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Abstract
We introduce Compass, a semantic search system over
encrypted data that offers high accuracy, comparable to
state-of-the-art plaintext search algorithms while protecting
data, queries and search results from a fully compromised
server. Additionally, Compass enables privacy-preserving
RAG where both the RAG database and the query are pro-
tected.

Compass contributes a novel way to traverse the Hierarchi-
cal Navigable Small Worlds (HNSW) graph, a top-performing
nearest neighbor search index, over Oblivious RAM, a cryp-
tographic primitive with strong security guarantees. Our tech-
niques, Directional Neighbor Filtering, Speculative Greedy
Search, and HNSW-tailored Path ORAM ensure that Com-
pass achieves user-perceived latencies of a few seconds and
is orders of magnitude faster than baselines for encrypted
embeddings search.

1 Introduction

An increasing number of user data systems have adopted end-
to-end encryption because of its strong security properties. Ex-
amples of such systems include WhatsApp, iCloud Backups,
Telegram, Signal, and PreVeil [2,19,64,75,82]. In this setting,
there has been a decades-long rich line of work on encrypted
search [15, 17, 20–22, 27, 29, 40, 41, 54, 57, 71, 74, 77, 80, 86]:
enabling the server to search on the encrypted data without
learning the data or the query. Despite much progress, two
challenges remain: reduced security and low search accuracy.

Security: The desiderata is to protect the data, query and
query results – including search access patterns – against a
fully compromised server. i) Leaky practical search. A long
line of work enables the server to learn some information
about the query or data [11, 12, 15, 32, 41, 45, 57, 77, 80], such
as search access patterns, to provide fast search. However,
leakage-abuse attacks [10, 35, 42, 49, 62, 63, 88] can recon-
struct a significant amount of data or the query from this
leakage. ii) Search with partial server trust. A line of work

 Who is Paula Deen’s brother? 
Keyword Search Result: What happened to Paula Deen's first 
husband? Paula Deen divorced her first husband Jimmy Deen 
(described as her hard-drinking high school sweetheart) in 1989 
after 27 years of marriage; they had two sons together. In 2004 
she married Michael Grover. Soon after her divorce, Deen started 
her own catering company, The Bag Lady. 
Semantic Search Result: Paula Deen and her brother Earl W. 
Bubba Hiers are being sued by a former general manager at Uncle 
Bubba’s Seafood and Oyster House, a restaurant they co-own. 

Figure 1: Example of top-1 search results with the keyword
search using TF-IDF (top) versus semantic search (bottom)
on the MS MARCO dataset. The keyword search looks up
each keyword individually and intersects them, but the term
“brother” by itself is generic and produces too many results.
In contrast, semantic search understands that the user is inter-
ested in Paula’s brother.

assumes trusted hardware enclaves at the server [5, 54, 81],
but hardware enclaves suffer from a wide range of side chan-
nels [9, 43, 87], including some that can entirely subvert
remote attestation and their security [84]. Another line of
work [17, 18, 74] considers the logical server consists of two
or more server trust domains, where at least one of them is
trusted. However, it has been shown to be very difficult to find
and deploy such different trust domains [16,48], and attackers
can still compromise both of these servers.

Accuracy: Most of the works mentioned above have sig-
nificantly lower search accuracy compared to state-of-the-
art plaintext search systems. This is because they imple-
ment lexical search, which is less accurate than the semantic
search used in modern systems. For example, some works
above [4, 15, 17, 40, 41, 54, 77, 83, 86] implement an inverted
index that maps a keyword to a list of documents. While effec-
tive for single-keyword searches, this method struggles with
complex queries like expressions or questions. State-of-the-
art search systems such as Bing, and Elasticsearch [3, 53]
implement semantic search. Semantic search converts both
the query and the content into vector embeddings in a high-
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dimensional space. This approach allows the search algorithm
to compare the meanings of texts based on their proximity in
this space, rather than just matching exact keywords. seman-
tic search is more accurate as it understands the intent and
contextual meaning of the search query. It also extends search
capabilities to unstructured data types such as audio, images,
and videos. Fig. 1 shows an example of a search result from a
semantic search versus from a keyword search.

In this work, through our system Compass we show that
one can design an efficient search system over encrypted data
that achieves the best of both worlds — namely, a highly accu-
rate semantic search without leaking user data or queries while
ensuring search integrity against malicious servers (§4.8).
In Compass, search and insert time are both theoretically
(poly)logarithmic in expectation1 and empirically efficient as
we show in the evaluation (§6). Compass’s search quality is
on par with state-of-the-art unencrypted search systems. Be-
sides, Compass can be applied to Private Retrieval Augmented
Generation (RAG) systems [46], as discussed in §7.

Searching over encrypted embeddings is a nascent line of
work. The few prior proposals are either inefficient (for each
query, HERS [24] performs a linear scan with FHE over the
entire data, and SANNS [13] combines heavyweight tools
like FHE, distributed ORAM, and Garbled Circuit), or have
weak security ( [6, 89] leak query information and Preco [74]
assumes partial server trust), as we elaborate in §7.

Our goal is ambitious: to execute a powerful state-of-
the-art search index for embeddings, Hierarchical Navigable
Small World (HNSW) [52], over encrypted data. HNSW is
a top-performing index used in modern plaintext semantic
search [61]. At a high level, HNSW is a multi-layer graph
with fewer nodes and edges on the upper layers and more
nodes and edges on the bottom layers. A search starts from
the top layer, follows links within each layer to find the lo-
cally nearest neighbor to the query, and then continues to the
layer below. The goal here is to support HNSW securely and
efficiently on encrypted data without reducing its accuracy.
However, HNSW performs a complex traversal in embed-
ding space that would be inefficient to perform with fully
homomorphic encryption (FHE) [28] or GarbledRAM [51].

Instead, we build Compass based on Oblivious RAM [58],
specifically Path ORAM [79]. Beyond access pattern protec-
tion, Path ORAM offers additional attractive properties for
searching over encrypted embeddings. First, on the practical
side, the constant has significantly improved since ORAM
was first proposed, and the communication is sublinear. Sec-
ond, with ORAM, the client performs distance computations
locally and decides the next step in an index walk. Unlike
FHE, this allows us to support any embedding distance met-
ric, enabling a wealth of state-of-the-art embeddings. Besides,
as noted in Path ORAM, it’s straightforward to support in-
tegrity against a malicious server. Fig. 2 shows an overview

1under the assumption that the HNSW graphs emulate a Delaunay graph
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Figure 2: Compass Architecture

of Compass’s architecture.
The fundamental challenge in supporting HNSW with

ORAM is that HNSW assumes that the index and embeddings
are stored in local memory and it is optimized for performing
a multi-hop walk locally. A strawman solution is to make
an ORAM request to the server for every node visited by
HNSW’s search algorithm. Unfortunately, this strawman is
highly inefficient because it has:
• High bandwidth consumption: At every candidate node,

HNSW fetches each neighbor’s embedding and computes
its distance to the query vector. This means that to evaluate a
single node in the walk, we have to perform tens to hundreds
of ORAM requests.

• High number of roundtrips: A search in the HNSW graph
typically visits tens to hundreds of nodes, each having tens
to hundreds of neighbors that also are fetched. Empirically,
it requires thousands of network round trips to achieve good
recall on real datasets.
To address this challenge, we develop a new search index

that co-designs an alternative HNSW-like graph walk and an
ORAM backend for efficient semantic search. Specifically, we
introduce three techniques. To reduce bandwidth consump-
tion, we introduce Directional Neighbor Filtering. The key
idea here is, at every node in the graph walk, to only fetch
the embeddings of a subset of neighbors that are in the same
“direction” in the embedding space as the query vector. This
subset is determined based on a small chunk of data, which is
orders of magnitude smaller than the original dataset, cached
locally on the client side. Second, we introduce Speculative
Greedy Search, which speculatively fetches additional nodes
that are likely to be visited in the future to reduce the number
of network round trips and user-facing latency of the graph
walk, while maintaining privacy. Finally, we introduce HNSW-
tailored Path ORAM that integrates the search index walk into
a white-box “rearrangement” of the Path ORAM protocol, fur-
ther improving the communication overhead and significantly
reducing user-perceived latency.

Evaluation summary: We implement and evaluate Com-
pass across 4 popular datasets of different sizes and dimen-
sions. Our techniques above deliver up to 125× speedup over
the strawman implementation of HNSW on top of ORAM
and make encrypted embedding search with high accuracy
practical for the first time. Our results show that Compass
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not only significantly outperforms baselines but also matches
the accuracy of the state-of-the-art plaintext search algorithm
across all datasets. For user-scale datasets, Compass achieves
user-perceived latencies of 0.05 to 0.09 seconds on same-
region networks and 0.77 to 1.03 seconds on cross-region
networks. For a web-scale dataset like MS MARCO, Com-
pass responds to search queries in just 13 seconds over a slow
cross-region network setting.

Limitations: To match the plaintext search quality, Com-
pass makes multiple roundtrips to the ORAM server for each
search (e.g., an average of 8 to 16 in our evaluation), unlike
a vanilla unencrypted search which makes only one. While
§6 shows that the user-perceived latency is reasonable for a
single search, this might be concerning for systems that need
to perform a chain of searches for one user-facing operation.

2 Background

2.1 Hierarchical Navigable Small Worlds

In this section, we provide a brief overview of HNSW [52], a
state-of-the-art graph-based Approximate-Nearest-Neighbor
(ANN) method that has empirically demonstrated strong
search performance [7, 76]. HNSW creates an index over
a vector dataset by constructing a proximity graph G(V, E).
This proximity graph represents each vector in the dataset as
a vertex in the graph, and connects vertices by edges. HNSW,
in particular, creates a hierarchical, multi-layer graph index
that has bounded node-degrees.

The HNSW search algorithm follows a simple iterative
greedy search procedure. As shown in Fig. 3, the search be-
gins from a pre-defined entry point. This entry point is chosen
during the index construction and is a node on the uppermost
layer of the HNSW graph. The search procedure iterates over
each layer, performing a greedy search, before dropping down
to the layer below to continue its search. On each upper layer,
the greedy search uses a dynamic candidate list of size one
and greedily chooses a single node, which then becomes the
entry point to the next layer below. Finally, once the bottom-
most layer is reached, the algorithm once again perform the
greedy search, but increases the size of the dynamic candi-
date list to e f and greedily chooses K nodes, rather than a
single node. The parameter e f is typically larger than K and
controls the trade-off between the quality and efficiency, with
higher values of e f corresponding to higher quality at the cost
of higher search latency. In practice, one can choose the e f
parameter by empirically generating the accuracy-efficiency
trade-off curve over a benchmark dataset and choosing the e f
value that meets the application’s target accuracy at minimal
search latency.

Visited Node
Best Match
Search Path
Edge

Query Node
Entry Node

Figure 3: HNSW Graph Data Structure

2.2 Path ORAM

First introduced by Goldreich and Ostrovsky, Oblivious RAM
(ORAM) [30, 58] allows a client to access encrypted data on
remote storage without leaking actual access patterns. Path
ORAM [79] is a Tree-based ORAM scheme that has been
widely adopted due to its simplicity and practicability.

Path ORAM organizes the server-side storage as a binary
tree with height L. Each node in the tree is called a bucket,
which contains Z blocks. Z is also referred to as bucket size.
A block contains either real data or a dummy. The client holds
two data structures: position map and stash. The position map
maintains a mapping of each block to a path that this block is
assigned to. The stash serves as a local buffer that temporarily
stores the blocks to be evicted.

In Path ORAM, each block is uniformly randomly assigned
to one of 2L paths in the tree. The invariant in Path ORAM is
that, if a block is assigned to path l in the position map, then
this block is either in one of the buckets on the path l or in the
stash. Path ORAM provides a unified operation, Access for
both read and write requests. The Access of a block b consists
of following steps:

1. Read the path l of this block from the server.
2. Insert non-dummy blocks on this path into the stash and

update the content of the target block if it’s a write.
3. Randomly assign the target block to a new path l′.
4. Greedily evict the blocks in the stash to the path l and

write the path back to the server.

3 System Overview

Our system setup consists of a logical server and multiple
clients. Each client owns a separate set of documents and a
separate index, both stored on the server. We focus on en-
abling a user to search on their own data, and data sharing is
not a focus of our system.

Compass’s API is as follows:
• INIT(D): Given a set of documents D , initiate the index.
• SEARCH(Q , K) → LIST(ID, SCORE): Given Q , the em-

bedding of the query, find the top K relevant documents
and return a list of documents’ ids with relevance scores.

• INSERT(F ): Given a document F , generate the embedding
set E and store both the encrypted document and its embed-
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dings on the server. The size of E depends on the document
length and the model’s context window.

• DELETE(F ): Given a document F , remove the document
and the embeddings from the cloud.
When initializing the system, sequentially writing each

block into ORAM is very inefficient. Instead, one can use the
bulk loading protocol introduced in BULKOR [47].

3.1 Threat Model & Security Guarantees

Our system is based on a two-party model: a client and a
server. By server, we refer to a logical server that may consist
of multiple physical machines. The server is untrusted and can
be maliciously compromised. Unlike some prior works that
weaken the threat model by assuming multiple logical servers
with at least one being honest [17, 70, 74, 85], we assume the
entire server is untrusted. We also do not rely on uncompro-
mised hardware modules or hardware trust assumptions at the
server, like TEE-based systems [26, 54]. This means that the
server in Compass can deviate from the protocol arbitrarily.
Compass ensures that the server cannot learn any information
about the user query, such as the query embedding, the IDs
and lengths of the returned documents, or whether the query
matches a previous one ("query access patterns"). Moreover,
the server cannot learn the data contents from the search index
or modify the search results without detection by the client.

Compass does not hide the type of operations—whether a
user is performing a search, insert, or delete—on the remote
data. We do not protect against timing side-channel attacks re-
sulting from the duration of execution at the client, or from the
server observing the timing of each user request. We consider
parameters used in Compass algorithm as public information
and do not protect them. The server can tell roughly how large
the data of each user is (e.g. how many GBs each user has)
but it cannot learn about the size of the result. (Of course,
these can be protected through padding in time and space at
a performance cost.) This strong model means that Compass
protects against a plethora of attacks [10,35,42,49,62,63,88]
on encrypted search that leverage access patterns or size of
results. Like much prior work [54], Compass does not protect
against DoS attacks from the server. The server may drop the
requests from clients at any time or even delete the client’s
data. We assume it is the server’s business interest to maintain
a good availability to attract more customers.

The client, who owns the outsourced data, is trusted with
its own documents. That is, the client may search and read
the contents of these documents. However, the client cannot
access or perform a search on the documents of other clients,
even if the client colludes with the server.

3.1.1 Security Definition

Like prior work [72, 79], we provide an indistinguishability-
based security definition. In our security game, there’s a chal-

1. The challenger C chooses a uniformly random bit b.

2. The adversary A chooses two equally large datasets D0
and D1, as well as one set of public parameters param. The
challenger initializes the system with Db and param.

3. The adversary iterates as follows. At step i:

(a) The adaptive adversary A chooses a pair of requests
qi,0 and qi,1. A request can be a search, insert, or
delete.

(b) When the challenger receives a pair of requests, it
first checks whether the type matches. If they are of
different types, the challenger aborts. Otherwise, the
challenger interacts with the adversary according to
the Compass’s protocol for request qi,b. As part of
this execution, the client protocol verifies the integrity
of the data from the server. If any verification fails,
the challenger aborts.

(c) The challenger returns the request result ri to the user.

4. The adversary A outputs a guess b′.

Figure 4: Security game for Compass

lenger C and an adversary A who acts as the client and the
server of Compass respectively. According to the threat model,
the challenger is honest and the adversary is malicious, which
means A can deviate from the protocol arbitrarily. The at-
tacker wins the security game if it can either learn partial
information about the query or data or modify the search
results without detection by the challenger (client).

Let param be the set of public parameters in our system.
This includes HNSW parameters M and e f , as well as the
number of cached layers, the size of the directional filter efn
(§4.5), the size of the speculating set efspec (§4.6) in our modi-
fied HNSW search. We define the security game in Fig. 4. The
adversary A wins the game if the challengerC does not abort
and one of the following two conditions are met: 1) b′ = b;
2) the sequence of queries (qi,b, ri) is an incorrect execution
of plaintext Compass’s search algorithm with param on Db.

Theorem 1. Assuming a collision-resistant hash function
and an IND-CCA2 secure encryption schemes, for any proba-
bilistic polynomial time stateful adversary A , A’s chance of
winning in the above security game instantiated with Com-
pass’s protocol is: less than half plus negligible for winning
condition (1) and negligible for winning condition (2).

Due to space constraints, we show a proof sketch in §4.10
and leave the full proof in App. C

4 Compass’s Search Index

In this section, we describe Compass’s index. We primarily fo-
cus on the search since the insert algorithm in HNSW closely
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Symbol Description
LH number of layers of HNSW
e f size of dynamic candidate list in HNSW search
M degree bound of traversed nodes in HNSW search
n number of search iterations in HNSW search

efn size of directional filter
efspec size of speculation set

Z bucket size of ORAM

Table 1: Summary of Notation

resembles that of the search, and the techniques described in
this section apply to both. We show the summary of notation
in Tab. 1.

4.1 Data Layout

Before we dive into the details of each technique, we first
present the data layout in Compass. The client holds:
• ORAM-related data: a stash that serves as temporary stor-

age for blocks to be evicted and a position map that main-
tains the mapping of each block to its assigned path.

• HNSW-related data: the client manages essential metadata
for HNSW search, such as the dimension of the embeddings,
the number of layers LH , and the HNSW degree bound M.
If client-side caching (see §5) is enabled, the client also
maintains the graph for the upper layers and the embeddings
of nodes within these layers.

• Quantized hints that are a part of our Directional Neighbor
Filtering technique, which we explain later in §4.5.
The server holds the ORAM tree in the Path ORAM con-

struction. Each node (bucket) of the tree consists of Z blocks.
In our search index, each ORAM block corresponds to one
node in the HNSW graph. The block of node x contains the
embedding of node x and the list of identifiers of the neigh-
bors of node x also called the neighbor list of x. Each bucket
has a hash used for integrity check (§4.8).

4.2 Workflow overview

Fig. 2 shows the architecture and workflow of our system.
Similar to plaintext search over embeddings, the query from
the user is first transformed into fixed-dimensional, dense vec-
tor using a pre-trained embedding model. This query vector
is then used to perform search over the embedded document
corpus. Our search framework builds on HNSW and provides
security guarantees by storing vector embeddings and the
graph index encrypted on a remote server, accessed by the
ORAM controller. In our setting, the client carries out all
computational tasks while the server only acts as a remote
storage. During the search process, the client interacts with
the server to retrieve the index and embeddings.

4.3 An initial attempt

We now present a natural way of traversing HNSW using
ORAM by the Compass client: the Compass client follows
HNSW’s greedy search algorithm to find the nearest node in
the graph by making an ORAM request to fetch every node
that is visited by this algorithm. This solution is inefficient,
consuming a large amount of bandwidth and resulting in many
round trips that affect user-perceived latency. The reason is
that HNSW is designed for a local search with multi-hops, but
with ORAM, every step becomes a non-trivial server request.
It nevertheless establishes the foundation and terminology for
our subsequent improvements in the rest of this section.

This HNSW greedy traversal is illustrated in Fig. 5a, which
we now explain. Starting from the entry node (1), the algo-
rithm fetches all the neighbors of the entry node and inserts
them into the candidate list, namely it visits them. We say
that the algorithm visits a node if it retrieves the ORAM block
of the node containing its embedding and the list of neighbor
identifiers. In subsequent iterations, the node that is closest
to the query in the candidate list will be processed as the
candidate node. Then the unvisited neighbors of the candi-
date nodes are visited and inserted into the candidate list. In
Fig. 5a, it takes 7 search iterations to find the nearest node,
with every node in the graph being visited during the search.
This algorithm works well when the computation and stor-
age are colocated. However, in our setting, the client has to
retrieve neighbors’ embeddings and neighbor lists from the
remote server through ORAM requests, making it inefficient
because of multiple costly network round trips as well as an
extensive amount of data transferred. In each layer, the num-
ber of required round trips depends on e f , and each node’s
degree is bounded by M. Thus, completing the search in one
layer requires e f ∗M rounds of communication to retrieve in
total of e f ∗M nodes’ embeddings and neighbor lists. Empiri-
cally, in the final layer of HNSW, M is 32, and e f ranges from
tens to hundreds for sufficient accuracy, causing high search
latency and bandwidth usage.

4.4 Towards Compass’s search index

To understand our approach, it helps to first consider an at-
tempt to reduce the number of sequential ORAM requests in
the strawman above. The idea is to include the embeddings
and neighbor lists of the neighbors in the neighbor list of a
node within the ORAM block of that node. This will halve
the number of ORAM requests and roundtrips as compared
to the strawman. However, this strategy will also cause M×
storage overhead on the server side because the embedding of
each node will be stored in the ORAM block of that node and
in the ORAM block of its neighbors. Moreover, the increase
in storage does not result in substantial bandwidth savings
due to the larger ORAM block size.

Instead, we propose a novel way to traverse the HNSW
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a) Classical b) Directional Neighbor Filtering c) Speculative Greedy Search d) Combine
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Figure 5: HNSW graph traversal followed by our ORAM-friendly traversal techniques. The search aims to identify the Nearest
Node to the Query. The distance here is Euclidean distance. The numbers indicate iterations in the traversal, and which nodes are
processed at each iteration. We say that a node is processed, if its neighbors are visited.

graph designed for running on top of ORAM. Our traver-
sal approach significantly reduces roundtrips and bandwidth
usage via three techniques. The first two techniques make
black-box usage of ORAM; like in the attempt above, they
try to guess which nodes will be needed in the search, in or-
der to fetch them selectively or to prefetch them, but it does
so in a more effective way than above: Directional Neigh-
bor Filtering (§4.5) reduces the network bandwidth overhead
and Speculative Greedy Search (§4.6) reduces the number
of network round trips required. Our third technique, HNSW-
tailored ORAM (§4.7), makes white-box use of Path ORAM
to leverage the memory access characteristic in graph search
to further reduce bandwidth and computation overhead.

4.5 Directional Neighbor Filtering

The key idea behind our Directional Neighbor Filtering tech-
nique is to consider only a subset of a node’s neighbors during
traversal because those closer to the query point are more
likely to contribute to the final result; namely, to embed a
sense of “direction”. This algorithm disregards neighbors
farther from the query point than nodes in the candidate set.

One possibility to implement this idea is to store with ev-
ery node, not only its own embedding but also the list of
compressed embeddings of its neighbors. The intuition is
to determine which compressed neighbors are closer to the
query, and only fetch those from the ORAM, reducing band-
width consumption. One can use compression techniques
like PCA [39]. However, since a node does not have a large
number of neighbors, we found that the compression is not
effective in reducing the size of each ORAM block because
there are not enough neighbors to amortize the space taken
by the compression state (e.g. the transformation matrix).

Instead, we compress together all the nodes into a data
structure we call Quantized Hints. The client stores the Quan-
tized Hints, a map from node id to quantized embedding of
this node. Product Quantization (PQ) [37] fits well here: it is
a widely-used quantization method that is highly effective at
compressing a large number of high-dimensional vectors. For

example, we achieve 98% compression on various datasets
(see §6.3.3) with a codebook size equivalent to 128 full coor-
dinates, thus requiring a minimal amount of client storage.

However, if we use PQ directly (namely, construct the index
directly on quantized embeddings), there is a big accuracy
drop because the closest quantized neighbor to the query is
often not the closest full-coordinates neighbor.

Instead, our idea is to use the quantized nodes merely as “di-
rectional hints”: for each node, we identify the top efn closest
neighbors to the query based on the hint, and then fetch their
full coordinates (the ground-truth) from the server to iden-
tify the next node to process. The intuition is that the closest
efn quantized neighbors are very likely to contain the closest
(full-coordinates) neighbor. We show in §6.4 that, using this
technique, the decrease in search accuracy is negligible. Since
we only fetch efn out of M neighbors, this technique saves
significant bandwidth, also shown in §6.4.

For clarity, we include an example of using directional
neighbor filtering during the search in Fig. 5b. For simplicity,
assume that we only fetch the top 2 closest neighbors in each
iteration. First, for each query, the Compass client computes
its quantized embedding. Then, during each iteration in the
traversal, let node A be the currently closest node to the query
in the candidate list. The client iterates through A’s neighbor
ids looking up their quantized embedding in Quantized Hints,
and computing each neighbor’s distance from the query in the
quantized space. The client then only fetches the top efn = 2
closest neighbors from the server in a batched ORAM request
(§4.7), and adds them to the candidate list. As compared to
Fig. 5a, we can see in Fig. 5b that some of the neighbors of the
nodes processed at (1), (4) and (6), which are not among the
top 2 closest nodes to the query, are not visited. We thus avoid
visiting 6 nodes in the graph, which approximately halves the
bandwidth consumption.

4.6 Speculative Greedy Search

In computer architecture, speculative execution [44] refers
to an optimization technique in which the processor makes
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guesses of potentially useful instructions and executes them
in advance to improve performance. Our speculative greedy
search shares the same intuition with speculative execution.

Inspired by beam search [59] from NLP, each time the
Compass client performs a round trip to the ORAM server
to retrieve nodes that will be visited next by HNSW’s search,
the client also speculatively fetches additional nodes. This
implicitly requires batching the access of multiple ORAM
blocks into one request, which is introduced in §4.7. These
additional nodes are not yet needed by the HNSW search algo-
rithm but are likely to be visited later during the search. Thus,
by pre-emptively retrieving these likely-needed nodes along-
side the currently-needed node, we can reduce the number of
future network round trips to ORAM during search. But how
do we identify these nodes? Fortunately, the candidate list
used in the greedy search algorithm serves as a good basis for
speculation. The candidate list is sorted by the distance to the
query. In our speculative greedy search algorithm, we fetch
the first efspec nodes’s neighbors within one request. Once
we get the response from the remote server, the candidate list
is updated by evaluating the neighborhood of each node in
the speculative set.

In Fig. 5c, we show an example of speculative greedy
search. In each iteration, the client extracts two candidates
from the candidate list and visits their neighbors simultane-
ously. In this toy example, Compass reduces the number of
iterations from 7 to 4. We show in §6 that implementing spec-
ulative greedy search on real datasets significantly reduces the
search steps required while maintaining the same accuracy.

DiskANN [36] uses a similar speculative approach in a
different setting in which they try to optimize the interaction
between memory and SSD. In DiskANN, they fetch a small
amount of extra nodes to balance the cost of computing and
SSD bandwidth. However, in Compass, the cost model of
fetching data from the disk and fetching data from ORAM
over the network is different. In our setting, a key observation
is that optimizing the number of round trips is much more
important than optimizing bandwidth because the round trips
directly affect user-perceived search latency and the band-
width consumption is already in a reasonable ballpark. There-
fore, depending on the dataset, for Compass, the size of the
speculation set efspec can grow as large as 16 to achieve good
overall performance.

Fig. 5d shows the final example of the search process
when we compose both directional neighbor filtering and
speculative greedy search. Compared to Fig. 5a, the algorithm
in Fig. 5d achieves the same search results with three fewer
network round trips and six fewer node retrievals.

4.7 HNSW-tailored Path ORAM

Compass rearranges how ORAM requests are performed, in
a way designed to reduce the cost of an end-to-end HNSW
traversal. The reader should recall the Path ORAM back-

ground in §2.2. In Fig. 5d, the client needs to invoke mul-
tiple ORAM requests per iteration to fetch the information
of each neighbor. A natural solution is batching, which has
already been proposed as a mechanism for saving roundtrips
in a scenario when multiple requests arrive at the same time
[72, 86, 90]. This reduces the number of network round trips
required from the number of neighbors to only one. Another
benefit of batching requests is savings on network bandwidth.
In tree-based ORAM, any two paths have overlapping buckets,
at least the root bucket. Accessing multiple paths in a batch
allows us to transfer each bucket only once.

In Path ORAM, evictions are scheduled after every path
access to keep the stash within a reasonable size. However,
when batching multiple path accesses into one request, it’s
not feasible to perform evictions for each path individually;
instead, evictions are managed on a per-batch basis. In our
system, we introduce multi-hop lazy eviction, a white-box
modification of the Path ORAM algorithm: the Compass
client performs a sequence of ORAM request batches, and
only at the end of the query, it performs the stash eviction.

The advantages of multi-hop lazy eviction are substantial.
First, it enables us to use smaller bucket sizes while main-
taining a reasonable stash size, as the number of overflow
blocks in the stash is reduced between two queries. This re-
duction is achieved by evicting multiple paths simultaneously,
which increases the probability of overlaps between newly as-
signed paths and those due for eviction. Such overlaps make it
more likely for a block in the stash to find an available bucket
during the eviction process. Throughout the query, blocks
fetched from the server are cached locally, allowing us to save
bandwidth not only for overlapping paths within the same
batch but also across the entire query. Besides, multi-hop lazy
eviction offers lower user-perceived latency, as the eviction
processes can be done after returning the query results.

With this approach, users will tolerate a temporary increase
in memory usage during the query process. However, accord-
ing to our analysis (App. B), the stash size remains reasonable.
For example, on the largest MS MARCO dataset, the peak
stash size is roughly 110MB. Another side effect of poten-
tially large stash size is that it becomes inefficient to search
for a candidate block for a specific bucket through a linear
scan of the stash. Therefore, we sort the stash structure in
which blocks are sorted according to their assigned path in-
dex. The key idea here is that, when evicting blocks into a
bucket, we can recompute the range of path indices such that
blocks assigned to one of these paths are candidates to be
filled in the bucket. Indeed, this will increase the complexity
of inserting a block into the stash to O(logN), where N is the
size of the stash. However, it reduce the cost of the search for
Z candidate blocks for a bucket from O(ZN) to O(logN), as
candidate blocks are already grouped during sorting.

While [72, 86, 90] already batches ORAM requests, all
the requests were prepared together followed by an ORAM
eviction. In our case, the client does not know the sequence
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Figure 6: Example of batch access and eviction in Compass’s HNSW tailored-ORAM

of all the ORAM requests, in fact, the sequence depends on
the private query, and performs eviction only at the end of
all iterations. This data dependency could be problematic for
security. To address this, we keep a set of visited paths to
ensure we never request the same path from the server more
than once before we process the eviction.

Specifically, we maintain two additional data structures
on the client side that track the history of visited paths and
the history of visited buckets. These two structures are reset
after each search query. For each requested block, we first
determine whether the designated path has been visited before
within the same query. If so, a new path is randomly selected
from those not yet visited. This ensures that the total number
of requested paths from the server matches the number of
blocks in the batch access input. Next, once we decide on the
paths to fetch from the server, we compute the positions of
buckets residing on these paths. Here we don’t fetch a bucket
twice within a query, as the bucket is already cached locally.

In Fig. 6 we give an example of ORAM operations involved
in one search request, consisting of two batch accesses fol-
lowed by one eviction. In the first request, path 1 and path
2 are requested from the server. When the second request
arrives, as block B is cached in the last request, we randomly
sampled an unvisited path. Therefore, path 3 and path 4 are se-
lected and requested from the server. After these two requests,
we perform the eviction. The green dashed arrow indicates
the sequence of eviction. When it comes to eviction for bucket
C, we first determine which paths C belongs to, in this case,
paths 3 and 4, and fill C with blocks assigned to these two
paths in the sorted stash.

4.8 Malicious server protection

A malicious server can alter ciphertexts, rearrange the ORAM
buckets layout, perform replay attacks, or answer queries in-
correctly in other ways. Protecting integrity and freshness
in our setting is easy: we employ existing work in the Path
ORAM literature [69, 79] to construct a Merkle Tree on top
of the ORAM Tree. The client stores the root of the Merkle
tree and verifies every response from the server against this
Merkle root. Since this is a well-understood solution, we do
not provide further details.

4.9 Putting it All Together

Algorithm 1: SEARCH(q,ep,e f ,efspec,efn)
Input: query q, entry point ep,
size of speculation set efspec,
size of directional filter efn,
number of nearest to q elements to return e f
Output: e f closest neighbors to q

1 V ← ep // set of visited nodes
2 C← ep // set of candidates
3 W ← ep // set of found nearest neighbors
4 n← ⌈e f/efspec⌉
5 for step← 0...n do
6 E1← extract top efspec nearest nodes from C to q
7 E2←∅
8 foreach e1 ∈ E1 do
9 foreach e2 ∈ neighbors(e1) do

10 if e2 ̸∈V then
11 E2← E2∪ e2

12 t← efspec∗ efn
// Based on quantized hints

13 E3← extract top t nearest nodes from E2
14 oram.batch_access(E3, t)
15 foreach e ∈ E3 do
16 V ←V ∪ e
17 C←C∪ e
18 W ←W ∪ e
19 if |W |> e f then
20 remove furthest element from W to q

21 return W

With the techniques above, we present the concrete al-
gorithm used in Compass. In HNSW, the insertion process
closely mirrors the search, but with a different e f value, typ-
ically set to 40. A standard method for deleting a node in
HNSW involves searching for the node and marking it as
deleted. Therefore, we mainly focus on search in this section.

Alg. 1 shows the search algorithm Compass used in the
final layer of the HNSW graph. The main difference from
the vanilla HNSW is between line 4 and line 14. The num-
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ber of search iterations, n, is determined by ⌈e f/efspec⌉, as
we extract the top efspec nodes from the candidate list as the
speculative set, E1, in each iteration. In the first iteration, there
is only one candidate, the entry point, so only one node is ex-
tracted from the candidate set. We then traverse the unvisited
neighbors of the nodes in E1 (referred to as E2), ranking them
based on their distance to the query, estimated using quantized
local hints. The top t nodes from E2 are selected as E3, and
a batch ORAM request is issued to retrieve their full coordi-
nates and neighbor lists. The value of t is set to efspec∗ efn,
as we want efn neighbors per candidate. If the total number of
nodes in E3 is less than t, the batch ORAM request is padded
to t for security. Once the full coordinates are retrieved, we
insert each node in E3 into the set of visited nodes V , the set
of found nearest neighbors W , and the candidate set C. The
set W is dynamic, as the furthest element will be removed
when its size exceeds e f . After completing n iterations, W is
returned and the first K nodes in W are the final search result
of q. For search in upper layers, the e f is set to 1 and therefore
we only apply directional neighbor filtering.

The algorithm requires n rounds of communication to the
server. As stated in the prior section, each ORAM block con-
tains a node’s full coordinates and neighbor list. The fetched
full coordinates are immediately used in line 20 to determine
the furthest node. However, the neighbor list will not neces-
sarily be used if the node is not selected as a candidate in
future steps. A trade-off here is that we over-fetch this part of
the data to avoid an extra round of communication when the
full coordinates and the neighbor list are fetched separately.

4.10 Security proof sketch

Due to space limit, we provide a proof sketch covering the
salient points in our proof, leaving a full proof to App. C.
The integrity guarantee of our protocol comes directly from
the Merkle tree on top of ORAM, which has already been
proposed and proved [25,69,79]. Therefore, the attacker must
respond correctly to all requests, with their only capability
being to learn which items are accessed on the server during
these requests. Prior works have already demonstrated that
batching ORAM requests doesn’t reduce security [86, 90].
The distinction between Compass and these works is that
Compass’s ORAM requests follow a multi-hop pattern. Each
query in Compass involves a fixed amount of batch ORAM
accesses. During batched ORAM accesses, the already vis-
ited paths are replaced with randomly selected unvisited paths,
and the total number of paths is padded to a constant num-
ber. Therefore, if two queries are of the same type, they will
request the same number of randomly selected paths from
the server. In this case, the access pattern in Compass can be
regarded as equivalent to that of a single, larger batch ORAM
request containing an identical number of paths. (For a small
dataset, in which the number of paths requested in a query
exceeds the total number of paths available in the ORAM tree

on the server, Compass thus streams the entire database from
the server, shuffles it locally, and then streams it back.) Hence,
Compass does not reveal any information about the access
pattern, similar to traditional Path ORAM.

5 Implementation

We implement Compass in ≈ 5k lines of C++ code. We use
Faiss [23] library for HNSW construction and Product Quan-
tization. We use AES-256-CBC to encrypt the ORAM block
and SHA-256 for hashing, via OpenSSL’s EVP [1].

Layer-wise Caching: To save the cost of frequently visited
nodes in the upper layers, we cache all but the last two layers
of the HNSW graph and the embeddings of nodes in these
layers locally on the client. We set the number of search steps
in the second last layer to be 1. Due to the space limit, we
explain the choice of the number of cached layers and search
steps in App. A. We show the client side overhead of layer-
wise caching in §6.3.3.

6 Evaluation

In this section, we aim to answer: What is the overhead of
Compass, and how does it compare to prior encrypted search
schemes? What is the search accuracy of Compass, and how
does it compare to state-of-the-art plaintext search systems?

6.1 Experimental Setup
We evaluate our experiments on the Google Cloud Platform
with one n2-standard-8 instance (8 vCPUs and 32 GB mem-
ory) as the client and one n2-highmem-64 instance (64 vC-
PUs and 512 GB memory) as the server. Both instances are
in the same region and we use Linux Traffic Control (TC)
to simulate different network settings. Similar to [13, 74],
we have two sets of network configurations to simulate the
network conditions within a region (fast) and across two re-
gions (slow). Specifically, we set the network with 3Gbps
bandwidth and 1ms round-trip latency for fast network, and
400Mbps bandwidth and 80ms latency for slow network.

We evaluate our system on four datasets:
MS MARCO [8] is a large-scale dataset created from

real Bing search queries. It consists of 8,841,823 passages
and 6,980 queries. We generate the 768-dimensional embed-
ding vectors for MS MARCO using a pre-trained model,
msmarco-distilbert-dot-v5, from Sentence-Bert [67].

TripClick [68] is a dataset containing real click logs from
a health web search engine. It consists of 1,523,871 passages
and 1,175 queries. Relevance scores for each query are as-
signed using document click-through rates. We use the same
model above to generate TripClick’s embeddings.

SIFT1M [37] is a widely-used dataset in ANN search
literature, containing 1M base vectors and 10K queries. Each
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vector is a SIFT (Scale-Invariant Feature Transform) descrip-
tor [50] extracted from images, with a dimension of 128.

LAION [73] is a large-scale dataset consisting of 512-
dimensional embeddings of 400M image-text pairs generated
by CLIP [65]. In the evaluation, we create a subset, containing
100K vectors to simulate the size of a real user’s cloud storage.

We build the index with the default construction parame-
ters suggested by Faiss, with M = 32 and efConstruction= 40.
For SIFT1M, each embedding vector is divided into 8 sub-
vectors for PQ, while for other higher-dimensional datasets,
we split into 32 subvectors. The search parameters, shown in
Tab. 2, are set to achieve a Recall@10 of at least 0.9.

MS MARCO TripClick SIFT1M LAION
e f 224 192 32 12
efspec 16 16 4 2
efn 12 12 12 12

Table 2: Search parameters for each dataset.

6.2 Baselines
We compare our system with two baselines.

Inv-ORAM: Our first baseline is inspired from [54, 86].
It is built on an inverted index stored inside ORAM. The
inverted index maintains a mapping from the keyword to
the documents that contain the keyword. We compute the
relevance score of a keyword in a document using TF-IDF
[66], a widely used algorithm in text search systems. Each
(keyword,document,score) pair is stored inside an ORAM
block. To avoid the leakage of query length and keyword
frequency. We pad each query to the length of the longest
query, specifically, 12 for TripClick and 16 for MS MARCO.
To hide keyword frequency, ideally, we should fetch the max-
imum number of documents a keyword maps to. However,

as pointed out by [56], this can be worse than streaming the
entire database. Therefore, we adopt the idea from [54] and
truncate the document list for each keyword to a fixed size.
To make the truncation meaningful, this list is sorted by the
relevance score between the document and the keyword dur-
ing index construction. To simulate the search performance
of OBI [86], we also implemented this baseline with batch
ORAM access and our better stash eviction algorithm. We
evaluate this baseline on TripClick and MS MARCO, as this
baseline only supports text-based search.

HE-Cluster: Our second baseline uses homomorphic en-
cryption. Inspired by Tiptoe [33], we apply clustering to avoid
linear communication. Each dataset of size N is clustered into
roughly

√
N clusters using k-means. 80% of the documents

are assigned to a single cluster, while the remaining 20%,
located near cluster boundaries, are assigned to two clusters.
To avoid the leakage of cluster size, we pad the number of
documents in each cluster to the maximum. We parallelize
the server-side computation of this baseline across 64 threads.

6.3 Search Performance

We measure the search performance in two dimensions:
search quality and latency. For search quality, we use the
Mean Reciprocal Rank at 10 (MRR@10), where Reciprocal
Rank is the inverse of the rank of the first relevant item in
the results. For Compass, we report user-perceived latency
(excluding eviction) under the semi-honest setting. Latency
under the malicious setting will be shown in §6.3.1.

For the Inv-ORAM baseline, we create 4 variations, setting
each keyword’s truncated document list size to 10, 100, 1000,
and 10,000. The tradeoff here is a larger size for better search
quality but worse latency.

In Fig. 7, we present the search performance of Compass
with that of baselines under two network configurations. The
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dark blue dashed line represents the accuracy of a brute-force
search over the embeddings, indicating the highest achiev-
able accuracy with the current embedding model. The light
blue dashed line shows the plaintext search quality of TF-
IDF, while the orange dashed line represents BM25 [14, 68],
a widely used ranking algorithm. Overall, Compass outper-
forms both baselines in search quality, matching the accuracy
of brute-force embedding search across all four datasets.

For Inv-ORAM, the accuracy is limited by the search al-
gorithm and the size of the truncated list. While a smaller
truncated list allows Inv-ORAM to achieve lower latency
than Compass, its search quality is significantly worse. To
reach a similar accuracy to TF-IDF, Inv-ORAM requires a
much larger truncated list, exceeding 10,000 on MS MARCO,
which significantly increases latency.

On the MS MARCO dataset, the HE-Cluster’s accuracy
closely matches the search quality of plaintext TF-IDF. How-
ever, on TripClick, the HE-Cluster’s accuracy is only half
that of TF-IDF. This discrepancy is likely due to the health-
related content of TripClick, where text sequence matching
is particularly effective for identifying health-related terms.
Compared to HE-Cluster, Compass is orders of magnitude
faster in search latency. While clustering reduces communica-
tion costs to sublinear, the server’s computation cost remains
linear. Although latency can be further improved with paral-
lelization using more CPUs and instances, this approach is
expensive and difficult to scale for multiple users.

We also evaluate the throughput of Compass by increasing
the number of clients. On the user-scale dataset LAION, we
achieve 34.8 queries per second on the fast network and 4.3
queries per second on the slow network.

6.3.1 Latency breakdown

In Fig. 8, we present the latency breakdown of Compass
across all datasets under various network settings and secu-
rity assumptions. We report both user-perceived latency and
full latency. The user-perceived latency is primarily due to
ORAM access operations, while the impact of distance com-
putation and graph traversal, excluding ORAM accesses, is
minimal—taking less than 0.02 seconds even on the largest
dataset, MS MARCO. The full latency includes additional
time spent on ORAM eviction. With our lazy eviction tech-
nique, the user-perceived latency, as highlighted in the figure,
saves 1.2 - 2.2× compared to full latency.

In the top right of Fig. 8, for smaller datasets like LAION
and SIFT1M on the slow network, the eviction time is faster
than ORAM access. This is because graph traversal involves
multiple rounds of ORAM accesses, while eviction in Com-
pass only requires a single round and in this setting, the net-
work round trip is the bottleneck. In the bottom left of Fig. 8,
for larger datasets like TripClick and MS MARCO on the fast
network, the eviction takes slightly longer. This is due to the
larger e f required by these datasets, resulting in more blocks
in the stash that need to be evicted, which increases the time
spent finding available paths for each block. In the other two
cases, the bottleneck is on communication bandwidth. Since
the number of bytes transferred between the server and the
client is the same between access and eviction, the perceived
latency is about half of the full latency. The cost of supporting
malicious security is more significant on the fast network,
increasing as the size of the dataset grows. Overall, under
the fast network, the user-perceived latency across all four
datasets is around or less than 1 second. However, under the
slow network, the user-perceived latency exceeds 5 seconds
for TripClick and MS MARCO, which may be impractical
for real-world applications. One key contributing factor is the
size of the dataset. MS MARCO is a web-scale dataset with
8 million entries, significantly larger than the cloud storage a
user would typically have. For smaller datasets like LAION
and SIFT1M, the search latency remains under 1 second on
slow network. Another factor is the embedding dimensional-
ity. Both datasets have 768-dimensional embeddings which
increase pressure on the network bandwidth. This can be opti-
mized by using a model with a smaller embedding dimension
or by applying dimension reduction techniques.

6.3.2 Communication

Tab. 3 presents the per-query communication costs, namely
the amount of data transferred between the server and client,
and the number of network round trips. For Inv-ORAM, we
fix the truncated document list size at 10,000 for reasonable
search quality. For Compass, the additional cost of trans-
ferring hashes in the malicious setting is negligible. The
communication cost for LAION and SIFT1M in Compass
is similar, despite SIFT1M having 10× more vectors. This
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Compass HE-Cluster Inv-ORAM
SH Mal RT RT RT

LAION 19.37 19.40 8 225.5 1 - -
SIFT1M 19.27 19.54 10 737.2 1 - -
TripClick 380.2 381.3 14 929.2 1 197.1 1
MS MARCO 562.4 564.5 16 2262.5* 1 252.1 1

Table 3: Comparison of communication cost (MB) and round
trips per query. SH represents semi-honest and Mal represents
malicious. * indicates the result is extrapolated.

is because LAION’s embedding dimension is 4x larger than
SIFT1M. Compass achieves less communication cost than
the HE-Cluster baseline. This is partially because the com-
munication is (ploy-)logarithmic in Compass and O(

√
N) in

HE-Cluster. The FHE scheme used in the HE-Cluster also pro-
duces larger ciphertexts. Compared to Inv-ORAM, Compass
requires roughly 2× communication bandwidth.

The main difference is the network round trips. Both base-
lines are single-round protocols, whereas Compass requires
multiple rounds of interactions. We justify this for two rea-
sons: First, Compass targets matching plaintext search quality,
with the additional round trip overhead adding only about one
second in the slower network settings. Additionally, when
dealing with a higher network latency, the number of round
trips could be reduced by tuning the parameter or at the cost
of minor accuracy loss. Second, our speculative greedy search
algorithm ensures a minimal increase in round trips relative to
dataset size growth. For example, Compass adds only two ex-
tra round trips in MS MARCO compared to TripClick, despite
MS MARCO containing 6× more embeddings.

6.3.3 Memory Consumption

We report the breakdown of memory consumption in Tab. 4.
In the second column, we show the size of plaintext embed-
dings as a reference. Similar to the communication section,
we report the server-side memory consumption under both
malicious and semi-honest settings. On the server side, we
require 2.2-3.1× memory compared to the plaintext embed-
ding. The main overhead here comes from the Path ORAM,
as a certain amount of dummy blocks are necessary for a
good eviction rate. This part of the overhead can be further
reduced by moving the ORAM tree from memory to disk.
On the client side, the memory overhead consists of three
parts, cached layers in the HNSW graph, quantized hints, and
the position map. The size of quantized hints is only 1% of
the size of the original embeddings. In our experiments, all
but the last two layers of the graph are cached locally on the
client. This part of memory overhead can be further reduced
by caching fewer layers on the client side and paying sev-
eral extra round trips to retrieve required nodes in un-cached
layers from the server. For a web-scale dataset such as MS
MARCO, Compass only requires approximately 334MB of
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Figure 9: Ablation study on Directional Neighbor Filtering
and Speculative Greedy Search

client memory For smaller datasets that are closer to what
users would have, the memory consumption will be less than
a hundred megabytes.

HE-Cluster requires significantly larger server-side storage
because of larger HE ciphertexts. It requires more than 1TB
of memory on MS MARCO and it doesn’t fit into our server
instance. Therefore, we extrapolate the results. Inv-ORAM re-
quires less server-side memory but larger client-side memory
for the position map and keyword document mapping.

6.3.4 Insert & Delete

We now briefly discuss how Compass compares to two base-
lines on insert and delete. For HE-Cluster, it’s nontrivial to
securely insert or delete a document without streaming the
whole dataset. Otherwise, the server may learn which cluster
this document belongs to. The truncation technique used for
search in Inv-ORAM can be similarly applied to insert, but not
delete, as the client has to fetch every keyword’s document
list to perform complete deletion, which incurs significant
overhead. The insert latency of Inv-ORAM is similar to the
search latency in Fig. 7. As mentioned in the prior section,
deletion in the HNSW graph can be achieved by first search-
ing the node and marking this node as deleted, incurring the
same cost as a search. Insertion, on the other hand, is similar
to search but with the default candidate list size set to 40.
For example, MS MARCO’s search candidate list size is 224.
Compass insertion latency on MS MARCO dataset over slow
network is 5.6 seconds, while the search takes 18.5 seconds.

6.4 Ablation Studies

We evaluate the effectiveness of our techniques on the MS
MARCO dataset under the slower network configuration.
Specifically, we perform three sets of experiments and com-
pare their search quality and latency with the default setting
we used in the prior sections. Fig. 9 shows the result for the
first two experiments.

The first set of experiments fixes the size of the speculation
set to 16 and varies the directional filter size from 4 to 64.
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Embed. Compass Server Compass Client HE-Cluster Inv-ORAM
Size SH. Mal. Hints PosMap Graph Total Server Client Server Client
GB GB GB MB MB MB MB GB MB GB MB

LAION 0.19 0.42 0.43 3.6 0.4 0.2 4.2 9.1 0.8 - -
SIFT1M 0.48 1.16 1.17 7.8 3.9 0.8 12.4 16.1 0.7 - -
TripClick 4.37 9.80 9.83 47.3 6 5 58.3 249 4.5 10 606
MS MARCO 25.33 78.37 78.62 270.6 34.8 28.4 333.8 1364* 11.2* 10 810

Table 4: Comparison of memory consumption. * indicates the result is extrapolated.

When directional filtering is completely removed (efn = 64),
we observe roughly 5× slower search latency compared to
the default setting. This is because a smaller filter size can
help us remove more irrelevant neighbors and therefore save
bandwidth. However, the filter size cannot be too small. When
we decrease the filter size to 4, it shows a significant accuracy
drop compared to the default setting.

The second set of experiments fixes the directional filter
size and varies the size of the speculation set from 1 to 32.
When the speculation size is 1, it means the speculative greedy
search is removed during the search. We observe a 2× search
latency when the speculative greedy search is completely
removed (efspec = 1). This is because a larger speculation
size can effectively reduce the network roundtrips. Similarly,
if the speculation size is too large, the search quality will drop
and the search latency doesn’t improve as network bandwidth
becomes the bottleneck.

In the third experiment, we replace our HNSW-tailored
ORAM with the vanilla Path ORAM. In this case, the search
latency increases by 20× to 209 seconds. This is mainly due
to the increase in network round trips, from 16 to 2500.

7 Discussion & Related Work

Private RAG: Besides traditional document search, Compass
can also be applied to Private Retrieval Augmented Genera-
tion (RAG) systems [46]. RAG is a technique used to enhance
the responses of generative AI models by incorporating rele-
vant information retrieved from external sources, often stored
in a vector database. The relevance of this information is deter-
mined by the similarity between the embedding of the query
(or prompt) and the vectors in the database. Unlike public
RAG, private RAG systems are designed to retrieve and gen-
erate content based on sensitive, internal databases specific to
an organization or individual. These databases could include
personal cloud drives, workspaces, or proprietary information
in healthcare or finance. With Compass, individuals or orga-
nizations can securely retrieve relevant data from outsourced,
encrypted databases. Together with the prompt, this part of the
data can be fed into a model ran locally or jointly with a server
with recent secure inference techniques [31,34,38,55,60,78].
Lexical encrypted search: Searching on encrypted data has
been a rich and fruitful line of work. Most of the work in

encrypted search so far has focused on keyword/lexical search.
As discussed in §1, these works do not support the state-
of-the-art semantic search like Compass does. Furthermore,
to achieve high efficiency, many works reduce security in
the following ways, whereas Compass does not make these
compromises:
• Leaking access patterns [11, 12, 15, 32, 41, 45, 57, 77, 80],

which can be exploited by leakage-abuse attacks [10,35,42,
49, 62, 63, 88].

• Assuming trusted hardwares [5,54,81] that can be exploited
by a wide range of side-channel attacks [9, 43, 84, 87].

• Assuming non-colluding servers or at least one trusted
server [17, 18, 74].

Encrypted semantic search systems Encrypted search over
embeddings is a nascent line of work. HERS [24] uses fully
homomorphic encryption (HE) to perform a linear search at
the server over embeddings, which results in a high overhead.
Tiptoe [33] performs a more efficient linear scan over em-
beddings by crucially relying on the data at the server being
public / not encrypted, so Tiptoe does not provide a solution
for searching over encrypted data (nor for malicious secu-
rity, integrity protection, and sublinear search) in contrast to
Compass. Furthermore, Tiptoe’s clustering technique reduces
search quality as discussed in §6.

Other works attempt to build sublinear indices over embed-
dings, but sacrifice security or efficiency. In some works [6,
89], the index traversal is not privacy-preserving and leaks the
query information if the server has some knowledge about the
plaintext. SANNS [13]’s performance overhead is high be-
cause it combines multiple heavy-weight cryptographic tools
such as lattice-based homomorphic encryption, distributed
oblivious RAM, and garbled circuits.

Preco [74], Riazi et al. [70], and Wu et al. [85] weaken
security by relying on a two-server model that are not both
compromised. Preco mentions the potential of removing the
non-colluding assumption by adopting a single-server PIR
scheme, but estimates the resulting performance to become
orders of magnitude slower.

8 Conclusion

Compass is a search system over encrypted embedding data
that achieves 1) comparable accuracy to the state-of-the-art
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search algorithm in plaintext, 2) strong security guarantee
against malicious attackers, and 3) practical user-perceived
latency at low server operation costs. Compass achieves these
properties through a novel search index that co-designs the
traversal of the HNSW graph on top of Oblivious RAM via
three techniques.

9 Ethics and Open Science

The primary goal of this work is to enable efficient and accu-
rate semantic search over encrypted personal data. We treat
encryption schemes and embedding models as black boxes.
Misuse of encryption or vulnerabilities (e.g., side-channel
attacks) could compromise data confidentiality. The embed-
dings used in this work are generated by language models.
Although encryption protects the data, biases in the models
may introduce ethical concerns related to fairness and dis-
crimination in search results. However, these issues in the
embedding model are orthogonal to Compass’s contribution
because Compass can support a wide range of embedding
models. Of the four datasets used, three (LAION, SIFT1M,
and MS MARCO) are publicly available, while the TripClick
dataset is accessible for non-commercial research purposes.
In this work, we only report search accuracy and latency, with-
out revealing any content or aggregate results of the original
dataset.

We plan to open-source and include the link of the imple-
mentation in the final version of the paper.
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A Layer-wise Caching

Layer 4 3 2 1 0
LAION - 1.915 2.66 2.826 12
SIFT1M 1 1.99 2.63 2.58 32
TripClick 1 2.04 1.82 1.64 192
MS MARCO 1.83 2.68 2.44 2.42 224

Table 5: Average number of search steps in each layer. Layer
0 is the bottom layer and therefore the number of search steps
is defined by e f

In HNSW, the upper-layer search uses a dynamic candidate
list of size one, making it non-trivial to apply the Specula-
tive Greedy Search technique directly. As a result, from the
server’s perspective, the memory footprint for upper-layer
searches differs from that of the bottom layer. For security,
it is necessary to set a separate bound for search steps in the
upper layers when not all upper layers are cached locally.

To figure out how many search steps in each layer are
sufficient, we perform the plaintext HNSW search on the
entire query set and collect the average number of search
steps in each layer, as reported in Tab. 5. Surprisingly, unlike
the bottom layer, the upper-layer search patterns are similar
across all datasets, with an average of 1 to 3 steps per layer.
Based on this observation, we empirically found that a single
search step in the second last layer is enough for search quality
when we cache all but the last two layers.

B ORAM Stash Size Analysis

In this section, we present an empirical analysis of the impact
of Compass’s ORAM modification on stash size. In Fig. 10
and Fig. 11, we report the distribution of stash usage before
and after eviction. The orange line represents the median and
the green dashed line represents the average. We collect the
data for each dataset by searching over the entire query set.

Fig. 10 reports the upper bound of the stash usage during
a search. For MS MARCO, the stash contains up to 35,000
blocks in the worst case, approximately 110 MB. For smaller
datasets like SIFT1M and LAION, the worst-case stash size
is under 4 MB.

In Fig. 11, the stash size after eviction is mostly zero for
LAION, TripClick, and MS MARCO. For SIFT1M, there
are more data points of non-zero stash size, with peak usage
reaching up to 45 blocks. However, the average stash size
after the eviction remains close to zero for SIFT1M.

C Security Proof

In this section, we provide a formal treatment of the security
of Compass.
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Figure 10: Stash size before the eviction
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Figure 11: Stash size after the eviction

Our proof strategy is to consider two security games that
are the original security game with only one of the adversary
winning conditions and prove that an adversary cannot fulfill
each condition separately more than the threshold allowed.
Proving these two statements suffices to prove our theorem in
our setting.

In this proof, as we empirically demonstrated in App. B, we
assume that the main memory is enough for the stash during
the execution of the protocol. We leave the formal analysis
of Compass’s stash size for future work. For simplicity, our
proof focuses on Compass’s protocol within a single layer.

C.1 Condition 1

We first prove that the probability of the adversary winning in
condition 1 is less than half plus negligible. Our proof strategy
is by showing that what the adversary observes when b = 0
is computationally indistinguishable from what they observe
when b = 1.

We start by defining what the adversary can observe during
the game. During the security game, the challenger executes
a sequence of queries:
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Qb = (q1,b,q2,b, ...,qi,b, ...) (1)

Let Oi,b be the sequence of ORAM operations for query qi,b.
According to Compass’s protocol, each query consists of a
sequence of batch access operations and an eviction operation
at the end. Let m be the number of batch access operations in
a query and we have

Oi,b = opaccess(B
i,b
1 ,si,b

1 ), ..., opaccess(Bi,b
m , si,b

m ), opevict, (2)

where opaccess(B
i,b
j ,si,b

j ) represents the jth batch access oper-

ation of a set of blocks Bi,b
j of size si,b

j . Notice that, unlike
classical Path ORAM, each batch access here reads multiple
paths and doesn’t write back. opevict represents the eviction
operation. All the paths being read before are assigned with
newly evicted blocks from the stash, encrypted, and written
back to the server.

Let Pi,b
j be the set of paths read during opaccess(B

i,b
j ,si,b

j ),

Pi,b
w be the set of paths written back to the server during opevict,

and Ti,b be the trace (or memory footprint) the adversary
observes on the server side for query qi,b. We have

Ti,b = tread(P
i,b
1 ), ... , tread(Pi,b

m ), twrite(Pi,b
w ), (3)

where tread(P
i,b
j ) represents reads on the paths in Pi,b

j ,

twrite(P
i,b
w ) represents writes on the paths in Pi,b

w . According to
Compass’s protocol, the lazy eviction evicts all the paths being
read in prior accesses, therefore we have Pi,b

w = Pi,b
1 ∪ ...∪Pi,b

m .
Having defined what the adversary can observe during

the game, we now prove that the following lemmas hold for
Compass. In the following discussion, we will assume that
the number of paths accessed during a request is below the
total number of paths on the server. In the case of a small
dataset, if the number of requested paths exceeds the total
number of paths on the server side, Compass is equivalent
to the naive solution: streaming the entire database from the
server, shuffling it locally, and then streaming it back.

Lemma 1. For any pair of (opaccess(B
i,b
j ,si,b

j ), tread(P
i,b
j )),

Compass ensures:

• |Pi,b
j |= si,b

j , where |Pi,b
j | is the size of Pi,b

j

• Pi,b
j ∩ (P

i,b
1 ∪ ...∪Pi,b

j−1) =∅

• paths in Pi,b
j are randomly sampled from the unvisited

paths in current request

Proof. In Compass, for a batch access operation
opaccess(B

i,b
j ,si,b

j ), the client-side ORAM controller it-

erates over each block in Bi,b
j to determine the corresponding

path assigned to each block. If a block has been accessed
previously or belongs to a path that has already been fetched

in a previous access, a new path is randomly sampled from
the unvisited paths. Such design ensures that the size of Pi,b

j

equals si,b
j and there’s no intersection between Pi,b

j and the
prior path set in the same request.

Each path in Pi,b
j is either a path, unvisited, assigned to one

of the requested blocks according to the position map or a
new path randomly selected from the current set of unvisited
paths. Since every block is reassigned to a completely new
random path after being accessed, the third point of Lemma 1
holds.

Lemma 2. For any pair of qi,0 and qi,1, if they are of the
same type, Compass ensures the corresponding traces Ti,0
and Ti,1 are of the same structure.

Before we prove this lemma, we first introduce the defini-
tion of the same structure.

Definition 1. Two traces are structurally the same if they
have

• the same number of operations

• the same type of operation at the same positions

• the same number of paths operated by the operation at
the same positions

For example, consider a binary tree with 8 paths, which is
labeled from 0 to 7, and the following 5 example traces:

T1 = tread({1,2}), twrite({1,2})
T2 = tread({1,2})
T3 = tread({1,2}), tread({3,4})
T4 = tread({3,4,5}), twrite({3,4,5})
T5 = tread({3,4}), twrite({3,4})

(4)

If we take T1 as a reference, among T2 to T5, only T5 is
considered to have the same structure as T1. T2 has a different
length compared to T1. The second operation in T3 is a read
while the second operation in T1 is a write. T4 has the same
length and operation sequence as T1. However, each operation
in T4 operates on 3 paths while each operation in T1 operates
on 2 paths.

Proof. Now we start the proof for Lemma 2. Take a search
request as an example. As shown in Algorithm 1, a search
consists of n iterations (line 5) and each iteration contains
one batch access (line 14). Therefore, for each search re-
quest, the number of operations in the trace is n+1, where
the extra 1 comes from the final eviction. Since n is ini-
tialized with ⌈e f/efspec⌉, given a fixed set of parameters
param, the number of operations in the trace is fixed, and
the trace always starts with n reads at the beginning and 1
write at the end. Lastly, we need to show that the number of
paths being operated is the same for the same position. For
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each batch access, the number of requested blocks is t (line
12 - 14), which is defined as efspec∗ efn. Based on Lemma
1, we know that the corresponding read operation operates
on t paths. Similarly, the final write operation operates on
n∗ t = efspec∗ efn∗⌈e f/efspec⌉ paths. Therefore, Lemma 2
holds.

With Lemma 1 and Lemma 2, we have:

• the sequence pair Ti,0 and Ti,1 are structurally the same,
and

• paths related to these traces are sampled uniformly at
random without replacement.

The final step in our proof here is to invoke the security guar-
antees of the IND-CCA2 encryption scheme. For each pair
of requests qi,0 and qi,1, the corresponding traces, Ti,0 and
Ti,1, are computationally indistinguishable from the adver-
sary. By the definition of our security games, if the challenger
didn’t abort, we know Q0 and Q1 are of the same length and
they have the same type of requests at the same positions.
Therefore, the execution trace of Q0 is computationally indis-
tinguishable from the execution trace of Q1 and the probability
of the adversary winning condition 1 is less than half plus
negligible.

C.2 Condition 2
We then show that the probability of the adversary winning
in condition 2 is negligible.

Lemma 3. Assuming that the underlying hash function H
is collision-resistant, then the probability of the adversary
winning through condition 2 is negligible.

Proof. In Compass’s protocol, the server operates as remote
storage, either sending the client buckets at requested loca-
tions or updating its local storage based on the client’s mes-
sages. Excluding the scenario where the server becomes un-
responsive, the only way the server can deviate from the pro-
tocol is by sending the client an altered bucket content. To
ensure the integrity and freshness of the buckets that the client
reads from the server, Compass uses a Merkle Tree that is
built on collision-resistant hash functions. By the definition
of collision resistance hash functions, the probability of find-
ing two different inputs that produce the same hash output
is negligible. It is already well-proven by prior works that
a Merkle Tree built with such hash functions ensures data
integrity and the probability for an adversary to change the
data in a way that the root hash remains the same is negligible.
Although Compass uses an HNSW graph as the underlying
data structure rather than a tree, Compass ensures that each
node’s data, including the coordinates and neighbor list, is
stored inside one of the buckets that form a binary tree on

the server side. Therefore, the properties of the Merkle hash
tree follow directly, which means the probability of the server
successfully forging a response that passes the integrity check
on the client’s side is also negligible.
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