
stackproofs: Private proofs of stack and contract execution

using Protogalaxy

Liam Eagen1, Ariel Gabizon2, Marek Sefranek3, Patrick Towa2, and Zachary J.
Williamson2

1Alpen Labs
2Aztec Labs
3TU Wien

August 29, 2024

Abstract

The goal of this note is to describe and analyze a simplified variant of the zk-
SNARK construction used in the Aztec protocol. Taking inspiration from the popu-
lar notion of Incrementally Verifiable Computation[Val08] (IVC) we define a related
notion of Repeated Computation with Global state (RCG). As opposed to IVC, in
RCG we assume the computation terminates before proving starts, and in addition
to the local transitions some global consistency checks of the whole computation are
allowed. However, we require the space efficiency of the prover to be close to that of
an IVC prover not required to prove this global consistency. We show how RCG is
useful for designing a proof system for a private smart contract system like Aztec.

1 Introduction

Incrementally Verifiable Computation (IVC) [Val08] and its generalization to Proof
Carrying Data (PCD) [CT10] are useful tools for constructing space-efficient SNARK
provers[BCCT12]. In IVC and PCD we always have an acyclic computation. However
code written in almost any programming language is cyclic in the sense of often relying
on internal calls – we start from a function A, execute some commands, go into a func-
tion B, execute its commands, and go back to A. When making a SNARK proof of such
an execution, we typically linearize or “flatten” the cycle stemming from the internal
call, in one of the following two ways.

1. The monolithic circuit approach: We “inline” all internal calls (as well as loops)
into one long program without jumps.

1

2. The VM approach: Assume the code of A,B is written in some prespecified in-
struction set. The program is executed by initially writing the code of A,B into
memory, and loading from memory and executing at each step the appropriate
instruction according to a program counter. For example, the call to B is made by
changing the counter to that of the first instruction of B. To prove correctness of
the execution, all we need is a SNARK for proving correctness of a certain number
of steps of a machine with this instruction set, and some initial memory state.

The second approach is more generic, while the first offers more room for optimiza-
tion, so we’d want to use it in resource-constrained settings, e.g. client-side proving.

However, what if we’re in a situation whereA andB have already been “SNARKified”
separately? Namely, there is a verification key attached to each one, and we are expected
to use these keys specifically. This is what happens in the Aztec system.

The Aztec private contract system Similar to Ethereum we have contracts, and the
contracts have functions.1 A function in a contract can internally call a different function
in the same or a different contract. Moreover, while writing the code for the different
functions and compiling them to circuits, we can’t predict what function will be internally
called by a given contract function. For example, a “send token” function could have an
internal call to an “authorize” function. But the call to “authorize” need not be tied to
a specific implementation and consequently, to a specific verification key – as different
token holders are allowed to set their own “authorize” function.

The goal of the Aztec system is to enable constructing zero-knowledge proofs of such
contract function executions. For this purpose, a contract is deployed by

1. Computing a verification key for each function of the contract.

2. Adding a commitment to the verification keys of the contract in a global “function
tree”. More accurately, a leaf of this tree is a hash of the contract address with
a Merkle root of a tree whose leaves are the verification keys of that contract’s
functions.

Dealing with global state The global state of the Aztec system is described by a set of
notes, which are simply values in a field F. Each note belongs to a certain contract.
While running, a function can read, add or delete notes belonging to its contract. We
can thus think of the notes as global variables shared between the different functions.

Assume all functions in this system return accept or reject. (We can always move
the output into the arguments if a function is not of this form.) Here’s a natural way to
prove the mentioned execution: Put the arguments to B in the public inputs of both the
circuits of A and B. Verify the proofs πA, πB for A,B; and check via the public inputs
the same value was used in both proofs for the arguments of B.

This however, doesn’t yet deal with the notes. During execution, note operations
happened in a certain order. We can thus assign a counter equal to one for the first

1Detailed documentation of the Aztec protocol can be found here.

2

https://docs.aztec.network/

operation and increment the counter with each operation. We then need to check, for
example, that if a note was read with a certain counter, it was indeed added with a
smaller counter. We can include a description of the note operations performed by a
function in the inputs of its circuit. This description will contain the operation type
(add, del, read), the note value, and the counter. The issue is, what if A is reading a note
that was added in the internal call to B? Checking the existence of an add operation
with smaller counter requires a constraint between the inputs of both circuits. And for
an execution consisting of more calls, this constraint can involve any two circuits in the
call tree.

This brings us to the notion of Repeated Computation with Global state (RCG). In
RCG we have a transition predicate taking us from one state to the next. We wish to
prove we know a sequence of witnesses taking us from a legal initial state to a certain
publicly known final state. This might remind the reader of the popular notion of
incrementally verifiable computation (IVC). There are two differences.

� In RCG we are not interested in “incremental” proofs of one step, only in proofs
for a whole sequence of transitions ending in a desired final state.

� In RCG we also have a final predicate checking a joint consistency condition be-
tween witnesses from all iterations.

One could ask, why not only have a final predicate that includes the transition checks?
In other words, a monolithic circuit for the whole computation. The point is that in
our use case the final predicate is applied to small parts of each iteration’s witness –
namely the note operations. As a result, the decomposition into a transition and final
predicate can facilitate obtaining better prover efficiency, especially in terms of prover
space. Roughly, we’ll require space sufficient for storing the inputs to the final predicate,
in addition to the space required to prove a single transition.

1.1 Related work

Recent work [Sou23, NDC+24] as well as ongoing work [Gro24] uses folding schemes
[BCL+21, KST21] to break up proving statements about large computation into smaller
statements. The objective being reducing prover memory and/or improving prover par-
allelism. These works have not formally defined a notion like RCG, and rather use the
IVC terminology. We believe the RCG framework may be better suited for capturing
the properties of these constructions. In terms of the concrete constructions, there are
overlaps with this work, notably a two-pass over part of the witness to generate a ran-
dom challenge. As alluded to earlier, one distinction is that these works start with a
computation that is already linear, while here we start with cyclic computation and must
“compile” it into a “linear” statement.

1.2 Overview of the paper

In Section 2, we go over terminology and preliminaries. Notably, in Section 2.2 we
introduce the Zero-Testing Assumption from [LS24] that enables us to avoid heuris-

3

tic assumptions as commonly happens in IVC papers due to the need of instantiating
the random oracle. In Section 3, we introduce our execution model involving record
operations and execution trees. In Section 4, we introduce the notion of Repeated
Computation with Global state, and show how to reduce computations in the model of
Section 3 to RCG. In Section 5, we show how “log-derivative methods” [Eag22, Hab22]
can capture global consistency of operations as defined in previous sections. In Section
6, we show how the Protogalaxy folding scheme [EG23] can be proven secure under
the ZTA (without the need of a random oracle). In Section 8, we present our main
zk-SNARK construction. The main ingredient is a “folding to IVC” reduction similar to
the ones in [BCL+21, KST21]. In Section 9, we outline how RCG can be implemented
for a more general set of functions.

A reader wanting to get a feeling of the main construction ideas might want to focus
first on Sections 3–5.

2 Preliminaries

2.1 Terminology and Conventions

We assume all algorithms described receive as an implicit parameter the security param-
eter λ. Similarly, all integer parameters in the paper are implicitly functions of λ, and
of size at most poly(λ) unless explicitly stated otherwise.

Whenever we use the term efficient, we mean an algorithm running in time poly(λ).
Furthermore, we assume an object generator O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G, g) where

� F is a field of prime size r = λω(1) .

� G is a group of size r.

� g is a uniformly chosen generator of G.

We usually let the λ parameter be implicit, e.g. write F instead of F(λ). We denote by
F<d[X] the set of univariate polynomials over F of degree smaller than d. We write G
additively.

We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p. for
“except with probability”; i.e. e.w.p. γ means with probability at least 1− γ.

2.2 Zero-Testing Assumption

Throughout this paper, we’ll make use of a variant of the Zero-Testing Assumption
(ZTA) from [LS24] given in Definition 2.1 as well as its generalization, the t-variate
Zero-Testing Assumption, we introduce in Definition 2.2.

Definition 2.1. Fix cm : FM → K, hash function H : {0, 1}∗ → F, and integer d. Fix
the family of functions D. We say the tuple (D,x, τ) is a degree d-relation for (D,H, cm)
if

4

1. D ∈ D.

2. f(X) := D(x, τ) is a non-zero element of F≤d[X].

3. Setting z := H(cm(x), τ), we have f(z) = 0.

The Zero-Testing Assumption (ZTA) for (D,H, cm, d) states that for any efficient A,
the probability that A outputs a degree d-relation for (D,H, cm) is negl(λ).

Definition 2.2 (t-variate ZTA). Fix cm : FM → K, hash function H : {0, 1}∗ → F, and
integer d. Fix the family of functions D. We say the tuple (D,x, τ) is a (t, d)-relation
for (D,H, cm) if

1. D ∈ D.

2. f(X1, . . . , Xt) := D(x, τ) is a non-zero element of F≤d[X1, . . . , Xt].

3. Setting zi := H(cm(x), τ, i) for i ∈ [t], we have f(z1, . . . , zt) = 0.

The t-variate Zero-Testing Assumption (ZTA) for (D,H, cm, d) states that for any effi-
cient A, the probability that A outputs a (t, d)-relation for (D,H, cm) is negl(λ).

We prove that the univariate ZTA implies the t-variate ZTA.

Lemma 2.3. Fix a family of functions D whose outputs are polynomials in F≤d[X1, . . . , Xt].
Let Dt be a family of functions to be defined in the proof. Then the univariate ZTA for
(Dt,H, cm, d) implies the t-variate ZTA for (D,H, cm, d) and t = poly(λ).

Proof. Let A be an adversary against the t-variate ZTA that outputs the (t, d)-relation
(D,x, τ) for (D,H, cm). We construct the adversary A′ against the univariate ZTA that
outputs a degree-d relation for (Dt,H, cm), where Dt will be the union of all the functions
Di defined in the following.

Write f(X1, . . . , Xt) := D(x, τ) as a polynomial in Xt over F[X1, . . . , Xt−1]:

f(Xt) =
d∑

i=0

Ci(X1, . . . , Xt−1)X
i
t .

For i ∈ [t], denote zi := H(cm(x), τ, i). Suppose first that f(z1, . . . , zt−1, Xt) ̸≡ 0. Then
A′ can output the degree-d relation (Dt, x, τt), where Dt is the function that computes
ft(X) := f(z1, . . . , zt−1, X) given x and τt := (τ, t), deriving z1, . . . , zt−1 via H as part
of its operation. Note that ft(zt) = 0 with zt = H(cm(x), τt).

Otherwise, there is a non-zero polynomial Ci ∈ F≤d[X1, . . . , Xt−1] which satisfies
Ci(z1, . . . , zt−1) = 0. If Ci(z1, . . . , zt−2, Xt−1) ̸≡ 0, A′ can output the degree-d relation
(Dt−1, x, τt−1), where Dt−1 is the function that computes ft−1(X) := Ci(z1, . . . , zt−2, X)
given x and τt−1 := (τ, t− 1).

Recursively define degree-d relations (Di, x, τi) until i = 1 and we have a univariate
non-zero polynomial C ′

j ∈ F≤d[X1] with C ′
j(z1) = 0. In this base case, A′ can output the

degree-d relation (D1, x, τ1), where D1 is the function that computes f1(X) := C ′
j(X)

given x and τ1 := (τ, 1), finishing the proof.

5

3 The execution model

We present a formal framework for describing function executions enabling both internal
function calls and global state.

We begin in Section 3.1 by introducing record operations which is our specific notion
of operating on a global state. Record operations keep track of the computation steps
at which records (roughly corresponding to notes in the introduction) were added, read
and deleted. We then define what it means for a set of such operations to be consistent.
For example, we want to enforce that a record can be deleted only if it was first added.

The eventual goal is to prove that a certain set of records is the output of a function
execution (where that execution includes the function’s internal calls). The proof should
not reveal any information about which function was executed, as long as it belongs to
a pre-defined set of legal functions, or about its arguments. To do so, it is sufficient to
prove knowledge of an execution tree with the initial function at the root, the functions
it calls at its children nodes and so forth. Section 3.2 defines a relation which formally
captures what it means for an individual function to accept on its arguments, and Section
3.3 formally defines such execution trees.

Remark 3.1. For simplicity, and in contrast to the introduction, we don’t explicitly
discuss contracts. We only model functions operating on a shared global state. As in
Aztec each function can only operate on notes of its contract, this corresponds to a system
with one contract. Capturing the general system mainly requires modelling the restriction
that a function is only operating on the subset of notes belonging to its contract.

3.1 Record operations

Records are pairs (v, c), where v ∈ F is the value, and c ∈ [M] is a counter. A record
operation has one of the following forms:

� (add, v, c),

� (del, v, cv, c),

� (read, v, cv, c).

Here v ∈ F is a value and c, cv ∈ [M] are counters. c is interpreted as the counter of the
current operation. cv is interpreted as the counter of the operation where the value was
added in the case of a read or del operation.

We say a sequence O of record operations of size M is consistent if

1. The counter values c are distinct in all elements of O, and as a set equal to [M].

2. The cv fields in all del operations (del, v, cv, c) ∈ O are distinct.

3. If (del, v, cv, c) ∈ O, then cv < c and (add, v, cv) ∈ O.

4. If (read, v, cv, c) ∈ O, then cv < c and (add, v, cv) ∈ O.

6

Let V be a set of records. We say O has output V if:

� O is consistent.

� V = {(v, c) | (add, v, c) ∈ O ∧ ∀c′ ∈ [M], (del, v, c, c′) /∈ O}. In words, V is the set
of values that were added and not deleted.

3.2 The Plonkish relation

Now we introduce a relation Rapp describing the individual function executions tailored
to make it convenient to later discuss an execution of a sequence of functions calling each
other. The executed function is represented in the instance by a single group element
f. In the terminology of [GWC19], f is a commitment to the permutation and selector
values of a specific PlonK circuit. In particular, Rapp is a “universal” Plonkish relation
where the circuit is not fixed but chosen in the instance.

Additionally, the instance adheres to a form containing both the record operations
and the details of the inner calls of the individual function execution. We stress however,
that the interpretation of these values as record operations and inner calls, only happens
in the next section when we discuss valid executions trees; and doesn’t manifest in the
definition of Rapp. Some choices of constants – like args being of size four – are arbitrary.

We fix a polynomial G : F8 → F, and integers N,n that are implicit parameters in
the following definition of relation Rapp.

Rapp consists of all pairs (x,w) having the form

� x = (f, args, c, f1, args1, f2, args2,O) where f, f1, f2 ∈ G, args ∈ F4, c ∈ {0, 1, 2};

� w = (wf , ω) where

– wf = (S1, . . . ,S4, q1, . . . , q4),where Sj ∈ [|x|+N]n, qj ∈ Fn for each j ∈ [4]

– ω ∈ FN

such that

1. Setting x = (x, ω), for all i ∈ [n]

G(q1,i, . . . , q4,i, xS1,i , . . . , xS4,i) = 0.

2. f = cm(wf).

3.3 Valid execution trees

By an execution tree of length n we mean a binary tree T with n vertices, whose nodes
are labeled by pairs (x,w). Let F be a set of elements of G. Given such T we say it is a
valid execution of length n with function set F and output V if

1. For each n ∈ T, its label (x,w) is in Rapp.

7

2. For each n ∈ T, let (x,w) be its label. Let x = (f, args, c, f1, args1, f2, args2,O). Then

� f ∈ F.

� The number of its children is c.

� For i ∈ [c], let (fi, argsi, ci, fi1, args
i
1, f

i
2, args

i
2,Oi) denote the first component of

the label of n’s i-th child. Then fi = fi and argsi = argsi.

� Let O be the multi-set union of x.O over all nodes’ labels (x,w). Then O has
output V.

Given a set of group elements F, say it has Merkle root r if r is the root of a Merkle tree
with the elements of F at the leaves using some pre-determined encoding.

We define a relation Rexec capturing knowledge of an execution of bounded length
with a certain output set of records. Rexec consists of the pairs (xexec,wexec) of the form

� xexec = (r, C,V),

� wexec = (n,T),

such that n ≤ C, and T is a valid execution tree of length n with function set F having
Merkle root r, and output set V.

4 Repeated Computation with Global state

Motivated by space-efficient proofs for Rexec, we introduce the notion of Repeated Com-
putation with Global state (RCG). RCGs enable us to deal separately with the local
consistency of iterative steps of a transition function, and over-all consistency of a global
state consisting of a part of each iteration’s witness. We first define the general notion,
and then in Section 4.1 show how to capture valid execution trees with it.

Defining RCG relations An RCG relation is defined by a pair of functions (F,f). We
call F (Z,W,Z∗, S) → {accept, reject} the transition predicate, and f(Z, S1, . . . , Sn,V) →
{accept, reject} the final predicate. We informally think of

� Z as the public input and W as the private input of F .

� Z∗ as the output of F (although the actual output is {accept, reject}).

� S as the part of the private input that will be used in the final predicate.

The relation RF,f is the set of pairs (x,w) with

� x = (zfinal, C,V),

� w = (n, z = (z0, . . . , zn), w = (w1, . . . , wn), s = (s1, . . . , sn))

such that

8

1. z0.init = true.

2. zn = zfinal.

3. n ≤ C.

4. For each i ∈ [n], F (zi−1, wi, zi, si) = accept.

5. f(zn, s1, . . . , sn,V) = accept.

We say a zk-SNARK for RF,f is space-efficient if, given s and streaming access to

z and w, P requires space O(|F | + |s| + λ log n). Here |F | is defined as M + n′ where

f : FM → Fn′
is the Protogalaxy constraint function representing F (see Section 6).

4.1 Valid executions as RCGs

We define a specific RCG relation RF,f capturing valid execution trees as defined in
Section 3.3. Loosely speaking, the transition function F will update a call stack of func-
tions yet to be executed, and execute the function that is at the top of the stack. The
final predicate fwill check the union of record operations from all iterations is consistent.

More precisely, define the function F (Z,W,Z∗, S) → {accept, reject} as follows.

� Z = (g, r, init) where g is a stack of elements of the form (f, args), r is a root of a
Merkle tree, and init is a boolean.

� Z∗ = (g∗, r∗, init∗) has the same form.

� W = (p,x,w).

� S is a set of record operations.

Under this notation, F (Z,W,Z∗, S) = accept if and only if

1. If init = true, g contains exactly one element.

2. Setting x = (x, S), we have (x,w) ∈ Rapp.

3. Denoting g[0] = (f, args), we have f = x.f and args = x.args.

4. p is a Merkle path from f to r.

5. r = r∗.

6. g∗ is the result of popping (f, args) from g and then pushing the x.c elements
(x.fi, x.argsi) for i ∈ [x.c].

Denote by gempty the empty stack. We define f(zn, s1, . . . , sn,V) to output accept if
and only if

9

1. zn.g = gempty,

2. Defining O as the multi-set union of s1, . . . , sn, it is a well-formed set of record
operations with output V.

We show that proving knowledge of a witness for an instance of Rexec can be reduced
to proving knowledge of a witness for an instance of RF,f.

Lemma 4.1. There is an efficiently computable and efficiently invertible map φ such
that the following holds. Let F be a set of function commitments with Merkle root r. Fix
positive integers n,C with n ≤ C. Define zfinal = (gempty, r, false). Let T be an execution
tree of length n.

Then ((r, C,V), (n,T)) ∈ Rexec if and only if ((zfinal, C,V), φ(n,T)) ∈ RF,f.

Proof. We describe the operation of φ. Given T of length n, let (x1,w1), . . . , (xn,wn) be
the labels of its nodes according to DFS order. Define a sequence of stacks g0, . . . , gn
according to the sequence of labels.

Namely, g0 is the stack containing only (x1.f, x1.args). And for each i ∈ [n], gi is the
stack obtained by popping gi−1[0] and pushing (xi.fj , xi.argsj) for j ∈ [xi.c]. Now, define
z0 = (g0, r, true) and for each i ∈ [n], zi = (gi, r, false).

To proceed we need to refer to the record operations in each instance separately.
For this purpose, for each i ∈ [n] denote xi = (xi,Oi). For each i ∈ [n], let pi be the
path from xi.f to r. Define for each i ∈ [n], wi = (pi,xi,wi), si = Oi. Finally set
z = (z0, . . . , zn), w = (w1, . . . , wn), s = (s1, . . . , sn) and φ(n,T) = (n, z, w, s). Given this
definition of φ, the statement of the lemma is straightforward to check.

5 Removing the global state via rational identities

We give rational identities which are equivalent to the consistency of record operations
as formally defined in Section 3.1. They arise from ideas similar to those used in “log-
derivative lookups” [Eag22, Hab22]. Using these identities, we then define a new RCG
relation RF ∗,f∗ capturing valid execution trees, i.e., Rexec. The advantage of RF ∗,f∗

over RF,f from Section 4.1 is that the final predicate is “trivial” in the sense of only
depending on the output of the final iteration. As we’ll see in Section 8, this makes
constructing a zk-SNARK for it more convenient.

Claim 5.1. Assume F has characteristic larger than M+1. Let V be a set of records and
O = {(opi, vi, cvi, ci)}i∈[M] be a set of record operations (defining cvi = 0 when opi = add)

with cvi < ci for all i ∈ [M]. Then O has output V if and only if the following rational
function identities hold:

1. ∑
(v,c)∈V

1

X + vY + c
=

∑
i∈[M],opi=add

1

X + viY + ci
−

∑
i∈[M],opi=del

1

X + viY + cvi
.

10

2. For some m ∈ FM , we have∑
i∈[M],opi=add

mi

X + viY + ci
=

∑
i∈[M],opi=read

1

X + viY + cvi
.

3. ∑
i∈[M]

1

X + ci
=

∑
i∈[M]

1

X + i
.

Proof. We focus on the only if direction. That is, if O doesn’t have output V one of the
three identities should not hold. Let Rv,c(X,Y) := 1

X+vY+c . The main fact we use is
that the rational functions {Rv,c}(v,c)∈F2 are linearly independent. Thus,

∑
v,c av,cRv,c =∑

bv,cRv,c implies av,c = bv,c for each (v, c) ∈ F2. The event of O not having output V
means one of the following occurs.

1. The multi-set of counters {ci}i∈[M] doesn’t equal {1, . . . ,M}. In this case, the LHS
of the third identity will not have all one coefficients for the elements {R0,ci}i∈[M]
and so cannot equal the RHS.

Note that when we are not in this case the counters in O are all distinct, which
we assume for the next cases.

2. For some v, cv, c, (del, v, cv, c) ∈ O but (add, v, 0, cv) /∈ O; or for some v, cv, c1 ̸= c2,
(del, v, cv, c1), (del, v, cv, c2) ∈ O: In the first identity RHS, we will have Rv,cv with
coefficient in the range {−1, . . . ,−M}, while in the LHS it has coefficient one or
zero.

3. For some v, cv, c, (read, v, cv, c) ∈ O but (add, v, 0, cv) /∈ O: In the second identity
RHS Rv,cv will have a coefficient in the range {1, . . . ,M} while in the LHS it has
coefficient zero.

4. V is not equal to the set V′ of (v, c) for which (add, v, 0, c) ∈ O but (del, v, c, c′) /∈ O.
We look at the first identity. V′ is precisely the set of (v, c) with coefficient one on
the RHS, while V is the set of (v, c) with coefficient one on the LHS. Hence the
first identity cannot hold in this case.

Defining RF ∗,f∗ We now define the RCG relation RF ∗,f∗ which will permit efficient
proofs that record operations are consistent. The idea is to evaluate the above rational
identities at a random point, and have the transition predicate incrementally check the
evaluation is correct by a running sum. For the random evaluation point to be generated
in manner that is sound but also allow for an incremental computation of the rational
identity summand by summand, we compute it via a hash chain. This chain includes at
each step the new set of record operations and the last hash output, which is in essence
a commitment to all the record operations in previous steps. This idea also appears in

11

[Sou23, NDC+24, Gro24]. We proceed with the formal definition.

Let F denote the function F (ZF ,WF , Z
∗
F , SF) → {accept, reject} from Section 4.1. Let

k := |SF |, cm : F5k → G, and set M := kn.

Define the function F ∗ : (Z,W,Z∗) → {accept, reject}:

� Z = (ZF , h, s, α, β, ε).

� Z∗ = (Z∗
F , h

∗, s∗, α∗, β∗, ε∗).

� W = (WF , SF ,m)

Under this notation F ∗(Z,W,Z∗) = accept if and only if

1. F (ZF ,WF , Z
∗
F , SF) = accept.

2. If ZF .init = true, h = ∅ and s = 0.

3. Let SF = {(opi, vi, cvi, ci)}i∈[k]. We have cvi < ci for all i ∈ [k], and
s∗ = s +∑
i∈[k];opi=add

1 + εmi

α+ βvi + ci
−

∑
i∈[k];opi=read

ε

α+ βvi + cvi
−

∑
i∈[k];opi=del

1

α+ βvi + cvi
+
∑
i∈[k]

ε2

α+ ci
.

4. α∗ = α, β∗ = β, ε∗ = ε.

5. h∗ = H(h, cm(SF ,m)).

f∗(Z,V) = accept if and only if

1. Z.g = gempty,

2. s =
∑

(v,c)∈V
1

α+βv+c +
∑

i∈[M]
ε2

α+i ,

3. H(h,V, 1) = α, H(h,V, 2) = β, H(h,V, 3) = ε.

We show that RF ∗,f∗ captures RF,f and consequently valid executions.

Lemma 5.2. There is an efficiently computable map φ∗ such that the following holds.
Suppose an efficient adversary A outputs (ϕ, ω) ∈ RF ∗,f∗. Set d := 3M + |V| + 1.
Define cm∗(s1, . . . , sn,m1, . . . ,mn) := hn, where h0 := ∅ and hi := H(hi−1, cm(si,mi))
for i ∈ [n]. Let D be a function family to be defined in the proof. Assume the 3-variate
ZTA holds for (D,H, cm∗, d). Then e.w.p. negl(λ), φ∗(ϕ, ω) ∈ RF,f.

12

Proof. Given an instance ϕ = (z∗final, C,V) with z∗final = (zfinal, h, s, α, β, ε) and witness
ω = (n, z′, w′) with z′ = (z′0, . . . , z

′
n), w

′ = (w′
1, . . . , w

′
n) output by A, denote z′i =

(zi, hi, si, αi, βi, εi), w
′
i = (wi, si,mi). Define φ∗(ϕ, ω) := (x,w) as

x := (zfinal, C,V), w := (n, (z0, . . . , zn), (w1, . . . , wn), (s1, . . . , sn)).

From (ϕ, ω) ∈ RF ∗,f∗ , we know w satisfies the transition constraints, namely for
i ∈ [n], F (zi−1, wi, zi, si) = accept. We also know that z0.init = true, zn = zfinal,
and n ≤ C. It is left to show that e.w.p. negl(λ) f(zn, s1, . . . , sn,V) = accept. Since
zn.g = gempty, this is equivalent to showing that the rational identities from Claim 5.1
hold e.w.p. negl(λ).

From F ∗(z′i−1, w
′
i, z

′
i) = accept for all i ∈ [n] and f∗(z′n,V) = accept, we know the

equations from Claim 5.1 hold at α, β, ε. That is, defining the rational function

r(X,Y, Z) :=
∑

(v,c)∈V

1

X + vY + c
−

∑
i∈[M],opi=add

1

X + viY + ci
+

∑
i∈[M],opi=del

1

X + viY + cvi

+ Z

 ∑
i∈[M],opi=add

(m1∥ . . . ∥mn)i
X + viY + ci

−
∑

i∈[M],opi=read

1

X + viY + cvi

+ Z2

 ∑
i∈[M]

1

X + ci
−

∑
i∈[M]

1

X + i

 ,

we have r(α, β, ε) = 0. If any of the three rational identities from Claim 5.1 does
not hold, we have r(X,Y, Z) ̸≡ 0. Let f ∈ F≤d[X,Y, Z] denote the resulting non-zero
degree-d polynomial when multiplying r(X,Y, Z) with all of its denominators. Note
that f(α, β, ε) = 0. Define D as the function that computes f(X,Y, Z) given x :=
(s1, . . . , sn,m1, . . . ,mn) and τ := V. Set D := {D}. Then we can define an efficient
adversary A′ against the 3-variate ZTA for (D,H, cm∗, d) that outputs the (3, d)-relation
(D,x, τ), which has probability negl(λ).

6 Non-interactive folding schemes

We fix a vector space K over F, and an F-linear function cm : FM → K that will be
an implicit parameter in Definition 6.1. We say a relation R is cm-compatible if every
element of R has the form (cm(ω), ω). We say R is cm-extendable if every element of R
has the form ((cm(ω), τ), ω) for some ω, τ .

Definition 6.1. Fix relations R and Racc that are cm-compatible and cm-extendable,
respectively. An (R 7→ Racc)-folding scheme is a pair of algorithms (P,V) such that

1. P on input (Φ, ϕ′;ω, ω′) produces a pair (Φ∗, ω∗) and proof π.

2. V on input (Φ, ϕ′,Φ∗, π) outputs accept or reject such that

13

(a) Completeness: If (Φ, ω) ∈ Racc, (ϕ
′, ω′) ∈ R and P(Φ, ϕ′;ω, ω′) = (Φ∗, ω∗, π),

then with probability 1−negl(λ), (Φ∗, ω∗) ∈ Racc and V(Φ, ϕ′,Φ∗, π) = accept.

(b) Knowledge soundness given extractable commitments:

For any efficient A the probability of the following event is negl(λ): A outputs
(ϕ, τ), ϕ′, (ϕ∗, τ∗), ω, ω′, ω∗, π such that

i. cm(ω) = ϕ, cm(ω′) = ϕ′, cm(ω∗) = ϕ∗,

ii. V(ϕ, ϕ′, ϕ∗, π) = accept,

iii. ((ϕ∗, τ∗), ω∗) ∈ Racc,

iv. ((ϕ, τ), ω) /∈ Racc or (ϕ′, ω′) /∈ R.

Remark 6.2. The justification for requiring only knowledge soundness given extractable
commitments is as follows. We assume the Algebraic Group Model [FKL18] and use a
commitment scheme based on linear combination of group elements like [KZG10]. In this
model with such a commitment scheme an adversary A must output ω, with cm(ω) = ϕ
whenever it outputs some ϕ ∈ K. For more details see [FKL18] or Section 2.2 of
[GWC19], as well as Section 7 of this paper.

6.1 Relations for folding schemes

We define a more general satisfiability relation than in [EG23]. We have as parameters,
integers n,M, d and an F-vector space K. We have a

� Constraint function f : FM → Fn which is a vector of n M-variate polynomials of
degree ≤ d,

� Instance predicate f : K → {accept, reject},

� Commitment function cm : FM → K which is F-linear and assumed to be collision
resistant.

Given (f, f, cm) we define a relation Rf,f,cm consisting of all pairs (ϕ, ω) such that

1. f(ω) = 0n.

2. f(ϕ) = accept.

3. ϕ = cm(ω).

The relation Rrand For brevity, let R = Rf,f,cm. As in [EG23], we define the “random-
ized relaxed” version of R, Rrand. First, some required notation. Let t := log n. For
i ∈ [n], let Si ⊆ {0, . . . , t− 1} be the set such that i − 1 =

∑
j∈[Si]

2j . We define the
t-variate polynomial powi as

powi(X0, . . . , Xt−1) :=
∏
ℓ∈Si

Xℓ.

14

Note that if β = (β, β2, β4, . . . , β2t−1
), powi(β) = βi−1.

Given the above notation, Rrand consists of the pairs (Φ, ω) with Φ = (ϕ,β, e) such
that

1. ϕ = cm(ω).

2. β ∈ Ft, e ∈ F and we have ∑
i∈[n]

powi(β)fi(ω) = e.

(Here, fi denotes the i-th output coordinate of f .)

6.2 The Protogalaxy scheme

Deviating from [EG23], we explicitly present Protogalaxy as a non-interactive folding
scheme, and for the special case of folding k = 1 instances. We define Z(X) := X ·(1−X).
We assume below H is a function mapping arbitrary strings to elements of F∗.

PPG(Φ = (ϕ,β, e), ϕ1;ω, ω1):

1. Compute δ = H(Φ, ϕ1). Define δ := (δ, δ2, . . . , δ2
t−1

) ∈ Ft.

2. Compute the polynomial

F (X) :=
∑
i∈[n]

powi(β +Xδ)fi(ω).

(Note that F (0) =
∑

i∈[n] powi(β)fi(ω) = e.)

3. Denote the non-constant coefficients of F by a := (F1, . . . , Ft).

4. Compute α = H(Φ, ϕ1, a).

5. Compute β∗ ∈ Ft where β∗
i := βi + α · δi.

6. Define the polynomial G(X) as

G(X) :=
∑
i∈[n]

powi(β
∗)fi(X · ω + (1−X)ω1).

7. Compute the polynomial K(X) such that

G(X) = F (α)X + Z(X)K(X).

8. Let b := (K0, . . . ,Kd−2) be the coefficients of K(X).

9. Compute γ = H(Φ, ϕ1, a, b).

15

10. Compute
e∗ := F (α)γ + Z(γ)K(γ).

Finally, output

� the instance Φ∗ = (ϕ∗,β∗, e∗), where

ϕ∗ := γ · ϕ+ (1− γ)ϕ1,

� the witness ω∗ := γ · ω + (1− γ) · ω1,

� and the proof π := (a, b).

VPG(Φ, ϕ1,Φ
∗, π = (a, b)):

1. Check that f(ϕ1) = accept. Output reject otherwise.

2. Compute δ, α,β∗, γ as in the prover algorithm given Φ, ϕ1, a, b.

3. Check that Φ∗ is computed as in the prover algorithm. Output accept iff this is
the case.

For the knowledge soundness analysis we’ll use a variant of the Zero-Testing Assump-
tion from [LS24], see Definition 2.1.

Theorem 6.3. Set d′ := max {n, d}. Denote cm′((ω,β, e), ω1) := ((cm(ω),β, e), cm(ω1)).
Let D be a family of four functions to be defined in the proof. Assume that cm is collision
resistant and the ZTA holds for (D,H, cm′, d′). Then Protogalaxy is a (R 7→ Rrand)-
folding scheme.

Proof. The main thing to prove is knowledge soundness given extractable commitments.
Fix any efficientA. Let E be the event thatA outputs Φ = (ϕ,β, e), ϕ1,Φ

∗ = (ϕ∗,β∗, e∗),
ω, ω1, ω

∗, π such that

1. cm(ω) = ϕ, cm(ω1) = ϕ1, cm(ω∗) = ϕ∗,

2. VPG(Φ, ϕ1,Φ
∗, π) = accept,

3. (Φ∗, ω∗) ∈ Rrand,

4. (Φ, ω) /∈ Rrand or (ϕ1, ω1) /∈ R.

According to Definition 6.1, knowledge soundness is equivalent to E having probability
negl(λ) for any such A. We construct an efficient A′ that runs A, and when E occurs
outputs either a collision of cm or a degree d′-relation for (H, cm). By the theorem
assumption this implies E is contained in two events of probability negl(λ), and must
have probability negl(λ) itself.

16

Assume we are in event E. Using linearity of cm, when E occurs we have

cm(γω + (1− γ)ω1) = γϕ+ (1− γ)ϕ1 = ϕ∗ = cm(ω∗).

Thus, if ω∗ ̸= γω + (1 − γ)ω1, A′ can output (ω∗, γω + (1 − γ)ω1) as a collision of cm.
Now assume that ω∗ = γω + (1 − γ)ω1. Suppose π = (a, b), with a = (a1, . . . , at), b =
(b0, . . . , bd−2). Define F0(X) := e +

∑
i∈[t] aiX

i,K ′(X) :=
∑d−2

i=0 biX
i. Let δ, δ, α,β∗, γ

be computed as in the prover description given a, b. Define the polynomials

F ′(X) := F0(X)−
∑
i∈[n]

powi(β +Xδ)fi(ω),

G′(X) := F0(α)X + Z(X)K ′(X)−
∑
i∈[n]

powi(β
∗)fi(Xω + (1−X)ω1).

Since ((ϕ∗,β∗, e∗), ω∗) ∈ Rrand and VPG(Φ, ϕ
′,Φ∗, π) = accept,

G′(γ) = F0(α)γ + Z(γ)K ′(γ)−
∑
i∈[n]

powi(β
∗)fi(γω + (1− γ)ω1)

= e∗ −
∑
i∈[n]

powi(β
∗)fi(ω

∗) = e∗ − e∗ = 0.

Set x := ((ω,β, e), ω1) and τ1 := (a, b). If G′ ̸≡ 0, A′ outputs the degree d′-relation
(D1, x, τ1), where D1 is the function that computes G′(X) given x, τ1.

Assume now that G′ ≡ 0.
If (ϕ1, ω1) /∈ R, using Z(0) = 0 we have

G′(0) = −
∑
i∈[n]

powi(β
∗)fi(ω1) = 0.

Define the polynomial A(X) :=
∑

i∈[n] fi(ω1)powi(β1 +Xδ,β2 +Xδ2, . . . ,βt +Xδ2
t−1

).
We have A(α) = 0. Suppose first that A(X) ̸≡ 0. Then setting D2 to be the function
that computes A(X) given x and τ2 := a, A′ can output the degree n relation (D2, x, τ2).
Now assume A(X) ≡ 0. Define the polynomial

B(X,Y) :=
∑
i∈[n]

fi(ω1)powi(β1 +XY,β2 +XY 2, . . . ,βt +XY 2t−1
).

We have that B(X, δ) ≡ 0. Write B(X,Y) as a polynomial in X over F[Y]:

B(X) =
t∑

i=0

Ci(Y)Xi.

Because we’re in the case (ϕ1, ω1) /∈ R, B is a combination of the n linearly independent

polynomials
{
powi(β1 +XY,β2 +XY 2, . . . ,βt +XY 2t−1

)
}
i∈[n]

with at least one non-

zero coefficient, and so B(X,Y) ̸≡ 0. This means one of the polynomials Ci is non-zero,

17

while Ci(δ) = 0. We can use this to let A′ output the degree n relation (D3, x, τ3), where
D3 is the function that computes Ci given x and τ3 := ∅.

Now, assume that (Φ, ω) /∈ Rrand. As we’re still assuming G′ ≡ 0, we have

G′(1) = F0(α)−
∑
i∈[n]

powi(β
∗)fi(ω) = 0.

But we also have F ′(α) = G′(1) and so F ′(α) = 0. On the other hand,

F ′(0) = e−
∑
i∈[n]

powi(β)fi(ω) ̸= 0.

Setting τ4 := a and D4 to be the function that computes F ′ given x, τ4, we have that
(D4, x, τ4) is a degree log n relation that A′ can output in this case. Setting D =
{D1, D2, D3, D4} we have proven knowledge soundness under the theorem assumptions.

7 Adversaries supporting recursive extraction

Following [LS24], we define a model of “recursive extraction” for our analysis in Section

8. We assume our commitment function cm : FM → K is surjective. We assume
the existence of an efficiently computable injective representation function R : K →
Fk. Whenever an adversary A outputs a ∈ K we assume it is represented as R(a).
When analyzing knowledge soundness of our zk-SNARK in the next section, we put the
following limitation on A. Say A outputs a vector v over F. If there is an index i such

that (vi, . . . , vi+k−1) = R(a) for some a ∈ K, then A must also output ω ∈ FM such that
cm(ω) = a. We call such A a recursive algebraic adversary.

This assumption is motivated by a “recursive” interpretation of the Algebraic Group
Model[FKL18] as done in [LS24]. For illustration, consider first the case where cm :
Fn → G is defined as cm(ω) = ⟨ω, V ⟩ for a fixed vector V ∈ Gn derived in a setup
procedure. I.e. cm is a Pedersen commitment in this case. In this case, the AGM forces
A when outputting a ∈ G to also output ω such that ⟨ω, V ⟩ = cm(ω) = a. [LS24]
now raise the idea that if a prespecified subset of indices of ω is a valid representation
of b ∈ G, it is reasonable to demand of an algebraic A to also output ω2 with ⟨ω2, V ⟩ = b.

Our concrete choice for cm when using Protogalaxy, is of the following form.2 We
have a setup procedure outputting a vector of group elements V ∈ Gn as output. We

have some fixed partition of our input ω ∈ FM into continuous segments of size either
one or n. To get cm(ω) we operate segment-wise. If the segment ωi is of size one we
simply append ωi to the output. If a segment s = (ωi, . . . , ωi+n−1) is of size n we append
⟨s, V ⟩ to the output. In particular the output cm(ω) is a mixture of F and G elements,

2cm is of this form because it is derived from an interactive protocol where the prover messages are
in committed form, but verifier challenges are in the clear. See [BC23, EG23] for more details.

18

and accordingly the space K is a direct sum of spaces Vi ∈ {F,G}. It follows that an
algebraic adversary outputting c ∈ K must output ω with cm(ω) = c as the AGM forces
it to send an opening s ∈ Fn to each a ∈ G.

8 The main construction

We say an RCG relation RF,f is trivial if the S variable is not used in F , and accordingly
f depends only on (zfinal,V). We assume in this section RF,f is trivial, thinking of it as
RF ∗,f∗ from Section 5.

8.1 The extended function F ′

As in [KST21, BCL+21], we first describe an extended function F ′ that executes the
folding verifier in addition to an iteration of F . Loosely speaking, extending F into F ′

is what enables bootstrapping a folding scheme into an IVC or RCG. We describe the
function arguments first.

x = (z, count, h)

� z – output for F

� count – counter of IVC step

� h – hash of accumulator

w = (Φ∗,Φ, x0, w, π)

� Φ∗ – current accumulator instance

� Φ – previous accumulator instance

� x0 – instance (of F ′) to be accumulated

� w – private input for F

� π – proof for Protogalaxy verifier

F ′(x,w) = accept if and only if:

1. F (x0.z, w, z) = accept.

2. If count = 1:

� x0.z.init = true.

3. If count > 1:

(a) H(Φ∗) = h.

(b) H(Φ) = x0.h.

19

(c) x0.count = count− 1.

(d) VPG(Φ, x0,Φ
∗, π) = accept.

Let R,Rrand be relations for the Protogalaxy version of the function F ′ above.3

For readability, from now on we modify notational conventions and denote an accu-
mulator by acc, accumulator witness by w-acc, instance by inst, and instance witness by
w-inst.

8.2 The relation Rfin

We define the relation Rfin of pairs (x,w) with

� x = (acc, zfinal, C,V)

� w = (w-acc, acc0, inst, π)

such that

1. (acc,w-acc) ∈ Rrand.

2. VPG(acc0, inst, acc, π) = accept.

3. inst.z = zfinal.

4. inst.count ≤ C.

5. inst.h = H(acc0).

Let (Pfin,Vfin) be a zk-SNARK for Rfin.

8.3 Main construction

We now describe the full prover and verifier for a given trivial RCG relation RF,f. Later
we review how to use this to get a zk-SNARK for the relation Rexec of valid executions,
given the reductions of the previous sections.

P(x,w):

1. Let x = (zfinal, C,V),w = (n, (z0, . . . , zn), (w1, . . . , wn)). Recall that (x,w) ∈ RF,f

implies F (zi−1, wi, zi) = accept for each i ∈ [n], z0.init = true, zn = zfinal, n ≤ C
and f(zfinal,V) = accept.

2. Choose instance inst0 = (z0, count0, h0) for arbitrary values count0, h0. Choose
acc0 arbitrarily. Let inst1 = (z1, 1, h1), w-inst1 = (acc0, acc0, inst0, w1, π0) for ar-
bitrary values h1, acc0, π0. (We can choose some values arbitrarily as they aren’t
constrained in F ′ when count = 1.)

3In an updated version of the paper we will give more details on how to efficiently implement F ′ as
a Protogalaxy relation.

20

3. Let acc1 be a randomly chosen satisfiable accumulator. Namely, acc1 = (cm(w-acc1),β, e)
wherew-acc1 and β are chosen randomly4, and e is set to e =

∑
i∈[n] powi(β)fi(w-acc1).

4. For each 2 ≤ i ≤ n, compute

(a) (acci,w-acci, πi) = PPG
cm,n,f (acci−1,w-acci−1, insti−1,w-insti−1)

(b) insti = (zi, i,H(acci)),

(c) w-insti = (acci, acci−1, insti−1, wi, πi)

5. (acc,w-acc, π∗) = PPG
cm,n,f (accn,w-accn, instn,w-instn).

6. Let πfin = Pfin(x,w) where

� x = (acc,V, C, zfinal)

� w = (w-acc, accn, instn, π
∗)

7. Output π = (acc, πfin).

V(x, π):

1. Parse x as (zfinal, C,V), π as (acc, πfin).

2. If f(zfinal,V) = reject output reject.

3. Let x := (acc, zfinal, C,V).

4. Return Vfin(x, πfin).

Theorem 8.1. Let RF,f be a trivial RCG relation. Assume that H is collision resistant,
and that the assumptions in Theorem 6.3 hold. Then (P,V) is a space-efficient zk-
SNARK for RF,f.

Proof. The main thing to prove is knowledge soundness. Let A be a recursive algebraic
adversary.

We define the following extractor algorithm E:

1. Given (x, π), use the SNARK extractor to output w = (w-acc, acc∗, inst∗, π∗).

2. Let n := inst∗.count. Denote accn := acc∗, instn := inst∗.

3. If (x,w) /∈ Rfin output empty and abort. Otherwise accn, instn ∈ K and let
w-accn,w-instn be the elements output by A such that cm(w-accn) = accn and
cm(w-instn) = instn.

4. For i = n− 1, . . . , 1:

4We only need cm(w-acc1) to be uniformly distributed over the image of cm. According to cm’s
structure, it may suffice to choose only a small subset of w-acc1’s coordinates randomly, and set the rest
to zero.

21

(a) If (insti+1,w-insti+1) /∈ R, output empty and abort. Otherwise, as (insti+1,w-insti+1) ∈
R implies acci, insti ∈ K, let w-acci,w-insti be the elements output by A such
that acci = cm(w-acci), insti = cm(w-insti).

(b) Parse insti as (zi, counti, hi). Parse w-insti as (acc′i, acci−1, insti−1, wi, πi).
Note that through this parsing we have in particular defined zi, wi and insti−1.

5. Define z0 := inst0.z.

6. Output w := (n, (z0, . . . , zn), (w1, . . . , wn)).

Let D be the event that A outputs (x, π) such that V(x, π) = accept. If D has
probability negl(λ) we are done. Otherwise, in order to prove knowledge soundness, we
need to show that

Pr[(x,w) /∈ RF,f | D] = negl(λ).

Assume from now we are in the space conditioned on D. Let E0 be the event (x,w) /∈
Rfin. For i ∈ [n], let Ei be the union of the following events:

1. (insti,w-insti) /∈ R.

2. (acci,w-acci) /∈ R.

3. H(acci) ̸= insti.h.

We first argue that if E0, . . . , En don’t occur, (x,w) ∈ RF,f. Denote x = (zfinal, C,V)
and x = (acc,x). Examining the definition of RF,f, the statement (x,w) ∈ RF,f is
equivalent to the following conditions.

1. f(zfinal,V) = accept: V checks this directly so we know it holds.

2. instn.z = zfinal and n ≤ C: Follows from (x,w) ∈ Rfin.

3. For all i ∈ [n] F (zi−1, wi, zi) = accept: Follows directly from (insti,w-insti) ∈ R
for each i ∈ [n].

4. z0.init = true: For this we first prove by backwards induction on i = n, n− 1, . . . , 1
that insti.count = i. By our definition of instn this holds for i = n. For the induc-
tion step, assume it holds for i. Since (insti,w-insti) ∈ R we have insti−1.count =
w-insti−1.inst.count = insti.count− 1 = i− 1.

In particular, inst1.count = 1 which implies when (inst1,w-inst1) ∈ R that z0.init =
inst0.z.init = true.

It is left to show that the probability of E0 ∪ E1 ∪ . . . ∪ En is negl(λ). From the
knowledge-soundness of the zk-SNARK for Rfin we have Pr[E0] = negl(λ). (Recall we
are in the event D and assuming its probability is non-negligible.)

For this purpose, we prove by backwards induction on i, for each i ∈ [n], that the
probability that Ei occurs given E0, Ei+1, . . . , En didn’t is negl(λ).

22

For i = n, assume E0 didn’t occur, hence (x,w) ∈ Rfin. In this case (acc,w-acc) ∈
Rrand and VPG(instn, accn, acc, π

∗) = accept. Define An to be the algorithm that ex-
ecutes E and outputs accn, instn, acc,w-accn,w-instn,w-acc, π∗. From the knowledge
soundness of Protogalaxy applied to An we have that the probability conditioned on
¬E0 that En occurred is negl(λ).

Now assume the induction hypothesis for some i > 1. We have by the hypothesis that
the eventDi := ¬(E0∪Ei∪. . .∪En) has probability 1−negl(λ). Assume that we are inDi.
From (insti,w-insti) ∈ R we have that insti.h = H(acc′i) = H(acci). From the collision
resistance of H, we thus have that the probability that acci ̸= acci is negl(λ). If acci =
acc′i we have from (insti,w-insti) ∈ R that V(acci−1, insti−1, πi, acci) = accept. Define
Ai to be the algorithm that executes E and outputs acci−1, insti−1, acci−1,w-acci−1,
w-insti−1,w-acci, πi. From the knowledge soundness of Protogalaxy applied to Ai

we have that the probability that (insti−1,w-insti−1) /∈ R or (acci−1,w-acci−1) /∈ Rrand

given Di is negl(λ). Noting that (insti,w-insti) ∈ R also implies H(acci−1) = insti−1.h,
Pr[Ei−1 | Di] = negl(λ); which is the desired inductive statement.

8.4 Constructing proofs for Rexec

Going through the reductions of the previous sections, we get the following zk-SNARK
for the relation Rexec from Section 3.3 describing valid executions.

Pexec(xexec,wexec):

1. Let xexec = (r, C,V), zfinal = (gempty, r, false) and x = (zfinal, C,V). Let φ be the
map in Lemma 4.1, and compute w = φ(wexec).

2. Let w = (n, (z0, . . . , zn), (w1, . . . , wn), (s1, . . . , sn)).

(a) For each i ∈ [n], define mi ∈ Fk such that mi,j is the number of times a record
is read when si,j is an add operation, and 0 otherwise.

(b) Set h0 = ∅ and compute hi = H(hi−1, cm(si,mi)) for i ∈ [n].

(c) Compute (α, β, ε) = (H(hn,V, 1),H(hn,V, 2),H(hn,V, 3)).

(d) Set s0 = 0 and compute si for i ∈ [n] as in the definition of F ∗ in Section 5.

(e) Let z∗final = (zfinal, hn, sn, α, β, ε), for 0 ≤ i ≤ n, let z∗i = (zi, hi, si, α, β, ε),
and for i ∈ [n], let w∗

i = (wi, si,mi).

(f) Set x∗ = (z∗final, C,V) and w∗ = (n, (z∗0 , . . . , z
∗
n), (w

∗
1, . . . , w

∗
n)).

3. Compute the proof π∗ for (x∗,w∗) ∈ RF ∗,f∗ according to P in Section 8.3.

4. Output π = (hn, sn, α, β, ε, π
∗).

Vexec(xexec, π):

1. Parse xexec as (r, C,V) and π as (h, s, α, β, ε, π∗). Let zfinal = (gempty, r, false),
z∗final = (zfinal, h, s, α, β, ε) and x∗ = (z∗final, C,V).

23

2. Return V(x∗, π∗) according to V in Section 8.3.

Theorem 8.2. If (P,V) from Section 8.3 is knowledge-sound for RF ∗,f∗ and the nec-
essary assumptions from Lemma 5.2 hold, (Pexec,Vexec) is knowledge-sound for Rexec.

Proof. Let A be a recursive algebraic adversary that outputs xexec = (r, C,V) and π =
(h, s, α, β, ε, π∗). Let zfinal = (gempty, r, false), z∗final = (zfinal, h, s, α, β, ε), and x∗ =
(z∗final, C,V). Define A∗ as the adversary that runs A but outputs (x∗, π∗). Define the
following extractor Eexec:

1. Given (xexec, π), use E from Section 8.3 to extract w∗ from the adversary A∗.

2. Compute (x,w) = φ∗(x∗,w∗), where φ∗ is the map from Lemma 5.2.

3. Output wexec = φ−1(w), where φ is the map from Lemma 4.1.

We need to show that

Pr[Vexec(xexec, π) = accept ∧ (xexec,wexec) /∈ Rexec] = negl(λ).

If the first event in the above expression has negligible probability, we are done.
Otherwise, assuming we are in the first event, i.e., Vexec accepts, we show the second

event has negligible probability. In particular, this means V(x∗, π∗) = accept.
From the knowledge soundness of (P,V) for RF ∗,f∗ , we get that the witness w∗

output by E satisfies (x∗,w∗) ∈ RF ∗,f∗ e.w.p. negl(λ).
From Lemma 5.2, we get (x,w) ∈ RF,f e.w.p. negl(λ).
From Lemma 4.1, we get (xexec,wexec) ∈ Rexec e.w.p. negl(λ), finishing the proof.

9 General Final predicate

We sketch how to deal with a general final predicate f, rather than the one described
so far for checking record operations. A more detailed explanation will appear in an
updated version of the paper.

The basic idea is that a general final predicate reduces to the concatenation predicate.
Namely, suppose we can prove an element s is the commitment to the concatenation of
the {si} from all n iterations. Then we can modify the final zk-SNARK in Section 8 to
also check that f(zfinal, s1, . . . , sn,V) = accept.

For this purpose, instead of the function F ∗ in Section 5 we add Protogalaxy
constraints to the transition function F to obtain at iteration i a vector Si that is the
concatenation of Si−1 with si.

9.1 Efficient Proofs of Concatenation with Protogalaxy

Given a sequence consisting of vectors {si}i∈[n] of field elements of length k and a bound
C on n, we can define a system of linear protogalaxy constraints that a concatenation
was correctly carried out. We highlight that it is important the constraint system does

24

not depend on the current iteration i, or actual sequence length n, only on the bound
C. The idea is that if we append the new elements at the beginning of the vector, the
concatenation constraints can be written as linear constraints that indeed only depend
on k,C but not i or n.

Fix vector b ∈ Fk and vectors a, a′ ∈ F kC . For each j ∈ [kC] we define the constraint
fj(a, b, a

′) as follows.

fj(a, b, a
′) :=

{
a′j − bj i ≤ k

a′j − aj−k j > k
.

In words, the constraints {fj} enforce that a′ consists of the k elements of b followed by
the first (C − 1)k elements of a. Additionally, we will constrain (using the init variable)
that S0 is the zero vector of length kC. In the i-th iteration, our transition function F
will check for each j ∈ [kC] the constraint fj(Si, si, Si+1) = 0.

One can now show inductively that when starting from the zero vector, under the
assumptions that n ≤ C and |si| ≤ k for each i ∈ [n], we end up with Sn = (s1∥ . . . ∥sn)
possibly padded with zeroes.

Prover efficiency If the stack is folded in order, then even in the new randomized in-
stance, the zero padding is preserved. That is, higher order elements above ki are still
zero after folding. So the prover only needs to perform one field multiplication per stack
element to compute the folded witness. These constraints are also linear so they do not
contribute to any of the error terms in the G(X) polynomial.

For all j > k(i+1) notice that fj(Si, si, Si+1) = 0 identically, so they do not even con-
tribute to the cost of computing the F (X) polynomial. Assuming all of these constraints
are organized adjacently in the highest order indices of the overall protogalaxy constraint
system, there is a straightforward modification of the F (X) computation which incurs
no cost for constraints that are identically zero. In brief, if an entire subtree consists
of leaves that are zero, then the prover can avoid any computation for that subtree.
Therefore, the total prover computation depends only on the size of the vector Si+1.

Acknowledgements

The third author was funded by the Vienna Science and Technology Fund (WWTF)
[10.47379/VRG18002] and by the Austrian Science Fund (FWF) [10.55776/F8515-N].

References

[BC23] B. Bünz and B. Chen. Protostar: Generic efficient accumulation/folding for
special sound protocols. IACR Cryptol. ePrint Arch., page 620, 2023.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKs and proof-carrying data. Cryp-

25

tology ePrint Archive, Paper 2012/095, 2012. https://eprint.iacr.org/

2012/095.

[BCL+21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-carrying
data without succinct arguments. In Tal Malkin and Chris Peikert, edi-
tors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part I, volume 12825 of Lecture Notes in Computer Science,
pages 681–710. Springer, 2021.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 310–331.
Tsinghua University Press, 2010.

[Eag22] Liam Eagen. Bulletproofs++. IACR Cryptol. ePrint Arch., page 510, 2022.

[EG23] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStar-style fold-
ing of multiple instances. Cryptology ePrint Archive, Paper 2023/1106, 2023.
https://eprint.iacr.org/2023/1106.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, pages 33–62, 2018.

[Gro24] J. Groth. Memory checking in folding-based zkvms - jens groth (nexus), 2024.
https://www.youtube.com/watch?v=xnzjC_9vUzs.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[Hab22] U. Haböck. Multivariate lookups based on logarithmic derivatives. IACR
Cryptol. ePrint Arch., page 1530, 2022.

[KST21] A. Kothapalli, S. T. V. Setty, and I. Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. IACR Cryptol. ePrint Arch., page 370, 2021.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. pages 177–194, 2010.

[LS24] Hyeonbum Lee and Jae Hong Seo. On the security of nova recursive proof
system. Cryptology ePrint Archive, Paper 2024/232, 2024. https://eprint.
iacr.org/2024/232.

26

https://eprint.iacr.org/2012/095
https://eprint.iacr.org/2012/095
https://eprint.iacr.org/2023/1106
https://www.youtube.com/watch?v=xnzjC_9vUzs
https://eprint.iacr.org/2024/232
https://eprint.iacr.org/2024/232

[NDC+24] Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh.
Mangrove: A scalable framework for folding-based SNARKs. Cryptology
ePrint Archive, Paper 2024/416, 2024. https://eprint.iacr.org/2024/

416.

[Sou23] L. Soukhanov. Folding endgame, 2023. https://zkresear.ch/t/

folding-endgame/106.

[Val08] P. Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography, Fifth Theory of Cryptog-
raphy Conference, TCC 2008, New York, USA, March 19-21, 2008, volume
4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

27

https://eprint.iacr.org/2024/416
https://eprint.iacr.org/2024/416
https://zkresear.ch/t/folding-endgame/106
https://zkresear.ch/t/folding-endgame/106

	Introduction
	Related work
	Overview of the paper

	Preliminaries
	Terminology and Conventions
	Zero-Testing Assumption

	The execution model
	Record operations
	The Plonkish relation
	Valid execution trees

	Repeated Computation with Global state
	Valid executions as RCGs

	Removing the global state via rational identities
	Non-interactive folding schemes
	Relations for folding schemes
	The Protogalaxy scheme

	Adversaries supporting recursive extraction
	The main construction
	The extended function F'
	The relation Rfin
	Main construction
	Constructing proofs for Rexec

	General Final predicate
	Efficient Proofs of Concatenation with Protogalaxy

	References

