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Abstract. This paper surveys interactions between choices of elliptic
curves and the security of elliptic-curve cryptography. Attacks considered
include not just discrete-logarithm computations but also attacks
exploiting common implementation pitfalls.

1 Introduction

In the original 1976 Diffie–Hellman (DH) key-exchange system [91, Section 3],
user 1 has secret key X1 and public key Y1 = gX1 ; user 2 has secret key
X2 and public key Y2 = gX2 ; and so on for any number of users. Here g is
a “fixed primitive element of GF (q)”, i.e., a generator of the multiplicative
group F∗

q , where q is a fixed prime number. To communicate with user i, user

j computes a shared secret gXiXj as Y
Xj

i , and uses this shared secret as a key
for symmetric-key cryptography to encrypt and authenticate messages. User i
computes the same shared secret as Y Xi

j .
The DH system is broken if an attacker can solve the “discrete-logarithm

problem” for the group F∗
q , the problem of computing Xi from gXi . The 1976

paper commented that “for certain carefully chosen values of q” this problem
“requires on the order of q1/2 operations, using the best known algorithm”.

Author list in alphabetical order; see https://www.ams.org/profession/

leaders/culture/CultureStatement04.pdf. This work was supported in part
by the U.S. National Science Foundation under grant 1018836, the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy–EXC 2092 CASA–390781972 “Cyber Security in the Age of
Large-Scale Adversaries”, the Academia Sinica Grand Challenge Seed Project
AS-GCS-113-M07, the European Commision through the Horizon Europe program
under project number 101135475 (TALER), and the Dutch Research Council
(NWO) under grants 613.009.144 and 639.073.005. “Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation” (or other funding agencies). Permanent ID of this document:
47f17793322fcaf3ef67f982e2c3ae86b34c17ce. Date: 2024.08.09.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf


2 Daniel J. Bernstein and Tanja Lange

The discrete-logarithm algorithms cited in that paper are “generic” algorithms

that work for any group. They use about ℓ
1/2
1 + ℓ

1/2
2 + · · · operations if the order

of the generator factors into primes ℓ1, ℓ2, . . . (not necessarily distinct). A careful
choice of q for the DH system then takes, e.g., q−1 = 2ℓ for a prime ℓ, so that the
attacks take about ℓ1/2 ≈ 0.7q1/2 operations; i.e., the DH security level against
these attacks is about (1/2) log2 q bits, where security level means logarithm
base 2 of attack cost.

However, further analysis showed that a non-generic method called “index
calculus”—which had been introduced in 1922 by Kraitchik [154, page 120], and
which had been used at a much larger scale by Western and J. Miller [226]—had
much better scalability in solving discrete-logarithm problems, reducing the
security level to (log2 q)

1/2+o(1) bits asymptotically. Index calculus applies more
generally to discrete logarithms in F∗

q for arbitrary prime powers q, not just
primes, and applies to integer factorization (see, e.g., Kraitchik’s 1926 book
[155, Chapitre XIV]), in all cases reducing the security level to (log2 q)

1/2+o(1)

bits.
There have been many further developments of index calculus since then. The

security level dropped in the early 1980s to (log2 q)
1/3+o(1) when q is a power

of 2, and then a decade later to (log2 q)
1/3+o(1) when q is a prime, and then

two decades after that to (log2 q)
o(1) when q is a power of 2; see generally [121].

Each of these exponent changes was preceded and followed by many speedups
that had less effect on the asymptotics but that pushed many specific sizes of q
across the line from “unbroken” to “broken”.

1.1 Elliptic-curve cryptography (ECC)

The central idea of ECC is to stop index calculus, specifically by replacing the
groups F∗

q in the DH system with elliptic-curve groups E(Fq). This idea was
introduced in a 1986 paper by V. Miller [174] and, independently, a 1987 paper
by Koblitz [152]. Miller gave arguments that index calculus “is not likely to work
on elliptic curves”. Koblitz wrote that “the analog of the discrete logarithm
problem on elliptic curves is likely to be harder than the classical discrete
logarithm problem, especially over GF(2n)”.

The bird’s-eye view is that this has been remarkably successful. Most
cryptographic applications today rely on ECC, although there are still some
uses of RSA. Computations in E(Fq) take more effort than computations in F∗

q ,
but this is outweighed by the fact that for E(Fq) we can take q just large enough
to resist generic discrete-logarithm algorithms, while for F∗

q we need much larger
q to resist index calculus. More importantly, E(Fq) has maintained its security
level much better than F∗

q has, and thus inspires more confidence than F∗
q does.

A closer look shows, however, that there have been many successful attacks
against specific elliptic-curve cryptosystems—including some curves that had
been specifically proposed for speed reasons. For example, “pairings” were shown
in the mid-1990s (see Section 5.1) to reduce discrete logarithms in E(Fq) to
discrete logarithms in F∗

q if #E(Fq) = q − 1; papers a few years later (see also
Section 5.1) showed how to reduce discrete logarithms in E(Fq) to very easy
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discrete logarithms in Fq (not F∗
q) if #E(Fq) = q; and further classes of “weak

curves” are known when q is not a prime (see Section 2.1), where “weak” means
that discrete logarithms involve noticeably fewer than q1/2 operations.

A wave of standards then appeared specifying how to choose curves for ECC:
ANSI X9.62 in 1999 [8], IEEE P1363 in 2000 [134], SEC 2 in 2000 [203], NIST
FIPS 186-2 in 2000 [220], and ANSI X9.63 in 2001 [9]. Later elliptic-curve
standards include Brainpool in 2005 [66], NSA Suite B in 2005 [184], and ANSSI
FRP256V1 in 2011 [86]. These standards generally leave a wide berth around
all known classes of weak curves; the goal is to make sure that the elliptic-curve
discrete-logarithm problem (ECDLP) is very difficult.

1.2 ECC security risks

There are three important caveats regarding these ECC standards. First, it seems
increasingly likely that future attackers will have quantum computers, breaking
all of these cryptosystems. Second, it is conceivable that there are further classes
of weak curves. Third, there are many attacks that break real-world ECC without
solving ECDLP.

This third problem is not a future problem; it is not a problem that relies on
the possibility of better ECDLP attacks; it is a real failure mode that we have
seen again and again. None of the standards mentioned above do a good job of
ensuring ECC security. See Appendix A for a chronology of ECC vulnerabilities.

We posted a “SafeCurves” web site [43] in 2013 aimed at improving the
situation:

• The web site highlights the “core problem”, namely that “if you implement
the standard curves, chances are you’re doing it wrong: Your
implementation produces incorrect results for some rare curve points.
Your implementation leaks secret data when the input isn’t a curve
point. Your implementation leaks secret data through branch timing. Your
implementation leaks secret data through cache timing.”

• The web site explains that these problems “are exploitable by real attackers,
taking advantage of the gaps between ECDLP and real-world ECC:
ECDLP is non-interactive. Real-world ECC handles attacker-controlled
input. ECDLP reveals only nP . Real-world ECC also reveals timing
(and, in some situations, much more side-channel information). ECDLP
always computes nP correctly. Real-world ECC has failure cases. Secure
implementations of the standard curves are theoretically possible but very
hard.”

• The web site explains that better curve choices help: “Most of these
attacks would have been ruled out by better choices of curves that allow
simple implementations to be secure implementations. This is the primary
motivation for SafeCurves. The SafeCurves criteria are designed to
ensure ECC security, not just ECDLP security.”

Note the word “most” here: better curve choices make ECC implementation
failures less likely and are the focus of SafeCurves, but one needs to take further
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steps to eliminate the remaining failures. The web site notes, for example, that
some attacks “would have been ruled out by better choices at higher levels of
ECC protocols”, such as the way that randomness is used in signature systems.

Ten years of further experience with ECC security failures have confirmed the
importance of the SafeCurves criteria, in much the same way that decades of
improvements in index calculus have confirmed the importance of switching from
F∗
q to E(Fq). The point is not that everything is broken on one side of the line—it

is certainly not true that all F∗
q have been broken, or that all implementations

of curves failing the SafeCurves criteria have been broken—but rather that the
switch reduces security risks.

1.3 This paper

The intention of this paper is to be “the SafeCurves paper”: we present
and justify the SafeCurves criteria, giving additional explanation and updated
examples of why the criteria are important.

The fact that different curve choices have different effects on implementation
simplicity is not something obvious: it relies on many years of research into
elliptic-curve computations. The paper explains the relevant features of these
computations, for example explaining why state-of-the-art ECC software uses
formulas introduced in 1987 by Montgomery [177] in some situations and uses
formulas introduced in 2008 by Hisil, Wong, Carter, and Dawson [130] in other
situations.

The paper is organized into two parts. The first part is motivated by ECDLP
attacks: Sections 2, 3, 4, 5, 6, and 7 cover, respectively, the field of definition,
the curve equation, the order of the base point, the embedding degree, the CM
field discriminant, and rigidity.

We emphasize that the SafeCurves criteria reject curves that are known to
have faster ECDLP attacks, and proactively reject many further curves just in
case there are further ECDLP attacks beyond what has been discovered. This
is common practice in ECC standards, as noted above, but these sections point
out some differences in the details.

The second part is motivated by ECC attacks beyond ECDLP attacks:
specifically, Sections 8, 9, 10, and 11 cover requirements on “ladders”, “twists”,
“completeness”, and “indistinguishability”. This is the central contribution of
SafeCurves.

The general theme of this part is that there are tensions between the security,
simplicity, and speed of ECC software—and these tensions are larger for some
curves than for others. This matters because implementors are typically writing
the simplest code that they can that passes some tests, and then modifying it for
speed if there are speed complaints (or fears of speed complaints). Implementors
can sometimes be convinced to take extra steps for security, especially if there
are tools enforcing those steps; but needing more of those steps means more
chances of disaster.

We do not repeat the tables of SafeCurves ratings here; the tables are easier to
use on the web site [43]. However, for concreteness, we list three representative
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name curve equation over Fp prime p source

NIST P-256 y2 = x3 − 3x+ b; “large” b 2256 − 2224 + 2192 + 296 − 1 [220]

brainpoolP256t1 y2 = x3 − 3x+ b; “large” b “dense” [66]

Curve25519 y2 = x3 + 486662x2 + x 2255 − 19 [23]

Table 1.3.1. Three examples of curves that have been proposed for cryptographic use.
The “dense” p and “large” b values are listed in Sections 2 and 3 respectively.

examples of curves in Table 1.3.1. SafeCurves classifies one of these examples,
Curve25519, as safe, meaning that the curve meets all of the SafeCurves criteria.

1.4 Context

We do not claim credit for the general idea of investigating the security
consequences of implementation pitfalls. This is one of the main topics of the
security literature. Regarding ECC in particular, this paper cites many examples
of vulnerabilities in ECC implementations.

However, the processes used to select cryptosystems often assume perfect
implementations. For example, NSA wrote the following in 1992 (see [7])
regarding the new NSA/NIST DSA proposal (and regarding the existing Data
Encryption Standard, which remained a standard until 2005):

We are unaware of any weaknesses in the DSS or in the DES when
properly implemented and used for the purposes for which they both are
designed.

Similarly, regarding the NIST curves, NIST wrote the following in 2019 [183]:

NIST is not aware of any vulnerabilities to attacks on these curves when
they are implemented correctly and used as described in NIST standards
and guidelines.

Regarding better curves, [183] wrote that “their designers claim that they offer
better performance and are easier to implement in a secure manner”; [183] did
not cite any of the literature demonstrating the performance benefits and ease of
secure implementation of these curves, and did not mention the likelihood and
consequences of insecure implementation of the NIST curves.

There have been some recommendations to adjust cryptosystem-selection
processes to predict and avoid implementation pitfalls. For example, one of
Rivest’s comments [204] in 1992 regarding DSA was as follows: “The poor user
is given enough rope with which to hang himself—something a standard should
not do.” What we are asking in this paper is how curve choices influence the
chance of implementations being secure.

This paper incorporates curve-selection material from documents we have
previously posted, including [42], [43], [44], and [46]. Some of those documents
look beyond curve choices at how other ECC design choices affect the speed,
simplicity, and security of implementations.
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2 Fields

To specify an elliptic curve to use in ECC, one specifies a prime number p and
then an elliptic-curve equation “over” the finite field Fp, i.e., an elliptic-curve
equation with coefficients in Fp.

For example, the NIST P-224 curve is defined over Fp where p = 2224−296+1;
the NIST P-256 curve is defined over Fp where p = 2256 − 2224 + 2192 + 296 − 1;
Curve25519 is defined over Fp where p = 2255 − 19; and brainpoolP256t1 is
defined over Fp where

p = 768849563970453442208097466290016490930

37950200943055203735601445031516197751.

See Table 1.3.1 and Section 3 for the elliptic-curve equations, and see the
SafeCurves web site for further examples.

There are other types of elliptic curves. In particular, there are many ECC
papers that consider elliptic curves over non-prime finite fields. However, the
SafeCurves criteria require prime fields.

ECC standards from the turn of the century typically allowed binary curves.
For example, NIST’s FIPS 186-2 digital-signature standard specified 15 curves,
of which 10 were defined over binary fields. However, the latest version of that
standard, FIPS 186-5 from 2023, says that “Elliptic curves defined over binary
curves . . . are now deprecated”. The Brainpool standard and NSA’s Suite B
standards had already required prime fields.

2.1 Is ECDLP broken for non-prime fields?

The security story for ECDLP over non-prime fields (e.g., binary extension fields
Fq with q = 2n) is more complicated and less stable than the security story for
ECDLP over prime fields, as illustrated by [104], [116], [114], [89], and [195].

These attacks construct various non-prime fields Fq and elliptic curves over
Fq for which attacks exploiting proper subfields of Fq break ECDLP noticeably
faster than generic attacks do. There are some choices of q for which all curves
are weak in this sense, and there are even some choices of q for which all curves
are broken in time subexponential in log q. On the other hand, there are still
many ways to choose non-prime fields and curves that avoid these attacks.

We reiterate that security requirements go beyond avoiding known attacks.
Requiring prime fields is not making the incorrect claim that non-prime fields
are categorically broken; it is instead simplifying attack analysis by excluding
the subfield structure used in various attacks. This removes cases where the
known attacks apply, and proactively removes further cases that share the same
structure.

One of the authors of this paper commented in 2006, in the paper [23]
introducing Curve25519, that prime fields “have the virtue of minimizing the
number of security concerns for elliptic-curve cryptography”. There is general
agreement that prime fields are the safe, conservative choice for ECC.
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2.2 Are “special” primes dangerous?

Index calculus for F∗
p relies on the fact that integers often factor into small

primes. The chance of this happening depends on how large the integers are.
Optimized index calculus for F∗

p using the “number-field sieve” writes p as a
low-degree polynomial, and performance depends on the size of the coefficients
in this polynomial: quantitatively, security levels are reduced by about 20% when
the polynomial has small coefficients.

However, the point of ECC has always been to avoid index calculus in the
first place. All of the SafeCurves requirements can be met by “special” primes.

Most ECC standards require “special” primes for efficiency reasons. For
example, NIST justifies its prime shape by saying that “modular multiplication
can be carried out more efficiently than in general”. However, Brainpool prohibits
“special” primes for patent reasons [66, Section 3.1]:

The prime p must not be of a special form in order to avoid patented
fast arithmetic on the base field.

The context here is that U.S. patent 5159632 had been filed in September 1991
on elliptic-curve cryptography over Fp “where p is one of a class of numbers
such that mod p arithmetic is performed in a processor using only shift and add
operations”, a common way to reduce modulo primes such as 2224 − 296 + 1.
However, a paper by Bender and Castagnoli published in June 1990 [20] had
already reported an implementation of ECDH using, e.g., the prime 2127+24933,
“which is convenient in computer arithmetic”. We are not aware of any reports
of enforcement attempts for the patent. The patent expired in 2011.

2.3 Are “random” primes dangerous?

Brainpool’s choice of “random” primes p makes arithmetic in Fp roughly twice
as slow. We do not know whether there are examples where this slowdown
has motivated protocols using Brainpool to select, e.g., the brainpoolP192t1
curve instead of the brainpoolP256t1 curve; such cases would warrant adding a
requirement to SafeCurves to prohibit “random” primes p. The question here is
about protocol choices rather than internal implementation choices; if a protocol
requires brainpoolP256t1 then interoperability will force each implementation to
use brainpoolP256t1.

2.4 Are primes required to be 3 mod 4?

All of the SafeCurves requirements can be met by primes p with p ≡ 1 (mod 4),
and by primes p with p ≡ 3 (mod 4).

Brainpool is more restrictive here: it requires p ≡ 3 (mod 4). Brainpool
does not claim that this has a security justification but instead claims that it
“allows efficient point compression”; see [66, Section 3.1]. This boils down to the
statement that computing square roots in Fp is efficient when p ≡ 3 (mod 4),
since one can compute a square root of s by computing r = s(p+1)/4 and then
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checking whether r2 = s. But computing square roots in Fp has practically
identical efficiency when, e.g., p ≡ 5 (mod 8), as in the case of Curve25519:
compute r = s(p+3)/8, check whether r2 = ±s, and multiply r by a precomputed√
−1 ∈ Fp if r2 = −s.
We comment—looking ahead to, e.g., Section 9’s coverage of invalid-curve

attacks—that requiring extra steps can be a security risk if implementations
that omit the extra steps seem to work while failing in situations that an
attacker can trigger. This concern does not apply to the square-root procedure
for p ≡ 5 (mod 8): omitting the

√
−1 step for the case r2 = −s would not

pass basic interoperability tests. Also, the difference in performance between
the two square-root methods in the previous paragraph is unnoticeable, so the
downgrading-security-levels concern from Section 2.3 does not apply.

3 Equations

There are several different ways to express elliptic curves over Fp:

• The short Weierstrass equation y2 = x3 + ax + b, where 4a3 + 27b2 is
nonzero in Fp, is an elliptic curve over Fp. Every elliptic curve over Fp can
be converted to a short Weierstrass equation if p > 3.

• The Montgomery equation By2 = x3 + Ax2 + x, where B(A2 − 4) is
nonzero in Fp, is an elliptic curve over Fp. Substituting x = Bu − A/3 and
y = Bv produces the short Weierstrass equation v2 = u3 + au + b where
a = (3−A2)/(3B2) and b = (2A3 − 9A)/(27B3).
• The Edwards equation x2 + y2 = 1+ dx2y2, where d(1− d) is nonzero in
Fp, is an elliptic curve over Fp. Substituting x = u/v and y = (u−1)/(u+1)
produces the Montgomery equation Bv2 = u3 + Au2 + u where A = 2(1 +
d)/(1− d) and B = 4/(1− d).

A 1987 paper by Montgomery [177] introduced Montgomery curves. A 2007
paper by Edwards [95] introduced Edwards curves in the case that d is a 4th
power. For reasons explained in Section 10, SafeCurves requires Edwards curves
to be complete, i.e., for d to not be a square; we introduced complete Edwards
curves in a 2007 paper [36].

There are other possibilities, such as Hessian curves, which share some
interesting properties with Edwards curves (see, e.g., [130]). As far as we know,
there are no efforts to deploy specific Hessian curves in ECC. For simplicity, we
focus on the three curve shapes specified above.

The rational points of a short Weierstrass curve are the pairs (x, y) of
elements of Fp satisfying the equation, together with one extra “point at infinity”.
The rational points of a Montgomery curve are defined the same way. The
rational points of a complete Edwards curve are the pairs (x, y) of elements of
Fp satisfying the equation; there is no extra “point at infinity”. In each of these
cases, the set of rational points is written E(Fp), where E is the curve. There is
a standard definition of a group structure on E(Fp); the neutral element is the
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point at infinity for a short Weierstrass curve or a Montgomery curve, or (0, 1)
for an Edwards curve.

As a concrete example, Curve25519 is the Montgomery curve y2 = x3 +
486662x2+x over Fp with (as mentioned in Section 2) p = 2255−19. Here B = 1
and A = 486662, so B(A2 − 4) ̸= 0 in Fp. As another example, NIST P-224 is
the short Weierstrass curve y2 = x3 + ax + b over Fp with p = 2224 − 296 + 1,
a = −3, and

b = 1895828628556660800040866854449392

6415504680968679321075787234672564;

one can check that 4a3 + 27b2 ̸= 0 in Fp. NIST P-256 and brainpoolP256t1 also
have the form y2 = x3 − 3x+ b, where

b = 410583637251521421293261297800472684091

14441015993725554835256314039467401291

for NIST P-256 and

b = 462143265850325795938296314356101297467

36367449296220983687490401182983727876

for brainpoolP256t1.

3.1 Are short Weierstrass equations required to have a = −3?

The first serious effort to optimize formulas for elliptic-curve group operations
was in a 1986 paper [82, Section 4] from D. Chudnovsky and G. Chudnovsky.
The paper considered what are now typically called short Weierstrass curves,
Jacobi quartics, Jacobi intersections, and Hessian curves. In the case of
short Weierstrass curves, the paper considered affine coordinates (x, y), but
recommended instead using what are now typically called Jacobian coordinates
(X,Y, Z) with x = X/Z2 and y = Y/Z3.

Note that the group operation on an elliptic curve is normally written as
addition rather than multiplication. This is also the reason for “nP” in the
quotes in Section 1, meaning the sum of n copies of P on the curve.

Discussions of costs frequently refer to the number of multiplications. It is
important to be clear about whether these are multiplications in the field or
multiplications of scalars n by curve points P . As in the literature, we use M to
refer to the cost of multiplication in the field.

For Jacobian coordinates, [82] found doubling formulas taking 9M plus 1
multiplication by a. Obviously choosing a = 1 removes the multiplication by a,
but the paper said that it is “even smarter” to choose a = −3, where alternative
formulas take just 8M. The paper also found general addition formulas taking
16M. The paper also considered an extension (X,Y, Z, Z2, Z3) of Jacobian
coordinates, and projective coordinates (X,Y, Z) with x = X/Z and y = Y/Z,
in both cases reducing general addition from 16M to 14M, but at the expense
of doubling using 9M for (X,Y, Z, Z2, Z3) or 10M for (X,Y, Z).
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IEEE P1363 suggests Jacobian coordinates, writing that “Other kinds of
projective coordinates exist, but the ones given here provide the fastest
arithmetic on elliptic curves. (See [CC87].)” P1363 also presents the a = −3
speedup from [82]. Similarly, the NIST curves use y2 = x3−3x+b “for reasons of
efficiency”, and Brainpool uses y2 = x3−3x+b for its “arithmetical advantages”.
Efficiency is also the rationale stated for various other choices in these standards:
for example, NIST takes the “cofactor” (see Sections 7 and 9) to be “as small
as possible” for “efficiency reasons”. Recall also from Section 2.4 that Brainpool
takes p ≡ 3 (mod 4) for “efficient point compression”.

If there are cases where the slowdown from using short Weierstrass equations
without a = −3 has triggered a switch to lower security levels, then a requirement
for short Weierstrass equations to use a = −3 can be justified on security
grounds. See the analogous discussion in Section 2.3 of the (larger) speedup
from avoiding “random” primes. Note also that one cannot object to an a = −3
requirement as potentially allowing an ECDLP attack: such an attack would
imply an ECDLP attack against generic a, as explained in [71, Section 6].

4 The rho method

Along with specifying a curve, one specifies a base point G of prime order ℓ on
that curve. The basic ECDH protocol is then as follows: user i has a secret key
si, which is an integer; user i has a corresponding public key siG, which is a
point on the elliptic curve; users i and j then compute a shared secret sisjG,
which is a point on the elliptic curve.

Note that, in the original 1976 DH protocol reviewed in Section 1, the base
g ∈ F∗

q had order q−1, which is never prime if q > 3 is a prime number (although
the order can be prime if q is a power of 2). For a closer analogy to the previous
paragraph, one can replace g in DH with g2, which has prime order ℓ in the case
q − 1 = 2ℓ.

The size of ℓ puts an important limit on the security level. A standard
attack [197], called the rho method, breaks ECDLP using, on average,
approximately 0.886

√
ℓ curve additions. For example, 0.886

√
ℓ is approximately

2111.8 for NIST P-224, approximately 2125.8 for Curve25519, and approximately
2127.8 for NIST P-256.

4.1 Can rho finish sooner?

The 0.886
√
ℓ cost for the rho method is an average over random choices made by

the attacker: the method sometimes finishes more slowly and sometimes finishes
more quickly. The success probability of the method after m additions is only
about m2/ℓ for small m. Common recommendations are to choose ℓ so that m2/ℓ
is negligible for any feasible value of m.

In 2013, we established a concrete lower limit for ℓ in SafeCurves as follows:
“For example, if ℓ is around 2200, then the success probability is around 1/220

after 290 additions. Performing 290 additions in a year with state-of-the-art
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chip technology (as of 2013) would require hundreds of gigawatts of power.
SafeCurves requires ℓ to be at least 2200.” We emphasized that SafeCurves does
not recommend against larger values of ℓ:

There are several reasons to use larger ℓ: chip technology can be expected
to advance; 1/220 is not an acceptable risk level for some users; very few
ECC applications will notice the cost of increasing ℓ to, e.g., 2250.

As an illustration of how chip technology has advanced after our estimates
of what was possible with 2013 technology, consider the ANTMINER S21 [57],
a Bitcoin-mining device released at the end of 2023 that uses 3500 watts and
carries out 200 terahashes per second, nearly 236 hashes per joule. Each hash
uses about 218 bit operations, while Appendix B indicates that a curve addition
inside the rho method for, e.g., Curve25519 costs about 220 bit operations, so
using similar chip technology should carry out nearly 234 curve additions per
joule. Carrying out 290 curve additions thus costs around 256 joules; 256 joules
in a year is around 2 gigawatts.

To account for current chip efficiency and expected near-future improvements
in chip efficiency, we are updating the SafeCurves lower limit on ℓ from 2200

to 2220. We again emphasize that this is not a recommendation against larger
values of ℓ: further improvements in chip technology would be unsurprising.

4.2 Can rho take advantage of multiple targets?

Yes. There is a square-root effect for multiple targets: breaking 1000000 keys
with the rho method costs only about 1000 times as much as breaking a single
key, not 1000000 times as much. See [156], [131], [162], and [40].

One can find standards as late as 2001 saying that “the computation of a
single elliptic curve discrete logarithm has the effect of revealing a single user’s
private key. The same effort must be repeated in order to determine another
user’s private key”. The second sentence is incorrect: the effort is reduced for
each subsequent key.

For comparison, with secret-key ciphers there is a much worse effect for
multiple targets. Breaking a single AES key costs about 2128 computations;
breaking 1000000 AES keys costs, in total, about 2128 computations.

4.3 Does rho find some key more quickly when there are multiple
targets?

No. The probability of finding any keys within m additions is still only about
m2/ℓ. The first key found will still cost approximately 0.886

√
ℓ additions on

average.
For comparison, if there are 1000000 AES keys to break, then some key will

be found after only 2128/1000000 computations.
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4.4 What is this 0.886? What exactly are the additions?

The 0.886 is actually
√

π/4. The additions are “batched affine” short-Weierstrass
elliptic-curve additions, each consisting of 5 multiplications mod p, 1 squaring
mod p, and an asymptotically negligible amount of extra work. (Short
Weierstrass curves are the fastest known curve shapes for batched affine
additions. This does not mean that other curves are harder to attack: the attacker
converts other curves and the points on them to short Weierstrass form.) The
algorithm can be efficiently parallelized and vectorized [187].

4.5 How stable is the security story for rho?

A 1971 paper by Shanks [217] introduced generic square-root DLP attacks. For
curves that meet the SafeCurves requirements, the number of additions used in
[217] is within a factor 2 of the number of additions used by state-of-the-art
ECDLP attacks.

To be more precise, the Shanks method uses 1.5
√
ℓ group operations on

average. The low-memory rho method from Pollard [197] uses
√
π/2
√
ℓ group

operations on average. This formula was used in, e.g., a draft of X9.62 in 1997
and in the Brainpool standard in 2005. There have been three main themes of
research since 1971:

• Optimizing the number of additions. The largest change was a
√
2 “negation”

speedup, replacing
√

π/2 ≈ 1.253 with
√

π/4 ≈ 0.886. See Wiener [228],
Escott [96], and Duursma–Gaudry–Morain [94]; for further analysis see
Bos–Kleinjung–Lenstra [60] and our paper [50] with Schwabe.

• Showing that there are no bottlenecks other than the arithmetic required
for the additions: in particular, no serious memory use, no serialization, no
serious communication, and no serious branching. Pollard [197] introduced
the rho method, showing that square-root DLP attacks do not need much
memory. Van Oorschot and Wiener [187] (drafts published as early as 1994)
showed that a variant of the rho method is parallelizable with negligible
communication costs, and [50] showed that a negating variant of the rho
method is vectorizable.

• Optimizing the arithmetic inside the additions. See Appendix B.

5 Transfers

A “transfer” converts ECDLP into a “linear algebraic group” DLP. There are
several types of transfers (see Section 5.1 for references) for an elliptic-curve
group of prime order ℓ over a prime field Fp:

• Additive transfer: applicable when ℓ = p. The target group is the additive
group Fp, where DLP is very easy to solve.
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• Degree-1 multiplicative transfer: applicable when ℓ divides p − 1. The
target group is the multiplicative group F∗

p, where DLP is solved in
subexponential time by index calculus. The standard estimates are that
current index-calculus methods break DLP in F∗

p at cost below 2128 for p
up to roughly 23000.

• Degree-2 multiplicative transfer: applicable when ℓ divides p2 − 1. The
target group is the multiplicative group F∗

p2 , where DLP is solved in
subexponential time by index calculus. The standard estimates are that
current index-calculus methods break DLP in F∗

p2 at cost below 2128 for

p up to roughly 21500.
• Degree-3 multiplicative transfer: applicable when ℓ divides p3 − 1. The

target group is the multiplicative group F∗
p3 , where DLP is solved in

subexponential time by index calculus. The standard estimates are that
current index-calculus methods break DLP in F∗

p3 at cost below 2128 for

p up to roughly 21000.
• Et cetera.

The minimum possible multiplicative-transfer degree for a particular
elliptic-curve group is called the embedding degree of that group. Standards
vary in the requirements they place upon the embedding degree:

• SEC1 [203] requires the embedding degree to be at least 20.
• X9.62 [8] requires the embedding degree to be at least 20.
• P1363 [134] puts variable requirements upon the embedding degree,

depending on the size of p, but never requires it to be more than 30.
• Brainpool [66] requires the embedding degree to be at least (ℓ− 1)/100.

The SEC/X9.62/P1363 approach is risky: there is a long history of
improvements to index calculus, and the point of ECC has always been to
avoid index calculus. The Brainpool approach is clearly overkill, but is also
non-controversial, since it rules out only a small fraction of curves [17].

SafeCurves takes the overkill approach. Pairing-based cryptography requires
the risky approach, but pairing-based cryptography is outside the scope of
SafeCurves.

5.1 How stable is the security story for transfers?

All of these transfers have been known since the 1990s. Multiplicative transfers
were introduced by Menezes–Okamoto–Vanstone [172], Frey–Rück [105], and
Semaev [214], and are often called the “MOV attack”. Additive transfers were
introduced by Semaev [215], Satoh–Araki [209], and Smart [218], and are often
called the “Smart-ASS attack”.

6 CM field discriminants

The number of rational points #E(Fp) on an elliptic curve E over Fp is p+1− t
where t is the trace of E. Hasse’s theorem states that t is between −2√p and
2
√
p. The prime order ℓ of the base point from Section 4 is a divisor of p+1− t.
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If s2 is the largest square dividing t2 − 4p then (t2 − 4p)/s2 is a squarefree
negative integer. Define D as (t2 − 4p)/s2 if (t2 − 4p)/s2 ≡ 1 (mod 4),
otherwise as 4(t2 − 4p)/s2. SafeCurves requires the absolute value of this
complex-multiplication field discriminant D to be larger than 2100. We
are updating this to 2110 to keep pace with Section 4.1.

As in Section 5 (and unlike Section 4), this requirement is satisfied by the
vast majority of elliptic curves. Looking beyond the scope of SafeCurves, we
note the reasons that the literature sometimes intentionally chooses curves with
small D: these curves make #E(Fp) easier to compute (but #E(Fp) does not
take long to compute in any case), give a speedup in computing nP [112]
at the expense of more complicated computation, and play a critical role in
pairing-based cryptography.

6.1 How do I verify the trace?

Verifying that the base point has order ℓ guarantees that the curve cardinality
p+1− t is a multiple of ℓ. Typically ℓ is above 4

√
p, so there is only one multiple

of ℓ between p+ 1− 2
√
p and p+ 1 + 2

√
p; this multiple must be p+ 1− t.

In more detail, if all six of the following checks pass, then base point P has
prime order ℓ and the curve trace is t: check that (1) ℓ is prime; (2) ℓ2 > 16p;
(3) ℓ divides p+ 1− t; (4) t2 < 4p; (5) P is not the neutral element; and (6) ℓP
is the neutral element.

Proof: The order of P is a divisor of ℓ by condition 6, but ℓ is prime by
condition 1, so the order of P is 1 or ℓ, but the order of P is larger than 1 by
condition 5, so the order of P is exactly the prime ℓ as claimed. The order of P
also divides #E(Fp), since the order of each element divides the cardinality of the
group. Write t′ = p+1−#E(Fp); then ℓ divides p+1−t′. Now −2√p ≤ t′ ≤ 2

√
p

by Hasse’s theorem, while −2√p < t < 2
√
p by condition 4, so |t− t′| < 4

√
p.

Also 4
√
p < ℓ by condition 2, so |t− t′| < ℓ. But ℓ divides p+1− t by condition

3, so ℓ divides t− t′. This forces t− t′ = 0; i.e., the curve trace t′ is t as claimed.

6.2 Is ECDLP broken for curves with small |D|?

Slightly. Specifically, starting from the rho method (see Section 4), one can save
time for some curves where |D| is very small, using fast “endomorphisms” derived
from D [111].

This is not a complete break. The limits of these speedups are reasonably well
understood, and the literature does not indicate any mechanism that could allow
further speedups for small |D|, except when pairings allow the transfers covered
in Section 5. It is conceivable that there are much better attacks against the
occasional curves with small |D|, but, in the opposite direction, it is conceivable
that there are much better attacks against the usual curves with large |D|. What
is clear is that the security story is more complicated for small |D|; SafeCurves
therefore requires large |D|.

Brainpool contains a related requirement: the class number, a quantity
related to D, is required to be larger than 1000000. The generalized Riemann
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hypothesis (a standard conjecture in number theory, backed by extensive
evidence) implies that the class number is not far from the square root of |D|;
it is thus reasonably clear that the Brainpool requirement is much weaker than
the SafeCurves lower limit on |D|. With some computation one can compute
exact class numbers, and with less computation one can verify the Brainpool
class-number condition, but this has not been incorporated into SafeCurves.

7 Rigidity

There are documented instances (see, e.g., [219], [49], [194], and [26, Section
3.6]), and many more suspected instances, of standards being manipulated by
attackers. This raises the question of how users of standard curves can be assured
that the curves were not generated to be weak.

The SafeCurves criteria simplify the ECC security story by requiring prime
fields (see Section 2). This still leaves various security dangers such as transfers
(see Section 5) and invalid-curve attacks (see Section 9 below), but the
SafeCurves tables check for these dangers in a publicly verifiable way. There
is still a potential lack of assurance in the following corner case:

• public ECC cryptanalysis might have missed an attack that applies to a
small fraction of curves,

• an attacker might have figured out this attack, and
• the attacker might have manipulated the choices of standard curves to be

vulnerable to this secret attack.

Most ECC standards include mechanisms that supposedly block the third
step in this scenario. However, further analysis has pointed out flaws in these
mechanisms. This section highlights three examples of algorithms that—if they
are given a small class of weak curves as input—manipulate curve choices to
land in that class, despite claimed barriers to this manipulation.

7.1 Manipulation algorithm 1: seed search

The possibility of attackers manipulating standard curve choices was raised in
the late 1990s, when NSA volunteered to “contribute” elliptic curves to the
committee producing ANSI X9.62 [8]. NSA did in fact end up producing various
elliptic curves later standardized by ANSI X9.62, SEC 2 [203], and NIST FIPS
186-2 [220]; these curves, the “NIST curves”, were subsequently deployed in
many applications.

(As an explanation for NSA’s involvement, Koblitz and Menezes wrote
the following [153]: “In 1997, counting the number of points on a random
elliptic curve was still a formidable challenge.” However, a 1998 implementation
paper [141] reported counting points on 3569 curves with p = 2240 + 115, with
early aborts, in a total of 52 hours on a 300MHz Pentium II, under a minute per
curve, finding 16 examples of prime-order curves.)
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In response to NSA’s contributions, ANSI X9.62 developed “a method for
selecting an elliptic curve verifiably at random”, and a procedure to “verify that
a given elliptic curve was indeed generated at random”. ANSI X9.62 even claims
that this procedure “serves as proof (under the assumption that SHA-1 cannot be
inverted) that the parameters were indeed generated at random”. However, this
procedure does not verify randomness; it verifies only that the curve coefficients
were produced as hash output. The claimed “proof” is nonexistent.

Concretely, NIST P-256 is a curve of the form y2 = x3 − 3x + H(s), where
s is a large public “seed” and H is a hash function. In 1999, shortly after the
NIST curves were announced, Scott [212] pointed out that the curves were not,
in fact, verifiably random:

Now if the idea is to increase our confidence that these curves are
therefore completely randomly selected from the vast number of possible
elliptic curves and hence likely to be secure, I think this process fails. The
underlying assumption is that the vast majority of curves are “good”.
Consider now the possibility that one in a million of all curves have
an exploitable structure that “they” know about, but we don’t.. Then
“they” simply generate a million random seeds until they find one
that generates one of “their” curves. Then they get us to use them.
And remember the standard paranoia assumptions apply - “they” have
computing power way beyond what we can muster. So maybe that could
be 1 billion.

Scott recommended generating curve coefficients from digits of π as an
alternative, and concluded his posting as follows: “So, sigh, why didn’t they
do it that way? Do they want to be distrusted?”

In 2000, SEC 2 version 1.0 copied the curves that NSA had produced for
NIST, copied the claim that the curves were “chosen verifiably at random”,
and specifically claimed that the curves were chosen “by repeatedly selecting
a random seed and counting the number of points on the corresponding curve
until appropriate parameters were found”. This claim might be correct, but is
certainly not verifiable.

7.2 Manipulation algorithm 2: curve-generator search

In 2005, Brainpool identified the lack of explanation of the NSA/NIST curve
seeds as a “major issue” [66, page 2]. Instead of claiming to generate seeds at
random, Brainpool specified a deterministic procedure to generate seeds “in a
systematic and comprehensive way”, reminiscent of Scott’s suggestion to use
digits of π.

In a May 2013 talk [42], we again raised the possibility of NSA having
searched through a billion curves. The main focus of the talk—and of the
SafeCurves web site [43], which we announced in October 2013—was instead
implementation issues, but we did include a “rigidity” criterion in SafeCurves.
This criterion prohibits the NIST curves as “manipulatable”: the process “has
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a large unexplained input, giving the curve generator a large space of curves
to choose from”. The criterion allows the Brainpool curves because the curve
generators do not have “many bits of control”, but we also pointed out that the
Brainpool seed-generation mechanism was only partially explained:

Why SHA-1 instead of, e.g., RIPEMD-160 or SHA-256? Why use 160
bits of hash input independently of the curve size? Why pi and e instead
of, e.g., sqrt(2) and sqrt(3)? Why handle separate key sizes by more
digits of pi and e instead of hash derivation? Why counter mode instead
of, e.g., OFB? Why use overlapping counters for A and B (producing
the repeated 26DC5C6CE94A4B44F330B5D9)? Why not derive separate
seeds for A and B?

Together with Chou, Chuengsatiansup, Hülsing, Lambooij, Niederhagen, and
van Vredendaal, we then refined the SafeCurves analysis, developing models for
criteria applied to accept curves and quantifying the number of curves accepted
by each model. Our paper [29] showed how to generate more than a billion
different Brainpool-like curves, each claiming to be “verifiably pseudorandom”.
(We also computed more than a million such curves.) In other words, the
Brainpool approach—despite obviously being more constrained than the NIST
approach—would still have supported malicious generation of a curve having
a one-in-a-billion weakness, perhaps indicating that the SafeCurves rigidity
criterion should be strengthened to disallow this approach. We also showed how
to generate hundreds of thousands of curves meeting a newer criterion of being
“verifiably deterministic”, and how to generate hundreds of Curve25519-like
curves, each being the fastest curve meeting specified security criteria.

7.3 The NIST curves, revisited

NSA’s Jerry Solinas—who had supplied the curves standardized by ANSI, NIST,
etc.—sent email after the first version of [29] went online. Given public interest
in these issues, we have decided to disclose the email exchange; see Appendix C.
Solinas claimed that NSA had “built all the seeds via hashing (SHA-1, I think)
from the ASCII representation of a humorous message . . . I believe there was
a counter rather than multiple hashing, but I don’t know details. The message
was along the lines of ‘Give Bob and Jerry a raise’ or ‘Bob and Jerry rule’ or
something like that”.

Note that this claim is incompatible with the claims of verifiable randomness
reviewed in Section 7.1, such as the claim that the curves were generated
“by repeatedly selecting a random seed and counting the number of points on
the corresponding curve until appropriate parameters were found”. The reader
understands “random” to mean uniformly and independently at random, not a
meaningful message accompanied by a counter.

We tried hashing many inputs along the lines sketched above, varying details
much as in Section 7.2, hoping to find the original seed. After a while, we gave
up and moved the computers to more productive projects. We have heard about
more recent efforts to reconstruct the seed, apparently none succeeding yet.
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Solinas claimed that “we could prove our innocence by disclosing the details,
if only we could remember them”. But success in recovering the seed would not
provide any evidence of innocence. There are far more than a billion choices of
plausible, efficiently enumeratable messages.4 A malicious search hashing many
seeds to target a one-in-a-billion weakness does not care whether the seeds were
generated randomly or generated as meaningful messages.

7.4 Manipulation algorithm 3: isogenies

Koblitz and Menezes claimed in 2015 [153, 21 October 2015 eprint version,
Section 3.1] that, since there are p1+o(1) isomorphism classes of elliptic curves
over Fp, an attacker knowing a class of weak curves and searching (say) p1/4+o(1)

seeds would be able to find a curve in the class only if the class has size at least
p3/4+o(1), a “huge class of weak curves”.

We pointed out in 2017 that this argument is incorrect, even for the extreme
case of “back door” weaknesses. Our curve-manipulation algorithm works as
follows (see also [67] for portions of this structure):

• Write down p1/4+o(1) back-door keys. Map each key to a curve, and count
the number of points on each curve. (We assume that the number of points
on a backdoored curve looks random. One out of every po(1) curves will have
prime order.)

• Write down p1/4+o(1) seeds. Map each seed to a curve, and count the number
of points on each curve.

• There is a good chance of a collision in the number of points, since this
number is in an interval of length only 4p1/2 by Hasse’s theorem.

• Given a back-door key and a seed producing the same number of points, find
an efficient isogeny between the two curves as follows: compute p1/4+o(1)

curves efficiently isogenous to the first curve; compute p1/4+o(1) curves
efficiently isogenous to the second curve; find a collision.

This algorithm takes p1/4+o(1) operations to find a curve in a class of size
only p1/4+o(1), far smaller than the p3/4+o(1) claimed in [153]. The memory
consumption in the algorithm can easily be eliminated if the pool of back-door

4 Consider, e.g., a simple request for money: “Bob” can instead be written “Bob
Reiter” or “Robert Reiter” or “Robert Reiter Jr.” or “Robert Reiter, Jr.” or “Robert
W. Reiter” or “Robert W. Reiter Jr.” or “Robert W. Reiter, Jr.”; “Dr.” can be
inserted in front of the name; if there were 20 people in the office with different names
then there were 1330 choices of 2 or 3 names in alphabetical order; the request can
end with an exclamation mark, a period, or no punctuation; the request can be all
uppercase, all lowercase, or normal; a counter can be before or after the sentence; the
counter can be separated by a space, a slash, a colon, or nothing; the counter can be
zero-padded to 6 digits, or unpadded; the counter can be decimal, 0o octal, 0x hex,
or 0X hex; the request can start with “please” or “we must” or nothing; the request
can end with “today” or “right now” or “this year” or nothing; the request can be
for a “raise” or a “bonus”; this can be “big” or “large” or “giant” or “massive” or
“enormous”; etc.
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keys is large enough (as it has to be for “nobody but us” back doors) and if the
pool of seeds is large enough (as it is for the NIST curves).

Koblitz and Menezes responded that they estimate at least 286 bit operations
for this procedure for p ≈ 2256, “which almost certainly was beyond the NSA’s
capacity in 1997”.

To put 286 bit operations in perspective, observe that Bitcoin currently carries
out 287 bit operations every second. (See [58], which indicates that Bitcoin has
reached 600 million terahashes per second; and recall that each hash uses about
218 bit operations.) The question is whether this volume of computation would
have taken, e.g., a year for NSA in 1997.

Appendix D uses information about Intel’s mass-produced chips in 1997 to
estimate the volume of chips that would have carried out 286 bit operations in a
year, and concludes that this would have been only about 10% of NSA’s budget
at the time, according to public information regarding that budget.

Of course, if records show that NSA was responding to an unpredictable
curve-generation challenge in only M months, then an attack would have had to
complete within M months. On the other hand, presumably more attention to
the attack details would reduce the number of bit operations.

7.5 Attack discovery

The real question in [153] is whether it is plausible that NSA in 1997 knew curve
weaknesses that are not known to the public today. Regarding a class of, e.g.,
2209 weak curves, [153] says that it is “highly unlikely that such a large family of
weak elliptic curves would have escaped detection by the cryptographic research
community from 1997 to the present”.

We do not see why the size of a weak-key class is relevant to the question of
whether the weakness is detected by the public. The currently known classes of
curves for which ECDLP has been broken range from the tiny class of curves
subject to additive transfers (see Section 5) to the frequent curves for which
the group order factors into small primes. Weak curves are detected by study of
potential avenues of attack, not by Geiger counters.

If there are many smart people in public actively searching for better
ECDLP attacks then the passage of time would suggest that no such attacks
exist. However, public cryptanalysts with relevant knowledge are generally busy
working on other topics, such as isogeny-based cryptography; so one would
expect an elliptic-curve attack to appear only if it happens to be a spinoff of
those other topics, as in [109].

7.6 Isn’t it safest to choose cryptographic parameters at random?

Cryptographic keys lose security when they do not have enough randomness.
There is a common confusion between public parameters and public keys,
creating a common myth that public parameters lose security unless they are as
random as possible.
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The literature contains many counterexamples to this myth. For example,
there are known attacks [90] that significantly reduce the security level of
random genus-3 curves, but the attacks do not apply to specially structured
genus-3 curves, namely hyperelliptic curves. As another example, ECC takes
only unusual curves whose group orders have very large prime divisors, because
uniform random curves are much less secure than these unusual curves. See [151,
Section 11] for more subtle examples.

One should not conclude that uniform random parameters are necessarily bad:
there are also examples where adding randomness to parameters is good. To see
whether randomness is good or bad for the parameters of any particular system,
one needs to study the details of attacks against that system.

All curves that meet the SafeCurves criteria are protected against all published
attacks, use the most conservative bounds to stay far away from those attacks,
and eliminate structure that has raised concerns about potential attacks. The
criteria are computer-verified, with full details presented on our web page [43]
to support third-party verification. It is conceivable that some of these curves
are vulnerable to an attack that is not publicly known, but there is no basis for
guessing whether any particular curve will be more or less vulnerable to attack
than a random curve.

ECC users can reasonably choose their own random curves to protect against
multiple-target rho attacks; see Section 4.2. However, giving a random curve to
each user also has several obvious costs, whereas moving to a larger shared curve
has lower costs and makes the same attacks even more expensive. This is why
essentially all ECC applications use shared curves.

7.7 What about rigid choices of subgroups?

For each curve in the SafeCurves tables, the order ℓ of the specified subgroup
of the group of rational points is prime and larger than

√
p+ 1. A curve cannot

have two different subgroups meeting this requirement.

7.8 What about rigid choices of base points?

For each curve in the SafeCurves tables, the specified base point is a generator
of the specified subgroup. The SafeCurves criteria do not place restrictions on
the choice of this base point. If there is a “weak” base point W allowing easy
computations of discrete logarithms, then ECDLP is weak for every base point:
an attacker can compute logP Q as the ratio of logW Q and logW P modulo ℓ.
Typical ECC protocols, such as signatures, are designed to be secure for all
choices of base point.

There are some protocols where base-point rigidity is important. For example,
a “random” ECDLP challenge, computing the discrete logarithm of Q base P ,
could have a back door for the challenge creator. Certicom’s ECDLP challenges
use rigid generators P and Q of the subgroup to prevent Certicom from choosing
the discrete logarithm in advance. As another example, the CurveBall attack
in 2020 [173] broke signature verification in Microsoft Windows CryptoAPI,
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allowing attackers to freely sign malicious executables under Microsoft’s key, by
exploiting the fact that CryptoAPI allowed certificates to provide their own base
points.

For some curves, the specified base point is chosen rigidly. The usual choice is
the generator with smallest possible x-coordinate for short Weierstrass curves or
Montgomery curves, or smallest possible y-coordinate for Edwards curves. The
reason for x vs. y here is that y(−P ) = y(P ) for Edwards, allowing y as a ladder
coordinate (see Section 8), while x(−P ) = x(P ) for the others, allowing x as a
ladder coordinate.

8 Ladders

This section focuses on the most important computation in ECC: namely,
single-scalar variable-base-point multiplication. This means computing nP , given
an integer n and a curve point P . This is what happens in each shared-secret
computation in ECDH, when user i computes si(sjG) using their secret si and
user j’s public key sjG before starting to communicate with j.

Given the emphasis on efficiency in the turn-of-the-century ECC standards
(see the quotes in Section 3.1), it is puzzling that those standards chose to
use short Weierstrass curves. This choice did not provide the fastest arithmetic
known on elliptic curves; it was already outperformed by other options in [82]
and [177], the fastest being the “Montgomery ladder” introduced in [177].
The Montgomery ladder is also a much simpler way to carry out ECDH
computations, and naturally avoids various classes of security problems that
we have seen repeatedly appearing in ECDH software.

This section begins by reviewing scalar-multiplication algorithms for short
Weierstrass curves and for Montgomery curves, and then uses timing attacks to
introduce the idea of different curve shapes having different chances of producing
security problems. Sections 9 and 10 explain more ways that short Weierstrass
curves produce security problems avoided by better choices of curves.

8.1 Scalar multiplication on short Weierstrass curves

As an example of how the literature suggests computing nP on a short
Weierstrass curve, we quote the algorithm presented in the P1363 standard [134,
Annex A.10.3, “Elliptic Scalar Multiplication”]:

1. If n = 0, then output O and stop.
2. If n < 0, then set Q ← (−P ) and k ← (−n); else set Q ← P and

k ← n.
3. Let hlhl−1 . . . h1h0 be the binary representation of 3k, where the

most significant bit hl is 1.
4. Let klkl−1 . . . k1k0 be the binary representation of k.
5. Set S ← Q.
6. For i from l − 1 downto 1 do
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Set S ← 2S.
If hi = 1 and ki = 0, then compute S ← S + Q via A.10.1 or
A.10.2.
If hi = 0 and ki = 1, then compute S ← S − Q via A.10.1 or
A.10.2.

7. Output S.

We focus on the case n > 0, where the first two steps of the algorithm can
be omitted. The algorithm builds an “addition-subtraction chain” for n using
approximately log2 n doublings and (log2 n)/3 further group operations, each of
those group operations being an addition or a subtraction.

The standard also cites sources presenting addition-subtraction chains that are
more complicated but more efficient, replacing (log2 n)/3 with about (log2 n)/5
for typical sizes of n. These chains are organized as a preliminary computation
of a table containing, e.g., 3P, 5P, . . . , 15P , and then a series of doublings with
occasional additions or subtractions interspersed. The costs shown below assume
that these faster chains are used.

The implementor then needs to plug in formulas for curve doubling (“2S”),
addition (“S+Q”), and subtraction (“S−Q”), whereQ is one of the precomputed
small multiples of P from the table. For short Weierstrass curves with a = −3
in Jacobian coordinates using the 1986 Chudnovsky–Chudnovsky formulas from
[82], each doubling costs 8M, and each addition or subtraction costs 16M, for a
total of about 8M+ 16M/5 = 11.2M per bit of n. There is also an inversion at
the end of the computation to replace Jacobian coordinates (X,Y, Z) with affine
coordinates (x, y) = (X/Z2, Y/Z3) for communication.

A simple inversion method costs slightly over 1M per bit of p, which typically
means slightly over 1M per bit of n. More sophisticated inversion methods (see,
e.g., [53]) cost less. Sometimes inversions can be batched, reducing the cost very
close to 0M per bit. Using mixed coordinates from [83], which switches between
coordinate systems within a scalar multiplication, reduces the costs per additon
to 14M, for a cost per bit of 8M + 14M/5 = 10.8M or, at the expense of an
extra inversion in Fq, of 8M+ 11M/5 = 10.2M. See generally [38] and [37] for
different coordinate systems and combinations.

8.2 Scalar multiplication on Montgomery curves

For a Montgomery curve By2 = x3 +Ax2 + x in Montgomery coordinates using
the Montgomery ladder, computation of nP follows a much simpler pattern
of one doubling and one “differential addition” for each bit of n. Differential
addition means computing P +Q given P,Q, and P −Q.

Each point has just two coordinates (X,Z) with x = X/Z; the y-coordinate
is not used. The doubling and differential addition together cost just 9M plus
a multiplication by (A + 2)/4. Montgomery curves are normally chosen with
(A+2)/4 being small, so the overall cost is just 9M per bit of n, plus an inversion
at the end of the computation to convert (X,Z) to x = X/Z for communication.
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def montgomery(x1,n):

A = 486662

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

ni = bit(n,i)

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

x3,z3 = 4*(x2*x3-z2*z3)**2,4*x1*(x2*z3-z2*x3)**2

x2,z2 = (x2**2-z2**2)**2,4*x2*z2*(x2**2+A*x2*z2+z2**2)

x3,z3 = x3%p,z3%p

x2,z2 = x2%p,z2%p

x2,x3 = cswap(x2,x3,ni)

z2,z3 = cswap(z2,z3,ni)

return (x2*pow(z2,p-2,p))%p

Fig. 8.2.1. Python code for the Montgomery ladder for Curve25519. The bit function
extracts the coefficient of 2i in n. The cswap function is a conditional swap, returning
its first two inputs in the same order or reversed order depending on whether the third
input is 0 or 1. Warning: integer arithmetic in Python takes variable time.

This is faster than any of the scalar-multiplication methods summarized in
Section 8.1; in particular, it is about 1.5 times as fast as the method quoted from
P1363. A more detailed cost analysis would consider, e.g., the costs of additions
and subtractions in Fp, the speedups from squarings in Fp being faster than
general multiplications in Fp, and the costs of communicating (x, y) for short
Weierstrass curves vs. just x for Montgomery curves.

The 2006 paper [23] introducing X25519 (ECDH using Curve25519 with a
Montgomery ladder)5 presented X25519 software for various platforms more
than twice as fast as previous results for NIST P-256 ECDH, and attributed
the speedup partly to the curve choice. Subsequent work has consistently shown
X25519 outperforming NIST P-256 ECDH; see Appendix E for examples of
current speeds. The speedup is not entirely from the Montgomery ladder—for
example, it is also affected by reductions mod 2255 − 19 being easier than
reductions mod 2256 − 2224 + 2192 + 296 − 1—but the speed of the Montgomery
ladder certainly plays an important role.

What is even more remarkable than the speed of the Montgomery ladder is its
simplicity. Figure 8.2.1, copied from the Python test suite in the lib25519 [51]
software library for Curve25519, displays the Montgomery ladder in the case
A = 486662 with a 255-bit n—except that the polynomials in the middle such
as x2x3 − z2z3 are written for maximum conciseness, skipping the optimized
computations of those polynomials from [177, page 261, “costs drop”]. These
concise formulas were found independently by Chudnovsky–Chudnovsky [82,
formula (4.19)]; but credit is normally assigned to Montgomery, who found the

5 [23] used “Curve25519” to refer to X25519 rather than to the curve. X25519 was a
subsequent renaming to allow separate names for the curve and the protocol.
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concise formulas, the optimizations, and a simple statement of the curve shape.
(As an example of these optimizations, the reader is invited to consider the two
quantities (x2 − z2)(x3 + z3)± (x2 + z2)(x3 − z3).)

Figure 8.2.1 has similar length to the much slower scalar-multiplication
method quoted at the beginning of Section 8.1—but Figure 8.2.1 includes all
of the necessary elliptic-curve computations! Furthermore, as we will see, the
approach in Section 8.1 naturally leads to various security problems avoided by
the Montgomery ladder.

8.3 Timing attacks

Care is required in computing the cswap operations in Figure 8.2.1. The obvious
way to conditionally swap x2 and x3 if ni = 1 is to write code such as

if ni == 1: x2,x3 = x3,x2

but this will take more time if ni = 1. One then expects sufficiently detailed
measurements of the total time of the computation to detect the number of i for
which ni = 1. More subtly, interactions with the timings of other programs (see,
e.g., [10]) can leak each ni. A typical way to proactively eliminate these timing
leaks is to replace each secret-dependent branch with arithmetic:

x2,x3 = x2+ni*(x3-x2),x3-ni*(x3-x2)

Further work is then required to ensure that each lower-level operation, such as
field addition, takes time independent of the inputs.

There are much larger timing leaks in the P1363 scalar-multiplication
algorithm quoted in Section 8.1. For example, the case (hi, ki) = (1, 0) triggers
an entire curve-addition operation S ← S + Q, a much larger operation than
swapping x2 with x3. Larger leaks tend to be exploitable in more situations—the
timing information can be detected through more noise—and tend to be more
annoying to fix. Regarding fixes in this case, one way to replace branches with
arithmetic for both S ← S +Q and S ← S −Q is to

• conditionally select between Q and −Q,
• add the resulting ±Q to S, and
• conditionally select between S and S ±Q;

also, as before, one needs to make sure that the conditional operations and
lower-level arithmetic operations take constant time. Protection here takes more
work than in the Montgomery ladder, with more steps that can go wrong.
Furthermore, the resulting algorithm takes one curve addition and one doubling
for a total of 24M per bit, making it more likely that implementors will switch to
the more complicated chains mentioned in Section 8.1, using tables to reduce the
number of additions. Those tables, in turn, open up further attacks that exploit
timing variations in table lookups; see, e.g., the 2009 paper [74] from Brumley
and Hakala demonstrating recovery of elliptic-curve keys from OpenSSL.
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We are not saying that implementations always get this wrong. It is possible to
write software for addition-subtraction chains, even chains at the aforementioned
(log2 n)/5 level of performance, while avoiding secret-dependent conditional
branches and secret-dependent table indices. What we are saying is that
implementations are more likely to have security failures for short Weierstrass
curves than for Montgomery curves: the natural pursuit of simplicity—and, in
many cases, speed—pushes implementations farther away from security for short
Weierstrass curves than for Montgomery curves. See Sections 9 and 10 for further
examples of this tension.

8.4 The SafeCurves ladder criterion

The “ladder” criterion in SafeCurves is defined as follows:

SafeCurves requires curves to support simple, fast, constant-time
single-coordinate single-scalar multiplication, avoiding conflicts between
simplicity, efficiency, and security. This is not a requirement specifically
to use Montgomery curves: there are other types of curves that support
simple, fast, constant-time ladders. “Fast” means that implementations
of scalar multiplication for the same curve cannot be much faster,
and “simple” means that reasonably fast implementations of scalar
multiplication for the same curve cannot be much more concise. At
this time there are no examples close enough to the edge to warrant
quantification of “much”.

In this criterion, “single-coordinate” refers to scalar multiplication taking just
one coordinate as input and producing just one coordinate as output. “Ladder”
refers to the structure used in Figure 8.2.1, with a doubling and differential
addition of two points for each bit of n.

Beware that there are some papers erroneously referring to arbitrary ladders
as “Montgomery ladders”. The general ladder structure is much older than the
Montgomery ladder. See, e.g., the discussion of the Lucas ladder in our paper
[45, Section 4.2.1]; Montgomery’s work started with the Lucas ladder.

8.5 Variable-length ladders

Figure 8.2.1 is an example of a constant-length ladder: it initializes the starting
variables x2,z2,x3,z3 so that the algorithm correctly computes nP for any
integer n with 0 ≤ n < 2255, always taking exactly 255 iterations.

One can find literature presenting ladders where the number of iterations is
instead a variable i, namely the smallest integer i ≥ 0 such that n < 2i. This
does not provide a noticeable speedup or code simplification, but implementors
might end up using it simply because it appears in the literature, and then timing
information leaks i. This was used in a 2011 timing attack [75] to extract secret
keys remotely from OpenSSL’s implementation of binary-field ECC.

We repeat Section 1’s comment about the word “most”: better curve choices
make ECC implementation failures less likely and are the focus of SafeCurves,
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but one needs to take further steps to eliminate the remaining failures. In
particular, to prevent problems in case implementors use fixed-length ladders,
X25519 uses “a fixed position for the leading 1 in the secret key”, as mentioned
in the Curve25519 paper [23] in 2006.

8.6 Isomorphism (and birational equivalence)

As noted in Section 3, a simple change of variables converts a Montgomery curve
into a short Weierstrass curve. This means that ECDH implementations for a
Montgomery curve can use the approach from Section 8.1 rather than the much
nicer Montgomery ladder. A library that already has software for the NIST
curves might be tempted to handle a Montgomery curve this way. We do not
claim that using Montgomery curves guarantees that all implementations are
secure.

More interestingly, it is sometimes possible to invert this change of variables,
converting a short Weierstrass curve y2 = x3 + ax+ b into a Montgomery curve
as follows. Find r satisfying r3+ar+b = 0. Find s satisfying s2 = 3r2+a. Define
u = (x − r)/s, B = 1/s3, and A = 3r/s. Then By2 = u3 + Au2 + u. One can
perform x-coordinate scalar multiplication on y2 = x3 + ax+ b by converting x
to u, performing u-coordinate scalar multiplication on By2 = u3+Au2+u with
the Montgomery ladder, and converting back.

The reason this does not always work is that, for the majority of curves, the
field Fp does not contain suitable elements r and s. One can work around this
by replacing Fp with an extension field, but this requires more complicated field
operations inside scalar multiplication.

To be more precise, out of all isomorphism classes of elliptic curves over Fp,
the fraction that can be written as Montgomery curves is about 5/12 if p ≡ 1
(mod 4), and about 3/8 if p ≡ 3 (mod 4); see, e.g., [27]. A Montgomery curve
E always has #E(Fp) ≡ 0 (mod 4), so curves E over Fp for which #E(Fp) is
a prime number, or 2 times an odd prime number, can never be converted to
Montgomery curves over Fp.

8.7 More ladders

Instead of trying to convert a short Weierstrass curve to a Montgomery curve,
one can build a ladder directly on a short Weierstrass curve.

Every curve has a ladder. In the first ECC paper in 1986 [174, page 425,
fourth paragraph], Miller commented that “only the x-coordinate needs to be
transmitted” for ECDH on short Weierstrass curves y2 = x3 + ax + b, since
“the x-coordinate of a multiple depends only on the x-coordinate of the original
point”; one can convert the formulas given in [174] (attributed there to earlier
sources) into a constant-time ladder.

We emphasize that merely having a ladder is not sufficient to meet the
SafeCurves ladder criterion. The ladder has to also be “fast”, meaning that
“implementations of scalar multiplication for the same curve cannot be much
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faster”, and “simple”, meaning that “reasonably fast implementations of scalar
multiplication for the same curve cannot be much more concise”. This criterion
is not simply asking whether a ladder exists; it is asking whether natural
implementation incentives will lead to the ladder being used, as in the case
of the Montgomery ladder.

In 2002, Brier and Joye [70] reported 19M per bit for a constant-time
x-coordinate ladder applicable to every short Weierstrass curve y2 = x3+ax+b.
Scalar multiplication for the same curves as in Section 8.1 is much faster than
the Brier–Joye ladder, so this ladder does not qualify as “fast”. We commented
on the SafeCurves web site that this ladder is an example of a “conflict between
efficiency and security”.

There has been more work on ladders since then. The latest news is a 2020
paper from Hamburg [124] reporting 11M per bit for an x-coordinate ladder. For
comparison, recall that the best speed from Section 8.1 was 10.2M per bit. The
performance gap turns out to be larger when one accounts for squarings being
faster than general multiplications in Fp, but one might still ask whether the
word “much” now needs be quantified in the definition of “fast”. Independently
of that question, there is a different reason that we do not expect much use of
this ladder: namely, this ladder appears to be covered by Hamburg’s U.S. patent
application 17/916,979. The patent application was assigned to Cryptography
Research, a subsidiary of Rambus, and was filed before [124] was published.

9 Twist security

Imagine a careful implementation of NIST P-256 ECDH. The implementation
multiplies the user’s long-term secret key n by an incoming public key (x, y),
using the scalar-multiplication methods from Section 8.1. The implementor is
aware of timing attacks (see Section 8.3), and manages to eliminate all timing
variations from the software. Also, let’s be trendy here: the implementation is
using computer-checked proofs that the arithmetic in Fp is always correct. The
software isn’t competitive in speed with X25519, but let’s assume it’s fast enough
for the application. Everything is good at this point, right?

Unfortunately not. The implementation never checked that the incoming
point (x, y) is on the curve. This has no effect on the normal operation of the
protocol—but it exposes the software to an “invalid-curve attack” [54] where an
attacker quickly extracts n by sending a few fake points (x, y). See Section 9.2.

We have seen again and again that implementations are vulnerable to
invalid-curve attacks. For example:

• Vulnerability announcement CVE-2019-9155 [97] said that the OpenPGP.js
software “allows an attacker who is able provide forged messages and gain
feedback about whether decryption of these messages succeeded to conduct
an invalid curve attack in order to gain the victim’s ECDH private key”.
• Vulnerability announcement CVE-2021-3798 [201] said that the
“openCryptoki Soft token does not check if an EC key is valid when
an EC key is created via C_CreateObject, nor when C_DeriveKey is used
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with ECDH public data. This may allow a malicious user to extract the
private key by performing an invalid curve attack”.

• Vulnerability announcement CVE-2023-46324 [175] said that the free5GC
udm software “allows an Invalid Curve Attack because it may compute a
shared secret via an uncompressed public key that has not been validated.
An attacker can send arbitrary SUCIs to the UDM, which tries to decrypt
them via both its private key and the attacker’s public key”. SUCIs are 5G’s
“Subscription Concealed Identifiers”. See [107] for more information.

Rather than blaming an apparently neverending series of implementors for
not following security advice, the SafeCurves criteria have always proactively
addressed this attack by moving to better curves:

• First, choose curves meeting the SafeCurves ladder criterion covered in
Section 8, so that the incentives explained in that section encourage protocols
to send just x rather than (x, y).

• Second, choose curves to be “twist-secure”. This section covers the
SafeCurves twist-security criteria, after explaining the motivating attacks.

The effectiveness of this approach is illustrated by a direct comparison in the 5G
example cited above. According to [107, page 10], 5G requires implementations
to support both Curve25519 and P-256 as options for SUCIs. As one would
expect from the considerations in Section 8, the protocol is designed to send just
x for Curve25519 but (x, y) for P-256. The attack from [107] worked against the
P-256 option and failed against the X25519 option in the same software.

9.1 Small-subgroup attacks

Before reviewing invalid-curve attacks, we review small-subgroup attacks on
ECDH. Small-subgroup attacks for multiplicative groups were introduced in a
1997 paper [165] by Lim and Lee.

As usual, we assume that E is an elliptic curve over Fp, and that G ∈ E(Fp)
is an ECDH base point of large prime order ℓ. This forces #E(Fp) = hℓ for some
positive integer h, called the “cofactor”. We focus on the case that h is small, as
in typical curve choices: e.g., h = 8 for Curve25519, and h = 1 for NIST P-256.

A small-subgroup attack proceeds as follows. Instead of sending a legitimate
curve point eG to Bob, Eve sends Bob a point Q ∈ E(Fp) of small order,
pretending that Q is her public key. Bob computes nQ as usual, where n is Bob’s
secret key; computes a hash of nQ as a shared secret key for, e.g., AES-GCM;
and uses AES-GCM to encrypt and authenticate data. Because Q has small
order, there are not many possibilities for nQ; Eve can simply enumerate the
possibilities and check which possibility successfully verifies the data. This attack
reveals n modulo the order of Q.

The only possible orders of curve points Q are

• divisors of h and
• ℓ times divisors of h.
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In the second case, Q has order at least ℓ, giving too many possibilities for nQ
to enumerate, so the attack does not work. Eve’s best strategy—assuming the
curve is cyclic, which typical curve choices are—is then to take a curve point Q
of order h, so that the attack reveals n modulo h.

At this point we distinguish three scenarios. The first scenario is that Bob
chose n as a uniform random integer modulo hℓ. Then, after this attack, there
are still ℓ equally likely possibilities for n.

The second scenario is that Bob chose n as hs, where s is a uniform random
integer modulo ℓ. Then the attack reveals nothing, and there are still ℓ equally
likely possibilities for n. In both of these scenarios, Eve’s best strategy is to
continue with the rho method (see Section 4) in the group generated by G, a
group of prime order ℓ.

The third scenario is that Bob instead chose n as a uniform random integer
modulo ℓ. In this scenario, there is a slight loss of security: the attack reduces n
to just ℓ/h possibilities, allowing a “kangaroo” computation [197], roughly

√
h

times faster than the rho method.
An implementor can stop a small-subgroup attack by rejecting anyQ for which

hQ = 0, either by carrying out a short computation or by checking against a
precomputed list. But this creates a conflict between simplicity and security. An
implementation that does not include this check is simpler and more likely to be
produced, and will pass typical functionality tests.

A curve designer can protect against this type of attack by choosing curves
with h = 1. A protocol designer can protect against this type of attack for any
curve by specifying n = hs. Even without any defenses, the impact is limited to√
h for ECDH.

9.2 Invalid-curve attacks

Much more serious is an invalid-curve attack. In this case Eve sends Bob a
point Q of small order on another curve.

For example, instead of sending Bob a point (x, y) satisfying a standard short
Weierstrass equation y2 = x3+ax+b, Eve sends a point (x, y) satisfying another
short Weierstrass equation y2 = x3 + ax + c where c is different from b. The
standard formulas for scalar multiplication on short Weierstrass curves do not
involve the constant coefficient b, so they automatically also work for y2 =
x3+ax+c. Bob will successfully compute n(x, y) without realizing that anything
is amiss.

The advantage of an invalid-curve attack, compared to a small-subgroup
attack, is that Eve has many more points Q to choose from. Eve can run the
attack using a point Q2 of order 2 on one curve, a point Q3 of order 3 on another
curve, a point Q5 of order 5 on another curve, etc., revealing n modulo 2, modulo
3, modulo 5, etc. Soon Eve has enough information to interpolate Bob’s entire
public key n using an explicit form of the Chinese remainder theorem.

Quantitatively, for fixed non-zero a, the short Weierstrass curves y2 = x3 +
ax + b cover roughly 25% or roughly 50% of all isomorphism classes of elliptic
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curves, depending on p. These curves have roughly 4
√
p different orders, and a

huge number of points Q of small order.
Invalid-curve attacks were introduced in a 2000 paper [54] by Biehl, Meyer,

and Müller. See also [55] for a variant breaking a Bluetooth security mechanism
in which keys are used only once and x-coordinates are authenticated; the attack
replaces (x, y) with (x, 0).

Standards typically say that an implementation that receives a point (x, y)
from another party must check whether (x, y) is on the curve. This takes very
little computation time compared to scalar multiplication, and if it is done then
it stops an invalid-curve attack. However, this again creates a conflict between
simplicity and security. The CVEs show that this is still a frequent problem,
more than 20 years after the attack was introduced.

9.3 Point compression

A protocol designer might try to help protect against invalid-curve attacks by
specifying point compression. The idea is that an implementation that receives
a compressed point, such as x and just one bit of y, will naturally detect
invalid inputs when it reconstructs the missing coordinate. On the other hand,
if an implementation was not checking the curve equation, then one has to
ask what will happen if the implementation does not check squareness as part
of a square-root computation to recover y; this question needs analysis. See
Section 11.5.

Despite the obvious size advantage and potential security advantage of sending
compressed points, it is common for protocols built on short Weierstrass curves
to send uncompressed (x, y). We point out three factors that appear to have
contributed to this.

The first factor is U.S. patent 6141420, which was filed in 1994 and
expired in 2014. Claim 29 of the patent is on communicating a curve point
by communicating one coordinate and having the recipient recover the other
coordinate. Claim 30 of the patent is more specifically on also sending
“identifying information of said other coordinate”—e.g., one bit of y.

Bodo Möller pointed out that point compression had already appeared in
a 1992 paper [127, page 171] on ECDH, more than a year before the patent
was filed. The patent also shared a coauthor with the paper. We doubt that
the patent would have survived litigation. But the patent holder, Certicom,
sent many letters regarding its patents, including the point-compression patent;
see, e.g., [78]. In 2007, Certicom took Sony to court regarding other patents.
It is understandable that protocol designers were hesitant to consider point
compression.

(Certicom also filed, in 1997, a patent application on point validation, checking
whether points are on curves. Certicom received U.S. patent 7215773 in 2007.
That patent has also expired.)

A second factor weighing against point compression is the cost of recovering
y, essentially the aforementioned square-root computation in Fp. This involves
some extra code and adds roughly 10% to the cost of scalar multiplication.
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A third factor is the installed base. Once there are enough protocols and
libraries using uncompressed points (x, y) on short Weierstrass curves, there
is an incentive for new protocols to do what is most easily handled by the
existing libraries, and for new libraries to focus on what is needed by the existing
protocols. To be clear, we are not saying that something new can never be
deployed; for example, [169] says that the “vast majority” of TLS connections
are now using X25519. See also [72] and [73].

9.4 Twist attacks against ladders

Curves meeting the SafeCurves ladder criterion (see Section 8.4) naturally end
up with protocols sending just single coordinates as ECDH public keys. This
drastically limits the power of invalid-curve attacks.

Consider, for example, a Montgomery curve By2 = x3 + Ax2 + x over Fp.
Any input x that is not on the curve is guaranteed to be on the “twisted” curve
(B/u)y2 = x3 +Ax2 + x, where u is a non-square in Fp. Specifically:

• If (x3 +Ax2 + x)/B is a nonzero square in Fp then x represents two points

(x,±
√

(x3 +Ax2 + x)/B) on the original curve.
• If (x3 + Ax2 + x)/B is a non-square in Fp then x represents two points

(x,±
√

(x3 +Ax2 + x)u/B) on the twisted curve.
• If (x3 +Ax2 +x)/B is zero then x represents one point (x, 0) on each curve.

The Montgomery ladder formulas for By2 = x3 + Ax2 + x also compute scalar
multiplication for the twisted curve (B/u)y2 = x3 + Ax2 + x, so the attacker
can use points of small order on either of these curves, but the single input
coordinate does not provide any other attack options. An invalid-curve attack
using the twisted curve is called a “twist attack”.

The general picture is that single-coordinate ladders work for curves
isomorphic to the original curve and for one other isomorphism class of curves,
namely all the nontrivial quadratic twists of the original curve. If the original
curve has p+1− t points then any nontrivial quadratic twist has p+1+ t points.
Often a nontrivial quadratic twist is called “the twist”.

An ECC implementor can stop an invalid-curve attack against ladders by
checking whether the input coordinate x belongs to a point Q on the correct
curve equation; this requires determining whether x3+Ax2+x is a square. This
computation is doable but noticeable in the overall computation of nQ; this also
creates yet another conflict between simplicity and security.

A curve designer can protect against this attack by choosing better curves,
namely twist-secure curves, meaning that the twist also has a small cofactor.
This renders the checks unnecessary. See Section 9.5 for a quantitative analysis.

Twist-secure curves for DH were proposed in a 2001 talk [21] and posting [22]
by one of the authors of this paper. See also the Curve25519 paper [23] and 2008
Fouque–Lercier–Réal–Valette [102].
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9.5 Security against twist attacks

SafeCurves requires single-coordinate ladder ECDH to remain secure even if

• Bob chooses n only up to ℓ;
• Bob does not multiply n by the cofactor h for the original curve;
• Bob does not multiply n by the cofactor h′ for the twist; and
• Bob does not bother to check whether incoming points are on the original

curve.

Specifically, SafeCurves quantitatively evaluates combined attacks that use
small-subgroup attacks as described above together with invalid-curve attacks
using the twist. SafeCurves requires the security level against these attacks
to be at least the square root of the lower limit on ℓ in the SafeCurves rho
criterion. That lower limit was 2200 when we posted the SafeCurves web pages,
so SafeCurves required at least 2100 security against these attacks, but note that
we are now updating this limit; see Section 4.

If both cofactors are very small then the security level of this combined attack
is close to the standard rho security level: for example, the combined attack costs
2120.3 for NIST P-256, and 2124.3 for Curve25519. In other cases the security
level of this combined attack can be far below the standard rho security level:
for example, the combined attack costs just 258.4 for NIST P-224, and just 244.5

for brainpoolP256t1.
Here are two examples showing how to optimize combined attacks:

1. Assume that the original curve has order hℓ and that the twist has order
h′ℓ′ where ℓ and ℓ′ are primes around 2200, h and h′ are around 250, and h
and h′ are coprime. Assume that Bob chooses n as a number less than ℓ.
The attacker computes n modulo h in at most 250 operations (trying all h
possible values of nQ against some AES-GCM encrypted text); computes n
modulo h′ in at most 250 operations; obtains n modulo hh′ using CRT; and
does a kangaroo attack against the ℓ/(hh′) possibilities of n in time 250, for
a total of 251.6 operations. If h or h′ factor further, the first two searches can
be sped up at the expense of more interaction with Bob; however, this does
not reduce the overall running time.

2. Assume instead that ℓ′ is around 294; that ℓ is around 2200; that h′ is a
product of primes q, r, and s around 28, 218, and 290; that h is around 210;
and again that h and h′ are coprime. Assume again that Bob chooses n as a
number less than ℓ. In this situation the best attack is as follows: compute
n modulo h in about 210 operations; compute n modulo q and r in about
218 operations; obtain n modulo hqr using CRT; apply a kangaroo attack
to the remaining ℓ/(hqr) possibilities for n. Here hqr is around 236, so the
kangaroo attack takes only about 282 operations. Note that the attacker did
not use a point of order s here, since searching all the multiples of the point
would have taken 290 operations; the combined attack balances the cost of
the brute-force searches with the cost of a kangaroo attack on the remaining
DLP in the main subgroup. Note also that a standard ECDLP problem for
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the group of order ℓ′ would have been much easier to solve, using only 247

operations, but would have required Bob to expose a twisted curve point nQ
to the attacker, rather than using a hash of nQ to encrypt data.

9.6 ECDLP security for the twist

SafeCurves also imposes all of its ECDLP security requirements upon the twist,
specifically upon a subgroup of order ℓ′, where ℓ′ is the largest prime factor of
p+ 1 + t:

• ℓ′ is required to reach the same lower limit as in Section 4.1, to protect
against rho attacks. The rho security of this group is labeled twist rho in
the SafeCurves tables.

• ℓ′ is required to be different from p; i.e., the number of points on the original
curve must not be p + 2. This requirement avoids additive transfers (see
Section 5) for the twist.

• The embedding degree for ℓ′ is required to be at least (ℓ′ − 1)/100. This
requirement avoids multiplicative transfers (see Section 5) for the twist.

The field discriminant for the twist (see Section 6) is the same as the field
discriminant for the original curve, so the twist does not need to be checked
separately.

Some of the ECDLP security requirements for the twist are overkill for DH on
the original curve: DH does not actually reveal nQ to Eve, so there is no obvious
way for Eve to apply (e.g.) an additive transfer. There are, however, other ECC
protocols that make full use of both the original curve and its twist, and twist
security is important for these protocols. See, e.g., [148], [147], and [64].

10 Completeness

One of the pitfalls of using E(Fq) instead of F∗
q is that formulas for the group

operations in E(Fq) do not always work correctly. See Section 10.1 for examples.
When implementations use sometimes-malfunctioning formulas, attackers can

trigger the failure cases inside typical ECC protocols (by sending malicious
inputs, as in Section 9), and in some cases can learn secret information by
analyzing the responses. See, e.g., the 2002 “exceptional procedure attack” [142]
by Izu and Takagi.

One fix is to mathematically characterize the failure cases and have
implementations switch to correct formulas for those cases when those
inputs appear. Such switches produce timing variations, which are sometimes
exploitable as in Section 8.3; eliminating those timing variations takes further
work. Even when the overheads here do not create a problematic slowdown,
there is certainly more code. In short, these failure cases are another source of
tension between simplicity and security.

One virtue of Montgomery curves is that the Montgomery ladder for ECDH
(see Section 8.2) turns out to have no failure cases. To be more precise, given
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X0(P ) as input, the Montgomery ladder always produces X0(nP ) as output;
here X0 is a modified x-coordinate, where X0(P ) means 0 if P is the point at
infinity and X0(P ) means the x-coordinate of P otherwise. This was proven in
[23, Appendix B] for Montgomery curves y2 = x3+Ax2+x with a unique point
of order 2, i.e., with A2 − 4 not a square, and in our 2017 paper [45, Theorem
4.5] for general Montgomery curves.

But what about protocols beyond ECDH? As an important example, what
about elliptic-curve signatures? Elliptic-curve signature verification involves
double-scalar multiplication, mapping m,n, P,Q to mP + nQ. The literature
has various ways to adapt ladders to this situation (see, e.g., [45, Section 4.7]),
but so far these adaptations do not have the impressive combination of speed,
simplicity, and security provided by the original Montgomery ladder.

Another type of scalar multiplication for which the Montgomery ladder is
not the speed leader is single-scalar fixed-base-point scalar multiplication. This
means, for a fixed base point P , computing nP given n. Fixed base points
appear in the key-generation step in ECDH and signatures, and in signature
generation. For fixed base points one can precompute many more multiples than
the 3P, 5P, . . . , 15P mentioned in Section 8.1, with the result that nP can be
computed very efficiently by summing up a secret selection of these precomputed
points (for details see, e.g., [31]). This is faster than the Montgomery ladder.
For all curve shapes, implementors pursuing speed for fixed-base-point scalar
multiplication had an incentive to fall back to incomplete addition formulas.

This section explains how the underlying problem was resolved, starting
with the advent of Edwards curves in 2007—which, fortunately, turn out to
be compatible with Montgomery curves such as Curve25519. Before looking at
the details, we point out one way to see how successful this has been.

ECDSA [8] is a standard signature system using short Weierstrass curves.
EdDSA [31] is a now-standard signature system using Edwards curves. There
is a long history of timing attacks against implementations of ECDSA, such as
the following:

• The 2019 “TPM-FAIL” paper [176] recovered ECDSA secret keys from
Trusted Platform Modules that had been manufactured by STM and Intel.
Both TPMs were certified under FIPS 140-2. The STM TPM was also
Common Criteria certified at EAL4+.
• The 2019 “Minerva” paper [144] recovered ECDSA keys from a
FIPS-certified CC-certified Athena IDProtect smart card, pointed out
seven other certified devices using the same ECDSA implementation, and
reported timings indicating that a similar attack would work against ECDSA
implementations in 4 out of 13 software libraries.
• In December 2023, Mozilla [178] announced that, in the Firefox browser,
“multiple NSS NIST curves were susceptible to a side-channel attack known
as ‘Minerva’.”

The case of Minerva allows a direct comparison of how well ECDSA and EdDSA
held up against these attacks. Out of the 13 software libraries covered in [144],
9 already supported EdDSA. In particular, out of the 4 software libraries where
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the timings in [144] indicated that ECDSA would be exploitable (libgcrypt,
MatrixSSL, JDK, and Crypto++), all except JDK already supported EdDSA.
None of the 9 EdDSA implementations were vulnerable.

The analysis in [25] shows that, in 8 of 9 cases, the underlying EdDSA code
was designed to be constant-time—something that is easier to achieve for EdDSA
than for ECDSA. This is connected to the choice of curves: Edwards curves
make constant-time software easier than short Weierstrass curves do, for reasons
explained below. The other case, libgcrypt, had variable-time EdDSA code but
was rescued by a curve-independent feature of EdDSA, illustrating Section 1’s
comment about the word “most”.

10.1 Incompleteness

We now consider again the P1363 algorithm from Section 8.1, computing nP
given an integer n and a point P on a short Weierstrass curve. In applications
where a further slowdown is acceptable, an implementor might eliminate the
subtractions and use a simpler inner loop that looks like this:

• Q← Q+Q.
• Q← Q+ P if the current bit of n is set.

The simplest way to implement + is to copy a readily available addition formula,
such as one of the formulas cited in Section 8.1. The implementor then finds that
this does not work: the scalar-multiplication formulas consistently fail random
tests. The problem is that the so-called “addition formula” does not always work:
in particular, it fails for the doublings Q+Q.

Because this implementation fails random tests, it will be fixed. The simplest
fix has an inner loop that looks like this, with a “doubling formula” plugged in
for 2Q:

• Q← 2Q.
• Q← Q+ P if the current bit of n is set.

This passes random tests. Unfortunately, it still fails if Q happens to match P .
This will not be caught by random tests.

A different fix is to modify “+” to check for its inputs being equal. But
this produces a slower and more complicated implementation—and still does
not catch all the failure cases. For example, the standard Weierstrass addition
formula fails if Q happens to match −P . This is something else that will not be
caught by random tests.

A typical presentation of the complete group operation on a short Weierstrass
curve involves separate formulas for six different cases. This number of cases is
not optimal: a 1995 theorem from Bosma and Lenstra [63, Theorem 1] states
that “The smallest cardinality of a complete system of addition laws on E equals
two”. One might think that this means that any single addition formula must
have failure cases; but, as we will see in a moment, the facts are more subtle
than that.
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10.2 Edwards curves

The original Edwards paper [95] stated that “The normal form x2 + y2 = a2 +
a2x2y2 for elliptic curves simplifies formulas in the theory of elliptic curves and
functions” and presented a remarkably simple addition formula for this curve
shape. The constant a is required to be nonzero and to have a4 ̸= 1.

Replacing x and y with ax and ay respectively, and dividing by a2, gives the
curve shape x2 + y2 = 1 + a4x2y2. In [36], we suggested generalizing this to
x2 + y2 = 1 + dx2y2 for any d /∈ {0, 1}, and showed that this includes a curve
birationally equivalent over Fp to Curve25519. In this level of generality, the
Edwards addition formula says that

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

We showed that addition in projective coordinates takes only 11M plus a
multiplication by d, and that doubling takes only 7M. We also showed that,
for Edwards curves where d is not a square, the Edwards addition formula is
complete—it adds every pair of points correctly.

Why does this completeness not contradict the Bosma–Lenstra theorem? A
superficial answer is that the theorem is stated only for Weierstrass curves;
but one can see that the same concept applies to any shape of elliptic curve.
The real answer is that the Bosma–Lenstra definition of incompleteness does
not force failure cases for E(Fp); it forces failure cases for E(K) for some field
K containing Fp. This is consistent with our completeness theorem—it simply
means that d must be a square in K. Those failures do not affect computations
in the group E(Fp) when d is not a square in Fp.

Followup work found even better speeds for arithmetic on Edwards curves,
and, more generally, for “twisted Edwards curves” ax2 + y2 = 1+ dx2y2, which
were introduced in [27]. Any Montgomery curve is birationally equivalent to
a twisted Edwards curve and vice versa. The speed records for addition are
just 8M plus a multiplication by d, using complete formulas introduced by
Hisil, Wong, Carter, and Dawson in a 2008 paper [130, Section 3.1] for the
case a = −1 (which is compatible with, e.g., Curve25519). These formulas rely
on “extended coordinates” introduced in the same paper; doublings take 8M
in those coordinates, but skipping the extra coordinate when it is not needed
produces doublings in 7M and additions in 8M, as explained in [130, Section
4.3].

The same paper [130] also showed that for addition one could achieve 8M
without a multiplication by d, with the caveat of those formulas not being
complete. There is a tension here between speed and security, but fortunately a
very small tension for curves chosen to have small d.

In 2011, together with Duif, Schwabe, and Yang, we introduced the EdDSA
signature system [31] (see also the extended version in [32]), and specifically
Ed25519, which is EdDSA using Curve25519. As mentioned above, EdDSA relies
on Edwards curves. The speed, simplicity, and completeness of Edwards addition
contribute directly to the speed, simplicity, and security of Ed25519 software.
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10.3 Completeness for more curves

Back in 2008, in joint work with Farashahi [47], we introduced “binary Edwards
curves” as a new curve shape and designed complete addition formulas for
it. In 2009, in joint work with Kohel [35] (see also [30]), we introduced a
complete addition formula for “twisted Hessian curves”. Finally, also in 2009, we
introduced a complete addition formula that can safely be conjectured to cover
all elliptic curves over non-binary finite fields; see [24]. We checked that all of
the non-binary NIST curves were covered; see [24, page 23] for the case of NIST
P-256. Arene, Kohel, and Ritzenthaler showed in 2012 [14, Theorem 4.3] that
every elliptic curve over a large finite field has a complete addition formula in
Weierstrass form.

Saying that a curve has a complete addition formula does not imply that
sensible implementors will want to use the formula. Sometimes a complete
addition formula is simple and fast, as the Edwards addition formula illustrates;
but sometimes a complete addition formula is slower and more complicated than
constant-time software that correctly merges two or more incomplete formulas.

In 2013, the SafeCurves web pages reviewed the basic completeness results
for the Montgomery ladder and the Edwards addition formula, and continued
as follows:

Subsequent research has introduced other complete scalar-multiplication
formulas. However, many of these formulas are considerably slower
and more complicated than standard incomplete scalar-multiplication
formulas, creating major conflicts between simplicity, efficiency, and
security.
SafeCurves requires curves to support simple, fast, complete,
constant-time single-coordinate single-scalar multiplication. This
includes the SafeCurves ladder requirement but goes further by
requiring completeness. SafeCurves also requires curves to support
simple, fast, complete, constant-time multi-scalar multiplication.

See Section 8 for the definitions of “simple” and “fast”.
This SafeCurves criterion is satisfied by, e.g., Curve25519: the Montgomery

ladder provides simple, fast, complete, constant-time single-coordinate
single-scalar multiplication, and standard multi-scalar-multiplication techniques
on top of the Edwards addition formula provide simple, fast, complete,
constant-time multi-scalar multiplication. Note that “simple” and “fast” are
relative to single-scalar multiplication in the first case and relative to multi-scalar
multiplication in the second case; fast multi-scalar multiplication on top of the
Edwards addition formula is certainly not as simple as the Montgomery ladder.

There has been further work on completeness for other curve shapes. In
2015, Renes, Costello, and Batina [202] showed that one of the Bosma–Lenstra
formulas takes just 12M for short Weierstrass curves E in projective coordinates;
this particular formula is complete for E(Fp) if #E(Fp) is odd. However, the
complete doubling formulas in [202] for the same coordinate system take 11M.
This approach to complete scalar multiplication is much slower than incomplete
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scalar multiplication on the same curves (see [211] for quantification), never
mind questions of simplicity; so it does not meet this SafeCurves criterion.

There is a statement in [202] that the formulas in that paper are “comparably
efficient”. That statement appears to be a comparison to earlier complete
formulas for the same curves. What matters for this SafeCurves criterion is
instead the comparison to the simplest, fastest scalar-multiplication algorithms
for the same curves without regard to security. This is also what matters for
predicting security risks.

Vulnerability announcement CVE-2023-24532 [120] illustrates how powerful
the implementation incentives are. There was a valiant effort to deploy the
formulas from [202] as part of the “crypto/elliptic” library for the Go
programming language—but the library ended up using faster P-256 software
instead. The vulnerability announcement indicates that the faster software has
a bug stemming from its use of incomplete formulas: “The ScalarMult and
ScalarBaseMult methods of the P256 Curve may return an incorrect result if
called with some specific unreduced scalars (a scalar larger than the order of the
curve).” It is not clear whether the library has applications where the bug is
exploitable. What is clear is that larger tensions between simplicity, efficiency,
and security make it more likely that security will be lost.

11 Strings as group elements

Beyond the core ECC tasks of ECDH as in X25519 and signatures as in Ed25519,
there is a vast literature on further cryptographic protocols using elliptic curves.
Complications arise in many of these protocols because of the interface gap
between

• bit strings—the standard interchange format for data stored inside
computers—and
• elliptic-curve points—the central objects appearing in ECC.

This section introduces the central issue, and then explains a simple workaround
known for some curves.

11.1 The gap between strings and curve points

In symmetric cryptography, stream encryption of a message m produces
ciphertext c = m ⊕ s. Here s is the output of, e.g., AES-CTR applied to a
“nonce” (a number used once; e.g., number i for the ith message) and a secret
key; and ⊕ is the exclusive-or operation on bit strings.

For comparison, consider the ElGamal encryption system using the
multiplicative group F∗

p. Alice’s secret key is a, and Alice’s public key is ga

for a fixed generator g ∈ F∗
p. To send a message m, Bob generates n randomly

for this message, and sends the pair (gn,mgan). Alice divides mgan by gan to
reconstruct m.
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In this ElGamal example, m is implicitly an element of F∗
p, whereas one

expects a message to instead be a bit string. This distinction might not seem
worth commenting on:

• There is a standard representation of elements of F∗
p as strings of ⌈log2 p⌉

bits, namely the usual little-endian encodings of the integers 1, 2, . . . , p− 1.
• If m is a message consisting of, say, ⌊log2(p− 1)⌋ bits then one can zero-pad

m to ⌈log2 p⌉ bits, replace the all-zero string with the encoding of p− 1, and
observe that the result is the representation of some element of F∗

p.

In short, there is an efficient bijection between strings of ⌊log2(p− 1)⌋ bits and a
large subset of the group elements. This provides a clean interface for protocols
viewing strings as group elements.

The semantic gap here becomes more of a problem in the elliptic-curve version
of the ElGamal system. Alice’s public key is then aG for a fixed base point
G ∈ E(Fp), and Bob encrypts m ∈ E(Fp) as the pair (nG,m+ naG). How does
one view bit strings as elements of E(Fp)?

There are again standard representations of elements of E(Fp) as strings.
Consider, for example, a compressed representation of elements of E(Fp) as in
Section 9.3 when E is a short Weierstrass curve: a point (x, y) is represented as
x and one bit of y (and the point at infinity is represented as some otherwise
unused string; this exists by Hasse’s theorem when p is large), taking ⌈log2 p⌉+1
bits. The problem is that one cannot reliably obtain strings in this representation
by zero-padding slightly shorter messages: x(E(Fp)) covers only about half of the
elements of Fp, and not simply an interval as in the F∗

p case. So this representation
does not seem useful for a protocol that needs to reliably encode bit strings as
curve points.

11.2 Protocols using strings as group elements

One can dismiss the ElGamal example from Section 11.1 by saying that its
basic purpose, namely encryption, is better achieved by combining DH with
a symmetric cipher, as proposed in the original DH paper. When Section 9.1
mentioned producing, e.g., an AES-GCM key by hashing an ECDH shared secret,
it was implicitly representing the ECDH shared secret as a bit string for input
to the hash function. This relies on mapping elliptic-curve points to bit strings;
it does not need a bijection. Similarly, EdDSA does not need a bijection.

However, more advanced protocols frequently encounter the problem of
viewing strings as group elements. Here is an illustrative example, namely
password-authenticated key exchange (PAKE).

The goal of PAKE is to upgrade a not-very-high-entropy password shared by
Alice and Bob into a high-entropy shared secret. In the simplest PAKE protocol,
Alice generates an integer m and uses (a hash of) the password as a key for a
block cipher to encrypt the block mG; Bob generates an integer n and similarly
encrypts nG; Alice and Bob each compute (a hash of) mnG. For each subsequent
communication session, Alice and Bob repeat this process with fresh integers m
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and n. (One might wonder why Alice and Bob do not reuse secrets across sessions,
or share a higher-entropy secret in the first place; the typical answer is that Alice
and Bob are humans with limited memory and want their devices to forget all
secrets as quickly as possible.)

An attacker starting with a correct guess of the password before the protocol
trivially breaks security of this protocol by forging messages, but this has
probability only 1/W of success per session if there are W equally likely
passwords, so on average it takes about W/2 sessions before success.

A much more efficient “partition attack”, introduced by Patel [191] in 1997
for multiplicative groups and adapted to elliptic-curve groups in 2001 by Boyd,
Montague, and Nguyen [64, Section 5.1], is as follows: try decrypting the
encrypted mG and nG using various guesses for the password, and reject any
guess for which the results are not group elements. The critical observation
here is that most block-length strings are not encodings of group elements.
Consequently, these trials rapidly reject most passwords by observing a single
session, and confidently identify the correct password after a logarithmic number
of sessions—at which point an active attack breaks security with probability 1.
Even if point mG is represented by its x-coordinate x(mG), only about half of
all strings give valid x-coordinates, still permitting a partition attack to succeed
in about log2 W steps.

For multiplicative groups F∗
p, it is easy to block partition attacks by equating

block-length strings with group elements as in Section 11.1 and taking g to
generate F∗

p (rather than to have prime order). This does not equate strings
with all group elements—if gm does not correspond to a string then Alice has to
try again; same for Bob—but all block-length strings are covered by the elements
gm that correspond to strings. For p of the form p = 2t − s for very small s it
is also safe to take t-bit strings, which mean no retries, as the chance that any
candidate decryption ever lands in the forbidden interval [p, 2t− 1] is negligible.

For elliptic-curve groups E(Fp), a more complicated protocol “secure against
partition attacks” was proposed in [64, Section 5.2]. Alice encrypts either x(mG)
or x(m′G′), chosen randomly for each session, where G generates E(Fp) and
G′ generates the twist. The idea here is that these x-coordinates cover Fp,
and thus cover all strings (after retries as in the previous paragraph). Bob
sends back unencrypted points x(nG) and x(n′G′), and then Alice and Bob use
either x(mnG) or x(m′n′G′), depending on whether Alice had chosen x(mG) or
x(m′G′) in the first place.

The literature has many more examples of complications stemming from the
interface gap between strings and elements of E(Fp); see, e.g., the references in
our 2013 paper [34] with Hamburg and Krasnova. As an illustration of these
complications being a security risk, [34] pointed out the following active attack
against the protocol from [64]: the attacker replaces x(n′G′) with random data,
and, if the protocol continues successfully, concludes that Alice was using x(mG)
in the first place. A partition attack then eliminates half of the passwords, and
repeating for a logarithmic number of sessions breaks the protocol.



Safe curves for elliptic-curve cryptography 41

11.3 Strings as curve points: a dangerous approach

A simple-sounding, and presumably correct, method to view bit strings as curve
points is as follows. Take bit strings that are, say, 10 bits shorter than compressed
point representations. Given a bit string m, consider the 1024 possible point
representations starting with m, and take the lexicographically smallest that
represents a point. This fails if none of the 1024 strings represents a point;
presumably such failures do not occur for, e.g., 256-bit primes p.

One issue with this (presumed) bijection is that stopping after the first point
representation that works—as part of mapping a bit string to a point, or as part
of deciding whether a point corresponds to a string—leaks information through
timing. Constant-time software instead has to try all 1024 possibilities. Another
issue is that the bijection does not cover a large fraction of curve points. Protocols
trying group elements until they find elements represented by strings, as in some
of the protocols considered in Section 11.2, might have to try thousands of times.

In 2019, Vanhoef and Ronen [221] announced Dragonblood, breaking
every analyzed implementation of the WPA3 Dragonfly handshake. Most
implementations were vulnerable to invalid-curve attacks as in Section 9.2, but
there were exceptions, such as hostapd, which [221] instead broke with a timing
attack. Dragonfly used a lexicographic computation of a point from a bit string,
and the timing attack targeted this computation.

Another implementation covered in [221], namely FreeRADIUS, stopped
the lexicographic map after just 10 possibilities. This was not a problem for
functionality: >99.9% of handshakes would succeed, and users would not notice
failure cases if handshakes were retried automatically. Security was a different
story: the failure cases were efficiently exploitable, as shown in [221, Section 7].
FreeRADIUS was also vulnerable to invalid-curve attacks.

11.4 Strings as curve points: a better approach

A 2006 paper by Shallue and van de Woestijne [216] introduced a formula
mapping Fp to a reasonably large fraction of E(Fp). There are many followup
papers refining this “hash-to-curve” idea; see, e.g., the references in [34,
Section 1.4]. For protocols that simply want to map bit strings to points,
such as Dragonfly, these formulas are much nicer for implementations than
the lexicographic approach described in Section 11.3. However, “hash-to-curve”
formulas are typically not bijections, so they do not address the foundational
interface gap highlighted in Section 11.1 and exploited in Section 11.2.

Efficient bijections are known for some elliptic curves. For example, for p ≡ 2
(mod 3), the function y 7→ ((y2 − b)1/3, y) is an efficient bijection between Fp

and {(x, y) : (x, y) ∈ E(Fp)}, where E is the curve y2 = x3 + b. This curve has,
however, more basic security problems. Miller commented in 1986 [174, page
425] that another curve having p + 1 points is convenient for calculations but
that “it may be prudent to avoid curves with complex multiplication because
the extra structure of these curves might somehow be used to give a better
algorithm”. This avoidance is the topic of Section 6, and these curves with p+1
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points were then discovered to be weak, specifically because of multiplicative
transfers; see Section 5.

More interestingly, efficient bijections are known for essentially all curves E
for which #E(Fp) ≡ 0 (mod 2), via the “Elligator 2” construction from [34].
For many of the curves, [103] had already introduced a slightly more complex
injective map to the curve, which [34] showed how to invert; see also [88] for
further techniques and references. For each of these curves E, the fraction of
E(Fp) covered by strings is between about 1/4 and about 1/2, so retries as in
Section 11.2 are not very expensive. Of course, it would be even better to have
an efficient bijection covering all of E(Fp).

The issues addressed by these bijections are not as central to ECC as the
issues from Sections 8, 9, and 10. However, looking at the broader ECC literature
shows frequent error-prone contortions to work around the interface gap between
strings and points, as illustrated by the PAKE example in Section 11.2 and
many more examples cited in [34]. We therefore include an “indistinguishability”
criterion in SafeCurves, asking for an efficient constant-time bijection between
all b-bit strings and a large fraction of curve points. We allow an undetectable
fraction of b-bit strings to be skipped, although one can tweak the known
constructions of bijections to avoid this at the expense of replacing b with b− 1.

11.5 Encodings enforcing group membership

An efficient bijection between the set of b-bit strings and (many) curve points
has another interesting property: if a protocol requires a curve point to be
communicated as a b-bit string, then decoding always produces a point on the
correct curve, automatically avoiding invalid-curve attacks.

This does not mean that a protocol as simple as ECDH should use these
encodings: ECDH software is simpler if one uses x-coordinates with the
Montgomery ladder, as in Figure 8.2.1, and chooses a twist-secure curve.
However, looking at a much wider range of ECC protocols shows that security
analyses typically assume that incoming points are in E(Fp). Rather than
trusting each implementation to check this, one can have each protocol use a
general-purpose encoding that forces inputs to be in E(Fp).

Two complications appear at this level of generality. First, one cannot expect
all protocols to be willing and able to handle the possibility of a point not
being representable as a string. Second, security analyses sometimes assume that
incoming points are specifically in the order-ℓ group generated by G ∈ E(Fp).
This group matches E(Fp) if E(Fp) = ℓ, but the known efficient bijections require
larger cofactors.

As an illustration of the second complication, the Monero blockchain
announced in 2017 [166] that it had patched a vulnerability allowing each coin
to be spent 8 times. Monero used Curve25519, which has cofactor 8, so there
are 8 points T ∈ E(Fp) such that 8T is the neutral element; Monero’s security
analysis was expecting a point P to be in the order-ℓ group, but the software
was accepting P + T as a separate expenditure for each of the 8 points T .
Note that switching to cofactor 1 exacerbates the core problem here: it leads
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to invalid-curve attacks even against basic ECDH, as illustrated by the recent
attacks cited in Section 9.

These considerations have triggered interest in ways to encode elements of
the order-ℓ group as b-bit strings, with decoders rejecting all other b-bit strings.
What would be best is a bijection, so that nothing needs to be rejected. In the
absence of a bijection, some possibilities are the following:

• When E(Fp) is, e.g., a group of order ℓ in short Weierstrass form, one can
encode a curve point as (x, y) (with some handling of the point at infinity,
although some protocols will want to reject this point). The decoder is then
required to check whether (x, y) is on the curve. To limit the damage just
in case the check is omitted, it seems safer to replace y with one bit of y as
noted in Section 9.3, using a square-root computation to recover y. However,
the strength of this protection is unclear: the literature does not show what
will happen if an invalid x is sent and the resulting y is not tested against
the putative y2.

• To handle general curves, one could similarly send (x, y) or a compressed
version of (x, y), and add an explicit test whether (x, y) has order ℓ, which
seems to be a useful protection in any case. For typical Edwards curves, there
are alternative representations of the order-ℓ group that advertise efficient
encoding and decoding; see, e.g., [123]. With any of these encodings, one
has to ask what will happen if the decoder’s tests are omitted.

Without a thorough analysis of failure cases, there seems to be no alternative to
making sure that the decoding (and encoding) software works correctly, but at
least this software can be shared across many protocols asking for an order-ℓ
group. Within correct implementations of order-ℓ groups, the most efficient
groups known rely on Edwards curves, and on the formulas from [130].
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A Chronology of ECC vulnerabilities

This appendix reviews the timeline of ECC vulnerabilities. In this appendix,
“demo” means that an attack has been demonstrated; “vulnerability” means
that analysis indicates that an attack should work; “potential vulnerability”
means that the attacker has extra power but further analysis is required to
determine whether there is a vulnerability; “speedup” means that attacks are
faster but not necessarily feasible.

This appendix focuses on the core ECC tasks, namely ECDH and signatures;
this excludes, e.g., Dual EC (see [49]) and many breaks of advanced protocols
built using ECC. For side-channel attacks, this appendix focuses on timing
attacks and excludes power attacks, electromagnetic attacks, etc.

The timeline is organized by publication date. Two types of publications are
included: publications pointing out new attack strategies (e.g., [54] pointing out
invalid-curve vulnerabilities), and publications pointing out vulnerabilities in
specific implementations (e.g., [201] pointing out an invalid-curve vulnerability
in openCryptoki). The timeline is as follows:

• 1993 [172], independently 1994 [105], independently 1996 [214]:
multiplicative transfers against curves with p− 1 points, p+ 1 points, etc.
• 1998 [215], independently 1998 [209], independently 1999 [218]: additive
transfers against curves with p points.
• 1998 [104]: sketch of speedup against some curves over non-prime fields.
• 1998 [228]: negation speedup.
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• 2000 [111]: speedup using other fast endomorphisms for some curves.
• 2000 [54]: invalid-curve vulnerabilities in general.
• 2002 [116]: speedup against some curves over non-prime fields.
• 2002 [142]: exceptional-procedure vulnerabilities in general.
• 2009 [114]: speedup against some curves over non-prime fields.
• 2009 [74]: cache-timing demo against OpenSSL (0.9.8k and under).
• 2010 [6]: repeated-nonce demo extracting the Sony PlayStation 3 ECDSA

signing key.
• 2011 [89]: speedup against some curves over non-prime fields.
• 2011 [75]: timing demo extracting NIST B-163 ECDSA secret keys from

OpenSSL.
• 2012 [195]: speedup against some curves over non-prime fields.
• 2013 [59]: repeated-nonce demo extracting some Bitcoin ECDSA secret keys.
• 2015 [188]: potential invalid-curve vulnerability in OpenSSL because of an

arithmetic bug inside a point-on-curve test. The arithmetic bug applies to
occasional inputs, and [188] says the “exact impact is difficult to determine”.

• 2015 [12]: timing demo extracting secp256k1 ECDSA secret keys from
OpenSSL.

• 2015 [143]: invalid-curve demo extracting TLS ECDH secret keys from 2 out
of 8 analyzed libraries: “Oracle’s default Java TLS implementation (JSSE
with a SunEC provider) and TLS servers using the Bouncy Castle library)”.

• 2019 [97]: invalid-curve vulnerability in OpenPGP.js.
• 2019 [144]: “Minerva” timing demo extracting ECDSA secret keys from a

FIPS-certified CC-certified Athena IDProtect smart card. Same vulnerability
in seven other certified devices, and in 4 out of 13 software libraries.

• 2019 [176]: “TPM-FAIL” timing demo extracting ECDSA secret keys from
two certified TPMs.

• 2019 [55]: invalid-curve demo against Bluetooth pairing.
• 2019 [221]: “Dragonblood” demo against the WPA3 Dragonfly handshake,

including invalid-curve attacks and timing attacks.
• 2020 [173]: “CurveBall” parameter-substitution vulnerability in ECDSA in

Windows 10.
• 2020 [11]: timing demo extracting ECDSA secret keys from mbedTLS.
• 2020 [13]: “LadderLeak” timing demo extracting ECDSA secret keys from

OpenSSL in some scenarios.
• 2022 [201]: invalid-curve vulnerability in the openCryptoki soft token.
• 2023 [120]: potential exceptional-procedure vulnerability for NIST P-256 in

the crypto/elliptic library for Go.
• 2023 [107]: invalid-curve vulnerability for 5G Subscription Concealed

Identifiers in the free5GC udm software.
• 2023 [178]: timing vulnerability for NIST curves in the NSS cryptographic

library in the Firefox browser.

B Bit operations for elliptic-curve discrete logarithms

This appendix reviews the number of bit operations used in state-of-the-art
ECDLP attacks for curves meeting the SafeCurves criteria. Note that faster
attacks are known against various curves not meeting the SafeCurves criteria.
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This appendix takes Curve25519 as a concrete example, with p = 2255−19 and
ℓ ≈ 2252. It was stated in [23] that every attack known at that time was “more
expensive than performing a brute-force search on a typical 128-bit secret-key
cipher”; this is also true for every attack known today.

Structurally, this appendix counts the number of iterations in an attack
(Appendix B.1), counts the number of multiplications in each iteration
(Appendix B.2), and takes optimized bit-operation counts from [48] for each
multiplication (Appendix B.3). The reader is cautioned that this analysis omits
two small effects in opposite directions: first, there is overhead in each iteration
beyond multiplications; second, the operation counts from [48] can still be
improved. See Appendix B.3 for further details. It would be interesting to analyze
the exact number of bit operations for an optimized iteration, accounting for
these improvements and for all overheads. See our paper [39] (and, for more
background, [16]) for a detailed analysis of bit-operation counts for ECC2K-130,
a binary-field ECDL challenge.

B.1 Iterations

As mentioned in Section 4, a standard negating rho attack takes about
√
πℓ/4

iterations on average: e.g., 2125.8 iterations for Curve25519.
We showed in [41] that the constant

√
π/4 ≈ 0.886 is not optimal in cost

models that allow free memory access. Perhaps an improvement is possible
even when one counts the bit operations involved in memory access. In the
generic-group model augmented with free negation, the constant cannot be
better than 2/3 ≈ 0.667; e.g., 2125.4 iterations for Curve25519.

For comparison, brute-force search on a 128-bit secret-key cipher takes about
2127 iterations on average, but the iterations are typically much less expensive
in the cipher case. For example, [28] shows that a complete AES-128 attack
iteration uses under 214.9 bit operations, whereas Appendices B.2 and B.3 below
indicate that the main operations in a Curve25519 attack iteration are close
to 220 bit operations. Presumably the costs of routing data will also be larger
for a Curve25519 attack iteration than for an AES-128 attack iteration, but
this appendix focuses on bit operations. See also Sections 4.2 and 4.3 regarding
multi-target attacks.

B.2 Multiplications per iteration

The main work in an iteration inside the standard negating rho attack is an
addition on a short Weierstrass curve in affine coordinates. Addition in affine
coordinates involves a division, but the division is batched across many parallel
attack iterations, reducing the effective cost of each division to 4M and the total
cost of each iteration to 6M.

The details are as follows. On the curve y2 = x3+ax+b, the sum of two points
(x1, y1) and (x2, y2) is (x3, y3) where λ = (y2− y1)/(x2−x1), x3 = λ2−x1−x2,
and y3 = (x1 − x3)λ − y1. Failure cases in these formulas (see Section 10) are
not relevant to the attack.
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The inversion of x2− x1 costs 3M as part of a large batch. There is then 1M
to multiply by y2 − y1, 1M to square λ, and 1M to multiply by x1 − x3.

B.3 Bit operations per multiplication

Asymptotically, each multiplication in Fp uses (log p)1+o(1) bit operations. For
concrete numbers, we focus on the case of Curve25519.

An unrolled circuit for 255-bit integer multiplication, including Karatsuba’s
method and many lower-layer speedups, uses 173954 bit operations, according
to the software from [48]. A 255-bit squaring circuit uses 103000 bit operations,
according to the same software. Five multiplications and a squaring with these
circuits use 972770 ≈ 219.89 bit operations.

As noted above, this analysis omits some known improvements. Karatsuba’s
method saves time when inputs are reused across multiplications; batched
divisions reuse some inputs. Also, [33, footnote 5] points out that iteration details
can be set up to guarantee that some trailing bits of x2 − x1 are zero, saving
time in multiplications. As a possible further improvement, more advanced
multiplication methods such as Toom’s method asymptotically outperform
Karatsuba’s method, and perhaps already save operations for 255-bit inputs.

In the opposite direction, these are just the multiplication costs. There are
also some costs for subtractions, reductions mod 2255−19, “distinguished point”
management, etc.

C An email exchange

Subject: Greetings from evil Jerry

From: "Jerome A. Solinas" <jasolin@tycho.ncsc.mil>

Date: Wed, 23 Jul 2014 13:49:32 -0400

To: djb@cr.yp.to

Dr. Dan,

Enjoyed your new paper. Now I can cross "become an evil Internet meme"

off my bucket list.

I will be at PQC Waterloo, so I’ll see you and Tanja there if you’re

going.

Regards,

-- Jerry

Subject: Re: Greetings from evil Jerry

From: "D. J. Bernstein" <djb@cr.yp.to>
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Date: 6 Sep 2014 08:54:43 -0000

To: "Jerome A. Solinas" <jasolin@tycho.ncsc.mil>

Hi Jerry,

Unfortunately we won’t be able to make it to PQCrypto. Maybe we’ll see

you at the NIST events in the Spring.

Out of curiosity, where _did_ you get the seeds for NIST P-256 etc.?

---Dan

Subject: Re: Greetings from evil Jerry

From: "Jerome A. Solinas" <jasolin@tycho.ncsc.mil>

Date: Tue, 16 Sep 2014 14:53:14 -0400

To: "D. J. Bernstein" <djb@cr.yp.to>

On 09/06/2014 04:54 AM, D. J. Bernstein wrote:

> Hi Jerry,

>

> Unfortunately we won’t be able to make it to PQCrypto. Maybe we’ll see

> you at the NIST events in the Spring.

>

> Out of curiosity, where _did_ you get the seeds for NIST P-256 etc.?

>

> ---Dan

Interesting question. We built all the seeds via hashing (SHA-1, I think)

from the ASCII representation of a humorous message. Unfortunately, we can

remember neither the (exact) message nor the details of how we hashed. Too

bad, since we could prove our innocence by disclosing the details, if only

we could remember them.

-- j

Subject: Re: Greetings from evil Jerry

From: "D. J. Bernstein" <djb@cr.yp.to>

Date: 14 Jun 2015 03:15:54 -0000

To: "Jerome A. Solinas" <jasolin@tycho.ncsc.mil>

Jerome A. Solinas writes, back in September:

> We built all the seeds via hashing (SHA-1, I think) from the ASCII

> representation of a humorous message. Unfortunately, we can remember

> neither the (exact) message nor the details of how we hashed.

Do you have some examples of similar messages? Kevin already mentioned

that it was something along the lines of "Jerry will get a raise", but

the next question is where you would have put a counter (or could it
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have been repeated hashing?) to try multiple seeds. I’d be happy to

throw some cluster time at this.

---Dan

Subject: Re: Greetings from evil Jerry

From: "Jerome A. Solinas" <jasolin@tycho.ncsc.mil>

Date: Wed, 17 Jun 2015 10:27:34 -0400

To: "D. J. Bernstein" <djb@cr.yp.to>

On 06/13/2015 11:15 PM, D. J. Bernstein wrote:

> Jerome A. Solinas writes, back in September:

> > We built all the seeds via hashing (SHA-1, I think) from the ASCII

> > representation of a humorous message. Unfortunately, we can remember

> > neither the (exact) message nor the details of how we hashed.

> Do you have some examples of similar messages? Kevin already mentioned

> that it was something along the lines of "Jerry will get a raise", but

> the next question is where you would have put a counter (or could it

> have been repeated hashing?) to try multiple seeds. I’d be happy to

> throw some cluster time at this.

>

> ---Dan

I believe there was a counter rather than multiple hashing, but I don’t know

details. The message was along the lines of "Give Bob and Jerry a raise" or

"Bob and Jerry rule" or something like that. It was Bob Reiter who actually

wrote the code, and he doesn’t remember the details either. Nor were we

able to find archives from so long ago. If they exist, they are no doubt

sitting on a hard drive near the Ark of the Covenant.

I know this isn’t much to go on. We really didn’t think it would ever

matter.

-- Jerry

D Chips available to attackers

This appendix investigates the claim from [153, 2018 eprint version] that “286

bit operations . . . almost certainly was beyond the NSA’s capacity in 1997”.

D.1 An example of CPU efficiency

Consider the 266 MHz Intel Pentium II. This CPU was released in May 1997,
according to [136] and [137, pages 2–3]. The CPU carried out “one FMUL per
two clock cycles”, according to [100, page 83] (see also [139, page 2-30]); i.e.,
the CPU carried out 133 million FMUL instructions per second.
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Each FMUL instruction multiplies two inputs in “FPU registers” (see, e.g.,
[135, page 25-117]), each of which is a floating-point number in “extended
format” (see, e.g., [135, page 6-25]), meaning an 80-bit floating-point number
with a 64-bit mantissa (see, e.g., [135, page 6-23]). The software from [48] reports
17402 bit operations for 64-bit integer multiplication. The CPU was also carrying
out many further bit operations for instruction decoding, out-of-order execution,
etc. We estimate at least 215 bit operations in total per FMUL, and thus at least
242 bit operations per second for the CPU.

Intel’s data sheet for the processor [138, page 22] indicated that the CPU core
would draw at most 12.7 A at 2.8 V, plus at most 1.44 A at 3.3 V for L2 cache;
i.e., at most 40 watts. We estimate 26 watts to account for supporting circuitry,
power-supply inefficiency, etc., and conclude that this CPU was carrying out at
least 236 bit operations per joule.

For comparison, the current Bitcoin-mining equipment cited in Section 4.1
carries out 254 bit operations per joule. This indicates about 1.5 years per
doubling of energy efficiency of a bit operation. Interpolating would suggest
247 bit operations per joule in 2013, in line with our estimate [43] at the time.

D.2 Scaling to many chips

Given the above estimate of at least 236 bit operations per joule with 1997 chip
technology, 286 bit operations would have consumed at most 250 joules. Spreading
250 joules over a year means 25 megawatts. At 26 watts per chip, 25 megawatts
means half a million chips, equivalent to a few hundred million dollars at Intel’s
original $775 sales price (see [136]) for the 266 MHz Pentium II.

For comparison, a 1997 news report [85] said that Intel “is shipping close
to 100 million chips a year”. Intel’s annual report in early 1998 [137, pages
3 and 26] said that “sales of Pentium Pro and Pentium II microprocessors
became an increasing portion of the Company’s revenues and gross margin in
1996 and a significant portion in 1997”, and that Intel’s net revenues in 1997
were $25 billion. Intel was already manufacturing earlier “CPUs in volume on a
0.35-micron process” in 1995, according to [122]; the 266 MHz Pentium II was
also manufactured at 350nm, according to [136]. There is no reason to think
that producing half a million 350nm CPUs for an attack would have run into
any manufacturing limits.

D.3 NSA resources

The Federation of American Scientists used public data to conclude in 1996 [98]
that the “NSA budget is around $3.6 billion”, including “roughly 20,000
direct-hire NSA staff”. Even if personnel expenses for an average staff member
were as high as $100000, NSA would have had $1.6 billion in 1996 to spend on
equipment.

Declassification requests by journalists led to partial declassification in 2013
of internal NSA history books from 1998 and 1999. These books confirm the
20,000 number; see, e.g., [145, page 23]. These books also say [146, page 291]
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that NSA spent $199 million in 1984 on a single contract to buy 21,000 IBM PC
XTs so as to put a PC on each desk; that NSA spent $150 million in 1985 on a
single network-hardware contract; and that “computer power was the essential
ingredient in cryptanalysis”.

Spending a few hundred million dollars in 1996 on chips to carry out
attacks would have been enough to carry out 286 bit operations in 1997 (see
Appendices D.1 and D.2), even if there were no contributions from chips bought
in previous years, and would have been only 10% of NSA’s budget. There is
no evident reason that NSA would not have spent even more than this on such
chips, say 30% of its budget, in which case an attack consuming 286 bit operations
would have been only one of multiple large-scale attacks that NSA could have
afforded to carry out at the same time.

For comparison, news reports in 2013 such as [227] indicated that NSA’s
yearly budget was around $10 billion, with half spent on “management, facilities,
and support”. A news report in 2012 regarding just one of NSA’s computer
centers, the Bluffdale center [18], indicated that the center cost $2 billion, that
construction had begun in 2011, and that the center “should be up and running
in September 2013”, so that center by itself accounted for close to 10% of NSA’s
budget for those years.

E Speed

X25519 has been consistently observed to outperform NIST P-256 ECDH,
as noted in Section 8.2; similarly, Ed25519 has been consistently observed
to outperform NIST P-256 ECDSA. As quantification, this appendix reports
measurements of recent software on a spectrum of different CPU cores.

E.1 Data collection

We picked machines with a spread of 10 CPUs introduced over the past decade.
Table E.1.1 provides detailed information about the CPU in each machine.

On each machine, we compiled OpenSSL 3.2.2 (released in June 2024 [189])
and used OpenSSL’s speed utility to measure NIST P-256. This utility reports
ECDH time, ECDSA signing time, and ECDSA verification time. Key-generation
time is not reported (ECDH time means only shared-secret computation),
but key generation and signing have the same primary bottleneck, namely
single-scalar fixed-base-point multiplication.

The speed utility runs experiments on a single CPU core. The numbers in
Appendix E.2 are operation counts per second on one core. It is reasonable to
expect that a CPU with, e.g., 4 cores can carry out operations 4 times more
quickly. This expectation would be invalid with overclocking mechanisms such
as “Turbo Boost”, since overclocking is much more effective when only one core
is active; we disabled those mechanisms.

For X25519 and Ed25519, we measured the performance of lib25519 [51] on
the same CPUs. To maximize comparability, we performed these measurements
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machine CPU cores MHz microarchitecture year

alder Intel Core i3-12100 4 3300 Golden Cove 2022
cezanne AMD Ryzen 5 PRO 5650G 6 3900 Zen 3 2021
jasper3 Intel Celeron N5105 4 2000 Tremont 2021
panther Intel Core i7-1165G7 4 2800 Tiger Lake 2020
rome1 AMD EPYC 7742 64 2245 Zen 2 2019
pi4b Broadcom BCM2711 4 1500 Cortex-A72 2019
gemini Intel Celeron N4020 2 1100 Goldmont Plus 2019
pi3aplus Broadcom BCM2837B0 4 1400 Cortex-A53 2018
rumba7 AMD Ryzen 7 1700 8 3000 Zen 2017
nucnuc Intel Pentium N3700 4 1600 Airmont 2015
samba Intel Xeon E3-1220 v5 4 3000 Skylake 2015

Table E.1.1. CPUs used for the measurements in Table E.2.1. “Year” is the year that
the CPU was introduced. The machine named rome1 has two identical CPUs; “cores”
is the number of cores per CPU.

P-256 X25519 P-256 Ed25519 P-256 Ed25519
machine DH DH sign sign verify verify

alder 18700 48075 47009 118851 14450 35893
cezanne 23184 53152 53564 132900 17918 34131
jasper3 6047 9252 15613 23476 4662 7111
panther 15526 43282 36826 91401 11855 25868
rome1 12920 24068 29073 73521 9809 17326
pi4b 3810 10947 8636 13642 2893 3639
gemini 2837 4455 7227 11427 2192 3450
rumba7 14595 25527 32723 76847 10811 18921
nucnuc 2341 3692 5772 9083 1811 2891
samba 17698 35981 38669 88640 13170 28468

Table E.2.1. Speed of readily available software for NIST P-256 and Curve25519 on
various CPU cores. See Table E.1.1 for descriptions of the CPUs. Each number is for
operations carried out per second on a single CPU core, with overclocking disabled.

with OpenSSL’s speed utility, using a “provider” that plugs lib25519 into
OpenSSL.

E.2 Results

Table E.2.1 reports the speed of each operation on each machine. For previous
reports of Curve25519 speeds in various environments, often with in-depth
analyses of the speeds, see [23], [115], [84], [32], [52], [160], [167], [208], [80],
[92], [133], [106], [171], [56], [180], [181], [182], [230], and [113].
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