
Raccoon: A Masking-Friendly Signature Proven

in the Probing Model

Rafaël del Pino1, Shuichi Katsumata1,2

, Thomas Prest1 , and Mélissa Rossi3

1 PQShield (firstname.lastname@pqshield.com)
2 AIST

3 ANSSI (firstname.lastname@ssi.gouv.fr)

Abstract. This paper presents Raccoon, a lattice-based signature scheme
submitted to the NIST 2022 call for additional post-quantum signatures.
Raccoon has the speci�city of always being masked. Concretely, all sen-
sitive intermediate values are shared into 𝑑 parts. The main design ratio-
nale of Raccoon is to be easy to mask at high orders, and this dictated
most of its design choices, such as the introduction of new algorithmic
techniques for sampling small errors. As a result, Raccoon achieves a
masking overhead 𝑂 (𝑑 log 𝑑) that compares favourably with the over-
heads 𝑂 (𝑑2 log 𝑞) observed when masking standard lattice signatures.

In addition, we formally prove the security of Raccoon in the 𝑡-probing
model: an attacker is able to probe 𝑡 ≤ 𝑑−1 shares during each execution
of the main algorithms (key generation, signing, veri�cation). While for
most cryptographic schemes, the black-box 𝑡-probing security can be
studied in isolation, in Raccoon this analysis is performed jointly.

To that end, a bridge must be made between the black-box game-based
EUF-CMA proof and the usual simulation proofs of the ISW model
(CRYPTO 2003). We formalize an end-to-end masking proof by deploy-
ing the probing EUF-CMA introduced by Barthe et al. (Eurocrypt 2018)
and exhibiting the simulators of the non-interference properties (Barthe
et al. CCS 2016). The proof is divided into three novel parts:
� a simulation proof in the ISW model that allows to propagate the

dependancy to a restricted number of inputs and random coins,
� a game-based proof showing that the security of Raccoon with probes

can be reduced to an instance of Raccoon with smaller parameters,
� a parameter study to ensure that the smaller instance is secure, using

a robust generalization of the Rényi divergence.
While we apply our techniques to Raccoon, we expect that the algorith-
mic and proof techniques we introduce will be helpful for the design and
analysis of future masking-friendly schemes.

Keywords: Raccoon signature; 𝑡-probing model; side-channel attacks.

1 Introduction

In the past decade, post-quantum cryptography has reached quickly grown from
a mostly theoretical �eld to one with su�cient maturity to be deployed on a wide

https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0003-1445-6212
https://orcid.org/0000-0002-9268-3034

2 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

scale. This is epitomized by NIST's standardization in 2020 of the hash-based
signatures XMSS and LMS, as well as its announcement in 2022 of the future
standardization of the lattice-based KEM Kyber, the lattice-based signatures
Dilithium and Falcon, and the hash-based signature SPHINCS+. Whilst the
e�ciency pro�les and black-box security of these schemes are well-understood,
resistance against side-channel attacks remains a weak spot.

Side-channel attacks. In a side-channel attack (SCA), an attacker can learn
information about the physical execution of an algorithm, such as its running
time or its e�ect on the power consumption, electromagnetic or acoustic emission
of the device running it. This information can then be leveraged to recover
sensitive information, for example, cryptographic keys.

SCAs can be devastating against cryptographic implementations, and post-
quantum schemes are no exception. See Section 1.3 for references of concrete
SCAs agaisnt Dilithium.

Masking. The main countermeasure against side-channel attacks is masking
[27]. It consists of splitting sensitive information in 𝑑 shares (concretely: 𝑥 =

𝑥0+· · ·+𝑥𝑑−1), and performing secure computation using MPC-based techniques.
Masking provides a trade-o� between e�ciency and SCA resistance: the compu-
tational e�ciency of the implementation is reduced by a polynomial factor in 𝑑,
but the cost of a side-channel attack is expected to grow exponentially [19,28].

Unfortunately, lattice-based signatures contain subroutines that are extremely
expensive to mask, such as (a) sampling from a small set, (b) bit-decomposition,
and (c) rejection sampling. Currently, the best known ways to perform these
operations is to rely on mask conversions [26,13], which convert between arith-
metic and boolean masking. This typically incurs an overhead 𝑂 (𝑑2 log 𝑞) [14] or
𝑂 (2𝑑/2) [11], and quickly becomes the e�ciency bottleneck. As an illustration,
the only publicly available masked implementation of Dilithium [12] is 53 (resp.
200) times slower than unmasked Dilithium for 𝑑 = 2 (resp. 𝑑 = 4).

Masking-friendly schemes. In order to overcome these limitations, a natural re-
search direction is to design lattice-based signatures that are naturally amenable
to masking. However, this is easier said than done. The few designs that exist
have either been shown insecure or lack a formal security proof, see Section 1.3
for a more detailed discussion. Thus having a masking-friendly signature with a
formal proof has been an elusive goal.

1.1 Our Contributions

We propose Raccoon, a masking-friendly signature, and provide a formal security
proof in the 𝑡-probing model [27]. While Raccoon is inspired from the similarly
named scheme from [17], we have heavily modi�ed its design in order to make
it more e�cient and provable secure under standard assumptions. The design
presented in this paper is exactly the same as the one submitted to the NIST
on-ramp standardization campaign [16].

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 3

Blueprint. Raccoon is based on the �Lyubashevsky signature without aborts�
blueprint, also found in works on threshold signatures [1], and which we re-
call below. Assume the public key vk is a Learning With Errors (LWE) sample
(A, t = [A I] · s), where s is a small vector, I is the identity matrix and A is a
uniform matrix (precise de�nitions will be provided later in the paper). Signing
proceeds as follows:
(S1) Sample r, compute a commitment w = [A I] · r;
(S2) Compute a challenge 𝑐 = 𝐻 (w, vk,msg);
(S3) Compute a response z = s · 𝑐 + r.
The veri�cation procedure checks that 𝐻 (A · z − t · 𝑐, vk,msg) = 𝑐 and that z is
short. Using a Rényi divergence argument, we can argue security if the modulus
𝑞 grows as the square root of the number of queries 𝑄𝑠, that is 𝑞 = Ω(

√
𝑄𝑠). By

eliminating the need for rejection sampling, this sidesteps the issue of masking
it. In addition, unlike in Dilithium, the security argument does not rely on bit-
decomposition. This eliminates the need to mask bit-dropping, which we now
employ purely for e�ciency reasons. We note that our �nal modulus has 49 bits,
which is larger than the standard precision (32-bit or less) on many embedded
platforms. We mitigate this by taking 𝑞 = 𝑞1 · 𝑞2, where 𝑞1 and 𝑞2 are 24-bit
and 25-bit NTT-friendly prime moduli.

We note that rejection sampling in Dilithium requires a smaller modulus
𝑞 = Ω(dim(s)), in practice log 𝑞 ≈ 23 in Dilithium. Our design choice entails a
trade-o� between compactness (Dilithium) and ease of masking (Raccoon).

The problem with Gaussians. Standard Rényi divergence arguments as in
[1] require r to be sampled from a discrete Gaussian distribution. However, Gaus-
sians are notoriously di�cult to generate in a way that is robust to SCA. The
most common method for sampling Gaussians in a constant-time manner is via
probability distribution tables (PDT), see for example FrodoKEM [34] or Falcon
[36]. For signatures, the PDT would require a precision 𝑝 ≈ log(𝑄𝑠), for exam-
ple Falcon takes 𝑝 = 72. Masking this step would incur a prohibitive overhead
𝑂 (𝑑2 log 𝑞). Similarly, all other existing sampling methods (see e.g. �Related
works� in [25]) comprise at least one step that is expensive to mask. We could
use Gaussians, and from a purely theoretic perspective the security proof would
go through, but from a practical point of view this would show little relevance
to the real-world issues that masking is trying to solve in the �rst place.

Sums of uniforms. Our solution is to pick a distribution that has Gaussian-
style properties, but is easier to sample securely on embedded devices. As it
turns out, sampling r as a sum of uniform variates (over a small set) produces
remarkably Gaussian-like distributions, which is unsurprising and a straightfor-
ward consequence of the central limit theorem. Unfortunately, standard Rényi
divergence arguments fail for these distributions since they have �nite support.

We resolve this analytical issue by introducing the smooth Rényi divergence,
a more robust generalization of the Rényi divergence that is able to provide
cryptographically useful statements about sums of uniform distributions. We

4 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

de�ne it as a simple combination of the statistical distance and the Rényi di-
vergence. This generalisation achieves the best of both worlds: the robustness of
the statistical distance and the power of the Rényi divergence.

Probing-resilient sampling via AddRepNoise. Now that we have identi�ed a
suitable distribution (that is, sum of uniforms) for r, the �nal step is to sample
it in a way that is resilient to 𝑡-probing adversaries. A naive approach would
be to sample in parallel each share r𝑖 of ⟦r⟧ as the sum of rep small uniform
variates, so that r is the sum of 𝑑 · rep small uniform variates. However, a probing
adversary is allowed to probe 𝑡 ≤ 𝑑 − 1 individual shares r𝑖. This would reduce
the standard deviation of the conditional distribution of r by a factor

√
𝑑, and

lead to worse parameters.
We resolve this by proposing a new algorithm, called AddRepNoise, which

interleaves (a) parallel generation of individual noises and (b) refreshing the
masked vector, and repeats this rep times. We can formally prove that a 𝑡-
probing adversary only learns 𝑡 individual uniform variates, so that the standard
deviation of r conditioned to these variates is the sum of 𝑑 · rep − 𝑑 + 1 uniform
variates, which allows to prove security with a minimal loss in tightness.

1.2 Overview of the Security Proof

We recall that a high-level description of Raccoon is given in Section 1.1. Now,
in a masked form, the secret is shared as s =

∑
𝑖∈[𝑑] s𝑖where the coe�cients of the

vectors s𝑖 are sampled in a short interval. This is a deliberate choice of Raccoon
that allows good sampling performance.

At �rst sight, if the s𝑖 are safely manipulated in the signature algorithm and
never recombined, the masking security seems guaranteed as the exact value
of s cannot be recombined. However, if an adversary probes 𝑑 − 1 shares of s𝑖,
say {s0, · · · , s𝑑−2}, he can compute vk′ = vk − [A I]∑𝑑−2

𝑖=0 ·s𝑖 = [A I] s𝑑−1. Key
recovery is signi�cantly easier as the updated secret is now from a narrower
distribution. Hence, while the exact value of s is inaccessible, the knowledge
of the probes combined with the knowledge of the public key can lead to a
simpler key recovery. This aspect makes a link between two families of proofs
that are typically separated in other works: the black-box game-based EUF-CMA
proofs and the simulation proofs of masking. The former quanti�es the advantage
of a black-box attacker and provides a security statement conditionned to the
hardness of well-de�ned mathematical problems (like LWE). The latter provides
a statistical statement showing that any probing attacker limited to 𝑑−1 probes
have no statistical advantage to recover the sensitive information.

To prove the security of Raccoon, it is important to link these two notions.
For that, we detail and formalize the probing security from a game-base perspec-
tive, i.e. with well-de�ned simulators and reuse the notion of probing EUF-CMA
provided in [5]. Such a notion has been de�ned but it was not formally used in
a game-based proof before. The main contribution of this paper is the proof of
the probing EUF-CMA security of Raccoon. It will consist in several steps.

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 5

𝑡-probing
EUF-CMA
(Figure 3)

Game 1
(Figure 8)

Game 2
(Figure 9)

Game 3
(Figure 10) EUF-CMA

{Self-target
MSIS} +
MLWE

KeyGen
Sign
Verify

KeyGenER
SignER
Verify

KeyGenℒ
Signℒ
Verify

KeyGenℒ
Signℒ
Verify

KeyGenSmall

SignSmall

VerifySmall

Theorem 7.1
(Rewriting)

Theorem 7.1
(NIU)

Theorem 7.1
(Rewriting) Theorem 7.1

Theorem 7.2 (w/
smooth Rényi)

O O O O O

Fig. 1: Proof overview. Jump 1 consists in moving randomness to inputs as per
De�nition 5.2. Jump 2 uses Lemma 5.2 to move all probes to inputs. Jump 3 is
a simple rewriting step. Jump 4 is a black-box reduction to a simpler unmasked
signature Small Raccoon. Jump 5 is the security proof of Small Racoon. O denote
access to an oracle to the correpsonding algorithm.

1. Non-uniform masks and sNIU: First, one needs to handle the sensitive
small uniforms that are deviating from the classical ISWmodel [27] and other
masking proof techniques [4]. For that, all the small uniforms will not be
considered as a sharing of a secret value but as several random coins provided
in input. The notion of sNIU introduced in [20] (detailed later on in the paper)
will come handy. That way, we will be able to prove the masking security
of the key generation and signature algorithm when the small uniforms are
provided as inputs in Section 6.

2. Reduction from t-probing EUF-CMA to standard EUF-CMA: Next,
we will use this probe simulation property o�ered by the NIU model (cf.
Lemma 5.2) as part of a game based proof in the probing-EUF-CMA security
model. Through a sequence of games, we prove that the probing-EUF-CMA
security of Raccoon reduces on the black-box-EUF-CMA of a di�erent ver-
sion of Raccoon with smaller noise distributions, called small Raccoon. This
reduction lets us include the probing adversary in the attack and reduce
to a standard (non probing) EUF-CMA adversary. This proof is presented
in Section 7.

3. Unforgeability and smooth Rényi divergence: Finally, the proof con-
cludes with the black-box security of small Raccoon. Such a proof is close
to existing EUF-CMA proofs of signatures following the Fiat�Shamir with
aborts framework with a signi�cative di�erence. To allow a complete end-
to-end proof, we avoid any heuristic assessements and introduce the notion
of smooth Rényi divergence for obtaining provable and tighter parameters.
This proof is presented in Section 7.3.

In Section 8, we instantiate the parameters to valide our proof and con�rm
that the current NIST submission is secure.

6 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

1.3 Related works

SCA against Dilithium. Several side-channel attacks against post-quantum
schemes have been published. For concision, we only mention those related to
Dilithium, which shares similarities with Raccoon. Since its initial publication, a
string of increasingly practical side-channel attacks have been proposed against
unprotected implementations of Dilithium: see for example [22], [29], [31], [8],
[37], [9], [38].

Masking lattice schemes. The formal study of masking lattice-based signa-
tures has been initiated by Barthe et al. [5], which studied the GLP signature.
Since then, BLISS [6] and qTESLA [23] have also been studied from a masking
perspective. Masked implementations of Dilithium have been proposed in [33],
[3], [12].

Masking-friendly signatures. A few masking-friendly signatures have been
proposed in the past two years.
� Mitaka. Espitau et al. [21] proposed the Mitaka scheme, a masking-friendly
variant of Falcon. A �aw in the security proof of Mitaka, as well as a practical
attack in the 𝑡-probing model, was later demonstrated by Prest [35].

� IEEE SP Raccoon. At IEEE S&P 2023, del Pino et al. [17] presented a
lattice-based masking-friendly signature, also called Raccoon. Our scheme
is a conceptual descendent of the scheme from [17], with signi�cant im-
provements. While both versions of Raccoon are Fiat-Shamir lattice-based
signatures, the security proof of [17] relies on several heuristic arguments,
and the scheme itself is less compact than ours due to the use of a variant of
uniform secret LWR. In comparison, our design is more streamlined, more
compact, relies on standard assumptions and has a formal security proof.

� Plover. Since the original publication of Raccoon as a NIST candidate [16],
Esgin et al. [20] have proposed Plover, a signature scheme heavily inspired
from our scheme, including the use of AddRepNoise. The key insight of Plover
is to realize that our techniques are not limited to Fiat-Shamir signatures,
and can also be applied in a hash-then-sign setting. Conversely, [20] intro-
duced the NIU notion, a useful abstraction that we re-use in our analysis.

2 Preliminaries

We provide the minimal set of preparation. We refer the readers to the full
version for more details. First, let us prepare some notations. We note N the
set of non-negative integers, including zero. Given 𝑛 ∈ N, we denote by [𝑛]
the set {0, 1, . . . , 𝑛 − 1}. Let 𝑓 : 𝑋 → 𝑌 be a function, and 𝑥 ∈ 𝑋. When 𝑓 is
deterministic, we use the notation 𝑦 := 𝑓 (𝑥) to indicate that we assign the output
of 𝑓 (𝑥) to 𝑦. When 𝑓 is randomized, we instead use the notation 𝑦 ← 𝑓 (𝑥). From
a programming viewpoint, both of these notations indicate an assignment of the
result to the variable on the left. Given a probability distribution D over 𝑌 , we
note 𝑦 ← D to express that 𝑦 ∈ 𝑌 is sampled from D.

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 7

2.1 Hardness Assumptions

The security of Raccoon is based on the Module Learning with Errors (MLWE)
and Module Short Integer Solutions (MSIS) assumptions. More precisely, we
rely on the Self Target MSIS (SelfTargetMSIS) problem, a variant of the MSIS
problem, where the problem is de�ned relative to some hash function modeled
as a random oracle. This assumption also underlies the security of Dilithium.

2.2 Masking Preliminaries

We consider all operations and variables used in algorithms to be over the scalar
ring R𝑞 (i.e. we consider that basic operations are done directly on polynomials
in R𝑞), this entails that we consider that probes leak full polynomials in R𝑞

and not bits or even coe�cients (leading to a stronger attacker model). An
algorithm is de�ned as a sequence of gadget calls, each gadget being a sequence
of (probabilistic or deterministic) assignments of expressions to local variables.

Well-formed gadgets. We say a gadget is well-formed if it is written in SSA
(single static assignment) form, i.e. if its scalar variables appear at most once on
the left-hand side of an assignment, and if all assignments are three-address code
instructions, i.e. of the form 𝑎 = 𝑏∗𝑐 with ∗ an operator. These restrictions ensure
that all intermediate values are captured by local variables at some point in the
code. An algorithm is well formed if in all gadget calls b = 𝐺 (x1, . . . , x𝑘) the
variables b, x1, . . . , x𝑘 are pairwise disjoint. While some algorithms we provide
are not well formed (e.g., Algorithms 1 and 2), it is clear that this can be easily
remedied by indexing variables and adding new local variables.

We use the notation ⟦x⟧ = (x𝑖)𝑖∈[𝑑] to denote a tuple of 𝑑 values in R𝑞, which

implicitly de�nes the value x =
∑𝑑−1

0 x𝑖 ∈ R𝑞. This notation is used to express
that the secret value x is shared as 𝑑 additive shares as the encoding ⟦x⟧.

Variables' values and names. We will distinguish variables (designated by a
binary string representing their name) from the values they take (in the scalar
ring R𝑞), all objects pertaining to variables (singular variables, vectors, sets,
etc...) will have a name with a bar (e.g. 𝑥 ∈ {0, 1}∗, V̄ ⊂ {0, 1}∗), while the
corresponding value will not (e.g. 𝑥 ∈ R𝑞).

For a gadget 𝐺 we de�ne the local variables of 𝐺 as V̄𝐺 ⊂ {0, 1}∗ (noted V̄
when the gadget is clear from the context), since all variables are assigned only
once we can match the position of a variable with its name. For a program 𝑃 with
input scalar variables (𝑎1, . . . , 𝑎𝑁) that calls the gadgets 𝐺1, . . . , 𝐺𝑘 , (with 𝑁, 𝑘 ∈
N), we will consider the set of variables V̄𝑃 = {𝑎1, . . . , 𝑎𝑁 }

⊎ V̄𝐺1

⊎
. . .

⊎ V̄𝐺𝑘

(where the local variables of 𝐺𝑖 are additionally labelled with 𝑖 to di�erentiate
between gadgets and

⊎
is the disjoint union). Note that since all gadgets are

written in three-address code SSA form, all intermediate computations and out-
put variables are at some point stored locally in a uniquely de�ned local variable
𝑣 ∈ V̄𝑃. We thus de�ne the set of all possible probes as the set V̄𝑃 of all local
variables as well as the input variables.

8 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

Remark 2.1. We will consider that a program 𝑃 always outputs all unmasked
values it computes even if they are not explicitly returned by 𝑃.

De�nition 2.1 (Probes). For a well-formed program 𝑃 with variables V̄𝑃

and input variables 𝑎1, . . . , 𝑎𝑁 , a set of probes is a set ℐ̄ ⊂ V̄𝑃. For any set
ℐ̄ ⊂ V̄𝑃 and any scalars X = (𝑎1, . . . , 𝑎𝑁) we will denote as ExecObs(𝑃, ℐ̄,X)
the joint distribution of the (masked and unmasked) outputs of 𝑃(𝑎1, . . . , 𝑎𝑁)
and of all the values taken by the variables in ℐ̄. In particular for

(𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ← ExecObs(𝑃, ℐ̄,X),

𝑜𝑢𝑡masked (resp. 𝑜𝑢𝑡unmasked) is the masked (resp. unmasked) output of 𝑃(𝑎1, . . . , 𝑎𝑁)
for some internal random coins and ℒ is the value taken by the variables in ℐ̄

for these random coins.

Probing model. We recall standard non-interference results from [4].

De�nition 2.2 (Perfect simulatability, reformulation of [4]). Let ℐ̄ be
a set of probes of a gadget G with input shares X̄. We say that the PPT simula-
tor (SimIn, 𝑆𝑖𝑚𝑜𝑢𝑡) perfectly simulates the probes ℐ̄ if and only if for any input
values X, SimIn(G, ℐ̄) outputs a subset X̄′ ⊂ X of the input variables of G, and
SimOut(G,X′) (where X′ is the values taken by X at indices X̄′) outputs a tuple
of values such that the marginal distribution ofℒ, for (𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ←
ExecObs(𝑃, ℐ̄,X), and SimOut(G,X′) are identical.

De�nition 2.3 (Non Interference [4]). A gadget is said (𝑑−1)-non-interfering
(written (𝑑 − 1)-NI for short) i� any set of probes ℐ̄ such that |ℐ̄ | ≤ 𝑑 − 1 can
be perfectly simulated (See De�nition 2.2) by a simulator (SimIn, SimOut) such
that SimIn(G, ℐ̄) outputs a set X̄′ of at most 𝑑 − 1 shares of each input.

De�nition 2.4 (Strong Non Interference [4]). A gadget is said (𝑑 − 1)-
strongly-non-interfering (written (𝑑 − 1)-sNI for short) i� any set ℐ̄ of at most
𝑑 − 1 = 𝑑int + 𝑑out probes, where 𝑑int are made on internal data and 𝑑out are
made on the outputs, can be perfectly simulated by a simulator (SimIn, SimOut)
such that SimIn(G, ℐ̄) outputs a set X̄′ of at most 𝑑int shares of each input.

Lemma 2.1 (Composability of NI and sNI gadgets [5]). A well-formed
algorithm is NI if all of its gadgets are NI or sNI and each sharing is used at
most once as input of a non-sNI gadget. Moreover, a well-formed algorithm is
sNI if it is NI and its output sharings are issued from a sNI gadget.

Lastly, in this paper, the masking order is �xed at 𝑑 − 1 where 𝑑 is the number
of shares. For simplicity, we omit the 𝑑 − 1 when referring to NI/sNI properties.

2.3 Sum of Uniforms

Given a distribution D of support included in an additive group, we note [𝑇] ·
D the convolution of 𝑇 identical copies of D; in other words, [𝑇] · D is the

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 9

distribution of the sum of 𝑇 independent random variables, each being sampled
from D. Given integers 𝑢, 𝑇 > 0, and if we note U(𝑆) the uniform distribution
over a �nite 𝑆, we note:

SU(𝑢, 𝑇) = [𝑇] · U({−2𝑢−1, . . . , 2𝑢−1 − 1}).

The acronym SU stands for �sum of uniforms�. This class of distributions is

−64 0 56

𝑇 = 1

𝑇 = 2

𝑇 = 4

𝑇 = 8

Fig. 2: The distribution SU(4, 𝑇), for 𝑇 ∈ {1, 2, 4, 8}

illustrated in Figure 2. This distribution is highly desirable for our purposes,
since for 𝑇 ≥ 4 it veri�es statistical properties in the same way as Gaussians do.
However, unlike Gaussians, they are straightforward to sample in constant-time
and without requiring tables or elaborate mathematical machinery. This makes
them adequate for Raccoon. Finally, we note RSU(𝑢, 1) the distribution over R
obtained by sampling each integer coe�cient of 𝑎 ∈ R according to SU(𝑢, 1), and
outputting 𝑎. More details about sums of uniforms can be found the full version
of this paper.

3 The Raccoon Signature Scheme

In this section, we present our masking-friendly signature scheme called Rac-
coon. We describe the key generation (Algorithm 1), signing (Algorithm 2) and
veri�cation (Algorithm 3). Key generation and signing are always performed in
a masked manner; when 𝑑 = 1, the algorithmic descriptions remain valid but the
algorithms are, in e�ect, unmasked.

We reference relevant variables and parameters in Table 1.

3.1 Key Generation

Masked key generation process is described by Algorithm 1. At a high-level,
KeyGen generates 𝑑-sharings (⟦s⟧, ⟦e⟧) of small errors (s, e), computes the ver-
i�cation key as an LWE sample (A, t = A · s + e), and rounds t for e�ciency.
A key technique is that ⟦s⟧, ⟦e⟧ are generated in Lines 4 and 6 using our novel
algorithm AddRepNoise (Algorithm 5).

10 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

Parameter Explanation
(R𝑞 , 𝑛) Polynomial ring R𝑞 = Z[𝑋]/(𝑞, 𝑋𝑛 + 1)
(𝑘, ℓ) Dimension of public matrix A ∈ R𝑘×ℓ

𝑞

𝑑 Number of shares used, corresponding to a masking order 𝑑 − 1
RSU(𝑎, 𝑏) Sum of 𝑎 polynomials with coe�cients uniform in {−2𝑢−1, . . . , 2𝑢−1 − 1}
𝑢t, 𝑢w Parameter and repetition rate used for the sum of uniform in
rep the secret/signature s← RSUℓ (𝑢t, rep), r← RSUℓ (𝑢w, rep)
𝜈t Amount of bit dropping performed on veri�cation key
𝜈w Amount of bit dropping performed on (aggregated) commitment

(𝑞t, 𝑞w) Rounded moduli satisfying (𝑞t, 𝑞w) := (⌊𝑞/2𝜈t⌋, ⌊𝑞/2𝜈w ⌋)
(C, 𝜔) Challenge set {𝑐 ∈ R𝑞 | ∥𝑐∥∞ = 1 ∧ ∥𝑐∥1 = 𝜔} s.t. |C| ≥ 22𝜅

(𝐵2, 𝐵∞) Two-norm and in�nity-norm bounds on the signature
Table 1: Overview of parameters used in the Raccoon signature.

Algorithm 1 KeyGen(∅) → (vk, sk)
Output: Keypair vk, sk
1: seed← {0, 1}𝜅 ▷ 𝜅-bit random seed for A.
2: A := ExpandA(seed) ▷ Similar to ExpandA in Dilithium. A ∈ R𝑘×ℓ

𝑞 .

3: ⟦s⟧ ← ℓ × ZeroEncoding(𝑑) ▷ Masked zero vector ⟦s⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 8.
4: ⟦s⟧ ← AddRepNoise(⟦s⟧, 𝑢t, rep) ▷ Generate the secret distribution.

Algorithm 5.
5: ⟦t⟧ := A · ⟦s⟧ ▷ Compute masked product ⟦t⟧ ∈ (R𝑘

𝑞)𝑑 .
6: ⟦t⟧ ← AddRepNoise(⟦t⟧, 𝑢t, rep) ▷ Add masked noise to ⟦t⟧. Algorithm 5.
7: t := Decode(⟦t⟧) ▷ Collapse t ∈ R𝑘

𝑞 . Algorithm 6.
8: t := ⌊t⌉𝜈t ▷ Rounding and right-shift to modulus 𝑞t = ⌊𝑞/2𝜈t⌋.
9: return (vk := (seed, t), sk := (vk, ⟦s⟧)) ▷ Return serialized key pair.

3.2 Signing Procedure

The masked signing process is described by Algorithm 2. This signing proce-
dure is similar to the �Lyubashevsky's Signature Without Aborts� in [1, Fig. 2].
Again, the use of AddRepNoise is crucial in this procedure. The challenge com-
putation is divided in two parts, �rst a 2𝜅 bitstring is computed using the hash
function ChalHash, then this bitstring is mapped to a ternary polynomial with
�xed hamming weight using ChalPoly. As in previous works this distinction is
made for ease of implementation and storage.

3.3 Veri�cation Procedure

Algorithm 3 describes the signature veri�cation process. Signature veri�cation
is not masked, and its parameters are independent of the number of shares 𝑑

used when creating the signature. As is usual in lattice signatures, veri�cation
performs a bound check and an equality check.

It is easy to check that the equation of line 7 veri�es by construction when
the signature algorithm is run honestly, we will �x the bounds 𝐵∞ and 𝐵2 such
that honest signatures verify with overwhelming probability (this is necessary
for the reduction of Section 7.2 to go through).

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 11

Algorithm 2 Sign(⟦sk⟧,msg) → sig

Input: Secret signing key sk = (vk, ⟦s⟧), message to be signed msg ∈ {0, 1}∗.
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: 𝜇 := H(H(vk)∥msg) ▷ Bind vk with msg to form 𝜇 ∈ {0, 1}2𝜅 .
2: A := ExpandA(seed) ▷ Similar to ExpandA in Dilithium. A ∈ R𝑘×ℓ

𝑞 .

3: ⟦r⟧ ← ℓ × ZeroEncoding(𝑑) ▷ Masked zero vector ⟦r⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 8.
4: ⟦r⟧ ← AddRepNoise(⟦r⟧, 𝑢w, rep) ▷ Add masked noise to ⟦r⟧. Algorithm 5.
5: ⟦w⟧ := A · ⟦r⟧ ▷ Compute masked product ⟦w⟧ ∈ (R𝑘

𝑞)𝑑 .
6: ⟦w⟧ ← AddRepNoise(⟦w⟧, 𝑢w, rep) ▷ Add masked noise to ⟦w⟧. Algorithm 5.
7: w := Decode(⟦w⟧) ▷ Collapse LWE commitment w. Algorithm 6.
8: w := ⌊w⌉𝜈w ▷ Rounding and right-shift to modulus 𝑞w = ⌊𝑞/2𝜈w ⌋.
9: 𝑐hash := ChalHash(w, 𝜇) ▷ Map w and 𝜇 to 𝑐hash ∈ {0, 1}2𝜅 .
10: 𝑐poly := ChalPoly(𝑐hash) ▷ Map 𝑐hash to 𝑐poly ∈ C.
11: ⟦s⟧ ← Refresh(⟦s⟧) ▷ Refresh ⟦s⟧ before re-use. Algorithm 7.
12: ⟦r⟧ ← Refresh(⟦r⟧) ▷ Refresh ⟦r⟧ before re-use. Algorithm 7.
13: ⟦z⟧ := 𝑐poly · ⟦s⟧ + ⟦r⟧ ▷ Masked response ⟦z⟧ ∈ (Rℓ𝑞)𝑑 .
14: ⟦z⟧ ← Refresh(⟦z⟧) ▷ Refresh ⟦z⟧ before collapsing it. Algorithm 7.
15: z := Decode(⟦z⟧) ▷ Collapse into response z ∈ Rℓ𝑞 . Algorithm 6.
16: y := A · z − 2𝜈t · 𝑐poly · t ▷ �Noisy� LWE commitment.

17: h := w − ⌊y⌉𝜈w ▷ Compute hint h ∈ R𝑘
𝑞𝑤

. Subtraction mod 𝑞w.
18: sig := (𝑐hash, h, z)
19: if {CheckBounds(sig) = FAIL} goto Line 3 ▷ Sanity check on the signature.

Algorithm 4.
20: return sig ▷ Return encoded signature triplet.

Algorithm 3 Verify(sig,msg, vk) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z), message msg ∈ {0, 1}∗, public key vk = (seed, t).
Output: Signature validity: OK (accept) or FAIL (reject).
1: if CheckBounds(sig) = FAIL return FAIL ▷ Norms check. Algorithm 4.
2: 𝜇 := H(H(vk)∥msg) ; A := ExpandA(seed)
3: 𝑐poly := ChalPoly(𝑐hash) ▷ Map 𝑐hash to 𝑐poly ∈ C.
4: y := A · z − 2𝜈t · 𝑐poly · t ▷ Scale t from Z𝑞t to Z𝑞 and recompute the commitment.
5: w′ := ⌊y⌉𝜈w + h ▷ Adjust the LWE commitment with hint (mod 𝑞w).
6: 𝑐′

hash
:= ChalHash (w′, 𝜇) ▷ Recompute 𝑐′

hash
∈ {0, 1}2𝜅 .

7: if 𝑐hash ≠ 𝑐′
hash

return FAIL ▷ Check commitment.
8: return OK ▷ Signature is accepted.

3.4 Helper Algorithms

The following are algorithms used within our key generation (Algorithm 1), sign-
ing (Algorithm 2) and veri�cation (Algorithm 3). The algorithm AddRepNoise
(Algorithm 5) is the most interesting one, which we come back later when dis-
cussing probing security.

Checking Bounds. The function CheckBounds (Algorithm 4) is used to check
the norm bounds and encoding soundness of signatures by both the veri�cation

12 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

function (Algorithm 3), but also by the signing function (Algorithm 2). Note that
unlike rejection, CheckBounds is used to enforce the zero-knowledge property, and
therefore it does need to be masked. Rather, it detects signatures that are a bit
too large. Note that CheckBounds could be removed entirely at the cost of a
slight increase in signature size (and therefore a slight decrease in security).

Algorithm 4 CheckBounds(sig) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z).
Output: Format validity check OK or FAIL.
1: if (∥(z, 2𝜈w · h)∥∞ > 𝐵∞) or (∥(z, 2𝜈w · h)∥2 > 𝐵2) return FAIL else return OK

Error Distributions. AddRepNoise (Algorithm 5) implements the Sum of Uni-
forms (SU) distribution SU(𝑢, 𝑑 · rep) (Section 2.3) in a masked implementation.
AddRepNoise interleaves noise additions and refresh operations; more precisely,
for each (masked) coe�cient ⟦𝑎⟧ of ⟦v⟧, small uniform noise is added to each
share of ⟦𝑎⟧, then ⟦𝑎⟧ is refreshed, and this operation is repeated rep times. The
security properties of AddRepNoise is analyzed in Section 6.2.

Algorithm 5 AddRepNoise(⟦v⟧, 𝑢, rep) → ⟦v⟧
Input: Masked vector ⟦v⟧ = (v 𝑗) 𝑗∈[𝑑] = (𝑣𝑖, 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑] .
Input: Bit size (distribution parameter) 𝑢.
Input: Global repetition count parameter rep.
Output: Updated ⟦v⟧ with SU(𝑢, 𝑑 · rep) distribution added to each coe�cient of v.
1: for 𝑖 ∈ [len(v)] do ▷ Vector index.
2: for 𝑖rep ∈ [rep] do ▷ Repetition index.
3: for 𝑗 ∈ [𝑑] do ▷ Share index.
4: 𝜌 ← RSU(𝑢, 1) ▷ uniform sample of 𝑢 bits
5: 𝑣𝑖, 𝑗 ← 𝑣𝑖, 𝑗 + 𝜌 ▷ Add small uniform to the polynomial.

6: ⟦v𝑖⟧ ← Refresh(⟦v𝑖⟧) ▷ Refresh polynomial on each repeat.

7: return ⟦v⟧

Challenge Computation. As in Dilithium, the challenge computation is split
in two subroutines: ChalHash computes a hash digest, and ChalPoly expands it
into a challenge polynomial 𝑐poly that is (pseudo-randomly) uniform in the set
C = {𝑐 ∈ R, ∥𝑐∥1 = 𝜔}. These functions do not need to be masked.

Refresh and Decoding Gadgets. Lastly, we recall some useful gadgets.Refresh
(Algorithm 7) generates a fresh 𝑑-sharing of a value in R𝑞, or �refresh� the 𝑑-
sharing. This operation is important for security against 𝑡-probing adversaries.

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 13

Refresh uses ZeroEncoding (Algorithm 8) as a subroutine. Both algorithms per-
form 𝑂 (𝑑 log 𝑑) basic operations over R𝑞 and require 𝑂 (𝑑 log(𝑑) log(𝑞)) bits of
entropy. While we present ZeroEncoding as a recursive algorithm, one can see
that it can be computed in-place and its memory requirement is 𝑂 (𝑑). Remark
that our ZeroEncoding algorithm entails that the number of shares 𝑑 is a power
of 2, as the rest of our algorithms are agnostic to this property we could use a
ZeroEncoding that produces a more �ne-grained number of shares to obtain dif-
ferent parameters (e.g. by using Algorithm 8 and collapsing some of the shares).

We describe in Algorithm 6 a Decode gadget that takes ⟦x⟧ = (x𝑖)𝑖∈[𝑡+1] as
input, refreshes it with Algorithm 7, then computes the sum x0+· · ·+x𝑑−1 mod 𝑞.
When the decoding gadget is already preceded by a refresh gadget, one of them
may be omitted. Decode is similar to the algorithm �FullAdd� from [5, Alg. 16].

Algorithm 6 Decode(⟦𝑥⟧) → 𝑥

Input: 𝑑-sharing ⟦𝑥⟧ = (𝑥𝑖)𝑖 of 𝑥 ∈ R𝑞
Output: The clear value 𝑥 ∈ R𝑞
1: ⟦𝑥⟧ ← Refresh(⟦𝑥⟧)
2: return 𝑥 :=

∑
𝑖∈[𝑑] 𝑥𝑖

Algorithm 7 Refresh(⟦𝑥⟧) → ⟦𝑥⟧′

Input: A 𝑑-sharing ⟦𝑥⟧ of 𝑥 ∈ R𝑞
Output: A fresh 𝑑-sharing ⟦𝑥⟧ of 𝑥
1: ⟦𝑧⟧ ← ZeroEncoding(𝑑)
2: return ⟦𝑥⟧′ := ⟦𝑥⟧ + ⟦𝑧⟧

Algorithm 8 ZeroEncoding(𝑑) → ⟦𝑧⟧𝑑
Input: A power-of-two integer 𝑑, a ring R𝑞
Output: A uniform 𝑑-sharing ⟦𝑧⟧ ∈ R𝑑𝑞 of 0 ∈ R𝑞
1: if 𝑑 = 1 then
2: return ⟦𝑧⟧1 := (0) ▷ There is only one way to encode zero into 1 share.

3: ⟦𝑧1⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain left side.
4: ⟦𝑧2⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain right side.

5: ⟦𝑟⟧𝑑/2
𝑀←− R𝑑/2

𝑞 ▷ Sampled using a Mask Random Generator (MRG).
6: ⟦𝑧1⟧𝑑/2 := ⟦𝑧1⟧𝑑/2 + ⟦𝑟⟧𝑑/2 ▷ Add to the left side.
7: ⟦𝑧2⟧𝑑/2 := ⟦𝑧2⟧𝑑/2 − ⟦𝑟⟧𝑑/2 ▷ Subtract from the right side.

8: return ⟦𝑧⟧𝑑 :=
(
⟦𝑧1⟧𝑑/2 ∥ ⟦𝑧2⟧𝑑/2

)
▷ Concatenate the two.

4 Smooth Rényi Divergence and Useful Bounds

Raccoon's core design choice is using the sum of uniforms distributions as op-
posed to the discrete Gaussian distributions. From a practical point of view,
the sum of uniforms distribution is a much simpler distribution to mask and
implement. On the other hand, from a theoretical point of view, it poses more
challenges, as there are far fewer established statistical guarantees usable in
cryptography. Notably, since the sum of uniforms distribution only has �nite
support, a standard proof technique used in lattice-based cryptography relying
on the Rényi divergence breaks down. To this end, we generalize the Rényi diver-
gence and prepare useful statistical bounds on the sum of uniforms distribution.

14 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

4.1 Smooth Rényi Divergence

The usual Rényi divergence is unde�ned for distributions 𝑃,𝑄 of supports not
included in one another. For example, this happens when 𝑃 = SU(𝑢, 𝑇) and 𝑄 =

𝑃+𝑎, for any 𝑎 ≠ 0. The smooth Rényi divergence (De�nition 4.1) addresses these
limitations by combining the statistical distance and the Rényi divergence. The
statistical distance component captures problematic sets (typically, distribution
tails), while the Rényi divergence component bene�ts from the same e�ciency
as the usual Rényi divergence over unproblematic parts of the supports.

De�nition 4.1 (Smooth Rényi divergence). Let 𝜖 ≥ 0 and 1 < 𝛼 < ∞. Let
𝑃,𝑄 be two distributions of countable supports Supp(𝑃) ⊆ Supp(𝑄) = 𝑋. The
smooth Rényi divergence of parameters (𝛼, 𝜖) between 𝑃 and 𝑄 is de�ned as:

𝑅𝜖
𝛼 (𝑃;𝑄) = min

ΔSD (𝑃′;𝑃)≤ 𝜖
ΔSD (𝑄′;𝑄)≤ 𝜖

𝑅𝛼 (𝑃′;𝑄′), (1)

where ΔSD and 𝑅𝛼 denote the statistical distance and the Rényi divergence, re-
spectively:

ΔSD (𝑃;𝑄) =
1

2

∑︁
𝑥∈𝑋
|𝑃(𝑥) −𝑄(𝑥) | , 𝑅𝛼 (𝑃;𝑄) =

(∑︁
𝑥∈𝑋

𝑃(𝑥)𝛼
𝑄(𝑥)𝛼−1

) 1
𝛼−1

.

While [18] has also provided a de�nition of smooth Rényi divergence, we ar-
gue that our de�nition is more natural. Indeed, it satis�es variations of prop-
erties that are expected from classical Rényi divergences. These are listed in
Lemma 4.1.

Tools for smooth Rényi divergence. We review some basic properties of the
smooth Rényi divergence.

Lemma 4.1. The smooth Rényi divergence satis�es the following properties.
1. Data processing inequality. Let 𝑃,𝑄 be two distributions, let 𝜖 ≥ 0, and

𝑔 be a randomized function over (a superset of) Supp(𝑃) ∪ Supp(𝑄).

𝑅𝜖
𝛼 (𝑔(𝑃); 𝑔(𝑄)) ≤ 𝑅𝜖

𝛼 (𝑃;𝑄). (2)

2. Probability preservation. For any event 𝐸 ⊆ Supp(𝑄):

𝑃(𝐸) ≤ (𝑄(𝐸) + 𝜖) (𝛼−1)/𝛼 · 𝑅𝜖
𝛼 (𝑃;𝑄) + 𝜖 . (3)

3. Tensorization. Let (𝑃𝑖)𝑖∈𝐼 , (𝑄𝑖)𝑖∈𝐼 be two �nite families of distributions,
let 𝜖𝑖 ≥ 0 for 𝑖 ∈ 𝐼, and let 𝜖 =

∑
𝑖∈𝐼 𝜖𝑖.

𝑅𝜖
𝛼

(∏
𝑖∈𝐼

𝑃𝑖;
∏
𝑖∈𝐼

𝑄𝑖

)
≤

∏
𝑖∈𝐼

𝑅𝜖𝑖
𝛼 (𝑃𝑖;𝑄𝑖). (4)

Proof. We recall that ΔSD and (𝑅𝛼
𝛼 − 1) can be cast as 𝑓 -divergences, following

Csiszár's terminology [15]. Item 1 follows from the data processing inequality
for 𝑓 -divergences. Item 2 is a special case of Item 1. Finally, Item 3 follows from
tensorization properties of the statistical distance and the Rényi divergence. ⊓⊔

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 15

4.2 Useful Bounds on Sum of Uniforms

We bound the smooth Rényi divergence between two sums of uniforms, centered
at either 0 or a small o�set. This will be a key lemma establishing the hardness
of standard EUF-CMA security of the small Raccoon (cf. Section 7.3). Due to
page limitation, the proof is provided in the full version of this paper.

Lemma 4.2. Let 𝑇, 𝑢, 𝑁 ∈ N and 𝑐 ∈ Z such that 𝑇 ≥ 4 and 𝑁 = 2𝑢. Let
𝑃 = SU(𝑢, 𝑇) and 𝑄 the distributions corresponding to shifting the support of 𝑃
by 𝑐. Let 𝛼 ≥ 2 and 𝜏 > 0, 𝜖 > 0 be such that:
1. 𝛼 |𝑐 | ≤ 𝜏 = 𝑜(𝑁/(𝑇 − 1)) ;
2. 𝜖 =

(𝜏+𝑇)𝑇
𝑁𝑇 𝑇!

.
Then:

𝑅𝜖
𝛼 (𝑃;𝑄) ≤

(
1 + 𝛼(𝛼 − 1)

2

(
𝑇𝑐

𝑁

)2
+ 2

𝑇 !

(
𝑇𝛼𝑐

𝑁

)2
+ 𝜖 +𝑂

((
𝑇𝛼𝑐

𝑁

)3))1/(𝛼−1)
(5)

Gap with practice. In practice, Lemma 4.2 is a bit sub-optimal. Let us note

𝜎2 =
𝑇 (𝑁2−1)

12 the variance of 𝑃 and 𝑇𝑐 = 𝑜(𝑁), which follows from Item 1 above.
We also use the notation 𝑎 ≲ 𝑏 for 𝑎 ≤ 𝑏 + 𝑜(𝑏). Then, Lemma 4.2 essentially

tells us that log 𝑅𝜖
𝛼 (𝑃;𝑄) ≲ 𝛼

2

(
𝑇𝑐
𝑁

)2 ∼ 𝛼 𝑐2 𝑇3

24 𝜎2 . In comparison, [1, Lemma 2.28]

tells that if 𝑃 is instead a Gaussian of parameter 𝜎, then log 𝑅𝛼 (𝑃;𝑄) ≤ 𝛼 𝑐2

2 𝜎2 .
Thus there is a gap 𝑂 (𝑇3) between Lemma 4.2 and [1, Lemma 2.28].

One could assume that this gap is caused by a fundamental di�erence between
Gaussians and sums of uniforms. However we performed extensive experiments
and found that this gap does not exist in practice, i.e., it seems to be an artifact
of our proof. For this reason, we put forward the following conjecture which
ignores this gap and which we use when setting our concrete parameters. Due
to page limitation, we expand upon Conjecture 4.1 in the full version.

Conjecture 4.1. Under the conditions of Lemma 4.2, we have

𝑅𝜖
𝛼 (𝑃;𝑄) ≲ exp

(
𝐶Rényi · 𝛼 · 𝑐2 (1 + 2

𝛼−1)
𝑇 · 𝑁2

)
(6)

for a constant 𝐶Rényi ≈ 6. Therefore, for any 𝑀-dimensional vector c, P = 𝑃𝑀

and Q = c +𝑄𝑀 , and further assuming 𝛼 = 𝜔asymp (1) and 𝑇 = 𝑜(𝛼 |𝑐𝑖 |) for all the
𝑖-th (𝑖 ∈ [𝑀]) entry of c, we have:

𝑅𝜖
𝛼 (P;Q) ≲ exp

(
𝐶Rényi · 𝛼 · ∥c∥22

𝑇 · 𝑁2

)
, (7)

where 𝜖 ≈
𝛼𝑇 ∥c∥𝑇

𝑇

𝑁𝑇 𝑇 !
≲

1
√
2 𝜋 𝑇

(
𝛼 𝑒 ∥c∥2
𝑁 𝑇

)𝑇
(8)

and where ∥c∥𝑇 ≤ ∥c∥2 is the 𝐿𝑇 norm.

16 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

5 Enhancing NI/sNI for Probing EUF-CMA Security

We �rst formally de�ne NI security against a probing adversary, the security
model in which Raccoon will later be prove in. We then argue that existing
probing tools/models discussed in Section 2.2 are insu�cient to prove EUF-CMA
security and prepare useful tools that may be of independent interest. Our tools
build on the recent techniques developed by [20] (cf. Section 1.3).

5.1 EUF-CMA Security in the Probing Model

We use the de�nition of [5] that captures the fact that no PPT adversary with
access to less than 𝑑 − 1 probes on KeyGen and Sign should be able to break
EUF-CMA security (i.e., unforgeability). Below, our de�nition slightly deviates
from theirs as we rely on more generalized (and formal) notion of probes captured
by the function ExecObs (cf. De�nition 2.1).

De�nition 5.1. Let 𝑑 ≥ 1 an integer, 𝑄𝑠 be a �xed maximum amount of signa-
ture queries. A signature scheme (KeyGen, Sign,Verify) with an e�cient signing
key update algorithm KeyUpdate is EUF-CMA-secure in the (𝑑−1)-probing model
if any probabilistic polynomial time adversary has a negligible probability of win-
ning the game presented in Figure 3.

As in [5], we assume a KeyUpdate algorithm that refreshes the secret key between
signature queries and cannot be probed by the attacker. This is performed to
avoid attackers probing more than 𝑑 − 1 shares of the secret across di�erent
signature queries. See [5, Remark 3] for more details.

Remark 5.1 (Standard EUF-CMA security). We note that De�nition 5.1 incor-
porates the standard notion of standard EUF-CMA (i.e., 0-probing). For this, we
de�ne KeyUpdate to be the identify function; the restriction that the adversary
can only query an empty set for the set of probes is enforced by the winning
condition.

5.2 Insu�ciency of the NI/sNI Models

At �rst glance, all subroutines of Raccoon can be proven composable in the NI
model. However, careful consideration shows that the NI model does not capture
security when the intermediate values are not uniformly distributed and biased
with the knowledge of the public output. Indeed, for example in the KeyGen, the
combined knowledge of some shares of ⟦s⟧ and of the public key vk allows one
to decrease the key-recovery security (decreasing the standard deviation of the
short vector in a lattice) as presented in the technical overview in Section 1.

The gist of the problem when taking the output of an algorithm into account
comes from the fact that the NI model proves that there exists a simulator that
can simulate any set of probes from a subset of the input shared secrets of the

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 17

Adversary Challenger

(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−→
vk,ℒKeyGen←−−−−−−−−−

(
vk, sk,ℒKeyGen

)
← ExecObs(KeyGen, ℐ̄KeyGen, 1

𝜆)

𝑄𝑠 queries



𝑚(1) , ℐ̄ (1)Sign−−−−−−−−−→
sk← KeyUpdate(sk)

sig(1) ,ℒ (1)
Sign←−−−−−−−−−

(
sig(1) ,⊥,ℒ (1)

Sign

)
← ExecObs(Sign, ℐ̄ (1)

Sign
, (sk, 𝑚 (1)))

.

.

.

𝑚(𝑄𝑠) , ℐ̄ (𝑄𝑠)
Sign−−−−−−−−−−−−→

sk← KeyUpdate(sk)
sig(𝑄𝑠) ,ℒ (𝑄𝑠)

Sign←−−−−−−−−−−−−−
(
sig(𝑄𝑠) ,⊥,ℒ (𝑄𝑠)

Sign

)
← ExecObs(Sign, ℐ̄ (𝑄𝑠)

Sign
, (sk, 𝑚 (𝑄𝑠)))

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign

| ≤ 𝑑 − 1

Fig. 3: EUF-CMA security game in the 𝑑 − 1-probing model. See De�nition 2.1
for the de�nition of ExecObs.

algorithm. However, the aforementioned property does not entail that the distri-
bution of the probes can be simulated when taking into account the output. This
is clearly apparent in De�nition 2.2 where the de�nition requires SimOut(G,X′)
and ℒ to be identically distributed, but not (𝑜𝑢𝑡unmasked, SimOut(G,X′)) and
(𝑜𝑢𝑡unmasked,ℒ).

non-NIU((⟦v⟧)
1: for 𝑗 ∈ [𝑑] do
2: 𝜌 𝑗 ← RSU(𝑢, 1)
3: 𝑣′

𝑗
← 𝑣 𝑗 + 𝜌 𝑗

NIU((⟦v⟧, (𝜌𝑖)𝑖∈[𝑑])
1: for 𝑗 ∈ [𝑑] do
2: 𝑣′

𝑗
← 𝑣 𝑗 + 𝜌 𝑗

Fig. 4: Example of an algorithm without unshared inputs (left), and its equivalent
where randomnesses are explicitly passed as unshared inputs (right).

To see that the marginal distributions being identical is insu�cient we give a
simple example in Figure 4: both algorithms are trivially NI since any probe 𝜌 𝑗

or 𝑣′
𝑗
can be simulated by sampling a small uniform and outputting it or adding

it to the corresponding input 𝑣 𝑗 . However, if we consider the unmasked value

18 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

𝑤 as a public output, a simulator taking as input shares of ⟦v⟧ cannot output
probes that are correlated to 𝑤. For example, in gadget non-NIU, consider the
set of probes ℐ̄ =

{
𝑣′1

}
which corresponds to the sum of 𝑣1 and 𝜌1. A simulator

(SimIn, SimOut) can perfectly simulate ℐ̄ by setting SimIn(non-NIU, ℐ̄) := 𝑣1,
and SimOut(non-NIU, 𝑣1) := 𝑣1 + RSU(𝑢, 1). Then the variable ℒ = 𝑣′1 being
probed has the same distribution as SimOut(non-NIU, 𝑣1). However the distribu-
tion of (ℒ, 𝑜𝑢𝑡unmasked) = (𝑣1 + 𝜌1, 𝑣 + 𝜌1 + . . . + 𝜌𝑑) is clearly not the same as
that of (SimOut(non-NIU, 𝑣1), 𝑜𝑢𝑡unmasked) = (𝑣1 + RSU(𝑢, 1), 𝑣 + 𝜌1 + . . . + 𝜌𝑑).

5.3 NI/sNI with Unshared Inputs

To be able to handle cases where the values being probed are correlated with the
public output we will modify the relevant gadgets and consider that any corre-
lated random variables will be considered as inputs. We will formalize this idea
with a model named Non-Interference with Unshared Inputs (NIU) (see De�ni-
tions 5.2 and 5.3 below), in which we will consider a variant of the algorithm
where all random values that can a�ect the distribution of the output will be
considered as inputs of the algorithm. While this model is stronger than the NI
model, as it can be used to prove security even in the presence of leakage (see
Lemma 5.2), we note that once an algorithm 𝑃 has been modi�ed to have its
relevant randomness moved to inputs, the di�erence with the NI model becomes
mostly syntactical since the new inputs of the algorithm and gadgets can be
considered as just an additional shared secret input.

As an example, see the algorithm NIU in Figure 4 where we parse the random
samples 𝜌𝑖 as inputs rather than local variables. NIU thus takes two tuples of 𝑑
values as input, and can as before be proven NI (where we arti�cially consider
the tuple (𝜌𝑖)𝑖∈[𝑑] as a shared input). However this time the NI proof does entail
that the joint distribution of the probes and the output is identical to that of
the simulator and output, because the output is a deterministic function of the
input. Using the same set of probes ℐ̄ = 𝑣′1 as before, this time the simulator
needs to use two input values to simulate the probe: SimIn(NIU, ℐ̄) := {𝑣1, 𝜌1},
however since each input variable is in a di�erent shared input this simulator �ts
the de�nition of 2-NI in De�nition 2.3, and we can set SimOut(NIU, {𝑣1, 𝜌1}) :=
𝑣1+𝜌1. It is obvious that in this case (ℒ, 𝑜𝑢𝑡unmasked) = (𝑣1+𝜌1, 𝑣+𝜌1+ . . .+𝜌𝑑) =
(SimOut(NIU, {𝑣1, 𝜌1}), 𝑜𝑢𝑡unmasked).

We will now �rst formalize the (𝑑 − 1)-NIU notion, introduced in [20], in
De�nitions 5.2 and 5.3. Using the formalism of Section 2.2 we can then state and
prove composition properties in Lemma 5.1, which are straightforward though
never made explicit in [20]. Finally we can prove the core simulatability property
of Lemma 5.2 which shows that when passing appropriate random variables as
input NIU is su�cient to simulate the joint distribution of the probes and outputs
of an algorithm. While this property was implicitly used in [20], it was actually
never proven.

De�nition 5.2 (Non Interference with Unshared input [20]). Let 𝐺 be
a gadget taking two types of inputs:

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 19

1. shared inputs X, where all elements in X are 𝑑-tuples of elements in R𝑞

2. unshared input Y, where all elements in Y are tuples (not of �xed size) of
elements in R𝑞

A gadget G with shared and unshared inputs is said (𝑑 − 1)-non-interfering with
unshared inputs (written (𝑑 − 1)-NIU for short) i� any set of probes ℐ̄ such
that |ℐ̄ | ≤ 𝑑 − 1 can be perfectly simulated (See De�nition 2.2) by a simulator
(SimIn, SimOut) such that SimIn(G, ℐ̄) outputs a set X̄′⋃ Ū of at most 𝑑 − 1
shares of each shared input (X̄′) and each unshared input (Ū).

De�nition 5.3 (Strong Non Interference with Unshared input [20]).
A gadget is said (𝑑 − 1)-strongly-non-interfering with unshared inputs(written
(𝑑−1)-sNIU for short) i� any set ℐ̄ of at most 𝑑−1 = 𝑑int+𝑑out probes where 𝑑int
are made on internal data and 𝑑out are made on the outputs can be simulated as
in De�nition 5.2 with 𝑑int instead of 𝑑 − 1.

Since unshared inputs only di�er from shared inputs by semantics (the dis-
tinction comes mostly from the fact that they do not represent a secret being
used by the algorithm but internal randomnesses), one can note that if we ig-
nore this distinction, the de�nitions of NIU and NI are identical. The interesting
property of NIU comes from the fact that �rst transforming the relevant gadgets
(namely AddRepNoise) to include the randomness as unshared inputs allows NIU
to prove a meaningful statement on the joint distribution of the probes and the
output. A key property we use to prove EUF-CMA in the probing model.

As argued earlier once the randomness is moved to inputs the de�nition of
NIU becomes identical to the one of NI with the di�erence that inputs are sepa-
rated in two sets by whether they are shared or unshared. Since this di�erence
is purely syntactical the composition lemma of NI naturally extends to NIU.

Lemma 5.1 (Composability of NIU and sNIU gadgets). A well-formed
algorithm is NIU if all of its gadgets are NIU or sNIU and each sharing and each
unshared variable is used at most once as input of a non-sNIU gadget. Moreover,
a well-formed algorithm is sNIU if it is NIU and its output sharings are issued
from an sNIU gadget.

We now give a core lemma to use NIU. In essence the following lemma states
that by passing the relevant randomnesses of a program to inputs, proving NIU
becomes su�cient to prove that probes can be simulated even in the presence of
outputs.

Lemma 5.2. Let 𝑃 be an algorithm with shared inputs X and unshared inputs
U. If 𝑃 is (𝑑 − 1)-NIU, and the public output of 𝑃 is a deterministic func-
tion of (X,U). Then for any input X and any probes ℐ̄ (with |ℐ̄ | ≤ 𝑑 − 1),
the distribution of (𝑜𝑢𝑡unmasked, SimOut(𝑃, (X′,U′))) and (𝑜𝑢𝑡unmasked,ℒ) over
the randomness U and the random coins of 𝑃 and SimOut are identical, where
(𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ← ExecObs(𝑃, ℐ̄,X) and (X̄′, Ū′) ← SimIn(𝑃, ℐ̄).

Proof. We will �x the input X and not D the distribution from which U is
sampled. ℒ and 𝑜𝑢𝑡

unmasked are random variables over the choice of U and

20 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

the random coins of 𝑃 which we will note 𝑟𝑐𝑃, and SimOut(𝑃, (X′,U′))) is a
random variable over the choice of U and the random coins of SimOut which
we will note 𝑟𝑐𝑆 (SimOut only uses the randomness in U′ ⊂ U but we can
consider it as a variable of U since U′ is a marginal of U). First we observe that
since the de�nition of NI and NIU are identical if we simply consider the extra
randomness as another input we have that the marginal distributions of ℒ and
SimOut(𝑃, (X′,U′)) are identical, i.e. for any possible leakage Λ we have:

Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[ℒ(X,U, 𝑟𝑐𝑃) = Λ] = Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[SimOut(X,U, 𝑟𝑐𝑆) = Λ]

Since the algorithm 𝑃 is deterministic when given (X,U), we have that for any
possible leakage value Λ and output value 𝜃:

Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[ℒ(X,U, 𝑟𝑐𝑃) = Λ, 𝑜𝑢𝑡
unmasked

(X,U) = 𝜃]

=
∑︁

U s.t 𝑜𝑢𝑡
unmasked

(X,U)=𝜃
Pr

𝑟𝑐𝑃←{0,1}∗
[ℒ(X,U, 𝑟𝑐𝑃) = Λ]

=
∑︁

U s.t 𝑜𝑢𝑡
unmasked

(X,U)=𝜃
Pr

𝑟𝑐𝑆←{0,1}∗
[SimOut(X,U, 𝑟𝑐𝑆) = Λ]

= Pr
U←D,𝑟𝑐𝑆←{0,1}∗

[SimOut(X,U, 𝑟𝑐𝑆) = Λ, 𝑜𝑢𝑡
unmasked

(X,U) = 𝜃]

which is the desired result. ⊓⊔

6 NIU Property of Raccoon's KeyGen and Sign

Before establishing EUF-CMA security of Raccoon in the probing model, we
prove that the KeyGen and Sign algorithms are NIU. Looking ahead, this allows

a reduction to simulate the probes ℒKeyGen and ℒ
(𝑖)
Sign

in the EUF-CMA security

game in the probing model (cf. Figure 3).

6.1 Existing Security Properties

Thanks to the composability of the sNI/NIU models, we can focus on the smaller
gadgets comprising the KeyGen and Sign algorithms. Table 2 summarizes the
security properties of the gadgets used in Raccoon, where we can rely on prior
works to establish the security of every gadget, except for AddRepNoise. We refer
to the cited papers for more information about the proofs.

6.2 Security Property of the AddRepNoise Gadget

Let us start with an intuition on the role of the Refresh operations in AddRepNoise.
When considering unmasked coe�cients, AddRepNoise is functionally equivalent
to performing 𝑎 ← 𝑎+SU(𝑢, 𝑇) for each coe�cient 𝑎, for 𝑇 = 𝑑 · rep. The internal

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 21

Table 2: Security properties of the known and new gadgets. No security property
is necessary for the other unmasked operations (ExpandA, ChalHash, ChalPoly,
CheckBounds, Computing the hint h).

Name Property Proof reference
×A and Line 13 of Algorithm 2 NI Z𝑞−linear
Refresh (Algorithm 7) sNI [7,32,24]
ZeroEncoding (Algorithm 8) sNI [32]
Decode (Algorithm 6) NI [5, Alg. 16]
AddRepNoise (Algorithm 5) sNIU Proved in Section 6.2, Lemma 6.1

use of Refresh operations does not a�ect this behavior but is meant to o�er some
resilience to probing adversaries.

Without Refresh, a viable strategy would be to probe individual shares of
⟦𝑎⟧ at the start and at the end of AddRepNoise, allowing to learn the sum 𝑏 of
rep · (𝑑 − 1)/2 small uniform errors. The conditional distribution of the additive
noise (conditioned on the 𝑑−1 probed values) is now 𝑏+SU(𝑢, 𝑇 − (𝑑−1) · rep/2).
With Refresh, this strategy is not possible anymore but a probing adversary can
still probe individual errors, which in the end gives out no more than the sum 𝑏

of 𝑑 − 1 small uniform errors. The conditional distribution of the additive noise
(conditioned on the 𝑑 − 1 probed values) is now 𝑏 + SU(𝑢, 𝑇 − (𝑑 − 1)), where the
adversary learns 𝑏 but knows nothing about the realization of SU(𝑢, 𝑇 − (𝑑 −1)).

While AddRepNoise performs operations share by share, the underlying dis-
tributions are not uniform. The addition of short noise values are added biases
the a posteriori distribution of the �nal noise. Hence, one cannot prove that this
gadget is probing secure. We resolve this issue by moving the short noise values
as random coin inputs of the algorithm, introducing AddRepNoiseER in Algo-
rithm 9, an instance of AddRepNoise with explicit randomness (ER) for the small
uniforms. Note that the complete set of small uniforms is considered as a single
unshared input. We can now formally show in Lemma 6.1 that AddRepNoiseER is
sNIU. A similar result was proven in [20] but our proof strategy is di�erent and
perhaps a bit more formal. Later, these inputs will be handled in the general
composition proof.

Lemma 6.1. The AddRepNoiseER gadget is (d-1)-sNIU.

Proof. We represent AddRepNoiseER as a sequential succession ofMiniAddRepNoise
and Refresh as presented in Figure 5. To prove the sNIU property, we exhibit
the randomness 𝜌𝑖,𝑖rep , 𝑗 in the input. Let us remark that the randomness in-
volved in Refresh (and thus in ZeroEncoding) are not explicited as the algorithm
is already proved sNI. Hence, AddRepNoiseER is partially derandomized. Our
proof proceeds in two steps; we �rst study the MiniAddRepNoise sub-gadget,
then AddRepNoiseER.

Step 1: MiniAddRepNoise. We �rst show that any probe inside MiniAddRepNoise
can be perfectly simulated (see De�nition 2.2) with 𝜌𝑖,𝑖rep , 𝑗 and the input v 𝑗 ,
where (𝑖, 𝑖rep, 𝑗) corresponds to the targeted loop. Indeed, let 𝑝 be a probe inside
MiniAddRepNoise. The description of this probe necessarily includes (𝑖, 𝑖rep, 𝑗) to
specify the involved loop. The intermediate value targeted by 𝑝 can be

22 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

⟦v⟧

M
in
iA
d
d
R
ep

N
o
is
e

R
ef
re
sh

. . .

M
in
iA
d
d
R
ep

N
o
is
e

R
ef
re
sh

. . .

M
in
iA
d
d
R
ep

N
o
is
e

R
ef
re
sh

⟦v⟧

(𝜌0,0, 𝑗) 𝑗∈[𝑑] (𝜌𝑖,𝑖rep , 𝑗) 𝑗∈[𝑑] (𝜌len(v) ,rep, 𝑗) 𝑗∈[𝑑]

⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧

Fig. 5: Structure of AddRepNoiseER (using Algorithm 10). A gadget proven sNI is

noted gadget . The gadgets with no proven property are noted gadget .

Single arrows () and double arrows () represent plain and masked values,
respectively.

Algorithm 9 AddRepNoiseER (⟦v⟧, (𝜌𝑖,𝑖rep , 𝑗)) → ⟦v′⟧, w/ partial explicit ran-
domness

Input: Masked vector ⟦v⟧ = (v 𝑗) 𝑗∈[𝑑] = (𝑣𝑖, 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑] .
Input: Randomness (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑]
Output: Updated ⟦v⟧ with SU(𝑢, 𝑑 · rep) distribution added to each coe�cient of v.
1: for (𝑖, 𝑖rep) ∈ [len(v)] × [rep] do ▷ Vector index.
2: for 𝑖rep ∈ [rep] do
3: ⟦v𝑖⟧ ← MiniAddRepNoise(⟦v𝑖⟧, (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑])
4: ⟦v𝑖⟧ ← Refresh(⟦v𝑖⟧) ▷ Refresh polynomial on each repeat.

5: return ⟦v⟧

Algorithm 10 MiniAddRepNoise(⟦v⟧, 𝑖rep, (𝜌𝑖,𝑖rep , 𝑗)) → ⟦v′⟧
Input: Masked vector ⟦v′⟧, index 𝑖rep ∈ [rep], randomness (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑]
Output: Updated ⟦v⟧.
1: for 𝑗 ∈ [𝑑] do
2: 𝑣′

𝑗
← 𝑣 𝑗 + 𝜌𝑖,𝑖rep , 𝑗

3: return ⟦v′⟧

1. the randomness 𝜌𝑖,𝑖rep , 𝑗 ,
2. the value 𝑣 𝑗 or 𝑣

′
𝑗
.

It is easy to conclude that any of these values can be perfectly simulated from
𝜌𝑖,𝑖rep , 𝑗 and the input v 𝑗 . The only intermediate value that needs both is 𝑣′

𝑗
as it

needs 𝜌𝑖,𝑖rep , 𝑗 .

Step 2: AddRepNoiseER. Let us now look at the bigger picture. In this proof, we
will perform a composition proof by propagating the dependency of the inter-
mediate variables to shares of 𝜌𝑖,𝑖rep , 𝑗 and v 𝑗 . Let ℐ̄ be the given set of at most
𝑑 − 1 probes in AddRepNoise. We decompose ℐ̄ as follows.

� Let 𝛿
𝑖,𝑖rep

MiniAddRepNoise
be the number intermediate variables that are probed

inside the MiniAddRepNoise gadget of the loop with indexes 𝑖, 𝑖rep.

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 23

� Let 𝛿
𝑖,𝑖rep

Refresh
be the number intermediate variables that are probed inside the

Refresh gadget of the loop with indexes 𝑖, 𝑖rep.

By de�nition,
len(v)∑︁
𝑖=0

rep∑︁
𝑖rep=0

(
𝛿
𝑖,𝑖rep

MiniAddRepNoise
+ 𝛿𝑖,𝑖rep

Refresh

)
≤ 𝑑 − 1. (9)

Going from right to left in Figure 5, we �rst consider the last Refresh of the
last loop (where 𝑖 = len(v) and 𝑖rep = rep). Thanks to the sNI property of the

last Refresh algorithm, all the 𝛿
len(v) ,rep
Refresh

probes can be perfectly simulated from

𝛿
len(v) ,rep
Refresh

shares of v′, which is also the output of the last MiniAddRepNoise. So,
thanks to the above paragraph about MiniAddRepNoise, all the probes from the
last MiniAddRepNoise, can be perfectly simulated from two sets of probes:

� ℐ̄len(v) ,rep de�ned as the description of at most 𝛿
len(v) ,rep
MiniAddRepNoise

+ 𝛿
len(v) ,rep
Refresh

values of 𝜌len(v) ,rep, 𝑗 (with several di�erent 𝑗 's),

� ℐ̄
′
len(v) ,rep de�ned as the set of to at most 𝛿len(v) ,rep

MiniAddRepNoise
+ 𝛿len(v) ,rep

Refresh
shares of

v, the input of the last MiniAddRepNoise.

The set of ℐ̄
′
len(v) ,rep can also be seen as probes of the output of the penulti-

mate Refresh. But, thanks to the sNI property of the penultimate Refresh algo-

rithm, they can be simulated independently from the 𝛿
len(v)−1,rep−1
Refresh

intermediate
variables probed inside the penultimate Refresh algorithm. In conclusion, the
ℐ̄
′
len(v) ,rep probes can be simulated from uniform random.

Applying the same reasoning for all the subsequent loops, the set of ℐ̄ probes
can be perfectly simulated from

� ℐ̄𝑖,𝑖rep de�ned as the description of at most 𝛿
𝑖,𝑖rep

MiniAddRepNoise
+ 𝛿𝑖,𝑖rep

Refresh
values of

𝜌𝑖,𝑖rep , 𝑗 (with several di�erent 𝑗 's),

� ℐ̄
′
0,0 de�ned as the set of to at most 𝛿0,0

MiniAddRepNoise
+ 𝛿0,0

Refresh
shares of v, the

input of the AddRepNoiseER.

We de�ne Ū = ℐ̄0,0
⋃ · · ·⋃ ℐ̄len(v) ,rep and X̄′ = ℐ̄

′
0,0. Thanks to Eq. (9) and

Lemma 2.1, we have shown that AddRepNoiseER is (d-1)-sNIU. ⊓⊔

6.3 Security Property of KeyGen and Sign

Now that AddRepNoiseER is proved, one needs to derive the security of the key
generation and signature algorithms with a composition proof. Let us �rst intro-
duce KeyGenER and SignER, simple modi�cations of KeyGen and Sign algorithms
where the small uniform randomness is provided as input. KeyGenER is formally
described in Algorithm 11. Due to space constraints, the formal description of
SignER is deferred to the full version. We provide a proof of Lemma 6.2 for
KeyGenER. The proof for SignER proceeds in a similar fashion and is included in
the full version of this paper.

Lemma 6.2. The algorithms KeyGenER and SignER are (𝑑 − 1)-NIU.

24 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

Algorithm 11 KeyGenER ((𝜌 (0)𝑖,𝑖rep , 𝑗
), (𝜌 (1)

𝑖,𝑖rep , 𝑗
)) → (vk, sk)

▷ KeyGen with explicit randomness for AddRepNoise

Input: Randomness (𝜌 (0)
𝑖,𝑖rep , 𝑗

)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑] , (𝜌
(1)
𝑖,𝑖rep , 𝑗

)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑]
Output: Keypair vk, sk
1: seed← {0, 1}𝜅 ; A := ExpandA(seed)
2: ⟦s⟧ ← ℓ × ZeroEncoding(𝑑)
3: ⟦s⟧ ← AddRepNoiseER (⟦s⟧, 𝑢t, rep, (𝜌 (0)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized

AddRepNoise.
4: ⟦t⟧ := A · ⟦s⟧
5: ⟦t⟧ ← AddRepNoiseER (⟦t⟧, 𝑢t, rep, (𝜌 (1)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized

AddRepNoise.
6: t := Decode(⟦t⟧)
7: t := ⌊t⌉𝜈t
8: return (vk := (seed, t), sk := (vk, ⟦s⟧))

ZeroEncoding AddRepNoise ×A AddRepNoise Decode

⟦sk⟧

vk

(𝜌 (0)
𝑖,𝑖rep , 𝑗

) (𝜌 (1)
𝑖,𝑖rep , 𝑗

)

⟦s⟧ ⟦s⟧ ⟦t⟧ ⟦t⟧

Fig. 6: Structure of KeyGen (Algorithm 11). Gadgets proven NI (resp. sNIU)

is noted gadget (resp. gadget). Triangular gadgets either start from a

masked input and output an unmasked value, or the other way around.

Proof (Lemma 6.2). Let us decompose the key generation as a succession of gad-
gets. The gadgets may be represented as in Figure 6. We assume the respective
NI/sNI/sNIU properties of each gadget as presented in Table 2.

Recall that given a set ℐ̄ of at most 𝑑 − 1 probes inside KeyGenER, we aim
at proving that they can be perfectly simulated with at most 𝑑 − 1 shares of

(𝜌 (0)
𝑖,𝑖rep , 𝑗

) and 𝑑 − 1 shares of (𝜌 (1)
𝑖,𝑖rep , 𝑗

). In other words we will exhibit two sets ℐ̄0

of at most 𝑑 − 1 values of (𝜌 (0)
𝑖,𝑖rep , 𝑗

), and ℐ̄1 of at most 𝑑 − 1 values of (𝜌 (1)
𝑖,𝑖rep , 𝑗

)
which will be enough to perfectly simulate ℐ̄.

Let us decompose the set ℐ̄ of at most 𝑑 − 1 probes in KeyGenER among the
di�erent gadgets. By convention, to avoid counting certain probes twice (once
as output of a gadget and once as input of the subsequent gadget), we do not
count the probes on the outputs. For example, if a probe is made on the output
of a gadget G, we will consider that it is actually made on the input of the
subsequent gadget. We note:

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 25

� 𝛿0 the number of intermediate variables probed in Line 6 (�nal Decode gad-
get);

� 𝛿1 the number of intermediate variables probed in Line 5 (second AddRepNoiseER);
� 𝛿2 the number of intermediate variables probed in Line 4 (multiplication
with A);

� 𝛿3 the number of intermediate variables probed in Line 3 (�rst AddRepNoiseER);
� 𝛿4 the number of intermediate variables probed in Line 2 (ZeroEncoding);

We recall that by de�nition of ℐ̄,
∑4

𝑖=0 𝛿𝑖 ≤ 𝑑 − 1.
The proof is similar to a standard composition proof. Thanks to the NI prop-

erty of the Decode gadget, all the 𝛿0 intermediate variables can be perfectly
simulated (see De�nition 2.2) with at most 𝛿0 shares of ⟦t⟧. Since the second
AddRepNoiseER is 𝑑 − 1-sNIU, the 𝛿1 + 𝛿0 intermediate variables observed during
Decode and the last AddRepNoiseER may be perfectly simulated with 𝛿1 shares

of ⟦𝑡⟧ (the output of the ×A operation) and 𝛿1 shares of (𝜌 (1)
𝑖,𝑖rep
). We note ℐ̄1

this set. Note that 𝛿0 is discarded as it concerns the output of a sNIU gadget.

With the same reasoning, all the 𝛿0+𝛿1+𝛿2+𝛿3 intermediate variables observed
after the �rst AddRepNoiseER can be perfectly simulated with at most 𝛿3 shares
of ⟦𝑠⟧ (which are also the output of ZeroEncoding) and at most 𝛿3 shares of

(𝜌 (0)
𝑖,𝑖rep
). We note ℐ̄0 this sets. In addition, the 𝛿4 intermediate variables in the

ZeroEncoding gadget may be perfectly simulated from the public parameters as
ZeroEncoding is NI and does not take any input.

Putting everything together, we have proved that the distribution of the
intermediate variables in ℐ̄ may be perfectly simulated from :

� the set ℐ̄0 containing at most 𝛿3 shares of (𝜌 (0)
𝑖,𝑖rep
)

� the sets ℐ̄1 containing at most 𝛿1 shares of (𝜌 (1)
𝑖,𝑖rep
)

Since 𝛿3 + 𝛿1 ≤
∑4

𝑖=0 𝛿𝑖 ≤ 𝑑 − 1, we have exhibited a ses Ū of at most 𝑑 − 1 of the
unshared input which concludes the proof. ⊓⊔

7 EUF-CMA Security of Raccoon in the Probing Model

We are �nally ready to prove EUF-CMA security of Raccoon in the probing
model. This is done in two steps. We �rst reduce EUF-CMA security of Raccoon in
the probing model to the standard EUF-CMA security of small Raccoon, formally
de�ned in Figure 7. We then establish that this small Raccoon is EUF-CMA
secure. Technically, the �rst part relies on the NIU property of KeyGen and Sign
(cf. Section 6), a purely statistical step claiming that given a small Raccoon key
and signature, we can simulate the leakage of Raccoon. The second part relies on
the smooth Rényi divergence for the sum of uniform distributions (cf. Section 4),
and reduces to computational problems.

7.1 Description of a Non-Masked Small Raccoon

We �rst formally de�ne a non-masked and simpli�ed variant of Raccoon, called
small Raccoon, depicted in Figure 7. Notice that there are no more masking or

26 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

bit-droppings applied. More importantly, it is �small� since the sum of uniform
distribution is smaller. We e�ectively modify the bounds on the signature size to
be smaller, using 𝐵∞ and 𝐵2, whose formal de�nition appears in Theorem 7.1.

Algorithm 12 KeyGenSmall (∅) → (vk, sk)
Output: Keypair vk, sk
1: seed← {0, 1}𝜅
2: A := ExpandA(seed)
3: (s, e) ← RSU(𝑢t, 𝑑 (rep − 1) + 1)ℓ ×RSU(𝑢t, 𝑑 (rep − 1) + 1)𝑘
4: t := A · s + e ▷ No rounding of t ∈ R𝑘

𝑞

5: return (vk := (seed, t), sk = (vk, s))
Algorithm 13 SignSmall (sk,msg) → sig

Input: Secret signing key sk = (vk, s), message msg ∈ {0, 1}∗.
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: 𝜇 := H(H(vk)∥msg)
2: (r, e′) ← RSU(𝑢w, 𝑑 (rep − 1) + 1)ℓ ×RSU(𝑢w, 𝑑 (rep − 1) + 1)𝑘
3: w = A · r + e′ ▷ No rounding of w ∈ R𝑘

𝑞

4: 𝑐hash := ¯ChalHash(w, 𝜇) ▷ ¯ChalHash rede�ned to take w ∈ R𝑘
𝑞

5: 𝑐poly := ChalPoly(𝑐hash)
6: z := 𝑐poly · s + r
7: y := A · z − 𝑐poly · t ▷ No need to lift t anymore

8: h := w − y ▷ Hint h now de�ned over R𝑘
𝑞

9: sig := (𝑐hash, z, h)
10: if

(
∥(z, h)∥∞ > 𝐵∞

)
or

(
∥(z, h)∥2 > 𝐵2

)
goto Line 2 ▷ Check smaller bound

11: return sig

Algorithm 14 VerifySmall (sig,msg, vk) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z) := sig.
Output: Signature validity: OK (accept) or FAIL (reject).
1: if

(
∥(z, h)∥∞ > 𝐵∞

)
or

(
∥(z, h)∥2 > 𝐵2

)
return FAIL else return OK

2: 𝜇 := H(H(vk)∥msg); A := ExpandA(seed)
3: 𝑐poly := ChalPoly(𝑐hash)
4: y := A · z − 𝑐poly · t
5: w := y + h
6: 𝑐′

hash
:= ChalHash (w′, 𝜇)

7: if 𝑐hash ≠ 𝑐′
hash

return FAIL
8: return OK

Fig. 7: A non-masked and simpli�ed Raccoon, named small Raccoon. While we
used the notation from the masked Raccoon for consistency, notice above that
h simply becomes 𝑐poly · e + e′ without rounding errors.

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 27

7.2 EUF-CMA Security of Small Raccoon ⇒ Probing EUF-CMA
Security of Raccoon

This consists of the �rst step. Once the following theorem is established, we only
need to prove standard EUF-CMA security of small Raccoon.

Theorem 7.1. Let 𝐵∞ and 𝐵2 satisfying:

� 𝐵∞ ≥ 𝐵∞ + 𝜔 · (𝑑 − 1) ·
(
1
2 +

23𝑢𝑡

3

)
· (𝜅 + log(𝑛(𝑘 + ℓ)) + 2𝜈w + 𝜔 · 2𝜈t

� 𝐵2 ≥ 𝐵2+𝜔·
√︁
𝑛(𝑘 + ℓ) · (𝑑−1) ·

(
1
2 +

23𝑢𝑡

3

)
· (𝜅+log(𝑛(𝑘+ℓ))+2𝜈w ·

√
𝑛𝑘+𝜔·2𝜈t ·

√
𝑛𝑘

Let 𝑄𝐻 and 𝑄𝑆 denote the number of random oracle queries and signing queries
performed by A. For any PPT adversary A against the EUF-CMA security on
Raccoon in the (𝑑−1)-probing model with time 𝑇 and advantage 𝜀, there exists a
PTT adversary B against the EUF-CMA security on small Raccoon (cf. Figure 7)
with time 𝑂 (𝑇) and avantage:

AdvB ≥ AdvA − 4𝑄𝐻𝑄𝑆 · 2−2𝜅 − 2−𝜅+1 −
1

|C| .

We will use a series of hybrids de�ned below to prove the theorem.
Hybrid0: This hybrid corresponds to real the EUF-CMA security game in the
(𝑑 − 1)-probing model (cf. Figure 3).

Hybrid1: In this hybrid we replace KeyGen with KeyGenER and Sign with SignER,
in which all randomnesses are sampled prior to running the algorithm. Since
the algorithms are functionnaly identical the advantage is unchanged.

Hybrid2: This hybrid corresponds to Figure 8, in which all the probes queried
by the adversary during either key generation or signature are mapped to
probes that target only the randomness used in the AddRepNoise gadgets.
We prove that the values output by these probes can be used to perfectly
simulate the output queried by the adversary in Lemma 6.2.
More precisely there is a �rst PPT simulator (SimInKeyGen, SimOutKeyGen)
such that for any probe set |ℐ̄KeyGen | ≤ 𝑡 in KeyGen(1𝜅), all probes in
ℐ̄
′ := (ℐ̄′s, ℐ̄

′
e) := SimInKeyGen (ℐ̄KeyGen) are of the form 𝜌s,𝑖,𝑖rep , 𝑗 ∈ ℐ̄

′
s for

some (𝑖, 𝑖rep, 𝑗) ∈ [ℓ, rep, 𝑑], and 𝜌e,𝑖,𝑖rep , 𝑗 ∈ ℐ̄
′
e for some (𝑖, 𝑖rep, 𝑗) ∈ [𝑘, rep, 𝑑]

(note that the variable names 𝜌 are also indexed by the AddRepNoise gadget
to which they belong to ensure unique namings), andmax(|ℐ̄′𝑠 |, |ℐ̄

′
𝑒 |) ≤ 𝑑−1.

Using Lemma 5.2 we have that (vk, SimOut(KeyGenER,ℐ′)) follows the same
distribution as (vk,ℒ), where (sk, vk,ℒ) ← ExecObs(ℐ̄KeyGen,KeyGenER, 1

𝜆).
Similarly there is a second PPT simulator (SimInSign, SimOutSign) such that
for any message msg, masked secret key ⟦sk⟧, and probe set |ℐ̄Sign | ≤ 𝑡

in Sign(⟦sk⟧,msg), all probes in ℐ̄
′ := (ℐ̄′r, ℐ̄

′
e′ , ℐ̄

′
sk) := SimInSign (ℐ̄Sign)

are of the form 𝜌r,𝑖,𝑖rep , 𝑗 ∈ ℐ̄
′
r for some (𝑖, 𝑖rep, 𝑗) ∈ [ℓ, rep, 𝑑], 𝜌e′ ,𝑖,𝑖rep , 𝑗 ∈

ℐ̄
′
e′ for some (𝑖, 𝑖rep, 𝑗) ∈ [𝑘, rep, 𝑑], and s̄𝑖 ∈ ℐ̄

′
sk for some 𝑖 ∈ [𝑑], and

max (|ℐ̄′r |, |ℐ̄
′
e′ |, |ℐ̄

′
sk) | ≤ 𝑡.

It also holds that (sig, SimOut(ExecObs(ℐ̄′, Sign, 1𝜆))) follows the same dis-
tribution as ExecObs(ℐ̄Sign, Sign, 1

𝜆). From Lemma 5.2 , SimOut(SignER,ℐ′)
follows the same distribution as (sig,ℒ), where (sig,ℒ) ←
ExecObs(ℐ̄Sign, SignER,msg). Thus the two hybrids are identical.

28 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

Adversary Challenger

(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−→
ℐ̄
′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)(

vk, sk,ℒ′
KeyGen

)
← ExecObs(ℐ̄′KeyGen,KeyGen, 1𝜆)

vk,ℒKeyGen←−−−−−−−−− ℒKeyGen ← SimOutKeyGen (ℒ′KeyGen)

𝑄𝑠 queries



𝑚(𝑖) , ℐ̄ (𝑖)Sign−−−−−−−−−→ sk← KeyUpdate(sk)
ℐ̄
(𝑖)
Sign

′
← SimInSign (ℐ̄ (𝑖)Sign

)(
sig(𝑖) ,⊥,ℒ (𝑖)

Sign

′)
← ExecObs(ℐ̄ (𝑖)

Sign

′
, Sign, sk, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)
Sign←−−−−−−−−− ℒ

(𝑖)
Sign
← SimOutSign (ℒ (𝑖)Sign

′
)

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign

| ≤ 𝑑 − 1

Fig. 8: Hybrid2: The NIU properties proven in Lemma 6.2 ensure the existence
of two PPT simulators (SimInKeyGen, SimOutKeyGen) and (SimInSign, SimOutSign).
This ensures all probes can be moved to the randomness in the AddRepNoise
gadgets in KeyGen and Sign. Di�erences with the EUF-CMA security game in
the (𝑑 − 1)-probing model (Figure 3) are highlighted.

Algorithm 15 KeyGenℒ (1𝜅 , ℐ̄) → (vk, sk,ℒ)
Input: Probe set ℐ = (ℐs,ℐe), ℐ̄s ⊂

{
𝜌s,𝑖,𝑖rep , 𝑗 ; (𝑖, 𝑖rep, 𝑗) ∈ [ℓ] × [rep] × [𝑑]

}
,

ℐ̄e ⊂
{
𝜌e,𝑖,𝑖rep , 𝑗 ; (𝑖, 𝑖rep, 𝑗) ∈ [𝑘] × [rep] × [𝑑]

}
Output: Keypair vk, sk and Leakage ℒ

1: seed← {0, 1}𝜅 ; A := ExpandA(seed)
2: ⟦s⟧ = (s1, . . . , s𝑑) := (0, . . . , 0) ∈ (Rℓ𝑞)𝑑
3: for (𝑖, 𝑖rep, 𝑗) ∈ [ℓ] × [rep] × [𝑑] do
4: 𝜌s,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
5: s 𝑗 ,𝑖 ← s 𝑗 ,𝑖 + 𝜌s,𝑖,𝑖rep , 𝑗
6: ⟦t⟧ := A · ⟦sk⟧ ∈ (R𝑘

𝑞)𝑑
7: for (𝑖, 𝑖rep, 𝑗) ∈ [𝑘] × [rep] × [𝑑] do
8: 𝜌e,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
9: t 𝑗 ,𝑖 ← t 𝑗 ,𝑖 + 𝜌s,𝑖,𝑖rep , 𝑗
10: t := Decode(⟦t⟧)
11: t := ⌊t⌉𝜈t
12: ℒ :=

{
(𝜌s,𝑖,𝑖rep , 𝑗 , 𝜌e,𝑖′ ,𝑖′rep , 𝑗′)

}
(𝜌s,𝑖,𝑖rep , 𝑗 , 𝜌e,𝑖′ ,𝑖′rep , 𝑗′) ∈ℐ̄

13: return (vk := (seed, t), sk := (vk, ⟦s⟧),ℒ)

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 29

Adversary Challenger

(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−→
ℐ̄
′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)(
(sk, vk),ℒ′

KeyGen

)
← KeyGenℒ (1𝜅 , ℐ̄

′
KeyGen)

vk,ℒKeyGen←−−−−−−−−− ℒKeyGen ← SimOutKeyGen (ℒ′KeyGen)

𝑄𝑠 queries



𝑚(𝑖) , ℐ̄ (𝑖)Sign−−−−−−−−−→ sk← KeyUpdate(sk)
ℐ̄
(𝑖)
Sign

′
← SimInSign (ℐ̄ (𝑖)Sign

)(
sig(𝑖) ,ℒ (𝑖)

Sign

′)
← Signℒ (ℐ̄

(𝑖)
Sign

′
, 𝑠𝑘, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)
Sign←−−−−−−−−− ℒ

(𝑖)
Sign
← SimOutSign (ℒ (𝑖)Sign

′
)

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign

| ≤ 𝑑 − 1

Fig. 9: Hybrid3: We replace the ExecObs calls with the functionally identical al-
gorithms KeyGenℒ (cf. Algorithm 15) and Signℒ (cf. full version).

Hybrid3: This hybrid corresponds to Figure 9, in which the algorithms ExecObs(ℐ̄,

KeyGen, 1𝜅) and ExecObs(ℐ̄, Sign, sk,msg) are replaced by KeyGenℒ (1𝜅 , ℐ̄)
and Signℒ (sk,msg, ℐ̄), respectively. The former is presented in Algorithm 15.
The latter is de�ned analogously and deferred to the full version due to page
limitations. Observe that since ExecObs(ℐ̄,KeyGen, 1𝜅) outputs the same
output as KeyGen(1𝜅) as well as the value of the variables at indices ℐ̄, any
algorithm that outputs the same distribution is semantically identical. Since
the variables in ℐ̄ are now restricted to the randomness used in AddRepNoise
it is clear that the algorithm KeyGenℒ outputs the same distribution . The
same argument goes for ExecObs(ℐ̄, Sign, sk,msg). Hence, the two hybrids
are identical.

Hybrid4: This hybrid corresponds to Figure 10, in which the challenger arti�cially
extends the set of probes queried to the key generation and signing algorithm.
More speci�cally, we de�ne Extend so that for any 𝜌s,𝑖,𝑖rep , 𝑗 ∈ ℐ̄s, all variables
𝜌s,𝑖′ ,𝑖rep , 𝑗 for 𝑖′ ∈ [ℓ] are in Extend(ℐ̄s) (same for Extend(ℐ̄e), Extend(ℐ̄r),
Extend(ℐ̄e′)). Conversely Collapse(ℒ′s) discards the values of any variables
that are in ℐ̄r but not ℐ̄

′
r. Clearly, this does not modify the view of the

adversary. This conceptual change will be necessary to reduce to a simpler
signing algorithm in the following section.

Lastly, we prove that for any PPT adversary A against the game described
in Hybrid4 (cf. Figure 10), we can construct an adversary B against the standard
EUF-CMA security of small Raccoon in Figure 7. At a high level a challenger
can simulate queries from KeyGenℒ by querying the public key t̄ from the oracle

30 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

Adversary Challenger

(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−→
(ℐ̄′s, ℐ̄

′
e) := ℐ̄

′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)

ℐ̄
′
s = Extend(ℐ̄′s)

ℐ̄
′
e = Extend(ℐ̄′e)(
(sk, vk), (ℒ′s ,ℒ′e)

)
← KeyGenℒ ((ℐ̄

′
s, ℐ̄

′
e), 1𝜆)

vk,ℒKeyGen←−−−−−−−−− ℒKeyGen ← SimOutKeyGen (Collapse(ℒ′s),Collapse(ℒ′e))

𝑄𝑠 queries



𝑚(𝑖) , ℐ̄ (𝑖)Sign−−−−−−−−−→ sk← KeyUpdate(sk)
(ℐ̄′r, ℐ̄

′
e′ , ℐ̄

′
sk) := ℐ̄

(𝑖)
Sign

′
← SimInSign (ℐ̄ (𝑖)Sign

)
ℐ̄
′
r = Extend(ℐ̄′r)

ℐ̄
′
e′ = Extend(ℐ̄′e′)(

sig(𝑖) , (ℒ′r ,ℒ′e′ ,ℒ
′
sk
)
)
← Signℒ ((ℐ̄

′
r, ℐ̄

′
e′ , ℐ̄

′
sk), sk, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)
Sign←−−−−−−−−− ℒ

(𝑖)
Sign
← SimOutSign (Collapse(ℒ′r),Collapse(ℒ′e′),ℒ

′
sk
)

Forgery{
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign

| ≤ 𝑑 − 1

Fig. 10: Hybrid4: In this game, for any variable name 𝜌s,𝑖,𝑖rep , 𝑗 the challenger arti-
�cially leaks all variables 𝜌s,𝑖,𝑖rep , 𝑗′ for 𝑗 ′ ∈ [ℓ] (and similarly when s is replaced
by e, r, e′). He then discards the extra leakage before sending it to the adversary.
The view of the adversary is unchanged.

for KeyGen𝑆𝑚𝑎𝑙𝑙 and arti�cially sampling additional noises (s̃, ẽ) as the sum of
𝑑 − 1 small uniforms and outputting the public key t :=

⌊
t̄ +As̃ + ẽ

⌉
𝜈t
which will

be distributed exactly as a public key for KeyGenℒ. Similarly, a signature from
SignSmall can be mapped to a signature for Signℒ by sampling the appropriate
sums of uniform (r̃, ẽ′) and setting w = ⌊w̄ +Ar̃ + ẽ′⌉𝜈w . Finally we show a forgery
for Signℒ can be mapped to a forgery for SignSmall. The formal proof is given
in the full version. This completes the proof.

7.3 MLWE + SelfTargetMSIS ⇒ EUF-CMA Security of Small Raccoon

Notations for smooth Rényi divergence. We further de�ne some useful notations
to aid the readability. For any 𝑐 ∈ C, s ∈ Rℓ

𝑞, and e ∈ R𝑘
𝑞, we note center :=

𝑐 ·
[
s
e

]
∈ Rℓ+𝑘

𝑞 and recall 𝑇 = 𝑑 · (rep − 1) + 1. We de�ne two distributions:

P := SU(𝑢w, 𝑇)𝑛(ℓ+𝑘) and Q(center) := center + P.
We bound the smooth Rényi divergence of P and Q. For any 𝛼 = 𝜔asymp (1)

and 𝜖Tail(center) = 1√
2 𝜋 𝑇

(
𝛼 𝑒 ∥center∥2

2𝑢w ·𝑇

)𝑇
(see Conjecture 4.1 or Lemma 4.2), we

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 31

de�ne 𝜖Tail and 𝑅
𝜖Tail
𝛼 (P;Q) to be any two values satisfying

Pr

[
𝜖Tail ≥ max

𝑐∈C
𝜖Tail (center)

]
≥ 1 − negl(𝜅). (10)

Pr

[
𝑅𝜖Tail
𝛼 (P;Q) ≥ max

𝑐∈C
𝑅
𝜖Tail (center)
𝛼 (P;Q(center))

]
≥ 1 − negl(𝜅). (11)

where both probabilities are taken under the randomness of (s, e) ← RSU(𝑢t, 𝑇)ℓ×
RSU(𝑢t, 𝑇)𝑘 . For e�ciency and better parameters, we set 𝜖Tail and 𝑅

𝜖Tail
𝛼 (P;Q)

to be the smallest values satisfying the above inequality. The above parameters
we provide is one set of candidate asymptotic parameters.

It remains to prove that small Raccoon in Figure 7 is (standard) EUF-CMA
secure. This is established in the following theorem.

Theorem 7.2. The small Raccoon in Figure 7 is EUF-CMA secure under the
MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽 assumptions.

Formally, for any adversary A against the EUF-CMA security game mak-
ing at most 𝑄ℎ random oracle queries and 𝑄𝑠 signing queries, and 𝜖Tail and
𝑅
𝜖Tail
𝛼 (P;Q) satisfying Eqs. (10) and (11), there exists adversaries B and B′

against the MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽 problems such that

AdvEUF-CMA
A ≤ 2−𝜅 · 𝑄ℎ · (1 + 2−𝜅+1 · 𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +𝑄𝑠 · 𝜖Tail

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail
𝛼 (P;Q)

)𝑄𝑠 ,

(12)

where Time(A) ≈ Time(B) ≈ Time(B′).

We now present an overview of the proof which, due to page constraints, is left
to the full version. As a �rst step we replace the hash function by a random
oracle which we will program by �rst sampling 𝑐poly ← C and setting the hash
function accordingly. Once this is done w can be de�ned as a function of 𝑐poly
rather than (r, e′), using the equation w := A ·z−𝑐poly ·t+z′ where z′ := 𝑐poly ·e+e′.
We now observe that all variables can be computed as deterministic functions
of (z, z′), we thus want to prove that (z, z′) are independent of (s, e). Using the
Smooth-Renyie divergence property of Lemma 4.2 we can bound the divergence
between (z, z′) = (𝑐poly · s + r, 𝑐poly · e + e′) and (r, e′) which are sums of uniforms
independent of the secret. Finally we can replace the public key with a uniform
vector using MLWE, and use the forgery output by the adversary to break MSIS.

8 Concrete Instantiation

Looking at Theorem 7.2, it is clear that the security bottlenecks in Theorem 7.2
are the hardness of MLWE, of SelfTargetMSIS, and the smooth Rényi divergence
(𝜖Tail and 𝑅

𝜖Tail
𝛼). Instantiating Raccoon boils down to an optimization problem

where we need to balance the hardness assumptions (MLWE, SelfTargetMSIS),
the smooth Rényi divergence and the performance metrics (size of vk and sig).

32 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

� Our analysis of MLWE and SelfTargetMSIS is fairly standard. We rely on
the lattice estimator [2] for the concrete analysis of MLWE. Following the
Dilithium methodology [30, �C.3], we assume that breaking SelfTargetMSIS
requires to either (a) break the second-preimage resistance of the hash func-
tion, or (b) break an inhomogeneousMSIS instance, for which the best known
attack is in [10, �4.2].

� For the smooth Rényi divergence, one could use Lemma 4.2 for a provable
bound. However, it is not tight so we opt instead to use Conjecture 4.1.

We refer the reader to the full version of this paper where we provide the re-
lationship between parameters the security/e�ciency metrics is in. In addition,
we provide example parameters for the NIST security level I.

Table 3: Parameters for Raccoon-128, NIST Post-Quantum security strength
category 1. For all Raccoon-128 masking orders, we �x: 𝜅 = 128, 𝑄𝑠 = 253,
𝑞 = (224 − 218 + 1) · (225 − 218 + 1), 𝑛 = 512, 𝑘 = 5, ℓ = 4, 𝜈t = 42, 𝜈w = 44, 𝜔 = 19,
2−64𝐵2

2 = 14656575897, 𝐵∞ = 41954689765971.

Parameter Raccoon-128 128-2 128-4 128-8 128-16 128-32
|sig| (bytes) 11524 = = = = =
|vk| (bytes) 2256 = = = = =

𝑑 1 2 4 8 16 32
rep 8 4 2 4 2 4
𝑢t 6 6 6 5 5 4
𝑢w 41 41 41 40 40 39

|sk| (bytes) 14800 14816 14848 14912 15040 15296

9 Conclusion and Next Steps

We have presented Raccoon, a masking-friendly signature scheme with a formal
security proof in the 𝑡-probing model based on standard lattice assumptions. We
present a few natural extensions of our work:
� Tighter proof. The recent Hint-MLWE assumption by Kim et al. [?] seems
perfectly suited to study Raccoon, as illustrated by a thresholdized variant
of Raccoon [?]. For Raccoon itself, an obstacle to a direct application is that
[?] provided security reductions for Gaussian distributions, whereas Raccoon
uses sums of uniform distributions.

� More realistic models. While the 𝑡-probing model is a simple and con-
venient abstraction of real-world leakage, there exist more realistic models
such as the random probing and noisy leakage models. We expect a security
analysis in these models to be informative and to raise its own challenges.

� Real-world assessment. Since side-channel analysis are grounded in real-
world deployment, this work needs to be completed with a study of the
concrete leakage of Raccoon when implemented on real-world devices.

References

1. Agrawal, S., Stehlé, D., Yadav, A.: Round-optimal lattice-based threshold signa-
tures, revisited. In: Bojanczyk, M., Merelli, E., Woodru�, D.P. (eds.) ICALP 2022.
LIPIcs, vol. 229, pp. 8:1�8:20. Schloss Dagstuhl (Jul 2022). https://doi.org/10.
4230/LIPIcs.ICALP.2022.8

https://doi.org/10.4230/LIPIcs.ICALP.2022.8
https://doi.org/10.4230/LIPIcs.ICALP.2022.8

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 33

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology 9(3), 169�203 (2015). https://doi.
org/doi:10.1515/jmc-2015-0016, https://doi.org/10.1515/jmc-2015-0016

3. Azouaoui, M., Bronchain, O., Cassiers, G., Ho�mann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schönauer, M., Standaert, F.X., van Vredendaal, C.: Protecting
dilithium against leakage revisited sensitivity analysis and improved implementa-
tions. IACR TCHES 2023(4), 58�79 (2023). https://doi.org/10.46586/tches.
v2023.i4.58-79

4. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016. pp. 116�129. ACM Press (Oct 2016). https://doi.org/10.1145/
2976749.2978427

5. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Ti-
bouchi, M.: Masking the GLP lattice-based signature scheme at any order. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 354�384. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78375-8_12

6. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.:
GALACTICS: Gaussian sampling for lattice-based constant- time implementa-
tion of cryptographic signatures, revisited. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 2147�2164. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3363223

7. Battistello, A., Coron, J.S., Prou�, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23�39. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53140-2_2

8. Berzati, A., Viera, A.C., Chartouny, M., Madec, S., Vergnaud, D., Vigilant, D.: Ex-
ploiting intermediate value leakage in dilithium: A template-based approach. IACR
TCHES 2023(4), 188�210 (2023). https://doi.org/10.46586/tches.v2023.i4.
188-210

9. Bronchain, O., Azouaoui, M., ElGhamrawy, M., Renes, J., Schneider, T.: Ex-
ploiting small-norm polynomial multiplication with physical attacks: Applica-
tion to crystals-dilithium. Cryptology ePrint Archive, Paper 2023/1545 (2023),
https://eprint.iacr.org/2023/1545, https://eprint.iacr.org/2023/1545

10. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
Compact signatures based on module-NTRU lattices. In: Sun, H.M., Shieh, S.P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 20. pp. 853�866. ACM Press (Oct 2020).
https://doi.org/10.1145/3320269.3384758

11. Coron, J.S.: High-order conversion from Boolean to arithmetic masking. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93�114. Springer,
Heidelberg (Sep 2017). https://doi.org/10.1007/978-3-319-66787-4_5

12. Coron, J.S., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-
order masking of dilithium. IACR TCHES 2023(4), 110�145 (2023). https://doi.
org/10.46586/tches.v2023.i4.110-145

13. Coron, J.S., Groÿschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to Boolean masking with logarithmic complexity. In: Leander, G. (ed.)
FSE 2015. LNCS, vol. 9054, pp. 130�149. Springer, Heidelberg (Mar 2015).
https://doi.org/10.1007/978-3-662-48116-5_7

https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.46586/tches.v2023.i4.188-210
https://doi.org/10.46586/tches.v2023.i4.188-210
https://eprint.iacr.org/2023/1545
https://eprint.iacr.org/2023/1545
https://doi.org/10.1145/3320269.3384758
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.1007/978-3-662-48116-5_7

34 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

14. Coron, J.S., Groÿschädl, J., Vadnala, P.K.: Secure conversion between Boolean and
arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 188�205. Springer, Heidelberg (Sep 2014). https://doi.org/
10.1007/978-3-662-44709-3_11

15. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf
den Beweis der Ergodizitat von Marko�schen Ketten. Magyar. Tud. Akad. Mat.
Kutató Int. Közl 8, 85�108 (1963)

16. del Pino, R., Espitau, T., Katsumata, S., Maller, M., Mouhartem, F., Prest, T.,
Rossi, M., Saarinen, M.: Raccoon. Tech. rep., National Institute of Standards and
Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

17. del Pino, R., Prest, T., Rossi, M., Saarinen, M.J.O.: High-order masking of lattice
signatures in quasilinear time. In: 2023 IEEE Symposium on Security and Privacy.
pp. 1168�1185. IEEE Computer Society Press (May 2023). https://doi.org/10.
1109/SP46215.2023.10179342

18. Devevey, J., Fawzi, O., Passelègue, A., Stehlé, D.: On rejection sampling in lyuba-
shevsky's signature scheme. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022,
Part IV. LNCS, vol. 13794, pp. 34�64. Springer, Heidelberg (Dec 2022). https:
//doi.org/10.1007/978-3-031-22972-5_2

19. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete
(or how to evaluate the security of any leaking device), extended version. Jour-
nal of Cryptology 32(4), 1263�1297 (Oct 2019). https://doi.org/10.1007/

s00145-018-9277-0

20. Esgin, M., Espitau, T., Niot, G., Prest, T., Sakzad, A., Steinfeld, R.: Plover:
Masking-friendly hash-and-sign lattice signatures. In: EUROCRYPT (2024),
https://tprest.github.io/pdf/pub/plover.pdf

21. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222�253. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_9

22. Fournaris, A.P., Dimopoulos, C., Koufopavlou, O.G.: Pro�ling Dilithium Digital
Signature Traces for Correlation Di�erential Side Channel Attacks. In: Orailoglu,
A., Jung, M., Reichenbach, M. (eds.) Embedded Computer Systems: Architectures,
Modeling, and Simulation - 20th International Conference, SAMOS 2020, Samos,
Greece, July 5-9, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12471,
pp. 281�294. Springer (2020). https://doi.org/10.1007/978-3-030-60939-9_

19, https://doi.org/10.1007/978-3-030-60939-9_19
23. Gérard, F., Rossi, M.: An e�cient and provable masked implementation of qtesla.

In: Belaïd, S., Güneysu, T. (eds.) Smart Card Research and Advanced Appli-
cations - 18th International Conference, CARDIS 2019, Prague, Czech Repub-
lic, November 11-13, 2019, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 11833, pp. 74�91. Springer (2019). https://doi.org/10.1007/
978-3-030-42068-0_5, https://doi.org/10.1007/978-3-030-42068-0_5

24. Goudarzi, D., Prest, T., Rivain, M., Vergnaud, D.: Probing security through input-
output separation and revisited quasilinear masking. IACR TCHES 2021(3),
599�640 (2021). https://doi.org/10.46586/tches.v2021.i3.599-640, https:

//tches.iacr.org/index.php/TCHES/article/view/8987

25. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: From
inception to implementation. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryp-

https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1007/978-3-031-22972-5_2
https://doi.org/10.1007/978-3-031-22972-5_2
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/s00145-018-9277-0
https://tprest.github.io/pdf/pub/plover.pdf
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.46586/tches.v2021.i3.599-640
https://tches.iacr.org/index.php/TCHES/article/view/8987
https://tches.iacr.org/index.php/TCHES/article/view/8987

Raccoon: A Masking-Friendly Signature Proven in the Probing Model 35

tography - 11th International Conference, PQCrypto 2020. pp. 53�71. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-44223-1_5

26. Hutter, M., Tunstall, M.: Constant-time higher-order Boolean-to-arithmetic mask-
ing. Journal of Cryptographic Engineering 9(2), 173�184 (Jun 2019). https:

//doi.org/10.1007/s13389-018-0191-z
27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against

probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463�481. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/

978-3-540-45146-4_27
28. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on

masked implementations: Information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 1521�1535.
ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560579

29. Karabulut, E., Alkim, E., Aysu, A.: Single-Trace Side-Channel Attacks on 𝜔-
Small Polynomial Sampling: With Applications to NTRU, NTRU Prime, and
CRYSTALS-DILITHIUM. In: IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2021, Tysons Corner, VA, USA, December 12-
15, 2021. pp. 35�45. IEEE (2021). https://doi.org/10.1109/HOST49136.2021.
9702284, https://doi.org/10.1109/HOST49136.2021.9702284

30. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2022), available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022
31. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.P.: Pro�ling side-channel

attacks on Dilithium: A small bit-�ddling leak breaks it all. Cryptology ePrint
Archive, Report 2022/106 (2022), https://eprint.iacr.org/2022/106

32. Mathieu-Mahias, A.: Securisation of implementations of cryptographic algo-
rithms in the context of embedded systems. (Sécurisation des implémenta-
tions d'algorithmes cryptographiques pour les systèmes embarqués). Ph.D. thesis,
University of Paris-Saclay, France (2021), https://tel.archives-ouvertes.fr/
tel-03537322

33. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking Dilithium - e�cient
implementation and side-channel evaluation. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol. 11464, pp. 344�362. Springer,
Heidelberg (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2_17

34. Naehrig, M., Alkim, E., Bos, J., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila, D.:
FrodoKEM. Tech. rep., National Institute of Standards and Technology (2017),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-1-submissions
35. Prest, T.: A key-recovery attack against mitaka in the 𝑡-probing model. In:

Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940,
pp. 205�220. Springer, Heidelberg (May 2023). https://doi.org/10.1007/

978-3-031-31368-4_8
36. Prest, T., Fouque, P.A., Ho�stein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,

Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022
37. Ste�en, H.M., Land, G., Kogelheide, L.J., Güneysu, T.: Breaking and protecting

the crystal: Side-channel analysis of dilithium in hardware. In: PQCrypto. Lecture
Notes in Computer Science, vol. 14154, pp. 688�711. Springer (2023)

https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/s13389-018-0191-z
https://doi.org/10.1007/s13389-018-0191-z
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/106
https://tel.archives-ouvertes.fr/tel-03537322
https://tel.archives-ouvertes.fr/tel-03537322
https://doi.org/10.1007/978-3-030-21568-2_17
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://doi.org/10.1007/978-3-031-31368-4_8
https://doi.org/10.1007/978-3-031-31368-4_8
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

36 Rafaël del Pino, Shuichi Katsumata, Thomas Prest and Mélissa Rossi

38. Wang, R., Ngo, K., Gärtner, J., Dubrova, E.: Single-trace side-channel attacks on
crystals-dilithium: Myth or reality? Cryptology ePrint Archive, Paper 2023/1931
(2023), https://eprint.iacr.org/2023/1931, https://eprint.iacr.org/2023/
1931

https://eprint.iacr.org/2023/1931
https://eprint.iacr.org/2023/1931
https://eprint.iacr.org/2023/1931

	Raccoon: A Masking-Friendly Signature Proven in the Probing Model
	Introduction
	Our Contributions
	Overview of the Security Proof
	Related works

	Preliminaries
	Hardness Assumptions
	Masking Preliminaries
	Sum of Uniforms

	The Raccoon Signature Scheme
	Key Generation
	Signing Procedure
	Verification Procedure
	Helper Algorithms

	Smooth Rényi Divergence and Useful Bounds
	Smooth Rényi Divergence
	Useful Bounds on Sum of Uniforms

	Enhancing NI/sNI for Probing EUF-CMA Security
	EUF-CMA Security in the Probing Model
	Insufficiency of the NI/sNI Models
	NI/sNI with Unshared Inputs

	NIU Property of Raccoon's KeyGen and Sign
	Existing Security Properties
	Security Property of the AddRepNoise Gadget
	Security Property of KeyGen and Sign

	EUF-CMA Security of Raccoon in the Probing Model
	Description of a Non-Masked Small Raccoon
	EUF-CMA Security of Small Raccoon ⇒ Probing EUF-CMA Security of Raccoon
	MLWE + SelfTargetMSIS ⇒ EUF-CMA Security of Raccoon

	Concrete Instantiation
	Conclusion and Next Steps

