q is prime and it is even worse when u starts with
a fixed value like 1.

Let’s suppose that the malicious users know in advance the first n ∈ N values
ui ∈ F∗

q of the variable u that will be generated by the honest user. The former
is invited to send to the latter a value x ∈ Fq such that all the u2i − f(x) are
conversely squares in Fq (as well as f(x)). By the way, the topic partially resem-
bles that [35] of consecutive tuples of quadratic residues for the aforementioned
sequence ui+1 = ui + 1. The larger n, the more powerful attack we have in the
sense that Müller’s algorithm slows down: The receiver of x performs n Legen-
dre symbol

(·
q

)
computations without suspecting that they are dummy. As said

above,
(·
q

)
is now recognized as a pretty quick primitive, but it is not free. Not to

mention that its old implementations (being widely present on today’s Internet)
could not benefit from the modern Legendre symbol algorithms. Consequently,
computing many instances of

(·
q

)
significantly decelerates a cryptosystem, es-

pecially if one deals with low-resource devices. In time-critical situations even a
short unexpected delay may be a reason of serious problems.

In the main part of this paper we will rigorously show that for fields Fq of
cryptographic sizes (e.g., with ℓ ≈ 128), there are numerous Fq-values x ap-
propriate for instantiating efficiently the described attack under the condition
that n is moderate (say, a few dozens). The difficulty of finding a “poisoned”
x-coordinate apparently becomes considerable for large n. Hence, the attack is
not catastrophic at first glance. Nevertheless, such destructive x-coordinates can
be precomputed upfront and distributed (e.g., in the darknet among hackers) in
hope to meet one day a vulnerable implementation of the x-coordinate method

4 D. Koshelev

based on Müller’s algorithm. The fact is that the parameters of E/Fq are mainly
fixed and published (e.g., in a standard), allowing to create once and for many
years the corresponding “prohibited” database.

Of course, there are computer (i.e., not mathematical) instruments of protec-
tion against (D)DoS attacks. One of them is evidently an attempt to detect if the
majority of incoming data is from the same sender(s) or not. In other words, the
receiver can be configured in such a way that it accepts only a limited number
of x-coordinates in an indicated period of time. This approach does not work if
adversaries possess at least one destructive value x for the big number n found,
e.g., on a supercomputer. In any case, an accurately planned (D)DoS attack can
additionally exploit the discovered flaw (even for moderate n) in order to increase
chances to overflow the receiver. Each security aspect may become decisive, so
the new flaw also cannot be ignored.

Apart from Müller’s algorithm, there is another classical square-root one
invented independently by Tonelli [63] and Shanks [56]. The latter is determin-
istic in comparison with the former. Furthermore, in the last decades notable
improvements of the algorithm occurred in [51,53,62], [57, Section 12.5.1], lead-
ing to reduction of its computation complexity. Nevertheless, it still amounts to
Θ(ℓ + g(ν)), where a function g = O(ν2), but g ̸= O(ν). In other words, TS
(Tonelli–Shanks’s) algorithm and even its modifications are an order of mag-
nitude slower (as ν → ℓ) than Müller’s one. It is not a secret that TS-type
algorithms have table-lookup versions, which follow Bernstein’s idea [15] devel-
oped for the original TS algorithm and tested on the base field of the curve
NIST P-224. This “cheating” helps to make the complexity almost linear in ℓ by
introducing an auxiliary parameter µ, but at the price of an exponential growth
(as µ → ν) of required memory. Thus, table lookups are also not a panacea for
very large ν.

The goal of the present article is twofold. On the one hand, it is vitally
important to highlight the existence of the described (D)DoS attack. Curiously,
it has never been represented in the open literature to the author’s knowledge.
Before this work the generation problem of the values ui appeared inessential. On
the other hand, we will provide a safe and efficient novel point (de)compression
method relevant for a wide class of elliptic curves. In a nutshell, the method
makes Müller’s algorithm deterministic, noticing the fact that the square root
has to be extracted not from an abstract quadratic residue, but from an element
having some geometric nature.

The new approach of compressing P ∈ E(Fq) is based on a simple proposal
to take the image t := φ(P) of a certain quadratic Fq-cover φ : E → A1

t dif-
ferent from prx. By analogy with the x-coordinate method, decompressing, i.e.,
determining the inverse image P ∈ φ−1(t) requires finding some square Fq-root,
namely

√
h(t) for a quartic polynomial h ∈ Fq[t] such that E is birationally

Fq-isomorphic to the curve s2 = h(t). It turns out that for the properly cho-
sen φ (or, equivalently, h), Müller’s algorithm obtains for free a necessary value
u ∈ Fq such that u2 − h(t) is a non-square in Fq. To be more precise, u is
explicitly expressed through t by means of some rational Fq-function. Looking

Point (de)compression for elliptic curves over highly 2-adic finite fields 5

ahead, the given trick works if and only if the number of all Fq-points on E is
even. In particular, this condition is fulfilled for twisted Edwards (up to a bi-
rational Fq-isomorphism, Montgomery) curves as well as for double-odd curves
[52]. Remarkable ones y2 = x3+ax (for a ∈ F∗

q) of j-invariant 1728 are evidently
involved.

Obviously, a cryptographically strong pseudo-random generator for obtaining
the values ui is capable to thwart the aforementioned attack. The literature
about such generators is vast (see, e.g., the corresponding NIST standard [11])
and they are regularly utilized in diverse cryptographic situations. Nonetheless,
reliance on them has a series of disadvantages in comparison with the new point
(de)compression. First, there is no guarantee that a chosen generator is actually
pseudo-random, because it may suffer from potential issues listed in [3]. There are
(e.g., in [4]) many sad public stories of breaking a cryptosystem not paying due
attention to reliable generation of secret information. Second, provably secure
generators (inter alia, founded on elliptic curves [58]) are quite slow, possibly even
slower than square-root extraction itself. Third, a non-experienced implementer
may merely forget to leverage a cryptographic generator. Meanwhile, the current
article solution is laconic and apparently immune from any conceivable flaws.

Finally, it is worth adding that highly 2-adic fields are painful for ECC in
many aspects, not only during decompression. For instance, [50, Section 3.3]
tries to exploit smoothness of q−1 to construct a faster index calculus algorithm
of solving the DLP (discrete logarithm problem) in E(Fq). However, the given
approach seemingly is not better than general DLP algorithms. Furthermore, the
high 2-adicity of Fq substantially complicates constant-time hashing to elliptic
curves, a task dual in a sense to point compression. Hashing of this type for large
ν is first discussed in [31] and then in [37,40], [42, Section 4]. Interestingly, the
hash function from [40] (valid for all elliptic curves of j-invariant ̸= 0, 1728) is
constructed on mathematical apparatus similar to that of the present article.

2 Algebraic geometry preliminaries

Throughout the current section, occurring formulas are tacitly checked in the
computer algebra system Magma by launching the code [41].

2.1 A complete intersection curve

During the whole article, we will deal with a finite field Fq of characteristic > 3.
Given values ci ∈ F∗

q such that ci ̸= cj for i < j ⩽ n ∈ N, consider the polynomial
system

I :=
{
y2 = f(x)

}
∩ In ⊂ An+2

(x,y,z1,···,zn), (1)

where f := x3 + ax+ b ∈ Fq[x] and

Ij :=
{
ci − y2 = z2i

}j

i=1
⊂ Aj+1

(y,z1,···,zj)

is the intersection of j ⩽ n diagonal quadrics of the same type.

6 D. Koshelev

Lemma 1. The algebraic set I is an absolutely (i.e., geometrically) irreducible
curve, that is, a complete intersection. Furthermore, I is of arithmetic genus
pa = 1 + 2n−13n.

Proof. The system I can be imagined as the termination of adjoining recursively
(starting with I1) the new variables z2, · · ·, zn, and ultimately x. Since I1 ⊂
A2

(y,z1)
is a curve (namely a diagonal conic), so is I as the “top floor” of the

curve tower. Moreover, Ij are absolutely irreducible curves, because (under our
restrictions on cj) the conic I1 is non-degenerate and cj−y2 is clearly a quadratic
non-residue in the function field Fq(Ij−1). To avoid uncertainty, Fq is the algebraic
closure of Fq.

It remains to show irreducibility over Fq of I itself, i.e., irreducibility over
Fq(In) of the cubic polynomial F := f − y2 = x3 + ax + B in the variable x,
where B := b−y2. It is suggested to apply Eisenstein’s irreducibility theorem [60,
Proposition 3.1.15.(2)] with respect to some smooth point Pn on the projective
closure of In. It is convenient to change the current affine chart to take such a
point at infinity. In this way,

Ij =
{
gi(z0, zi) = 0

}j

i=1
⊂ Aj+1

(z0,···,zj),

where gi := ciz
2
0 −1−z2i . On the new chart y ̸= 0 the function B = (bz20 −1)/z20 .

Let’s pick the point Pj := (0,
√
−1, · · ·,

√
−1) on the curve Ij .

The points Pj ∈ Ij are smooth as readily follows from the Jacobian criterion
[28, Section I.5]. Indeed, the Jacobian matrix of Ij (with j rows and j+1 columns)
is equal to

(
∂gi
∂zk

)
i,k

= 2 ·

c1z0 −z1 0 0 · · · 0

c2z0 0 −z2 0 · · · 0
...

...
. . .

. . .
. . .

...

cjz0 0 0 0 · · · −zj

,

where the entry at the intersection of the i-th row and k-th column contains the

partial derivative
∂gi
∂zk

. This matrix is of full rank j after the substitution into it

of the point Pj .
Due to smoothness of Pj , there is the notion of the valuation (a.k.a. order)

νPj
: Fq(Ij)∗ → Z at the given point. It is necessary to compute νPn

(B) =
−2·νPn

(z0). First, νPj
(z0) = νPj−1

(z0), because Pj is not a ramification point of
the quadratic cover Ij → Ij−1 (the projection to z0, · · ·, zj−1). Second, νP1(z0) =
1, because the line Lz0 : z0 = 0 on A2

(z0,z1)
(passing through P1) is different

from the tangent TP1 : z1 =
√
−1 to the curve I1 at P1. In other words, the

lines Lz0 and TP1 intersect at P1 transversely. Thus, z0 is a uniformizing (a.k.a.
local) parameter at all the points Pj ∈ Ij and so νPn

(B) = −2. Eisenstein’s
irreducibility theorem is applicable, since a is a constant (i.e., a = 0 or νPn

(a) =
0) and deg(F) = 3 is relatively prime with νPn

(B).

Point (de)compression for elliptic curves over highly 2-adic finite fields 7

Finally, the arithmetic genus of I is computed by means of [55, Equality
IV.(18)]. □

2.2 Quartic models of elliptic curves

Consider an elliptic Fq-curve

E : y2 = f(x) := x3 + ax+ b ⊂ A2
(x,y)

equipped with the infinity (i.e., zero) point O := (0 : 1 : 0). As always, Df :=
−16(4a3 + 27b2) ̸= 0 is the discriminant of f (and E). Among other things, we
will need the exponent e of the group E(Fq)[2∞], that is, the number

e := max
{
n := ord(P) | P ∈ E(Fq), log2(n) ∈ N

}
. (2)

The next lemma is folklore, but the author did not encounter a reference,
hence its proof is included.

Lemma 2. An arbitrary Fq-involution ι on E has one of the two incompatible
forms:

1. the translation map τP with P ∈ E(Fq)[2],
2. the composition τP ◦ [−1] with any P ∈ E(Fq).

Moreover, the quotient E/ι is an elliptic Fq-curve in the first case and P1 in the
second one.

Proof. It is not a secret that every Fq-automorphism on E is the composition
ι = τP ◦ α of an Fq-automorphism α fixing O and of the translation τP with
respect to a point P ∈ E(Fq). Undoubtedly, the maps mentioned in the lemma
are Fq-involutions on E. Let’s prove that there no others. We know that on each
elliptic curve there is only one non-trivial involution leaving O in place, namely
[−1]. Thereby, it is sufficient to show that α is an involution whenever so is ι.
Notice that τα(P) ◦ α = α ◦ τP and hence [1] = ι2 = τP+α(P) ◦ α2. Meanwhile,
α(O) = O, which implies the equality P + α(P) = O, that is, τP+α(P) = [1].

Furthermore, E/τP = E/P is just E or a 2-isogenous elliptic Fq-curve if P
is a 2-torsion Fq-point. In the second case, ι has exactly 4 fixed points over Fq,
namely the elements of the set [2]−1(P). They are nothing but the ramification
points of the quadratic quotient Fq-cover E → E/ι. First of all, E/ι is a smooth
absolutely irreducible Fq-curve as stated in any detailed source (like [55, Section
III.12]) on quotient varieties. Lastly, by virtue of the Riemann–Hurwitz formula
[28, Corollary IV.2.4], the genus of E/ι is actually zero. □

Theorem 1. The following conditions are equivalent:

1. There is a quartic Fq-polynomial h without Fq-roots such that E is birationally
Fq-isomorphic to the curve C : s2 = h(t);

2. The curve E admits a quadratic Fq-cover φ : E → P1 without ramification
Fq-points;

8 D. Koshelev

3. The group order #E(Fq) is even.

Proof. The first equivalence is straightforward if the reader is aware of the basic
function field theory (as in the beginning of [60]). Indeed, the presence of a
quadratic Fq-cover φ : E → P1 ⊃ A1

t precisely means that Fq(E) ≃ Fq(t)(s),
where s :=

√
h(t) for an appropriate square-free Fq-polynomial h. Moreover, the

(Fq-)roots of h naturally correspond to the affine ramification (Fq-)points of φ.
Since the genus g(E) = 1, the degree of h is either 3 or 4 in accordance with the
Riemann–Hurwitz formula. But the case deg(h) = 3 is not admissible, because
then O is a ramification Fq-point of φ over the infinity point (1 : 0) ∈ P1 \ A1

t.
The second equivalence is not much more difficult. Truly, since an arbitrary

quadratic Fq-cover φ : E → P1 is Galois, it is necessarily obtained as the quotient
cover under the action of some Fq-involution ι on E. The previous lemma says
that ι = τP ◦ [−1] for a certain P ∈ E(Fq) and

Fix(ι) = Ram(φ) = [2]−1(P). (3)

If the order #E(Fq) is odd (i.e., the exponent e = 1), then the doubling map [2]
is a bijection on E(Fq). Therefore, the above set contains exactly one Fq-point
regardless of P . To put it another way, it is impossible to construct a desired
Fq-cover φ. Conversely (i.e., in the case of even group order), for the role of P
one should choose any Fq-point on E of order e > 1. □

For convenience, an Fq-point on E will be further denoted by P0 = (x0, y0)
rather than P as earlier. Let’s borrow explicit formulas from [7, Section 2] asso-
ciated with P0. We have the quartic Fq-curve

C : s2 = h(t) := t4 − 6x0t
2 − 8y0t− (4a+ 3x20) ⊂ A2

(t,s) (4)

and the birational Fq-map

ψ : E → C (x, y) 7→

t :=
y + y0
x− x0

,

s := 2x− t2 + x0

(5)

whose inverse is

ψ−1 : C → E (t, s) 7→

x :=
t2 + s− x0

2
,

y := (x− x0)t− y0.

(6)

For information, the points P0, O are mapped by ψ to the two distinct infinity
points (0 : 1 : ±1) of the (smooth) closure C : S2 = h∗(R, T) of the curve C in
the weighted projective plane P(1, 1, 2) with the variables R, T , S, respectively.
Here, h∗ is the homogenization of h and t = T/R, s = S/R2. In [27, Section
10.1.1] the curve C (or C) is referred to as a split (a.k.a. real) model of E.

The discriminant of the polynomial h is equal to Dh = 28Df . Surprisingly,
it is independent of the point P0. Inter alia, the Legendre symbol L :=

(
Dh

q

)
=

Point (de)compression for elliptic curves over highly 2-adic finite fields 9(Df

q

)
. Owing to Stickelberger’s parity theorem [22, Section 4], the number of

Fq-irreducible factors of h (resp., f) is even (resp., odd) if and only if L = 1.
From now on, suppose for simplicity that the cardinality #E(Fq) is even,

hence we are in the conditions of Theorem 1. This decision loses generality in
the below reasoning, but this is enough for our future purposes. The upcoming
lemma demonstrates that the quadratic Fq-cover φ = prt ◦ ψ complies with P0

in the sense that the right-hand equality (3) is satisfied.

Lemma 3. The function θ : t 7→ (t2 − x0)/2 is surjective from the set of (Fq-
)roots of the polynomial h onto the set of the x-coordinates of (Fq-)points in
[2]−1(P0). If on top of that y0 ̸= 0, then θ is even bijective.

Proof. The curve E disposes at least one Fq-point P1 = (x1, 0) of order 2. Let’s
shift it to the origin O := (0, 0) lying on the elliptic curve E′ : y2 = xg(x)
whose defining polynomial g := x2 + a2x+ a4 has the coefficients a2 := 3x1 and
a4 := 3x21 + a = f ′(x1). We deal with the variable change

τ : E → E′ (x, y) 7→ (x− x1, y),

τ−1 : E′ → E (x, y) 7→ (x+ x1, y).

Among other things, P ′
0 := τ(P0) is the point with the coordinates x′0 := x0−x1

and y0.
Due to [47, Equation (5)], the x-coordinates of the (Fq-)points from [2]−1(P ′

0)
are the (Fq-)roots of the Fq-polynomial

p(x) := x4 − 4x′0x
3 − 2(2a2x

′
0 + a4)x

2 − 4a4x
′
0x+ a24.

Hence, the said phrase holds true after the replacement simultaneously of P ′
0

by P0 and of p(x) by p(x − x1). It turns out that p(θ(t0) − x1) = 0 whenever
h(t0) = 0 for t0 ∈ Fq. In addition, θ is obviously defined over Fq and f(θ(t0)) is
a square in Fq once t0 ∈ Fq, since the coordinate y0 ∈ Fq as well. In other terms,
θ is actually a function with the (co)domain declared in the lemma.

In the degenerate case y0 = 0, we can take P1 = P0, i.e., x1 = x0 and therefore
P ′
0 = O, i.e., x′0 = 0. As a consequence, p = x4 − 2a4x

2 + a24 = (x2 − a4)
2, that

is, the roots of p are ±√
a4 ̸= 0 and each one is of double multiplicity. In turn, h

is a quartic polynomial without multiple roots, because its discriminant Dh ̸= 0.
Since θ is a quadratic function, we thus see that θ is surjective for the declared
(co)domain.

It remains to demonstrate that θ is a bijective function if y0 ̸= 0, despite
the fact that it is quadratic (so non-injective) on abstract elements of Fq or Fq.
Assume the contrary: h(t0) = h(−t0) = 0 for t0 ̸= 0. Then, 16y0t0 = 0, that
is, y0 = 0, which yields the injectivity of θ. The surjectivity (or, equivalently,
bijectivity) of θ follows from the coincidence deg(p) = deg(h) and from the
absence of multiple roots for h (and hence for p). □

The fundamental cause why we were obliged to treat the case y0 = 0 in
another way consists in the fact that the set of the (order-4) points “hanging”

10 D. Koshelev

over P0 = (x0, 0) is invariant under the canonical involution [−1] : (x, y) 7→
(x,−y) on E. Evidently, this circumstance happens solely when P0 is a 2-torsion
point.

Corollary 1. The polynomial h of the equation (4) does not admit Fq-roots if
and only if [2]−1(P0) ∩ E(Fq) = ∅. For instance, this takes place if the point P0

is of order e > 1.

Suppose that the premise of this corollary is fulfilled. The cornerstone point
P0 can be found with the help of [47]. By our assumption, f possesses at least
one Fq-root (labeled x1 in the proof of the anterior lemma). At the same time,
h does not have Fq-roots. As a result, we get the next remark.

Remark 1. There are two mutually exclusive possibilities:

1. The polynomial h is the product of two Fq-irreducible quadratic ones. Equiv-
alently, L = 1, that is, f has three Fq-roots;

2. The polynomial h is Fq-irreducible, i.e., the product of two Fq2-irreducible
Fq-conjugate quadratic ones. Equivalently, L = −1, that is, f has a unique
Fq-root.

To complete the picture, it is worthwhile to analyze the last remark in terms
of the quadratic polynomial g from the proof of Lemma 3. As always, Dg :=
a22−4a4 ̸= 0 is the discriminant of g. Meanwhile, the discriminant Df = 24a24Dg

and thereby L =
(Dg

q

)
. This means that g splits over Fq if and only if we are in

the case 1. Vice versa, g is Fq-irreducible if and only if the case 2 is met.

The case e = 2. This tiny section aims to illustrate the theory developed
above in the most elementary scenario when e = 2. We are given an order-2
point P0 = P1 = (x0, 0) ∈ E(Fq). The right-hand side of the equation (4) with
respect to P0 has the biquadratic shape h = t4 − 2a2t

2 +Dg. Interestingly, the
curve C : s2 = h(t) and the maps ψ±1, i.e., (5), (6) have the identical formulas as
in [17, Section 3] (cf. [52, Section 4.1]), putting there X = 2, Y = s, and Z = t.
In that source, C is dubbed as extended Jacobi quartic and it is also analyzed in
the scope of ECC.

It is readily seen that 16a4 is the discriminant of the quadratic polyno-
mial h(

√
t). Therefore, h(

√
t) (and hence h(t)) has no Fq-roots provided that√

a4 ̸∈ Fq. Although in general, the polynomial h may still have no Fq-roots,
that is, [2]−1(P0) ∩ E(Fq) = ∅ even if

√
a4 ∈ Fq. By virtue of [47, Lemma 2],

the equivalence nonetheless holds subject to the restriction L = −1. Owing to
[22, Theorem 3], we come to exhaustive criterions. The case 1 of Remark 1 takes
place if and only if L =

(
a4

q

)
= −

(
d
q

)
= 1, where d := 2(a2 −

√
Dg), or, as an

alternative, L = −
(
a4

q

)
= 1. In turn, the case 2 arises, i.e., E is a double-odd

curve if and only if L =
(
a4

q

)
= −1.

Point (de)compression for elliptic curves over highly 2-adic finite fields 11

The case b = a2 = x0 = 0 and a = a4 ̸= 0. This peculiar situation precisely cor-
responds to the elliptic curve E of j-invariant 1728. In the polynomial language,
g = x2 + a, f = xg, and h = t4 − 4a. Besides, Dg = −4a and so L =

(−a
q

)
,

while d = −4
√
−a. Understandably, the case 1 of Remark 1 appears if and only

if
(−1

q

)
=

(
a
q

)
= −

(√
−a
q

)
= 1 or, as the second option,

(−1
q

)
=

(
a
q

)
= −1.

In conclusion, the case 2 holds if and only if
(−1

q

)
= −

(
a
q

)
= 1. Recall that(−1

q

)
= 1 automatically if E is an ordinary (a.k.a. non-supersingular) elliptic

curve.

2.3 (Generalized) Châtelet surfaces

Let c ∈ F∗
q be a fixed quadratic non-residue and h ∈ Fq[t] be a square-free

non-zero polynomial. A generalized Châtelet surface is given by the equation

Sh : u
2 − cv2 = h(t) ⊂ A3

(u,v,t).

It possesses the natural conic bundle structure prt : Sh → A1
t. By abuse of

notation, Sh can be interpreted as a non-degenerate conic in A2
(u,v) over the

function field Fq(t).
The next theorem should be well known to someone among algebraic geome-

ters. Nevertheless, its proof is included for convenience of other readers.

Theorem 2. The conic bundle prt enjoys an Fq-section A1
t → Sh, that is, Sh ⊂

A2
(u,v) does an Fq(t)-point if and only if h does not admit over Fq divisors of odd

degrees.

Proof. According to [54, Theorem 3.6] (see also [36, Lemma 5]), there is an Fq-
section of prt if and only if c is a square in Fq[t]/h. Assume that h = h1 · · ·hk is
the decomposition of h to its Fq-irreducible components of degrees di := deg(hi).
Since the polynomial h is without multiple roots, hi ̸= hj when i ̸= j. By virtue
of the Chinese remainder theorem, we have the ring isomorphisms

Fq[t]/h ≃ Fq[t]/h1 ⊕ · · · ⊕ Fq[t]/hk ≃ Fqd1 ⊕ · · · ⊕ Fqdk .

Clearly, the image of c in the right-hand side ring is nothing but the vector
(c, · · ·, c) of length k. It is a square in that ring if and only if c is a square in
every field Fqdi . This is equivalent to the fact that all the degrees di are even.
Since hi are the unique “building blocks” for divisors of h over Fq, the theorem
is proved. □

By definition, a Châtelet surface [20] is any surface of the form Sh provided
that the polynomial h is of degree 3 or 4.

Corollary 2. The conic bundle prt on a Châtelet surface enjoys an Fq-section
if and only if h is a quartic polynomial without Fq-roots.

12 D. Koshelev

To establish explicit formulas for an Fq-section of prt, we lack several auxiliary
statements aboutmonoidal transformations [28, Section V.3] respecting the conic
bundle structure.

Lemma 4. Suppose that c is conversely a non-zero quadratic residue in Fq. Re-
gardless of an Fq-polynomial g ̸= 0, we get the blow-up Fq-maps

blg,± : Sh → Shg (u, v) 7→
((1 + g)u±

√
c(1− g)v

2
,
(1− g)u±

√
c(1 + g)v

±2
√
c

)
identical on t. They are linear transformations with determinants equal to g.

Proof. Introduce the additional Fq-surfaces

S′
h : u

2 − v2 = h(t),

Th : uv = h(t)
⊂ A3

(u,v,t).

There are the birational Fq-maps

χh,± : Sh → S′
h (u, v) 7→ (u,±

√
c·v),

χ−1
h,± : S′

h → Sh (u, v) 7→
(
u,

v

±
√
c

)
as well as

ϕh : S
′
h → Th (u, v) 7→ (u+ v, u− v),

ϕ−1h : Th → S′
h (u, v) 7→

(u+ v

2
,
u− v

2

)
,

and ultimately

pru,h : Th → A2
(u,t) (u, v) 7→ u,

pr−1u,h : A2
(u,t) → Th u 7→

(
u,
h

u

)
.

All these maps leave the variable t in place, hence it is omitted in their definitions
for conciseness. It is straightforward to verify that the composition

blg,± := χ−1
hg,± ◦ ϕ−1hg ◦ pr

−1
u,hg ◦ pru,h ◦ ϕh ◦ χh,±

has the indicated formulas and determinant g. □

Corollary 3. Assume that a quartic Fq-polynomial g is irreducible and monic
(for simplicity). Evidently, g = g1g2, where gi = t2 − Tit + Ni are irreducible
quadratic Fq2-polynomials conjugate over Fq. We have the blow-up Fq-map

blg = blg2,− ◦ blg1,+ : Sh → Shg (u, v) 7→
(ϱ(t)u+ ρ(t)v

2
,
ρ(t)u+ cϱ(t)v

2c

)

Point (de)compression for elliptic curves over highly 2-adic finite fields 13

identical on t, where

ρ :=
√
c
(
(T1 − T2)t− (N1 −N2)

)
, ϱ := 2t2 − (T1 + T2)t+ (N1 +N2).

This is a linear transformation with determinant equal to g. Inter alia, it is
invertible for every t ∈ Fq.

Hereafter, h is suggested to be a monic quartic Fq-polynomial without Fq-
roots. Thereby, Sh is a (usual) Châtelet surface whose conic bundle prt possesses
an Fq-section. According to Remark 1, there are the two possibilities 1, 2 for
decomposing h. In each of them it is possible to completely eliminate h over Fq,
coming to the equation S1 : u

2 − cv2 = 1 independent of the variable t. In the
case 1, one applies twice [40, Lemma 1] to separately get rid of the quadratic
Fq-factors h1, h2 of the polynomial h, while in the case 2, the previous corollary
comes to the fore (hi = gi). In both cases, we deal with the blow-up Fq-map
blh : S1 → Sh of the shape blh = blh2,− ◦ blh1,+.

Notice that the Fq-conic S1 ⊂ A2
(u,v) enjoys the Fq-point Q0 = (1, 0). As

always, one can involve the projection from this point to some line. It is for
example about

prQ0
: S1 → A1

r (u, v) 7→ cv

1− u
.

It is readily verified (cf. [40, Section 2]) that the map inverse to prQ0 is given by
the formulas

pr−1Q0
: A1

r → S1 r 7→
(r2 + c

r2 − c
,

−2r

r2 − c

)
.

By the way, this map is correctly defined for all r ∈ Fq, because
√
c ̸∈ Fq by our

assumption. As before, pr−1Q0
: A2

(r,t) → S1 can be equally interpreted as a map

to the quadratic cone S1 ⊂ A3
(u,v,t).

To sum up, we obtain the rational proper (i.e., invertible) Fq-parametrization

π := blh ◦ pr−1Q0
: A2

(r,t) → Sh

without indefiniteness points in F2
q . And its restriction to the diagonal ∆ : r = t

gives rise to the desired Fq-section σ := π |∆: A1
t → Sh.

3 Cryptographic applications

We will continue to stick everywhere below to the notation of Section 2.

3.1 The (D)DoS attack on elliptic curves over highly 2-adic fields

As said in the introduction, given disclosed values ui ∈ F∗
q such that ui ̸= ±uj for

i < j ⩽ n ∈ N, the malicious users have to find an Fq-solution of the polynomial
system I, i.e., (1) with ci = u2i . Here, n is a parameter, which is mostly selected
by the attackers. Lemma 1 states that (the projective closure I ⊂ Pn+2 of) I is
an absolutely irreducible curve of arithmetic genus pa = 1+2n−13n. Recall that

14 D. Koshelev

the Weil–Aubry–Perret bound [10, Corollary 2.4] (valid due to irreducibility of
I/Fq) is formulated as follows:

|#I(Fq)− (q + 1)| ⩽ 2pa
√
q.

Meanwhile, the set at infinity Sz0 := I \ I = I ∩
{
z0 = 0

}
coincides with{

x = z0 = 0
}
∩
{
y2 + z2i = 0

}n

i=1
⊂ Pn+2

(x:y:z0:z1:···:zn).

Note that

Sz0 =
{
(0 : 1 : 0 : ±

√
−1 : · · · : ±

√
−1)

}
,

where the signs ± are independently chosen for each coordinate. We live in
the highly 2-adic realm, which means that ν > 1 or, equivalently,

√
−1 ∈ Fq.

Otherwise,
√
· ∈ Fq is determined via one field exponentiation (instead of Müller’s

algorithm) and the (D)DoS attack is meaningless. Consequently, #Sz0(Fq) =
#Sz0 = 2n and so

|#I(Fq)− (q + 1− 2n)| ⩽ 2pa
√
q.

Besides, the degenerate set Sy := I ∩
{
y = 0

}
is equal to{

y = f(x) = 0
}
∩
{
zi = ±ui

}n

i=1
⊂ An+2

(x,y,z1,···,zn).

Generally speaking, f may have 0, 1, or 3 roots in Fq. In this regard, we have
to be content only with the inequalities 0 ⩽ #Sy(Fq) ⩽ 2n3. The remaining
hyperplane sections Szj := I ∩

{
zj = 0

}
(of course, j > 0) have the shape{

cj = y2 = f(x)
}
∩
{
ci − cj = z2i

}n

i=1
⊂ An+2

(x,y,z1,···,zn).

Analogously, 0 ⩽ #Szj (Fq) ⩽ 2n3.
It is useful to understand that Sy ∩ Szj = Szi ∩ Szj = ∅ whenever i ̸=

j, although this circumstance does not play any role in the estimations 0 ⩽
#S(Fq) ⩽ (n+ 1)2n3, where S := Sy ∪ Sz1 ∪ · · · ∪ Szn . We thus see that

q − 2pa
√
q − (3n+ 4)2n + 1 ⩽ #(I \ S)(Fq) ⩽ q + 2pa

√
q − 2n + 1.

Therefore, for q of cryptographic size and for the moderate n, there are a lot
of Fq-points in I \ S, i.e., possibilities of instantiating the (D)DoS attack. In
particular, the honest user is not capable to store the giant list of all “poisoned”
x-coordinates to thwart the attack by searching for the received ones in this list.

It is worth explaining why the set S(Fq) is ruled out of consideration. The
Fq-points of Sy are excluded, since it is immediately detected that an incoming
x-coordinate corresponds to an order-2 point on E (inadmissible in the DLP con-
text). Not to mention that the value

√
0 = 0 is known a priori without launching

Müller’s algorithm or any other square-root one. By a similar reason, the ad-
versaries should not send the points of the sets Szj (Fq). Otherwise, the receiver

encounters the requiring root uj =
√
f(x) during the initialization of Müller’s

Point (de)compression for elliptic curves over highly 2-adic finite fields 15

algorithm. It is stopped earlier and so the (D)DoS attack is less productive
(especially if j is much smaller than n).

The unique (but essential) obstacle for the attackers consists in difficulty
of finding explicitly (the x-coordinate of) an Fq-point in I \ S for the quite
large n. For instance, nothing prevents from iterating somehow x0 ∈ Fq until
the inverse image pr−1x (x0) of the projection prx : I → A1

x has a non-empty
intersection with (I \S)(Fq). This brute-force method is formalized in Algorithm
1. (Un)fortunately, it is obviously exponential in time as n → ∞. The same
strategy (cf. [65, Section 2]) via the projections to the other variables y, z1, · · ·, zn
does not help the situation. Curiously, the method is also non-deterministic, but
it is not dramatic unlike the x-coordinate decompression. Indeed, the adversaries
presumably dispose large resources and their work is not performed in real time.
So, the symmetric (D)DoS attack on them is not relevant.

It is necessary to remember that the polynomial system I has a concrete
type. Hence, nothing contradicts the existence of a clever algorithm of resolving
it (in sub-exponential or even polynomial time) if the set I \S admits an Fq-point
at least theoretically. To put it another way, n must not exceed some limit, e.g.,
derived from the above lower bound on #(I \ S)(Fq). Once such an algorithm is
invented, the (D)DoS attack becomes critical, not just annoying. That is why it
is paramount to establish the place of the problem at hand in the hierarchy of
(hard) computational ones.

Algorithm 1: A brute-force method of finding the x-coordinate of an
Fq-point in I \ S
Data: n ∈ N pairwise different values ci ∈ F∗

q ;
Result: The image prx(P) of an point P ∈ (I \ S)(Fq);
begin

finish := false;
while not finish do

x := NextElement(Fq);
f := f(x);
c0 := 2·f ;
finish := true;
for i := 0 to n do

Z := ci − f ;
L :=

(
Z
q

)
;

if L = 0 or L = −1 then
finish := false;
break;

end

end

end
return x.

end

16 D. Koshelev

3.2 Point (de)compression resistant to the new (D)DoS attack

In this section, the cardinality #E(Fq) is assumed to be even. Let P0 ∈ E(Fq) be
any point of order e > 1 defined by the equality (2). Let’s build the compression
function

com : E(Fq) \ {±P0,O} → Fq × F2

founded on the quadratic Fq-cover φ : E → A1
t associated with P0 (see Section

2.2). Recall that one of the two components of φ is the birational Fq-map ψ :
E → C to the quartic curve C : s2 = h(t) with the equation (4). Denote through
M(u, v) Müller’s algorithm of computing s =

√
u2 − cv2 ∈ F∗

q given variables u,
v ∈ Fq and a fixed c ∈ F∗

q \ (F∗
q)

2. Also, sign will stand for any function F∗
q → F2

such that sign(−s) ̸= sign(s). As an illustration, for the prime q, this can be
the parity function on the integer interval [0, q − 1]N realizing the field Fq.

The new method of (de)compressing E(Fq) is specified in Algorithm 2 (resp.,
3). The algorithms omit the points ±P0, O, because the formulas (5) of ψ are
unsuitable for them, although those (6) of ψ−1 do not have indefiniteness points.
On the one hand, ±P0, O are out of use in practice, since the DLP is usually con-
sidered between prime-order group elements. On the other hand, the algorithms
can be easily extended to the whole group E(Fq) by adding few supplementary
bits to the output of com. In Algorithm 3 the Fq-section σ : A1

t → Sh (from the
end of Section 2.3) is leveraged to deterministically obtain an input (u, v) for
M . It is nice that σ is correctly defined for each t ∈ Fq. Lastly, since the roots of
the polynomial h do not belong to Fq, the element s = M(u, v) =

√
h(t) never

vanishes and so the function sign does not need to have a value at 0.

Algorithm 2: New point compression

Data: A point P ∈ E(Fq) \ {±P0,O};
Result: The pair com(P) ∈ Fq × F2;
begin

(t, s) := ψ(P);
β := sign(s);
return (t, β).

end

3.3 Alternative (de)compression for elliptic curves of j-invariant 0

Many elliptic curve cryptographers (if they are not conservatively-minded) like
curves Eb : y

2 = x3 + b (for b ∈ F∗
q) of j-invariant 0. The point is that these

curves are the “richest” in the sense that they (and no others) admit a group
automorphism of order 3. It has the form [ω] : (x, y) 7→ (ωx, y), where ω =
(−1 +

√
−3)/2 is a primitive cubic root of unity. The given automorphism is

useful for accelerating diverse cryptographic primitives on Eb. In particular,

Point (de)compression for elliptic curves over highly 2-adic finite fields 17

Algorithm 3: New point decompression

Data: A pair (t, β) ∈ Fq × F2;
Result: The point P ∈ E(Fq) \ {±P0,O} such that com(P) = (t, β);
begin

L :=
(h(t)

q

)
;

if L = −1 then
return fail.

end
else

(u, v) := σ(t);
s :=M(u, v);
if sign(s) ̸= β then

s := −s;
end
return ψ−1(t, s).

end

end

these curves are paramount in pairing-based cryptography [23], since they enjoy
(intimately thanks to [ω]) twists of the highest degree 6 as opposed to other
elliptic curves. Besides, [ω] underlies the work [37] (supplemented by [42, Section
4]), which constructs a hash function to Eb(Fq) friendly to highly 2-adic fields.

In our context, [ω] is a nice feature, because it gives rise to one more natural
(de)compression method specific for j = 0 curves. Indeed, the projection pry :
Eb → A1

y to the y-coordinate is nothing but the quotient Fq-cover of degree 3
associated with the action of [ω] on Eb. Apart from y, two (rather than one)
auxiliary bits are required (generally speaking) to restore the original cubic root

x = 3
√
y2 − b in the decompression stage. Note that ω (or, equivalently,

√
−3)

does not necessarily lie in Fq, that is, the case 3 | q−2 is also allowed, despite the
fact that Eb are supersingular curves for such Fq. As is known, solely ordinary
curves are attractive in today’s ECC founded on the DLP. In fact, the additional
two bits are superfluous when ω ∈ Fq, because pry becomes a bijective map on
the level of Fq-points.

Fortunately, highly 3-adic fields are not utilized (to the author’s knowledge)
in the real world in contrast to their 2-adic counterparts. Hence, 3

√
· ∈ Fq can be

computed through one exponentiation in Fq at least if 27 ∤ q − 1 (see, e.g., [38,
Lemma 3]). As a result, for practical curves Eb, there is no difficulty in efficient
(de)compression of their Fq-points. Formally, the y-coordinate method continues
to properly functionate even if the 3-adicity of Fq is large. However, there is no
any sense to resort to its help in the given scenario, because general cubic-root
extraction is substantially slower than square-root one (the latest prominent
paper on the theme is perhaps [19]). By the way, the (de)compression method
at hand is logically extended to the 2-dimensional setting in [36,38] and cannot
be extended to the 3-dimensional one with 3

√
· ∈ Fq as the unique bottleneck.

18 D. Koshelev

3.4 Overview of point (de)compression methods

Table 1 contains all known point (de)compression methods without visible se-
curity flaws. First of all, in the column Bottleneck all the roots lie in Fq. In
turn, the column Complexity exhibits (except for PRG) the quantity of field
multiplications being performed in the bottleneck of a (decompression) method.
This comparison approach is workable, since few supplementary multiplications
appear in other parts of each method. Besides, the operations

(·
q

)
and ·−1 ∈ Fq

are not taken into account, because they are pretty quick (see, e.g., [16] for the
inversion operation) and, at the same time, they arise in all the methods a small
number of times (as opposed to the multiplication operation). Finally, every
method is undoubtedly economical as concerns used memory.

The abbreviation PRG denotes one execution of a cryptographic pseudo-
random generator of an element in F∗

q . Since such generators in practice are
built on ad-hoc symmetric (rather than asymmetric) primitives, their running
time is typically ignored in estimating the total performance. Therefore, PRG
can be thrown out of the table unless an implementer applies a provably secure
generator. Unlike the other methods, the third is non-deterministic, hence its
indicated complexity is average. In other words, the generator sometimes has to
be launched a little more than two times (or once).

As well as in the introduction, the table’s g is a sub-quadratic function in the
2-adicity ν. At the moment, the TS-type algorithm with the smallest asymptotics
is attributed to Sutherland [62]. More precisely,

g(ν) = Θ

(
ν log(ν)

log(log(ν))

)
for his modification. As is customary, the best asymptotic behavior is not a
guarantee that so is the true running time. Conversely, the latter is frequently
much worse than expected. In this regard, it is an obligation of an implementer
to select a concrete TS-type algorithm depending on the magnitude of ν. For
the sake of conciseness, the table omits the table-lookup versions of TS-type
algorithms.

To sum up, the new t-coordinate method seemingly outperforms other point
(de)compression methods for very large 2-adicities if it is not about curves Eb for
which exists the elegant y-coordinate method. Nonetheless, the author recognizes
that for the moderate ν, it is sufficient to leverage the x-coordinate one with (the
table-lookup variation of) an appropriate TS-type square-root algorithm. It is
hard to derive a more or less exact bound on ν, because the answer depends
on many implementation tricks of the mentioned methods. It is impossible to
address all of them in the current article, not increasing cardinally its volume. In
addition, implementers can use at their own risk the x-coordinate method with
a strong pseudo-random generator if non-determinism does not bother them.

In real-life cryptographic applications one typically encounters sequences of
elliptic curve points of considerable length m ∈ N. Consequently, it is fairer to
talk about multiple point (de)compression (m > 1) in place of single point one
(m = 1). Surely, an arbitrary method of Table 1 can be exploited separately

Point (de)compression for elliptic curves over highly 2-adic finite fields 19

Method Restrictions Bottleneck Complexity

Classical with x

ν ⩽ 2, i.e., 8 ∤ q − 1
√
· via one exponentiation ℓ ⩽ · ⩽ 2ℓ

No

√
· via a TS-type algorithm Θ(ℓ+ g(ν))

√
· via Müller’s algorithm using a

strong pseudo-random generator

≈ 2ℓ− ν

+2·PRG

Folklore with y j = 0 and 27 ∤ q − 1 3
√
· via one exponentiation ℓ ⩽ · ⩽ 2ℓ

New with t 2 | #E(Fq)
√
· via Müller’s algorithm without

the non-deterministic initialization
≈ 2ℓ− ν

Table 1. Safe methods of (de)compressing E(Fq) to (from) ≈ ℓ = ⌈log2(q)⌉ bits

for each point, achieving (almost) ideal memory saving/bandwidth. But to be
honest, it is worthwhile to cite the source [25] generalizing the idea of [34] from
sequences with m ∈ {2, 3} to longer ones. Remarkably, the given idea allows to
compress to m + 1 elements of Fq (as usual, up to few bits), avoiding entirely
radicals in Fq, which is excellent news when living in the highly 2-adic realm.
Nevertheless, the complexity of this approach apparently grows exponentially
as m → ∞ as noted in [38, Section 1.2]. To circumvent this trouble, one can
successively employ it to short packets of points. However, this compression
solution understandably becomes very far from optimal from the information
theory point of view.

3.5 Examples of elliptic curves over highly 2-adic fields

Tables 2, 3, and 4 contain certain practical elliptic curves over fields of large
2-adicities. The first (resp., the second) table in this list is dedicated to twisted
Edwards (resp., prime-order) curves of non-zero j-invariants. In turn, the third
exhibits j = 0 curves independently of whether they have the twisted Edwards
form or not.

Curve Reference ℓ ν e

Starkjub [6] 252 192

8Baby Jubjub [13, Section 6] 254 28

Jubjub [24]
255 32

Bandersnatch [45] 2

Table 2. Some real-world twisted Edwards curves of j ̸= 0 over highly 2-adic fields

20 D. Koshelev

Curve Reference ℓ ν e

NIST P-224 [18, Section 3.2.1.2] 224 96

1

STARK curve [5] 252 192

MNT4-298
[14, Section 3.2] 298

17

MNT6-298 34

MNT4-753 [1]
753

15

MNT6-753 [2] 30

Table 3. Some real-world prime-order curves of j ̸= 0 over highly 2-adic fields

Curve Reference ℓ ν e

Pallas-Vesta (Pasta) [29] 254
32 1

Pluto-Eris [30] 446

BLS12-377 [64] 377 46 292

Table 4. Some real-world curves of j = 0 over highly 2-adic fields

The curve NIST P-224 stands out from the rest, because it was generated
long time before the de facto use of zero-knowledge proofs. It continues (apart
from the other curves of Table 3) to be vulnerable to the discovered (D)DoS
attack, since the new (de)compression method is not applicable. Perhaps, the
present article will additionally encourage NIST to exclude the given curve from
the next version of its standard [18] as that happened at one time with the curve
NIST P-192. The author believes that NIST P-224 is used much rarer (maybe,
almost never in modern hard/software) than the curve NIST P-256 with the
conventional 128-bit security level. So, there are no significant reasons to keep
NIST P-224 in the standard. At the same time, the presence of this curve in the
standard forces various entities to maintain its functionality. As a consequence,
there remains a potential source of insecurity in view of the current paper.

Of course, the malicious users can try to apply the (D)DoS attack, sending
x-coordinates of the slowest standardized curve NIST P-521. In this case, the
honest user has to perform necessary computations over a larger field of length
ℓ = 521 instead of ℓ = 224. It is paradoxical at first sight, but the given option
apparently has less chances to be successful. Indeed, the attackers are able to
send a proportionally shorter series of x-coordinates until the receiver blocks
the incoming data from their side. The moral is the following: It is better for
the dishonest users to feed “poisoned” x-coordinates for the faster curve NIST
P-224 than “usual” x-coordinates for the slower one NIST P-521. In total, the
receiving party will spend more time in the first case to process the data.

Point (de)compression for elliptic curves over highly 2-adic finite fields 21

Speaking more generally, the problem of constructing an efficient determin-
istic (de)compression method for prime-order curves of j ̸= 0 over highly 2-adic
fields remains open. As is known, 2-cycles (a.k.a. amicable pairs) [59] of pairing-
friendly curves constitute notable examples of such curves. Their advantage over
SNARK-friendly curves in the twisted Edwards form is ability to deploy recursive
SNARKs of unrestricted length. While the humanity does not yet know instances
of pairing-friendly 2-cycles of acceptable performance (only pairs MNT4-MNT6
[48] are now at the disposal), this is undoubtedly a domain of active research
(see more details, e.g., in [12]). Incidentally, 2-cycles in which at least one of the
curves is plain are easily realized with the help of j = 0 curves as confirmed by
the pairs Pallas-Vesta (Pasta) and Pluto-Eris from Table 4.

In conclusion, it is useful to explicitly formulate the problem under consid-
eration.

Problem 1. Let E be a prime-order elliptic curve of non-zero j-invariant over a
highly 2-adic field Fq of length ℓ. Is there a (simple) deterministic (de)compression
method for E(Fq) executing O(ℓ) multiplications in Fq and storing in memory
O(1) field elements (with little constants in the O-notation)? As earlier, it is
about compression to ≈ ℓ bits.

Acknowledgements. The author expresses his gratitude to Josep Maria
Miret Biosca and Jordi Pujolàs Boix for great hospitality and fruitful math-
ematical discussions in Lleida. Also, it is impossible not to mention the aid
of Laurent Moret-Bailly in establishing Theorem 1. Finally, the author is very
grateful to Oleg Taraskin for many valuable talks about purely cryptographic
questions of this paper.

References

1. MNT4-753, https://coinlist.co/build/coda/pages/mnt4753
2. MNT6-753, https://coinlist.co/build/coda/pages/mnt6753
3. Pseudorandom number generator, https://en.wikipedia.org/wiki/

pseudorandom_number_generator

4. Random number generator attack, https://en.wikipedia.org/wiki/random_

number_generator_attack

5. STARK curve, https://docs.starkware.co/starkex/crypto/stark-curve.html
6. Starkjub (2023), https://github.com/hashcloak/starkjub
7. Adams, W.W., Razar, M.J.: Multiples of points on elliptic curves and contin-

ued fractions. Proceedings of the London Mathematical Society s3-41(3), 481–498
(1980)

8. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography 91(11), 3333–3378 (2023)

9. Aranha, D.F., Salling Hvass, B., Spitters, B., Tibouchi, M.: Faster constant-time
evaluation of the Kronecker symbol with application to elliptic curve hashing. In:
CCS 2023: ACM SIGSAC Conference on Computer and Communications Security.
pp. 3228–3238. Association for Computing Machinery, New York (2023)

https://coinlist.co/build/coda/pages/mnt4753
https://coinlist.co/build/coda/pages/mnt6753
https://en.wikipedia.org/wiki/pseudorandom_number_generator
https://en.wikipedia.org/wiki/pseudorandom_number_generator
https://en.wikipedia.org/wiki/random_number_generator_attack
https://en.wikipedia.org/wiki/random_number_generator_attack
https://docs.starkware.co/starkex/crypto/stark-curve.html
https://github.com/hashcloak/starkjub

22 D. Koshelev

10. Aubry, Y., Perret, M.: A Weil theorem for singular curves. In: Pellikaan, R., Per-
ret, M., Vlăduţ, S.G. (eds.) Arithmetic, Geometry, and Coding Theory. pp. 1–7.
Proceedings in Mathematics, De Gruyter, Berlin (1996)

11. Barker, E., Kelsey, J.: Recommendation for random number generation us-
ing deterministic random bit generators (NIST Special Publication 800-90A
Revision 1) (2015), https://csrc.nist.gov/publications/detail/sp/800-90a/
rev-1/final

12. Bellés-Muñoz, M., Urroz, J.J., Silva, J.: Revisiting cycles of pairing-friendly ellip-
tic curves. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023. Lecture Notes in Computer Science, vol. 14082, pp. 3–37. Springer,
Cham (2023)

13. Bellés-Muñoz, M., Whitehat, B., Baylina, J., Daza, V., Muñoz-Tapia, J.L.: Twisted
Edwards elliptic curves for zero-knowledge circuits. Mathematics 9(23), 3022
(2021)

14. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014. Lecture Notes in Computer Science, vol. 8617, pp. 276–294.
Springer, Berlin, Heidelberg (2014)

15. Bernstein, D.J.: Faster square roots in annoying finite fields (2001), https://cr.
yp.to/papers.html#sqroot

16. Bernstein, D.J., Yang, B.Y.: Fast constant-time GCD computation and modular
inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 340–398 (2019)

17. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel anal-
ysis. In: Fossorier, M., Høholdt, T., Poli, A. (eds.) Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes. AAECC 2003. Lecture Notes in Computer
Science, vol. 2643, pp. 34–42. Springer, Berlin, Heidelberg (2003)

18. Chen, L., Moody, D., Regenscheid, A., Robinson, A., Randall, K.: Recommen-
dations for discrete logarithm-based cryptography: Elliptic curve domain pa-
rameters (NIST Special Publication 800-186) (2023), https://csrc.nist.gov/

publications/detail/sp/800-186/final

19. Cho, G.H., Kwon, S., Lee, H.S.: A refinement of Müller’s cube root algorithm.
Finite Fields and Their Applications 67, 101708 (2020)

20. Châtelet, F.: Points rationnels sur certaines courbes et surfaces cubiques.
L’Enseignement Mathématique 5(3), 153–170 (1959)

21. Cipolla, M.: Un metodo per la risolutione della congruenza di secondo grado. Ren-
diconto dell’Accademia delle Scienze Fisiche e Matematiche 9, 154–163 (1903)

22. Driver, E., Leonard, P.A., Williams, K.S.: Irreducible quartic polynomials with
factorizations modulo p. The American Mathematical Monthly 112(10), 876–890
(2005)

23. El Mrabet, N., Joye, M. (eds.): Guide to pairing-based cryptography. Cryptography
and Network Security Series, Chapman and Hall/CRC, New York (2017)

24. Electric Coin Company: What is Jubjub?, https://bitzecbzc.github.io/

technology/jubjub

25. Fan, X., Otemissov, A., Sica, F., Sidorenko, A.: Multiple point compression on
elliptic curves. Designs, Codes and Cryptography 83(3), 565–588 (2017)

26. Fouque, P.A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve
Montgomery ladder implementation. In: 2008 5th Workshop on Fault Diagnosis
and Tolerance in Cryptography. pp. 92–98. Institute of Electrical and Electronics
Engineers, New York (2008)

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://cr.yp.to/papers.html#sqroot
https://cr.yp.to/papers.html#sqroot
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://bitzecbzc.github.io/technology/jubjub
https://bitzecbzc.github.io/technology/jubjub

Point (de)compression for elliptic curves over highly 2-adic finite fields 23

27. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press, New York (2012)

28. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52.
Springer, New York, 8 edn. (1997)

29. Hopwood, D.: The Pasta curves for Halo 2 and beyond (2020), https://

electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
30. Hopwood, D.: Pluto/Eris supporting evidence (2021), https://github.com/

daira/pluto-eris
31. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) Advances in Cryptol-

ogy – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 303–316.
Springer, Berlin, Heidelberg (2009)

32. Internet Architecture Board, Handley, M.J., Rescorla, E.: Internet denial-of-service
considerations (RFC 4732) (2006), https://datatracker.ietf.org/doc/rfc4732

33. Joye, M., Quisquater, J.J.: Efficient computation of full Lucas sequences. Electron-
ics Letters 32(6), 537–538 (1996)

34. Khabbazian, M., Gulliver, T.A., Bhargava, V.K.: Double point compression with
applications to speeding up random point multiplication. IEEE Transactions on
Computers 56(3), 305–313 (2007)

35. Kiritchenko, V., Tsfasman, M., Vlăduţ, S., Zakharevich, I.: Quadratic residue pat-
terns, algebraic curves and a K3 surface (2024), https://arxiv.org/abs/2403.
16326

36. Koshelev, D.: New point compression method for elliptic Fq2 -curves of j-invariant
0. Finite Fields and Their Applications 69, 101774 (2021)

37. Koshelev, D.: Indifferentiable hashing to ordinary elliptic Fq-curves of j = 0 with
the cost of one exponentiation in Fq. Designs, Codes and Cryptography 90(3),
801–812 (2022)

38. Koshelev, D.: Batch point compression in the context of advanced pairing-based
protocols. Applicable Algebra in Engineering, Communication and Computing
(2023), https://link.springer.com/article/10.1007/s00200-023-00625-3

39. Koshelev, D.: Generation of “independent” points on elliptic curves by means of
Mordell–Weil lattices. Mathematical Cryptology 4(1), 11–22 (2024)

40. Koshelev, D.: Hashing to elliptic curves through Cipolla–Lehmer–Müller’s square
root algorithm. Journal of Cryptology 37(2), Article 11 (2024)

41. Koshelev, D.: Magma code (2024), https://github.com/dimitri-koshelev/

point-de-compression-for-elliptic-curves-over-highly-2-adic-finite-fields
42. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves. Journal of

Computer Virology and Hacking Techniques 20(2) (2024)
43. Lambert, R.J.: Method to calculate square roots for elliptic curve cryptography

(2013), https://patents.google.com/patent/US9148282B2/en, United States
patent No. 9148282B2

44. Lehmer, D.H.: Computer technology applied to the theory of numbers. In: LeVeque,
W.J. (ed.) Studies in Number Theory. Studies in Mathematics, vol. 6, pp. 117–151.
Mathematical Association of America, Washington (1969)

45. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built over the
BLS12-381 scalar field (2021), https://eprint.iacr.org/2021/1152

46. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Ad-
vances in Cryptology – CRYPTO 1985. Lecture Notes in Computer Science,
vol. 218, pp. 417–426. Springer, Berlin, Heidelberg (1986)

47. Miret, J., Moreno, R., Rio, A., Valls, M.: Determining the 2-sylow subgroup of an
elliptic curve over a finite field. Mathematics of Computation 74(249), 411–427
(2005)

https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://github.com/daira/pluto-eris
https://datatracker.ietf.org/doc/rfc4732
https://arxiv.org/abs/2403.16326
https://arxiv.org/abs/2403.16326
https://link.springer.com/article/10.1007/s00200-023-00625-3
https://github.com/dimitri-koshelev/point-de-compression-for-elliptic-curves-over-highly-2-adic-finite-fields
https://github.com/dimitri-koshelev/point-de-compression-for-elliptic-curves-over-highly-2-adic-finite-fields
https://patents.google.com/patent/US9148282B2/en
https://eprint.iacr.org/2021/1152

24 D. Koshelev

48. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences E84-A(5), 1234–1243 (2001)

49. Müller, S.: On the computation of square roots in finite fields. Designs, Codes and
Cryptography 31(3), 301–312 (2004)

50. Petit, C., Kosters, M., Messeng, A.: Algebraic approaches for the elliptic curve
discrete logarithm problem over prime fields. In: Cheng, C.M., Chung, K.M., Per-
siano, G., Yang, B.Y. (eds.) Public-Key Cryptography – PKC 2016. Lecture Notes
in Computer Science, vol. 9615, pp. 3–18. Springer, Berlin, Heidelberg (2016)

51. Pornin, T.: Optimized discrete logarithm computation for faster square roots in
finite fields (2023), https://eprint.iacr.org/2023/828

52. Pornin, T.: A prime-order group with complete formulas from even-order elliptic
curves. IACR Communications in Cryptology 1(1) (2024)

53. Sarkar, P.: Computing square roots faster than the Tonelli–Shanks/Bernstein al-
gorithm. Advances in Mathematics of Communications 18(1), 141–162 (2024)

54. Schicho, J.: The parameterization problem for algebraic surfaces. ACM SIGSAM
Bulletin 33(3) (1999)

55. Serre, J.P.: Algebraic groups and class fields, Graduate Texts in Mathematics,
vol. 117. Springer, New York (1988)

56. Shanks, D.: Five number-theoretic algorithms. In: Thomas, R.S.D., Williams, H.C.
(eds.) Proceedings of the Second Manitoba Conference on Numerical Mathematics.
Congressus Numerantium, vol. 7, pp. 51–70. Utilitas Mathematica Publishing Inc.,
Winnipeg (1973)

57. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press, Cambridge, 2 edn. (2008)

58. Shparlinski, I.E.: Pseudorandom number generators from elliptic curves. In:
Luengo, I. (ed.) Recent Trends in Cryptography. Contemporary Mathematics,
vol. 477, pp. 121–141. American Mathematical Society, Providence (2009)

59. Silverman, J.H., Stange, K.E.: Amicable pairs and aliquot cycles for elliptic curves.
Experimental Mathematics 20(3), 329–357 (2011)

60. Stichtenoth, H.: Algebraic function fields and codes, Graduate Texts in Mathemat-
ics, vol. 254. Springer, Berlin, Heidelberg, 2 edn. (2009)

61. Struik, R.: Alternative elliptic curve representations (2024), https:

//datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23

62. Sutherland, A.V.: Structure computation and discrete logarithms in finite abelian
p-groups. Mathematics of Computation 80(273), 477–500 (2011)

63. Tonelli, A.: Bemerkung über die auflösung quadratischer congruenzen. Nachrichten
von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-
Universität zu Göttingen pp. 344–346 (1891)

64. Vlasov, A.: EIP-2539: BLS12-377 curve operations (2020), https://eips.

ethereum.org/EIPS/eip-2539

65. Von zur Gathen, J., Shparlinski, I., Sinclair, A.: Finding points on curves over
finite fields. SIAM Journal on Computing 32(6), 1436–1448 (2003)

https://eprint.iacr.org/2023/828
https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23
https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-2539

	Point (de)compression for elliptic curves over highly 2-adic finite fields

