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Abstract. In the last fifteen years, there has been a steady stream of
works combining differential privacy with various other cryptographic
disciplines, particularly that of multi-party computation, yielding both
practical and theoretical unification. As a part of that unification, due to
the rich definitional nature of both fields, there have been many proposed
definitions of differential privacy adapted to the given use cases and cryp-
tographic tools at hand, resulting in computational and/or distributed
versions of differential privacy. In this work, we offer a systemization of
such definitions, with a focus on definitions that are both computational
and tailored for a multi-party setting. We order the definitions according
to the distribution model and computational perspective and propose a
viewpoint on when given definitions should be seen as instantiations of
the same generalised notion. The ordering highlights a clear, and some-
times strict, hierarchy between the definitions, where utility (accuracy)
can be traded for stronger privacy guarantees or lesser trust assump-
tions. Further, we survey theoretical results relating the definitions to
each other and extend some such results. We also discuss the state of
well-known open questions and suggest new open problems to study. Fi-
nally, we consider aspects of the practical use of the different notions,
hopefully giving guidance also to future applied work.

Keywords: Differential Privacy, Multi-party Computation, Systemati-
zation of Knowledge

1 Introduction

The applications of Differential Privacy (DP) and Multi-party Computation
(MPC) have essentially orthogonal goals, namely that with MPC one wishes to
make sure that when performing a joint computation, no information is learned
by the adversary except for that which can be learned from the allowed computa-
tion output, whereas DP concerns bounding the privacy loss incurred from said
output [4,21]. In the words of Beimel, Nissim and Omri [4], MPC tells us how to
compute something privately and DP tells us what can be privately computed.
Therefore, combining them is an appealing prospect as it can potentially enable
protocols that provide privacy protection with respect to both their execution
and their outputs. In addition to the case where one is a priori interested in
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achieving the privacy goals of both MPC and DP, the topic of combining DP
with MPC (a part of what is at times called DP-cryptography [71]) also concerns
improving a scheme in one of the disciplines by utilising tools and perspectives
from the other. This has proven a fruitful endeavor and this success is rooted in
that not only the goals but also the typical challenges within the two fields are
mostly distinct. The literature on using MPC techniques to improve DP systems
mostly focuses on removing the need to fully trust a single central computational
party. Avoiding this trust assumption can be done without relying on MPC tech-
niques, for instance by using the local or shuffle models of DP (see Section 3),
but these models sometimes do not admit accuracy similar to (or even close to)
that in the central model. If one does use MPC, however, then the clients can
distributedly simulate the central dataholder, thereby avoiding the main trust
assumption in DP without lowering the accuracy of the protocol [21,4,5]. Using
DP to improve MPC schemes is typically done to improve the efficiency of the
scheme. The efficiency problems in MPC can intuitively be seen as caused by the
need to spread out the secret information such that, at all times, all sufficiently
small coalitions of parties cannot learn any information about the underlying
secret. Oftentimes, such efficiency problems can be reduced if one relaxes the
demand that no information should leak, to that the information that is leaked
is from a differentially private function of the secret inputs [47,41,5,73]. When
unifying the formalities in MPC and DP, some hurdles arise however. Firstly,
DP is typically studied in a statistical (information-theoretic) setting whereas
multi-party protocols must for certain settings rather work with computational
guarantees. Therefore, when deploying DP in those settings, the usual definition
of statistical DP (SDP) must be turned into computational DP (CDP).1 Sec-
ondly, DP is formulated with respect to single probabilistic algorithms, called
mechanisms, rather than with respect to algorithms interacting with one another
within a protocol.

There are two main motivations behind writing a systematization of knowl-
edge paper on this particular topic at this particular time, one regarding theory
and one regarding the application of the theory in practice. On the theoretical
side, there have now been so many distributed CDP definitions proposed that
getting an overview of them by either following the early definitional works and
their follow-ups or by following related work sections of recent work is getting in-
creasingly laborious. This together with recent rapid developments [32,43,42,38]
on fundamental open problems, such as those posed in [69], leads to a need to
survey the topic for the benefit of new theoretical work. On the practical side,
there is a growing literature [5,72,26,6] on concrete protocols combining DP and
MPC and this causes a need to discuss the theory with respect to its relation-
ship to practice. This applies particularly to concerns about what settings the
various CDP definitions are suited for and the choice of parameter regime. As

1 We use ‘DP’ to refer to both computational and statistical definitions. When referring
specifically to definitions that are either statistical or computational, we call them
SDP and CDP definitions, respectively.
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an illustrative example, take the recent paper [5] from CCS’22. There an effi-
cient protocol for computing DP histograms in a two-party model is proposed
and it is shown that the protocol is CDP by formulating an ideal functionality
that is SDP and then proving that the protocol realises it, which is a common
and atural design strategy. The illustrative part of this example is that, since
the ideal/real paradigm is used, SIM+-CDP is chosen as the CDP notion as
it gives the strongest guarantees and also is geared towards this specific proof
strategy. However, the SIM+-CDP definition needs to be adapted (which is done
implicitly) since the original definition uses (ε, 0)-SDP in the functionality and
requires perfect correctness but the protocol, for practical reasons, can only give
statistical correctness and realises an ideal function which is (ε, δ)-SDP with
non-zero δ. This implicit adaptation of the CDP definition shows that there is
a need to explicitly discuss the details of the CDP definition from the point of
view of application, to make it clear for practitioners when specific flavours of
CDP can be used and when not.

1.1 Characterising DP Definitions

Traditionally, DP is studied in the central model (see Figure 1), where the data
of all clients is held in the clear by a central trusted server (or dataholder).
On this dataset the mechanism is run and the output is given to an untrusted
analyst. DP is a property of the mechanism, as is seen in the following definition
(details follow in Section 2). We formulate the definition with the adjacency
notion being variable. For a very general definition of what an adjacency notion
is, see Definition 3.

Definition 1 ((ε, δ)-SDP [22,20]). Let ε ≥ 0, δ ∈ [0, 1] and ADJ be an adja-
cency notion on the input domain D. A probabilistic algorithm M : D → R is
(ε, δ)-differentially private (SDP) if for all pairs (D,D′) of adjacent databases
(with respect to ADJ) in D and all subsets S of R,

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ, (1)

where the probability is overM’s internal coin tosses.

On a very high level, DP defines a property of a probabilistic algorithm that
relates a notion of closeness between input pairs (the adjacency notion) to some
requirement of closeness2 between the respective output distributions. When
placing the mechanism within the context of an interaction between parties in a
protocol, a DP definition additionally specifies what parts of the data involved
in the interaction are to be seen as input to the mechanism and what parts
are to be seen as the output. Further, in the case that some party that gets
mechanism output is computationally bounded, one can relax the requirement

2 Technically, the notion of output closeness is typically a divergence, i.e. some non-
negative function of two probability distributions which is 0 if and only if the distri-
butions are identical.
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Fig. 1. Overview of the central model of DP. The single trusted server (dataholder)
gets the whole dataset D in the clear, then computes the DP mechanism M and sends
the result to the untrusted analyst.

that the process creating those outputs actually is SDP and rather say it has to
‘look SDP’ to the computationally bounded party. In summary, we consider a
DP definition to be determined by:

– The distribution model – what probabilistic function in the interaction should
be DP?

– The notion of adjacency – how is the condition that two inputs are close to
each other formalised?

– The notion of output closeness – how is the requirement that two output
distributions are similar formalised?

– The computational perspective – are there computational limitations on the
party receiving the output? If yes, what does it formally mean for a mecha-
nism to ‘look SDP’ to a computationally bounded party?

Typically, some of these characteristics are fixed in a definition and some are
kept variable, meaning that the same definition can be instantiated with different
choices of them. As an example, we can consider the definition of SDP above,
in which the distribution model, computational limitations and output closeness
notion are implicitly kept fixed (changing them results in a new definition).
In particular, the distribution model is fixed to the central model, all parties
are allowed to be computationally unbounded and output closeness is defined
by Equation (1). The adjacency notion on the other hand is kept variable and
changing it can be done without it being seen as proposing a new DP definition.

Scope. Throughout this survey, we follow this practice of letting the adjacency
notion be variable within a DP definition and we fix the output closeness to the
standard notion as in (ε, δ)-SDP. We let the other two properties define new
definitions. It is not always clear when a change in those properties warrants the
resulting definition to be seen as new, for instance in the case when changing
a computationally bounded party from being uniform to being non-uniform, or



SoK: Computational and Distributed Differential Privacy for MPC 5

when the distribution model shifts from involving three parties to involving four
parties. We will see two definitions that we consider to only differ in such de-
tails (i.e. in details that are perhaps technically crucial but do not change the
intuitive appeal or raison d’être of the definition) as being two instantiations of
the same definition, even if they were not originally proposed as such.3 Since
there are essentially infinitely many possible and a very large number of poten-
tially relevant choices of distribution model and computational perspective, we
need also restrict our discussion to certain choices of them. Firstly, we include
only choices within each dimension that have been treated in the literature on
either distributed or computational DP (ignoring choices only present in the non-
DP literature on secure computation or central-model SDP). Secondly, as our
motivating use case is the combination of DP and MPC, our focus is on DP def-
initions that are both distributed and computational. Therefore, we include only
distributed SDP notions and central-model CDP notions to the extent needed
to provide understanding and context for the distributed CDP definitions. For a
brief list of definitions we have chosen not to include, see Appendix B. Regarding
the adjacency notion, we leave it arbitrary in all DP definitions although almost
all results we survey use an adjacency notion where datapoints are either binary
strings or integers of bounded size and two datasets are adjacent if at most one
element is changed.4 It is also worth noting that we formulate all CDP definitions
considering protocols with respect to an arbitrary number of parties, in order to
increase the generality of our discussion, even though they have primarily been
presented, used and analysed in the two-party setting.

Relations between definitions. After surveying the field of definitions and
deciding which of them to consider, we turn to relating the definitions to each
other, with the goal of ordering them with respect to the guarantees they provide
and the types of computational tasks that can be solved whilst satisfying them.
The literature contains primarily two types of such results: results showing direct
implications (DI), i.e. that all mechanisms satisfying one definition fulfill another
as well, and results showing that one definition is more expressive (ME) than
another, i.e. that all tasks solvable with the first definition can also be solved
with the other. These types of results are interesting both in their positive form
(then we call them implications) and in their negative form (then we call them
separations). Roughly, DI-results concern establishing properties of every mech-
anism satisfying a given definition whereas ME-results concern whether there

3 The choice of when to consider two definitions to be the same in this sense is a quite
informal one. Of course it would be preferable to avoid turning to such informalities
although we have not found a way to do so without gravely restricting the overview
of the space of definitions by restricting all comparisons to very specific settings.

4 Intuitively, the use of a change-one binary adjacency notion can be seen as being
the smallest possible choice since if one considers machines that work in binary
then all other changes to a dataset can be translated to a sequence of changed
bits. Therefore, under the group privacy property of SDP, results with respect to
single binary changes should offer easy translation to most other common adjacency
notions.
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exists any mechanism solving a given task whilst satisfying the DP definition.
Therefore positive DI-results are strictly stronger than positive ME-results and
the other way around for separations. We define the different types of relations
in Section 2.

1.2 Related Work

The two works most related to this are the 2020 survey by Desfontaines and
Pejó [19] and the 2017 survey by Vadhan [69]. Two key works that we will refer
to heavily (and discuss later in more depth), since they largely initiated the
formal study of distributed and computational DP are [63,4]. In the following,
we will refer to [63] and [4] as MPRV and BNO, respectively, after their authors.

Relation to Desfontaines and Pejó’s survey. In [19] hundreds of definitions
of DP are surveyed and categorised according to seven dimensions, including
(with other names) the adjacency notion, output closeness and computational
perspective. Additionally variations in the privacy loss (letting different inputs
enjoy different types of privacy guarantees), background knowledge (making as-
sumptions on the amount/type of background knowledge the adversary has), for-
malism changes (using different formalities in measuring how much knowledge
the adversary can gain) and relativising knowledge gain (relating the knowledge
gain to structures or correlations within the data) is considered. We ignore these
four other dimensions in our survey because combining variations within them
with computational or distributed versions of DP has occurred only very rarely.
Interestingly, Desfontaines and Pejó consider changes in distribution model (call-
ing it context) out-of-scope, with the motivation that it does not change what
it means to be DP (rather only what process one demands to be DP). Whereas
this is in most scenarios an appealing argument, we will see that the choice of
distribution model greatly affects the other dimensions, for instance seen in that
SIM+-CDP is introduced exclusively for a non-central distribution model. Vari-
ations to the distribution model are considered out of scope in [19] and therefore
the overlap in the definitions covered there and in this work is quite small. Fur-
ther, since we have a more concentrated scope, this holds true also with regard
to results and discussions about the few definitions that are included in both
works.

Relation to Vadhan’s survey. Vadhan’s 2017 monograph [69] gives a broad
introduction to the relationship between differential privacy and computational
complexity theory, giving an overview of the literature, including distributed and
computational DP, and formulating open problems. The sections on distributed
DP and CDP focus on relating these areas to complexity theory and SDP, and
therefore do not discuss the wide range of proposed definitions. In this work, we
fill the gap by surveying the definitions of distributed CDP and results relating
them to each other. As many such recent results are tied to open problems posed
by Vadhan, we also provide a status update on those problems.
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1.3 Outline

In Section 2 we introduce notation and preliminary definitions, including those
of the types of relationships between definitions that we consider. In Sections 3
and 4 we survey existing definition of distributed SDP and central-model CDP,
respectively. Then we survey distributed CDP definitions in Section 5 and results
about them in Section 6. Section 7 contains discussions about practical differ-
ences between the definitions and about parameter regimes and Section 8 con-
tains our conclusions and a summary of open problems from previous sections.
Appendix A is a brief introduction to needed definitions of secure computation,
Appendix B is a list of definitions that have been overlooked in the main body
and Appendix C contains proofs omitted in the main body.

2 Notation and Preliminaries

For any natural number N , let [N ] := {1, . . . , N}. For a probability distribution
Dist, let a← Dist denote sampling a from Dist. We refer to a function from the
naturals to the non-negative reals as negligible if it approaches 0 faster than the
inverse of any polynomial. We reserve the notation negl and poly for arbitrary
negligible or polynomial functions, respectively.

2.1 Protocols, Algorithms and Corruption Models

We follow the convention set in MPRV and describe a protocol simply as a set
of parties, {P1, ..., PN}, where each party is an interactive probabilistic func-
tion. This abstraction is sufficient for our discussion, except for in two crucial
aspects, namely when it comes to computational efficiency and defining secure
computation, where a more nuanced model of protocol execution is needed. In
formalising efficiency we use non-uniform algorithms (e.g. Turing Machines), as
is the standard within the literature on CDP.5 We let PPT stand for probabilis-
tic polynomial time and PPTM stand for non-uniform PPT Turing Machine.
If a function is computable by a PPTM, then we call it efficiently computable.
We call a distribution efficiently samplable if there exists a PPTM mapping 1κ,
with κ being the security parameter, to a sample of the distribution. For more
discussion on the efficient samplability of distributions in the context of CDP,
see [62].

Regarding secure computation, we consider both active (also called malicious
or byzantine) and passive (also called semi-honest) corruptions but assume
they are static (i.e. the set of corrupted parties is fixed before the protocol
execution starts). We represent a corruption model COR = (a, C) where a ∈
5 Note that all DP definitions which consider efficient computation can be instantiated
just as well with respect to uniform PPT without changing the spirit of the definition.
Such changes may however potentially invalidate some of the results that we survey.
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{active, passive} and C ⊆ Powerset([N ]). The set C defines what subsets of par-
ties may be corrupted at the same time. For a protocol π = {P1, ..., PN} and a set
C ∈ C, let {PC} denote {Pi : i ∈ C} (the corrupted parties in π) and let {P−C}
denote {Pi : i /∈ C} (the honest parties in π). The information available to the
coalition of corrupted parties is formalised in their joint view, as defined below.
The reason for exchanging {PC} with {P̃C} is to model active corruptions, i.e.
where the corrupted parties do not follow their instructions.

Definition 2 (VIEW, reformulation from [4]). Let π = {P1, ..., PN} be a
protocol and A be an adversary corrupting a set C ⊂ [N ] of parties. For in-
puts D = (D1, ..., DN ) ∈ D, the view in π of the corrupted parties {P̃C}, de-
noted VIEWAπ,C(D) is defined as the random variable containing the inputs of
the parties in C, their random coins and the messages that they receive during
the execution of the protocol {P̃C} ∪ {P−C} on inputs D. The randomness in
VIEWAπ,C(D) is over the random coins of the honest parties {P−C}.

For defining secure computation of protocols we use the standard definitions
in the ideal/real-paradigm, in both the standalone [11,35,58] and UC frame-
works [12,18]. A brief introduction to those frameworks is found in Appendix
A.

2.2 Adjacency

For a protocol with N parties we consider an input dataset as an ordered set D
in the domain D := χN , for a data universe χ. We define a notion of adjacency
as a set of pairs of datasets in the following fashion.

Definition 3 (Adjacency notion). An adjacency notion ADJ on the dataset
domain D is a set in D ×D that is symmetric, i.e. if (D,D′) ∈ ADJ then so is
(D′, D), and ∀D ∈ D, (D,D) ∈ ADJ. If (D,D′) ∈ ADJ the we say that D and
D′ are adjacent with respect to ADJ.

The adjacency notion is typically clear from context and hence we will most of
the time simply say that D and D′ are adjacent, without further specification.
Note that the definition above can be instantiated to practically all commonly
used adjacency notions, for instance those when each each party holds an integer
and two datasets are considered adjacent if at most one player changes or removes
their value. For protocols, it is commonplace to consider DP with an adjacency
notion that is agnostic to the inputs of the corrupted parties, as formalised below.

Definition 4 (C-adjacency [4]). Let {P1, . . . , PN} be a set of parties, each
with their own input Di ∈ χ, and C ⊂ [N ] be a proper subset of the indices of
the parties. Let D = {D1, . . . , DN} ∈ χN , D−C := {Di : i /∈ C} and analogously
for D′ ∈ χN . We say that D and D′ are C-adjacent with respect to an adjacency
notion ADJ if D−C , D

′
−C are adjacent with respect to ADJ.
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2.3 Relations between DP Definitions

Most of this work concerns the relations between various DP definitions, and
such relations can be either implications (showing that the two definitions are
similar in some sense) or separations (showing the contrary). We consider two
such types of results – direct implications, showing that any protocol satisfying
the first definition also satisfies the second one, andmore expressiveness, showing
that all computational tasks solvable whilst satisfying the one definition are also
solvable whilst satisfying the other. In other words, a direct implication requires
that any task solvable with the first type of DP can also be solved with the other
type of DP by using the same mechanism, whereas expressiveness allows the task
to be solved by a different mechanism for the other type of DP. Therefore a
direct implication result should imply a result of more expressiveness, and below
we see that for our formalisation of these notions, it does. Both of these types
of results are conditional on parameter regimes and we follow the convention
of [19] in letting η, β both be collections of parameter tuples. For instance can η
be {(εκ, δκ) ∈ R2

+ : εκ > 0, δκ = negl(κ)}. Letting Def1 be a DP definition, when
the protocol π (run with security parameter κ) satisfies Def1 with the parameters
in η for the same κ , then we say that π satisfies η-Def1.

Definition 5 (Direct implication (DI)). Let Def1 and Def2 be two DP defi-
nitions and η, β be parameter regimes for them, respectively. We say that η-Def1
directly implies (DI) β-Def2, denoted η-Def1 =⇒

(DI)
β-Def2, if all protocols π sat-

isfying η-Def1 also satisfy β-Def2. If η-Def1 =⇒
(DI)

β-Def2 and η-Def1 ⇐=
(DI)

β-

Def2, we say that they are equivalent.

In order to discuss expressiveness, we must define what it means for a protocol
to solve a task. A task is defined with respect to a utility function, which we
quite generally choose to formalise as a binary deterministic function mapping a
dataset and a mechanism output to 1 iff the output was a ”good” solution. Since
DP mechanisms are probabilistic, we measure the utility as the probability that
a mechanism will output a good solution.

Definition 6 (Utility function [9,32]). A utility function is an efficiently
computable deterministic function u : D ×R → {0, 1}. Let Dist be a probability
distribution on the domain D. A mechanism M : D → R is α-useful for u
with respect to Dist if:

P
y←M(D),D←Dist(D)

(u(D, y) = 1) ≥ α. (2)

If the inequality holds for all distributions Dist then we omit it from notation.
An important detail here is that we require the utility function to be efficiently
computable. This restriction is needed to rule out pathological separations be-
tween DP definitions, as argued in [9], and therefore to save the meaningfulness
of results about expressiveness. Further, the restriction strengthens the practical
appeal of the notion of utility, since it means that a mechanism is only seen as
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significantly more useful (having higher utility) than another if it can be feasibly
tested that such is the case.

Definition 7 (Task). A task is a tuple τ = (α, u,Dist) as in Definition 6. For
a mechanism M, we say that M solves the task τ if M is α-useful for u with
respect to Dist.

An example of a task is to compute the mean of a vector of natural numbers
to within 10% additive error, and do so for each D ∈ D with probability at
least 0.9. In that example, u(D, y) = 1 iff y ∈ [0.9 ·mean(D), 1.1 ·mean(D)] and
α = 0.9. When α is constant and the utility function is defined as a bounded
distance between y and a function evaluation f(D), then we call the distance
bound the accuracy ofM for computing f .

Definition 8 (More expressive (ME)). Let Def1 and Def2 be two DP defi-
nitions and η, β be parameter regimes for them, respectively. We say that β-Def2
is more expressive (ME) than η-Def1, denoted η-Def1 =⇒

(ME)
β-Def2, if all tasks

solvable whilst satisfying η-Def1 are also solvable whilst satisfying β-Def2. That
is, for all τ such that ∃π that satisfies η-Def1 and solves τ , there also exists a
π′ that satisfies β-Def2 and solves τ . If η-Def1 =⇒

(ME)
β-Def2 and η-Def1 ⇐=

(ME)
β-

Def2 then we say that the definitions are equally expressive.

A direct consequence of the definitions of DI and ME is that DI-results imply
ME-results, in the desired way.

Corollary 1. For any η, β,Def1,Def2 as above, if η-Def1 =⇒
(DI)

β-Def2 then η-

Def1 =⇒
(ME)

β-Def2.

Both DI-results and ME-results are amendable to computational assumptions,
for instance, it is often crucial to make certain complexity assumptions for a spe-
cific task to be solvable whilst satisfying a given CDP notion. If an ME-result
is established under a complexity assumption, we say that it is an assumption-
dependent ME (ADME) result, and analogously for other types of results. Fi-
nally, we also speak of definitions being direct relaxations of some other defini-
tion. By this we simply mean that the relaxed definition is directly implied by
the other and that this relationship is apparent from the definitions.
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3 Distributed Statistical DP (Variations in Distribution
Model)

On a high level, a distribution model is a description of the different entities in
a protocol interaction and the roles they play. Roughly, we consider there to be
three different roles in a protocol – clients, servers and analysts. A client is a
party (typically trusted) who has input, i.e. holds at the start of the protocol a
part of the dataset D of interest for the DP mechanism. A server is a party that
receives a function evaluation of some inputs and then sends some function of the
results further. An analyst is an untrusted party that receives some mechanism
output. It is the analyst that the mechanism is supposed to be DP against.
These roles are not necessarily disjoint, meaning that one party can have several
of them at once.

3.1 The Local Model

One major drawback of the central model of DP is the need to fully trust a central
dataholder. In order to remove this trust assumption, a model was introduced
where each client introduces some noise to their data before giving it to someone
else. Since here the DP mechanism (also called the local randomiser) is computed
by each client themselves, this is known as the local model, of which an illustration
is found in Figure 2. One consequence of this approach, however, is that in many
situations one must add much more noise than in the central model [4,53,15,54].
Due to the very extensive literature about the local model, providing a broader
faithful summary here is infeasible and since adopting the local model is mainly
an alternative to using MPC rather than a complement of it, we mostly consider
the local model as out of scope for the rest of this work. There is great importance
of the local model for the definitions we will study in more detail, though, namely
in that it serves as a worst-case scenario on accuracy, meaning that using local
randomisers directly leads to being DP in all the other distributed models as
well and for a mechanism to be considered non-trivial it has to at least have
higher utility than possible in the local model.

Definition 9 (DP in the local model [4,53,22]). A protocol π is (ε, δ)-SDP
in the local model if the clients communicate exclusively with the analyst (who
has no input) and the view of the analyst is (ε, δ)-SDP.

One important remark about the choice of distribution model in practice is that
they are, to some extent, often geared towards different use cases directly. For
instance, the local model can be seen as providing protection during the collec-
tion of data rather than merely the disclosure of information about an already
assembled dataset. One illustrative example of this difference is the comparison
between the US census bureau’s system for releasing population statistics with
DP [10] and systems from tech giants like Google and Apple for collecting user
data with DP [27,28,68]. In the case of the Census bureau, their collection of
population data is largely uncontroversial, it is even their legal obligation to do
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so, and therefore the central model of DP is suitable. For the large tech com-
panies on the other hand, already the collection of detailed user information is
arguably problematic and therefore it may be desirable to reduce trust in the
one collecting the data by having the users themselves do local randomisation,
i.e. to use the local (or shuffle) model of DP.

D1

D2

D3

...

Clients Analyst

M(D1)

Fig. 2. Overview of the local model. Here there are no servers so the clients send their
processed datapoints directly to the analyst.

3.2 The Shuffle Model

The shuffle model of DP [7,16,27,3,37,73] is an intermediate model between
the central and local models, where the mechanism is run locally but there is
still a central server (sometimes called curator) performing some computations.
The point would be that this server, called the shuffler, now only needs to be
semi-honest and performs only the relatively simple task of shuffling (randomly
permuting) the dataset and forwarding it to the analyst (also called the aggre-
gator). Nonetheless, one can in certain settings achieve accuracy much better
than that in the local model and even at times the same as in the central model.
Again, we do not discuss the shuffle model further in this work due to the size
of the literature and lack of direct relevance to distributed CDP definitions.

3.3 Distributed SDP as in BNO

In BNO [4], the formal study of DP in a distributed protocol setting is largely
initiated. As a part, the authors introduce what has come to be arguably the
main definition of SDP for protocols, a definition we call BNO-SDP. The idea
of this definition is a natural one, namely that a protocol is to be seen as SDP
if whatever information the adversary gains from the protocol is an SDP mech-
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anism of the inputs of the honest parties.6 An illustration of the distribution
model is found in Figure 3.

Definition 10 (BNO-SDP, reformulation and generalisation of [4]). Let
COR = (a, C) be a corruption model. We say that an N -party protocol π is
(εκ, δκ)-BNO-SDP with respect to COR if for all (also inefficient) adversaries A
following COR and corrupting the parties in C ∈ C, for all C-adjacent D,D′

(Definition 4) and for all possible subsets S of combined views of the parties in
C, we have

P(VIEWAπ,C(D) ∈ S) ≤ eεκP(VIEWAπ,C(D
′) ∈ S) + δκ, (3)

where the probabilities are taken over the randomness in π. If C is exactly all
subsets of [N ] of size at most t and the corruptions are passive, we say that π is
(t, εκ, δκ)-BNO-SDP.

D1

D2

...

D3

D4

...

Clients/Servers Clients/Analysts

Fig. 3. Description of the general distribution model as in BNO [4], which describes an
N -party protocol where all parties hold inputs (can be void) and some of the parties
are corrupted (become analysts rather than servers).

A special case of BNO-SDP is introduced in [25], called distributed DP (DDP).
The parties are classified as either clients or servers with only the clients having
inputs and the servers getting shares of each client’s inputs. DDP is then precisely
BNO-SDP except for that only servers may be corrupted.

6 The authors of BNO also propose a computational version of this definition, which
we discuss in Section 5. We note that whilst the definitions are stated originally only
with respect to passive corruptions, leading to a simpler treatment, they are in later
works (such as MPRV) extended to also apply to the case of active corruptions. Also,
BNO-SDP was originally introduced with respect to pure SDP (δ fixed to 0).
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3.4 Other Distribution Models

BNO-SDP is sometimes weakened by requiring the transcript of the protocol
(i.e. the messages sent) rather than the entire view of the corrupted parties (also
including their initial inputs and random coins) to be SDP with respect to the
inputs of the honest parties [61]. This is called DP against an external observer,
which we denote BNOext-SDP. In [45], a version of BNOext-SDP is defined for
oracle-aided protocols. There the analyst, additionally to the protocol transcript,
also has query access to the same oracle (i.e. an abstract functionality that
answers a specific type of queries) instance that is used in the protocol. Other
settings for SDP that arguably are to be seen as variations in distribution model
are those that consider interaction between the dataholder and the analyst.
Such variations are used, for instance, in the context of adaptive composition of
mechanisms [52,67,46] and DP under continual release [14,66,23].

3.5 Relations between Different Distribution Models

The choice of distribution model induces a trade-off between utility and trust as-
sumptions where less restrictive trust assumptions lead to lower optimal utility.
On this scale, the local and central models constitute the edges, meaning that
no distribution model allows better optimal utility than the central one and no
model has less trust assumptions than the local one. The utility gap between
the distribution models is critically dependent on the task at hand. For instance,
for computing integer sums, the additive error (with constant probability) can
be O(1/εκ) in central (εκ, 0)-SDP (by the Laplace mechanism) but for all local
(εκ, 0)-SDP protocols, it is Ω(

√
n/εκ) [4]. The shuffle model lies strictly in be-

tween the local and central models, and the optimal accuracy achievable within
it ranges from that of the local model to that of the central model, depending
on the task and constraints on the communication complexity. The BNO-SDP
model can be seen as a generalisation of the others, since depending on how one
specifies π and COR one gets models that are equivalent to each of the others.
For instance, one gets exactly the non-interactive local model if all parties but
one hold input except for one, which is also the only corruptible one, and the
parties with input can only send messages to the corruptible one. In practice,
an often crucial difference between the distribution models is the efficiency of
the various involved parties. For instance, if one goes from using the central to
the local model then a, potentially significant, computational burden is shifted
from the dataholder to the clients. Similarly, if one uses MPC (and therefore
BNO-SDP) to avoid trusting a dataholder withot using the local model, then
the computational costs rise quickly as the number of clients increase, therefore
making it less feasible than using the local model in systems with many users
(clients).
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4 Central-model CDP (Variations in Computational
Perspective)

Variations in computational perspective all formalise what it means for a mech-
anism to ‘look DP’ to an efficient analyst interacting with it. There are two
main flavors of formalisations, indistinguishability-based ones and simulation-
based ones. The indistinguishability-based definitions are created by taking the
usual SDP definition and weakening the requirement that output closeness holds
for all subsets of the range to that output closeness holds for the output distri-
bution of any efficient distinguisher (analyst) acting on the mechanism output.
Since the first requirement can be re-formulated as the output of any (possibly
inefficient) distinguisher satisfying output closeness, the change amounts exactly
to limiting the distinguisher to be efficient. Formally, indistinguishability-based
CDP (IND-CDP) in the central model is defined as below. Note that the compu-
tational boundedness induces an asymptotic perspective in the definitions and
we therefore must consider mechanism ensembles (indexed by the security pa-
rameter) as well as parameter ensembles (εκ, δκ) with possible dependence on κ.
7

Definition 11 (IND-CDP for mechanisms, MPRV [63]). An ensemble
{gκ(·)}κ∈N of mechanisms gκ : D → Rκ is (εκ, δκ)-IND-CDP if for every ef-

ficient distinguisher T , every sufficiently large κ, all adjacent D,D′ ∈ D of
polynomial size in κ, it holds that

P(T (gκ(D)) = 1) ≤ eεκP(T (gκ(D
′)) = 1) + δκ,

with the probability being over the randomness in gκ and T .

Note that IND-CDP was originally introduced with δκ being fixed as negligible
in κ and that setting δκ = 0 causes the definition to collapse into being equivalent
to (εκ, 0)-SDP.8 Simulation-based CDP is perhaps a more direct formalisation of
the idea that the mechanism looks SDP to any PPT distinguisher, because here
the requirement is that there exists an SDP mechanism (called the simulator)
from which the mechanism is computationally indistinguishable.

Definition 12 (SIM-CDP for mechanisms, MPRV [63]). An ensemble
{gκ(·)}κ∈N of mechanisms gκ : D → Rκ is (εκ, δκ)-SIM-CDP if there exists an
ensemble {Mκ(·)}κ∈N of (εκ, δκ)-SDP mechanismsMκ : D → Rκ such that for
every sufficiently large κ and every D ∈ D of polynomial size in κ, it holds that
gκ(D) andMκ(D) are computationally indistinguishable.

7 When clear from context we often suppress such dependencies and speak of mecha-
nism (and protocol) ensembles simply as single mechanisms (and protocols).

8 For completeness we include a proof of the equivalence between IND-CDP and SDP
when δκ = 0 in Appendix C.
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Here we note that SIM-CDP was first defined with δκ = 0 and that, as opposed
to IND-CDP, this does not cause the definition to be equivalent to SDP. One
intuitive explanation for this is that for this definition, the computational relax-
ation lies in the simulation, rather than in the output distribution of the real-
world mechanism. In MPRV, an intermediate definition is also proposed, called
SIM∀∃-CDP. It is the same as SIM-CDP except that the order of the quantifiers
is swapped, i.e. instead of there existing a simulator M for all datasets, it is
allowed that each dataset has its own simulator associated with it. This defi-
nition is introduced as a technical tool used to study the relationship between
IND-CDP and SIM-CDP.

4.1 Relations between CDP Definitions in the Central Model

It is easy to see that (εκ, δκ)-SIM-CDP directly implies (εκ, δκ + negl(κ))-IND-
CDP (via (εκ, δκ)-SIM∀∃-CDP) and this is shown already in MPRV [63] for
δκ = 0. The result extends immediately to arbitrary values of δκ, which we show
in Appendix C.1. In MPRV it is also shown that (εκ, negl(κ))-IND-CDP directly
implies (εκ, 0)-SIM∀∃-CDP when εκ ∈ O(log(κ)). Thus the two definitions are
equivalent for such εκ and δκ = 0 but until now there are no known results on
how they relate for non-zero δκ. It was left open in MPRV to separate SIM∀∃-
CDP and SIM-CDP with any type of result. Further, it is immediately clear that
(εκ, δκ)-SDP directly implies (εκ, δκ)-SIM-CDP for any parameter choice. Thus,
the remaining questions to discuss are how (εκ, δκ)-SDP, (εκ, δκ)-SIM-CDP and
(εκ, δκ)-SIM∀∃-CDP relate. Summaries of relationships between the definitions
can be seen in Figure 4 and Table 1.

(εκ, 0)-SDP (εκ, 0)-SIM-CDP (εκ, 0)-SIM∀∃-CDP (εκ, negl(κ))-IND-CDP
DI [63]

/

ADME [32]

DI [63]

DI [63]

DI
/

AD-Infeasibility [9]

Fig. 4. Overview of relations in the central model, with respect to arbitrary queries
and complexity assumptions. Note that we state the results for constant εκ > 0 and
δκ = 0 although each of them extend also to wider parameter regimes(see Table 1).

4.2 Separating SIM-CDP from SDP

The first results about separating SIM-CDP and SDP were negative and quite
general. It was shown in 2011 [40] (and then strengthened in 2016 [9]) that,
roughly, they are equally expressive with respect to the set of tasks defined by
a utility function which is a bound on an Lp norm for a low-dimensional output
domain. That is, for such tasks, (εκ, negl(κ))-SIM-CDP ME-implies (εκ, negl(κ))-
SDP and they are thus equivalently expressive. This means, essentially, that if
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there is a task for which there is a SIM-CDP mechanism that has significantly
better utility than the best SDP mechanism, then the dimension of the range of
M must be large, or the utility function must be of a different kind. Importantly,
this remains true regardless of the complexity assumptions one relies on. Another
aspect of the barriers established in [40] is that they consider mechanisms in the
two settings of roughly the same efficiency. This suggests a third way of avoiding
those barriers, namely to propose a task for which all SDP mechanisms have to
be vastly slower than the most efficient SIM-CDP mechanism. This is done in
2016 [9] when it is proven that there are tasks for which there is an efficient CDP
mechanism but all SDP mechanisms are inefficient. That is, it is established an
assumption-dependent infeasibility separation between SDP and SIM-CDP. The
task used in [9] is constructed specifically for the purpose of providing the desired
separation. Therefore Vadhan poses the following open problem.

Open problem 1 (Vadhan’s open problem 10.7 [69], reformulated) Can
an infeasibility separation between (εκ, δκ)-SDP and (εκ, 0)-SIM-CDP be ob-
tained using a more ‘natural’ utility function, such as the absolute error when
answering counting queries?

4.3 Separating SIM-CDP from IND-CDP

It is also remarked in [9] that if there is an ME-separation between IND-CDP
and SDP, then that must imply an ME-separation between SIM-CDP and IND-
CDP. No such separation was known until 2023 when Ghazi et al. [32] provided
an ADME separation. This result simultaneously solves Vadhan’s open problems
10.6 and 10.8 [69].

Closed problem 1 (Vadhan’s problem 10.6, Closed positively in [32])
Is there a computational task that is solvable in the central model in CDP but is
impossible in SDP? In our terminology; is there an ADME-separation between
(εκ, negl(κ))-SDP and (εκ, negl(κ))-IND-CDP?

Closed problem 2 (Vadhan’s problem 10.8, Closed negatively in [32])
For every efficiently computable (εκ, negl(κ))-IND-CDP mechanismM : D → R,
is there an (εκ, negl(κ))-SDP mechanism M′ : D → R such that for all D ∈ D,
M(D) is computationally indistinguishable fromM′(D)?

Note that this question is equivalent to asking if all (εκ, negl(κ))-IND-CDP mech-
anisms also are (εκ, negl(κ))-SIM-CDP. The ADME-separation of Ghazi et al.
is with respect to non-standard but arguably plausible complexity assumptions,
thus suggesting investigations into what assumptions are needed to establish
such ADME-separations. In particular, the question is posed what the minimal
assumption needed for the separation is.

Open problem 2 (From discussion in [32]) What is the minimal complex-
ity assumption needed to ADME-separate (εκ, negl(κ))-IND-CDP from (εκ, δκ)-
SDP?
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As a starting point, [40] shows that black-box use of a certain type of compu-
tational assumptions is not enough to arrive at any ADME-separations between
IND-CDP and SDP. In particular, it is shown that black-box use of one-way
functions and similar primitives9 is not sufficient. This negative result means
that for there to be an ADME-separation at all, the SIM-CDP mechanism must
either make white-box use of the primitives or rely on stronger cryptographic
assumptions (Ghazi et al. does the latter). The separation of Ghazi et al. uses a
non-uniform task, meaning that the utility function u is dependent on κ, which
suggests the open problem of finding other tasks (particularly uniform ones) on
which the notions can be separated.

Open problem 3 (From discussion in [32]) Establish an ADME-separation
between (εκ, negl(κ))-IND-CDP and (εκ, 0)-SDP, as the one in [32], for another
task, such as a ”more natural” task10 or one that is uniform. In particular, are
(εκ, 0)-SDP and (εκ, negl(κ))-IND-CDP equally expressive in the set of uniform
tasks in the central model?

We finish this section by noting that since most of the known implications and
separations are only for δκ = 0 or with a non-zero δκ in only one of the involved
definitions, an immediate open research area is to extend these results to other
parameter regimes. We formulate this in two open problems.

Open problem 4 (New) Are (εκ, δκ+negl(κ))-IND-CDP and (εκ, δκ)-SIM∀∃-
CDP equivalent in the central model for all εκ ∈ O(log(κ)), δκ > 0?

Open problem 5 (New) For non-zero δκ, δ
′
κ, establish an ADME-separation

between (εκ, δκ + negl(κ))-IND-CDP and (εκ, δ
′
κ)-SIM-CDP.

Table 1. Summary of implications and separations in central-model CDP.

Result Parameter restrictions Paper Comment

(εκ, δκ)-SDP =⇒
(DI)

(εκ, δκ)-SIM-CDP - - By definition

(εκ, 0)-SIM-CDP ≠⇒
(AD−Infeasibilty)

(εκ, δκ)-SDP εκ ∈ O(log(κ)), δκ ≤ 1/poly(κ) [9] Non-uniform task

(εκ, 0)-SIM-CDP =⇒
(DI)

(εκ, negl(κ))-IND-CDP - MPRV

(εκ, δκ)-SIM-CDP =⇒
(DI)

(εκ, δκ + negl(κ))-IND-CDP εκ ∈ O(log(κ)) This work See Appendix C.1

(εκ, negl(κ))-IND-CDP =⇒
(DI)

(εκ, 0)-SIM∀∃-CDP εκ ∈ O(log(κ)) MPRV

(εκ, negl(κ))-IND-CDP ≠⇒
(ADME)

(ε′κ, δκ)-SIM-CDP εκ, ε
′
κ > 0 constant, δκ ≤ 1/κ27 [32] Non-uniform task

9 In particular, the primitives considered are those that can be instantiated as a ran-
dom object. This includes trapdoor permutations and collision-resistant hash func-
tions.

10 Here, ‘more natural’ means essentially any task which is not specifically construction
as to give the separation.
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5 Definitions of Distributed CDP

We now turn to CDP definitions outside the central model and focus on the
distribution model of BNO. This is due to the generality of that model and
it being the primary model used when combining DP and MPC. Just as in
the central model, non-central CDP definitions are often categorised as either
indistinguishability-based or simulation-based. Here, it is however useful to dis-
tinguish definitions whose formalisation of simulation is in the ideal/real paradigm
of secure computation from those whose is not. We refer to those that use the
ideal/real paradigm as ideal/real-based CDP.

5.1 Indistinguishability-based CDP

Additionally to the notion of BNO-SDP (Definition 10), BNO [4] also proposes
a computational version of it, which we can call BNO-CDP. Later in MPRV,
the definition of IND-CDP (Definition 11) is extended to the case of two-party
protocols. It is also directly extendable to the case of multiple parties, resulting
in a definition that is the same as that of BNO-CDP except that the adjacency
notion is different, algorithms are non-uniform and corruptions are not neces-
sarily passive. Since in this work, we ignore such differences (see Section 1.1),
we consider BNO-CDP and IND-CDP (for protocols) to be two different instan-
tiations of the same definition and for the rest of this work, we refer only to
IND-CDP.

Definition 13 (IND-CDP for protocols, reformulation from [4,69]). Let
COR = (a, C) be a corruption model. We say that an N -party protocol π is
(εκ, δκ)-IND-CDP with respect to COR if for all efficient adversaries A following
COR and corrupting the parties in C ∈ C, for all efficient distinguishers T , every
sufficiently large κ and for all C-adjacent D,D′, we have

P
(
T
(
VIEWAπ,C(D)

)
= 1

)
≤ eεκP

(
T
(
VIEWAπ,C(D

′)
)
= 1

)
+ δκ. (4)

The probabilities are taken over the randomness in π, A and T .

There are two direct relaxations of IND-CDP in the literature, both of which
are introduced specifically to aid in providing separations between IND-CDP
and some other notion. The first such definition, call it INDext-CDP [43], is
the computational analog of BNOext-SDP mentioned in Section 3, meaning that
it is exactly as IND-CDP except that the distinguisher only has access to the
transcript of the protocol. The other restricted IND-CDP definition, we call
INDsub-CDP [38] and is the same as IND-CDP except that the guarantee is only
required to hold for a subset of protocol executions, for instance only requiring
output closeness when all honest parties get output. In [14] a local model CDP
definition is proposed which is quite similar to that of IND-CDP but has some
important differences. In particular, the corruptions are modeled as a process
(not necessarily static) and the probabilities in the output closeness inequality
are also taken over the randomness in the corruption process.
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5.2 Simulation-based CDP

Just as for IND-CDP, MPRV also proposes a version of SIM-CDP (Definition
12) for two-party protocols that can easily be extended to multi-party protocols.
It is worth noting that the words ‘simulation’ and ‘simulator’ are used quite
differently in the SIM-CDP definitions to what is the custom in simulation-
based security definitions (such as those in the ideal/real paradigm). Essentially,
the simulator (SDP mechanism) in SIM-CDP fulfills a role more akin to that
of the ideal functionality (describe the desired behaviour of the protocol) than
that of the simulator (map functionality outputs to something similar to party
views) in a simulation-based definition of secure computation.

Definition 14 (SIM-CDP for protocols, reformulation from MPRV).
Let COR = (a, C) be a corruption model. We say that an N -party protocol π is
(εκ, δκ)-SIM-CDP with respect to COR if for all efficient adversaries A following
COR and corrupting the parties in C ∈ C, for all efficient distinguishers T and
for all C-adjacent D,D′, there exists an ensemble {Mκ(·)}κ∈N of (εκ, δκ)-SDP
mechanisms Mκ : D → Rκ such that for every sufficiently large κ and every
D ∈ D of size polynomial in κ, it holds that VIEWAπ,C(D) and Mκ(D) are
indistinguishable to T .

5.3 Ideal/real-based CDP

IND-CDP and SIM-CDP are formulated quite differently to the usual ways of
defining secure computation in the MPC literature. Therefore another CDP
definition, SIM+-CDP, is proposed in MPRV which incorporates DP into the
ideal/real paradigm. In the following, we assume familiarity with standard defi-
nitions of secure computation, for a brief introduction to the ideal/real paradigm
we refer to Appendix A and references therein. One main advantage of operating
within the ideal/real paradigm is that the entire possible influence of an adver-
sary on the protocol execution is specified, such as how it can change the output
of the protocol, rather than it only being regulated how much information the
adversary can gain. In the ideal/real paradigm, the adversarial effect on the pro-
tocol is defined by the ideal functionality that dictates all intended properties
of the protocol and thus it is a natural definitional approach to also incorporate
DP in this ideal world. The SIM+-CDP definition is as follows.11

11 The formulation in MPRV is quite different from the one we have here, in particular
in the modeling of protocols and with regard to usefulness, where a different formu-
lation of utility is used. The adapted definition of standalone security is defined in
the long version of the MPRV paper, which is available from the authors. We thank
them for providing it and for answering our questions.
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Definition 15 (SIM+-CDP, Reformulation of MPRV). Let u be a utility
function. An N -party protocol π is (α, εκ, δκ)-SIM

+-CDP for u if there exists an
(εκ, δκ)-SDP mechanismM such that:

– the mechanismM is α-useful for u, and,
– π is a secure protocol for the functionality FMSFE (the ideal functionality that

evaluatesM when given inputs from all parties) as per Definition 18 (stan-
dalone security with perfect correctness, efficient protocols and a potentially
inefficient simulator).

In 2024, [62] argues that the used notion of secure computation is slightly too
restrictive for SIM+-CDP to be achievable when M is a canonical SDP mech-
anism. The argument is based on that the security notion used in SIM+-CDP
demands that π runs in strict polynomial time and that the protocol has perfect
correctness, i.e. has exactly the same output distribution as the ideal functional-
ity when there are no active corruptions. This leads to that many standard SDP
mechanisms (such as the Laplace and Gaussian mechanisms) cannot take the
role ofM in the SIM+-CDP definition, since they cannot be sampled exactly in
strict polynomial time. In light of this, a new ideal/real-based CDP definition is
proposed where, among other things, the notion of secure computation and the
correctness requirement are changed.

Definition 16 (SIM∗-CDP, Reformulation of [62]). An N -party protocol π
is (εκ, δκ)-SIM

∗-CDP for the ideal functionality F and a given adjacency notion
ADJ if π UC-realises F and for all efficient ideal-world adversaries S, the view
of S is (εκ, δκ)-SDP with respect to ADJ.

In [62], a more generalised version called SIM◦-CDP is also introduced, which is
identical to SIM∗-CDP except that the definition of secure computation is kept
variable. An direct relaxation of SIM+-CDP is used in [5], where the correctness
is relaxed to be computational rather than statistical (i.e. an inefficient adversary
can violate the correctness of the honest parties’ output with non-negligible
probability). It is immediate that SIM+-CDP directly implies this relaxed notion
and that it strictly stronger than SIM-CDP in the same way that SIM+-CDP
and SIM∗-CDP are.

6 Relations between the Distributed CDP Definitions

When showing relations between distributed CDP notions, one must do so with
respect to a given family of functionalities, distribution model and corruption
model. All of the results in this section are with respect to passive (semi-honest)
corruptions and the functionality of secure function evaluation (SFE), i.e. the
ideal functionality that evaluates a fixed function when given inputs from all
parties. The choice to work with passive corruptions is not only because it is
easier but also because most results are in the shape of (or follow from) lower
bounding the error in a protocol and if one can establish those with respect to
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passive corruptions, then the results carry over to the case of active corruptions.
Restricting the study to SFE is similarly due to it being an extremely general
functionality. There are however reactive functionalities that cannot be reduced
to (non-reactive) SFE [41,49,48]. Better understanding the relations between
CDP definitions for other types of corruptions and functionalities are exciting
open research areas. Further, almost all results we survey are established with
respect to δκ fixed as either 0 or negligible and also here extending the results to
other parameter regimes lies largely open. Overviews of known results are given
in Figure 5 and Table 2.

(εκ, 0)-SIM-CDP(εκ, negl(κ))-IND-CDP

(εκ, negl(κ))-BNO-SDP (εκ, 0)-BNO-SDP

(εκ, 0)-SIM
+-CDP (εκ, 0)-SIM

∗-CDP

DI [63] /ADME [63]

/

ADME [62]

/

ADME [62]
DI [62]

/

ADME [62]DI [63]

/

ADME [32]

/ADME DI /ADME DI

Fig. 5. Overview of implications and separations for the setting of two-party SFE. All
results are for passive adversaries except for the ADME separations to SIM∗-CDP.
Note that we state the results for δκ = 0 or δκ = negl(κ) although some of them extend
also to larger δκ (see Table 2).

6.1 Separating the CDP Definitions

The results regarding IND-CDP and SIM-CDP directly extend from the central
model, meaning that (εκ, δκ)-SIM-CDP directly implies (εκ, δκ + negl(κ))-IND-
CDP and that (εκ, negl(κ))-IND-CDP is ADME-separated from (εκ, δκ)-SIM-
CDP by the result of Ghazi et al. [32]. (εκ, 0)-SIM

+-CDP is a strictly stronger
definition than both of them, as is already shown in MPRV. More precisely,
(εκ, 0)-SIM

+-CDP directly implies (εκ, 0)-SIM-CDP but the same does not hold
in the other direction. Further, it is easy to see that (εκ, δκ)-SIM

+-CDP must also
be ME-separated from (εκ, δκ)-SIM-CDP for some parameters since SIM-CDP
allows inefficient protocols but SIM+-CDP does not. We show one such simple
separation in Proposition 3. Some results relating SIM∗-CDP to the other defini-
tions are given in [62], more precisely is it shown that (εκ, δκ)-SIM

∗-CDP directly
implies (εκ, δκ)-SIM-CDP for all parameters and that there are parameters such
that (εκ, 0)-SIM-CDP is ADME-separated from (εκ, δκ)-SIM

∗-CDP. Further, it
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Table 2. Summary of relationships between definitions in distributed CDP for two-
party SFE. All results are for passive adversaries if not otherwise stated.

Result Parameter restriction Paper Comment

(εκ, δκ)-BNO-SDP =⇒
(DI)

(εκ, δκ)-IND-CDP - - By definitions directly

(εκ, δκ)-IND-CDP ≠⇒
(ADME)

(εκ, δκ)-BNO-SDP - E.g. [4] By impossibility of information-theoretic 2PC

(εκ, δκ)-BNO-SDP =⇒
(DI)

(εκ, δκ)-SIM-CDP - - By definitions directly

(εκ, δκ)-SIM-CDP ≠⇒
(ADME)

(εκ, δκ)-BNO-SDP - E.g. [4] By impossibility of information-theoretic 2PC

(εκ, 0)-SIM-CDP =⇒
(DI)

(εκ, negl(κ))-IND-CDP - MPRV [63]

(εκ, δκ)-SIM-CDP =⇒
(DI)

(εκ, δκ + negl(κ))-IND-CDP εκ ∈ O(log(κ)) This work See Appendix C.1

(εκ, negl(κ))-IND-CDP ≠⇒
(ADME)

(ε′κ, δκ)-SIM-CDP εκ, ε
′
κ > 0, δκ ≤ 1/κ27 [32] By applying central-model result

(εκ, δκ)-SIM
+-CDP =⇒

(DI)
(εκ, δκ)-SIM-CDP - MPRV [63]

(εκ, 0)-SIM-CDP ≠⇒
(DI)

(εκ, 0)-SIM
+-CDP - MPRV [63]

(εκ, 0)-SIM-CDP ≠⇒
(ME)

(εκ, 0)-SIM
+-CDP Fixed εκ only This work Proposition 3

(εκ, δκ)-SIM
∗-CDP =⇒

(DI)
(εκ, δκ)-SIM-CDP - [62]

(εκ, 0)-SIM-CDP ≠⇒
(ADME)

(εκ, 0)-SIM
∗-CDP Fixed εκ only [62] Only for active corruptions.

(εκ, 0)-SIM
+-CDP ≠⇒

(ADME)
(εκ, 0)-SIM

∗-CDP Fixed εκ only [62] Only for active corruptions.

(εκ, 0)-SIM
∗-CDP ≠⇒

(ADME)
(εκ, 0)-SIM

+-CDP Fixed εκ only [62] By SIM+-CDP needing efficient functionality

is shown that (εκ, 0)-SIM
+-CDP and (εκ, 0)-SIM

∗-CDP are ADME-separated
from each other in both directions. None of these results are really surprising,
considering that SIM∗-CDP can be seen as a version of SIM+-CDP that has
been both relaxed (using computational rather than perfect correctness) and
strictened (using UC instead of standalone security).

6.2 Separating CDP and BNO-SDP

Already in BNO [4], several ADME-separations are obtained and thus the un-
derstanding of the relationship between SDP and CDP in the multi-party setting
was always a few steps ahead of that in the central model. This is unsurprising
since there is already a large and well-understood literature on what functional-
ities can be computed under what complexity assumptions in multi-party proto-
cols. For instance, it is known that for the case of dishonest majorities (such as in
the two-party case), there are functionalities (such as evaluating an AND gate)
that cannot be realised without complexity assumptions whereas any efficiently
computable functionality can be realised under the assumption that there ex-
ists a protocol for oblivious transfer (OT) [57,17]. On the other hand, if there
are more than two parties and a majority of them are honest, then any PPT
functionality can be securely realised even without computational assumptions,
and thus for the discussion about relating the different DP definitions, we focus
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exclusively on the two-party case. The main strategy for separating BNO-SDP
from various CDP definitions is to choose the task of computing an N -ary PPT
computable function with the same error as in the central model (up until a
negligible decrease) and then derive a lower bound on the error in BNO-SDP
that rules out solving said task. The existence of general-purpose MPC implies
that it can be solved under the assumption of OT and since a protocol that
computes an SDP mechanism with perfect correctness and computational secu-
rity in the standard standalone security model directly satisfies SIM+-CDP, an
ADME-separation between BNO-SDP and SIM-CDP and IND-CDP follows via
SIM+-CDP. An analog argument holds with respect to SIM∗-CDP (with the OT
protocol being UC-secure). This strategy has proven remarkably successful and
has yielded ADME-separations between BNO-SDP and all CDP variants for in-
teger sums [4,13], binary inner-products [61] and general boolean functions [39].
This success motivates the search for the minimal sufficient assumption to ar-
rive at an ADME-separation for a given functionality. That is, we know that
OT is sufficient but could it be enough to assume, say, the existence of one-way
functions (OWF) or key-agreement protocols (KA)? This is captured in one of
Vadhan’s open problems:

Open problem 6 (Open problem 10.3 in [69], Reformulated) What is the
minimal complexity assumption needed to construct a task that can be solved by a
CDP protocol but is impossible for any SDP protocol? In our words; What is the
weakest complexity assumption under which there is a task that ADME-separates
(εκ, δκ)-BNO-SDP and (εκ, δκ)-IND-CDP?

There has been much progress on this question, mostly in the shape of results
proving that a given complexity assumption is necessary for a given class of
functionalities, with respect to (εκ, negl(κ))-IND-CDP and (εκ, 0)-BNO-SDP.
We now overview such results and summarise them in Table 3. Note that these
results are only partial answers to the open problem above. In particular, under-
standing the necessary and sufficient assumptions for a separation with respect
to other functionalities (or larger families of functions), other versions of CDP
and parameter regimes is almost entirely open.

Table 3. Summary of sufficient and necessary assumptions for there existing a
(εκ, negl(κ))-IND-CDP protocol for the function in question with optimal accuracy
(equal to that in the central model with (εκ, 0)-SDP). For AND, the known largest
necessary assumption is different between optimal accuracy a non-trivial accuracy (i.e.
the best possible with (εκ, 0)-BNO-SDP). The result in paranthesis is with respect to
(εκ, negl(κ))-INDext-CDP. OT stands for oblivious transfer and KA for key agreement.

Function Weakest known sufficient assumption Strongest known necessary assumption

XOR OT OT [39,56,38,44,42]
AND OT KA (optimal accuracy) [56]/OWFs (non-trivial accuracy) [39]
BIP OT (KA [43]) KA [43]
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Assumptions needed for separations via boolean functions. We have the
best understanding for functionalities that evaluate boolean functions. For them,
utility is typically measured in the probability that the protocol computes the
function in question correctly. For any boolean function, the optimal utility (i.e.
the best attainable utility with pure SDP in the central model) is α∗ := λ/(λ+1),
with λ := eεκ, by the optimality of the randomised response mechanism [55].
On the other hand, in two-party (εκ, 0)-BNO-SDP, the best possible utility for

XOR is αXOR := 1+λ2

(1+λ)2 and for AND is αAND := λ(λ2+λ+2)
(1+λ)3 , as shown in [39].

Therefore, the quest for minimal assumptions is to find out when the accuracy lies
in [α∗, αXOR) or [α∗, αAND), respectively. In a string of results [39,56,38,44,42],
it is shown that for XOR, OT is indeed not only sufficient but also necessary
to achieve a non-trivial accuracy, i.e. accuracy non-negligibly above αXOR. For
AND, the current understanding is that to get optimal accuracy, assuming that
key agreement protocols exist is necessary [56], and for a non-trivial accuracy,
one needs at least OWFs [39].

Open problem 7 (From discussion in [42]) What is the minimal complex-
ity assumption sufficient for the existence of a two-party protocol computing AND
with non-trivial accuracy and (εκ, negl(κ))-IND-CDP?

Assumptions needed for separations via inner-products. For binary
inner-products (BIPs), the utility has typically been measured as the additive
error occurring with constant probability, averaged over uniform inputs. For this
setting, the optimal error is O(1/εκ) by use of, say, the geometric mechanism [33]

and the best possible error with (εκ, 0)-BNO-SDP is Ω
( √

n
λ log(n)

)
, with n being

the number of elements in the vectors [61]. In 2022, [43] showed that in order
to do significantly better than this lower bound, one must assume the existence
of a key agreement protocol. In particular, any (εκ, 1/n

2)-IND-CDP protocol
for BIP with error O(

√
n) can be used to construct a key agreement protocol.

Further, it is shown that for the relaxed notion of (εκ, negl(κ))-INDext-CDP, key
agreement is both necessary and sufficient.12

The strategy above of establishing a separation between notions by showing
a strict gap in the best achievable utility or accuracy within each notion also
suggests measuring the size of that separation as the size of the gap. Doing so
lets us understand the practical implications of having SDP rather than CDP
protocols (or distributed SDP instead of central model SDP).

12 Before 2022, the state of understanding was limited to that there exists no protocol
avoiding the lower bound of [61] in the random-oracle model [45].
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Open problem 8 (Question 3 in [61], reformulated) What is the largest
gap in accuracy between statistical and computational two-party protocols? In
our terminology; Given a measure of accuracy, a distributed CDP definition and
parameter regimes, what is the largest difference in the accuracy of any function
between the best two-party protocols satisfying BNO-SDP and CDP in the given
parameter regimes, respectively (under arbitrary complexity assumptions)?13

7 Discussion – Practical Differences between Distributed
CDP Definitions

7.1 On the Semantics of the Definitions

We now discuss how one might go about choosing a distributed DP definition
and instantiating it for a given use case. Firstly, we note that the choice of
distribution model is essentially entirely decided by the problem at hand and
therefore we consider only the choice of computational perspective. As is clear
from the previous section, there is a more or less strict ordering in the expres-
siveness of the CDP definitions, with the indistinguishability-based definitions
allowing better utility than the simulation-based and ideal/real-based ones. This
means that it could be that for the functionality and utility measure one has,
the maximum utility one can achieve is higher if one opts for, say, IND-CDP
rather than SIM-CDP or SIM+-CDP. Similarly, opting for a CDP guarantee
rather than BNO-SDP (with comparable parameters, more on that below) can
lead to higher utility, and never worse. When it comes to the privacy guaran-
tees, we similarly know that, in theory, there is an inverted ordering between
the CDP definitions to the one regarding utility. In practice, however, we are
aware of no results on the practical impact of such differences. If one considers
the ideal/real-based definitions, the picture becomes slightly different because
those definitions do not only demand privacy (in the sense of bounding the in-
formation learned by the adversary) but also security and correctness, in the
sense of having clear specifications of the influence an adversary can have on
the computation. Since those extra requirements are not only theoretical but
also practical, these definitions do have a clear practical advantage over, say,
IND-CDP and SIM-CDP in the guarantees they make. On the other hand, one
can analyse security properties of a protocol separately from its differential pri-
vacy, say, by proving the protocol is both IND-CDP and securely realises a given
functionality. There is however not only a theoretical and intuitive advantage in
having the DP guarantees part of the specification of the ideal world but also
a practical one, since then being DP is also a property of the protocol which
is preserved under composition, contrary to when the DP property is analysed
solely in the real world.

13 As a partial answer to this problem, [61] shows that with accuracy measured with
respect to additive error (with constant probability), there exists a function over
two n-bit string for which there is a linear gap (in n) between (εκ, 0)-BNO-SDP and
(εκ, negl(κ))-IND-CDP.
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In summary, whereas the theoretical relationships between the various CDP
definitions are starting to become better understood, the practical impact of the
theoretical differences is mostly unexplored. Therefore, a pragmatic approach to
choosing a CDP definition to work with would be to simply choose the strongest
one known which readily follows from the techniques one intends to use. In
particular, if one uses well-known MPC techniques to implement an SDP mech-
anism, it is likely that one can directly deduce that the resulting protocol will
satisfy SIM+-CDP, SIM∗-CDP, or a version of them. If on the other hand, one
uses techniques that do not directly yield security guarantees such as the ones
required by the ideal/real-based CDP definitions (say if the security of one’s
protocol is asserted by a game-based proof) then it is likely that one is better off
analysing the views of the adversary directly and from that derive an IND-CDP
or SIM-CDP guarantee.

Open problem 9 (New) Evaluate a CDP definition with respect to its guar-
antees of protection against a class of attacks, such as reconstruction attacks or
membership inference attacks, and compare it to the corresponding guarantees of
SDP or another CDP definition.

7.2 On Parameter Choices

As in the general literature on DP, the questions about what constitutes ”good”
parameter choices and what the qualitative differences are between parameter
regimes remain poorly understood also with respect to distributed and compu-
tational DP definitions. For CDP, understanding different parameter regimes is
arguably even harder than in statistical DP, because the parameters (especially
δ) now play a somewhat dual role in that they can be either solely DP parameters
or function also as a computational slack. For instance, when going from IND-
CDP to SIM-CDP, a negligible δ term can be converted into a computational
distance in the simulation, as seen in that the analog to (εκ, negl(κ))-IND-CDP
is (εκ, 0)-SIM-CDP. One way of largely avoiding the different interpretations and
roles of the parameters within the different CDP definitions is to stick to the
parameter regimes in which they were originally proposed, with δκ = negl(κ)
in BNO-SDP and IND-CDP and δκ = 0 in the others. The problem with this
approach, however, is that for practical reasons one might strongly prefer us-
ing, say, SIM+-CDP with non-zero (and non-negligible) δκ, such as in [5]. The
practical reasons might, for instance, be that one’s system is highly composed
and thus can achieve higher utility by using (εκ, δκ)-SDP or that one wants to
approximate an (εκ, 0)-SDP mechanism to decrease the runtime. Therefore it is
of large practical importance to build a better understanding of what happens
theoretically when the CDP definitions are relaxed to work in other parameter
regimes than in which they were originally posed.
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8 Conclusion

We have surveyed the literature on distributed and computational DP defini-
tions, reformulated them to unify notation and highlight their used distribution
model and computational perspective, and summarised known results on the re-
lations between the definitions. The CDP definitions (both in the central model
and in a multi-party setting) can be sorted in a rough hierarchy where a loss in
utility can be traded for improved privacy parameters or lesser trust assumptions.
Whether the ordering is strict or not depends on the specifics of the functionality,
distribution model and parameter regime. A clear characterisation of when the
various definitions are separated is, however, lacking for all but a few function-
alities and settings. While much progress has been made on understanding the
definitions from a theoretical angle in recent years, there are still many research
directions lying largely unexplored, and this holds true also on the practical side.
Two such broad directions are formulated in the open problems below.

Open problem 10 (New) Find separations between CDP definitions under
other constraints than complexity assumptions or protocol runtime, such as the
efficiency of the simulator or the runtime of the adversary.14

Open problem 11 (New) Relate the CDP notions to one another within stricter
adversarial models, such as with active or adaptive corruptions.

Whilst the lack of understanding for practical separations is unsatisfactory, it
may also be seen as indication that in practical settings, the choice of which
CDP definition to use can with reason be made according to how conveniently
it fits the techniques one intends to use. For instance, we know of no practically
relevant task that can be solved with IND-CDP instead of SIM-CDP and there-
fore one’s choice between them, for a practical use case, will likely not affect
whether the task can be solved or not. Similarly, we know of little good reason
to have less faith in the concrete privacy guarantees given by IND-CDP than
those given by SIM-CDP, even though IND-CDP is theoretically weaker.

Besides the two above, we have posed three other new problems (Open prob-
lems 4,5 and 9 – about extending the study of CDP definitions to new parameter
regimes and relating the CDP guarantees to specific attack vectors). We have
also revisited the four open problems proposed by Vadhan [69] regarding CDP,
out of which two have been essentially solved (Closed problems 1 and 2 – about
finding ME-separations between IND-CDP and SDP in the central model) and
two are still mostly open (Open problems 1 and 6 – about finding a more natu-
ral infeasibility separation between SDP and SIM-CDP and minimal complexity
assumptions needed for separations in the two-party model). Finally, we have
re-iterated and reformulated four open problems from the discussions in recent
works [32,42,61] (Open problems 2 and 7 – about finding minimal complexity

14 For instance, in [32] is it noted that the separation established there between central-
model SDP and CDP does not hold against quasi-polynomial adversaries.
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assumptions for ME-separating IND-CDP and SDP in the central model or for
getting non-trivial accuracy for the AND gate in the two-party model, and Open
problems 3 and 8 – about finding a more natural task for separating IND-CDP
and SDP in the central model or finding the largest accuracy gap between them
in the two-party model).

There is a deep connection between distributed and computational DP and other
areas in the theory of computing, such as randomness extractors, pseudoden-
sity and communication complexity [61,63,42]. This together with the increasing
practical maturity of DP and MPC, makes us hopeful that there will be much
interesting work about understanding and using the notions we have surveyed
and we hope that our survey and discussion may serve as a useful guide and
introduction to researchers entering the field.
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A The Ideal/real Paradigm, Standalone and UC Security

This section is a short introduction to the real/ideal-world paradigm of security
and its most popular versions, the standalone security model and the universal
composability (UC) security model. We will not be able to describe them in full
formal detail, due to their complexity, and we refer to [12,18] for details on the
UC model and to [11,35,58] for details on the standalone model. For other brief
introductions to the topic, we recommend [59,30].

The core idea of the ideal/real paradigm of security is to define an ideal world
that is secure by definition, i.e. which formulates what computations are sup-
posed to be done and what it means to have that done securely. This includes,
for example, specifying what types of information leakage are not to be seen as
a violation of security. The security of the real protocol, defining the real world,
is asserted by a simulation proof that the adversary cannot know if it is interact-
ing with the ideal world or the real world. The thought is that if the adversary
cannot tell if it is interacting with the real protocol or a version of the protocol
that is secure by definition, then the protocol should be seen as secure also.

In the ideal world, there is an incorruptible third party called the ideal func-
tionality which is given the inputs of all of the parties. This functionality per-
forms the computation in question (potentially incorporating some well-defined
allowed adversarial influence) and then gives the results to the players. Since the
functionality cannot be corrupted, it thus defines what it means to be secure
and what computational task should be achieved. When observing the protocol
execution (either from the outside or as someone who takes part), it is poten-
tially quite simple to tell apart the ideal world from the real world, for example
by observing the number of messages sent. Therefore, the ideal world also must
include a simulator (also called an ideal-world adversary) whose mission is to
construct a view indistinguishable from the view of the real-world adversary.
It must do this whilst only having access to the information available to it in
the ideal world (essentially, the information given to it by the ideal functionality).

There are different ways to quantify the strength of such a simulation argument.
One measure is the efficiency (say, in terms of runtime) of the simulator, since
it describes how much work is needed to turn the allowed information leakage
into the real information leakage. A faster simulator gives a stronger guarantee
of security since then, intuitively, the real information leakage is more similar
to the allowed one. Therefore, it is commonplace to require the simulator to be
efficient in the sense of running in strict polynomial time, although this is not
always the case for CDP using the ideal/real-world paradigm. Most notably, in
MPRV [63], the simulators are allowed to be inefficient (computationally un-
bounded), for instance in the definition of SIM+-CDP.

So, the core idea of the paradigm is to capture the notion of secure computation
as that the ideal world (with parties, ideal functionality and simulator), in some
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sense, looks similar to the real world (with parties and adversary). This begs the
question; who is the distinguisher? This is where is where the standalone and
UC security models start diverging. In the standalone model, the distinguisher
is essentially the adversary, meaning that the distinguisher itself takes part in
the protocol. That is, the distinguisher tries to figure out which world it is in
from the inside. The task of the simulator is to use only information available
in the ideal world and generate an output distribution that is indistinguishable
from the view15 of the real-world adversary.

Definition 17 (Standalone security, reformulation of Def. 4 in [11]). We
say that a protocol π is a secure protocol for the functionality F if for all efficient
adversaries A, there exists an efficient simulator S (corrupting the same parties
as A) such that the joint output of the honest parties and A in the real world
is computationally indistinguishable from the joint output of the honest parties
and S in the ideal world, i.e. when the outputs distributions in the ideal and real
worlds are computationally indistinguishable.

There are various different versions of the security definition, for instance varying
the type of indistinguishability (like requiring the distributions to be identical
or have negligible statistical distance). Other times the correctness requirement
is changed (such as requiring that the outputs in the real and ideal worlds are
identical or statistically close if there are no corruptions, as done in [35,58]).
The version used in MPRV [63] within the definition of SIM+-CDP (Definition
15) has such an extra correctness requirement, as well as demanding efficient
protocols and removing the efficiency requirement of the simulator.

Definition 18 (Standalone security as in MPRV [63], Reformulated).
We say that a protocol π is a secure protocol for the functionality F if it fulfills
Definition 17 with the following changes:

1. π must be efficiently computable;
2. π must have perfect correctness, that is, in an honest execution of π, its

output distribution is identical to that of F ;
3. the simulator is allowed to be inefficient.

In the standalone model, the security of the protocol is considered in isolation.
That is, since the distinguisher is a part of the protocol execution, the proto-
col is studied under the assumption that the distinguisher does not run other
protocols concurrently to the one being studied. Making such an assumption
makes proving security technically much easier, for instance, it allows so-called
rewinding techniques. The drawback of the model is precisely that it considers
protocol security in isolation, opening up the possibility that a protocol thought
to be secure loses all of its security properties when it is run in parallel to some
other processes. Since it can be argued that such composition of protocols and

15 In Definition 17 it is the output rather than the view of the adversary that is consid-
ered. These two formulations are equivalent since the adversary is allowed to simply
output its entire view as output.
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processes is the rule rather than the exception in modern computer systems, it
is highly desirable to be able to prove that a protocol remains secure also when
other protocols are run in composition to it.

There are many ways to compose protocols and some of them are easier to
deal with than others. For example does the usual formulations of the stan-
dalone model guarantee that security is preserved under sequential composition,
i.e. as long as all protocols are run one after another. The most powerful type
of composition results are those when the security of the protocol is preserved
regardless of how the surrounding protocols are executed. This is called universal
composition and the entire point of the UC (Universal Composability) security
framework is that protocols proven within it remain secure under universal com-
position. In particular, if a protocol π realises the ideal functionality F , then any
other protocol that uses F as a subprocedure does not lose its security properties
if F is replaced by a copy of π. In the UC framework, the distinguisher no longer
is a part of the protocol execution per se, it is rather an external entity that
observes and interacts with the system. This entity is called the environment.
In more detail, it is an entity in both worlds that selects the initial inputs to all
parties, interacts arbitrarily with the adversary and then, based on the outputs,
tries to distinguish between the two worlds. In other words, the environment
gets to play with one of the worlds and depending only on the input-output
behaviour of this world it tries to determine if it is playing with real or the ideal
world.

Definition 19 (UC security [41,12]). We say that a protocol π UC-securely
realises the ideal functionality F if for all PPT real-world adversaries A there

exists a PPT simulator16 S (corrupting the same parties as A) such that for all
PPT environments E, the statistical distance between E’s output when interact-
ing with the ideal world and that when interacting with the real world is negligible
in the security parameter κ.

A.1 Complexity Assumptions

Now that we have seen the security definitions, we consider what assumptions
one must make for them to be attainable. First of all, what kind of security one
can prove of a protocol is directly dependent on the functionality one wants to
realise. It is also dependent on the ideal functionalities one assumes are available
to the parties, since such functionalities also define the communication channels
present in the protocol execution. As a basis, the plain model assumes access
to no other ideal functionality than authenticated channels, meaning that the
parties can send messages to each other (point-to-point) and be sure who the
messages come from and that it has not been tampered with but there are no
guarantees that the contents of the messages have not been leaked. In the plain
model, quite a few fundamental functionalities can be realised, such as secure

16 Also called ideal-world adversary.
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transfer which is the same as authenticated transfer except that the contents of
the messages are now hidden from an eavesdropper. There are however many
important functionalities that cannot be realised in the plain model, unless one
makes certain assumptions on the types of corruption that are being made (in
particular, one has to assume an honest majority). In such cases, one has to leave
the plain model and claim access to some other ideal functionality, i.e. one makes
the assumption that there exists a protocol that realises that ’helping function-
ality’. Such assumptions are typically in the form of complexity assumptions,
meaning that one assumes some given specific computation that the adversary
(or environment) would have to do to mount a specific attack is computationally
infeasible.

Such complexity assumptions have been very deeply studied, and they are usu-
ally ordered after their relative strength, i.e. by proving that one assumption
is stronger (or larger) than another in the sense that the first one implies the
other but not the other way around. How various complexity assumptions relate
to each other is quite well understood, and this is also true for what assump-
tions are needed for general-purpose MPC (i.e. where any PPT functionality
can be realised) to be possible in various distribution and corruption models. In
the main body, we mostly discuss three common complexity assumptions (listed
from weakest to strongest):

– The existence of one-way functions (OWFs). An OWF is, intuitively, a func-
tion that can be computed efficiently but for which it is hard to find pre-
images. That is, if one is given an evaluation of the function, no efficient
adversary can predict the input which resulted in that evaluation with prob-
ability non-negligibly above that when purely guessing. For a definition and
more detail, see [34].

– The existence of a key-agreement (KA) protocol. A KA protocol is, intu-
itively, a protocol in which two parties who at the beginning share no secret
information with each other, send some sequence of messages to each other
which results in them at the end both knowing a secret key but that this key
is not known to an eaves-dropping adversary which sees only the transcript
of the protocol.

– The existence of an oblivious transfer (OT) protocol. An OT protocol is,
intuitively, a protocol between two parties, one of which has a number of
information pieces (say, rows in a database) and the other wants to learn
one of them. This should be done, however, without the party holding the
data knowing which information the other one has learned. In that way, the
sender is oblivious to the request of the receiver. The importance of OT is
that it allows the construction of general-purpose MPC protocols when all
but one of the parties are corrupted [57].
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B Other DP Definitions and Distribution Models

We now very briefly discuss topics that to some extent concern DP outside of
the central model or are dependent on computational relaxations of SDP. As
noted in the introduction of this paper, the definitions discussed in this list here
were excluded from our main body due to them, for one reason or another, not
being directly relevant for studying definitions of CDP in multi-party settings.
We include them here in order to offer a wider context to the definitions included
in the main body.

B.1 Adaptive Query Choices, Interactive DP and DP under
Continual Observation

One important aspect of DP in all models is that of composition of mechanisms,
i.e. how the DP guarantees are affected by multiple DP mechanisms being run
(sequentially or concurrently) on the same database [55,64,24,51]. Whereas it
is often studied in the simple non-adaptive setting where the DP mechanisms
are chosen independently of the outcomes of the others, it is also studied in the
adaptive setting, where an adversary can choose what mechanism execution to
request dependent on the previous mechanism outputs. Such adaptive choices
induce a notion of interaction even into the central model, turning such an in-
teraction between the dataholder and the analyst into an asymmetric two-party
protocol. Therefore, such interactive situations are at times studied explicitly
as a distribution model separate from the central model, resulting in an ex-
plicit notion of interactive DP. This is, for instance, done recently in [46,70],
where interactive DP is defined precisely as in BNO-SDP except for that the DP
guarantees are one-sided. Similarly, it is straight-forward to adapt the notion of
interactive DP into a one-sided CDP definition.

Another commonly studied DP model in which interaction plays a crucial role
is that of DP under continual observation and similar models [23,50,14]. As op-
posed to interactive DP above, here the mechanism is not adaptively chosen by
the analyst but rather is the mechanism itself faced with the mission to release
multiple outputs over time such that the overall mechanism is DP and at all
times, the released output in that timestep has high utility. The core insight is
that, since the outputs at different timesteps are highly correlated (as they con-
cern the same dataset) one might be able to achieve a much higher utility than
allowed by directly applying theorems from the literature on the composition of
mechanisms.

B.2 Multiparty Protocols with DP Leakage

It was noted already in MPRV that SIM-CDP (as well as IND-CDP) allows
partial intermediate results/information to be leaked as long as it is DP whereas
SIM+-CDP does not. That is, they allow there to be some non-negligible infor-
mation leakage during the protocol (which is not allowed traditionally in MPC),
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as long as the leakage is CDP. This idea of having DP leakage during a protocol
execution has also been combined with MPC protocol whose function evaluation
is not DP, thus resulting simply in a controlled relaxation of the usual require-
ments in secure computation. This is done in order to improve efficiency and is
particularly relevant when the function output, for use case specific reasons, is
anyhow required to be exact. Some papers in this space where definitions are
proposed are:

– [47] – As far as we are aware, this was the first definition of MPC with DP
leakage. A DP definition is introduced (output constrained DP) and then it is
specialised as DP for record linkage (DPRL). This is simply IND-CDP with
a new adjacency notion, namely one where only databases that evaluate a
given function to the same value are considered adjacent.

– [60] – A more general definition of MPC with DP leakage is proposed which
uses the standalone model of the ideal-real paradigm. It is essentially the
same as the standard definition of secure two-party computation in the stan-
dalone model except that the simulator also learns an additional DP function
of the input dataset.

– [41] – The MPC-with-leakage definition of [60] is adjusted to use UC-security
instead of standalone security and also the leakage is allowed to occur before
the corrupted party sends its inputs, thus relaxing the guarantee of input
independence (see, for instance [59]).

B.3 CDP with Zero-knowledge Proofs

Just as there has been much work on combining DP with MPC, there has been
work on combining it with the field of zero-knowledge proofs. One such line of
work considers a notion of privacy called zero-knowledge privacy, which shares
many similarities to DP, and another considers verifiable DP, where a DP mech-
anism output is given together with a proof that it has been faithfully generated.

Zero-knowledge Privacy In [31], a stricter privacy notion related to SDP is
proposed with the name zero-knowledge privacy (ZKPr), which, very roughly,
is made stronger than SDP by requiring that the view of the adversary can
be approximated well by a simulator that only has access to some aggregate
information about an adjacent database. A computational version of the notion
is also proposed, let us call it CZKPr, by requiring that the simulator, adversary
and function generating the aggregate information are PPT. The authors show
that ZKPr is strictly stronger than SDP and that this remains true for CZKPr as
long as the mechanism in question is efficient. We do not include it in the main
body of this work because (C)ZKPr differs from SDP not only with regard to its
computational perspective but also fundamentally with respect to the concept of
adjacent databases and the information available to the simulator. Additionally,
we are only aware of the definition being used in the central model.
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Verifiable DP Verifiable DP (VDP) is first proposed in 2015 [65] when a
system called VerDP is proposed which answers a restricted set of DP queries
whilst also proving that the mechanism output is both from a DP mechanism
and consistent with the supposed database. Since the system uses cryptographic
tools with computational security, the authors note that the DP guarantees in
the end are computational (referring to MPRV) but the discussion about details
here is limited due to that the focus of the paper is largely on the practical
aspects of the given system and implementation. In 2023, another paper [6] re-
introduced VDP and this time there is a substantial focus on defining VDP as a
notion in itself and some fundamental impossibility-results are established, such
as the impossibility of statistical VDP (for a DP system to be verifiable, it has
to be computational). Additionally, the notion is also studied in a multi-party
setting, with a first protocol being proposed and implemented.

B.4 CDP with Functional Encryption

DP has also been combined with the field of functional encryption [8], first
in [1,2] with statistical DP and then in [29] with CDP. In particular, in [29]
IND-CDP is incorporated into a new definition of functional encryption. Then
a general mechanism is proposed which satisfies the new definition and it is
particularly studied for the case of linear queries.

C Proofs

C.1 Proofs Omitted in Section 4

(εκ, δκ)-SIM-CDP directly implies (εκ, δκ+negl(κ))-IND-CDP for non-
zero δκ We now prove that the direct implication from SIM-CDP to IND-CDP
with a negligible increase in the additive parameters also holds for non-zero δκ.
That it holds for δκ = 0 was shown already in MPRV and [69]. These proofs
carry over directly to the more general setting under a mild condition on εκ.
We state the implication only for central model mechanisms but it extends di-
rectly to the distributed setting since the result concerns only the formulation
of output closeness, which is unchanged by the distribution model.

Proposition 1. Let δκ ∈ [0, 1] be arbitrary and let εκ ∈ O(log(κ)). Then any
mechanismM that is (εκ, δκ)-SIM-CDP is also (εκ, δκ + negl(κ))-IND-CDP.

Proof. LetM : D → R be a mechanism that is (εκ, δκ)-SIM-CDP. This implies
that there exists an (εκ, δκ)-SDP mechanism M̃ such that the output distribu-
tions of M(D) and M̃(D) are computationally indistinguishable. That is, the
output distributions of any PPT distinguisher when given M̃(D) and M(D),
respectively, have a negligible statistical distance. This gives us, for any adjacent
D,D′ ∈ D and any PPT distinguisher T :
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P(T (M(D)) = 1) ≤ P(T (M̃(D)) = 1) + negl(κ)

≤ eεκP(T (M̃(D′)) = 1) + δκ + negl(κ)

≤ eεκ (P(T (M(D′)) = 1) + negl(κ)) + δκ + negl(κ)

≤ eεκP(T (M(D′)) = 1) + δκ + negl′(κ).

The first and third inequalities follows from thatM and M̃ are computationally
indistinguishable and the second from that M̃ is (εκ, δκ)-SDP. The final inequal-
ity follows from the assumption that any negligible function remains negligible
when multiplied by eεκ . In particular, negl(κ) is an arbitrary negligible function
and negl′(κ) := eεκ · negl(κ) + negl(κ).

(εκ, 0)-IND-CDP is equivalent to (εκ, 0)-SDP The reason to introduce
a non-zero δκ parameter is that (εκ, 0)-IND-CDP is equivalent to (εκ, 0)-SDP
and (εκ, 0)-BNO-SDP in the central and distributed models, respectively. We
reiterate the argument here for completeness. We give the proposition and proof
for the central model only as the extension to the distributed case is immediate.

Proposition 2 (Reformulation of MPRV). In the central model, (εκ, 0)-
IND-CDP and (εκ, 0)-SDP are equivalent but (εκ, negl(κ))-IND-CDP and (εκ, negl(κ))-
SDP are not. That is:

1. Let M : D → R, with y ∈ R of polynomial size. If M is (εκ, 0)-IND-CDP
then it is also (εκ, 0)-SDP, and vice versa.

2. There exist a mechanismM that is (εκ, negl(κ))-IND-CDP but not (εκ, negl(κ))-
SDP.

Proof. We start by proving the first statement in the proposition, namely that
IND-CDP and SDP are equivalent when δκ = 0. That all SDP mechanisms
are also IND-CDP with unchanged parameters is immediate so what remains
to show is the opposite direction. The argument below is a reformulation of a
discussion in MPRV [63].

Part 1 (From MPRV):

Assume that M is (εκ, 0)-IND-CDP. Let TS(η), for some arbitrary S ⊂ R, be
the distinguisher that outputs 1{η ∈ S}. That M is (εκ, 0)-IND-CDP implies
that, for all S such that TS is PPT, we have

P(TS(M(x)) = 1) ≤ eεκP(TS(M(x′)) = 1),

which implies
P(M(x) ∈ S) ≤ eεκP(M(x′) ∈ S).

Hence, for all sets S ⊂ R for which checking membership is efficient, the first
part of the proposition holds. The assumption that the elements of R are of
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polynomial length implies that this is the case for all S ⊂ R (by use of, for
instance, a binary search tree).

Part 2 (From [9]):
Consider the counter-example of the mechanismM that takes one bit x as input
and if x = 1 it output a uniformly random 2κ-bit string and if x = 0 it outputs
a pseudorandom 2κ-bit string by use of a pseudorandom generator (PRG) (see,
for instance [36,34]). This mechanism is (0, negl(κ))-IND-CDP but by the defini-
tion of a PRG, it is not (0, δ)-SDP for any δ < 1− negl(κ), since an unbounded
distinguisher can distinguish a PRG from a generator of truly random strings
arbitrarily well.

We remark that the restriction to output domains of polynomial-sized elements
is very mild since the distinguisher is always assumed to be PPT, meaning that
if the output of the mechanism is not of polynomial size, then the distinguisher
cannot even read its whole input.

C.2 Proofs Omitted in Section 6

We now prove an ME-separation between SIM-CDP and SIM+-CDP for the
case where δκ = 0. The idea is that SIM+-CDP requires efficient protocols and
perfect security, meaning that it cannot be satisfied for a task that cannot be
solved in strict polynomial time. SIM-CDP on the other hand makes no such
requirements, meaning that it can be fulfilled for inefficient protocols. That is,
the only thing required is to find a task that can be solved in, say, exponential
time but not in polynomial time. We find such a task in the shape of computing
the XOR gate to within a given probability of failure, which is suitable because
it is equivalent to sampling a Bernoulli trial with a given parameter, and this
parameter can easily be chosen such that the sampling can be done exactly only
in super-polynomial time.

Proposition 3 (ME-separating SIM-CDP and SIM+-CDP). There exist
εκ > 0 for which (εκ, 0)-SIM-CDP ≠⇒

ME
(εκ, 0)-SIM

+-CDP.

Proof. We consider the two-party case and passive corruptions. Let εκ = ln(22
κ−

1), D = {0, 1}2, set the utility function to u((D1, D2), (η, y)) := 1{y = D1⊕D2}
and α = 1 − 2−2

κ

. That is, the task is to have party 2 output the XOR of the
inputs of both the parties’ inputs and to be incorrect with a probability of at
most 2−2

κ

.

To see that there is no (εκ, 0)-SIM
+-CDP protocol solving the task, assume

towards a contradiction that there is such a protocol π′. Since SIM+-CDP de-
mands perfect correctness, we know that in an honest execution, the output
distributions of π′ and the ideal functionality it realises,M′, have identical out-
put distributions. Since π′ runs in strict polynomial time, this implies that there
is a strict PPT mechanismM′ that is (ln(22κ−1), 0)-SDP and outputs a bit that
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is D1⊕D2 with probability at least α and its negation with probability at most
1−α. It is easy to see that no binary (εκ, 0)-SDP mechanism can have accuracy
above eεκ/(eεκ +1), which means that the task above is the same as outputting
the correct function evaluation with probability 1− 2−2

κ

. Sampling a Bernoulli
trial with such a parameter is impossible in strict polynomial time (as it requires
exponentially many fair coins) and thus we have reached the contradiction.

We now give a protocol π that solves the task and simultaneously is (εκ, 0)-
SIM-CDP. The key here is that π need not be efficient, since there is no such
requirement in SIM-CDP. Let π simply be that party 1 runs randomised re-
sponse on its input with parameter εκ. That is, first P1 samples a Bernoulli trial
with parameter 1− 2−2

κ

using 2κ uniform coins, which can trivially be done in
exponential time. Call the sample outcome b. Then P1 sends c ← D1 ⊕ b to P2

and outputs ⊥. Then P2 outputs D2⊕ c. This protocol obviously solves the task
and is (εκ, 0)-SIM-CDP via the simulator that samples b as P1 does and then
outputs ⊥ to P1 and D1 ⊕D2 ⊕ b to P2.

Note that the task in the proof above is quite contrived and is chosen as to
simplify the proof rather than being practically interesting or general. In fact,
any task that has an optimal SDP mechanism that can be run in exponential but
not polynomial time suffices for the proof idea, and thus is it probable that the
proposition extends into quite general parameter regimes. Further (as noted in
MPRV), if one does restrict the SIM-CDP protocol to be efficient, it seems likely
that there should be ME-separations between the two notions, since SIM-CDP
allows the simulator (there also the mechanism) to have access to the inputs of
both parties, whereas in SIM+-CDP the simulator only has access to the outputs
of the ideal functionality and from them it has to construct the adversarial view,
which seems much more restrictive.
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