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Abstract. A linear code is considered self-orthogonal if it is contained within its dual
code. Self-orthogonal codes have applications in linear complementary dual codes, quantum
codes and so on. The construction of self-orthogonal codes from functions over finite fields
has been studied in the literature. In this paper, we generalize the construction method
given by Heng et al. (2023) to weakly regular plateaued functions. We first construct
several families of ternary self-orthogonal codes from weakly regular plateaued unbalanced
functions. Then we use the self-orthogonal codes to construct new families of ternary
LCD codes. As a consequence, we obtain (almost) optimal ternary self-orthogonal codes
and LCD codes. Moreover, we propose two new classes of p-ary linear codes from weakly
regular plateaued unbalanced functions over the finite fields of odd characteristics.

Keywords: Linear code · self-orthogonal code · LCD code · weakly regular plateaued
function

1 Introduction

Linear codes have important applications in secure communication [21], secret sharing
schemes [1], [2], [4], [5], [9], [23], authentication codes [8] and secure two-party computa-
tion [19], [3]. A linear code is considered self-orthogonal if it is contained within its dual
code. Self-orthogonal codes have also applications in linear complementary dual codes,
quantum codes and so on. Hence, the construction of linear codes is an interesting re-
search problem. Various methods exist for constructing linear codes and one approach
involves utilizing functions defined over finite fields(e.g., [2], [6], [7], [9], [15], [19], [20]).
Two generic constructions, referred to as the first and second generic constructions, for
generating linear codes from functions have been identified in the literature. Several
linear codes with good parameters have been constructed by using the second generic
construction method(e.g., [6], [9]). Indeed, Heng et al.(2023) have constructed in [10]
ternary self-orthogonal codes from weakly regular bent functions based on the second
generic construction. This observation motivates us to construct linear codes from weakly
regular plateaued functions over finite fields with odd characteristics. In this paper, we
used the second construction method to obtain new families of linear codes with few
weights.



2 Melike Çakmak, Ahmet Sınak, and Oğuz Yayla

The paper is organized as follows. Section 2 establishes the primary notation and
provides a review of fundamental concepts in finite fields and coding theory. In Section
3, we give some results related to weakly regular plateaued functions. In Section 4 and
5, we construct several families of self-orthogonal codes and investigate their dual codes.
In Section 6, we consider an application of ternary self-orthogonal codes in ternary LCD
codes.

2 Preliminaries

Throughout this paper, we fix the following notation. For an odd prime p and a pos-
itive integer m, q = pm denotes the prime power and Fq is the finite field with q ele-
ments. Let α be an element in Fq, then the trace of α over Fp is given by Trpm/p(α) =

α + αp + αp2 + . . . , αpm−1
and ξp denotes the complex primitive p-th root of unity. SQ

and NSQ denote, respectively, all squares and non-squares in F⋆
p and also, η0 denotes the

quadratic characters of F⋆
p. Finally, p

⋆ denotes η0(−1)p.

Cyclotomic Field Q(ξp). Let Z be the rational integer ring and Q be the rational field.
Then we have the following fact about p-th cyclotomic field Q(ξp).

Lemma 1. [11] The following results on Q(ξp) hold.

1. Let ξp be the p-th primitive root of complex unity. Then the ring of integers in K :=
Q(ξp) is OK = Z(ξp) and {ξip : 1 ≤ i ≤ p− 1} is an integral basis of OK

2. The field extention K/Qis a Galois extension of degree p − 1 with Galois group
Gal(K/Q) = {σa : a ∈ F⋆

p}, where the automorphism σa of K is defined by σa(ξp) =
ξap

3. The field K has unique quadratic subfield L = Q(
√
p⋆). For 1 ≤ a ≤ p−1, σa(

√
p⋆) =

η0(a)
√
p⋆. Therefore, the Galois group Gal(K/Q) is {1, σγ}, where γ is a nonsquare

in F⋆
p.

From Lemma 1, for any a ∈ F⋆
p and b ∈ Fp, one can directly write

σa(ξ
b
p) = ξabp and σa(

√
p⋆

m
) = ηm0 (a)

√
p⋆

m
.

Characters over finite fields. Given a ∈ Fq, the function

ϕa(x) = ξTrp
m/p(ax)

p , x ∈ Fq

defines an additive character of Fq. The orthogonality relation of additive characters
([12]) is given by ∑

x∈Fq

ϕ1(ax) =

{
q, if a = 0,
0, if a ∈ F⋆

q
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Let α be a primitive element of Fq. Then ψj(α
k) = ξjkq−1 for k = 0, 1, . . . , q − 2, where

0 ≤ j ≤ q − 2 denotes the multipcicative character of Fq. The orthogonality relation of
multiplicative characters ([12]) is given by∑

x∈F⋆
q

ψj(x) =

{
q − 1, if j = 0,
0, if j ̸= 0

2.1 Weakly regular plateaued functions

Let f be a p-ary function from Fpm to Fp. Let q = pm. Then its Walsh transform is
defined as

Wf (β) =
∑
x∈Fq

ξ
f(x)−Trpm/p(βx)
p , β ∈ Fq

If Wf (0) = 0, then f is called a balanced function over Fp. A function f is the bent
function if its Walsh coefficients satisfy |Wf (β)|2 = pm. A bent function f is called
weakly regular bent if there exists a complex number u with |u| = 1 and a p-ary function

g such that Wf (β) = u−1p
m
2 ξ

g(b)
p for all β ∈ Fq. A p-ary function f is called s-plateaued if

|Wf (β)|2 ∈ {0, pm+s}. Now we can define Walsh support of an s-plateaued p-ary function
f as

Supp(Wf ) = {β ∈ Fq : |Wf (β)|2 = pm+s}

and we have #Supp(Wf ) = pm−s. Walsh distribution of an s-plateaued p-ary function
f follows from Parseval identity.

Lemma 2. Let f : Fpm → Fp be s-plateaued function. Then

#{β ∈ Fq : |Wf (β)|2 = pm+s} = pm−s

#{β ∈ Fq : |Wf (β)|2 = 0} = pm − pm−s

Now, we have the following definition.

Definition 1. ([18]) Let f be p-ary s-plateaued function from Fq to Fp with 0 ≤ s ≤ m.
Then f is called weakly regular s-plateaued if there exis a complex number u with |u| = 1
such that

Wf (β) ∈ { 0, up
m+s

2 ξg(β)p }

∀β ∈ Fq, where g is a p-ary function over Fq and g(β) = 0 for all β /∈Supp(Wf ).
Otherwise, f is called non-weakly regular p-ary s-plateaued.

Lemma 3. [18] Let f be p-ary s-plateaued function from Fq to Fp and let β ∈ Fpm.
Then ∀β ∈Supp(Wf ), we have the following

Wf (β) = ϵ
√
p⋆

m+s
ξg(β)p

where ϵ ∈ { −1, 1} is the sign of Wf and g is a p-ary function over Fq with g(β) = 0 for
all β /∈Supp(Wf ).
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Lemma 4. [17] Let f be p-ary s-plateaued function from Fq to Fp and let β ∈ Fpm.
Then for x ∈ Fpm, we have∑

β∈Supp(Wf )

ξ
g(β)+Trpm/p(βx)
p = ϵηm0 (−1)

√
p⋆

m−s
ξf(x)p

where ϵ ∈ { −1, 1} is the sign of Wf and g is a p-ary function over Fq with g(β) = 0 for
all β /∈Supp(Wf ).

Recently, Mesnager et. al. [17] introduced the subset of the set of weakly regular un-
balanced plateaued functions. Let WRP be the set of p-ary weakly regular s-plateaued
unbalanced functions with 0 ≤ s ≤ m satisfying the conditions:

1. f(0) = 0
2. There exist an even positive integer l such that gcd(l−1, p−1) = 1 and f(ax) = alf(x)

for any a ∈ F⋆
p and x ∈ Fq.

Lemma 5. [17] Let f ∈ WRP with Wf (β) = ϵ
√
p⋆

m+s
ξ
g(β)
p for all β ∈Supp(Wf ). Then

there exist an even positive integer h such that gcd(h− 1, p− 1) = 1 and g(aβ) = ahg(β)
for any a ∈ F⋆

p and β ∈Supp(Wf ).

2.2 Linear codes and LCD codes from self-orthogonal codes

In this subsection, we introduce linear codes, their construction method from functions
and LCD codes from self-orthogonal codes.

Let Fq be finite field with q elements, where q is a power of a prime p and let n be
a positive integer. A linear code C over Fp with parameters [n, k, d] is a k-dimensioonal
liner subspace of Fn

p , where d denotes the minimum Haming distance of C. Let a be
a vector in Fn

p and its support defined as supp(a)= {0 ≤ i ≤ n − 1 : ai ̸= 0}. The
cardinality of supp(a) is called the Hamming weight of a. The dual code C⊥ of an [n, k]
linear code C is defined by C⊥ = {c⊥ ∈ Fn

p : c⊥ ·c for all c ∈ C}, where “· ”is the standart
inner product over Fn

p . Then C⊥ is an [n, n − k] linear code over Fn
p . If a linear code C

satisfies C ⊂ C⊥, then C is referred to as a self-orthogonal code. In particular, if C = C⊥,
then C is called sef-dual. If all codewords of C are divisible by some integer k > 1, then
the code is said to be divisible by k. For a p-ary linear code C, there is a relation between
the self-orthogonality and divisibility of C.

Lemma 6. [21] Let C be a linear code over Fp. For p = 3, C is self-orthogonal if and
only if every codeword of C has weight divisible by three.

By looking at the weight distribution of a code, one can decide whether a ternary code
is self-orthogonal or not.

There are different methods to construct linear codes. In this paper, we use the second
generic construction method based on the defining set. Let D = {d1, d2, ..., dn} ⊆ Fpm .
The trace of x ∈ Fpm over Fp is defined by

Trpm/p(x) = x+ xp + xp
2
+ . . . , xp

m−1
, x ∈ Fpm
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Define
CD = {Trpm/p(bd1), T rpm/p(bd2), ..., T rpm/p(bdn) : b ∈ Fpm}

Then CD is a linear code over Fp with length n and dimension at most m. The set D is
called the defining set of CD. The augmented code of CD is defined by

CD = {Trpm/p(bd1), T rpm/p(bd2), ..., T rpm/p(bdn) + c1 : b ∈ Fpm , c ∈ Fp}, (2.1)

where 1 = (1, 1, ..., 1) ∈ Fn
p . We will construct self-orthogonal code by using this tech-

nique.
For a linear code C, if C ∩ C⊥ = 0, where 0 is the zero vector in C, then it is called a

linear complementary dual code(LCD code). Note that the dual of an LCD code is also
an LCD code. The necessary and sufficient conditions for a linear code to be an LCD
code were defined in terms of the generator matrix[13]. Besides, LCD codes were shown
to give an optimum solution to the two-user binary adder channel[13].

A matrix G is said to be row-orthogonal if GG⊥ = I , where I is an identity matrix
and if GG⊥ = 0, then it is called row-self-orthogonal. A linear code C is self-orthogonal if
and only if its generator matrix is row-self-orthogonal[14]. If G is a generator matrix for
[n, k] linear code C, then it can be transformed to the standard form G = [I : A], where
I is an identity matrix and it is called the systematic generator matrix of the code. Then
C is called leading-systematic. The following lemma provides a relation between LCD
codes and self-orthogonal codes.

Lemma 7. [14] A leading-systematic linear code C is an LCD code if its systematic
generator matrix G = [I , A] is row-orthogonal.

The Pless power moment. For a linear [n, k, d] code C over Fp, we denote the weight
distribution of C and C⊥ as (1, A1, . . . , An) and (1, A⊥

1 , . . . , A
⊥
n ), respectively. The first

four Pless power moments are given as:

n∑
i=0

Ai = pk (2.2)

n∑
i=0

iAi = pk−1
(
pn− n−A⊥

1

)
(2.3)

n∑
i=0

i2Ai = pk−2
(
(p− 1)n(pn− n+ 1)− (2pn− p− 2n+ 2)A⊥

1 + 2A⊥
2

)
(2.4)

n∑
i=0

i3Ai = pk−3[(p− 1)n(p2n2 − 2pn2 + 3pn− p+ n2 − 3n+ 2)

−(3p2n2 − 3p2n− 6pn2 + 12pn+ p2 − 6p+ 3n2 − 9n+ 6)A⊥
1

+6(pn− p− n+ 2)A⊥
2 − 6A⊥

3 ]

(2.5)

The Pless power moments are used to find the parameters of linear codes.
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Augmented code of a linear code. Let C be an [n, k, d] linear code over Fp which has
generator matrix G. The augmented code C of C is a linear code over Fp with generator
matrix [

G
1

]
where 1 = (1, 1, ..., 1) ∈ Fn

p . Note that if 1 is not a codeword in C, then the augmented

code C has length n and dimension k+1. Determining the weight distribution of a code
is a hard problem and finding the minimum distance of C requires the complete weight
distribution of the original code C. There are some methods to determine whether the
given augmented code is self-orthogonal. In this paper, we will use Lemma 6 to prove
the self-orthogonality of the the linear code.

3 Character sums for weakly regular plateaued functions

In this section, we present several useful results on the character sums for weakly regular
plateaued functions.

Lemma 8. [12] Let p be an odd prime, p⋆ = η0(−1)p and a ∈ F⋆
pm. Then∑

x∈Fpm

ξ
Trpm/p(ax

2)
p = (−1)m−1η(a)

√
p⋆

m

Particularly, if m = 1 and a = 1, then
∑

x∈Fpm

ξx
2

p =
√
p⋆

m

Lemma 9. [12] Let p be an odd prime and p⋆ = η0(−1)p, then

1.
∑
c∈F⋆

p

η0(c) = 0;

2.
∑
c∈F⋆

p

ξcap = −1 for every a ∈ F⋆
p;

3.
∑
c∈F⋆

p

η0(c)ξ
c
p =

√
p∗.

Lemma 10. [12] Let b ∈ Fpm and c ∈ Fp and let

B =
∑
z∈F⋆

p

∑
x∈Fpm

ξ
z(Trpm/p(bx)+c)
p

Then we have

B =


0, if c ∈ Fp, b ̸= 0,
pm(p− 1), if c = 0, b = 0,
−pm, if c ̸= 0, b = 0.
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Lemma 11. [17] Let f : Fpm → Fp be a p-ary function with Wf (0) = ϵ
√
p⋆

m+s
, where

ϵ ∈ {−1, 1} is the sign of Wf and p⋆ = η0(−1)p. Let Nf := #{b ∈ Fpm : f(b) = 0}. Then
we have

Nf =

{
pm−1 + ϵη0(−1)(p− 1)

√
p⋆

m+s−2
, if m+ s is even,

pm−1, if m+ s is odd.

Lemma 12. [17] Let f be a weakly regular s-plateaued function with Wf (β) = ϵ
√
p⋆

m+s
ξg(β).

Define Ng := #{b ∈ Supp(Wf ) : g(b) = 0}. Then we have

Ng =

{
pm−s−1 + ϵηm+1

0 (−1)(p− 1)
√
p⋆

m−s−2
, if m− s is even,

pm−s−1, if m− s is odd.

Lemma 13. [17] Let f ∈ WRP. Define Nsq := #{b ∈ Supp(Wf ) : g(b) ∈ SQ} and
Nnsq := #{b ∈ Supp(Wf ) : g(b) ∈ NSQ}. Then we have

Nsq =

{
p−1
2 (pm−s−1 + ϵηm0 (−1)

√
p⋆

m−s−1
), if m− s is odd,

p−1
2 (pm−s−1 − ϵηm+1

0 (−1)
√
p⋆

m−s−2
), if m− s is even.

Nnsq =

{
p−1
2 (pm−s−1 − ϵηm0 (−1)

√
p⋆

m−s−1
), if m− s is odd,

p−1
2 (pm−s−1 − ϵηm+1

0 (−1)
√
p⋆

m−s−2
), if m− s is even.

Remark 1. Let a ∈ F⋆
3, f(x) ∈ WRP and g be the dual of f(x). Define Ng(a) := #{b ∈

Supp(Wf ) : g(b) + a = 0}. Then from Lemma 13, we have

Ng(a) =

{
3m−s−1 − ϵ(−1)mη0(a)(−3)

m−s−1
2 , if m− s is odd,

3m−s−1 + ϵ(−1)m(−3)
m−s−2

2 , if m− s is even.

Lemma 14. [22] Let a ∈ F⋆
p and f ∈ WRP. Define Nsq(a) := #{b ∈ Supp(Wf ) :

g(b) + a ∈ SQ} and Nnsq(a) := #{b ∈ Supp(Wf ) : g(b) + a ∈ NSQ}. Then we have the
following.
If m− s is even, then

Nsq(a) =
p− 1

2
pm−s−1 +

1 + pη0(a)

2
ϵηm+1

0 (−1)
√
p∗

m−s−2
,

Nsq(a) =
p− 1

2
pm−s−1 +

1− pη0(a)

2
ϵηm+1

0 (−1)
√
p∗

m−s−2
.

If m− s is odd, then

Nsq(a) =
p− 1

2
pm−s−1 − 1 + η0(a)

2
ϵηm0 (−1)

√
p∗

m−s−1
,

Nsq(a) =
p− 1

2
pm−s−1 +

1− η0(a)

2
ϵηm0 (−1)

√
p∗

m−s−1
.
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4 The Linear code CDf
and its subcode for a ̸= 0 and p = 3

Let m + s > 3 be a positive integer with 0 ≤ s ≤ m and p be an odd prime. Let
f(x) ∈ WRP. In this section we construct the augmented code CDf

defined in (2.1)
based on the defining set

Df = {x ∈ F3m : f(x) + a = 0}

for p = 3 and a ∈ F⋆
3. The length of the code CDf

is the size of the set Df , and the value
n = #Df follows from [17, Lemma 9] when p = 3.

Lemma 15. The length of CDf
is given by

n =

{
3m−1 − ϵη0(a)(−3)

m+s−1
2 , if m+ s is odd,

3m−1 + ϵ(−3)
m+s−2

2 , if m+ s is even.

Lemma 16. Let a ∈ F⋆
3, b ∈ F3m, c ∈ F3 and f(x) ∈ WRP. Denote by

S =
∑
y∈F⋆

3

∑
z∈F⋆

3

∑
x∈F3m

ξ
y(f(x)+a)
3 ξ

z(Tr3m/3(bx)+c)

3

For every b /∈Supp(Wf ), S = 0 and for every b ∈Supp(Wf ) we have the following.
If m+ s is even, then we have

S =


4ϵ(−3)

m+s
2 , if c = 0, g(b) + a = 0,

−2ϵ(−3)
m+s

2 , if c = 0, g(b) + a ̸= 0 or c ̸= 0, g(b) + a = 0,

ϵ(−3)
m+s

2 , if c ̸= 0, g(b) + a ̸= 0.

If m+ s is odd, then we have

S =



0, if g(b) + a = 0

2ϵ(−3)
m+s+1

2 , if c = 0, g(b) + a ∈ SQ,

−2ϵ(−3)
m+s+1

2 , if c = 0, g(b) + a ∈ NSQ,

−ϵ(−3)
m+s+1

2 , if c ̸= 0, g(b) + a ∈ SQ,

ϵ(−3)
m+s+1

2 , if c ̸= 0, g(b) + a ∈ NSQ.

Proof. The first case is trivial, so we give a short proof for the second case. By definition
of S, We have

S =
∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

ξya3
∑

x∈F3m

ξ
y(f(x)+ z

y
Tr3m/3(bx))

3

=
∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

ξya3 σy

 ∑
x∈F3m

ξ
f(x)−Tr3m/3

(
−z
y

bx
)

3


=
∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

ξya3 σy

(
ϵ
√
3⋆

m+s
ξ
g
(

−z
y

b
)

3

)

= ϵ
√
3⋆

m+s ∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

ηm+s
0 (y)ξ

y
(
a+g(−z

y
b)
)

3 .
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From [17, Proposition 2], there exists a positive even integer l such that g(−z
y b) =

(−z
y )lg(b) = g(b) since z, y ∈ F⋆

3. Then we have

S = ϵ
√
3⋆

m+s ∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

ηm+s
0 (y)ξ

y(a+g(b))
3

If m+ s is even, then ηm+s
0 (y) = 1 and the value of S directly follows. If m+ s is odd,

then ηm+s
0 (y) = η0(y) and

S = ϵ
√
3⋆

m+s ∑
z∈F⋆

3

ξzc3
∑
y∈F⋆

3

η0(y)ξ
y(a+g(b))
3

If g(b) + a = 0, then clearly S = 0. Otherwise from Lemma 9, we have

S = ϵ
√
3⋆

m+s∑
z∈F⋆

3
ξzc3
∑

y∈F⋆
3
η0 (y(g(a) + b)) η0(g(a) + b)ξ

y(a+g(b))
3

= ϵ(−3)
m+s+1

2 η0(g(a) + b)
∑
z∈F⋆

3

ξzc3 .

Hence, the proof is complete.

Lemma 17. Let f ∈ WRP. Define

Nf,b,c(a) := #{x ∈ F3m : Tr3m/3(bx) + c = 0 and f(x) + a = 0}

for b ∈ F3m and c ∈ F3. Then, for every b /∈Supp(Wf ), we have

Nf,b,c(a) =

{
3m−2 − ϵ(−3)

m+s−4
2 , if m+ s is even,

3m−2 + ϵη0(a)(−3)
m+s−3

2 , if m+ s is odd.

For every b ∈Supp(Wf ) we have

– If m+ s is even, then

Nf,b,c(a) =



3m−1 + ϵ(−3)
m+s−2

2 , if c = 0, b = 0,
0, if c ̸= 0, b = 0,

3m−2 − ϵ(−3)
m+s−2

2 , if c = 0, b ̸= 0, g(b) + a = 0,

3m−2 + ϵ(−3)
m+s−2

2 , if c = 0, b ̸= 0, g(b) + a ̸= 0 or c ̸= 0, b ̸= 0, g(b) + a = 0,
3m−2, if c ̸= 0, b ̸= 0, g(b) + a ̸= 0.

– If m+ s is odd and a = 1, then

Nf,b,c(a) =



3m−1 − ϵ(−3)
m+s−1

2 , if c = 0, b = 0,
0, if c ̸= 0, b = 0,

3m−2 + ϵ(−3)
m+s−3

2 , if c = 0, b ̸= 0, g(b) + a = 0 or c ̸= 0, b ̸= 0, g(b) + a = 0,

3m−2 − ϵ(−3)
m+s−3

2 , if b ̸= 0, c = 0, g(b) + a ∈ NSQ,

3m−2 − ϵ(−3)
m+s−1

2 , if b ̸= 0, c = 0, g(b) + a ∈ SQ,
3m−2, if b ̸= 0, c ̸= 0, g(b) + a ∈ SQ,

3m−2 + 2ϵ(−3)
m+s−3

2 , if b ̸= 0, c ̸= 0, g(b) + a ∈ NSQ.
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– If m+ s is odd and a = −1, then

Nf,b,c(a) =



3m−1 + ϵ(−3)
m+s−1

2 , if c = 0, b = 0,
0, if c ̸= 0, b = 0,

3m−2 − ϵ(−3)
m+s−3

2 , if c = 0, b ̸= 0, g(b) + a = 0 or c ̸= 0, b ̸= 0, g(b) + a = 0,

3m−2 + ϵ(−3)
m+s−1

2 , if b ̸= 0, c = 0, g(b) + a ∈ NSQ,

3m−2 + ϵ(−3)
m+s−3

2 , if b ̸= 0, c = 0, g(b) + a ∈ SQ,

3m−2 + ϵ(−3)
m+s−3

2 , if b ̸= 0, c ̸= 0, g(b) + a ∈ SQ,
3m−2, if b ̸= 0, c ̸= 0, g(b) + a ∈ NSQ.

Proof. By the definition of Nf,b,c(a), we have

Nf,b,c(a) =
1

9

∑
x∈F3m

∑
y∈F3

∑
z∈F3

ξ
y(f(x)+a)
3 ξ

z(Tr3m/3(bx)+c)
3

= 3m−2 +
1

9

∑
y∈F⋆

3

∑
x∈F3m

ξ
y(f(x)+a)
3 +

1

9

∑
z∈F⋆

3

∑
x∈F3m

ξ
z(Tr3m/3(bx)+c)
3

+
1

9

∑
x∈F3m

∑
y∈F⋆

3

∑
z∈F⋆

3

ξ
y(f(x)+a)
3 ξ

z(Tr3m/3(bx)+c)
3

= 3m−2 +
1

9

∑
y∈F⋆

3

∑
x∈F3m

ξ
y(f(x)+a)
3 +

B

9
+
S

9

where S and B are defined in Lemma 16 and Lemma 10. From the proof of Lemma 15,
we have ∑

y∈F⋆
3

∑
x∈F3m

ξ
y(f(x)+a)
3 =

{
−ϵ(−3)

m+s
2 , if m+ s is even

ϵη0(a)(−3)
m+s+1

2 , if m+ s is odd.

Hence we can derive the desired results.

Theorem 1. Let m + s > 4 be even, f(x) ∈ WRP and ϵ be the sign of the Walsh
transform of f(x). Let p = 3 and Df = {x ∈ F3m : f(x) + a = 0} for a ∈ F⋆

3. Then CDf

is five-weight self orthogonal [3m−1 + ϵ(−3)
m+s−2

2 ,m+1] ternary linear code with weight
distribution in Table 1.

Proof. Let c be any codeword of CDf
. Then we can write

c =
(
Tr3m/3(bx)

)
x∈Df

+ c1

with b ∈ F3m and c ∈ F3. From the definition of the code, its length #Df = n follows
from Lemma 15. Similarly, the Hamming weight of a codeword c is obtained as

wt(c) = n−Nf,b,c(a)

which follows from Lemma 17. The weight distribution also follows from Lemma 1. The
dimension of CDf

ism+1 since A0 = 1. By Lemma 6, CDf
is self-orthogonal form+s > 4

since all codewords have weights divisible by 3.
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Example 1. Let f(x) = Tr34/3(ζx
10+ ζ51x4+ ζ68x2), where ζ is a generator of F∗

34 = ⟨ζ⟩
for ζ4 + 2ζ3 + 2 = 0. Then, f is a quadratic 2-plateaued unbalanced function in the
set WRP and for all β ∈ F34 , we have Wf (β) ∈ {0,−27,−27ξ3,−27ξ23} with ϵ = 1.
Then the code CDf

in Theorem 1 has parameters [36, 5, 18] and weight enumerator
1 + 12y18 + 216y24 + 8y27 + 6y36, which are verified by Sage program.

Table 1. The code CDf in Theorem 1 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

2
(
3m−2 + ϵ(−3)(

m+s−2
2 )

)
3m−s−1 + ϵ(−1)m(−3)(

m−s−2
2 )

2 · 3m−2 + ϵ(−3)(
m+s−2

2 ) 2
(
2 · 3m−s−1 − ϵ(−1)m(−3)(

m−s−2
2 ) − 1

)
2 · 3m−2 4 · 3m−s−1 + ϵ(−1)m(−3)(

m−s−2
2 ) − 1

3m−1 + ϵ(−3)(
m+s−2

2 ) 2

2 · 3m−2 − 2ϵ(−3)(
m+s−4

2 ) 3m+1 − 3m−s+1

Theorem 2. Let m+s > 3 be odd, f(x) ∈ WRP and ϵ be the sign of Walsh transform of
f(x). Let p = 3 and Df = {x ∈ F3m : f(x)+a = 0} for a ∈ F⋆

3. Then CDf
is a six-weight

self orthogonal [3m−1 − η0(a)ϵ(−3)
m+s−1

2 ,m+ 1] linear code with weight distributions in
Table 2.

Proof. Similarly to Theorem 1, we can find the Hamming weight of any codeword in
CDf

by using Lemmas 15 and 17. The weight distribution follows from Lemmas 1, 14
and Remark 1.

Example 2. Let a = −1, f(x) = Tr36/3(ζx
4+ ζ27x2), where ζ is a generator of F∗

36 = ⟨ζ⟩
for ζ6+2ζ4+ ζ2+2ζ+2 = 0. Then, f is a quadratic 1-plateaued unbalanced function in
the set WRP and for all β ∈ F34 , we have Wf (β) ∈ {0, 54ξ3+27,−27ξ3−54,−27ξ3+27}
with ϵ = −1. Then the code CDf

in Theorem 2 has parameters [270, 7, 162] and weight
enumerator 1+81y162+178y171+1674y180+169y189+89y198+2y270,which are verified
by Sage program.

Theorem 3. Let a ∈ F⋆
3 and f(x) ∈ WRP with ϵ the sign of the Walsh transform of

f(x). If m+s > 4 is even, then CDf

⊥
is a [3m−1+ϵ(−3)

m+s−2
2 , 3m−1+ϵ(−3)

m+s−2
2 −m−

1, 3] linear code. If m+ s > 3 is odd, then CDf

⊥
is a [3m−1 − ϵη0(a)(−3)

m+s−1
2 , 3m−1 −

ϵη0(a)(−3)
m+s−1

2 −m− 1, 3] linear code.

Proof. Denote by d⊥ the minimum distance of CDf

⊥
. By the definition of CDf

, we deduce

that d⊥ ≥ 2. Denote by (1, A1, . . . , An) and (1, A⊥
1 , . . . , A

⊥
n ) the weight distributions of

CDf
and CDf

⊥
, respectively.
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Table 2. The code CDf in Theorem 2 when m+ s is odd.

,

Hamming weight ω Multiplicity Aω

0 1

3m−1 − ϵη0(a)(−3)(
m+s−1

2 ) 2

2
(
3m−2 + ϵη0(a)(−3)(

m+s−3
2 )

)
3m+1 − 2 · 3m−s + ϵη0(a)(−1)m(−3)(

m−s+1
2 )

2 · 3m−2 + 4ϵη0(a)(−3)(
m+s−3

2 ) 3m−s−1 + ϵη0(a)(−1)m(−3)(
m−s−1

2 )

2 · 3m−2 3m−s−1 − 1

2 · 3m−2 − ϵη0(a)(−3)(
m+s−1

2 ) 2
(
3m−s−1 − 1

)
2 · 3m−2 + ϵη0(a)(−3)(

m+s−3
2 ) 2

(
3m−s−1 + ϵη0(a)(−1)m(−3)

m−s−1
2

)

Let m+ s be even. By Equations 2.3, 2.4 and Theorem 1, we derive

A⊥
1 = 0 and A⊥

2 = 0

Combining 1 and Equation 2.5, we obtain

A⊥
3 = (3m−2 − 1)(3m−2 − ϵ(−3)

m+s−4
2 ) > 0

and d⊥ = 3. This completes the proof when m+ s is even.
By using same Equations 2.3, 2.4, 2.5 and Theorem 2, we obtain the desired conclu-

sions for odd m+ s.

5 The second family of linear codes from weakly regular plateaued
functions for a = 0

Let m + s > 3 be a positive integer with 0 ≤ s ≤ m and p be an odd prime. Let
f(x) ∈ WRP. In this section we construct the augmented code CDf

based on the
defining set

Df = {x ∈ Fpm : f(x) = 0}.

The length of the code CDf
is the size of the set Df , and the value n = #Df follows

from [17, Lemma 7].

Lemma 18. The length of CDf
is given by

n =

{
pm−1 + ϵη0(−1)(p− 1)

√
p⋆

m+s−2
, if m+ s is even,

pm−1, if m+ s is odd.

The following lemma follows from the combinations of [17, Lemma 12] and [16,
Lemma 6].

Lemma 19. Let b ∈ Fpm, c ∈ Fp and f(x) ∈ WRP. Denote by

S′ =
∑
y∈F⋆

p

∑
z∈F⋆

p

∑
x∈Fpm

ξyf(x)p ξ
z(Trpm/p(bx)+c)
p
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For every b /∈Supp(Wf ), S
′ = 0 and for every b ∈Supp(Wf ) we have the following.

If m+ s is even, then we have

S′ =


ϵ(p− 1)2

√
p⋆

m+s
, if c = 0, g(b) = 0,

−ϵ(p− 1)
√
p⋆

m+s
, if c = 0, g(b) ̸= 0 or c ̸= 0, g(b) = 0,

ϵ
√
p⋆

m+s
, if c ̸= 0, g(b) ̸= 0.

If m+ s is odd, then we have

S′ =



0, if g(b) = 0,

ϵ(p− 1)
√
p⋆

m+s+1
, if c = 0, g(b) ∈ SQ,

−ϵ(p− 1)
√
p⋆

m+s+1
, if c = 0, g(b) ∈ NSQ,

−ϵ
√
p⋆

m+s+1
, if c ̸= 0, g(b) ∈ SQ,

ϵ
√
p⋆

m+s+1
, if c ̸= 0, g(b) ∈ NSQ.

The following lemma will be used to find the Hamming weights for CDf
.

Lemma 20. Let f ∈ WRP. Define

Nf,b,c := #{x ∈ Fpm : Trpm/p(bx) + c = 0 and f(x) = 0}

for b ∈ Fpm and c ∈ Fp. Then, for every b /∈Supp(Wf ), we have

Nf,b,c =

{
pm−2 if m+ s is odd,

pm−2 + ϵ(p− 1)
√
p⋆

m+s−4
, if m+ s is even.

For every b ∈Supp(Wf ), we have the following.

– If m+ s is even, then

Nf,b,c =



pm−1 + ϵ(p− 1)η0(−1)
√
p⋆

m+s−2
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

pm−2 + ϵ(p− 1)η0(−1)
√
p⋆

m+s−2
, if c = 0, b ̸= 0, g(b) = 0,

pm−2, if c = 0, b ̸= 0, g(b) ̸= 0 or c ̸= 0, b ̸= 0, g(b) = 0,

pm−2 + ϵη0(−1)
√
p⋆

m+s−2
, if c ̸= 0, b ̸= 0, g(b) ̸= 0.

– If m+ s is odd, then

Nf,b,c =



pm−1, if c = 0, b = 0,
0, if c ̸= 0, b = 0,
pm−2, if c = 0, b ̸= 0, g(b) = 0 or c ̸= 0, b ̸= 0, g(b) = 0,

pm−2 − ϵ(p− 1)
√
p⋆

m+s−3
, if b ̸= 0, c = 0, g(b) ∈ NSQ,

pm−2 + ϵ(p− 1)
√
p⋆

m+s−3
, if b ̸= 0, c = 0, g(b) ∈ SQ,

pm−2 − ϵ
√
p⋆

m+s−3
, if b ̸= 0, c ̸= 0, g(b) ∈ SQ,

pm−2 + ϵ
√
p⋆

m+s−3
, if b ̸= 0, c ̸= 0, g(b) ∈ NSQ.
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Proof. By the definition of Nf,b,c, we have

Nf,b,c =
1

p2

∑
x∈Fpm

∑
y∈Fp

∑
z∈Fp

ξyf(x)p ξ
z(Trpm/p(bx)+c)
p

= pm−2 +
1

p2

∑
y∈F⋆

p

∑
x∈Fpm

ξyf(x)p +
1

p2

∑
z∈F⋆

p

∑
x∈Fpm

ξ
z(Trpm/p(bx)+c)
p

+
1

p2

∑
x∈Fpm

∑
y∈F⋆

p

∑
z∈F⋆

p

ξy(f(x))p ξ
z(Trpm/p(bx)+c)
p

= pm−2 +
1

p2

∑
y∈F⋆

p

∑
x∈Fpm

ξyf(x)p +
B′

p2
+
S′

p2

where S′ and B′ are defined in Lemma 19 and Lemma 10. From Lemma 18,

∑
y∈F⋆

p

∑
x∈Fpm

ξyf(x)p =

{
ϵ(p− 1)

√
p⋆

m+s
, if m+ s is even,

0, if m+ s is odd.

Then we can obtain the desired results.

Theorem 4. Let m + s > 3 be even, f(x) ∈ WRP and ϵ be the sign of Walsh trans-
form of f(x). Let Df = {x ∈ F3m : f(x) = 0}. Then CDf

is five-weight linear code

with parameters [1p(p
m + ϵ(p− 1)

√
p⋆

m+s
),m+ 1] and weight distribution in Table 3. In

particular, CDf
is self-orthogonal if p = 3.

Proof. Let c be any codeword of CDf
. Then we can write

c =
(
Trpm/p(bx)

)
x∈Df

+ c1

with b ∈ Fpm and c ∈ Fp. From the definition of the code, its length #Df = n follows
from Lemma 18. Similarly, the Hamming weight of a codeword c is obtained as

wt(c) = n−Nf,b,c

which follows from Lemma 20. The weight distribution also follows from Lemma 12.
The dimension of CDf

is m + 1 since A0 = 1. By Lemma 6, CDf
is self-orthogonal for

m+ s > 2 since all codewords have weights divisible by 3.

Example 3. Let f(x) = Tr35/3(ζ
19x4 + ζ238x2), where ζ is a generator of F∗

35 = ⟨ζ⟩
for ζ5 + 2ζ + 1 = 0. Then, f is a quadratic 1-plateaued unbalanced function in the
set WRP and for all β ∈ F34 , we have Wf (β) ∈ {0,−27,−27ξ3,−27ξ23} with ϵ = 1.
Then the code CDf

in Theorem 4 has parameters [63, 6, 36] and weight enumerator
1 + 100y36 + 486y42 + 120y45 + 20y54 + 2y63, which are verified by Sage program.
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Table 3. The code CDf in Theorem 4 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

(p− 1)pm−2 1
p

(
pm−s + ϵηm

0 (−1)(p− 1)
√
p⋆

m−s
)
− 1

p−1
p

(
pm−1 + ϵ

√
p⋆

m+s
)

p−1
p

(
2 · pm−s + ϵηm

0 (−1)(p− 2)
√
p⋆

m−s − p
)

1
p

(
pm + ϵ(p− 1)

√
p⋆

m+s
)

p− 1

1
p

(
(p− 1)pm−1 + ϵ(p− 2)

√
p⋆

m+s
)

(p−1)2

p

(
pm−s − ϵηm

0 (−1)
√
p⋆

m−s
)

(p− 1)
(
pm−2 + ϵ(p− 1)

√
p⋆

m+s−4
)
pm+1 − pm−s+1

Theorem 5. Let m+ s > 3 be odd, f(x) ∈ WRP and ϵ be the sign of Walsh transform
of f(x). Let Df = {x ∈ F3m : f(x) = 0}. Then CDf

is seven-weight linear code with

parameters [pm−1,m + 1] and weight distribution in table 4. In particular, CDf
is self-

orthogonal if p = 3.

Proof. We can find the parameters and weight distribution of CDf
by using similar steps

in Theorem 4. Then we can obtain the frequency of each weight by Lemmas 12 and 13.
CDf

is self-orthogonal if p = 3 by Lemma 6.

Example 4. Let f(x) = Tr36/3(ζx
4 + ζ27x2), where ζ is a generator of F∗

36 = ⟨ζ⟩ for
ζ6+2ζ4+ζ2+2ζ+2 = 0. Then, f is a quadratic 1-plateaued unbalanced function in the
set WRP and for all β ∈ F34 , we have Wf (β) ∈ {0, 54ξ3 + 27,−27ξ3 − 54,−27ξ3 + 27}
with ϵ = −1. Then the code CDf

in Theorem 5 has parameters [243, 7, 144] and weight
enumerator 1+90y144+144y153+1698y162+180y171+72y180+2y243, which are verified
by Sage program.

Table 4. The code CDf in Theorem 5 when m+ s is odd.

Hamming weight ω Multiplicity Aω

0 1

pm−1 p− 1

(p− 1)pm−2 pm+1 − p− pm−s(p− 1)
p−1
p2

(
pm + ϵ

√
p⋆

m+s+1
)

p−1
2

(
pm−s−1 − ϵηm

0 (−1)
√
p⋆

m−s−1
)

p−1
p2

(
pm − ϵ

√
p⋆

m+s+1
)

p−1
2

(
pm−s−1 + ϵηm

0 (−1)
√
p⋆

m−s−1
)

1
p2

(
(p− 1)pm + ϵ

√
p⋆

m+s+1
)

(p−1)2

2

(
pm−s−1 + ϵηm

0 (−1)
√
p⋆

m−s−1
)

1
p2

(
(p− 1)pm − ϵ

√
p⋆

m+s+1
)

(p−1)2

2

(
pm−s−1 − ϵηm

0 (−1)
√
p⋆

m−s−1
)
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Theorem 6. Let f(x) ∈ WRP with ϵ the sign of the Walsh transform of f(x). Ifm+s >

3 is even, then CDf

⊥
is a [1p(p

m + ϵ(p− 1)
√
p⋆

m+s
), 1p(p

m + ϵ(p− 1)
√
p⋆

m+s
)−m− 1, 3]

linear code. If m+ s > 3 is odd, then CDf

⊥
is a [pm−1, pm−1 −m− 1, 3] linear code.

Proof. By a similar proof as that of 3, we can derive the desired conclusions based on
the weight distribution of CDf

.

6 Ternary LCD codes from self-orthogonal codes

In this section, we construct new families of ternary LCD codes from self-orthogonal
codes constructed in this paper.

For the p-ary linear code CDf
in Equation 2.1 with the defining set

Df = {x ∈ Fpm : f(x) + a = 0}, a ∈ Fp

we assume that |Df | = n and Df = {d1, d2, ..., dn}, where f(x) is a weakly regular
plateaued function from Fpm to Fp and p is an odd prime.

For the generator matrix of CDf
, consider the following lemma.

Lemma 21. Let CDf
is defined as above and F⋆

pm = ⟨α⟩. Then a generator matrix of

CDf
is given by

Trpm/p(α
0d1) Trpm/p(α

0d2) . . . Trpm/p(α
0dn)

Trpm/p(α
1d1) Trpm/p(α

1d2) . . . Trpm/p(α
1dn)

. . .

. . .

. . .
Trpm/p(α

m−1d1) Trpm/p(α
m−1d2) . . . Trpm/p(α

m−1dn)

1 1 . . . 1


.

Proof. The generator matrix G follows from the definition of the augmented code CDf

and the fact that {α0, α1, ..., αm−1} form a basis of Fpm over Fp.

Theorem 7. Let m + s > 4 be even, f(x) ∈ WRP and ϵ be the sign of the Walsh
transform of f(x). Let p = 3 and Df = {x ∈ F3m : f(x) + a = 0} for a ∈ F⋆

3. Let CDf

be defined as above and its generator matrix G is given in Lemma 21. Then the matrix
G = [I : G] generates a ternary LCD code C with parameters[
3m−1 + ϵ(−3)

m+s−2
2 +m+ 1,m+ 1, d ≥ min{2 · 3m−2, 2 · (3m−2 + ϵ(−3)

m+s−2
2 )}

]
Besides, C⊥ is a ternary

[
3m−1 + ϵ(−3)

m+s−2
2 +m+ 1, 3m−1 + ϵ(−3)

m+s−2
2 , 3

]
LCD codes

which is at least almost optimal according to the sphere-packing bound.

Proof. In view of Theorems 1 and 3, the proof can proceed using the same argument
given in the proof of Theorem 7 in [10]
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Theorem 8. Let m+ s > 3 be odd, f(x) ∈ WRP and ϵ be the sign of the Walsh trans-
form of f(x). Let p = 3 and Df = {x ∈ F3m : f(x) + a = 0} for a ∈ F⋆

3. Let CDf

be defined as above and its generator matrix G is given in Lemma 21. Then the matrix
G = [I : G] generates a ternary LCD code C with parameters[
3m−1 − η0(a)ϵ(−3)

m+s−1
2 +m+ 1,m+ 1, d ≥ min{2 · 3m−2, 2 · (3m−2 + 2ϵ · η0(a)(−3)

m+s−3
2 )}

]
and C⊥ is a ternary

[
3m−1 − η0(a)ϵ(−3)

m+s−1
2 +m+ 1, 3m−1 − η0(a)ϵ(−3)

m+s−1
2 , 3

]
LCD

code which is at least almost optimal according to the sphere-packing bound.

Proof. Similarly to the proof of Theorem 7, the desired conclusion follows from Theorem
2 and the proof of Theorem 7 in [10]

Theorem 9. Let m + s > 3 be even, f(x) ∈ WRP and ϵ be the sign of the Walsh
transform of f(x). Let p = 3 and Df = {x ∈ F3m : f(x) = 0}. Let CDf

be defined as

above and its generator matrix G is given in Lemma 21. Then the matrix G = [I : G]
generates a ternary LCD code C with parameters[
1
3

(
3m + 2ϵ

√
−3

m+s
)
+m+ 1,m+ 1, d ≥ 1min

{
2 · 3m−2, 23

(
3m−1 + ϵ

√
−3

m+s
)}]

.

Proof. Similarly to the proof of Theorem 7, the desired conclusion follows from Theorem
4 and the proof of Theorem 7 in [10]

Theorem 10. Let m + s > 3 be odd, f(x) ∈ WRP and ϵ be the sign of the Walsh
transform of f(x). Let p = 3 and Df = {x ∈ F3m : f(x) = 0}. Let CDf

be defined as

above and its generator matrix G is given in Lemma 21. Then the matrix G = [I : G]
generates a ternary LCD code C with parameters[
3m−1 +m+ 1,m+ 1, d ≥ 1min

{
2
9

(
3m ± ϵ

√
−3

m+s+1
)}]

.

Proof. Similarly to the proof of Theorem 7, the desired conclusion follows from Theorem
5 and the proof of Theorem 7 in [10]

7 Concluding Remarks and Future Work

We generalize the recent construction method introduced by Heng et. al. [10] to weakly
regular plateaued unbalanced functions. We constructed new families of ternary self-
orthogonal codes from weakly regular plateaued unbalanced functions over F3. Then we
used self-orthogonal codes to construct infinite families of ternary LCD codes and we
observed that some codes are at least almost optimal according to the sphere-packing
bound. Moreover, we constructed new families of p-ary linear codes from weakly regular
plateaued unbalanced functions over Fp for any odd prime p.

As future work, we are studying the construction of self-orthogonal p-ary linear codes
from weakly regular plateaued balanced functions over the finite fields of any odd char-
acteristics. We hope to obtain new families of (self-orthogonal) p-ary linear codes from
weakly regular plateaued balanced functions over Fp for any odd prime p.
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